
STUDIA INFORMATICA 2012

Volume 33 Number 2B (106)

Tomasz PŁUCIENNIK

Silesian University of Technology, Institute of Computer Science

VIRTUAL CITY GENERATION FOR GIS SYSTEMS TESTING

Summary. Geographic Information Systems are responsible for processing and

presenting geographical data. Development of GIS systems requires extensive tests

based on actual data. Access to detailed datasets is restricted which led to the neces-

sity of replacing them with synthetic data. This article presents extended version of

a generator of spatial data layers, which could be used in mentioned tests.

Keywords: GIS (Geographic Information Systems), OGC (Open Geospatial Con-

sortium) Web Services, shapefile, spatial data, urban planning

GENEROWANIE WIRTUALNEGO MIASTA

DLA TESTOWANIA SYSTEMÓW TYPU GIS

Streszczenie. Systemy informacji przestrzennej (ang. Geographic Information

Systems) zajmują się przetwarzaniem i prezentacją danych geograficznych. Opraco-

wywanie systemów GIS wymaga obszernych testów opartych na danych rzeczywi-

stych. Dostęp do szczegółowych zbiorów jest ograniczony, co stworzyło potrzebę za-

stąpienia ich przez dane syntetyczne. Niniejszy artykuł prezentuje rozbudowaną wer-

sję generatora warstw danych przestrzennych, które można wykorzystać we wspo-

mnianych testach.

Słowa kluczowe: dane przestrzenne, plik shapefile, systemy informacji prze-

strzennej (GIS), urbanistyka, usługi sieciowe OGC (Open Geospatial Consortium)

1. Introduction

Geographic Information Systems (GIS) are systems for managing, storing and presenting

spatial data describing objects placed on earth’s globe [1]. Spatial information is, from the

point of view of the user, presented as images corresponding to raster maps or objects. These

objects are called features, grouped into layers. A layer contains objects of the same type.

118 T. Płuciennik

A feature is constituted of descriptive attributes and the geometry used to display it on the

map. Geometry can describe a point, a line or a polygon. One feature can contain multiple

geometries or no geometries at all. All geometries consist of points describing its vertices and

internal holes (if they are present) and can be either two- or three-dimensional.

Problem of testing arises during the development of GIS systems. It is required to test the

system integrity and performance with representative, large datasets of spatial data. The per-

fect option is to own the target data for the system, but usually this is not the case. One can

use dataset available on the internet e.g. in [2], however it is hard to find data with required

amount of detail and/or containing the sufficient set of layers describing the same area. To the

author’s knowledge there are also no GIS data generators available. Furthermore, it might be

required to test system's responses against broken data e.g. invalid geometry. Taking all this

into consideration a need for generic dataset generator have arisen.

The generator is an application creating ESRI (Environmental Systems Research Institute)

shapefiles [3] containing layers depicting objects in a virtual city area. Created data can be up-

loaded into a GIS system and presented as either a WFS (Web Feature Service) or WMS (Web

Map Service) layers [4], which are part of OGC (Open Geospatial Consortium) standards.

The generator is a tool which will support the GIS systems development. The first version

was created in 2011 and was presented in [5]. It was able to generate a road structure of a city

but with some limitations. Additionally it was wrongly assumed that this kind of layers are

polygon layers, while they are typically represented as lines. This made calculating bends on

roads complicated. Therefore, in the first version of the generator all roads were straight. Based

on this type of roads generation of parcels, buildings and trees began. Then new implementation

of roads was created and other layers were accommodated to fit it. The result of this implemen-

tation is presented in this paper. The project is undergoing modifications and it is still being

extended.

2. Current Status

As of today the layers that can be generated are in order:

 roads,

 parcels,

 buildings (and simple three-dimensional buildings),

 trees.

In the final version of the software rail tracks and water layers will be available. The user

provides which layers are needed using command line (note that e.g. parcels cannot be gener-

Virtual city generation for GIS systems testing 119

ated without roads layer). The order of generation is important since the layers have to satisfy

spatial joins operation [6].

Road layer is based on a fractal [5] – a road has its outgoing roads and so forth. The ge-

ometries are now lines. Using Bézier curves allow to calculate smooth bends (Fig. 1).

Fig. 1. Bézier curve based bends

Rys. 1. Zakręty oparte na krzywych Béziera

Parcels are of course polygons. Parcels are firstly placed over existing roads. The width of

these parcels are based on road parameter describing its actual width plus sideway width.

Then empty places between roads are transformed into temporary areas and divided into resi-

dential parcels by cutting then along chosen lines (Fig. 2). The prepared parcel types are

roads, residential, rail, water and empty.

Fig. 2. Example of division of an area into parcels

Rys. 2. Przykład podziału obszaru na działki

Buildings are then placed on residential parcels. Each building have to fully fit inside its

parcel. The shapes are based on the shape of the current parcel or based on rectangles (Fig. 3),

therefore sides of the building are most probably parallel to parcel's borders.

Trees are placed randomly on residential places not overlapping buildings and other trees.

Number of trees per parcel is randomized.

120 T. Płuciennik

Fig. 3. Example buildings

Rys. 3. Przykładowe budynki

In every layer generation an element of randomization is added e.g. placing of bends when

calculating roads, dividing parcel areas into not necessarily equal parts or randomly position-

ing buildings on residential parcels. Additionally, a Gauss density probability function is used

to simulate city centre: closer to the middle of the map roads structure is denser, parcels are

smaller and buildings have a tendency to be taller.

In the future release some of the parcels will be marked not as residential, but as rail or

water. The problem will be to set them correctly i.e. to create continuous rail tracks and rivers

(Fig. 4).

Fig. 4. Planned layers construction

Rys. 4. Konstrukcja planowanych warstw

A spatial feature is constituted of geometry and attributes. Attributes in generator are di-

vided into two groups: automatic and user-defined. Automatic attributes are always outputted

and they list is as follows:

 id – created for every layer,

 type – used for roads and parcels,

 lane_count – number of road's lanes,

Virtual city generation for GIS systems testing 121

 name – name of an object (now used only for roads),

 tier_up – number of building levels above the ground level,

 tier_down – number of building levels below the ground level,

 tier_height – building level height in metres.

User-defined attributes can represent integer or floating point number, text or a date. User can

provide any name for the attribute and values will be automatically generated according to the

attribute's type.

3. Data-related Optimization

The application is optimized in terms of its performance and memory consumption. In to-

day's world memory optimization lost its previous priority. This of course does not mean that

it should be ignored. In terms of optimizing speed, excessive memory usage might also de-

crease performance. Typical optimization techniques [7] (starting from. reorganizing loops or

tree iteration etc.) can be extended if assumptions can be made upon the processed data. If the

data is known, there are even more possibilities of better optimization. During the develop-

ment two assumptions were affiliated:

 Occam’s Razor [8] – during the generation of a complicated data layer always the sim-

plest solution is the best (the quickest way to create a working program),

 if an object is somehow generated incorrectly it is removed, e.g. one missing road will not

make any visible difference and recalculating that one geometry might take too much

time.

In the previous version of the generator roads were represented as polygons. The amount

of operation required to calculate the geometry exact position were high, especially when

touching roads (crossings) were cut to fulfil the requirement of not overlapping each other

[5]. In case of ridiculously large city maps (e.g. 100 over 100 km) the generation time was

reaching 2 hours. To make matters worse no bends were yet generated. Fortunately typical

size map (e.g. 10 over 10 km) were generated in minutes. Still no other layer was outputted.

In real datasets roads are represented as lines and the polygon-like view of them is gener-

ated on the basis of object's attributes. In the previous version of the generator roads' axes

were created as auxiliary layer used for debugging and this layer was actually close to how the

roads layer should look [5]. This design mistake is now corrected, which is not a optimization

as such, but the new version of roads layer is generated in minutes even for the biggest areas.

Furthermore it requires less memory and makes calculating bends' curves easier.

122 T. Płuciennik

Parcel generation has two distinct phases:

 creating parcels for roads,

 filling empty spaces with parcels for e.g. buildings.

After changing the road layer format the first phase of parcels generation became a bit

more complicated. Previously the only thing that has to be done is to copy the roads' geome-

tries. Now it is required to take the road line, add the side lines (taking special care of the

bends) and, as in previous version of roads layer, make sure that geometries are not overlap-

ping each other as shown in Fig. 5.

Fig. 5. Example of roads' parcels

Rys. 5. Przykładowe działki dla dróg

Filling empty spaces between roads was suppose to use a two-dimensional table storing

flags describing whether a point on a map (with resolution to e.g. 1 metre) is occupied. An

example is presented in Fig. 6. The table is filled as roads and parcels are added. The algo-

rithm used a hashmap to store the table (coordinates in the table constituted the key) to limit

memory usage. Search for the shape of empty area starts from a sample point (gray dot in Fig.

6) placed somewhere outside of any other geometry in the parcel layer (any road parcel or

already found area). An algorithm similar to contour filling used in raster graphics [9] would

help to locate geometries surrounding the supposed empty area. Area on the mentioned table

was filled using optimized version of prairie fire algorithm using a queue instead of recursion.

The result was a bounding area (marked rectangle in Fig. 6), used then to search in the spatial

index for surrounding parcel geometries and to construct the shape of the final area (polygon

marked in with dashed line in Fig. 6). The found area was then divided into parcels. This was

implemented in very simple way along with very simple trees and buildings generation.

The above solution was working with straight roads, however when area shape was con-

cave it either created empty spots on the map or returned a few polygons instead of one

(which have to be then merged together), since an empty spot might be sampled later (geome-

try cutting was based on cutting along chosen lines [5]). The areas were then divided into

parcels. When bends were added to road parcels the algorithm became insufficient since sam-

pling points were not placed densely enough. Furthermore the performance were degraded

because of the constant searching over map objects.

Virtual city generation for GIS systems testing 123

In the new version of the application two main changes were made to second phase of

parcels generation. The first is using JTS (Java Topology Suite) [10] geometry cutting possi-

bilities (requires converting geometry objects temporary into JTS format). This takes care of

concave geometries. The second change is adding second index to roads layer. Aside of the

spatial index (quadtree) a tree is built in which outgoing road is explicitly set as a child of the

main road. Search for empty areas' geometries is done by assuming one big area equal to the

map boundaries and iterating through successive levels of the tree. Every road divides the

area(s) it is passing through. When all roads are used, the created list contains areas ready to

be divided. No large table is required and geometries surrounding an area are found basically

instantly.

Fig. 6. Old version of search for areas to fill with parcels

Rys. 6. Poprzednia wersja wyszukiwania obszarów do wypełnienia działkami

Currently an empty area is divided only into residential parcels. It is cut in more or less

half using line parallel to the longest vector in its exterior. These two parts are then cut again

using lines perpendicular to area's exterior (refer to Fig. 2). Positions of cut lines are random-

ized to make it look more realistic. Additionally, every residential parcel touching the map's

boundaries is removed to simply create the city's border.

4. Comparison with Real Data

To represent the current possibilities of spatial data generation a comparison will be pre-

sented against the real data. The real data is taken from city plan for city of Gliwice [11],

where it is served as WMS layers. Please note, that WMS server is displaying some objects

only in smaller scales. The view of generated data is done using uDig [12] software. The gen-

124 T. Płuciennik

erated city is limited by 20 by 20 km boundaries. The actual area covered by the generated

dataset is around 100 km
2
, which makes it close to Gliwice city size.

a) b)

Fig. 7. Map view: a) real city data, b) generated city data

Rys. 7. Podgląd mapy: a) dane rzeczywistego miasta, b) dane wygenerowane

a) b)

Fig. 8. Road layer view: a) real structure, b) generated structure

Rys. 8. Podgląd warstwy dróg: a) struktura rzeczywista, b) struktura wygenerowana

Fig. 7 presents the overview of real and generated city respectively. All layers except for

trees are outputted on both map. The following figures will show more detailed views. Fig.

8 presents chunks of roads' structures. In the Fig. 9 a close-up view of parts of the cities are

depicted with visible parcels and buildings. Note that generated datasets are not that different

from what one can find in the real world. Fig. 10 shows trees placement on a virtual city. The

features count for the example generated city is:

 roads: 1376,

 parcels: 15450 (including residential parcels: 14074),

Virtual city generation for GIS systems testing 125

 buildings: 13876,

 trees: 6330.

a) b)

Fig. 9. Map close-up view: a) real data, b) generated data

Rys. 9. Podgląd fragmentu mapy: a) dane rzeczywiste, b) dane wygenerowane

Fig. 10. Trees placement on a virtual city

Rys. 10. Rozmieszczeni drzew na terenie wirtualnego miasta

Finally, in Fig. 11 a three-dimensional visualization of buildings in Gliwice is presented

against the generated ones. The screenshots were made using Aurora 3D [13] and ArcGIS

ArcScene [14] respectively.

126 T. Płuciennik

a)

b)

Fig. 11. View of the three-dimensional buildings layer: a) real dataset, b) generated dataset

Rys. 11. Podgląd warstwy budynków trójwymiarowych: a) zbiór rzeczywisty, b) zbiór wygenerowany

5. Conclusion

To sum up, the project underwent extensive rebuilding. Existing road layers were updated

to have more realistic view and at the same time the application was given much needed op-

timizations. Although it is working fast enough at the current stage, the optimizations will be

continued. The focus will be put on adding the missing water and rail layers. The basic idea

here is to select some of the parcels to place rivers, water reservoirs and rail tracks on them.

In the further perspective a graphical user interface will be added along with possibility to

change parameters of the generator, define additional attributes for layers depending on de-

signed system requirements or force errors in geometries. Since all layers are created on demand

there are endless possibilities of modifications. Changes might be also required during the gen-

erator's actual usage to create the test data. Aside of tweaking the style of the layers, a need for

additional layers might be discovered during development of a GIS system. Since adding new

layers themselves (like e.g. administration areas, power lines, pipes or simply markers of posi-

tions of selected public institutions) might not be especially complicated, only a plug-in mecha-

Virtual city generation for GIS systems testing 127

nism might be welcome. A generation plug-in could be written and tested separately and used

without the need to rebuild the whole application. One have to remember that it is impossible to

predict what types of layers will required in the future and so the generator must be as versatile

as possible. There are also plans to implement a three-dimensional terrain layer.

Acknowledgements

This work was supported by the European Union from the European Social Fund (grant

agreement number: UDA-POKL.04.01.01-00-106/09).

BIBLIOGRAPHY

1. Longley P. A., Goodchild M. F., Maguire D. J., Rhind D. W.: Geographic Information

Systems and Science. John Wiley & Sons Ltd, 2005.

2. http://www.esri.com/data/free-data/index.html (access 2012-02-15).

3. ESRI Shapefile Technical Description, An ESRI White Paper, 1998.

4. Kubik T.: GIS. Rozwiązania sieciowe. PWN, Warszawa 2009.

5. Płuciennik T.: Roads Structure of a Virtual City for GIS Systems Testing. Studia Infor-

matica, Vol. 32, No. 2B (97), Wydawnictwo Politechniki Śląskiej, Gliwice 2011.

6. Papadias D., Mamoulis N., Theodoridis Y.: Processing and Optimization of Multiway

Spatial Joins Using R-trees. ACM SIGACT-SIGMOD-SIGART Symposium on Princi-

ples of Database Systems (PODS), 1999.

7. Korte B., Vygen J.: Combinatorial Optimization: Theory and Algorithms (Algorithms

and Combinatorics) Fifth Edition. Springer, 2012.

8. Ford N.: The Productive Programmer. O'Reilly Media, 2008.

9. Desai A. A.: Computer Graphics. PHI Learning Private Limited, 2008.

10. JTS Topology Suite Technical Specifications Version 1.4. Vivid Solutions, 2003.

11. http://msip-mapa.um.gliwice.pl/geoportaltoolkit/map.php?skin=gliwice_new_mieszkaniec

(access 2012-02-15).

12. http://udig.refractions.net/ (access 2012-02-15).

13. http://msip-mapa.um.gliwice.pl:8080/aurora-gliwice/app.jnlp (access 2012-02-15).

14. http://www.esri.com/software/arcgis/extensions/3danalyst/index.html (access 2012-02-15).

Wpłynęło do Redakcji 31 stycznia 2012 r.

128 T. Płuciennik

Omówienie

Systemy GIS służą do przechowywania, przetwarzania i prezentacji obiektów położonych

na globie ziemskim. Dane geograficzne są prezentowane użytkownikowi w postaci graficz-

nej, a zapisywane są w postaci tychże grafik lub w postaci obiektów (features) zgrupowanych

w warstwy (layers). Obiekty posiadają atrybuty opisowe oraz geometrię, która może być po-

jedynczym punktem, linią, wielokątem bądź grupą geometrii. Geometria może też być nie-

obecna. Budowa systemu typu GIS wymaga rozbudowanych testów, najlepiej wykorzystują-

cych dane rzeczywiste. Ograniczenia w możliwości uzyskania kompletnego zbioru warstw

dla danego obszaru stworzyły potrzebę wygenerowania syntetycznych warstw, których struk-

tury przestrzenne będą do siebie pasować.

Powstały generator testowych danych przestrzennych jest w stanie wygenerować dane do-

tyczące ulic, działek, budynków i drzew dla zurbanizowanego obszaru. Warstwa dróg jest

drzewem opartym na fraktalu, a zakręty są tworzone przy użyciu krzywych Béziera (rys. 1).

Warstwa działek jest częściowo oparta na drogach, a częściowo wygenerowana przez dziele-

nie niewykorzystanych obszarów na działki budowlane (rys. 2). Budynki (rys. 3) i drzewa są

na koniec losowo rozmieszczane na działkach. W stosunku do poprzedniej wersji generatora

nastąpiła optymalizacja, zaczynając od zmian w warstwie dróg, a kończąc na wykorzystaniu

dodatkowych indeksów do generowania działek.

W porównaniu do danych rzeczywistych, dane z generatora wypadają na tyle dobrze, by

moc zastąpić je podczas testów systemów GIS. Przykładowe wyniki zostały przedstawione na

rys. 7, 8, 9 i 10 w porównaniu z danymi pobranymi z mapy miasta Gliwice, dostępnej

w internecie [11]. Dodatkowo na rys. 11 pokazany został przykład trójwymiarowej warstwy

budynków wraz z modelem rzeczywistym.

Planowana jest rozbudowa generatora, obejmująca nowe warstwy danych (linie kolejowe

i cieki wodne) oraz graficzny interfejs użytkownika, który pozwoli lepiej sparametryzować

aplikację. Nie wykluczone jest, że już podczas opracowywania systemów GIS z użyciem ge-

neratora wymagane będą dodatkowe parametryzacja i wymuszenia określonych zachowań

generatora, jak np. generowanie niepoprawnych geometrii. W przyszłości mogą okazać się

również potrzebne nowe, nie przewidziane jak dotąd, warstwy danych. Aby przygotować się

na taką ewentualność, planuje się umożliwienie dodawania do aplikacji wtyczek budujących

nowe warstwy przestrzenne.

Virtual city generation for GIS systems testing 129

Address

Tomasz PŁUCIENNIK: Silesian University of Technology, Institute of Computer Science,

Akademicka 16, 44-100 Gliwice, Poland, Tomasz.Pluciennik@polsl.pl.

	1. Introduction
	2. Current Status
	3. Data-related Optimization
	4. Comparison with Real Data
	5. Conclusion

