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Abstract
Quality of Service (QoS), security, energy consumption, and cost (deployment and operational cost) are 
key constraints in the design and provisioning of computer systems, networks, and ICT (Information and 
Communication Technology) infrastructures. These metrics are tightly connected. Thus, modern computer 
systems and networks should be designed and deployed in such a way as to find a reasonable tradeoff 
between QoS. security, energy consumption, and cost. Queueing theory is a commonly used tool in such 
studies. Queueing models based on Markov chains and diffusion approximation have been extensively used 
to model problems in computer systems and networks. One such application of these models is to evaluate 
the performance of queues (waiting lines of jobs, processes, data packets, energy packets, etc.) in computer 
systems and networks. Diffusion approximation is well suited for the transient analysis of queueing systems 
in computer systems and networks. It provides a methodology to perform a time-dependent analysis of the 
performance metrics (queue size, wailing time, and probability of rejection when the storage memory is full 
and subsequently arriving customers are rejected) as the parameters of the interarrival and service (process
ing) limes changes over lime. Another advantage of the diffusion approximation modelling methodology is 
ihe possibility of using realistic distributions of the interarrival and service times obtained from measured 
data.

The packet sizes generated from access networks vary from a few bytes in loT and wireless sensor net
works to 1500 bytes in Internet Protocol (IP) networks. The transmission of massive amounts of small pack
ets (sometimes with randomly varying sizes) generated by access networks through high-speed Internet core 
networks to other access networks or cloud computing data centres has introduced several challenges such 
as poor throughput, underutilisation of network resources, and higher energy consumption. Packet aggre
gation mechanisms were developed to resolve these challenges. Packet aggregation mechanisms aggregate 
smaller packets into a larger payload packet, and these groups of aggregated packets will share the same 
header, hence increasing throughput, improving resource utilisation, and reduction in energy consumption. 
In Chapter 2, we present a review of packet aggregation applications in access networks (loT and 4G/5G 
mobile networks), optical core networks, and cloud data centre networks. We also propose diffusion-based 
analytical models that can be used to design and evaluate the performance of packet aggregation mecha
nisms. We also demonstrated the use of measured traffic from real networks to evaluate the performance of 
packet aggregation mechanisms using simulation and analytical models. Despite its benefits, packet aggre
gation increases the packets' delays and may not be suitable for traffic belonging to real-time applications.

Queues of packets or jobs are unavoidable in computer network devices (e.g., routers and switches) due 
to the stochastic nature of the interarrival times of packets, processing and transmission limes of packets, and 
sizes of packets. Queueing also results from sharing limited computational and communication resources. 

Queueing degrades the quality of service (QoS) experienced by users by increasing packet delays, packet 
loss probability, and jittering experienced by multimedia traffic. Queueing theory models (e.g.. Markovian. 
Iluid (low, and diffusion approximation models) are very useful tools for the analysis of the performance of 
computer systems and networks. In chapter 3. we present the architectures of hardware and software SDN 
switches and model the flow matching (lookup) mechanisms used in these switches. We propose a tractable 
diffusion approximation for both (he transient and steady-state behaviour of a network router. Using these 
results, we show that when SDN switches change the paths of flows frequently, the network's behaviour 
may often be far from its steady-state behaviour. In chapter 4, we present an overview of flexible routing
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in SDN-based networks. We extend the methodology developed in chapter 3 to the time-dependent analysis 

of multiple SDN switches using diffusion approximations, which are very convenient to analyze in a time- 

dependent regime.

Markovian, fluid flow, and diffusion approximation models have recently been adapted to model the 

energy' depletion process in battery energy storage systems for computer systems and ICT infrastructures. 

One of the most important criteria is minimizing energy consumption in designing and deploying battery- 

powered computer systems (e.g., loT devices, mobile phones, UAVs). Energy consumption in battery- 

powered computer systems and network devices can be reduced by using energy-efficient hardware, soft

ware. and protocols. If the energy stored in the battery is completely drained, the computer system or network 

device is shut down. Thus, modelling energy consumption in battery-powered computer systems and net

works and modelling the energy depletion process in batteries is essential. In chapter 5. we apply a diffusion 

or Brownian motion process to model the energy depletion process of a battery of an loT device. We use the 

model to obtain the probability density function, mean, variance, and probability of the lifetime of an loT 

device. Also, we study the influence of the active power consumption, sleep time, and battery capacity on 

the probability density function, mean, and probability of the lifetime of an loT device. We use numerical 

examples to study the influence of battery depletion attacks on the distribution of the lifetime of an loT de

vice. We also introduce in our model an energy threshold after which the device’s battery should be replaced 

to ensure that the battery is not completely drained before it is replaced.

The energy-harvesting technologies to harvest energy from external energy sources in the environment 

such as solar, thermal, wind, and vibration to power computer systems or to replenish the energy drawn 

from the batteries attached to these systems enable them to operate longer with minimal energy-related 

interruptions. Thus, an effort to ensure higher efficiency of the harvesting and more economical performance 

of these devices is necessary. In chapter 6. we present an architecture of a green base station site. We develop 

Markovian and diffusion approximation models to analyze the steady-state and transient-state performance 

of battery energy storage systems. We apply the Markovian and diffusion approximation model to derive the 

time after which (he battery energy storage system is completely discharged or fully charged. By assuming 

that the energy harvesting and the energy consumption processes are exponentially distributed, we compare 

the result obtained from the Markovian model to those from diffusion approximation models.

Therefore, diffusion approximation is a practical tool for analysing the performance of computer systems 

and networks as it allows the use of measured packet inlcrarrival limes and packet service limes (processing 

and transmission times) distributions. It is useful for analysing the transient behaviour of QoS parameters 

in SDN-based networks resulting in frequent changes in the flow forwarding rules in the SDN switches. 

Transient Markovian and diffusion models are suitable for modelling the energy depletion process in battery- 

energy storage systems for computer networks and networks with stochastic energy harvesting and energy 

consumption processes.
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Chapter 1

Introduction

The intensity of traffic transported by computer networks has complex stochastic nature. Since the in
terarrival of packets into the buffers in network equipment and the time required to process or transmit 
packets are random, packets are queued up in buffers before they are processed or transmitted. The time 
that packets spend waiting in buffers and the lime required to process or transmit the packets constitute the 
delays experienced by the packet along the path from the source to the their destination. The formation of 
queues degrades the Quality of Service (QoS) experienced by the users of the networks as it causes packets 
to be delayed significantly from the time they are generated to the lime that they are delivered to their des
tination. When the delay experienced by the packets varies, it introduces a jitter, which degrades the QoS 
experienced by users receiving multimedia traffic. Queueing also causes packet losses due to the dropping 
of packets when the buffers are full or when packets are dropped earlier as an active queue management 
mechanism to prevent buffer overflows.

Queueing theory is a valuable tool in the design of computer networks and their performance evaluation. 
Usually, queueing models attempt to abstract the behaviour of a network of routers as a network of queues 
and then use queueing theory to analyse the performance of a network device or a given network of devices. 
They help to estimate the overall transmission time and quality of the transmission. They are still being 
developed and applied to evaluate the performance of newly proposed network architectures and protocols, 
e.g. Software Defined Networks, the Internet of Things, and Cloud computing. The majority of models are 
limited to the analysis of steady stales. It means that flows of packets considered in models arc constant, 
and the obtained solutions do not depend on time. It is in glaring contrast with the flows observed in real 
networks where the perpetual changes of traffic intensities are due to the nature of users, sending variable 
quantities of data, multimedia traffic, and also due to the performance of traffic control algorithms which are 
trying to avoid congestion in networks, e.g. the algorithm of congestion window used in TCP protocol which 
is adapting the rate of the sent traffic to the observed losses or transmission delays. However, the analysis of 
transient states is much more difficult and complex.

Network planning and optimisation engineers often use queueing theory to enable them to select die 
specifications for their hardware resources or upgrade the network resources to match the expected user 
demand with an acceptable QoS and return on their investments. The models arc also used to study the 
influence of network or network device parameters on the QoS metrics of the network. The models may also 
reflect the software feature of transmission protocols, congestion avoidance rules, and routers’ scheduling
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Figure 1.1: An architectural model consisting of access networks. Internet core networks and the cloud data 

centre.

rules. Traditionally, steady-stale queueing models have been used for network design and optimisation as 

traffic changes in the network are not too frequent. After some lime, the network attains a steady stale. 

With the recent introduction of the Software Defined Networking (SDN) paradigm in which the routing 

decision is shifted from the router to a centralised server called the controller, the network may frequently 

be in a transient stale. The data plane devices constantly colled data about the network's security, energy 

consumption and QoS parameters and send it to the controller, which then uses this information to perform 

route compulations and update the packet forwarding rules in the routers. If this happens frequently, the 

network will constantly be in a transient state.

In this dissertation, we abstract a computer/telecommunication network architecture into a simplified 

architectural model shown in figure 1.1. It consists of the access, core, and data centre networks. Users 

access the services of telecommunication operators or internet service providers through access networks 

such as Digital Subscriber Line (DSL), Ethernet local area networks (LANs), Fiber-to-the-Home (FTTX), 

wireless LANs, mobile networks (e.g„ 3G. 4G. and 5G), and the Internet of Things (loT) access networks. 

The traffic generated by users connected to a given access network is transported through the core networks 

to users connected to other access networks or data centres (for users that want to access cloud services). 

The sizes of packets generated by various access networks vary significantly from liny packets generated by 

loT access networks (of just a few bytes) lo IP packets (of more than a thousand bytes). The vast amounts 

of packets generated by access networks are usually aggregated into larger packets lo increase throughput 

efficiency and reduce processing overhead.

Packet aggregation involves the assembly of smaller packets into larger ones. Packet aggregation provide 

many benefits at die level of core networks, such as increased spectral efficiency, energy efficiency, optimal 

resource utilisation f!0 |, simplified traffic management, and significantly reduce protocol and signalling 

overhead. It significantly influences the networks' overall performance in terms of packet delay and packet 

losses. Therefore, packet aggregation and transmission queue management mechanisms must be carefully 

designed and parameterised.

Recently, queueing theory has been adapted to model battery energy storage systems for computer sys-
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tems powered by batteries, e.g. |87.88.89. 100.90.95.91.73.72. 125.83. 123. 243], The energy consump

tion of computer systems is not fixed. It varies with its computational demand and the number of packets 

processed or transmitted. One of the sources of randomness in the energy consumption of some computer 

systems is that users initiate computation, processing, or transmission of data al random limes. Some com

puter systems are powered by batteries continuously recharged by energy harvested from renewable energy 

sources. The amount of energy generated by renewable energy sources sometimes fluctuates randomly with 

random environmental changes. The random fluctuation in the amount of energy harvested and delivered 

to the battery and the amount of energy drawn from the baitcry to power the computer system triggers the 

need to use stochastic models to analyse the dynamic changes in the battery's energy content. Stochastic 

modelling of the battery makes it possible to size the battery and estimate the time after which the energy 

stored in the battery could be completely depleted.

One of the approaches to analyse the dynamic changes in the amount of energy present in the battery at a 

given lime with randomly changing recharging and energy consumption processes is to represent the energy 

present in rhe battery in discrete energy units, also called energy packets |87. 88. 89|. An energy packet is 

the minimum amount of energy required to transmit a single data packet or process a single job by treating 

the charging process as the delivery of energy packets into the battery and the energy consumption process 

as the departure of energy packets from the battery. Traditional queueing theory models can therefore be 

employed to estimate the battery’s energy content at a given time, to size the battery, estimate the probability 

of completely draining or overcharging the battery, and the time required to drain the energy stored in the 

battery completely. Since energy is a continuous quantity, the changes in the amount of energy in the battery 

could be considered to be analogous lo the changes of a fluid in a reservoir or can be approximated by 

diffusion or the Brownian motion process, as discussed in Chapters 5 and 6.

1.1 Contribution and thesis

Markovian and diffusion approximation models are not new and have been well developed and applied 

to model random processes in engineering, finance, physical science, and computer science. They are often 

used for the performance analysis or evaluation of computer systems and networks. In this dissertation, 

we adapt existing Markovian and diffusion approximation models to evalaute the performance of packet 

aggregation algorithms. SDN switches, a network of SDN switches, and battery energy storage systems for 

computer networks (with and without energy harvesting sources to replenish the energy drawn from the 

battery).

Most of the research work in designing and optimising SDN networks was based on the assumption that 

the network is always in a steady state. They are also based on the assumption that the interarrival lime dis

tribution follows a Poison process and that the service limes are exponentially distributed. We analysed the 

functional behaviour of SDN switches and abstracted them into simple queueing models. We then adapted 

the G/G/l/N diffusion approximation model to evaluate the performance of the queues of packets in SDN 

switches. Since there is no restriction on the distribution interarrival and service lime distributions, we used 

actual traffic data from the CAIDA data repository. The service lime distribution was based on the SDN 

packet processing models we developed. We modelled the mechanism of searching software, and hardware 

flow tables in SDN switches to determine the service time distribution. We then extended the diffusion ap-
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proximation model of a single SDN switch that we proposed to model the transient-state behaviour of a 
network of SDN switches (a queueing network of SDN switches).

We also applied the transient solution of diffusion or Brownian motion process to develop performance 
evaluation models of packet aggregation mechanisms that improve bandwidth and energy efficiency in loT 
over TP networks. loT over mobile networks (3G/4G/5G), TP over optical networks, and in data centre 
networks but introduces significant delays. We validated the accuracy of the proposed models using discrete 
event simulations. Our models are more realistic because we used actual traffic data from the CAIDA data 
repository to analyse the performance of the packet aggregation mechanism that has been implemented in 
commercially available routers, switches, and server machines.

We also applied the transient solution of Markovian and diffusion processes to develop models of the 
energy depletion process of battery energy storage systems used to power computer network devices (e.g., 
ToT devices. Fog computing nodes or access network nodes). Then, we used the models to estimate the 
device’s lifetime (Time-To-Failure orTime-To-Shutdown) when all the stored energy is completely depleted. 
We also demonstrated the application of these models to analyse battery depletion attacks. We also proposed 
using these models to model battery energy storage systems in the presence of energy harvesting sources. 
Wc derived the time after which the battery energy storage system is completely discharged or fully charged. 
By assuming that the energy harvesting and the energy consumption processes are exponentially distributed, 
we compared the result obtained from the Markovian model to those from diffusion approximation models.

The thesis of this study can be staled as follows:
The diffusion approximation modelling formalism is a realistic and data-driven modelling technique that 
overcomes the limitations of other queueing theoretic techniques (e.g. Markov chains and fluid flow) for the 
transient analysis of Quality of Service (QoS) metrics in networks with time-dependent dynamic routing 
protocols (e.g.. Software Defined Networking (SDN) core networks); and for the transient analysis of the 
energy depletion process in energy storage systems (ESS) in computer network infrastructure.

1.2 The tradeoff between QoS, security, energy, and cost

Quality of Service (QoS), security, energy consumption, and cost (deployment and operational cost ) are 
key constraints in the design and provisioning of computer systems, networks, and ICT (Information and 
Communication Technology) infrastructures. In the early stage of the design, deployment, and provisioning 
of computer systems, networks, and ICT infrastructures, performance (QoS) and cost were the most critical 
constraints. The main objective was to improve the QoS experienced by the users to satisfy the users at an 
affordable cost.

Security became a significant problem as almost every computer system became connected through 
large-scale computer and telecommunication networks or the global internet infrastructure. However, imple
menting security mechanisms in designing and deploying computer systems and networks often limits QoS. 
It is because security mechanisms involve computationally expensive operations and limit the resources 
available for processing packets or user jobs f 188|. Hence, the quality of service is degraded as reliable but 
computationally expensive security mechanisms are implemented in computer systems, networks, and ICT 
infrastructures.

Although security mechanisms protect computer systems, networks, and ICT infrastructures against se-
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entity breaches that could result in service interruptions, loss of confidentiality, malicious data manipulation, 
information theft, and financial losses, the implementation of security mechanisms also increases capital or 
operational expenditures (Capex/Opex) [226J. Therefore, when designing and deploying secure computer 
systems, networks, and ICT infrastructures with acceptable QoS. we should consider the financial cost and 
ensure a reasonable tradeoff between QoS, security, and cost.

Since the 1980s. there has been a large-scale adoption of ICT technology to improve efficiency, QoS. 
and productivity in every sector of the modem economy and society (e.g.. governance, finance, manage
ment. accounting, healthcare, manufacturing, telecommunication, retail, transportation, logistics, tourism, 
agriculture, entertainment, research, and development, etc.). The emergence of the World Wide Web and the 
modern Internet in the mid-1990s accelerated the digital revolution, with internet users increasing from 390 
million in 2000 to 4.6 billion in 2021 [189]. Also. Internet of Things (loT) technologies, together with other 
technological advances such as big data analytics. Artificial Intelligence (AI), automation, and unmanned 
electrical vehicles (e.g.. self-driving vehicles and drones), are currently being used to transform every sector 
of the economy or society (e.g., agriculture, transportation, healthcare, manufacturing, security, etc.).

The increase in the number of computer networks and the size of networks (from access networks, core 
networks, to data centre networks) have caused the amount of energy consumed by ICT systems to increase 
significantly. In 2018. it was estimated in [711 that ICTs account for between 5% and 9% of the total elec
tricity consumption and that by 2030. this figure could increase to between 10% and 20%. Mechanisms 
implemented to improve QoS and security of computer systems and networks also increase the amount 
of computation and communication; hence, the energy consumption of computer systems and networks 
also increases. Using dedicated hardware modules like Binary or Ternary Content Addressable Memory 
(BCAM/TCAM) to improve the processing speed of routers and switches significantly increased energy 
consumption as BCAMs/TCAMs are power-hungry hardware modules. Also, it should be noted that as the 
amount of computation and communication increases, the amount of heat generated by computer systems 
also increases, and an additional amount of energy is required for cooling. The increase in energy consump
tion often increases the energy bills incurred by ICT operators or service providers; hence, the operational 
cost increases in the case of mobile network operators. 70% of their energy bills resulting from the massive 
number of base stations deployed within the radio access nclworks[247|.

In designing and deploying battery-powered computer systems (e.g.. loT device, mobile phones. UAVs). 
minimising energy consumption has been the most crucial design parameter. Because of the energy limi
tation in the design and deployment of battery-powered computer systems and networks, energy-efficient 
hardware, software, and protocols are used. Security mechanisms that provide an acceptable level of security 
without sacrificing the QoS and quicking draining the battery are used. Also, the mechanisms implemented 
to reasonably improve the QoS and security of computer systems and networks, and to minimise their en
ergy consumption, should not drive up the cost or make the device unaffordable or less competitive. The 
critical energy constraint in the design and deployment of battery-powered computer systems can be relaxed 
by harvesting energy from the environment to replenish the energy drawn from the battery.

Figure 1.2 illustrates the relationship between QoS. security, energy consumption, and cost. These met
rics arc lightly connected. Modern computer systems and networks should be designed and deployed in such 
a way as to find a reasonable tradeoff between QoS. security, energy consumption, and cost. Therefore, a 
reasonable tradeoff should be maintained between QoS. security, energy consumption, and financial cost

II



Figure 1.2: The QoS, security, energy, and cost tradeoff.

when designing and deploying computer systems and networks.

1.3 Background of performance modelling and motivation

Architects and designers of computer systems and networks often use experimental test beds, real com

puter systems (or networks), simulations, or mathematical modelling for planning, dimensioning, optimi

sation, and performance evaluations of their computer systems or networks. When studying or deploying 

computer systems and networks, they must carefully select design parameters and understand their relation

ship with the performance metrics of interest. Experimental testbeds are very costly and time-consuming to 

set up and conduct experiments. The difficulties of using experimental test beds can be overcome with com

puter simulations and mathematical modelling. However, the results obtained from experimental test beds 

are very realistic as simulations and mathematical models cannot reproduce or describe some behavioural 

aspects of computer systems and networks.

Simulation is a software approach to create a virtual environment that emulates (reproduces the function 

or action) the behaviour of a physical system to study its performance or properties. Computer simulations 

enable the architect or designer to create an abstract model of the computer system or network under study to 

emulate the interaction between the various relevant entities of the computer system or network. Mathemati

cal modelling of computer systems and networks is the process of describing or analysing computer systems 

and networks using mathematical concepts, equations, or language. Il provides a rigorous understanding of 

the relationship between the computer system's or network’s design parameters and the performance metrics 

of interest.

Therefore, in situations where closed-form mathematical models can conveniently approximate the com

puter system or network under consideration, it is preferable to analyse or estimate its performance using
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the closed-form analytical model without spending considerable time performing simulation studies or ex

perimental setups. However, the limitation of closed-form mathematical models is that they are developed 

using simplifying assumptions that may deviate from reality. Also, some mathematical models are very dif

ficult to solve analytically and are solved numerically using sophisticated numerical algorithms, requiring 

a significant amount of time. Thus, computer simulations are relatively time-consuming when compared to 

mathematical modelling is only sometimes true. In practice, both simulation and mathematical modelling 

are used for the analysis and evaluation of the performance of computer systems and networks. The accuracy 

of mathematical models is often validated using computer simulations.

Most mathematical models used for analysing and evaluating computer networks were developed using 

queueing theory. Queues are inevitable in computer systems and networks due to the occurrence of random 

events (e.g.. the arrival of packets or jobs at a random time and random times required to process packets 

or jobs) and the sharing of scarce resources (e.g., CPU. the Random Access Memory (RAM), the buffers, 

the disk, the data bus. switching fabrics, and the ports) between the packets, jobs or processes. Queueing 

theory has been the cornerstone of network performance analysis. Still, network practitioners have always 

avoided queueing theory analysis in favour of simulations because of the need to understand the complex 

mathematics involved [ 16|.

Queuing models were first proposed more than a hundred years ago by Agner Krarup Erlang for the 

evaluation of the performance of the Copenhagen telephone exchange. Also, the traffic analyst and the then 

director of Norwegian Televerket (now Telenor Group), Tore Olaus Engset. proposed queueing models for 

the analysis and evaluation of the performance of telephone exchanges. Their analysis was based on Marko

vian models. To apply Markovian models in the analysis of telephone exchanges, they assumed that the 

request for new connections follows a Poisson process and the duration of the connections is exponentially 

distributed. Many mathematicians, like Kolmogorov, Khinchin, Crommelin, Palm, and Takdcs. contributed 

to the development of queueing theory, and their models found many applications[48]. one of them being the 

performance evaluations of computer systems and networks. They were later adapted for analysing and eval

uating the performance of computer systems and packet-based computer networks. There were also adapted 

and used to analyse the transient behaviour of queues in computer systems and networks, as the intensity 

of traffic Hows generated by users or applications (e.g. internet applications) is permanently changing [60], 

Recently. Queueing models have been adapted for modelling battery energy storage systems for computer 

systems and networks, as discussed in chapters 5 and 6.

To use Markovian models to analyse or evaluate the performance of computer systems or networks, 

it is often assumed that the interarrival times of packets, jobs, or processes to a queue to be processed by 

a shared resource follows a Poison distributed and that the processing times are exponentially distributed. 

Markovian processes are used to model systems with limited memory. Therefore. Markovian processes are 

stochastic processes that have "memoryless" property in which the future of the process depends only on 

the present state, regardless of its history. They are used to model systems in many fields, including com

munication, transportation, image processing, bioinformatics, project management, mathematics, physics, 

finance, etc.fl 19]. A Marlovian process satisfies the "memoryless" property often expressed as:

P[A'(f„+ i) =  +  l|A (i„ ) =  xn ,X (i„_ i) =  x n  -  1, -I---- + ,X (ii)  =  x j

=  F[X (in + 1  =  xn + i|X (/„) =  x„] (1.1)
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Where 0  < i j  <  • • ■ < tn  < n̂+1 and x, is an element of discrete state space. It means that if the set of 
random variables (Xn ) form a Markov chain, then the probability that the next state is (Xn + j ) depends only 
on the current stale (X u ) and not on the previous slate. Hence, the Markovian process is an evolutionary time 
process in which ihe future stales of the process depend entirely on the present slate and are independent of 
its history or past states.

Markovian processes can be broadly classified into Discrete Time Markov Chains (DTMC) and Contin
uous Time Markov Chains (CTMC). In DTMC. the transitions from one state to another happen at fixed or 
discrete time instances. In CTMC. the transitions from one state to another happen at random times chosen 
from a continuous interval. There are two sources of randomness in CTMC: the first is an embedded discrete 

lime jump chain (that is, considering ihe Markov process al the moment at which a change of state takes 
place) and exponentially distributed holding limes (that is ihe sojourn which the Markov process spends at a 
particular state follow distribution). In this dissertation, we considered CTMC. Consider a CTMC in which 
a process can only jump forward to the next state or return to the previous state (from which it left); then, 
the transition rate from state i to slate j  is given by:

<?o = AZ—0 Ai (1.2)

P ^ t )  = P[X l + s \ = j \X s  = i]

Where Pij(t) is the state probability that the Markov Process will be in state j  after the time interval /, 
given that it is currently at state i at time s. Whenever a CTMC enters a state i. it spends an amount of time 
called the dwell time or the holding time that is exponentially distributed. At the end of the expiration of the 
holding time, the process makes a transition (jump) to another state j with a probability P^ [ 119| where

=  l (13)
j

Suppose that after a short lime A/. the CTMC can make jumps into and out of the state i then the 
probability that the chain will be in state i at time/ is the sum of all flows into and out of the state i given by 
Chapman-Kolmogorov equations for continuous time Markov chains as:

P (t  + Ai) =  PM [1  -  ^ ^ A f ]  + £  P ^ i X t

W  +  Ai) -  ^ ( i )  =  p ( t)  £ q i j M  + £
J r '

j #

M  w + g  S W

Equation ((1.4)) can be written in a compact form as

dP W  
dt = P (0Q

(1.4)

(1.5)

(1.6)
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where P (t) =  [Pj (t), /^(Z). P i(t) • ■ ■ Pn (t) ■ • ■ ] is the state probability vector, which in the context of 

queueing systems represent the probability of having n  number of customers in the queue at time Z and.

012 013 Oi l • . \

Q =
021 022 022 024 •

031 032 032 034 •

is the rate transition matrix or the intensity matrix. In steady-state (i.e., as Z----->  oo), ' =  0, P (t) = 

[Pl (Z), F-i(Z) ' - • Ci • ••] becomes P = [P |. P2, P< ■ ■ ■ Pn ■ ■ ■] the the system of equations in (1.4) and 

(1.6) becomes a system of linear equations. Ils transient solution can be expressed in the form

P (t) = P ^ e ^ = £  (1.7)
fc=i

Where P(0) is the initial condition.

The most simple Markovian queueing system is the infinite capacity queueing system written in 

Kendell’s notation as M/M/L The first and second M in the notation means that the inlerarrival time of cus

tomers (jobs) follows a Poison process, and service times are exponentially distributed. Notation 1 means 

that only a single server is processing the jobs. M/M/l model is straightforward and has been used to model 

many queueing systems in many fields, including computer networks. In computer systems and networks, 

packets, jobs, or processes waiting to be processed are stored in memory that is limited in capacity. Thus, 

M/M/l/N queueing systems are preferable: N  is the size of the memory or buffer. The packets or jobs com

ing when the system is full are dropped or lost. Markovian queueing systems with more than one server 

can be written in Kendall’s notation as M/M/c and M/M/c/N, where <■ is the number of servers. Well-known 

Markovian models like M/M/l, M/M/l/N, M/M/c, and M/M/c/N have closed-form steady-stale solutions 

and are widely used to model queueing-related problems.

For queueing models in computer systems and networks, the performance metrics that are often required 

include the mean number of packets or jobs waiting in the queue to be processed (mean queue size), the time 

that packets or jobs spend waiting in queues (waiting time), and the probability that the storage space will 

be filled and newly arriving packets will be dropped (blocking probability). After determining the state 

probabilities from the queueing model, the mean number of packets present in the queue can be determined. 

The mean waiting can be determined using Little's law (dividing the mean number of packets in the queue 

by the mean arrival rates of packets). The blocking probability is the state probability PN (J) or P ^  (the 

probability that there are N  packets in the queue at time i or in steady-stale). When the number of packets 

waiting in the queue reaches A’, then all the waiting space is occupied any subsequent packets or jobs that 

attempts to join the queue will be dropped or rejected.

The main disadvantage of using Markov chains to model queueing-related problems and other problems 

in computer systems and networks is lite so-called "state explosion" problem, especially for complex systems 

with large states. Each state of the Markov chain corresponds to one state of the system, and the number 

of equations equals the number of states. As the number of stales increases, the system of equations to 

be solved significantly increases. The system of equations describing the Markov chain of the modelled 

system can be solved using well-known numerical methods and software packages (e.g., MATLAB). The
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steady-state solution of the Markov chains can be obtained using Maikov solvers (QNAP [198], XMARCA 

[221]. PRISM 1152]). We used PRISM to solve a complex Markov chain (for a Markovian model) for 

the aggregation of shorter packets into larger ones in [232]. A software package called Olymp [191] was 

developed by some of our colleagues at the Institute of Theoretical and Applied Informatics, Polish Academy 

of Sciences (IITiS-PAN) to solve Markov chains with a large number of stales. The transient solution of 

the Chapman-Kolmogorov equations describing the Markov chains can be solved using the Runge-Kutta 

Method (e.g., [148. 151. 147],

Another drawback of using Markov chains to model queueing-related problems and other types of prob

lems in computer systems is the assumption that the interarrival times of customers or jobs follow a Poisson 

distribution and that their service times are exponentially distributed. In reality, these assumptions are not 

always valid as real systems exhibit complex behaviour behaviours that make the distributions of the interar

rival and service times deviate from exponential distributions. As a result, queueing models with general in

terarrival and service time distributions were developed (e.g.. G/G/l. G/G/l/N. G/G/c. and G/G/c/N). where 

G in Kendell’s notation means that the distributions of the interarrival and service limes are nol restricted to 

any of the well-known distributions.

Since the assumption that the interarrival times follows a Poison distribution and that the service limes 

are exponentially distributed is not always true in reality, approximate queueing models have been proposed 

to model queueing systems without any restrictions on the interarrival and service time distributions. For an 

M/G/l queue, the approximation for the mean queue size was by Pollazcek and Khintichine in the 1930s 

(the so-called Pollazcek-Khinlichine formula) [37]. Well-known approximations for the mean queue size 

for G/G/l queueing systems were proposed by William G. Marchal [171 ] and also by W. Kraemer and M. 

Langenbach-Belz [ I42|. Approximate models also eliminate the "stale explosion problem" as these models 

are scalable for any number of states or number of customers present in the queue and for studying network 

protocols (e.g.. TCP-1P protocols)[234].

Another modelling method often used to approximate queueing models is the lluid How approximation. 

Fluid How approximation has been used in |48| to model queues in computer systems and networks. The 

limitation of fluid flow approximation is that il can be used to estimate only the average queue size. Still, 

information about the variance or the queue size distribution needs to be obtained. In modelling queues in 

computer networks, information about the variation of the queue size is important as can provide information 

about the maximum jitter (or peak-to-peak) jitter, which is an important performance metric for multime

dia traffic. Fluid flow models are less complex and are. therefore, suitable for modelling large computer 

networks.

A more complex approximation that caters for the limitations of fluid flow approximation is diffusion 

approximation. Diffusion approximation queueing models are based on the approximation of the changes in 

ihe number of customers (packets or jobs) present in the queue by a Brownian motion or diffusion process. A 

diffusion process is a strong Markov process with continuous time and continuous space (continuous sample 

path). [ 106], Unlike Markov processes discussed above, diffusion processes are stochastic processes whose 

state space is the continuum of real numbers, and their state changes or transitions occur at ail times. That is. 

within a short time interval, a diffusion or Brownian motion process can only undergo a small displacement 

or change of state. The occurrence of Brownian motion was first observed by Robert Brown in 1827 when 

he observed that when pollen grains are suspended in a fluid, they undergo random displacements due to
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collision or bombardments with molecules of the fluid. 80 years later, in 1905. Albert Einstein developed 
a satisfactory theory to explain the phenomenon of diffusion or Brownian motion. A rigorous theoretical 
foundation of Brownian motion was developed by Norbert Wiener in 1923 and is sometimes referred to 
as the Weiner process. Therefore, diffusion processes are Markov processes. The stale space is continuous 
[44],

Diffusion processes are frequently used to model or approximate more complex and analytically in
tractable stochastic processes. Kobayashi proposed the use of diffusion approximation to solve non-product 
form queueing networks; he obtained the equilibrium queue distribution [133] and the nonequilibrium (tran
sient) queue distribution [ 134] for queues in a network. The use of reflecting barriers (the probability of 
the empty queue is zero) limited the models to cases of heavy traffic. The introduction of the barriers with 
instantaneous jumps by Gelenbe [85. 101. 86] enhanced the method's precision, which has been used in 
this form since then. A proposition by Czachorski of an analytical-numerical algorithm to solve diffusion 
equations ([48. 52. 60. 611) made the approach relatively easy in the case of transient states analysis.

Consider a queueing system in which customers (e.g.. jobs or packets in the case of a computer system 
or network device) arrive with a mean rate A and are processed with a mean service rate of /z. Let .4(() be 
the cumulative number of customers that have arrived at the queueing station up to the time t and S(f) be 
the cumulative number of customers that have been served up to time t (assuming that after a customer is 
served, it immediately leaves the server). The number of customers present in the queueing station at lime / 
is

N (t) = A(t) -  S(t) (1.8)

The changes in the number of customers present in the queueing station within a small time interval [/ f +  A] 
is

N (t  +  A) -  N (t) = A(/. +  A ) - .4 ( Z ) - S ( /  +  A ) - S ( / ) (1.9)

AAT(f) -

If tlie interarrival time and service time processes are both independent and identically distributed and A 
is sufficiently large such that many events (arrival of customers into the queue and departure of customers 
from the server) occur between the lime interval / and / +  A. then the changes in the queue size AA(() 
are approximately normally distributed with mean EfAWfZ)] =  (A — /z)A and variance zwiAA^Z)] =  
(C2 A + C |M)A [133], Where A2 and C% = are the squared coefficients of variation of
the interarrival and service lime distributions. The parameters <r2 and are the variance of the interarrival 
time and service time distributions, respectively.

Therefore, to model a queueing station using diffusion approximation, the discrete-state process. 
{N (t) ,t  ()}. of the number of customers in the queue is replaced by an appropriate continuous-state
diffusion process. {A(/ ), / > 0}, the changes of which <IX(I) = X (t  + A) — X (l)  are normally distributed 
with mean (/3A) and variance (oA), where ¡3. and o are coefficients of the diffusion equation that describes 
the dynamic evolution of the process. The stochastic partial differential equation that describes the dynamic 
evolution of the diffusion process is given by [44]:

_  d f ( x t fr,zo)
2 dx* dx
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Its solution defines the conditional probability density function (PDF) f ( x ,  t:a;o) =  JP[X <  A'(t) <  x + 

da: | X (0) =  a:«] of the process X (t), approximating the number of customers present in die queue at 

time t. Both processes X (f)  and N (t) have normally distributed changes with a mean (drift velocity or 

mean changes in the queue size) J  =  A -  //, and variance (variation of the changes in the queue size)« =  

07, A3 +  =  C^A +  Cg/i. where A is the arrival rate and // is die service rate, ensures the same ratio
of time-growth of mean and variance of these distributions (i.e.. the queue utilization, p =  A). Since the 

queue size must be positive, boundary conditions such as absorbing barrier |44|. reflecting barrier |40], or 

elementary return boundary [851 are commonly used to constraint the diffusion process to the positive x- 

axis. The diffusion approximation principle and its application in modelling computer networks and battery 

energy storage systems for battery-powered computer network devices are discussed in chapters 2,3,4,5 and 

6.

The features that are in favour of the diffusion approximation are:

• Diffusion model of a single server assumes general interarrival and service time distributions going 

beyond Markov models.

• Network models may have any topology, hierarchical, and having any number of nodes (easily scal

able).

• The results are obtained in the form of queue distributions and waiting time distributions, making it 

easier to analyse the QoS of paths, e.g. jitter. An alternative method, die lluid-llow approximation, 

frequently used in large topologies and transient analysis, delivers only mean performance parameters 

and introduces larger errors.

• Easy separation (decomposability) of each node within a network model - the interactions among 

nodes are reduced to the computation of the input flow parameters at each node.

• Model may include classes of packets, which makes it possible to model queueing systems of com

puter systems and networks where the packets or jobs belong to different classes of service.

• Natural ease to analyse transient states based on the solution of diffusion equations.

• The transient state model is solved step-by-stem in short time intervals with parameters specific to 

these intervals, making them suitable for the analysis of the transient behaviour of the performance 

metrics (mean queue size, mean waiting time, or blocking probability).

Since diffusion approximation uses the mean and variance (or squared coefficient of variation) of the in

terarrival and service times distribution, they offer a more realistic approach to modelling practical queueing 

systems. These parameters can be derived from historical measurements in real systems and used for theo

retical analysis and evaluation of the performance of queueing systems. Despite the numerous advantages 

of diffusion approximation models, they still have their limitations. One of the limitations of the diffusion 

approximation modelling methodology is the complexity of the transient solutions. However, they are more 

accurate than fluid flow approximations as demonstrated in [481 by Czachoski et. al.
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1.4 An overview of the content of the thesis

This doctoral dissertation contains seven chapters. The remaining six chapters are as follows:

In chapter 2, we review packet aggregation applications in access networks (loT and 4G/5G mobile net

works). optical core networks, and cloud computing data centre networks is presented. We also present 

analytical models for designing and evaluating the performance of packet aggregation mechanisms. We 

demonstrate using measured traffic from real networks to evaluate the performance of packet aggregation 

mechanisms in simulation and analytical models.

In chapter 3. we present the architectures of hardware and software SDN switches and model the flow 

matching (lookup) mechanisms used in these switches. We propose a tractable diffusion approximation 

for a network router’s transient and steady-stale behaviour. In particular, we analysed the steady-state and 

transient-slate delay and packet loss probability as a function of traffic load and other characteristics. Using 

these results, we show that when SDN switches change the paths of Hows frequently, the network’s behaviour 

may often be far from its steady-state behaviour. Therefore any network optimisation conducted with the 

help of SDN should not be based on steady-state behaviour but rather on some metric related to the time- 

dependent network behaviour. We determined a load threshold beyond which a slight increase in the load 

results in a sharp increase in the queue size and packet delay.

Chapter 4 presents an overview of flexible routing in SDN-based networks. We extend the methodology 

developed in chapter 3 to the lime-dependent analysis of multiple SDN switches using diffusion approxi

mations, which are very convenient to analyse in a time-dependent regime. Thus, we compute rhe transient 

behaviour of each SDN switch after changes occur in its input traffic rate.

In chapter 5. we apply a diffusion or Brownian motion process to model the energy depletion process of 

a battery of an loT device. We use the model lo obtain the probability density function, mean, variance, and 

probability of the lifetime of an loT device. Also, we study the influence of active power consumption, sleep 

time, and battery capacity on the probability density function, mean, and probability of the lifetime of an 

loT device. We use numerical examples to study the influence of battery' depletion attacks on the distribution 

of the lifetime of an loT device. We also introduce in our model an energy threshold after which the device's 

battery should be replaced to ensure that the battery is not completely drained before it is replaced.

In chapter 6. we present an architecture of a green base station site. We develop Markovian and dif

fusion approximation models to analyse battery energy storage systems' steady-stale and transient-state 

performance. We apply Markovian and diffusion approximation models to derive the lime after which the 

battery energy storage system is completely discharged or fully charged. By assuming that the energy har

vesting and the energy consumption processes are exponentially distributed, we compare the result obtained 

from the Markovian model to those from diffusion approximation models.

In chapter 7, we conclude the dissertation.

1.4.1 Evaluation of the performance of packet aggregation mechanisms

The transmission of massive amounts of small packets generated by access networks through high-speed 

Internet core networks lo other access networks or cloud computing data centres has introduced challenges 

such as poor throughput, underutilisation of network resources, and higher energy consumption. Therefore, 

it is essential to develop strategies to deal with these challenges. One of them is to aggregate smaller packets
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into a larger payload packet. These aggregated packets will share the same header, increasing throughput, 

improving resource utilisation, and reducing energy consumption.

The Maximum-Time (MT), the Maximum-Size (MS), and the Maximum-Time-Maximum-Size 

(MTMS) packet aggregation schemes are the most popular packet aggregation schemes that have been im

plemented in commercial network equipment. Recently. MT. MS. and MTMS packet aggregation schemes 

have been implemented in the programming Protocol-independent Packet Processor (P4) |271 hardware 

switches in [250. 169. 251, 163|, to exploit its programmability, hardware speed, and flexibility. In the 

time-based or size-based, or hybrid (a combination of time threshold and size threshold criteria) packet ag

gregation scheme, when packets arrive at the network node, they are classified based on their destination. 

Class of Sendee (CoS) or Quality of Service (QoS) parameters, and queued up in the input buffer. The 

smaller packets stored in the input buffer are aggregated into larger ones when the number of these packets 

stored in the buffer is greater than or equal to a defined maximum value or when a defined time threshold 

is reached. The main drawback of these packet aggregation mechanism is that in low traffic applications 

like in the case of loT. the maximum defined size threshold may rarely be reached, resulting in excessive 

delays [250]. which could be mitigated by setting the maximum time threshold to be within the maximum 

delay tolerance. Also, the MT packet aggregation scheme may result in large variation in the aggregated 

packet sizes: hence, poor resource utilisation at the level of the core network [4 I ]. A novel slot-based packet 

aggregation scheme was recently proposed in [127. 126], In this mechanism, the small packets stored al the 

input buffers are aggregated into larger ones and scheduled for transmissions during preallocated time slots.

The performance evaluation of time-based, size-based, or hybrid packet aggregation schemes al the 

edge node of IP over all-optical networks have been presented in [65, 183, 159, 114. 240. 145]. The major 

drawback of these studies is the assumption that the interarrival times of TP packets into the aggregation 

buffer follows a Poisson distribution, which is far from reality, as it differs significantly from the measured 

interarrival limes from ihe Center for Applied Internet Data Analysis (CAIDA) repository which we used 

in [55. 57]. The authors in 11631 used the Poisson assumption to analyse the performance of a time and 

size based packet aggregation scheme for loT traffic over Software Defined Network, but the measured 

interarrival limes for loT traffic reported in [224] significantly differs from Poisson distribution. Diffusion 

approximation-based performance evaluations models which use measured interarrival times and sizes of 

packets measured from real networks have been proposed in 1143. 18|. and we extended these studies in 

[144] which is present in chapter 2. Diffusion approximation is a well-established modelling approach used 

to study non-Markovian queueing systems in which the arrival times and service times distributions are 

general, which was proposed in the current form by Gelenbe in [85. 86].

The amount of traffic generated by various access networks such as Digital Subscriber Lines (DSLs), 

ethemet Local Area Networks (LANs), wireless LANs, mobile networks (e.g. 3G. 4G. and 5G networks), 

and recently, the Internet of Things (loT) networks is increasing exponentially, and have likely increased sig

nificantly since the beginning of the year 2020. The recent increase in the amount of traffic carried over the 

Internet could be attributed to the global reaction to the outbreak of the COVID-19 pandemic by transferring 

some key services (e.g. health care consultation, education, retail, entertainment, and business and work- 

related activities), and the recent increase in the rate of adoption of loT. The packet sizes generated from 

these access networks vary' from a few bytes in loT and wireless sensor networks to 1500 bytes in Internet 

Protocol (IP) networks. The transmission of massive amounts of smaller packets, broadband access net-
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works and high-speed core networks introduces some challenges such as bandwidth wastage due to protocol 

overhead, inefficient use of network resources, and increased energy consumption. It is, therefore, essen

tial to develop strategies to deal with the huge amounts of traffic generated by access networks, especially 

loT network [39]. One of the strategies to increase bandwidth efficiency, ensure efficient use of network 

resources, and reduce the extra energy consumed due to the presence of huge amounts of small packets is to 

incorporate packet aggregation modules in some nodes of the network. Despite its benefits, packet aggrega

tion increases the packets’ delays [621 and may not be suitable for traffic belonging to real-time applications 

[251].

The industry 4.0 trend is transforming every industry’s production capabilities, including health care, 

energy, agriculture, food chains, logistics, retail, transportation and manufacturing, with loT low power 

connectivity as its driving force [25], loT devices are designed to minimise their energy consumption and 

hence increase their battery life. The energy consumption in loT devices is usually lowered by reducing its 

computing power by using microcontrollers or microprocessors, minimising their storage capacity, reducing 

the amount of energy consumed during communication with the use of low power communication proto

cols. and implementing energy-efficient encryption schemes and security protocols. The low-power com

munication protocols such as Constraint Application Protocol (CoAP) [35]. Message Queueing Telemetry 

Transport (MQTT) [22], Advanced Message Queueing Protocol (AMQP) [245], and Light Weight Machine- 

to-Machine (LWM2M) |202] communication protocols that have been proposed are designed to deminish 

energy consumption by reducing the siz.e of the loT packet payload. The time required to receive or trans

mit a packet depends largely on its size, which is directly correlated with the amount of energy required to 

receive or transmit the packet. It implies that the smaller the packet's size, the smaller the communication 

duration, the smaller the amount of energy required to receive or transmit the packet, and hence, the longer 

the battery lifetime. Therefore, low power communication protocols arc designed to keep the packet size 

as small as possible. However, with the recent large scale proliferation of loT sensor devices that generate 

massive amounts of relatively small packets, it is necessary to think about the various ways that packet ag

gregation schemes can be deployed to deal with the challenges introduced al the level of access networks. 

Internet core networks, and data centres.

The recent generations of mobile networks (e.g. 4G and 5G networks) are designed to support loT 

devices and satisfy the requirements of various loT applications. However, mobile networks were initially 

designed to support user equipment (e.g. mobile phones, tablets), generating traffic where packet sizes are 

larger than those from loT devices. The transmission of loT traffic directly over mobile networks results in 

the inefficient utilisation of radio resources. The amount of loT data carried over mobile networks is expected 

to increase significantly and poses challenges for service providers [130]. To ensure efficient utilisation of 

radio resource for loT over mobile network deployment, a packet aggregation scheme can be implemented 

al an intermediate node between the loT devices and the radio access network [175]. In this case, multiple 

loT packets are aggregated into a larger packet whose size is almost equivalent lo the maximum packet size 

that can be transmitted over the mobile network lo efficiently utilise the radio resources. Instead of wasting 

resource blocks to handle individual small loT packets, the loT packets are aggregated, and the aggregated 

loT packets share only one resource block. Also, the sizes of the packets from the user equipment in mobile 

networks (e.g. 4G and 5G) are smaller than the IP packet sizes handled in its transport networks. The 

aggregation and multiplexing of fronthaul and backhaul traffic into IP packets before transmission in the
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transport network of 5G Cloud Radio Access Network (C-RAN) was discussed in [194. 241, 109].

Similarly, the packets from access networks that are transported over optical networks are smaller than 
standardised optical packets. Transporting smaller packets from the access networks directly over the optical 
network results in bandwidth wastage due to protocol overhead and poor utilisation of network resources. 
Also, al every node, the optical packet is converted from the optical domain to the electrical domain to 
perform routing and regenerates Ihe signals and is then converted back to the optical domain for transporta
tion; this is the so-called electronic bottleneck [211], that increases the energy consumption. The electronic 
packets from the access networks are aggregated into larger optical packets to ensure efficient bandwidth 
and resource utilisation in the optical core networks. The optical packets are transported purely in the op
tical domain through the optical core network without being converted to the electrical domain. They are 
transported transparently from the ingress edge nodes to the egress edge nodes and boosted using optical 
amplifiers when the signal power falls below acceptable limits.

A review of the application of packet aggregation in computer and telecommunication networks, from 
the access networks (e.g. loT. wireless sensor. 4G/5G mobile networks), through Internet core networks 
to cloud data centre networks is presented in chapter 2. In the next chapter we present a detailed review 
of the recent application of packet aggregation in loT and wireless sensor networks, loT over SDN-based 
networks. loT over mobile networks, in 5G radio access networks (C-RAN), IP over all-optical networks, 
and cloud computing data centre networks.

1.4.2 Evaluation of the performance of a Software Defined Networking Switch

In traditional networks, the routing protocols are proprietary and rigid, the routers are configured man
ually. and each router is responsible for both making routing decisions and traffic forwarding. The manual 
configurations of distributed proprietary network devices is very a cumbersome and error-prone process that 
can underutilise network resources [258], These shortcomings of the current traditional networks have been 
addressed by introducing Software Defined Networking (SDN).

SDN is a dynamic, adaptable, and manageable paradigm that facilitates innovations in computer net
works [253J, together with the prototyping and deployment of flexible routing mechanisms [78]. An SDN 
network consists of the data plane, the control plane, and the application plane. The data plane consists of 
SDN switches or forwarding elements connected to the control plane through the OpenFlow protocol in the 
southbound interface. The control plane consists of network controllers, each of which is connected to a 
set of SDN switches. The controller is connected to the application servers in the application plane through 
the northbound interface. In classical networks, the routing protocols arc proprietary and rigid, the routers 
are configured manually, and each router is responsible for both making routing decisions and forwarding 
data traffic. However. SDN offers a programmable architecture where routing decisions are moved from the 
data plane routers to centralised controllers. Therefore, instead of having a network of routers that perform 
both routing and forwarding of data plane traffic, we have simple SDN switches or forwarding devices that 
forward the data traffic depending on the controller’s flow forwarding rules and collect network information 
and send it to the controller to optimise the routing decisions.

The stochastic nature of the interarrival times of packets into the input buffers in an SDN switch and 
the non-deterministic processing times of packets, results in the formation of queues at the input buffers.
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which introduces significant delays and packet losses. Recent attempts have been made to develop perfor

mance evaluation models for an SDN switch. The authors in [170, 16. 178. 2281 applied queueing models to 

evaluate the performance of an SDN switch. The authors evaluated that performance of the SDN switches 

under steady-state conditions. Thus, a major challenge in the performance evaluation of SDN switches is 

the analysis of their transient behaviour, when traffic rates vary under the effect of the SDN controllers’ 

decisions and of the time-varying traffic peaks that travel through the network due to the intermittent or 

periodic decisions that are notified to the switches by the SDN controllers. However, the transient analysis 

of queueing networks that are usually used to model the performance of networks is particularly difficult, 

and the discrete event simulation of such systems can be veiy time-consuming due to the large number of 

samples needed to achieve a reasonable level of statistical accuracy.

The majority of the studies assumed that the inlerarrival process of packets into the buffer follows a 

Poisson process and that service times are exponentially distributed. However, packet interarrival and ser

vice times distributions do not precisely follow the usual "Poisson and exponential" assumptions, leading 

to computationally efficient results concerning the system’s transient behaviour of the SDN switch. There

fore. to meet the need for a time-dependent analysis, diffusion approximation models for the performance 

modelling of a router or switch in an SDN network are proposed in this chapter. The diffusion approxi

mation offers two important advantages: firstly, the packet arrival and service times distributions can be 

time-varying, and these models do not depend on the usual "exponential and Poisson" assumptions regard

ing service epochs in the queues and the arrival processes of packets. Additionally, the diffusion model only 

requires the first two moments of the interarrival and service times so that relatively realistic parameters can 

be based on measured traffic data, and it provides numerical results which are difficult to obtain with other 

techniques [24],

1.4.3 Evaluation of the performance of a network of Software Defined Networking switches

Recent studies have analysed SDN networks to optimise steady-state performance using queueing theory 

models of various complexity. Some of them represent the node as a single station, e.g. M /G e o /\  [228], 

G /I /M /K  [223]. or M/G/l station [260]. Others distinguish data node and controller, representing both 

as a Jackson network [ 170] or introducing high (for packets coming from the controller), and low priority 

queues in the data switch, including more complex input flows models based on Markov Modulated Poisson 

Process. [178]. Some studies are based on network calculus [19. 30], All these models present only the 

steady-state analysis of SDN nodes.

The frequent changing of packet forwarding rules makes the analysis of the transient behaviour of the 

performance parameters of the switch, such as the delay, jitter, and packet loss probability. The usual tools 

for network performance analysis of computer networks are not well adapted for the performance analysis 

of SDN networks with frequently changing packet forwarding rales. It is because the transient analysis of 

queueing network models is particularly difficult. The discrete event simulation of the transient behaviour 

of networks is very time-consuming due to the large number of randomised repetitions needed to achieve a 

reasonable level of statistical accuracy.

Unfortunately, conventional queueing network models are difficult to use in the transient regime because 

of the computational burden associated with their analysis; indeed, analysing transients, even in a simple
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single-server system with Poisson arrivals and exponential service times lead to the use of Bessel function 

expansions, and interconnected systems are quite hard to analyse in the transient case [192, 193. 231). The 

analytical solution is known only in the case of single queues with Poisson input stream and exponentially 

distributed service times; see [36] for infinite and [235. 14] for finite queues. The models use Markov 

chains and solve Chapman-Kolmogorov equations (first-order linear differential equations), defining the 

state probabilities of n  customers present in the system at time i. The equations are solved analytically in 

the Laplace domain, and then the original functions in the time domain are found. Even in these relatively 

simple models, the solutions arc quite complex—e.g., in the case of the infinite queue, the state probabilities 

are given in the form of the infinite series of modified Bessel functions of the first type and various order; the 

Bessel functions are themselves the infinite series. Some simplifications were proposed—e.g., the generating 

function of the distribution in the Laplace domain may be replaced by expressions with simpler original 

functions in the time domain [141], or Bessel functions may be replaced by easier-to-compute functions 

[124],

These analytical results do not lit well with the problem of modelling computer networks, where the 

streams incoming to switches are not Poisson and the sizes of packets—and therefore also the service 

times—are not exponentially distributed. We may introduce to Markov models interarrival and service times 

distributions composed of exponentially distributed phases—e.g., Cox distributions or hyper-Erlang dis

tributions; the state definition is extended to include the current phase. There arc numerous tools—e.g.. 

[205]—that can match a phase-type distribution to any empirical histogram. However, the initial number of 

states should be multiplied—in this case, by the number of phases. This substantially increases the number 

of equations to be solved numerically. The solution is usually obtained using an existing tool—e.g.. [2. 152], 

We have applied this approach in modelling the transient states of an IP router. [49]; to represent the service 

lime distribution, we needed a hyper-Erlang distribution with three parallel Erlang distributions with 21. 

1387. and 2 phases. This could be conducted in the case of a single queue, as we are able to solve systems 

of millions of equations numerically, but it is hard to use this approach in modelling a network of switches.

Although the assumption that the interarrival times of packets into the buffers of SDN switches and that 

the processing times of packets are exponentially distributed makes the analysis of SDN networks tractable, 

these assumptions deviate from reality. The typical method is to use cither lluid flow approximation [181] 

or diffusion approximation [ 133.47]. The fluid flow approximation is much simpler, as it considers only the 

time-dependent mean values of flows, queues, and delays. However, its errors are much larger than those of 

diffusion approximation; see a comparison in [60J. On the other hand, discrete event simulations of transients 

require many hundreds of independent repetitions of simulation runs to achieve sufficient statistical accuracy, 

making the computation limes of such simulations prohibitive [52]. More details on fluid flow approximation 

and diffusion approximation and their application in the analysis of the performance of traditional computer 

networks was presented in [190]

The accuracy of diffusion approximations has been validated in industry-based research over many 

decades [207, 166. 172, 99|. including for patented techniques 1173|. and also validated in many academic 

papers [255. 132, 137], Their advantage includes a more accurate representation of interarrival and service 

processes, the ease of obtaining delay predictions from traffic measurements, and much faster numerics for 

transients than discrete queueing models [24] or simulations.
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1.4.4 Modelling of a battery of a computer system without energy harvesting

Energy modelling for battery-powered loT devices

The Internet of Things (loT) is a network of low-power computing devices (loT devices) that are 

equipped with sensors to collect data from the physical environments and send it to a remote server (e.g„ 

a fog computing or cloud computing server). The remote server performs some processing, and the re

sults are either sent to the operator for decision-making or sent back to the low-power computing devices 

attached to an actuator capable of manipulating physical systems. The loT devices are often powered by 

batteries [81,212] with limited energy capacity. In the design and deployment of loT devices and networks, 

the choice of the communication protocol, (he amount of processing that can be performed, and the secu

rity mechanism that is implemented are constrained by the limited amount of energy present in the battery, 

which determines the performance and the lifetime of loT devices and networks. The adoption of low-power 

communication protocols in loT networks to reduce the energy drawn from the battery' to power loT devices 

(to prolong battery life) makes them unsuitable for applications that require the generation and transmission 

of multimedia data. Also, cyber security attacks can be conducted to quickly drain the battery of the loT 

device and shorten the lifetime of the device [96],

Billions of wireless sensors devices are expected to be connected to the Internet through loT access 

networks, and small, cost-effective batteries will power a majority of these sensors with limited energy 

capacity [1 I7|. Recent advances in low-cost and low-power loT technologies have enabled cost-effective, 

energy-efficient, data-driven, and flexible automation of cyber-physical systems. However, when hundreds 

of billions of loT devices are connected to the Internet, the amount of energy required to power these systems 

and related fractures will be enormous. To ensure that loT devices are small and cheap for commercial de

ployment in large numbers, they are generally designed to have limited battery capacity, low computational 

power, limited memory, and use low-power communication protocols [204. 120]. Therefore, when choosing 

batteries for loT devices, it is essential to consider constraints such as cost, size, and capacity (energy rating 

of the battery in Wh. which determines the lifetime of the loT device).

Also, the limited computational, communication, and energy resources in loT devices, make it challeng

ing to deploy complex security mechanisms and to implement traditional cryptographic algorithms as they 

require non-constant execution time 1177 J. Some loT manufacturers and service providers design or deploy 

loT devices without appropriate security mechanisms, making them vulnerable to cyber-allacks. Some of 

the possible cyberattacks that could be launched against an loT device include identity theft, eavesdrop

ping. man-in-the-middle attacks, and energy depletion attacks. One of the components of an loT device that 

malicious attackers often target is the small, limited-capacity battery used to power the loT device [ 112|. 

Titis kind of attack is often called an energy depletion attack and is analysed in this paper. Therefore, the 

key constraint in designing and deploying loT devices and networks is to establish a reasonable tradeoff 

between power consumption, throughput, security, coverage area, battery lifetime, and financial cost.

The design specifications of an loT device and Utose of the battery used to power the loT device should 

be chosen in such a way as to ensure a longer lifetime: while ensuring acceptable QoS and security of 

the device. The lifetime of an loT device is (he time required to deplete the battery’s energy completely. 

Mathematical modelling frameworks have been proposed to establish the relationship between the device 

and battery parameters with the lifetime of an loT device. The authors in [215, 2 14| modelled the energy
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depletion process of the battery of an loT device (without energy harvesting) as a pure death Markovian 
process (since energy is drawn from the battery, and the battery is not recharged). They used their model 
to the impact of energy depletion attacks on the lifetime of an loT device. The limitation of their model is 
limited by the assumption that the energy consumption process follows an exponential distribution, and they 
address this limitation by proposing a model in which the energy consumption can follow any process (and 
could even be deterministic).

Energy modelling for battery-powered UAVs

The recent advances in Unmanned Arial Vehicle (UAV) technologies (e.g„ data collection, data storage, 
data processing, data transmission, data security, delivery of loads) [217] have increased their adoption rate 
for military and commercial applications. The fast adoption rate is partly driven by the decrease in the cost of 
drones and granting licenses to commercial service providers and hobbyists. Some of the industries that are 
being transformed through the application of drones include agriculture, environmental management, supply 
chains, law enforcement, surveillance, and photography [138. 139. 140]. At the beginning of the COVID-19 
pandemic, drones were used for deliveries [75] and to enforce restriction rules (social distancing, no mass 
gatherings in open public spaces) designed to slow down the transmission of the virus.

It is essential to ensure that the batteries selected to supply an UAV is able to power it for the entire 
duration of its mission. The duration of a done’s mission depends on the amount of energy required to 
perform some manoeuvering actions (takeoff, level Hight, hovering, and landing) [6] and the energy required 
to power the ICT modules in the drone. The energy required to drive the drone depends on the manoeuvering 
action taken, the drone’s speed, payload, and the wind. Although the amount of energy required to drive 
the drone is often far greater than the energy required to power the ICT modules, the influence of ICT 
energy consumption on the duration of the drone’s mission could become significant (especially for drones 
that draw small amount of energy for flight but perform complex ICT functionalities). Also, cyber security 
attacks designed to increase the amount of transmission or computations executed by the drone and deplete 
its battery faster could rapidly deplete the energy stored in the battery.

Most drones are powered by batteries, making energy a critical resource that must be optimised during 
the mission of the drone. One of the responsibilities of a drone pilot is to ensure that the drone returns with 
enough energy in the battery that is sufficient for a safe landing after its mission. If the drone's battery is 
completely depleted during its mission, it will crash to the ground and could damage the drone or result in a 
lawsuit if it damages properties or causes harm to human life. Even the most experienced drone pilots some
times encounter drone crashes due to battery depletion. It is difficult to estimate how much time is required 

to completely deplete the energy stored in the battery during flight because a complex interaction of mul
tiple factors influences the battery energy depletion process in drones. These factors include weather (e.g.. 
wind, temperature), drone speed, the ICT-related functionalities performed by the drone, and the weight of 
the drone and the load carried by the drone (if any). The energy stored in the battery could also be rapidly 
depleted due to cyber attacks, which are designed to induce the ICT systems of the drone to draw more 
energy from the drone unnecessarily. Some drones arc configured to return to the operator at predefined 
battery levels and to land at 15% battery level automatically. Therefore, the drone operator should ensure 
the safe landing of the drone while preventing any harm to human lives.

26



To adapt a UAV to perform its functionalities for a given application, advanced on-board information 

and communication technology significantly increase its energy needs during a mission 1257] because of the 

computationally intensive visual information processing before transmission or storage [45J. Using multiple 

cooperating UAVs to conduct a mission 1118] also increases the computational burden and energy consump

tion of each UAV, in order to coordinate movements and create a consistent view of the events or scenes that 

are monitored 1102], also leading to additional on-board energy consumption from communications [103], 

and more on-board software [ 195], On-board computing and communication equipment cannot easily be put 

to sleep to save energy, to avoid compromising the real-time needs which would be impaired by "wake-up" 

delays [94 j.

Since careful usage of the UAVs energy budget is needed to achieve the best possible mission output 

from the battery storage and possible other on-board energy sources such as phtovoltaic and fuel cells, the 

optimisation of the power consumption of an UAV via its speed was studied in |239, 21. 38|. However, the 

energy used to perforin functions such as encryption, compression of multimedia data, and communications 

is significant. In addition, the interplay of multiple factors influencing energy consumption implies that the 

energy drawn from the battery is not deterministic. Models that adequately capture the influence of some of 

the design parameters of drones that determine the flight duration of a UAV are important.

1.4.5 Modelling of a battery energy’ storage system of a computer system with energy har
vesting

The adoption of renewable energy is driven by decarbonisation, digitisation, and grid decentralisation 

trends. Decarbonisation is the progressive reduction in carbon emission from energy generation and energy 

consumption systems. A decentralised energy system is one in which the energy production facilities are 

located closer to the consumers or energy consumption facilities [42], The simplicity and the low cost of 

installing and maintaining renewable energy sources make them suitable for decentralised energy systems. 

They are increasingly being adopted as an energy source to power mobile network base stations located in 

challenging environments where conventional power sources are not available or expensive to operate.

Energy storage Systems (ESS) are systems that convert energy generated from various energy sources 

into energy forms that can be stored and used in the future. Battery energy storage systems are rechargeable 

battery' systems that store electrical energy from renewable or traditional energy grids using electrochemical 

solutions for use at a later time. Other types of energy storage systems include pumped hydro, compressed 

air storage, and mechanical flywheels.

In an loT network with hundreds, thousands, or millions of loT devices, having too many device energy- 

related failures resulting from completely drained batteries increases the complexity and maintenance cost. 

These abrupt failures could lead to financial losses and loss of human lives. loT devices are sometimes 

deployed in areas that are not easily accessible to change or recharge their batteries. The energy limitation in 

loT networks is being addressed using energy harvesting [220|. It is the process of capturing or harvesting 

energy from one or more renewable energy sources and converting it into electrical energy that can be used 

to power loT devices [81]. Energy harvesting is a sustainable and convenient way to ensure the continuous 

operation of loT devices [69] without energy-related interruptions. The energy can be harvested and stored in 

the battery and drawn to power the loT device 115 1. or the loT device can be powered directly by a renewable
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energy source, provided it is reliable enough. The authors in [13] presented a state-of-the-art review of 

sustainable green strategies in loT networks, including energy harvesting and energy-saving practices.

Recently, some of the functionality (e.g.. computation, communication, storage, and security) have been 

shifted from the cloud computing servers to the fog/edge computing servers, located closer to the end-users 

or data sources. It is to ensure acceptable quality of service (QoS), especially for real-time loT applications 

and to reduce the energy consumption in the Internet core networks. For loT network deployment in remote 

areas (e.g., farms located in remote areas not covered by the grid), a renewable energy source could supply 

the fog computing node. Also, renewable energy sources have been adopted to power ICT infrastructures 

with the persistent global agenda to adopt decentralised energy systems to supplement existing fossil fuel

based centralised energy systems to reduce carbon emissions. A decentralised energy system is one in which 

the energy production facilities are located closer to the consumers or energy consumption facilities [42]. 

The simplicity and the low cost of installing and maintaining renewable energy sources make them suitable 

for decentralised energy systems.

Green energy sources (e.g. solar and wind) present some challenges due to their intermittent power out

put [ 110], Still, energy storage systems (e.g, batteries) are used to ensure a smooth supply of energy to the 

consumers. The amount of energy produced by green energy sources depends on the energy conversion effi

ciency. geographical location, time of day. season of the year, topography, and weather conditions. Also, the 

energy demands of fog computing nodes vary over time, depending on the computing, storage, communi

cation, and security processes being handled by the fog node. Therefore, the amount of energy stored in the 

battery at a given time and the battery lifetime can be predicted using stochastic modelling techniques such 

as Markov models (e.g. in [46. 219. 17]) and diffusion approximation models (e.g. [4. 2571). If the battery’s 

charging rate is far less than its discharging rate, then the battery could be completely discharged. In that 

case, the device supplied by the batter will be shut down, leading to a service outage. The authors in [43] 

proposed a reinforcement learning approach for battery management in a green fog computing node.

For UAVs that require long Hight duration, constant manoeuvring, and carry heavy loads (like those 

designed for transportation), energy harvesting sources can be used to harvest energy from the environ

ment to replenish the energy drawn from its battery during flight. The energy harvesting mechanisms are 

incorporated into drones to harvest energy from the environment and store it in the battery. Some of the 

energy harvesting mechanisms incorporated into drones include solar [206], and dynamic soaring 126], En

ergy harvesting is environmentally dependent, and therefore, it is possible to use hybrid energy sources such 

as solar energy and hydrogen energy to ensure a continuous supply of energy for applications that require 

long flights [157]. Energy is drawn from the battery to drive the drone and to power its ICT systems. The 

optimisation of the power consumption of an UAV by choice of its speed was studied in [239], However, 

the amount of energy used to perform ICT-related functions such as encryption, compression of multime

dia data, and communication is becoming significant with the increasing complexity of electronic systems 

installed on the drone, which justify the need to consider ICT-related energy optimisation in drones during 

Hight. Any energy harvesting mechanism used on-board is also influenced by the environment. Therefore, 

both die energy generation and consumption processes need to be modelled as stochastic processes.

The use of renewable energy system to power base stations in mobile cellular networks have been widely 

adopted as a promising solution to reduce the carbon footprint and operational expenditures by mobile 

operators. Mobile communications have contributed enormously to the social and economic development
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of every society throughout the world, including the less developed or the remote parts of the world [92], 
The authors in [92] proposed an energy packet-based Markovian model to analyse battery energy storage 
systems required to store energy in green base station sites supplied by renewable energy sources.

The interplay of multiple factors influencing energy consumption implies that the energy generated 
from the battery is not deterministic. The environment also influences the energy harvesting mechanism. 
Therefore, both processes are modelled as stochastic processes. Markovian stochastic models have been 
applied to model the changes in the energy content of a battery, e.g. in 146, 219. I7| However, the energy 
Poisson assumption in the arrival of energy packets into the battery and the removal of energy packets from 
the battery may deviate from reality.

This is why we apply here a diffusion model where the interarrival times and interdeparture times may 
follow any distribution, as already proposed in [4. 257]. An overview of the stochastic modelling of battery 
energy storage systems is presented in chapter 5.
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Chapter 2

Design and Performance Modelling of
Packet Aggregation Mechanisms and their
Applications

The transmission of massive amounts of small packets generated by access networks through high-speed 

Internet core networks to other access networks or cloud computing data centres has introduced several 

challenges such as poor throughput, underutilisation of network resources, and higher energy consumption. 

Therefore, it is essential to develop strategies to deal with these challenges. One of them is to aggregate 

smaller packets into a larger payload packet, and these groups of aggregated packets will share the same 

header, hence increasing throughput, improved resource utilisation, and reduction in energy consumption.

In this chapter, a review of packet aggregation applications in access networks (loT and 4G/5G mo

bile networks), optical core networks, and cloud computing data centre networks is presented. We also 

analytical models for the design and evaluation of the performance of packet aggregation mechanisms are 

presented. We demonstrate the use of measured traffic from real networks to evaluate the performance of 

packet aggregation mechanisms using simulation and anlytical models is demonstrated. The use of diffusion 

approximation allows us to consider time-dependent queueing models with general interarrival and service 

time distributions. Therefore these models are more general than others presented till now. This chapter 

is adapted from [145, 143. 18. 144. 59], which are the article that author published on the performance 

evaluation of packet aggregation algorithms.

2.1 Applications of packet aggregation

This section presents a review of the recent application of packet aggregation in computer and telecom

munication networks, from the access networks (e.g. loT. wireless sensor. 4G/5G mobile networks), through 

Internet core networks to cloud data centre networks. We present in Fig. 1.1 an abstract architecture of a net

work in which the loT and wireless sensor networks, the cellular networks (3G/4G/5G), the Internet Service 

Provider (ISP) access networks, enterprise access networks, and data centre networks arc connected by a 

high-speed internet core network. Many papers have been published on the application of packet aggre

gation to improve throughput efficiency, improve resource utilization, and reduce energy consumption in
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computer networks, but this subsection is limited to the review of recent works on packet aggregation.

2.1.1 Packet aggregation in loT and wireless sensor networks

A simplified architecture for loT applications consists of the loT layer, the fog layer (if fog computing is 

supported), and the cloud layer. The loT sensors measure relevant data from the environment, securely trans

fer the data through an access point to the fog nodes for lightweight processing or the cloud data centre for 

advanced data analytics. The feedback from the data analytics platforms (fog and data centre applications) 

is sent back to perform appropriate actions to control some loT actuators or to provide information to users 

for decision making. Well-known low power, reliable wireless access communication technologies such as 

LoRaWAN [74], Sigfox 11551 have been widely adopted for the communication between the sensor devices 

and the access point. The sizes of the loT packets generated are very small and result in spectral inefficiency, 

poor resource utilisation, and high energy consumption. Therefore, the loT packets can be aggregated at the 

level of the access point or fog node (because they have higher computing resources titan the loT devices 

and do have energy limitations as they are continuously powered by a reliable energy source) before being 

transmitted through the Internet core network to the cloud computing data centres.

The authors in [136] proposed a packet aggregation scheme for the aggregation of loT packets in wide 

area networks. In their proposed scheme, when packets arrive at the access point, they are classified based on 

their destination, and packets that belong to non-real-time applications are aggregated, but those that belong 

to delay-sensitive real-time applications are transmitted immediately to their destination. A "Hag" field is 

added to the packets. It is checked by every node to determine whether the packet should be aggregated (if it 

does not belong to a real-time application) or not. They assumed that not every node in the network should 

possess the ability to aggregate and disaggregate packets, which should be considered when choosing the 

next node during packet forwarding. A similar dynamic mechanism for the aggregation of packets in loT 

and Low power and Lossy Networks (LLNs) to decrease energy consumption and increase battery life was 

proposed in [116]. In the proposed scheme, each node is equipped with a Learning Automata [208], which 

grants permission to the node to aggregate small packets that need to be aggregated into a larger one. and 

denies aggregation permission for some packets that need to be transmitted immediately.

The packet aggregation and disaggregation process introduces an additional delay to both real-time and 

non-real-lime packets. In the packet aggregation scheme proposed in [165] to reduce delays and energy con

sumption in body sensor networks, the loT packets are stored in local buffers and aggregated into larger ones 

before forwarding them. When the number of packets stored in the buffer is greater or equal to the packet 

aggregation threshold or when the first packet’s waiting lime is greater than the waiting time aggregation 

threshold, the stored packets are aggregated into a larger one and sent to the forwarder node. The forwarder 

node is selected based on the expected queue size and wailing lime lo ensure the acceptable quality of 

service.

In lite packet aggregation schemes proposed in 1136. 116. 165]. the authors classified the packets into 

packets that belong to real-time applications and those that belong to non-real-time applications. However, 

the authors did not clarify whether the packets that belong to real-time applications and those that belong 

to non-real-time applications share the same buffer or not. If they share the same buffer, then the QoS 

experienced by packets that belong to real-time applications may be degraded as the packet aggregation
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Figure 2 .1: Architecture of a demonstration of loT packet aggregation and disagreggation using P4 switches 

[250].

mechanism may introduce additional delays. The authors in |23] proposed priority-based channel access 
and data aggregation scheme to reduce packet delays in clustered Industrial loT networks. When the loT 
packets arrive at (he access point or fog node, they arc classified into high priority (that is, packets that 
belong to real-time applications) and low priority packets (those that belong to non-real-time applications). 
The high priority packets are stored in a high priority queue and transmitted without aggregation, but the 
low priority packets are stored in a low priority queue and aggregated into larger ones before transmission.

2.1.2 Packet aggregation in loT over SDN-based network networks

The packet aggregation and disaggregation mechanisms implemented in most traditional network de
vices (servers, switches and routers) are performed by the Central Processing Unit (CPU), which execute 
software programs to perform packet aggregation and packet disaggregation operations in the control plane. 
The throughput rales achieved with CPU-based packet aggregation and disaggregation operations are lower 
than those obtained by using hardware ASIC switches. It is because software execution speeds are lower 
than those of hardware switching ASICs [2511. The authors in [250. 169. 251. 163] have demonstrated an 
SDN approach in which the data plane pipelines of P4 hardware switches can be programmed to perform 
packet aggregation and disaggregation operations at high speed. The authors conducted experiments using 
loT traffic, which makes P4 SDN-based data plane switches a good choice for deploying networks that carry 
loT traffic.

The recent introduction of the software defined networking paradigm has given network operators and 
service providers programmatic control over the networking equipment in their networks’ data planes. The 

development of P4 technology has provided hardware leverage for manufacturers of network equipment and 
network operators. The P4 language is a high-level programming language used to program the data plane 
of hardware switches based on the SDN networking paradigm. It is used to program hardware switches 
similarly to Verilog, and VHDL (Very' high-speed Hardware Description Language) hardware description 
languages are used to program FPGA(Field Programmable Gate Anays)-based hardware. However, the 
P4 language docs not require a detailed understanding of the underlying electronic design as in the case 
with VHDL. and Verilog [169]. Therefore, the ability to programmatically manipulate packet payload in P4 
switches enables flexible and faster (higher throughputs) packet aggregation and disaggregation operations
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than those obtained when using traditional (non-programable) network devices.

The implementation of packet aggregation of loT traffic on P4 switches was first proposed in 1163) 

as shown in Figure 2.1. The authors discussed its feasibility, presented performance evaluations models to 

evaluate the performance of packet aggregation and disaggregation operations. The first design and imple

mentation of packet aggregation and disaggregation in P4 switched was presented in [251]. In their im

plementation. the packet aggregation and disaggregation operations are performed purely in the hardware 

switching ASIC pipelines, and the authors achieved a 100 Gbps packet aggregation throughput which is the 

highest so far reported. The limitation of these studies is that their implementation could only aggregate 

fixed-sized loT packets, but we may have traffic from different sources with different packet sizes in a real 

network. The authors addressed this limitation in their recent implementation in [250], where they designed 

and implemented packet aggregation and packet disaggregation operations in P4 SDN data plane switches 

that enable the aggregation and disaggregation of loT packets of different payload sizes with a throughput 

of 100 Gbps. Recently, the authors in [169| proposed a P4 implementation of an loT protocol designed to 

ensure an adaptable aggregation of packets to reduce the number of packets sent over the network with an 

acceptable delay.

2.1.3 Packet aggregation in loT over mobile networks (4G/5G)

With the widespread adoption of Low Power Wide Area (LPWA) technologies to enable long-range 

communication for loT devices. NB-IoT (NarrowBand-IoT) 1184] has been introduced and can coexist 

with existing mobile networks (e.g. 2G/3G/4G/5G). Existing mobile networks may be overwhelmed in the 

future by the massive growth in loT traffic [210] when hundreds of billions of loT devices are connected 

to the Internet via mobile networks. Allocating radio resources for each loT packet will result in spectral 

inefficiency and inefficient radio resources utilisation. Multiples small loT packets can be aggregated into 

larger ones so that a group of aggregated loT packets can share the same radio resource. It will improve 

spectral efficiency and radio resource utilisation.

The authors in [210] proposed introducing a Relay Node (RN) between the k>T devices and the 5G 

radio access network. It receives small loT packets, stores them in a buffer and then aggregates them into 

larger packets that are transmitted to the cellular radio access network through a wireless connection. The 

introduction of the Relay node to aggregate the small loT packets into larger ones improve spectral efficiency 

and radio resource utilisation, but it also introduces a significant delay. In this case, packets from real-time 

loT applications should not be aggregated. A similar approach was proposed in [131 ] for LTE-A(Long Term 

Evolution Advanced) mobile network in which an intermediate node is placed between the loT devices and 

the 4G radio access network. It receives small loT packets, store them temporally and then aggregate them 

into a larger packet when the queue size of packets in the buffer reaches a defined maximum threshold or 

when a defined waiting time threshold is reached. The authors concluded that their approach guarantees 

enhanced spectral efficiency, increase the capacity' of the radio access network, and ensure an acceptable 

delay. The drawback of the approach proposed in 1210] and [ 1311 is that both real-time and non-real-time 

traffic share the same buffer, which causes real-time traffic to suffer from excessive delays due to the packet 

aggregation. Priority queueing should be considered. Real-time packets should be placed in high priority 

queues and relayed directly to the radio access network without aggregation, or traffic from real-time loT
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Figure 2.2: A Cloud Radio Access Network (C-RAN) architecture with packet aggregation at the fronthaul 

network 1194].

applications should be transmitted directly to the radio access network.

2.1.4 Packet aggregation in 5G Radio Access Networks (C-RAN)

A 5G Cloud Radio Access Network (C-RAN) consists of a set of Remote Radio Heads (RRHs), a 

fronthaul network and a pool of shared Broadband Units (BBUs) as shown Fig. 2.2. The C-RAN paradigm 

is based on splitting functionalities by shifting complex signal processing from the RRHs to the BBUs. It 

leverages on the benefits provided by Network Function Virtualization (NFV) and SDN technologies to add 

flexibility and adaptability to fronthaul and transport networks of 5G mobile networks [241], The RRHs 

receives the radio signals, digitise them and then transmit them to a pool of BBUs through the fronthaul 

network. The packets that belong to the flow's coming from the RRHs are smaller than those in the backhaul 

network (packets from fronthaul networks are smaller than IP packets in the backhaul networks). An ethernet 

switch is deployed to aggregate packet flows from the fronthaul network and then multiplex them with those 

from the backhaul networks and transported through optical links to a pool of BBUs.

The authors in 1194] proposed a C-RAN architecture shown in Fig. 2.2 in which an ethernet switch 

connected to the RRHs aggregates fronthaul traffic and forward the aggregated traffic to the cloud. The 

authors in [2411 discussed the problem of multiplexing and aggregating fronthaul and backhaul traffic on C- 

RAN optical ethernet link. A strategy to aggregate fronthaul packet frames to improve throughput efficiency 

of the transport network of a 5G cloud radio access network was discussed in [ 109]. The analysis of the delay 

introduced by packet aggregation in 5G C-RAN has not been discussed so far. It will require the modelling 

of the packet aggregation process and considering the characteristics of 5G traffic and packet sizes.

2.1.5 Packet aggregation in IP over all-optical networks

The continuous rapid growth in the traffic generated by access networks and transported over long haul 

transport networks have led to the development and deployment of high-speed all-optical transport core 

networks. Transporting individual small packets from the access network over the optical network will 

result in poor throughput. Therefore, aggregating small packets from the access network into larger ones 

which are converted into optical packets and transported transparently across the optical transport networks.
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Figure 2.3: An architecture of an OBS network

Due to the challenges in developing optical switches with optical memory. Optical Burst Switching (OBS) 

networks architectures (e.g. see Fig. 2.3) have been adopted as networking solution for optical networks.

In an OBS network, packets from the source access networks are aggregated into larger ones at the 

ingress node. The aggregated packet is converted from the electrical domain to the optical domain to form 

an optical packet and then transported across the optical network in the optical domain. At the aggress edge 

node, the optical packet is converted from the optical to the electrical domain. The larger packet is then 

disaggregated into smaller packets that are delivered to the destination access networks. Packet aggregation 

in optical networks have been discussed in [65. 164, 183. 114, 159, 182. 240, 146],

2.1.6 Packet aggregation in Cloud computing data centre networks

Cloud computing is a well-known dynamic, cost-effective and scalable computing paradigm that enables 

on-demand remote access of computing resources such as software, infrastructure, and platform over the 

internet. The large scale adoption of cloud computing is due to the introduction of virtualization technology 

which makes cloud computing scalable. Virtualization refers to the hardware or software methods that enable 

the partitioning of a physical machine into multiple instances that run concurrently and share the underlying 

physical resources, and devices. A Virtual machine monitor (VMM), also called a hypervisor, is used to 

manage the VMs and enable them to share the underlying physical resources including the network devices 

[281. Some of the tools that enable the deployment of virtualization in cloud computing data centres include 

KVM, UMLinux, VMware, VirtualBox and Xen. [238],

In a virtualization environment like in the Xen environment, the driver domain hosts the physical device 

drivers, and network virtualisation is therefore essential to provide connectivity between the driver domain 

and the virtual machines (VMs) as seen in Figure 2.4. The I/O channel that transfers packets between the 

driver domain and the virtual machines creates a bottleneck due to its poor throughput [29. 238]. Packet 

aggregation has been proposed as a strategy to increase the communication throughput between the driver 

domain and the virtual machines by 700% in [29, 28, 2381. The packets to be transfered from the driver
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Figure 2.4: Driver domain based I/O virtualization [29J.

domain to the virtual machines are classified based on their destination Mac addresses, aggregated and 

placed in containers which arc transfered through the I/O channel to the virtual machines. At the virtual 

machine domain, the packets are dissggregated back into the small packets and relayed to the upper layers 

for processing. After processing, the packets are aggregated again, placed into containers and send back to 

the driver domain through the same channel.

2.2 Traffic Models: theoretical and measured traffic models

To design and evaluate the performance of packet aggregation algorithms, network equipment designers 

and network operators often use discrete event simulation and mathematical modelling. Mathematical mod

els make it possible to develop mathematical relationships between the design parameters of the algorithm 

and its performance parameters. The limitation of most of the proposed mathematical models for packet 

aggregation algorithms (e.g.[65. 164. 183. 114. 159. 182.240. 146]) is that they are based on the assumption 

that the distribution of the interarrival times of packets into the buffer follows a Poisson distribution. It is 

often assumed that the distribution of the packet sizes is fixed or exponentially distributed.

Figure 2.5 shows a comparison of theoretical distribution of the interarrival times of packet based on the 

Poisson arrival process assumption and the distribution of measured interarrival times from the CAIDA traf

fic data repository [3], CAIDA routinely collects traces on several backbone links and make them available 

for research purposes. The data sets contain timestamps provided with up to nanosecond precision but trun

cated and stored in pcap (traffic capture) format with microsecond timescale. They also provide a dataset 

of the packet sizes. It can be observed in Fig. 2.5 that for the values of the interarrival time that are less 

than o.002 seconds, the distribution of the probability density of the interarrival time from the CAIDA data 

sets significantly differs from the theoretical one obtained using the Poisson assumption. However, for the 

values of the interarrival times that are greater than (1.002. the distributions from the CAIDA data sets and 

that from the Poisson traffic are the same. The authors in 1821 performed a statistical study of the interarrival 

times of measure IP traffic to determine from among theoretic traffic models (such as Weibull. Pareto 2. 

Gamma, exponential, and lognormal). The authors realised that the best theoretical traffic model that best 

fits the distribution of the interarrival times is the Pareto 2 distribution. Therefore, even though assuming
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Figure 2.5: Interarrival time distribution from the CAIDA measurement of the Equinix Chicago link.

that the interarrival times of packets follow a Poisson process facilitates performance analysis, the limitation 

of this assumption should be noted. Fig 2.6 shows the distribution of the packet sizes, with a sharp spike at 

about 64 bytes (for signalling packets) and another spike al about 1500 bytes (the maximum IP packet size). 

The average IP packet size from the presented dataset is 698 bytes. The distribution of the packet sizes is 

completely different from the usual assumption that it is exponentially distributed (e.g see [159]) The dataset 

present in Figures 2.5 and 2.6 are datasets of IP v4 packet sizes and their interarrival times from the Equinix 

Chicago link collected during one hour on 18 February 2016. having 22 644 654 packets belonging to 1 174 

515 IPv4 Hows (see [3]).

However, the coefficient of variation of the distribution of the interarrival times of the CAIDA traffic 

shown in figure 2.5 is 1.02. which is closer to that of a Poison distribution, which could justify the use of the 

Poisson assumption. The authors in 1163| evaluated the performance of a packet aggregation mechanism for 

loT traffic over S DN data plane made up of P4 switches. They assumed that the distribution of the interarrival 

time of loT packets into the aggregation buffer follows a Poisson process but the measured distribution of 

the arrival times of loT packet into a buffer in an access point is shown in Figure 2.7. The loT traffic trace in 

Figure 2.7 was generated from a smart loT environment with 28 different loT devices such as cameras, light 

bulbs, motion sensors, health monitors etc. It was collected for six months [224], It can be observed that the 

characteristics of loT traffic are completely different from that of IP traffic. The loT traffic is made of few 

spikes because the measurements from a group of loT sensors for a given loT application are updated at a 

predefined time simultaneously. At some time instants, there is heavy traffic from the sensors followed by 

prolonged silence. Therefore, analysing the performance of network devices carrying loT traffic using the 

Poisson arrival assumption will yield inaccurate results.

It can be observed from Figures 2.5. 2.6 that the distribution of the interarrival times and packet sizes 

of traffic from real networks differ from usual Poisson assumptions. In [143. 18J. the authors used diffusion 

approximation, which uses real traffic distributions. Diffusion approximation requires the mean and variance 

of the real traffic traces collected from a real network, which are used to estimate the diffusion approximation
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Chicago link.

Figure 2.6: Distribution of the IP packet sizes. from the CAIDA measurement of the Equinix

Figure 2.7: Measured loT traffic trace from a real loT network collected in [224].
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process parameters that model the packet aggregation process.

2.3 Performance analysis of time-based and size-based packet aggregation 

mechanisms

In this section, we present diffusion approximation models for the lime-based and size-based packet 

aggregation mechanism. When small packets that need to be aggregated into larger ones arrive in a network 

node that supports time-based or size-based packet aggregation mechanism, they are stored in an aggregation 

buffer and then aggregated into a larger packet when the size of the buffer content is greater (han a defined 

maximum threshold or when a defined waiting lime threshold is reached. When the first packet arrives, the 

byte counter and time counter are initialized. The byte counter tracks the number of bytes accumulated in 

the buffer, and when the amount of bytes accumulated in the buffer is greater than or equal to the defined 

threshold, then the content of the buffer is aggregated into a larger packet and sent to the transmission module 

for transmission. The timer tracks the waiting time of the first packet in the buffer to ensure that packets do 

not wail for too long in the buffer during a low traffic period and when it reaches a predefined waiting time 

threshold, the content of the buffer is aggregated and sent to the transmission module for transmission.

We propose analytical models for the evaluation of the time-based, size-based and hybrid packet ag

gregation mechanism. We compare the results of the analytical models with simulations. A simulation is 

a technique in which a virtual environment that emulates the behaviour of a physical system is created in 

software. A very' popular type of simulation used in the performance evaluation of computer systems and 

networks is called discrete event simulation. We used a discrete event simulator that was programmed us

ing the Java programming language. The simulator consists of a traffic generator created using the CAIDA 

traffic data sets and a buffer which represents the buffer al the input port of the node where the aggregation 

is performed. The MT, MS and MTMS packet aggregation mechanism is programmed in the simulator. Al 

each simulation run. we collect the data on the aggregated packet sizes, and the interarrival times are col

lected and plotted together with the distributions from the analytical models using Matplollib (a plotting 

library based on the python programming language). For both modelling and simulation, we use the datasets 

of IP v4 packet sizes and their interarrival times from the Equinix Chicago link collected during one hour 

on 18 February 2016. having 22 644 654 packets belonging to 1 174 515 IPv4 Hows (see [3]). The traffic 

parameters are: rn = 698 bytes, cr^ =  119361. A =  70 packets per second. =  4.9358e~ '.

2.3.1 Diffusion approximation of the packet aggregation process

When packets arrive in the buffer, (he number of bytes in the buffer increases and the buffer content 

continues to grow until the maximum defined size threshold or the waiting time threshold is reached. We 

represent the growth process of the content of the buffer by a diffusion approximation [85], [135], |86| 

process. Suppose that a diffusion approximation process A'(f) represent the number of bytes stored in the 

buffer at time f. then the dynamic changes in the number of bytes accumulated in the buffer can be modelled 

by diffusion equation (which is a parabolic partial differential equation describing Brownian motion of tiny 

particles)[44].
t; x 0 ) _  a  i; a:0 ) ¿V(x, I; x 0 )

Ot 2 f tr 2 ’ Ox
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where 0dt and adt represent the mean and variance of the changes of the diffusion process at dt. The 
equation defines the conditional probability density function (pdf) of the diffusion process A'(i)

/(x , t;xo)dx =  P[x <  X(f) < x +  dx | A(0) =  XQJ.

The diffusion approximation applied to queueing systems is based on the assumption that the number 
of arrivals of customers joining the queue during a random time T  has a distribution that is close to normal 
and does not depend on the distribution of interarrival limes but only on its two first moments. The mean 
and variance of this normal distribution are XT and X 'a ^T  where 1/A and a \ ,  are mean and variance 
of interarrival times, 185|. Here, the position r of the process X (t)  corresponds to the number of bytes 

currently in the buffer. The number of bytes received at a unit of time is a product of two independent 
random variables: X  -  the number of packets and Y  -  the size of packets. The mean of a product variable 
X Y  is E (X Y )  = E (X )E (Y )  and the variance is

V a r^X Y )  =  £ (A 2V2 ) -  (E (X Y ))2

= V ar(X )V ar(Y ) + V a r(X )(E (Y ))2

+ V a r(Y )(E (X ))2 ,

the mean number of arrived at a time unit packets is E (X ) = X and the variance is V a r(X ) = X3 a \ .  and 
we denote by rn the mean size of a packet (in bytes) and by a 2 , the variance of its size, therefore the mean 
number of arrived at a time unit bytes is

0  = Xm

and the variance of number of' arrived at a time unit bytes defining a  in Eq. (2.3 is

_  \3  ‘2 _2 । \3  2 2 [ 2 \2  /n  nxQ — A CT4<T,n .. 4- A (7 T  <7,rJ A . (2X I I I I  X I III-

We consider the unlimited queue: therefore, the diffusion process is limited only by a reflecting barrier 
at x  = 0 (the queue is never negative).

Without any barrier, the density of the unrestricted process defined by Eq. (2.3) and started at XQ is

/ ( x , i :x 0 ) =  — — - exp 
V27rtvi

(x -  x0 -  I3t)2 
la i

(2.3)

It is the solution of the solution of the parabolic partial differential equation (equation 2.1) the describe the 
dynamics of the diffusion process.

2.3.2 Modelling of the time-based packet aggregation process

For a time-based packet aggregation mechanism, when the first small packet arrive into the packet ag
gregation buffer, the time is activated to start tracking the wailing lime of the first packet in the buffer. When 
the value of waiting time of the first packet in the buffer reaches a defined maximum waiting time threshold, 
then the content of the buffer is aggregated into a larger packet and the lime is reset to zero. The growth 
process of the number of bytes accumulated after lime t. can be approximated by a diffusion process that 
starts at x =  0 at time t = 0 and with an absorbing barrier at x  = X  (the maximum defined size threshold.
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Figure 2.8: The distribution of the sizes of the aggregated packet in Bytes for a time-based packet aggregation 

mechanism.

and for a time-based packet aggregation mechanism, this value is set large enough that the time threshold is 

always reached). A diffusion process that starts at .r =  0 and is absorbed at .r =  Ar is [44]

=  ̂ 7=7
2 0 N

exp
Cl 2o/

(2.4)

1 [ 2al

(tr -  2 N  -  0 1 ^

Since after a defined maximum waiting time threshold T. the content of the buffer is aggregated into a larger 

packet, the probability density function (PDF) of the diffusion process after time T  is

\/27raT 2aT

exp
2&N (a? -  2 N  -  (ft)2  

2 a T
(2.5)

When the content of the buffer is aggregated into a larger packet, the timer is reset to / =  0 and is activated 

again when a new small packet arrives into the packet buffer, and the accumulation process starts again till 

the wailing time threshold is reached. Suppose that the first packet that arrives into the buffer to trigger the 

accumulation process is of random size M . with PDF and that the number of bytes accumulated 

after time T  is A' (X is a random variable), then the actual number of the aggregated packet (the larger 

packet) is A y =  A  +  M . and its PDF is

fx B = (2.6)

and its mean and variance respectively is =  p x  +  Um and — cr\ -I- <7^

Figure 2.8 shows the distribution of the sizes of the aggregated packets in bytes. We set the size threshold 

or buffer size as N  =  100000 bytes to ensure that only the maximum waiting time threshold criteria is 

satisfied. The value of the maximum waiting time threshold is T  =  0.02 seconds. The value of T  should be
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interdeparture time, t in seconds

Figure 2.9: The distribution of (he interdeparture times for a time-based packet aggregation mechanism.

carefully chosen to ensure that the sizes of the aggregated packets should not exit the maximum transmission 

unit of the target network, whose throughout efficiency is improved by the packet aggregation. For example, 

in aggregating voice or loT packets to be transmitted over IP network, the value of T  should ensure that 

the sizes of the aggregated packets should not exceed 1500 bytes. We compare the result from the analytical 

model of equation 2.6 with the results from (he simulation. Since the small packets accumulated in the buffer 

are aggregated into a larger packet when the waiting time threshold is reached, regardless of the number of 

bytes present in the buffer, the sizes of the aggregated packets dispatched varies. The sizes of the aggregated 

packets depend on the rate at which the packets are arriving into the buffer, the sizes of the arriving packets 

and the value of the waiting lime threshold. T . If the sizes of the aggregated packets are small, we have low 

throughput, and when they are loo large, we have high throughput, but very large sizes of aggregated packets 

could lead to packet losses in the core network.

Since the content of the buffer is aggregated into a larger packet only when the waiting time threshold is 

reached, then the time from when the current threshold is reached, and the buffer content is aggregated to the 

moment when the next one occurs (the inlerdeparture lime) is t a  + T  where ta  is the interarrival time. The 

accumulation time T  is constant, but the interdeparture lime is random because it depends on the interarrival 

time, since the timer is triggered only when the first packet arrives. The PDF of the interdeparture times is 

f o W  =  /¿(G, -  T ). where *s  ''1C PDF of the interarrival times. Suppose that the interarrival lime 

is exponentially distributed then, the interdepature limes are exponentially distributed but shifted by T as in 

[159]. e.g.

f D ^  = (2.7)

Figure 2.9 shows the distribution of the inlerdeparture times for a time-based packet aggregation mecha

nism. The analytical results are obtained by shifting the distribution of the interarrival times from CAIDA by 

T. We compare the inlerdeparture limes from the analytical model with those measured from the simulation 

in Figure 2.9. Since the content of the buffer is aggregated when the wailing lime threshold is reached, the 

delay experienced by the packet is fixed, and its value is equal to the value of the waiting time threshold T.
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Since when the buffer is emptied, the next accumulation process starts when the first packet arrives into the 
buffer, the interdepapature times distribution is similar to the distribution of the interarrival times but shifted 
by T  as shown in Fig 2.9 (e.g.. T  — 0.02).

2.3.3 Modelling of the size-based packet aggregation process

For a size-based packet aggregation mechanism, the content of the buffer is aggregated into an aggre
gated (larger) packet when the maximum size threshold N  is reached. When a small packet arrives, its size 
is compared to the difference between the maximum size threshold and the number of bytes accumulated. 
It is to ensure that after adding the arrived packet to the buffer, the number of bytes accumulated should 

not exceed the defined maximum size threshold. Therefore, the sizes of the aggregated packets are almost 
constant as the content of the buffer is aggregated into a larger packet when the size threshold is reached.

The times after which the maximum size threshold is reached varies since the interarrival times of 
packets into the buffer and the sizes of packets are random. The time from when the first packet arrives in 
the buffer to when the maximum size threshold is reached and the content of the buffer is aggregated into a 
larger packet can be considered as the first passage time of the diffusion process from x = 0 to x = N. The 
first passage time of the diffusion process from .T =  0 to .r =  .to is f44|

7O.«o W lint t; z 0 )]
2 o x

•To [ fab ~  
. e x p ----- ---------  . 

v ^ r ra f 3  2 a i
(2.8)

Therefore interdeparture time which the first passage lime of the diffusion process that started from a' =  () 
and end at a: =  N  (when the maximum size threshold is reached). Hence, the PDF of the inlerdeparlure time 
is

/ D ^
. a  O f (a , /. a n ) .  . A

--------- /3/fa^;a.-o)]

N  (Ar - ^ ) 2 ‘
. e x p ----- ---------  . 

\/27ra t3  2 a /
(2.9)

Figure 2.10 shows a comparison of the interdeparture times from the diffusion approximation model 
and the ones obtained using a discrete-event simulator. The value of the size threshold should be carefully 
chosen to ensure that the delay experienced by the first packet that arrived into the buffer should not be too 
high. When the packets are aggregated, overhead bytes are added to them before sending the entire packet 
to the transmission module. Therefore, when choosing the value of A", the designer should bear in mind 
the value of the maximum transmission unit for the network over which the aggregated packet needs to be 
transmitted. The results presented in Figure 2.10 was obtained for N  = 10000 bytes. When aggregating 

the voice traffic from mobile networks or smaller packets from loT and wireless sensor networks, the value 
of A can be 1497 bytes, since the Ethernet maximum transmission unit is 1500 bytes (the rest is used 
for overhead bytes) [250], Since the content of the buffer is emptied when the maximum size threshold is 
reached, regardless of the waiting time of the packets in the buffer, the waiting times of the packets in the 
buffer vary and are distributed as shown in Fig. 2.10. The waiting time experienced by the first packet that 
arrives into the buffer depends on the intcrarrival times of packets into the buffer, the packet sizes, and the 
value of the maximum size threshold N . If larger packets arrive at a faster rate (very short interarrival limes), 
then the wailing time threshold will be reached very fast, accounting for the sharp spike in Fig. 2.10.
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Figure 2.10: The distribution of the interdeparture times for a size-based packet aggregation mechanism.

2.3.4 Modelling of hybride packet aggregation process

For a hybrid packet aggregation mechanism, the content of the buffer is aggregated into a larger packet 
when either the number of bytes in the buffer is greater than or equal to the maximum size threshold or when 
the waiting time of the first packet in the buffer reaches the maximum waiting time threshold. Therefore, 
the values of N  and T  can be selected in such a way as to ensure any of the aggregation criteria is reached. 
Figure 2.7 shows a comparism of the analytical and the simulation results of the interdeparture limes for a 
hybrid packet aggregation mechanism.

The sharp spike at the start of the interdeparture time distribution in Figure 2.11 is due to the frequent 
attainment of the maximum size threshold (perhaps due to fast arrivals or arrivals of packets with larger 
sizes). These spikes are very visible in the distribution from the simulation but analytically is approximated 
as the probability that the first passage time is less than or equal to the minimum filling time tm i„ c.g

f t  nun
Pott — /  f D ^ d t

Where t < . where M m a x is the maximum size of the arrival packets. The sharp spike at the end
of the distribution is due to the frequent attainment of the maximum time threshold. This is the probability 
density that the diffusion process will end exactly when the deadline T  is reached and is given by:

r 00 , f f  N  — T 3 \/  7 0 |N ^  = JV{2-erfc +
JT  1 \  v 2 T a  )

2.vj /  N  — T 3 \e « erfc I — . I [ (2.10)

where
2 f 1 e2 erfc(t) =  1 — erf(f), erf(() =  —7= e d^.

Vil./O
In the case of the hybrid algorithm, (he design parameters arc the maximum burst size and the maximum 
time or deadline. Some design criteria such as the probability (hat the maximum burst size threshold is 
reached and the probability that the maximum time threshold is reached could be used to choose the design
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Figure 2.1 1: The distribution of the interdeparture times for a hybrid packet aggregation mechanism.

parameters, N  and T. The probability of that time threshold will be reached, and the probability that the 

maximum burst size threshold will be reached respectively are

F D (t < T ) = I  f D (t)d t
Ju

FXB(XB <N) =  / '  f x B ( x B )dx B  (2.11)
Jo

If the value of the parameters TV and T  are chosen such that the probability that the time threshold is reached 

is 0.99. then the assembler is an MT assembler and if they are chosen such that the probability that the 

maximum burst size is reached is 0.99, then the assembler is an MS assembler [ 159]. The proposed diffu

sion approximation based performance analysis models for the time-based, size-based, and hybrid packet 

aggregation mechanism do not make any assumption about the distribution of the interarrival times of pack

ets into the buffer and the distribution of the packet sizes as in most of the existing studies. Therefore, the 

distribution of the interarrival times and that of packet sizes is general; that is, any distribution can be used, 

including the distribution from traffic measurements such as those used in this studies.

2.4 Performance analysis of slot-based packet aggregation mechanisms

For a slot-based packet aggregation mechanism, the arriving small packets to be aggregated are stored 

in an over-dimensioned input buffer (a buffer with a large memory size that is sufficient to store the arriving 

packets). At each defined time slot A, small packets stored in the buffer are aggregated into a larger packet 

and then scheduled for transmission. It is a suitable packet aggregation mechanism in a wireless network en

vironment in which access to the channel is shared by multiple devices, and each device is assigned a defined 

timeslot for transmission. A slot-based packet aggregation mechanism for enhancing VoIP performance on 

IEEE 802.11 wireless mesh networks was discussed in [160]. A novel slot-based packet aggregation scheme 

for the aggregation IP packets in Next Generation of Routers for Energy Efficiency Networks (N-GREEN)
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Figure 2.12: The N-GREEN packet aggregation system.

optical metro networks was proposed in 1127. 126], In this section, we present the performance evaluation 
models for a slot-based packet aggregation scheme in an N-GREEN network as we presented in [ 18].

2.4.1 The slot-based packet aggregation mechanism

In the slot-based packet aggregation mechanism that we modelled in [18], when the small packets arrive 
at each buffer, they are stored temporally. During a defined time slot, part of the content of the buffer (some 
small packets) are aggregated to a larger packet of size L and scheduled for transmission provided that the 
transmission channel is free. In the context of the N-GREEN slot-based packet aggregation that we modelled 
in [ 18], smaller electronic packets called Service Data Units (SDUs) from access networks (e.g. DSL. wired 
and wireless LANs, 2G/3G/4G/5G mobile networks, and loT networks), are stored following a Firsl-in- 
First-out (FiFo) queueing discipline. Al every time slot allocated to the buffer, the SDUs are aggregated into 
larger packets called Packet Data Units (PDUs) that are converted into optical packets and then inserted into 
the optical transmission system, provided that the optical transmission channel is not occupied. Figure 2.12 
illustrates the slot-based packet aggregation mechanism for an N-GREEN (Next Generation of Routers for 
Energy Efficiency Networks) in which at every time slot A, SDUs are aggregated into a PDL' of size L 
and then inserted into any of the empty containers (of the same size) circulating in a ring so that it can be 
converted into an optical packet and transmitting through an N-GREEN metro network to its destination. 
If at each time slot the available container is empty, then the PDU is inserted into it with a probability p. 
Otherwise, the PDU will not be inserted and waits for the next time slot to try again.

The containers are circulating a ring, and each buffer expects the arrival of a container after every A 
seconds, and in a system with multiple buffers, a container can be empty or occupied with PDU loaded by 
another buffer. Therefore the PDUs are loaded or inserted by the buffers and they are converted into optical 
packets and then they are unloaded and transmitted by the transmission unit. Consider the following cases 
of aggregating the SDUs into a PDU and inserting the PDU into the containers at each time slot:

I. First case: At every time slot, the SDUs are aggregated and inserted into an empty container. If the 
number of bytes stored in the buffer is less than L bytes, all of its content is aggregated into a PDU 
and inserted into the container. However, if the number of bytes stored in the buffer is larger than L 
bytes, then the SDUs are aggregated into a PDU of size L bytes and inserted into the container, and 
the rest of the SDUs in the buffer waits for the next available container in the next time slot.

2. Second case: Al every lime slot, the SDUs are aggregated into a PDU and inserted into a container 
only when the number of bytes stored in the buffer is greater than or equal to L bytes
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We modeled the packet aggregation mechanism for a single buffer and assumed that the behaviour is the 

same for all the buffers. We present a diffusion approximation based performance evaluation model for a 

slot-based packet aggregation mechanism.

where
( x - x ( ) - # ) 2 ' 

2at

( - x  -  X() -  /jf)2 
2af

2.4.2 Diffusion approximation model for a slot-based packet aggregation mechanism

As the SDUs arrive into the buffer, the number of bytes grow continuously. We represent the dynamic 

changes in the number of bytes stored in the buffer by a diffusion process. Al each time slot, when the 

SDUs are aggregated into a PDU and inserted into a container, and (he number of bytes in (he buffer reduces 

instantaneously by an amount equivalent to the size of the SDU. The number of bytes present in the buffer 

at time t can be represented by a diffusion process whose dynamics is approximated by the parabolic partial 

differential equation (equation 2.1) in section 4 above. Since when the number of bytes present in the buffer 

is greater than L  bytes, the SDUs are aggregated into a PDU of L  bytes, we model the changes in the number 

of bytes stored in the buffer by a diffusion process jumps. We approximate the growth of the number of bytes 

in the buffer by a reflecting barrier at x  =  0 (as the number of bytes stored in the buffer must be positive), 

whose PDF is [44]

/ (x, i; x 0 ) =  J— [a(t) -  e x p ( 2 0 x . (2.12)
v  27TQT

r ( x - x 0 - ^ ) 2 ' 
a(t) = e x p ---------- — -------  

¿at

r ( ~ x - x a - 3 t y  
=  e x p ----------- — --------- 

2af

After (he PDU is inserted into the container at each time slot, the diffusion process jumps back and starts 

to increase again from the new initial point as the number of bytes stored in the buffer increases as the SDUs 

arrive into the buffer. We may also define the initial condition in a more general way. the starting point is 

not only at xo, but it is at any point £ given by a distribution V’(C) • in this case

=  (2-13)
Jo

It should be noted, when the PDU is inserted into the container, the decrease in the number of bytes in the 

buffer corresponds to an instantaneous jump back of the diffusion process X (/). Therefore we concentrate 

on the diffusion description during constant intervals A and the definition of immediate changes of the 

process between these intervals. Next, we consider the two cases of aggregating SDUs into a PDU w hich is 

inserted into the container.

and

Case 1

At each lime slot, if the number of bytes x present in the buffer is less than or equal L  bytes (that is 

x  < L), then all of the content of the buffer is aggregated into a PDU and inserted into the container with 

a probability p. otherwise, it is inserted during the next time slot. Therefore, for x <  L. the entire content 

of the buffer is aggregated and inserted into the container, corresponding to a jump back of the diffusion 

process to x  =  0, and continue to increase again as the queue of SDUs grows with the arrival of more SDUs 

into the buffer. However, if the number of bytes in the buffer is greater than L bytes (that is x  > L). then the
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SDUs are aggregated into a PDU of size L and inserted into the container, and the number of bytes in the 
buffer will decrease by L bytes, corresponding to a jump back of the diffusion process to x  = .r -  L. and 
starts to increase again as the number of bytes in the buffer grows with the arrival of new SDUs. We treat the 
diffusion process from a given starling point till the point when it jumps back after the insertion of a PDU 
into the container during the next limeslot; that is we study the dynamic changes in the number of bytes in 
the buffer during the time interval A between timeslots. When the diffusion process jumps back to a given 
point after the insertion of the PDU into the container, that point becomes the starting the diffusion process 
that approximates the growth of number of bytes in the buffer.

Denote by f ^ ^ x ,  A: V-’̂ )  the PDF of the process during /th interval A. At the beginning of each inter

val. the lime is sei to zero, hence always I € [0. A], The distribution of the number of bytes in the buffer at 
the end of each A. after the jump, if it occurs, defines the initial distribution of the number of bytes stored in 
the buffer for the next timeslot. Assume that the initial value of the process is To =  0. i.c. the buffer is empty. 
Al the end of the first interval, the position of the process, before a possible jump, is given by / ( ̂ (T , A; 0). 

The jump occurs with probability p giving the initial distribution for the next interval

rL
^ ) ^ ) =  f ^ ( x , ^ » ) d x  (2.14)

J in

and for C > 0
=  / 1\ c  +  L ,A :0) (2.15)

or with probability 1 — p there is no jump and the new initial condition is given by the position of the 
process al the end of previous time-slot

^ /^ ( C A iO ) .  (2.16)

Therefore, the complete initial condition for the second time slot is defined as

rL
= p / (1 )(T . A: m)dx, 

Jm
^ (2 )(O = p f™ ( £ + L ,W )  (2.17)

+  ( l - p ) / (1*(C,A;0), < > 0

and these initial conditions determine the movement of the process during the second time slot and its 
position at the end of it. / (2\ C  A:

In the same way for the next slots.

r 1.

./()
+  (2.18)

+ e>o

until the convergence, when ; and f^n + 1 \ x ,  t; % f ^ ^ x ,  t: V’̂ ) -  This con
vergence is illustrated later in Figs. 2.13-2.4.4 for various valuess of p.

Since when the time slot occurs, and the number of bytes stored in the buffer is less than L bytes, 
the content of the buffer should be aggregated and inserted into the container, the sizes of the PDU may 
be less than L. Smaller PDU (aggregated packet) sizes result in lower aggregation throughput efficiency.
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as the objective is to have more SDUs aggregated into a larger PDU and share the same header bytes 
during transmission, hence reducing protocol overheads. The probability of inserting a PDU of size L is 

/(« , A; ̂ )d x . but the probability of inserting a PDU of size a- < L is /(.r. A; 0). Therefore, the mean 
effective size of the packet is

The aggregation ratio is

L e f f = L f(x,A;i/>)xdx.

L e f f  

Til.

(2.19)

(2.20)

where in  is the mean size of an SDU.

Case 2

At the occurrence of the lime slot after the time interval A, the SDUs are aggregated into a PDU of size 
L bytes and inserted into the container only is the number of bytes in the buffer is greater than or equal to L 
bytes (that is x L). The equations of Case 1 are adapted in the following way. As previously, at the end 
of the lirst interval A the PDF of the number of bytes stored in the buffer is / ’1 (x, A: 0), and for any slot 
n > 1

=  p /W ^  +  L . A ; ^ ) ,  (2.21)

When the steady state is reached, the initial distribution 0 =  lim,l_ oo and the density of the number of 
bytes stored in the buffer at the end of A is the same e.g. f ( x .  A; <4) =  ^(.r).
The aggregation ratio is

e =  -  (2.22)
m

Since the SDUs are aggregated into a PDU only when the number of bytes in the queue is greater than or 
equal to L bytes, the sizes of the PDUs that are converted into optical packets and transmitted are fixed. This 
ensures that the sizes of the PDU can be chosen by the designer such that it does not exceed the maximum 
transmission unit and the small PDUs that create throughput inefficiency in the transmission core network 
is avoided. Therefore, the designer or (he network operator has control over the throughput, but in case one 
the throughput varies slightly as the size of the PDU can be less than L (when the time slot arrives and the 
number of bytes in the buffer is less than L bytes, the content of the buffer is aggregated into a PDU).

2.4.3 Queueing Delay

One of the major aims of packet aggregation is to improve throughput efficiency by reducing protocol 
overhead. The advantage of slot-based packet aggregation mechanism over other packet aggregation mech
anism is that it produces higher throughput as the designer has control over the size of the PDU. L. That 
is. when the value of L is larger, more SDUs can be aggregated into a PDU and transported with just one 
header, which ensure that a large payload is transported with a relatively small overhead. However, high 
throughput is achieved at the cost of longer delays as some packets may wait for too long in the buffer. The
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major parameters that influence the delay are the time interval between time slots (the time from when a 

buffer tries to insert the PDU into the container and the next trial), A  and the channel availability probability 

(the probability of inserting the PDU into the container at a given time slot), p.

When an incoming SDU arrives into the buffer in which other SDUs that arrived earlier have been stored, 

it joins the queue at the tail end. We assume that all SDU (small packets) are treated the same without any 

prioritisation: when a SDU arrives it joins the queue al the tail end (SDUs join the queue sequentially). It 

should be noted that in some real implementation of this mechanism, the SDUs could be queued up based on 

their time sensitivity such that SDUs belong to real-time applications can be shuffled to the front (head) of 

the queue, aggregated, and inserted into the queue to ensure that they are transported immediately to satisfy 

their quality of service (QoS) requirements. However, to keep our analysis tractable, we have assumed that 

all SDUs have the same priority.

Suppose that an arriving SDU that arrives at time / £ (f, A) sees the queue distribution /( .r , t: ■</.<). With 

the probability
P i=  [

Jo
the number of bytes in the buffer is less than After the time interval A, the SDUs are aggregated into a 

PDU and inserted into the container with a probability p (if the container is empty), otherwise, it wails for the 

next time slot after the same time interval (e.g. A). Therefore, its waiting lime will be A -  t with probability 

p or A -  / +  A with probability (1 — p)p, or A -  / +  2A with probability (1 -  p)2 p. . . .  A -  / -I- nA  

with probability (1 -  p)"p  depending on the earliest arrival of a time slot with an empty container. This 

probability follows a geometric distributed, and its distribution density function is denoted as

/v i'i(w ,f) -  p i  (w -  (A -  Q) +  (1 -p )p 6 (w  -  (2A -  Q)

+(1 — p) i p6(w -  (3A - t ) )  + . ..

+ ( l - p ) M ( w - ( ( n + l ) A  - / ) )  +  . . .

(2.23)

where 6(x) is Dirac delta function.

Assuming that the SDU arrival may happen at any moment I of the time slot with the same density 1/A . 

we determine f w i M  as
Avi(w ) =  [  (2.24)

Jo A
Similarity. if the queue size is between L and 2L which will happen with probability

Pi — f i x ,  t.; tp)dx
JL

then we should have two empty containers to insert two PDU in two consecutive time slots. It means that 

we add the delay incured by waiting for the arrival of the second empty container in second time slot to the 

waiting time (for the first time slot) defined above. This delay is equal to A with probability p if just the 

next container is empty, 2A if the next container is occupied but the one after it is empty -  with probability 

(1 — p)p. etc. The distribution of this additional delay f s ( w )  is

/ A (W) =  p6(w  -  A) +  (1 -  p)p6(w  -  2A) +

+ (1  — p)2p6(w  — 3A) +  . . .

+ ( l - p ) V ’( w - ( «  +  l)A ) +  . . .  (2.25)
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Therefore, the waiting time for a SD U  that arrives at time 1 and seeing the queue size between L  and 2Z is determined by the convolution /iV2(w) -  At-i(w ) * f± (w )and the waiting time for the arriving SD U  that sees the queue size between 2L  and 3 £  is determined by
,/ W w )  =  fw ^ w )  * * f s ( w )

and the waiting time for an arriving SD U  that sees the queue size between (// — L)L and n.L (i.e. the SD U  is loaded at the n "' timeslot) is
fw A w )  =  A n ( w )  * (2.26)The probabilities p ,„  n  =  1 .. . .  that an arriving SD U  joins the queue and sees the queue size between 

x  € [(n — L)L, n L ]  is
Pn =  I ' '  (2.27)

Therefore, an SD U  that arrives and joins a queue that is longer will wait longer, and its waiting time also depends on the probability that the circulating container that arrives to its buffer at the timeslot is empty as shown in Figs 2.18 and 2.19 in the next section below.
2.4.4 Numerical examplesIn numerical examples we use PDUs of length L  — 12.5 KB (12500 bytes) and the time slots A  — II) //.sec at 10 Gb/sec, the same realistic parameters as considered in [127. 126]. The interarrival times have a general distribution with mean 1/A, variance a \ . and the size of electronic packets is determined by a general distribution having density with mean m  and variance Assume A =  1 packet///sec. the average packet size in =  700 bytes, squared coefficients o f variation C 2 =  rr^A2 =  1 and C 2 ,  =  =  1. Itmeans that the parameters o f the diffusion equation are: arrival rate ft — Xm  -  0.7 kB///sec and a  -  1.47. as delined by Eq. (2.2)Naturally, the variances C 2 . C ;n  may be different and represent any distribution, it is the advantage of diffusion approximation. Note that the squared coefficient o f variation close to one does not mean necessarily that a distribution is resembling the exponential one. When analysing the distributions of packet sizes and times between packets given by C A ID A  (Center for Applied Internet Data Analysis) repositories, we met distributions that are far away from exponential ones, but with C 2 ~ 1. The results presented are based on the PDU insertion mechanism in case 1.Figs. 2.13-2.4.4 illustrate the convergence of the solution formulated in Eq. (2.19) for various values of 
p, it is visible that at each case, 25 iterations give satisfactory results.Fig. 2.13 shows the distribution of the number o f bytes in the aggregation buffer. Initially, the buffer is zero, and after the accumulation time △. the distribution o f the number of bytes in the buffer is represented by a diffusion process dial starts at x  =  0 and grows as more packets arrive into the buffer] see the blue curve for i =  1) in Fig. 2.13. At the occurrence of the first timeslot, small packets in are aggregated into a larger packet of size L  and inserted into the container with it probability p  -  0.25. which shifts the diffusion process backwards by r =  L  to a random point £ which becomes the new initial point for the diffusion that represent the process that represents the distribution of the number o f bytes in the buffer after the shift. At
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Figure 2.13: The distribution of the aggregation queue size. /(.r. i; t ’) if p = 0.25 for consecutive iterations 
as in Eq. (2.19) i =  1. .. 25

the occurrence of the timeslot, the PDU of size / may not be inserted into the container with a probability of 
1 — p. The distribution of the number of bytes in the buffer after the occurrence of the second timeslot can 
be represented by a diffusion process that starts at a random point £ and grows as more packets arrives in 
the buffer (see the green cure for i = 2 in Fig. 2.13). After the 25 timeslots, the distribution obtained after 
the occurrence of the 25f/' timeslot is similar to that obtained from the 24th  timeslot, which is some form of 
steady-state convergence behaviour of the distribution of the number of bytes in the buffer.

Figs. 2.14 and 2.15 show the distributed of the number of bytes in the buffer for various timeslots, and 
for p — 0.5 and p = 0.75 respectively. Similar to Fig.2.13. the distributions for higher timeslots is shifted 
to the right as the starting point of the diffusion process for higher limeslot may be slightly larger. After 25 
timeslots, the distributions converge into a steady-state as in Fig.2.13. Unlike in Fig. 2.13. the distributions 
for p =  0.5 and p = 0.75 respectively are relatively shifted to the left because the probability of loading the 

PDU from the buffer to the container is larger.

Fig. 2.4.4 shows the distribution of the number of bytes in the buffer for p =  1. It can be observed that 
there is no significant shift of the distributions after the occurrence of various timeslots. For p =  1. it is 
certain that at the occurrence of a timeslot. SDUs are aggregated into a PDU and inserted into the container. 
Tire queue size for p — 1 is not as large as the case for p =  0.75. p — 0.5, and p — 0.25 as the PDU 
is loaded into the container at the occurrence of every timeslot when p =  1. Steady-state convergence is 
achieved after the 8f/‘ timeslot.

Fig. 2 .17 presents the impact of probability p (probability that at each timeslot, the circulating container
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Figure 2.14: The distribution of the aggregation queue size. r )  if p =  0.5 for consecutive iterations
as in Eq. (2.19) f =  1 . .. 25

Figure 2.15: The distribution of the aggregation queue size, / ( / ( .r ,  t: ^)) if p — 0.75 for consecutive itera
tions as in Eq. (2.19) i =  1 . .. 25
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Figure 2.16: The distribution of the aggregation queue size, if p -  1 for consecutive iterations as
in Eq. (2.19) ¿ =  1 . . .  25

Figure 2.17: The distribution of the aggregation queue size, f(x, t; for the i — 25 iterations and different
values p
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Figure 2.18: as defined in Eq. (2.26) -  the influence of the number of empty optical packets n
needed to complete the transfer on the waiting lime distribution, p =  0.25

that arrives at the buffer is empty) on the final distribution /(.r, t : i/>) of the queue length in bytes. If the 
container is not empty at a given limeslot, we try to load the PDU at the next limeslot. Fig. 2.17 shows that 
as p increases, the queue size in the packet aggregation buffer decreases, because as PDUs are inserted into 
the container at each timeslot, the queue size decreases. If the probailily p (that the circulating containers 
that arrive at the buffer at each timeslot are empty) decreases, then the PDUs are not inserted into the 
containers frequently, and the queue size of SDUs in the aggregation increases, and could likely lead to a 
buffer overflow, even though the aggregation buffer is over-dimensioned.

Table 2.1: Probabilities pn , n — 1 . . . . , 5 that arriving SDU joins the queue before the interval x 6 [(n — 
1 )L. nL], as in Eq. (2.27)

Pn p =  0.25 p — 0.5 p = 0.75 P -  1
n  -  1 0.000422 0.011993 0.085542 0.5581957

n =  2 0.004069 0.066236 0.287785 0.430287
n — 3 0.016506 0.130243 0.276826 0.011427

n -  4 0.049166 0.183986 0.185722 8.86 * 10- 5

n  = 5 0.119076 0.210541 0.100210 3.66 * IO- 7

Table 2.1 presents probabilities p„ that that arriving SDU joins the queue before the interval x  £ [(n - 
1 )L. nL] and will be aggregated and inserted into the container after n time slots.

Fig. 2.18 shows the influence of the number of timeslots n on lite wailing lime of an arriving SDU that 
arrives and sees the queue size between (n. -  1)L and nL. When an SDU arrives and sees a queue size 
of about nL, it waits for n timeslots, and at each timeslot, SDUs arc aggregated to a PDU of size L and 
inserted into the container, provided that the container is empty. The distribution in figure 2 .18 (/n  „(«;)) *s 
obtained from Eq. (2.26). It is described as the waiting time distributions for packets that waits for n  empty
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Figure 2.19: / ^ ( w )  as defined in Eq. (2.26) -  the influence of the probability p  of the empty optical packet 

on the distribution of waiting time if n = 5

optical packets because the containers that the PDUs are inserted are similar to optical packets in size, and 

their content is converted to an optical packet and transmitted. The parameter n  can also be understood as 

the number of timeslots that will occur for n PDUs that contain SDU that arrived earlier to be inserted into 

available containers before the container that contains the arriving PDU is inserted. Fig 2.18 shows that 

as n  increases, the mean waiting time experienced by arriving SDU increases and can be observed by the 

distributions’ shifts to the right as n  increases.

Fig. 2.19 illustrates the influence of the probability p  that the circulating container that arrives al buffer is 

empty at each timeslot. If the container that arrives at the buffer in each timeslot and the container that arrives 

is not empty, the PDU is lot inserted into the container, and it waits for the next timeslot. Fig. 2.19 shows 

that as the probability p that the container is available (i.e. the container is empty) at each timeslot increases, 

the waiting time experienced by the SDUs decreases, and if p is small (the container is not empty) then the 

wailing lime experienced by the SDUs increases. The distribution in figure 2.19 ( /u 'n (w)) is obtained from 

Eq. (2.26) for n  =  5 and p  is varied from 0.25 to 1.

2.5 The Tradeoff Between Throughput, Energy Consumption, and Delay

The main goal of sustainable network design is to achieve high throughput and minimise energy con

sumption with an acceptable QoS (delay, packet losses, and jitter). In this section, we discuss the network 

performance and energy consumption metrics and how they influence one another in the context of packet 

aggregation.

2.5.1 The Throughput Efficiency at the Core Network

Generally, the structure of a packet contains three main parts such as the header, the payload, and the 

trailer. The header contains information required to process a packet (e.g. packet length, synchronisation.

57



protocol, packet identification number, source address, destination address information), the payload con
tains the actual data delivered from a source user to a destination user, and the trailer which contains infor
mation which enables the receiving device to identify the end of the packet and to perform error checking. 
Since the header and the trailer part of the packet only carries information required to process the packet and 
not the user data intended to be delivered between two communicating devices, they constitute an overhead 
to the network and hence, termed overhead bytes. Transporting packets in which a significant proportion 
(percentage) of the total packet is occupied by overhead bytes results in bandwidth wastage. Suppose that 
the size of the overhead byte is Ob and the average size of the payload is Lp , then the percentage of the 
bandwidth wasted due to overhead per packet is

eo  =  ° b
T *100 (2.28)

Consider a packet with a header (Ethernet. IPv4, and UDP headers) of 12 bytes, if its payload is 8 bytes (e.g. 
like the case of loT packet), then the percentage of the bandwidth consumed by the header (percentage of 
bandwidth wasted) is 84%. If 100 of such packets are aggregated to share the same header, then the payload 
size of the aggregated packet is 800 bytes, and the percentage of the bandwidth consumed by the header 
becomes 5%. It shows that aggregation significantly reduces the percentage of the bandwidth consumed by 
the headers or overhead bytes. The bandwidth efficiency per packet is

eb = n  *100 (2.29)

Therefore, aggregating the smaller packets al the edge of the network significantly improves the throughput 
in the core networks. The more the number of bytes of smaller packets aggregated into larger packets, the 
higher the bandwidth efficiency.

2.5.2 The Core Network Energy Efficiency

One of the essential benefits of packet aggregation al the edge node is reducing energy consumption 
in the core network. The energy consumption of the core routers depends on both the number of packets 
received, processed, and transmitted and on the packet sizes. Packet aggregation reduces the number of 
packets handled by the core routers, but it increases the packet sizes making the energy benefits offered by 
packet aggregation not intuitive. It has been shown theoretically and practically in [246. 115. 105] that the 
power consumption of a core router or switch consists of a fixed baseline power Pg and a dynamic power 
PD . The baseline power is the power consumed by some components such as the cooling Fans, routing 
engine cards (e.g.. during signalling and updating of the routing tables) and other electronic components 
when they are idle. The dynamic power is (he power consumed by ihe data plane (the line cards and the 
switching fabric) when it is receiving, processing, and transmitting data packets. Therefore, the power profile 
of a network router or switch is [225, 246. 115, 105]

P  = PB + PD (2.30)

Fig. 2.20 shows a simplified router or switch structure considered for theoretical analysis of the power 
consumption budget of a router or switch. The baseline power is fixed but the dynamic power varies with
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Figure 2.20: A structure of a Core Router or Switch [246]

the number of packets processed per second and on the sizes of packets. The power consumption budget for 
the n th  port of a high speed router or switch is

Pn — P  P n  +  P i.n (P r x ,n  T  E r s n ) 4~ \ } .n P p  4" P o ,n {P ts ,n  4“ P fx ,n ) (2.31)

Where PE„ is the power consumed by the nih  ethernet port when iddle (when there is no traffic on it).
is the number of bytes received per seconds at the n'h port. E rx<n is the energy required to receive a byte 
on the ingress Ethernet interface of the TI"' port. E r s ,n is the energy required to process and store a byte 
on the ingress Ethernet interface of the n t k  port. Ap,„ is the number of packets from the port processed 
per second, Ep ,n  is the energy required to process each packet (parsing, route lookup, and forwarding), and 
it is the same for all packets irrespective of their sizes. is the number of bytes transmitted per second 
through (he egress Ethernet interface of the n"1 port. E l s ,n is the energy required to process and store a byte 
on the egress Ethernet interface of the n ,h port, and E tx<n is the energy required to transmit a byte on the 
ingress Ethernet interface of the port. If the mean packet sizes at the ingress and egress interfaces of 
the n ,h  port are are m t;n  and mo>„ (in bytes) respectively, then the number of packets received per second 

through the ingress Ethernet interface of the 7?" port is A, n =  —— and the number of packets transmitted 
per second through the egress Ethernet interface of the n 1 port is Ao ,„ =  and equation 2.31 becomes

P n — P E p  4- Ai,ri(2>rx,n 4“ E r S i n ) +  Xp^n E p  +  IIIo ,n^opi{E ts tl T  E t x  n ) (2.32)

Taking the partial dericatives of equation 2.32 with respect to the number of packets received, processed, 
and transmitted per second, we obtain the energy per packet. The energy per packet for the ingress Ethernet 
interface of the n11' port is

& Pn ____  / i
— H li,n \E rx .n  4* E r s.u)
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the energy required to process a packet is
dP» =  F  

t)Xp>n "
It is independent of the packet size as the energy required to process (parsing, route lookup, and forwarding) 
a small packet and a large packet are the same. The energy per packet for the egress Ethernet interface of 
the n"' port is

9Pn  _  / r ,  r \
U ^ O ,n

The energy per packet for the n"1 port is

En.p =  m i,n(ErX in  + Ers.n) T Ep + m o.n{^ts,n T &tx,n) (2.33)

For m , =  m 0 ,n  =  m„. then the energy consumption per packet is

Eu<p = m nE ra t + Ep  (2.34)

where E r s t = E rx J I + E r s ,n  + E t s j l  -I- E t x n̂ . Equation 2.34 shows that energy per varies linearly with the 
packet size as demonstrated in |225, 246, 115] using measurements. Therefore, aggregating smaller packets 
(e.g each of size m) into larger packets (c.g each of size L = J2i=t increases the energy consumption 

per packet in the core network. It means that by increasing the throughput (increasing the length of the 
aggregated packet. L). the energy consumption per packet at the core network also increases. For a core 
router or switch with A', idle ports and K„ active ports the power consumption budget is

Ki Ka
P = PQ + P E n  + E„ + m 1>nXiy„{Er x _n + E r s .n ) + Xp^Ep + m„,n X„tU(EtS J , + (2.35)

n=l n=l
The power consumption at the core router and switches increases with an increased number of packets 
received, processed and transmitted as in equation 2.35 which was demonstrated in [225, 246, 115) using 
measurements. In order to increase the routing or switching speeds, some core routers and switches contain 
Ternary Content Addressable Memories (TCAMs) in their hardware which are power-hungry electronic 
modules, and hence higher energy is required to process a single packet. If the core switches are SDN-based 
switches, then the power consumption budget considers the power consumed in searching the flow tables, 
installing the flow rules by the controller, and the communication between the switch and the controller 
[ 105). Therefore, by aggregating a sufficiently large number of small packets into larger packets, the power 
consumption of the core routers and switches can be significantly reduced compared to increased energy 
consumption due to an increase in packet size. The core network energy efficiency is [242]

T , „  . total useful traffic delivered _
Network energy efficiency = ------- ---------------------- -— (2.36)

" total energy consumed

The objective is deliver more useful traffic (high throughput) with minimum amount of energy possible. 
Therefore, packet aggregation increases the throughput and reduces the energy consumption in the core 
network.

2.5.3 Network Delay

When a packet travels through a router or switch, it experiences a delay due to the time required to 
receive a packet, and the time spent waiting in the input buffer, the required to process the packet (parsing.
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route lookup, and forwarding), the time spent waiting in the output buffers, and the time required to transmit 

the packet. The delay budget is

D -  tr x  +  ¿¿6 +  tp + tob + ttx  (2.37)

where i r ;r is the time required to receive a packet, is the wailing time of the packet in the input buffer if it 

arrives and joins a queue. tp  is the time required to process a packet. tob is the wailing time of the packet in 

the output buffers, and is the time required to transmit a packet. For high-speed core routers, tr r  and 

are very small and could be ignored. A detailed analysis of the delay of a network of routers and switches is 

beyond the scope of this work but have been presented in [57. 57. 50].

If a port of an edge router is configured to support packet aggregation, then when the first small packet 

that needs to be aggregated arrives, it has to wait in the input buffer to be aggregated with other smaller pack

ets into a larger packet. The delay introduced by the aggregation process is significantly larger than the delay 

experienced by a packet that joins a regular queue and is processed following a defined service discipline 

(e.g. firsl-come-iirsl-serve or a priority-based service discipline). Therefore, equation 2.37 becomes

D — tag 4- tn, T  tp T  tob T  tlx (2.38)

where taa is the aggregation delay discussed in sections 4 and 5 above. The aggregation delay depends on the 

parameters of the aggregation mechanism deployed, which also influence the throughput and energy con

sumption. Therefore, a reasonable tradeoff between the throughput, energy consumption, and delay should 

be made. A recent proposal to attain a reasonable tradeoff between QoS (high throughput and minimum 

delay) and energy consumption has been presented in [80J. The authors are proposing an SDN approach in 

which the QoS and energy consumption metrics are estimated and sent to a centralised controller that deter

mines forwarding paths that minimise a goal function consisting of QoS and energy consumption metrics.

2.6 Conclusion

Packet aggregation is a useful strategy to increase throughput, improve resource utilisation, and reduce 

energy consumption in access networks, high-speed Internet core networks, and cloud computing data centre 

networks. The recent increase in the amounts of small packets generated by loT networks, wireless sensor 

networks, and 4G/5G mobile networks has increased the need for more research on how to efficiently im

plement packet aggregation to meet the specific needs of these networks. The major drawback of packet 

aggregation mechanisms is the significant amount of delay that it introduces, making it unsuitable for pack

ets that belong to real-time applications.

We have presented a detailed review of packet aggregation applications in access networks (loT and 

4G/5G mobile networks), optical core networks, and cloud computing data centre networks. We have also 

proposed diffusion approximation-based analytical models for the evaluation of the performance of packet 

aggregation mechanisms. We have demonstrated the use of measured traffic from real networks to evaluate 

analytically the performance of packet aggregation mechanisms. Il is important to carefully lune the design 

parameters of the packet aggregation mechanism io obtain a reasonable tradeoff between throughput and 

energy consumption in the core routers or switches, and delay introduced at the edge router or switch by the 

packet aggregation process.
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Chapter 3

Performance Evaluation Modelling of a
Software Defined Networking (SDN) Switch

In traditional networks, each network device (e.g., router or switch) is fully or partially autonomous 
with respect to making routing decisions and fordwarding of packets. However, in SDN, a controller in the 
control plane makes routing or forwarding decisions and (he data plane ( which consist of SDN switches) is 
responsible for the forwarding of packets |2 131. The SDN switches process and forward packet according 
to the rules stored and managed its flow tables 1113],

When packets arrive at an SDN switch, they are received, processed, and transmitted. Packets can be 
queued up at the input and output ports they arrive and meet other packets waiting to be transmitted or 
processed. A packet, therefore, experiences delays at an SDN switch due to the time required to receive, 
process, and transmit it and the time spent waiting in queues. The queueing and processing delays signif
icantly degrades the performance of SDN switches. The processing delay experienced by a packet results 
from the time required to search die flow tables (to find the flow rule that matches the content of the packet 
header) and apply the flow rule (either forward the packet to the output port for transmission or drop the 
packet).

The modelling of the flow matching process in hardware SDN switch is presented and the modelling of 
the flow matching process in a software SDN switch. The flow matching process is the searching the flow 
tables to determine the flow table entry orenteries whose matching field matches with the header fields of the 
packet. After matching the packet, the actions defined in die action field are applied (e.g., forward modify, 
or drop the packet). The majority of the research studies that have attempted to develop performance models 
for an SDN switch often assume that the packet processing times are exponentially distributed, which is not 

the case in reality. Realistic models of the packet processing process are developed and used as an input to 
the diffusion approximation model to obtain an analytical relationship between the SDN switch parameters 
and the some performance metrics. The performance of an SDN switch (especially a software SDN switch) 
significantly depends on the flow matching or flow lookup mechanism, which should be considered when 
analysing the performance of an SDN switch.

The broader use of Software Defined Network (SDN) controllers to create periodic changes in the net
work’s topology sometimes lead to changes in traffic intensities at the various switches. Thus the transient 
behaviour of network components, particularly data switches, is becoming of great interest. Since standard
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queueing models are difficult to analyze under time-varying conditions, we propose a tractable diffusion 
approximation for both the transient and steady-state behaviour of a network router. In particular, the anal
ysis provides the steady-slate and transient delay and packet loss probability as a function of traffic load 
and other characteristics. Using these results, we show that when SDN routers change the paths of Hows 
frequently, the network’s behaviour may often be far from its steady-state behaviour. Therefore any network 
optimization conducted with the help of SDN should not be based on steady-state behaviour, but rather on 
some metric related to the time-dependent network behaviour. A significant portion of the material presented 
in this chapter was published in [55. 571. This chapter is focused on the performance modelling of an SDN 
switch.

3.1 Modelling of a hardware SDN switch

Hardware switches are often designed to process packets are lines rates using dedicated hardware re
sources. Software switches are designed to process packets using software programs deployed on general- 
purpose comodity hardware. Although software switches provide greater flexibility, they are very slow and 
introduces significant delays. The authors in [67] demonstrated emperically that the mean and variance 
of the delay experienced by packet in a hardware SDN switch is far smaller than that in a sofware SDN 
switch. Hardware switches are relatively fast compared to software switches, but their processing speeds or 
throughput still needs to be improved.

3.1.1 The architecture of a hardware SDN switch

Figure 3.1.1 describes the basic system architecture of a hardware SDN switch proposed in |253|. Ar
riving packets are temporarily queued at the input buffers and are then removed by the Arbiter and placed 
scheduled into the Packet Buffer. A copy of the packet header is forwarded to the Parser. The Parser parses 
the packet header to extract the header fields and then creates a tuple with the extracted information and 
forwards it to the Flow Match Unit. In the Flow Match Unit, the tuple is matched against existing flow rules 
stored in Flow Tables' flow entries. The flow entries in the Flow Tables are maintained under the controller's 
guidance and are updated when the controller installs new flow rules. The Flow Match Unit determines 
whether the packet is associated with a known flow and hence a known path.

In case of success (that is. the flow rule that matches the header fields of the packet is found in one 
of the flow table entries), the packet is then forwarded via the backplane. In case of failure (no flow table 
entry matches the packet header), a packet-in message will be sent by the SDN switch to the corresponding 

SDN controller [260) to notify the controller about the absence of a flow rule for the packet. The packet-in 
message contains either the packet or the packet’s ID. The controller decides the correct action for the packet 
and then installs appropriate data in the flow table of the switch so that packets belonging to that particular 
flow can be forwarded subsequently. If there is no corresponding response from the controller, the packet 
will be dropped.

The flow table matching process involves searching the flow tables to find the entries containing cor
responding action sets—i.e., flow rules that match the header of the packets of (he input flows that pass 
through the Parser. If there is more than one flow table, the flow match process starts from the first flow
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Figure 3.1: The architecture or an SDNswilch [253].

table, searches all of its entries, and jumps to the next flow table. The search process continues till an entry 
that matches the packet header is found. Otherwise, a “packet-in” message is generated.

In some SDN switch designs, an internal buffer or packet buffer can be implemented for the internal 
buffering of packets. In this case, when there is no matching flow entry for a data packet, it is internally 
buffered [222]. The packet ID is sent to the controller within a "packet-in" message. When the controller 
determines the flow rule for the packet and sends it to the switch within a "packet-out" message to update the 
flow tables of the switch. When the flow table is updated, the packet can then be removed from the internal 
buffer and processed. Then, subsequent packets that belong to the same flow can be processed according to 
the newly installed flow rule.

3.1.2 Modelling the flow matching process in hardware SDN switches

In a hardware SDN switch, packet processing function is embedded in a specialised hardware [222], 
The layer two forwarding tables are implemented using Binary Content Addressable Memories (BCAMs). 
However, the layer three flow forwarding tables are implemented using Ternary Content Addressable Mem
ories (TCAMs). The switching fabric of the a hardware SDN switch switch is often implemented using 
Application-Specific Integrated Circuits (ASICs). The flow tables of hardware switches are implemented 
using CAM and TCAM modules. The flow rules are stored in CAM and TCAM-based memory, and the 
packets are processed by ASICs at line speed. Making hardware SDN switches the preferred choice for 
high-speed or delay-sensitive networks compared to software SDN switches.The ASICs process the packets 
based on the flow rule.

CAM and TCAM memories are random memories. In a typical hardware network equipment, the MAC 

addresses used for flow lookup by the forwarding engine and TCAM stores IP addresses and subnet masks 
used for longest match lookups. They support read and write (update) operations and also supports parrell 
search operation in which the entire memory locations are searched within a single clock cycle. In each 
search operation, each bit of the search data (e.g., packet header) is compared with bits of the information 
store in the entry or memory location of the CAM (e.g., flow rules). The bits of the searched data are 
fed through the select lines and then compared with all the bits in the CAM cells. For a Binary Content 
Addressable Memory (BCAM). all the entries or memory locations are searched in parallel and all the 
outputs in the matched lines are passed through an encoder to obtain the matched location. Similarly, all the
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Figure 3.2: The architecture of a TCAM (left) and the structure of a TCAM cell [7 |.
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Figure 3.3: The structure of a How table and How entry fields [113].

entries of the tables stored in TCAM memories can also be simultaneously searched in a single clock cycle.

A TCAM memory differ from the BCAM memory in that it includes wildcard bits which will match 

both zero and one. Thal is. when searching the entries of TCAM based tables, some of the bits are don’t 

cares and are not used in determine the matched entry. Because of the use of don't care bits in the searched 

data and on the content of the TCAM memory location, multiple matches may be obtained for a complete 

search of all the entries. In this case, the match with the highest priority is selected using a priority encoder. 

TCAM is also suitable for other high-speed networking applications such as packet clssification, access list 

control, and pattern matching detect intrusions in the network [7], The architecture of a TCAM memory is 

shown in figure 3.1.2.

Packet processing consist of protocol analysis, extraction of the packet header, matching of the header 

fields with the flow table entries, and the execution of actions specified by the flow rules. Thus, when an 

SDN switch receives a packet, it needs to search or lookup flow tables to obtain the specifies how the packet 

should be processed. The How table matching or lookup operation is the most slow and energy consuming 

packet processing operation in a TCAM-based hardware switch or router [261]. The performance of the flow 

matching process depends on the organisation of the flow entry data structures and on the execution of the 

flow lookup algorithms [70].

In practice, the flow tables are often very large, and therefore, the flow matching process could be longest
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prefix matching, exact matching, or range matching. The flow matching process involves searching all the 

flow flow table entries to determine the flow entries that contains the flow rule that specifies the actions that 

should be performed on the packet. If the flow tables are searched sequentially, the time required to find 

the entry that matched the packet field wil be longer. For flow tables implemented using TCAMs. the flow 

match process can be performed within one clock cycle, with parallel access to all the entries of the flow 

table, resulting in a constant access time. That is. a fully parallel search of all the entries of the flow tables 

is performed within a single clock cycle to determine the flow entry that match the packet fields. If more 

than one match is found, the one with (he highest prioty is considered. The structure of a flow table and flow 

matching fields is shown in figure 3.3.

The performance of a TCAM-based matching engine depends on the access lime of the precharging 

circuit, matchlines, and the search line. Since all the entries of the TCAM are searched in parallel within 

a single clock cycle, the delay due to flow matching depends on the access time of the precharging cir

cuit. matchlines, and the search line, it was estimated by the authors in [8] by adapting the Horowitz's 

approximation developed in [254]. The authors transformed the circuit of a typical TCAM cell structure 

with matchlines and searchlines shown in figure 3.1.2 (left figure) into simple RC circuit and then use the 

Horowitz's approximation to estimate the delay of the circuit. Assuming a rising input with a rise time. t r jSC, 

the TCAM access delay is (see [8])

Tr  =  r *  J ( lo S [vi h ] y  +  2 t r i s e b ^  ~  (3.1)

where Vt h is the switching voltage, the constant b is the fraction of the input swing in which the output 

changes, and r = * Ccq  is the output time constant assuming a step input. The parameters R cq and

CFll are respective the equivalence resistance and the equivalence capacitance of RC circuit representing 

a typical TCAM cell structure with matchlines and searchlines. The estimation of R cq and C eq a typical 

TCAM cell structure with matchlines and searchlines shown in figure 3.1.2 (left figure) was demonstrated 

in [7. 8|. Assuming a falling input with fall time the TCAM access delay is (see [8])

T f = T * J  ( M l  -  M ) 2 +  (3.2)

y T

TCAMs do not only perform flow matching, they also perform other functions such as packet classifica

tion. Thus, the whole TCAM accessing bandwitch may not be available for flow matching. In some switch 

implementation, multiple line-cards may share the same TCAM-based matching mechanism to save cost. 

For large matching fields like the case with IPv6, longer flow table may be required due to distinctly in

creased key length. All these performance limitations result in the need for more powerful flow matching 

engines with scalable throughput that can ensure acceptable performance for next generation terabit routers 

[263],

The search operation is the most crulial operation in networking applications such as packet classifica

tion. matching the flow tables, and string matching for intrusion detection |8 |. Although the search operation 

is performed at high speed using TCAM tables, a significant amount of energy is consumed. Also. TCAM 

memory is very expensive, which make the price of hardware SDN switches to be very expensive. Because 

of the expensive and power hungry nature of TCAMs. the capacity of flow tables implemented in TCAM 

is very limited. To cope with the issue of limited BCAM or TCAM-based hardware flow tables, the flow
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rules that do not fit in the hardware flow tables are in a software flow table implemented in an SDRAM 

[209]. A high throughput but low energy consuption flow matching can be realised by storing table lookup 

results in an SRAM-based each memory. Subsequent packets belonging to the flow can then be processed by 

the each memory at a high throughput with low energy consumption. More sophisticated hardware means 

may also be designed to improve this performance (e.g., P4 switches [27]) but are not considered in this 

work. Therefore, throughput, energy, cost are important metrics to consider when designing TCAM-based 

hardware switches.

3.2 Modelling of a software SDN switch

Unlike hardware SDN switches that uses dedicated hardware resources (e.g.. BCAM. TCAM. ASICs, 

and others) to process packets at line speed, software switches run on a general-purpose processor (e.g.. 

CPU). Because of the expensive and power-hungry nature of BCAM and TCAM-based memories in hard

ware switches, the size of their flow tables are limited. Software-based switches are becoming an attractive 

alternative for certain types of networks (e.g.. virtual networks at the data centre). The major limitation of 

software switches is that they are very slow in performance packet processing operations such as packet clas

sification. flow matching, and intrusion detection. However, several algorithms and mechanisms are being 

developed to improve the packet processing speed of SDN-based software switches e.g.. 1113. 196],

In data centres, software SDN switches are used to provide flexible network services and on-demand 

resource provisioning. The most popular software SDN switch that is often implemented in servers to pro

vide virtual switching services between virtual machines is the Open vSwitch (OVS). The Open vSwitch is 

a modular, open source, multi-platform, and OpenFlow compliant virtual switch.

3.2.1 Packet processing in a software SDN switch

To study the functional mechanism of an SDN software switch, we consider an Open vSwitch imple

mented on server machine and designed for flexibility and general purpose usage. An Open vSwitch consist 

of a userspace daemon (e.g.. OVS-vswitchd) and a datapath kernel module. When a packet arrives at the 

physical or virtual port of the switch, it is sent the kernel datapath module.

The kernel datapath module matches the header fields of the packet with the flow table entries and then 

apply the actions corresponding the matched flow table entry. The action contained in the flow rule could 

be to forward the packet to the appropriate output port, modify the packet, or drop the packet. If no match 

is found, the packet is sent to the ovs-vswitchd in the userspace. The packet header fields are matched with 

the flow table entries in the ovs-vswitchd. If a match is found at the ovs-vswitchd. it updates the flow tables 

entries in the kernel datapath module. The packet and subsequent packes belonging to this flow are processed 

based on the updated flow rules.

If no match was found at the ovs-vswitchd. the a packet-in message is send to the controller through the 

OpenFlow protocol. The controller then determine the flow forwarding rule for tire packet. The controller 

updates the flow tables stored in the ovs-vswitchd with the flow rules contained in the packet-in message 

that it sends to the Open vswitch through the OpenFlow protocol. The ovs-vswitchd then updates the flow 

tables stored in the kernel datapath modul. The packet and subsequent packets belonging to the flow are 

processed based on the flow rules stored in the kernel datapath module.
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Figure 3.4: The structure of a software switch (specifically Open vSwitch) [196].

The controller only have access to manipulate (add. remove, update, search etc.) the flow tables stored 
in the ovs-vswitchd module. The kernel datapath module only processes that data packets based on the flow 
rules cached in it and is unaware of the internal details of the OpenFlow wire protocol. Thus, the seperation 
of the switch into the userspace and kernel datapath modules is invisible to the controller. From the point 
of view of the controller, the switch contains flow tables that are searched each lime a packet arrives into it 
11961.

3.2.2 Modelling the How matching process in software SDN switches

In a SDN software switch, the flow table entries are stored in a Synchronous Dynamic Random Access 
Memory (SDRAM). The packet processing locgic of a software switch is often implemented in software. 
One of the most popular software switch is the Open vSwitch installed in a commodity hardware such as a 
desktop or a Raspery Pi. When a new packet arrives, the content of its header is matched against the flow 
rules stored in flow tables entries in the SDRAM. If there is no matching flow table entry for the header of 
the packet, the packet is buffered internally and a packet-in message is generated and sent to the controller 
or the packet and its ID are encapsulated and sent to the controller with the packet-in message [222],

The flow matching process in a software SDN switch is performed by the CPU. The CPU can find the 
flow table entry that matches the content of the packet header by searching each entry of the flow table. If 
the flow rule for the packet is found in one of the flow entries, the actions contained in the flow rules are 
applied to the packet. The sequential search algorithm could be used to sequentially search through all the 

flow table entries or the binary search algorithm could be used.

Other sophisticated flow table search algorithms with lower lime complexity implemented to improve 
the performance of the software switch may be considered considered. For a software switch with a small 
sized flow table (few hundreds), the sequential search algorithm may be consider due to its simplicity in 
implementation and the search time is better than that could be obtain using binary search algorithm or other 
sophisticated search algorithms which arc complicated lo implement. Software switches arc cheaper as they 
can be implemented in a simple desktop computer or in a Raspery Pi. making them affordable. However, 
one of the disadvantage of using a software switch is that they are very slow and are not suitable for high
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speed core networks or high speed data centre networks.

We consider the worst scenario where the flow tables are searched sequentially. Denote by p  the proba

bility that the flow rule of the arriving packet is not installed. The switch knows it after the examination of all 

K  entries stored in the Flow Match Unit—i.e., lime A T —where the examination of each entry requires lime 

T. As a consequence, p  is the probability that the service time is a constant K T .  representing the case when 

all the flow entries in the table are examined without success, while with probability (1 — p) the packet’s 

flow match is found in a time that is uniformly distributed in [T. K T]—i.e., on average in time (K  + l)T /2  

and variance ( K 2 — 1)T2 /  12. Therefore, the mean time required to search the flow tables sequentially is

E[T„] = pK T  + (1 -  (3.3)

The the most popular software flow tables implemented using SRAM or SDRAM could be either hash

based flow table or wildcard-based flow table. In a hash-based flow tables, the match field information stored 

in the flow table entries are used as the input of a hash function. The hash function computes hash values 

which are used to store the informalion lo be matched in ihe flow tables. Since the process of searching a 

hash-based flow table involves a single hash operation, its matching process is faster with cost of O( 1). The 

drawback of the hash-based flow table is that it requires larger memory capcity [113] because the larger the 

match fields, the more flow table entries arc required in the hash tables.

In wildcard-based flow tables, the flow entries are stored using wildcards. In wildcard based flow tables, 

some of the match fields are stored using wildcards. Some of the match fields are wildcard fields and are 

treated as "don’t care" and are not considered during the matching process. It implies that packets belong to 

different flows could have the same matching rules. Thus, wildcard based flow table require fewer memory 

to store the flow table entries when compared to hash-based flow table. The draw back of wildcard-based 

flow table is that in the worst case (without any search optimization mechanism), all the flow table entries 

are searched sequentially.

To make a reasonable tradeoff between faster hash-based flow tables and slower wildcard based flow 

tables, both hash-based and wildcard-based flow tables are sometimes implemented in the kernel datapath 

module. The hash-based flow tables are implemented in a microflow cache but the wildcard-based flow 

tables are implemented in the megaflow cache. The microflow cache is implemented as a simple hash table. 

When a packet is received by the kernel datapath module, the packet header fields are hashed and exact 

matched with the match fields stored a hash value.

If no match is found in the microflow table, then the megaflow tables are searched. If a match is found 

at the megaflow table, then the packet is processed according the flow rules stored in the matched entiy. The 

microflow cache is updated with the found rule so that subsequent packets of the same flow can be handle by 

the faster microflow cache. If no match is found, the packet or the packet ID is forwarded to the userspace 

module. The flow tables in the userspace module are searched. If a matched is found, then, the flow tables 

in the kernel datapath module are updated otherwise, the a packet-in message is sent to the controller. The 

controller determines the appropriate flow rule for the packet and dien updates the flow table in the userspace 

module. The userspace module then updates the flow tables in the kernel datapath module.

The advantage of implementing the microflow cache and megaflow cache at the kernel datapath module 

is that it reduces the probability of a packet being sent to the userspace for flow table lookup to obtain 

appropriate flow rules. When the first packet of a flow enters the userspace and the appropriate flow rule is
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determined, the found flow rule is cached in the microflow cache and megaflow cache. Subsequent packets 
will hit the microflow cache or the microflow cache in the kernel datapath module. Thus, speeding up the 
How table matching speed.

Suppose that the time required to perform the hash peralion to exact match the packet header fields with 
the flow information stored in the hash-based flow table is Tj and the probability of hitting a table is pi. 
Also, let us suppose that the time required to match a single flow entry’ of the tables at the megaflow cache 
and in the userspace is T2 and T3, respectively. The probability of hitting a table at the megaflow cache is p2 
and the probability of hilling a table at the userspace is p.3. If the flow tables al the megaflow cache and al 
the userspace are searched sequentially, then the average time required to find a match is

E[T] -  P1 * Tr +  (1  _  P 2 )K 2T2 + P ; i
(A- .J '73 +  (1 -  p - .^ T - ,  (3.4)

where, pi + p2 T P 3 =  1. K 2  and A3 is the total number of flow entries in the megaflow cache and userspace 
module respectively. The time required to find the table entry that matched the hash-based flow table in the 
microflow cache is independ of its number of entries, A'i becase it is performed with a single hash operation.

The performance of flow matching process mechanism at the megaflow cache and userspace module can 
be improved using other sophisticated algorithms. To improve the lookup performance of the flow tables in 
the megaflow cache and in the userspace, the authors in (196] implemented a Tupple Space Search (TSS) 
packet classification and lookup algorithm. The authors argued that the TSS algorithm is preferable for Open 
vSwitches deployed in data centres because il supports efficient constant-lime table entry updates. In data 
centres, new services are often added and deleted, neccessitating frequent updates of the flow tables. If each 
tupple or hash table is equally likely to contain a match, then finding a match requires searching 
tables on average. In case there is no match, all the K  tables must be searched. Although decision tree-based 
algorithms provide better lookup performance. TSS-based algorithm are still preferable in Open vSwitches 
[158], especially those used in data centres.

3.3 Queueing model of an SDN switch

The delay that can be experienced by packets consists of the queueing delay in the input buffer, the 
processing delay in the input buffer, queueing delay at the output buffers, and transmission delay. When the 
output ports' processing and line speeds are significantly greater than the Openflow processing time, which 
includes the time required to parse the packet, check the flow tables to find matching entries, and execute 
the flow rule actions, the switch can be represented by a single server queueing as in several recent papers 
1170. 16. 223. 153. 76. 178. 228]. Since the size of the input buffer is limited, we represent the SDN switch 

as a single server queueing model with finite capacity A’.
A majority of previous papers model the packet processing lime as an exponentially distributed random 

variable [170. 16. 223. 153, 76, 178]. The use of a diffusion process allows to use realistic packet processing 
models that consider practical flow table lookup mechanisms such as those discussed in the previous section. 
Also, diffusion approximation does not place any restriction on the distribution of the interarrival time of 
packets the queue. Real or measured data of the interarrival times on packets into the switch can be used. 
Therefore, an SDN switch with high speed transmission ports can be represented as queueing model with 
general interarrival and general service times.
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Since the time required to check the flow tables and to forward the packets in hardware SDN switch 
is constant, theie input queues should be modelled as a queueing system with deterministic service times 
(e.g G/D/l/N), contrary to the popularly used markovian models. A software switch with any implemented 
flow lookup algorithm (including other packet processing algorithms) could be represented as a G/G/l/N 
queueing system.

3.4 Diffusion Model of an SDN Switch

To analyze this system, we use a continuous state space and continuous time diffusion process 
{A'(i). t >  0} to replace the discrete state-space buffer queue, where the increments dX (t) = X ( t  + dt) — 
A’(/) are normally distributed, with mean /idt and variance i\dl. which appear in the diffusion Equation (1).

Assuming an arrival rate A and average service time // 1. the changes in a small time interval X T  tend to 
a normal distribution with mean (A—/¿)ATand variance — (XCA’ + pC B )XT, where
and <7y are the variances of the inlerarrival and service times, and and CB  are the corresponding squared 
coefficients of variation. Therefore, for the diffusion process we have 0  = X — p  and <v =  AC^ + pC B  [85].

The buffer’s size is limited to N  packets, therefore the diffusion process resides in the interval [0, A'], 
and we use a diffusion process with returns from the barriers at .r =  () and a- =  N  to represent the jumps 
that occur when the buffer queue is empty and a packet arrives, and when the queue is full and a service 
occurs as in [86]. leading to the equations:

+
=  l i m ^ o l t ^ ^  (3.5)

»  =  lhn:r_ N [ f  -  /3/(x, i; x0 )] -  ^ ( i ) ,

where f (x ,t ;  J’o) is the probability density function (pdf) of the diffusion process: pu(t) and p.v(t) are. 
respectively, the probabilities that the process is at the barrier at x  = 0 or x  =  A' at time /, corresponding to 
probabilities that the system is empty or saturated: and 6(x) is the Dirac delta function.

The first of the above equations defines the pdf of the diffusion process with jumps from .r =  f) to 
x  — 1 (arrival of the first customer after the idle period) with intensity A and from x  — N  to x  -  N  — 1 
(departure of a customer ending the saturation period) with intensity p. The next two equations represent 
the probability balance of the barriers.

3.4.1 Steady-state analysis of the performance a SDN switch

In steady state, when lhn/^.0 0 po(i) =  p^, liint-.^ — p y. lim^oo f ( x ,  t; ;CQ) =  f (x ) ,  Equation 
(3.5) becomes an ordinary differential one and its solution, for Q = X/p, p < 1, can be expressed as [85]:

for 0 < x  <  1 ,

/(* )  = <

^ ( 1  - e ^ )

-av ’
(3.6)for 1 <  x  < N  — 1 ,

for N  — 1 < a* < N  ,
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Figure 3.5: Steady-state pdf /(x )  of the diffusion process as an approximation of the queue distribution: 
illustration of the solution in Equation (3.6).

where z — —ft . and due to normalization: 

Pu =  { 1 + ^ - l ) + ^ [ l _ e * ( ^ ^  
1 -  p

PN = g p ^ e ^ ^  .

(3.7)

In this way, f(n ) ,  given by Equations (3.6) and (3.8), approximates the steady-state distribution p(n) in 
the Packet Buffer queue. A few examples of the curve /(x ) depending on g X/p—i.e.. the utilization of 
the system—are presented in Figure 3.4.1. The next figure presents P N (Q). which is the loss probability due 
to the buffer overflow.

The steady-state queueing delay can be modelled by the lime it takes the diffusion process to drift from 
the point x =  XQ, corresponding to the queue length at the moment of the packet arrival, to x =  0 when the 
packet is already on the head of the queue (its distance to the transmitter is equal to zero), and is removed 
to be forwarded. The density of the diffusion process /(a:) given by Equation (3.6) determines the queue 
distribution and. at the same time, the density of the initial point XQ at Equation (3.12).

The density d(x, t-.x») of the diffusion process starting at XQ and ending at the absorbing barrier at the 
origin is given in [44J. The method of images, usually applied to heat conduction problems, is used. We may 
imagine the barrier as a mirror with an image source placed at a: =  2XQ. and the solution is a superposition 
of a source of unit strength, placed at the origin and a source of strength — e x p ( ^ a ) placed at x  =  2XQ:

e J 1  a ») o-xn )2 (x+xp)2

(>){x,f;xo) = ------ .. —  e — g
v27r<ff

(3.8)

The density function 'ixn.oW of the first passage time from .r =  XQ to x  =  0. i.e., probability density 
that the process enters the barrier at time t, is equal to the probability density that the process is leaving the
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Figure 3.6: Probability p ^  of the buffer overflow; illustration of the solution given by Equation (3.8).

diffusion interval (J - > 0):

7xo,0 ( t )  — ê  i; x0 )dx =  Inn t; x 0 ) -  M M  t\ ;r0 )] =  (3-9)
OT 20+  x->0 4  OX \ f 2 n a f - i

This density should be normalized to include only the cases when the process ends at the barrier, which 
is certain for ¡3 <  0. Therefore;

f 0 0  2a:n 4/  7xo,o ( W  =  e -  • (3.10)
JO

The first passage time of the diffusion process from the point x  =  XQ to the barrier at x  =  0 becomes:

7xo,o(i) = (3.11)

Suppose that a newly arrived packet joins the queue when the switch already contains x  packets. As
suming the first-in-first-out service, the packet will be forwarded out from the switch after all the packets 
that arrived earlier have been forwarded, so that if the queue length probability density function is f (x ) ,  the 
probability density function of the packet's queueing delay is:

M t )  = r  
Jo

X
, e  

v/ 2 W *
fM d x . (3.12)

Figure 3.4.1 illustrates this result with a few curves of M t )  for different values of the traffic intensity p. 
and with the parameters; =  1. which have been used in all the examples of Figures 3.4.1-3.4.1.

The mean delay experienced by a packet whose flow rule is contained in the flow table will be the sum 
of the queueing delay and processing lime. If the mean queueing delay is Dq and the processing time is tp . 
then the mean packet delay at the switch D s is:

Ds = Dt] + tp = [  tM t ) d t  4- - .  
Jo H

(3.13)
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Figure 3.7: Density fn[t) of the queueing time: see Equation (3.12).

However, if a flow entry for an arriving packet is not found, then the packet is encapsulated and sent 
to the controller, which determines the flow rules, installs the flow entry for the packet, and sends back the 
packet in the packet-out message. In that case, the delay experienced by the packet. D is the sum of the 
delay in the switch and the delay at the controller Dc [170. 16, 223. 153. 76. 178]:

D = ( l - p ) D s  + pDc . (3.14)

The modelling of the controller’s working mechanism to determine Dc is beyond the scope of this work and 
will be considered in future works, and in our numerical examples all the flows are known, i.e.. p — 0.

3.4.2 Transient-state analysis of the performance a SDN switch

In the case of steady-state analysis, the first two moments of the interarrival and service times used to 
calculate the diffusion parameters are constant. However, due to the unpredictable characteristics of user 
traffic and the use of adaptive routing protocols such as the self-aware routing protocol used in SerloT SDN 
core network, the characteristics of the traffic arriving at the input and output buffers are dynamic. It requires 
the transient delay analysis within short time intervals, where the diffusion parameters are constant only with 
these interval time interval.

Consider a diffusion process with two absorbing barriers at x  =  0 and x  =  /V, that started at / =  0 from 
x  =  a:o and that its probability density function d(x, t; xo) has the following form [44]

6(x — XQ for f =  0 ,
7 £  {“ (*) +  W }  for f > 0 ,  < 3 ' 1 5 )

V 2 n a t n = _TC

where

„ ( / )  _  exp ,
a  2at

d>(x.t:xu ) =
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6(f) =  exp
(x -  xn ~ x" ~ Z^)2

2at

and x'n  = 2nN , x£ =  -2.ro — x„ •
Suppose that the diffusion process starts al point £ with PDF d'(£). £ E (0. N ), lim^_o 0(€) =  
liin^^iV ^(£) =  0, then the PDF of the process has the form

rN
^ x , t - ,^ )  = / <p(x,f;C)^)rfC.

JO

The Laplace transform of ô(x, t: XQ) can be expressed as

(3.16)

AW ' (3.17) 

exp
n

— exp (3.18)
a

where .4(s) =  x/0 2 + 2as.
Since the transient solution of equation (3.5) is not analytically tractable, the probability density function 

/(x , i; </’) of the diffusion approximation process with elementary' returns boundaries can be obtained nu
merically. It is composed of the function ^(x, t: which is the probability density function of the diffusion 
process with absorbing barriers at x — 0 and x =  N  and the functions <p(x, f — r; 1) and 0(x, t — r: N  — 1) 
which arc probability density functions of the diffusion processes that started at time T  < t al points x =  1 
and x = N  -  1 with densities ,9I (T) and g x - i ( r ) with instantaneous jumps [61 ][48][60J

f ( x ,  t; V>) -  </>(x, t ; + I g} (r)d>(x, t -  r , \}dr  (3.19)
Jo

+  /  g,v-i(r)<i>(x, t — r: N  — l)dr .
Jo

The densities yi (f) and g^'^t) may be expressed with the use of functions 70(f) and 77v(f):

9t(x) =  [  yoW kAr -  t)dt
Jo

9N -i(r) = [  -yN (t)lN (r -  t)df, . (3.20)
Jo

where lo(x), IN (X ) are the densities of sojourn times at x =  0 and x  =  A7 respectively, while 70(f) and 
7,v(f) are the probability densities that at time t the process enters to x =  0 or x — N  are

7o(O

7A'(f)

= P o W ^ t)  +  [1 -  poW  -  7Lv(O)]7f.o(O

+ /  -  r)dr
Jo

+ -  r)dr ,
Jo

=  P7v(0)^(f) +  [1 -  Po(^) -  PN W ^ N W

+ [  -  T)dT
Jo

+ (JN-i(r)'yN-i.N(t - r ) d .T ,
Jo

(3.21)
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Figure 3.8: The effect of abrupt changes the traffic arrival rate A on the time dependent behaviour of the 
expected packet delay at the router.

where 7i,o(i), 7i„v(f). 7TV- I ,O(O- 7AT- I .A'(0  arc densities of the first passage time between corresponding 
points, e.g.

Tt.o(i) =  I im £  -  ^ ( x ,  t; 1)] , (3.22)
»0 2 ox

and for absorbing barriers,

lint <p{x, t: xo) =  lim 0(x, L xo) =  0 ,
J-—0 x—AT

hence 7i,o(t) =  l im ^ o  ■ The functions 7^,o(f), 7^,N W denote the probability densities that the
initial process that started at / =  0 al the point £ with density V’(O will end at time / by entering respectively 
x  =  0 or x  = N .

The Laplace transform of the density function f ( x .  t; VO is

f ( x ,  s; VO =  ¿ (x ,«; VO + (Ji(s)^(x, s; 1) (3.23)

+ 9 N - l^ ^ ( x ,  S-, N  -  1),

and the densities 91 are obtained from (3.20). (3.21), (3.22) after their Laplace transform. The
probabilities that al lime t the process has the value x  =  0 or x  = N  arc

P o ^  =  ; [7o(s) -  91 («)]. (3.24)

P N ^) =  " [ w W  ~ &V-l(s)]- s

The above solution gives the transient distribution of the queue length and the transient probability of 
packet losses when the buffer is full. The original functions of the Laplace transforms can be obtained 
numerically using Stehfest's algorithm |23O|. valid for constant diffusion parameters, i.e. constant traffic 
intensity A. Therefore it is used for lime intervals within which parameters are constant and the solution at 
the end of such interval serves as the initial condition, i.e. function in (3.16) in the next interval with 
different parameters. The mean queueing delay was determined with the use of Little's formula but the first 
passage time approach is also possible.
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pected packet delay.
Figure 3.9: Impact of abrupt changes in the queue utilisation p on the time deendent behaviour of the ex

Figure 3.10: The effect of abrupt changes in the packet arrival rate on the time-dependent behaviour of the
expected queue length.
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Based on the previous analysis, we have examined the effect of changes in the levels of arriving traffic 

rates to a router which may result from path changes created by SDN controllers. We have assumed that the 

router’s packet buffer is partitioned into A' =  100 packet sections where each section is reserved for a given 

active packet How. When a packet arrives al ihe buffer, the lime it takes to scan ihe table that contains the list 

of Hows is assumed to be uniformly distributed with average value S  — 0.038ms and squared coefficient 

of variation is 0.33: though these values vary with the router hardware, they are compatible with those of 

existing equipment.

In Fig. 3.4.2 the arriving traffic rates of a given flow vary in the range of 500 lo 2500 packets per second, 

and the traffic level A changes approximately every 100ms reflecting relatively frequent path changes. We 

notice that, while at low traffic values the mean delay of a packet closely matches the steady-state value 

which is reached rapidly, al high values the mean delay always remains in its transient state so that the 

steady-slate value is a poor predictor of the actual delay experienced by packets. Similar results, for another 

sequence of changes in the traffic arrival rate are shown in Fig. 3.4.2. where ihe time-dependent mean packet 

delay is plotted against the queue utilization p =  AS. Confirming the results of the previous figure, we see 

here loo that as p increases, Ihe mean packet delay through the router never actually attains its sleady-state 

value. Fig. 3.4.2 displays the changes of mean queue length together with changes of traffic intensity A. The 

eiTors of the method of diffusion approximation were studied numerically in detail several limes, e.g. in [611 

and were found acceptable, therefore we do not here present any comparison of the diffusion results with 

discrete event simulation.

3.5 Performance threshold and load control

We have shown that the delay and packet loss probability increases slowly with the load parameter, p 

and then at a certain value of p, a slight increase in p will cause corresponding sharp increase in the delay 

or response time and packet loss probability. These performance thresholds values can then be used in the 

goal function in a self-aware route compulation mechanism to ensure that the installation of new flow rules 

will not result in worst performance on some network paths.Therefore. the design of the SerloT data plane 

and the SerloT route computation mechanism must guarantee that the performance of any of the data plane 

forwarding devices does enter into regimes where a small increase in the load will lead lo a large increase in 

the delay and packet loss and it becomes a bottleneck in the network.

If we lake ihe parameter p. defined from the drift 3  =  A — p = — p ( l  —p), so that p  =  1 +  , considering 

that we can easily monitor the parameter bo =  [1 — pq], it would be useful to study the sensitivity of bo on 

the load factor p, i.e.

Consider a single service system with arrival rale A. service rate p. so that p =  In the simplest case 

we can assume Poisson arrival rates and exponentially distributed service times so that the average queue 

length in steady-state Ar and the average response time IF are:

N  = P
1 ~ P ~ p)

and:
d N  _  1
dp ( 1 - p ) 2 ’

so that AT is obviously an increasing function of p.

(3.25)

(3.26)
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Figure 3.11: Load characteristics for an M/M/l model

We can say that we wish IF to be less than some value for some constant B  1. in which case we 
have:

P  1 B (3.27)

This gives us the value that p should not exceed.

We are also trying to characterize those values of p for which the queue length N  is very sensitive to 
small changes in p, because we do not wish the system to enter into regimes where a small increase in the 
load will lead to a large increase in the response lime. We can slate this as looking for those values of p for 
which:

(IN
N (p  +  A) «  N(p) +  A .—  =  N(p) + K .N (p), (3.28)

dp

for some value K  > 0, or

A

p - p  +  ̂  =  0.

(3.29)

(3.30)

(3.31)

For instance, if we set K  = 1. it means that we are seeking the value of p for which an increase of p by 
an amount A results in an approximate 100% increase in N . If we set A - 0.1 we see that we obtain the 
approximate value p — 0.887 as shown in figure 3.5.

If we choose A' =  0.5 or a 50% increase in queue length, we will have the approximate value p = 0.724. 
Of course, similar calculations can be conducted for the average response time, and the calculations can be 
more accurate we do not limit ourselves to the first order approximation (3.28) but also use higher orders.
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3.6 Conclusions

Networks that are controlled by SDN are subject to frequent changes in network state as the SDN 
controller modifies paths in the network to optimize Quality of Service, Security or Energy Consumption. 
These frequent changes may imply that rather than running at a steady-state regime, the network will mostly 
find itself in transitory stales. Diffusions approximations are far more convenient for the transient analysis 
of service systems, rather than queueing networks and discrete event simulation. Therefore we examine the 
transient behaviour of a network router with a diffusion approximation model to evaluate both the transient 
and steady-state performance of a network router, in order to predict packet delay through the router, and its 
packet loss probability.

The diffusion approximation shows that the transitory behaviour of each router depends on the load, 
which results from the arrival rate of packets and the service process for each packet leaving the router. The 
service process . in turn, depends on the number of flows that the router handles because a possibly large 
flow table has to be searched to determine each incoming packet’s outgoing link [228]. Thus our model also 
lakes into account the dependence of the service time for each outgoing packet on the size of the flow table.

Our analysis we have presented in this chapter allows the prediction of the time-dependent behaviour 
of important performance metrics such as the mean delay experienced by a packet at the router, the packet 
queue length for each flow, and the packet loss probability. It also showed that the time-dependent behaviour 
lends much more slowly to its steady-stale when the system is more heavily loaded. Numerical examples 
based on the analysis are also presented to illustrate these insights.

As a consequence of our analysis, we have seen that future work should consider SDN based network 
optimization techniques that focus both on the transient and steady-state behaviour, because the steady
state may not be attained in many cases. Future work should also compare these theoretical results with 
measurements and investigate the performance implications of the detailed interaction of SDN controllers 
with their connected routers. Also, we hope to use diffusion approximations to evaluate the performance of 
networks or systems where the objective of the controls is to optimize the performance of the system 12491.
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Chapter 4

Performance Evaluation Modelling of a
Network of SDN Data Plane Switches

It has been recently observed that Software Defined Networks (SDN) can change the paths of differ

ent connections in the network at a relatively frequent pace to improve the overall network performance, 

including delay and packet loss, or to respond to other needs such as security. These changes mean that a 

network that SDN controls will seldom operate in steady slate: rather, the network may often be in transient 

mode, especially when the network is heavily loaded and path changes are critically important. Hence, we 

propose a transient analysis of such networks to better understand how frequent changes in paths and the 

switches’ workloads may affect multi-hop networks' performance. Since conventional queueing models are 

difficult to solve for transient behaviour and simulations take excessive computation time due to the need 

for statistical accuracy, we use a diffusion approximation to study a multi-hop network controlled by SDN. 

The results show that network optimization should consider the transient effects of SDN and that transients 

need to be included in the design of algorithms for SDN controllers that optimize network performance.

In this chapter we extend the approach we developed in |51 ] to the time-dependent analysis of multiple 

SDN switches using diffusion approximations . which are very convenient to analyze in a time-dependent 

regime. Thus, we compute the transient behaviour of each SDN switch after changes occur in its input traffic 

rate. Packet loss probabilities can also be computed even when they are “liny” and impossible to estimate 

by conventional means. The analysis we undertake considers both single SDN switch and multiple intercon

nected SDN switches controlled by an SDN controller. A significant portion of the material presented in this 

chapter were published in [54, 57].

4.1 Flexible routing in SDN networks

Routing algorithms are implemented and communicated by each SDN controller to the SDN switches, 

which follow its instructions. Metrics such as hub count, delay, packet loss, bandwidth, jitter, and power 

consumption can be measured by SDN switches and sent to the controllers, which may use these metrics to 

determine the best routing paths and then install the How forwarding rules in the data plane SDN switches. 

Indeed, the IoT[ 156 ] interacting Cloud Services [32] for the decision and control of the cyber-physical world 

create challenges for networks that achieve a better quality of service (QoS) and security and less energy
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consumption, and can exploit the opportunities offered by machine learning [64. 98. 97], These challenges 

can be met by SDN networks [176. 97], which offer greater flexibility and ease of implementation [78, 108],

These developments suggest that SDN is likely to become the preferred networking approach not only 

in core networks because of the centralized network intelligence and management that it enables but also 

for sub-networks of loT devices and edge devices with specific QoS needs that can benefit from SDN 

programmability and flexibility. Thus, in 1107), conventional routing protocols such as RIP. OSPF. E1GRP. 

and BGP. are compared with SDN with respect to convergence times after link failures, showing that SDN 

routing is better than conventional IP networks. Considerable work has also shown that SDN can select 

routing paths based on criteria such as quality of service (QoS) [161. 122. 68. 162. 79]. while energy-aware 

SDN routing has also been discussed in several papers [168. 185, 11 ].

The scalability of SDN routers that conduct QoS routing has been studied in 1128|. where the audiors 

propose an SDN-based scalable QoS routing scheme between autonomous systems. In [129]. a survey of 

the scalability issues that arise when SDN's centralized scheme deals with relatively frequent path updates 

is conducted. Both hierarchical and concurrent (distributed) approaches are investigated to alleviate SDN 

controllers' additional workload. In recent work. [216] SDN is discussed as a means to choose the best 

paths based on a function of time-varying traffic in order to optimize the QoS metrics of interest. Other 

work [ 111] examines a broad class of QoS-based algorithms to assign paths to flows in SDN and analyzes 

the resulting performance. In addition, the work in [121] discusses the implementation of SDN based real

time QoS in industrial settings with mobile robots or palets, where motion and reliability requirements 

impose changes in paths to constantly meet real-time requirements. In [93], the use of Al-driven dynamic 

QoS routing in SDN is used to optimize QoS, reduce energy consumption, and improve security based on 

Autonomic Communications [64] and the Cognitive Packet Network algorithm [173].

However, in addition to scalability issues, QoS-driven SDN routing can create traffic and time-dependent 

changes in network topology and in the load and paths that are serviced by SDN switches. SDN network 

performance has been analyzed using queueing theory [ 170. 16. 178. 228] and network calculus [20. 19. 30], 

but these performance evaluations are based on the assumption that the network is in steady state—i.e„ after 

a sufficiently long lime—so that network metrics such as queueing delays, the length of packet queue buffers 

of SDN switches, and packet losses become stable (or time-independent). On the other hand, it is important 

to understand the time-dependent behaviour of SDN switches affected by changes in paths notified by the 

SDN controller. The controller can suddenly change the flows that an SDN switch receives, changing its 

input traffic. Furthermore, for a given switch some flows may be moved from one output port to another to 

comply with the new path that they must follow. These sudden changes will have performance consequences, 

including queueing delays and packet losses, which can only be understood via time-dependent transient 

analysis.

4.2 Time-dependent Modelling of a network of SDN switches

Consider a network of 3 /  stations with an arbitrary topology with routing probabilities We follow 

the approach of [ 1011 developed for the steady-state network model then adapted to transient analysis in [66], 

Additionally, we introduce time-dependent routing to model an SDN network.

The first step to solve the network model is to decompose the network—i.e., to determine the input
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traffic parameters A,. C 2̂  at every station z and then apply the single server model of the previous section to each station separately.In the transient state, we should distinguish at any station z the input traffic and the output traffic intensities A ,_ a u i (f):
Xi-oui(t) =  [1 —which are different: denotes the probability that the station z is idle at time t. i.e.. the diffusion processrelated to this station is inside the barrier at x =  0. The term 1 — po( (O — presents probability that the station z is busy and customers are leaving it with the rate //,.The traffic equations balancing the flows o f stations are:

Ai=  Ao,(/) -I- 5 2  , i =  1 , . . . ,  M , (4.1)j = iwhere the first term Ao, represents the traffic flows coming from the outside of the network directly to station
i. The routing probabilities r j,( i)  change each interval A  following the decisions o f the contrôler, remaining constant inside the interval, and the flow parameters may change every interval <5 <  △; we assume 
△ =  nô. in numerical examples below n  =  10. This way all model parameters are constant witin intervals 
d when the solution (3.20) is computed.Denote by f A j(x, 0  and fBj(x, 0  the density functions of the interarrival and service times distributions at station j  at time t. The pdf /py(ir. t) o f the interdeparture limes from this node at time t may be expressed as: 0  =  t) +  [1 -  ej(t)]fA j (x, i) * fp ^ x , t) , j  =  1 , . . . ,  M , (4.2)where * denotes the convolution with respect to x. The first term o f the right side in (4.2) represents the interdepature times o f packets when the node j  is working, and the second term gives the interdeparture times when it is idle. The formula (4.2). known as Burke’s theorem [31]. is exact for Poisson input (the pdf of the idle period distribution that should be used in the second term of (4.2) is the same as f A j( x ./)) and approximate in other cases. From (4.2), we receive:

C2
DJ W = -  QJW  + -  ^ ( f ) ] . (4.3)where and C ^ t )  are time-dependent square coefficients of the variation in interdeparture,service, and interarrival times, respectively. Packets leaving the node ) according to the distribution fD j(x, t) choose any node z with probability ) and the times between two packets routed from node j  to i has pdf 

t)

f j ifa t)  =  4-
ÎDj {x, t) * f D j  (x.,t)* f D j  (x, t) [1 -  T# {t)]2rji +  • • • (4.4)For example, a packet leaving station j  goes to station z with probability rji(t) or with probability 1 -  rji(t) it goes elswhere but the second packet goes to z with probability Zj( (Z), hence the gap has has pdf 

t) * fo j(x .t)  with probability [ I — rji(i)]rj»(0 ’ etc., or, after Laplace transform:
-  r ^ ) ) 2^  +  • • •

= t)1 -  [1 -  ’ 85



Then we compute the squared coefficient of variation:

-  ^ ( t ) [ C ^ ( f ) - l ]  +  l ,

Hence:

E  -  i M i )  +  1] +  , (4.5)
Ai—in\J') J =  1 Ai—in\J)

where die parameters Aoi and CQ, refer to the flows coming to station i from outside of the network.
The parameters of the input How at station i are given by (4.1) and (4.5). Equations (4.3) and (4.5) form 

a system of linear equations yielding C ^^i)  and also the diffusion parameters & (0 , «,(/) for every node 
i. At each interval 6. the functions /¡(x, f: </’i) providing the queue length distributions at every station i for 
/ G 6 are computed. Their values at the end of the interval yield, among others, the current utilizations & 
used to determine the How parameters and diffusion parameters for the next interval d.

The pdf fm (x , t.) of the time-dependant response time (waiting lime plus service) is determined using 
the first passage time from the end of the queue to zero, as defined by Equation (3.12). If is the
response time pdf at node i, then the response time pdf /«(a:, t) for the path 1,. . . .  n of n stations is:

t) * / R2(X, f) * i) * • • - * t),

or: n 
f n ^ , s )  = n  

/■—I
The loss probability pio s s (t) for same entire path may be computed from:

1 -  7Ws(f) =  (1 -  PNl(f))(l -  pA?2(i))(l -  PW3(f)) . . .  (1 -  PNrAt)) (4.6)

where pNi(l) is the probability that the queue at station i is saturated at time I—i.e.. the diffusion process 
for this station is at time t at the barrier x  =  A'.

4.3 Transient analysis of the influence of changing forwarding flow rules on 

the SDN data plane

Consider a network composed of four SDN switches, 51—54; see Figure 4.1. Their parameters are 
the same as the switch in Example 1. except for the SDN switch 54. which is twice as fast. Therefore 
Pi — P2 — P3 — 2628.8 packets/sec while p.4 - 5257.6 packets/sec. At all the switches, the squared 
coefficient of variation of service time is identical to the value =  0.33.

Similarly to Example 1. the network’s performance is investigated during I second. Host I is sending 
packet flows of intensity Aoi to Host 2. and the traffic rate is changing in the range 500-2500 packets/sec. 
as shown in Figure 4.2. Host 4 generates traffic at rate AQ2, as shown in Figure 4.2. which is forwarded to 
Host 2 via the SDN switches 52 and 54.

As in Example I. the squared coefficient of variation of interarrival times in the flows Aoi is C L  — 
C(o = 1.02. or =  4.08 or =  8.16. The second input traffic A02 at 52 has only one parameter 
c L  = C2

2 = 1.02.
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Figure 4 .1: The example network being considered.

The SDN controller alters—if needed—the routing to balance the load of nodes every 100 msec; in this 
example, it refers to the routing probabilities T|2 and rjs; see Figure 4.3.

Figures 4.4 and 4.5 illustrate the decomposition of the network model. They present the flows Ai(t) 
given by Equation (4.1) and the squared coefficients of variation C ^ l )  received from Equations (4.3) and 
(4.5). The service times at the stations have relatively small squared coefficients of variation =  0.33. 
Therefore, the important variability of the first flow entering the network is reduced at the network interior, 
as defined by Equation (4.3); see Figure 4.5.

The transient solution of diffusion equations is computed in intervals of the length 8 =  10 msec—i.e.. 
we have 100 intervals with fixed diffusion parameters; at the end of each ¿. the Equations (4.1) and (4.5) 
are solved to determine the new parameters of flow for the single-station models in the next interval. The 
diffusion density function obtained for any station i al the end of an interval gives the initial conditions for 
the diffusion equation at the next one.

The curves in Figure 4.6 compare the loss probability (note here the minimal values computed by the 
model), and, in Figure 4.7, the mean queues for all four stations, in case of =  1.04. We may observe the 
changes in mean queues in S2 and S3 due to load balancing after the second flow becomes active. Observing 
the mean queues at S I and S2, we can see that the transient periods may be longer than the time between 
the controller’s decisions. As noted earlier, the length of the transient time increases with a load of a station 
and the variability of the input flow. For greater variabilities of the first flow, the path SI — S3 S4 becomes 
saturated; see Figure 4.8. This happens due to saturation in S4. as shown in Figure 4.9.
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Figure 4.2: Input flows Aoi (0- ^O2(f)- time in seconds.

Figure 4.3: Routing probabilities r 12(0. fi:j(i). n4(f).
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Figure 4.4: Inpul Hows A;(f) for stations 51 . ..54 .

Figure 4.5: Squared coefficients of variation for stations 51 ... 54.
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Figure 4.8: Total loss probability for path ST — S’3 — S’4 for different

time [sec]

Figure 4.9: Station S4: for different .
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Figure 4.10: Mean backlog 4* during A as a function of routing probabilities no, rjg =  1 — / jo. each curve 
corresponds to a different How coming from Host 4 to S2.

4.4 A simplified route optimisation example

Let us also consider a simple example of optimization. Suppose, as previously, that station SI is for
warding a flow Aoi packets to nodes S2 and S3. Station S2 is additionally receiving from Host4 a flow of 
A^*1 packets. The controller is changing routing every A = 100 msec and needs to determine the routing 

probabilities for the nearest A. knowing the current parameters of Hows at the beginning of the interval, as 
well as the current queue distributions at S 1. S2, and S3 representing previous behaviour of the network. 
The goal is to minimize the mean backlog 4» at S2 and S3 during A:

min j 4» =  — I  [#pV2 (/)] +  ¿ W * ) ] ]  dt > •

We compute E[A2 (/)|, for / 6 A and minimize 4* by the choice of 7'13 =  1 — ri2; see
Figure 4.10.

4.5 Conclusions

The advent of SDN allows the implementation of smart adaptive routing [ 104J. which changes network 
paths so that new connections may be established and inactive may be removed, as well as to deal with 
changes in traffic loads and incidents that affect network security. This leads to an interesting paradigm 
shift in network modelling, which has traditionally addressed “long term" behaviours and computational 
methods which are appropriate for steady-state analysis. However, when SDN intervenes dynamically to 
change paths and traffic levels, the network is seldom at a steady state, and optimization must take transients 
into account.

Therefore in this chapter we have used diffusion approximation modelling for the performance evalua
tion of a network of SDN switches, that considers both steady-state and transient analysis. We have shown

92



how changes in routing or forwarding decisions by the SDN controller can influence performance parame
ters such as delay, queue size, and packet loss probability in the transient state. Our results indicate that this 
method is computationally operational and can provide useful quantitative results for models with realistic 
parameter values.

Our analysis captured the interactions among the main parameters of the network, and numerical exam
ples display the dependence of the queue lengths, queueing delays and their dynamics as a function of the 
changing flow intensity and variance of interarrival times. Our approach also confirms that transient periods 
play a significant role in the performance of SDN networks, and that they will be useful to analyze much 
larger networks in future work.

While the performance evaluations performed in this chapter are purely numerical, and based on diffu
sion approximations models that have been widely validated by simulations [48. 60. 611. in future work we 
intend to use network emulation tools such as Mininel with real traffic, as well as experiments on a SDN 
test-bed, to study the influence of time dependent forwarding decisions on the main performance metrics of 
large SDN networks.
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Chapter 5

Modelling of the Energy Depletion Process 
and Battery Depletion Attacks for 
Battery-Powered Internet of Things (loT) 
Devices

The complexity o f battery-powered autonomous devices such as Internet of Things (loT) Sensor Nodes 

or Unmanned Aerial Vehicles (UAV) and the necessity they ensure an acceptable quality of service, reliabil

ity, and security, have significantly increased their energy demand. These devices are often powered by small 

batteries with limited energy content. These devices are vulnerable to battery depletion attacks designed to 

completely deplete the energy stored in the battery and eventually shut down the device. Thus, battery and 

energy consumption models are required when designing these systems to ensure that they operate within a 

reasonable time before requiring battery replacement.

In this chapter, we apply a diffusion or Brownian motion process to model the energy depletion process 

of a battery of an loT device. We use the model to obtain the probability density function, mean, variance, 

and probability of the lifetime of an loT device. Also, we study the influence of the active power consump

tion. sleep time, battery capacity on the probability density function, mean, and probability of the lifetime 

of an loT device. We use numerical examples to study the influence of battery depiction attacks on the dis

tribution of the lifetime of an loT device. We also introduce in our model an energy threshold after which 

the battery of the device should be replaced to ensure that the battery is not completely drained before it is 

replaced. A portion of the material presented in this chapter was published in (58. 53].

5.1 Energy consumption models for loT devices

An loT device consists of the sensing (data acquisition unit), the actuator unit, processing, and storage 

unit, the communication module, the security module, the power supply unit, and the energy storage system. 

The sensors capture the desired physical data from the environment translate it into digital information, 

which may be partially processed by the loT device or transmitted to fog computing servers for lightweight 

analysis or to a cloud computing data centre for advanced analysis. The analysis results could be sent back
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Security modulo

Power Supply Module

Microcontroller Unit (MCU)

Figure 5.1 : The architecture of au loT device.

to the loT devices attached to actuators to control cyber-physical systems. Actuators receive digital signals 

translate them into physical actions to drive or manipulate cyber-physical systems. A simplified architectural 

model of an loT deployment is shown in figure 1.1.

5.1.1 Power consumption of an loT device

A simplified abstract architecture of an loT device is shown in figure 5.1. The total power consumption 

of an loT device is the sum of the power consumption of various loT components, including the sensing 

units, (he actuator unit, the microcontroller units, the communication unit, the communication unit, and the 

security unit. The average total power consumed by an loT device is

= PACT-(PSAU + PMCU + Pcomm + P s E c )  + P sL E E P -P sL E E P (5.1)

where PSAU >S ^i e  average power consumed by the sensing and actuation units. PMCU >S the average 

power consumed by the microcontroller unit. Pcom m  is the average power consumed by the communication 

module. PSEC  is tHe average power consumed by the security module. PSLEEP  is the average power con

sumption of the consumption of the loT device in the sleep mode. Also. PACT is the fraction of lime that an 

loT device spends in the active mode. PSLEEP  is the fraction of time the device spend in the sleep mode. 

PACT + PSLEEP  =  1-
The authors in 12031 modelled the energy consumption of an loT node. The authors modelled the energy 

consumed during the sensing, processing, and communication processes in an loT device. A significant 

proportion of the energy is used for the transmission and reception of loT packets, and it depends on the 

loT packet size, channel capacity, and the environmental factors that influence signal propagation through 

wireless transmission media. The authors in [ 1171 proposed an analytical framework for modeling the energy
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consumption of an loT device for a cellular loT network (e.g.. NB-IoT) and determined the lower bound for 

the energy consumption of the loT device.

The most important requirements to consider when designing and planning loT devices and networks 

include cost, lifetime | 174], and reliability. The lifetime of an loT device depends on the capacity of the 

battery used to power the loT device and on the energy drawn from the battery to power the loT device. 

The capacity of the battery increases with cost, and some loT applications require the deployment of tens, 

hundreds, or even thousands of battery-powered loT devices, making cost a very important constraint to 

consider when designing and deploying loT devices and networks. The lifetime of the device is the time 

required to completely deplete the energy stored in the battery and shut down the device. Il could be in

creased by either increasing the battery’s capacity or by reducing the power consumed by the loT device. 

The energy consumption of the loT devices is kept at a minimum level by using an energy-efficient mi

crocontroller. using a low-power communication protocol that keeps the device in the sleep mode (energy 

saving state) most of the time, and by using lightweight energy-efficient security mechanisms. The authors 

in [179] conducted a comprehensive measurement study of the energy consumption of NB-IoT devices to 

determine the factors that influence energy consumption and battery energy depletion. The authors found 

out that NB-IoT’s energy consumption largely depends on the communication model, signal quality, use of 

energy-saving enhancements, and packet size.

5.1.2 Modelling of the expected lifetime of an loT device

The lifetime of an loT device can be estimated using empirical methods or using mathematical mod

elling. Empirical approaches require time and resources to set the testbed for experiments. The authors 

in [154] presented the first attempt to empirically estimate the lifetime of a battery-powered NB-loT de

vice using power consumption measurements. The authors in [229] proposed a modelling and experimental 

framework for the estimation of the lifetime of battery-powered NB-IoT and L.TE-M devices using energy 

consumption profiles for these devices. The expected lifetime of an loT device is [229],

R B .SFM  
PD

(5.2)

SFitll/ is die battery safty factor which account for self-discharging and B  is the energy rating of the battery 

(in Wh). The average power Pp is required to power all the components of an loT device could be estimated 

emperically or using theoretical power profile models for loT. Since the loT device can either be in the active 

mode (data acquisition, processing, security, and communication) or in the sleep mode (energy saving state 

with the radio transceiver turned off), the expected lifetime of the loT device is

L = ------------------------------------  (5.3)
P ACT-PACT + PST E E P -PSLEEP

where PACT = P.SAU + PMCU + Pcmnm + PsEC >s  the average power consumed by the loT in the 
active mode. By reducing the fraction of time spent by the device in the active mode or by increasing the 

fraction of time spent by the device in the sleep mode, the device lifetime can be prolonged. If the fraction 
'T' ,

of time that an loT device spends in the active mode is PACT = • and the fraction of lime spend in the 

sleep mode is PSLEEP  =  1 — PACT = then equation (5.4) becomes:

L = ----------- Tp.B.SFbat------------  (5  4 )
i  ACT-PACT + TSL E E P -PSLEEP
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Where. TACT 'S  the total time spent by the loT device in the active mode. TSLEEP  is the total time spent in 
the active mode by the device, and T[) = TACT + TSLE E P - If the battery safty factor, S F ^  = 1. then the 
expected lifetime of the loT device given in equations (5.2-5.4) becomes

&
TACT-PACT + TSLE E P -PSLEEP

which is the well-known formula for expected lifetime of an loT device e.g„ see [154. 179].
We know that the average total power delivered to the loT device from the battery. P y  = PACT + PSLEEP  
can be expresses in terms of the average total current drawn from the battery. ID and the battery output 
voltage, u0 as P ^ — I.v o . Also, the energy rating, B  (in Wh) of the battery can also be expressed in terms 
of the charge rating, Q (in Ah) of the battery and the battery output voltage. vo as B =  Q.vo . Therefore, by 
dividing the numerator and denominator of equation (5.2-5.5) by the output voltage vo . the lifetime of the 
loT device in terms of the charge rating and the total average current delivered to the loT from the battery is

Tp.Q .SF bat

TACT • I  ACT + T$^E  E P ■ I s  L E E P 

TACT-IACT + TSL E E P -ISLEEP

for SF bat >  1 , 

for SF bal =  1
(5.6)

Where ID = R A C T-IACT  + RSLE E P ISLE EP  ̂ IACT  is the average current delivered to the loT device 
from the battery in the active mode, and ¡SLEEP  is the average current delivered to the loT device from 
the battery in the sleep mode. One of the misconceptions when choosing batteries for loT devices is the 
assumption that batteries with a higher charge rating (in mAh) will guarantee a long lifetime for the loT 
device. For alkaline batteries, which are the most cost-effective and commonly available batteries used to 
power electronics devices, the output voltage vo degrades very quickly, shortening the time required to drain 
the battery completely or the lifetime of the loT device [259]. The authors in [9] highlighted the difference 
between the battery capacity. Q in Ah. and the battery capacity. B  in Wh. The battery capacity Q is the total 
amount of electricity generated due to electrochemical reactions in the battery, while B  is the total energy 
that the battery can deliver during the discharge process. The relationship between the battery capacity, Q, 
and the discharge current may not be linear as shown in equation (5.6). but is exponential according to 
Peukert law [262], The relationship between battery capacity in Ah Q and the average discharge current Ip. 
and the battery discharge time (which is equivalent to the lifetime of the loT device. L) can be deduced from 
the Peukert law [262, 9] as

L = Q . ! ^  (5.7)
_________________ Q _________________  

[R A C T •¡ AC T +  R sL E E P k s L E E p ] k

where k is Peukert constant, and its value lies between 1.1 and 1.3. Therefore, it is preferable estimate the 

expected lifetime of the loT device using the energy rating (in Wh) (e.g., (5.2-5.5)). rather than the charge 
rating as in equation (5.6).

Therefore to estimate the expected lifetime of an loT device is required to estimate the average power 
consumption of the device (the rate at which energy is drawn from the battery), and the batteiy rating or 
the initial amount of energy in the battery (initially the battery should be charged to full capacity). Using 
measurements to benchmark the energy consumption of loT devices before they arc used to estimate the 
lifetime of an loT device is important. Any hardware and software implementation changes or energy deple
tion attacks that alter the supposed sleep time of the device may significantly reduce the expected lifetime
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of the loT device determined during loT network design and deployment.

On the other hand, mathematical modelling provides a faster technique of understanding the relationship 

between the battery parameters, the power consumption model of the loT device, and the lifetime of the 

loT device. Since it is possible that the energy drawn from the battery could vary stochastically, stochastics 

models such as Markovian models, fluid flow models, and diffusion approximation models have been used 

to estimate the model of the battery of sensor devices and to estimate their lifetime.

5.1.3 An overview of stochastic modelling of the battery of computer systems

A useful but seldom used approach in the analysis and optimization of energy, and more broadly for 

the joint optimizaton of energy and quality of service in computer systems and networks, named "energy 

packets" was introduced by Gelenbe in 201 I and 2012 [87. 88. 89]. It conveniently represents energy in 

discrete units, where an energy packet is the minimum amount of energy required to transmit a single data 

packet or process a single job. This approach was initial applied to the optimization of power ilow in multiple 

node computer networks [ 100] and joint work and energy in computer systems [90], and then to study the 

effects of energy leakage in battery powered devices [95]. The model was applied to the study of sensor 

nodes [911. and also to battery attacks in [73, 72].

when the energy is quantised, Markovian stochastic models can be used to model the energy storage 

and consumption process. In this case, the state probabilities at time t represent the amount of energy stored 

present in the battery at time t. The authors in 1125] developed a mathematical framework for modelling 

the charging and discharging of the battery of a nanosensor device. The authors represented the dynamic 

changes in the battery’s energy content using a Markovian process and then computed the state probabilities 

of the amount of energy present in the battery (the energy state of the battery). One of the limitations of 

Markovian models is the assumption that the rate at which energy is drawn from the battery is exponentially 

distributed, which is not a realistic assumption of the loT energy consumption patterns.

Since energy is a continuous quantity, the changes in the amount of energy in the battery could be 

considered to be analogous to the changes of a fluid in a reservoir, and hence modelled using fluid flow 

models. The authors in |83] proposed an analytical model of a battery based on the fluid How queueing 

model. The authors modelled the battery as a charge or energy reservoir where the charge gels accumulated 

or depleted over time. By considering that the charge available in the battery al lime t is analogous lo the 

fluid available in a reservoir, the authors used fluid flow analytical methods to determine the cumulative 

distribution function and the mean of the time required for the battery to be completely discharged. The 

authors in [123] proposed a fluid queue model for the representation of the dynamic changes in the energy 

content of a battery and then used it to determine the time required lo completely depletes the the energy 

of' the battery. The authors in [243] proposed a Markov fluid queue model for the battery of an energy 

harvesting loT device. The authors used their model to compute the probability that the battery's energy 

level hits zero for the first time within a given finite time horizon. Fluid flow models capture the mean 

changes in the amount of energy present in the battery but not the variance.

Recently, diffusion models have been proposed as a stochastic model for the baitcry of an loT device. 

The advantage of using diffusion models the time evolution of the energy stored in the battery traditional 

queueing theoretic models and fluid flow models is that it takes into account fluctuations in the amount of
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energy harvested from the environment and the fluctuations in the amount of energy drawn from the battery 
(energy consumed). The authors in [51 proposed a diffusion process to model the process of energy supply 
from energy sources, storage, and consumption for a battery of a sensor node. The authors derived some 
performance metrics such as the average time until the node is shut down when the energy stored in the 
battery is completely depleted, for a given workload and energy harvesting characteristics, battery capacity. 
The authors in [4| proposed a pure diffusion model to represent the time evolution of the discharging and 
charging process of the battery of a wireless sensor node. The authors derived some performance metrics 
such as the average amount of energy present in the battery at lime t and the failure rate of the wireless 
sensor node when the battery is completely discharged. They also presented the steady-state solution of the 

model that they proposed. It is sometimes important to obtain the transient distribution of the amount of 
energy stored in the battery at time t and the distribution of the discharging time, which the authors in [5. 4] 
did not consider. The authors in [331 applied diffusion approximation to analyse the transient evolution of 
the charging and discharging process of the battery that is supplied by renewable energy and then used to 
supply network nodes in a wireless mesh network.

5.2 Energy depletion attacks in loT networks

Energy depletion attacks arc attacks that arc designed to exhaust the energy stored in the battery of 
an loT device. Reliable security mechanisms are complex and require reasonable computing resources, 
memory, and energy. The limited resources (e.g„ memory, processing power, bandwidth, and battery) in 
loT devices make it challenging to implement reliable security mechanisms in devices and loT networks. 
Also, some loT device manufacturers do not implement security futures in their devices to keep the cost low 
(to be competitive in the market) and to speed up their manufacturing process. However, much effort has 
been made to implement lightweight security mechanisms that optimise the limited loT resources while still 
providing the required security for loT devices.

Energy depiction attacks are designed to increase the energy consumption of loT devices, which rapidly 
depletes the energy stored in the battery and eventually shuts down the loT device. The authors in [112] 
presented types of battery deletion attacks which include: service request power attacks and benign power 
attacks. In the service request power attack, the attacker continuously sends service requests to the target 
device, which keeps the loT device awake for longer periods and rapidly depletes the battery energy. In a 
benign power attack, an attacker forces a compromised loT device to execute energy-demanding tasks which 
rapidly depletes the battery energy continuously. The authors also proposed a network-based intrusion de
tection and prevention technique to detect and prevent battery depletion attacks. Therefore, energy depletion 
attacks are designed to increase the fraction of time that an loT device spends in the active mode or reduce 
the fraction of time that the device spends in the sleep mode.

The secure communication process is the most energy-demanding process in an loT device. To reduce 
the energy consumption of loT devices, low power communication protocols that keep the loT packet size 
as small as possible and keep the device in sleep mode for as long as possible are used. Some energy 
depletion attacks are designed to reduce the sleeping time of the loT device. Adjusting some of the network 
parameters, such as the duty cycle, data rates, and the packet size can significantly reduce rapidly depletes 
the battery of an loT device and reduce its lifetime [187. 180|. Also, by inducing the device to transmit
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useless packets repeatedly, the device rapidly depletes the energy of the battery [200], A malicious attacker 

could prevent an loT device from entering sleep mode by manipulating its contention window size [34], 

sending massive amounts of packets to create more collisions to the ongoing transmissions [12], and by 

overwhelming the loT device by Hooding it with packets without payload.

Energy depletion attacks could reduce the lifetime of loT devices from years to days [204]. could also 

result in the shutting down of an entire loT network. The authors in [227] studied the impact of battery 

training attacks such as "hello" flooding, stretch attacks, and versioning on the energy consumption of loT 

devices. The authors found out that versioning is the most severe as it draws a lot of energy from the battery, 

followed by packet flooding and "hello" attacks. The authors in [ 120] analysed the impact of battery drain or 

energy depletion attacks on loT devices. The authors designed and conducted DoS service attacks such as 

"hello" flooding and version number modification to demonstrate the impact of these attacks on the energy 

consumption of the loT devices and rendered some of them unreachable. A similar demonstration was 

shown in [200], where the authors configured some malicious nodes to intentionally generate and send large 

amounts of packets to legitimate nodes to excessively consuming the energy resources of the nodes found 

along the forwarding path.

Unmanned Arial Vehicles (UAVs) are increasingly being adopted for commercial applications [244] 

such as agriculture, environmental management, supply chains, law enforcement, surveillance, photography 

[138, 139. 140], and were recently used for deliveries during the COVID-19 Pandemic [75] and to enforce 

the restrictions designed to slow the spread of the COVID-19 virus. A UAV could be considered an loT 

system, especially when connected to the internet (e.g., used as an access point in some loT deployment 

requiring a temporary sensor network for a few hours). Like traditional wireless sensor devices. UAVs are 

powered by batteries, making it difficult to implement sophisticated, reliable security mechanisms. AS a 

result, the security mechanisms implemented in UAVs are relatively weak and could be easily compromised. 

One such possible attack is the energy depletion attack designed to take control of the UAV and cause it to 

perform manoeuvres that consume more energy and. therefore, rapidly drain the drone’s battery. Although 

most UAVs have battery monitoring and management systems that ensure that the drone does not crash 

due to energy outages by initiating a retum-to-home (RTH) mechanism. The RTH mechanism ensures that 

the drone returns home with a reasonable amount of energy to ensure a safe landing. However, battery 

depletion attacks could still cause the drone to crash while still executing the RTH procedure, which could 

be catastrophic and could result in a lawsuit. The authors in [63] presented a framework for the simulation 

and assessment of battery depletion attacks on UAVs in crisis management systems.

It is important to have techniques to detect energy depletion attacks and mitigate their impact. The 

majority of attack detection systems used to detect energy depletion attacks in loT networks are based on 

monitoring traffic characteristics and QoS metrics. The authors in [120] proposed an Intrusion Detection 

System (IDS) that detects the presence of energy depletion attacks in loT networks by monitoring by mon

itoring packet characteristics and QoS metrics such as packet sending rate, packet interval, and the Receive 

Signal Strength (RSS). They also demonstrated the use of firewalls to delect traffic coming from intrusions. 

It should be noted that not all energy depletion attacks degrade the quality of service. Some energy depletion 

attacks may trigger an increase in the quality of service while gradually increasing the rale at which energy is 

drawn from the battery until the battery becomes empty and the device(s) are shut down [215]. The authors 

in 1199] proposed a lightweight anomaly detection model against energy depletion attacks on loT networks.
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The model proposed by the authors is based on the analysis of statistical distance metrics to differentiate 

between the normal and abnormal energy consumption in loT devices.

Some attempts have been made to model the impact of energy depletion attacks on the performance 

and safety of battery-powered loT devices. The authors in [215. 214| modelled the impact of energy de

pletion attacks on lire performance of loT devices. They investigated the impact of increasing the energy 

consumption due to energy depletion attacks on the system survivability metric for an loT device under an 

energy depletion attack. They considered the survivability metric the Mean Time To Failure (MTTF). The 

authors discussed the impact of energy depletion attacks which do not degrade the QoS or may improve the 

QoS while gradually draining the battery of the loT device. The model proposed by the authors is based 

on the pure death Markovian process, which assumes that there is no continuous supply of energy into the 

battery, but the energy consumption process is exponentially distributed. The proposed model is limited 

by the Markov assumption as realistic energy consumption distribution for loT devices deviates from the 

Markovian distribution.

5.3 Analysis of Ghost Energy Depletion Attack on an loT Network

A ghost energy depletion attack (GEDA) is one in which an adversary masquerades as a trusted device 

and compels other loT devices within the network to perform unnecessary' computational and communica

tion operations to quickly deplete the energy stored in the battery of the victim devices and eventually shut 

down the devices. There are two main forms of ghost energy depiction attacks which are the high computa

tional load on device GEDA and the MAC misbehaviour GEDA. In the high computational load GEDA. the 

adversary overwhelms its victims with bogus messages to quickly drain the energy stored in their batteries. 

Even though it is easier to detect these kinds of attacks with attack detectors, a ghost attacker may cleverly 

conduct such an attack by sending the messages at different times or by sending them at different addresses 

to a subset of victim devices in its range [34]. In a MAC misbehaviour GEDA. a ghost attacker deliberately 

abuses the MAC protocol (e.g., CSMA/CA protocol) to create collisions on the shared wireless channel to 

cause other devices within its interference range to consume more energy (quickly draining their batteries) 

and to deprive them of accessing the channel. To analyse GEDAs, it is essential to take note of the factors 

that influence such attacks which include:

1. The energy consumption of the various hardware components of the loT device (e.g.. microcontrollers, 

radio transceivers, sensors, actuators, and other electronic components). Energy-demanding micro

controllers and radio transceivers will consume more energy than energy-efficient ones and will drain 

the energy stored in the battery of the loT device quickly during a battery depletion attack.

2. The energy capacity of the loT battery. For a given loT device, the lifetime of an loT device depends 

largely on the energy capacity of its battery. With a high-capacity battery, the lifetime of the device 

could be longer. A device with a small battery capacity will easily be shut down by a ghost energy 

depletion attack.

3. Frequency of data collection (sensing), actuation (where necessary), processing, and communication 

(reception and transmission of information). The more frequent, the device sensing, processing, ac

tuation, processing, and communication operations, the higher the energy consumption of the device.
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A ghost attacker could compel victim loT devices to perform such operations more frequently than 
during normal operations.

4. The MAC protocol in the link layer. A ghost attacker can abuse the MAC protocol in the link layer to 
create collisions, thus, increasing the energy consumption of the devices sharing the channel with it. 
Using a collision-free protocol at the link layer could reduce this kind of attack.

5. The cryptographic algorithm is implemented on the loT device to encrypt and decrypt information. 
The energy required to encrypt or decrypt a packet depends on the number of microcontroller clock 
cycles required to execute the algorithm (encryption or decryption) and on the average current drawn 

by each cycle. Therefore, with information about the number of cycles required to execute the algo
rithm, the current drawn in each cycle, the clock frequency of the microcontroller, and the operating 
voltage of the microcontroller, the energy required to execute an encryption or decryption algorithm 
on an loT device can be estimated. The more sophisticated or computationally intensive the crypto
graphic algorithm, the more quickly it can be leveraged by an attacker to drain the energy of an loT 
device.

6. The packet sizes. The longer the packet size, the more energy is required to transmit the packet and 
the longer the lime required to transmit the packet. A ghost attacker could decide to be created longer 
packets that take too long to transmit, causing other loT devices sharing the channel with it to experi
ence more collisions.

5.3.1 Analysis of high computational load ghost energy depletion attack

Consider an loT device, i in an loT network with A' nodes. Suppose that the device is working in a duty
cycling mode with a duty cycle of D = j.. where is the duration of the active period and T  is the length 
of the cycle. Within the active period, the device can receive and decrypt a packet or encrypt and transmit 
a packet. If the device completes the reception or transmission of packets and the active period is not yet 
finished, the radio and the microcontrollers could be switched to a low-power mode. If no packet arrives or 
there is no packet to transmit, the radio is turned off and the microcontrollers are switched to a deep sleep 
mode (where it consumes a very small amount of power). After a period Ts . the device wakes up again to 
either receive or transmit packets.

Suppose that a ghost attacker crafts bogus packets and send them to the victim device to force it to 
spend energy to receive and perform security checks (e.g., access control, message integrity checks, and 
decryption). The access control mechanism is based on the principle that after receiving a packet, the de

vice compares its source address with a list of valid addresses. If there is a match, the packet is accessed: 
otherwise, it is rejected. If the ghost attacker can masquerade as a legitimate device, its packets might be 
accepted by the victim device but after performing a message integrity check or decrypting the message, 
it will realise that it will fail. Although the security checks eventually failed and the packet from the ghost 
attacker dropped, the device must have spent a significant amount of energy performing some computation.

Suppose that a ghost attacker sends bogus packets to the victim device at a mean rate of K and the mean 
arrival rate of packets to the victim device from both attack and legitimate sources is 7 =  K + M. where 
v  is the mean arrival rate of normal packets from legitimate sources. If within a given active period, the
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device receives N r  packets (both attack and normal ones) and performs security checks for these packets, 

then the energy consumed by the microcontroller during the process of receiving the packet and executing 

the security algorithms to perform the security checks is [34J:

E™m p  -  N r (Td e c P^l c v  + Tr r n I C U ) (5.8)

Where Td n . is the time required to perform the security checks (access control, decryption, and integrity 

verification) for a given packet, which depends on the security mechanism that is implemented. T r r  is the 
lime required to receive a packet (which depends on the size or length of the packet), P j^cu  *s  l 'qe Po w e r  

drawn by a microcontroller unit (MCU) when it is in the active mode, and the power drawn by the MCU 

when it is in the idle mode. The energy required to execute the algorithms required to perform the security 

checks (including decryption and MIC verification) after receiving the packet can be given by

TP ^c^s e c^se c  n .
E ^ c  =  -------- j ------  (5.9)

where N r  is the number ofclock cycles required to perform the security checks. f s c c  is the average current 

drawn by each clock cycle. Vse c  is the operating voltage of the MCU. and /  is the clock frequency of the 

MCU. Therefore, the more attack packets that are successfully received by the victim device, the higher the 

amount of energy wasted executing the security check algorithms (wasting MCU clock cycles to perform 

security computations). The energy consumed by the radio module in receiving both the attack and normal 

packets within a given active period is

N A T d cc  + T r ^ P r x  

TP ^
for N r {Td e c  + Tr x ) > r  , 

for otherw ise
(5.10)

where P r x  is the power required to receive a single packet.

Suppose that an attacker compromises an loT device, and then reconfigures it to perform more sensing 

(measurement) operations more frequently than required. The packets that belong to the extra measurement 

can be considered attack packets because the device spends energy to sense, encrypt and transmit the packets. 

Suppose that the victim device perform Nt number of transmission (including the transmission of packets 

from necessary and unneccessary measurements), then the energy consumed by the MCU in performing 

cryptographic operations (including encryption of the packets) and transmitting the packets is given by

E%m p  = N t (Te n c P ^  + Tl x P ^ c u ) (5.11)

Where Tc n c  is the time required to encrypt a packet and Ti x  is the time required to transmit a packet. 

The energy required to perform the cryptographic operations (including encryption) before transmitting the 

packet is similar to equation (5.9). The energy consumed by the radio module in the transmission of both 

attack and normal packets within an active period, assuming that there are no collisions are

N i t l / p  +  P o )(.T m c  +  7}j : ) 

(?lPt. +  PO)T

for N ^ T ^ e  +  7L ) >  T . 

for otherwise.
(5.12)

Where // is the conversion factor of the power amplifier from electric power to RF power. P0 is the electronic 

power consumption overhead.
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5.3.2 Analysis of MAC misbehaviour ghost energy' depletion attack

Compromised loT devices could be exploited to create and generate attack packets and to cause colli
sions in the shared channel. An increase in the number of collisions in the channel will lead to an increase 
in energy consumption of the loT devices in the network. The mean total effective traffic intensity in the 
channel is

A =  A' AQ ----- — -t- A^ (5.13)

where P, is the probability that a device experiences a collision when it tries to transmit a packet and 
Ao is the mean arrival rate of packets at the output transmission queue of an loT device. The first term 

is equation (5.13) is the effective normal traffic intensity created in the channel by loT devices that are 
behaving normally and the last term Aj is the additional mean traffic intensity created by compromised loT 
devices (we also refer to it as the attack traffic intensify).

<--------- 
2D

Figure 5.2: Channel access behavioral model of the loT device.

All the loT devices are listening to the channel to sense when the channel is free so (hat they can 
transmit their packets. Whenever the channel is free, an loT device can transmit its packet normally within 
the timeframe of T(.r , as shown in figure 5.2. If a device transmits all its packets and its buffer is empty, it 
switches to a low-power mode until the next that it will wake up to either receive messages from the loT 
gateway or lake measurements and transmit them to the gateway. The more time a device spends in the 
low-power mode, the longer its lifetime. However, if a device detects a collision, it will try to access them 
again after a backoff time or retransmission time Tr , which is proportional to ÿ. The probability that there 
is a collision in the channel is

Pc  = l - e - 2 W  (5.14)

where D is the propagation delay of the wireless communication channel between the loT device and the 
loT gateway. By substituting P, in equation (5.13) and simplifying we have

=  =  ------- èiL (5J5)
NAo (VAo ATA0

shown in figure 5.3
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The mean number of transmission attempts including successful transmissions is

N t = £  n P ^ l  -  P.) = 1
1 -  P,

(5.16)

and the mean number of collisions in the channel is

Therefore, the service time at the output queue of the loT device is

~  — 7--- +  Tr ) +  Tix1 -  Pe
(5.18)

The mean time required to transmit an loT packet of size m  is

(-5.19)

Where C  is the Shanon capacity of the loT wireless channel given by

C  = Wlo(f 2 ^  + SN R ) (5.20)

where W  are the channel bandwidth, S N R  = p  ± p  is the signal-to-noise ratio, and Pr , Pi, PN are the 
received power, the interference power, and the noise power respectively. The power level of the signal 
transmitted by the loT device is attenuated by the channel and the power that is received by the loT wireless 
access point is

P, = PL.P, (5.21)
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where. Pt is the transmit power and the path loss PL  is given by

PL = L ()lidra (5.22)

where d is the distance between the loT device and the wireless access or gateway, h is a random variable 
that represents die fading in the channel, o is the path-loss exponent, and L^ is a constant determined by 
the antenna gain, radio frequency, and the propagation environment. More advanced radio network planning 
models could be used to determine the path loss to account for possible environmental obstacles which cause 
radio signal degradation or fading. The retransmission delay is assumed to be exponentially distributed with 
parameter A. and the mean retransmission delay Tr is. therefore, proportional to | .  Also, we assume that 
the collision time is uniformly distributed between 0 and D. and the mean collision time T,. is. therefore, y .  
Thus, equation (5.19) becomes

1 = rp2AP _ 213 +  1) + -------- - -------- (5.23)

Figure 5.4: D = 0.001. Tr  = 0.001, Tr  = 0.1, Tt x  = 0.01, A 6 |0 2000]

From the Shanon information and communication theoretic limit to estimate the amount of energy re

quired to transmit an loT message is fl 17]

« = ^ P , + Po )tl x (5.24)

which can also be expressed in terms of the channel and other transmission parameters as

e =  ( -¿7 Pr +  P») TH---- ) 
\P L  /  I l \ +  5 A R)

For most loT device majority of the communication is in the uplink (from the loT device to the access 
point), especially for loT devices whose function is to take measurements (sensing) and send them to the fog
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or cloud servers. Since most of the communication is in the uplink, an attacker can easily conduct energy 
depletion attacks by causing the loT device to increase its transmit power, increasing the time required 
to transmit a packet (by increasing packet sizes m or creating interference in the wireless channel ) or by 
creating collisions in the shared wireless channel.

It should be noted that by deciding to generate or create packets with larger sizes, the ghost attacker 
increases the transmission times, thereby increasing the likelihood of collisions in the channels. Also, by 
increasing its traffic (by increasing its measurement frequency), the ghost attacker triggers an increase in 
A which increase the likelihood of collisions in the channel and compels other devices sharing the channel 
with it to consume more energy. Hence, quickly draining their batteries.

Increasing the number of collisions in the shared wireless channel will increase the mean active time 
of the transmitter. The relationship between the mean active time of the transmitter and the mean total 
effective traffic intensity in the channel, A is shown in figure 5.4. The mean total effective traffic intensity 
in the channel. A can be increased by increasing the attack traffic. The main objective of the attacker is to 
maximise the active period, that is, to increase the time that the microcontroller unit and the radio unit spend 
performing computation and reception or transmission operations respectively. By maximising the active 
period of the MCU and radio unit, more energy is drained from the battery, and quickly depletes its energy 
content.

5.4 Modelling the energy depletion process for Battery of loT devices

In this section, we present stochastic models that are useful for the analysis of the energy depletion pro
cess of the battery of an loT device. We present Markovian model of the battery of an loT device developed 
and used to analysed battery depletion attacks in [214, 215]. We propose a similar diffusion-based model of 
the battery of an loT device. The diffusion model is also compared with the Markovian model.

5.4.1 Markovian model of the battery for loT devices

Suppose that initially, the battery is fully charged to its full capacity B. Also, suppose that the energy 
stored in the battery is quantised, and that fixed-sized energy units are drawn from the battery to power the 
loT devices. It is assumed that the energy consumption process is exponentially distributed. Let 0
be a random process that represents the number of energy units present in the battery at time t. and the 

probability that there are n  energy units in the battery be P {N (t)  =  n} =  P ^ t) .  where. Pn  is the state 
probability of having n  energy units in the battery. The time evolution of the discharging process of the 
battery can be described by a pure death Markovian process as

d P ^ t)  
dt

Pn(t)

- P B W P D (5.26)

dt 
dP ^l) 

dt.

-P n ^ P D  + P ^ P D  V < n < B

PO^ P D
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Figure 5.5: The distribution Puff). of the amount of energy n in Wh present in the battery at time t during 
the blackout period, for / g (0 10], n e  ¡0 10], B  =  100. and P^  =  1-

The solution of the set of equations in (5.27) gives the state probability of the amount of energy present in 
the battery at time t. and it is given by [214. 215]

U < n > B  (5.27)
(JD — ny.

Using the normalisation. ]P»=t P„(/) +  Fo(i) =  J. the probability that the battery is empty at time / (service 
outage probability) during the backout period is

e »  
n=l ' ’’

Figures 5.8 and 5.5 shows the density of the number of energy units v present in the battery at time t. 
It starts with a sharp spike and then gradually decreases to zero. It is because, initially (al time t =  0). we 
start with a fully charged battery to its capacity B. The battery's energy content gradually decreases with 
time and eventually reaches zero when all the energy stored in the battery is completely depleted. A similar 
probability density can be obtained by modelling the battery using a diffusion process, as shown in this 

study.
The time required to completely deplete the energy stored in the battery is the first passage time of die 

Markov process from the stale n = B at time / — 0 to the state n — 0 at time I: when the energy stored in 
the battery is completely depleted. Il is the lifetime of the loT device. Let the random variable 7' represent 
the time required to completely deplete the energy stored in the battery, where the first passage time process 
is T  = i n f  {I > 0 : N (t) = 0}. The distribution of the first passage time from a defined point n = B  to 
n — 0 is

' w W  = (5.29)
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Figure 5.6: The distribution Pn (t). of the amount of energy n in Wh present in the battery at time t during 
the blackout period, for / 6 (() 100], n  € [0 100], B = 100. and PD = 1.

where *(B 1) is (B-1 )-fold concolution of a function with itself. The mean of the distribution (5.29) gives 
the mean of the lime required completely deplates the amount of energy present in the battery and is given 
by

B ------ P---------------------p --------  (5.30)PD PACT-PACT + K-SL E E P -PSLEEP

Despite the assumption that the energy consumption process is exponentially distributed, the mean lifetime 
of the loT device given in 5.30 is the same as the well-known expression for the lifetime of an loT device 
given in equation 5.2. for SFba t — 1. The same expression can be derived using a diffusion approximation
based model. The diffusion approximation modeling approach removes the assumption that the energy con
sumption process should be exponentially distributed. It is also unnecessary to discretise the battery's energy 
as the diffusion process is a continuous stochastic process.

5.4.2 Diffusion approximation model of the battery for loT devices

Suppose that initially, the battery is fully charged to its full capacity B. Suppose that the cumulative 
amount of energy drawn from the battery to power the loT device up to time t is E D ^)- then the amount of 
energy present in the battery at time t is

E(t) = B -  (5.31)

The change in the amount of energy in the battery between time / and / +  A is

E (t +  ̂ - E ( t )  =  {ED (t +  ̂ - E D (t)} (5.32)
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If we assume that as energy is drawn from the battery, the changes in the energy content of the battery 
AEfZ) =  E(t +  A) — E(/) are normally distributed, then we can approximate the discharging process of 
the battery by a diffusion or Brownian motion process X (t)  whose changes AX (t) =  A' (Z +  A) — A'(0 
are normally distributed with mean /?Af and variance n AZ where:

Un, 
At—0 A t
l h n Var[X(l +  AZ) -  X (Q ]

At—0 A t

We represent the discharging process of the battery by a diffusion process that starts al .¥(0) =  B 
(battery is fully charged al the beginning) and ends at X (t) - 0 (when the battery is fully discharged). The 
dynamic changes in the energy content of the battery (during the discharging process) can then be described 
by the second order partial differential equation of a diffusion process, e.g. |44|,

Z; B) _  o 02 &(x, t; B ) M x ,  B)
dt 2 dx2 Ox ‘ 1 '

subject to the conditions

w (B ,0;B ) = 6(B) (5.34)

0(0, t; B) =  0 fo r  t > 0

where i f(x ,l ,B )  is the Probability Density Function (PDF) that we have r  amount of energy in the 
battery at time t. given that the discharging process started with r =  B  amount of energy in the battery. The 
boundary condition. 0(x, 0: B) — 6(B) in (5.35) is the initial condition that the battery is fully charged at the 
beginning, that is, with a probability of 1, the amount of energy present in the battery at lime I =  0 is B  (the 
probability density in infinite for t — 0 and x  = B). The boundary condition 0(0, t: B) — () fo r  t > 0 
is the final condition that at time time t. the energy stored in the battery is completely depleted. The solution 
of (5.33) with the conditions in (5.35) gives the PDF of the diffusion process that starts at x  = B  and ends 
at x  =  0 is

’ 2c> O - a ) 2  ( x + H ) 2 '
£  2a A —  g  2 n i (5.35)

The PDF given in equation (5.35) satisfies the partial difference equation in (5.33) and the conditions in 
(5.35. that is.

0(B.O:B) -  lim 0(B .i;B )

-  6(B)

and

^ B - B ) lim ty(x, I: B)

0 fo r  t > 0 and x  0

, which implies that the distribution 0(:r, t: B) converges to 0 within a finite time horizon t > 0, for any 
value of x  (J.

I l l



The lifetime of the loT device is the time required to completely deplete the energy stored in the battery 

and is the first passage time from a- = B  (when the battery is fully charged) to .r =  0 (when the energy 

stored in the battery is completely depleted). Let the random variable T  represent the lifetime of the loT 

device, where the process is represented by the random process T  = i n f { t  > 0 : X (t)  = 0} is the first 

passage time of the diffusion process from r =  B  to x  =  0. The PDF of the first passage time of the 

diffusion process from x  = B  to x  = 0 is

Ts.o(i) =  B] (5.36)‘0 2 OX
B  (g+w2

=  . e

The mean lifetime of the loT device (or the mean time to failure) is

MT =  /  (5.37)
Jo 
B  
0

and the variance of the lifetime of the loT device is

— I  -  $  (5.38)
Jo

Bo:

If we consider a battery in which energy is stored in it at a mean rate of Pg and energy is drawn from it al 

a mean rate Pi). then the energy in the battery changes at a mean rate /3 =  Ps -  PD [243]. The variance 

of these changes is o =  C ^P s + C^PD- where C j  and C# are the coefficients of variation of the process 

supplying energy to the battery and the process of drawing energy from the battery, respectively. However, in 

this paper, we assumed that energy is not supplied to the battery of the loT device: that is, we assume that the 

device depends only on the energy stored in the battery during the deployment of the loT device (i.e., Ps =  0 

and =  ()). Therefore, the parameters of the diffusion process can be defined as 3  =  — (PACT-PACT + 
RSLEEP-PSLEEP) and a  =  C^RACT-PACT + RSLEEP-PSLEEP) respectively. The diffusion parameter 

0  =  — (RACT-PACT + RSLEEP PSLEEP) and a  =  C^RACT-PACT + RSLEEP-PSLEEP)- Therefore, 
the expected lifetime of the loT device or the Mean-Time-To-Failure (MTTF) becomes:

PT = --------------------- ~---------------------  (5.39)RACT-PACT + RSLEEP-PSLEEP
which is the well-known results for the expected lifetime of an loT device. Also, the variance of the lifetime 

of the loT device becomes:

= ---------------------——--------------------- (5.40)
[RACT-PACT + RSLEEP-PSLEEP]'

Figure 5.4.2 shows the comparison of the probability density of the lifetime of the loT device

for B  = 100 Wh and Pu = 0.2IF. For the diffusion model, we use CQ = 1 to ensure that the energy 

consumption process is exponentially distributed to compare the Markovian and the diffusion approximation 

models. It can be observed that the probability density function of the lifetime of the loT device obtained 

using the proposed diffusion model is the same as that obtained using the pure death Markovian model used 

in [214, 215] to model the battery of an loT device.
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Figure 5.7: Comparing the probability density of the lifetime of the loT device 7s,o(f) for ’ IM  Wh and
PD =  0.2WL

The probability that the energy stored in the battery is completely depleted after lime £ is

r B.o(0 = [  7B,O(£M£ 
Jo

(5.41)

1
2

\B  -  fit' 
e o er jc  — ,---- + er fc. 73 + /%l \  

. \/2at . /

where

ertc(t) — 1 -  erf(7), and erl(t) =  —2=  P 
e c2 

(l£,-
v n  Jo

Lei us suppose that during the deployment of the loT device, il is desired to predict the time after which 
the energy level of the battery should have decreased to a predefined threshold so that the operator could 
consider changing the battery or charging it. Suppose that this threshold is .r = iiB. where r/ €  (0 1), then 
the lime t, after which the energy level of the battery decreased to the defined threshold is the first passage 

time from x  = B  at time t =  0 to x = r)B at time t. and it's distribution is

^ R.^B B) =
B(L — I I ) (« (i- .n + a t)2

—, e
\/27ro/3

(5.42)

with mean

Mi =  /  ^ B J/R B W  
Jo 
B ( l - ' l )  

0

(5.43)
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and variance

<4 =  /
Jo

5(1 -  n)a

(5.44)

The probability that after lime t. the energy level of the battery should have decreased to reach the defined 
threshold is

(5.45)
Jo

aB(i-i)jd f 5(1 -  n) — 31
Q e rfe  -------- ;-----------L \/2 a t

r S ( l - / / )  +  ^ l \
+  e r f c  ------ /TT7-----L V ¿at J /

5.5 Numerical examples

This section presents some numerical examples to study the dynamics of the energy depletion process 
in a small-sized battery used to power loT devices. We present the influence of design parameters that can 
be selected during the design and deployment of the loT devices on the time it takes to drain all the energy 
stored in the battery completely. This lime gives the lifetime of the loT device from the time the device is 
deployed to when the energy stored in its battery is completely drained and the device is shut down.

0.14

Figure 5.8: The distribution I: B). of the amount of energy .r in Wh present in the battery at lime /. for 
i € (0 200] and .r G [0 100],

Fig. 5.8 shows the probability density of having .r amounts of energy in the battery al lime t given that 
the discharging process started with r  =  5  amounts of energy in the battery. After a certain time t. the 
distribution of the amount of energy present in the decreases to a- =  0. which happens when the energy
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Figure 5.9: The distribution ¿(.r. t: B). of the amount of energy x in Wh present in the battery at time t. for 
t £ ( 0  2000] and J - € [0 100].

stored in the battery is completely depleted. The time axis gives the distribution of time required for the 
amount of energy present in the battery to decrease from x = B  to a give amount x. To clearly observe how 
the distribution of the amount of in battery varies over time, we increased the time axis as shown in Fig. 5.5. 
For the results presented in Figures 5.8 and 5.5. PA =  0.12471 W. Ps =  0.090 W. and RSLEEP  =  0.95, 
and PACT =  0.05, C B 2 = 1. and B =  100.

Figure 5.5 shows the influence of the average power consumed by the device when it is in the active 
mode. PACT on the distribution of the lifetime of the device. It can be observed that a very small increase 
in the average power consumed by an loT device in active mode can significantly reduce the lifetime of the 
loT device. In battery depletion attacks, an attacker could cause the loT device to increase its transmission 
power, increasing the power consumed by the loT device in the active mode. There are various ways in 
which the power consumed by the device when it is in the active mode can be increased. For the Plot in Fig. 
5.5. B =  100. Ps =  0.090 W. and RSLEEP  = 095, and RACT = 0.05. CB 2 = 1. Figure 5.5 shows the 
influence of the proportion of sleep time. RSLEEP  o n  the distribution of the lifetime of an loT device. The 
distribution is shifted to the right as RSLEEP  increases. It is because increasing the sleep lime reduces the 
energy consumed by the loT device and hence, increases its lifetime. The most popular energy depletion 
attacks designed to completely drain the energy of the battery of the loT device are denial of sleep and 
various types of vampire attacks. They are conducted by manipulating some device or network parameters 
to reduce the sleep time (and hence. RSLE E P ) of Ore device. Fig. 5.5 shows the influence of the proportion 
of sleep time, RSLE EP  on the probability that the energy stored in the battery is completely depleted before 
a given time t. It shows that as the proportion of sleep time increases, the higher the probability that the 
energy stored in the battery will be completely depleted before a defined time t. Figure 5.5 influence of the

115



device.

loT device.

Figure 5.10: The influence of the active mode power. PACT o n  the distribution of the lifetime of the loT

Figure 5.11: The influence of the proportion of sleep time, HsLEEP 011 t6e distribution of the lifetime of the
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Figure 5.12: The influence of the proportion of sleep lime. R-SLEEP  011 the probability that the energy stored 

in the battery is completely depleted.

Coefficient of variance of the energy consumption on the distribution of the lifetime of the loT device. It 

shows that large variations in die energy consumption of the loT also result in a large variation in the lifetime 

of the loT devices and makes it difficult to predict the lifetime of the loT device or the expected time to 

change the battery of the device. Usually, the energy consumption of the loT devices may vary very slightly, 

but the variations could be significant if the device experiences energy depletion attacks at random times. 

Some energy depletion attacks that do not degrade the QoS (some improve QoS by increasing the transmit 

power when the noise or interference level is high while draining more energy from the battery) make them 

difficult to detect using the traditional QoS-based attack detection mechanisms. In this case, it could be 

preferable to monitor both the QoS and the energy consumption metrics and use them for attack detection. 

Figure 5.5 shows the influence of the battery capacity on the probability that before lime t, the energy stored 

in the battery is completely depleted. The loT devices that require a long life include those used in industries 

such as oil and gas. agriculture, health care, wildlife conservation, forestry, and waler monitoring 1186J. The 

use of batteries with small energy storage capacity results in frequent battery replacements, which increase 

maintenance costs. However, the choice of battery capacity for an loT device depends on (he battery's cost, 

size, weight, and energy density. Therefore, based on the power consumption budget of the loT device, die 

battery specifications should be selected in such a way as to have a long lifetime. Figure 5.5 shows the 

relationship between the battery capacity and the mean lifetime of the device.

When deploying an loT device in an loT network, it is possible that the probability of the lime after 

the energy stored in the battery should have decreased to a defined percentage (??%) of its initial amount. Il 

enables the operator to estimate lite lime after which the battery of the loT device should be replaced without 

waiting until the energy stored in the battery is completely depleted before the battery is replaced. It is to 

ensure that the device is not shut down due to the complete depletion of the energy stored in the battery. 

Figure 5.5 shows the influence of the energy threshold percentage .r =  r/. on the probability density function 

(PDF). 7 B .,̂ ( t ) .  It is the PDF that after time t, the amount of energy present in the battery is r =  qB. that
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Figure 5.13: The influence of the Coefficient of varience of the energy consumption on the distribution
of (he lifetime of the loT device.

Figure 5.14: The influence of the battery capacity B  on the probability that the energy stored in the battery
is completely depleted.
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Figure 5.15: Mean device lifetime n r  versus battery capacity B  for various values of sleep mode ratio 

B S L E E P -

is. the battery must have discharged to 1 -  // percent of its initial amount of energy. Figure 5.5 shows the 
influence of the energy threshold percentage x =  //. probability that after time t. the amount of
energy present in the battery is x  = i]B; that is, the battery' must have discharged to 1 — q percent of it’s 
initial amount of energy.

5.6 Conclusion

During the development and deployment of loT devices and networks, making reasonable tradeoffs be
tween QoS. security, and the energy consumption is essential to ensure reliability, security, and a longer 
lifetime of the loT devices. It is important to prioritize power consumption when designing and deploying 
loT devices and networks. Some of the ways to reduce power consumption include the implementation of 
sleep mode (which could reduce up to 90% of the energy consumption), avoiding excessive push notifi
cations, choosing when and how to transmit information, selecting the most appropriate wireless protocol 
1186|. and implementation of energy depletion attack systems to prevent attacks that are aimed at rapidly- 
draining the battery of the device. To prolong the lifetime of loT devices and to minimise the impact of 
battery depletion, energy harvesting has been used where possible to recharge the battery with energy har

vested from the environment. Our study was limited to developing the diffusion approximation for a battery 
without any renewable energy source.

We have applied a diffusion or Brownian motion process to model the energy depletion process of a 
battery of an loT device. We used the model to obtain the probability density function, mean, variance, and 
probability of the lifetime of an loT device. Also, we studied the influence of the active power consumption, 
sleep time, battery capacity on the probability density function, mean, and probability of the lifetime of 
an loT device. Since battery depletion attacks are always aimed at manipulating the loT device to increase 
its energy consumption significantly, the numerical examples enabled us to study the influence of battery
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Figure 5 .16: The probability density function (PDF), that after time £, the amount of energy present
in the battery is x  = yB , that is. the battery must have discharged to 1 — // percent of it’s initial amount of 
energy.

Figure 5.17: The probability that after time £. the amount of energy present in the battery is
x  = i/B. that is the battery must have discharged to 1 — r/ percent of it's initial amount of energy.
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depletion attacks on the distribution of the lifetime of an loT device. We also introduced in our model 
the energy threshold after which the battery of the device should be replaced to ensure that the battery 
is not completely drained before it is replaced. The time after which the battery should be replaced can 
be obtained from our model. Therefore, the diffusion approximation can be used to conveniently model 
the energy depletion process of the battery of an loT device, and with knowledge of the battery capacity, 
the average power consumption, and the variance of energy consumption (if any), the probability density 
function, the mean, variance, and probability of the lifetime of an loT device can be obtained.
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Chapter 6

Performance Modelling of the Battery 
Energy Storage System (BESS) for a Green 
Mobile Network Base Station (e.g 
BTS,NodeB,eNodeB or gNodeB) Site

In the previous chapter, we discussed modelling the energy depletion process used to supply computer 

systems (e.g.. loT devices, drones, mobile phones, etc.). Some of these battery-powered computer systems 

can be deployed alongside energy harvesting systems. The energy harvesting systems can harvest energy 

from environmental energy sources such as solar, thermal, wind, and vibrations. The harvested energy can 

be used to supply the computer systems or stored in a Battery Energy Storage System (BESS). The energy 

stored in the BESS can then be drawn to power the computer systems.

The use of energy harvesting systems to replenish the energy depleted from the battery of battery- 

powered computer systems to operate for a long time without human intervention to recharge or replace the 

battery. In battery-powered computer systems (e.g.. loT devices, drones, etc.), their lifetime (the required to 

drain the energy stored in the battery) is very important. Deploying energy harvesting systems to continu

ously recharge the battery significantly extends the lifetime of the computer system, hence improving the 

QoS.

Also, using renewable energy sources to power computer systems and Information and Communication 

Technology (ICT) infrastructures is a sustainable way to reduce ICT-related carbon emissions. In off-grid 

rural environments, renewable energy may be a cheaper solution to power computer systems or ICT infras

tructures. Electricity supply in sub-Saharan Africa is subject to frequent outages due to insufficient energy 

generation and/or poor transmission distribution infrastructure [77]. Also, many rural communities in these 

regions are not yet connected to the grid. Thus. ICT infrastructures (e.g.. base stations, network access points, 

transmission systems) deployed in off-grid environments can be reliably powered using energy harvesting 

and storage infrastructures.

There is increasing use of renewable energy to power base station sites to reduce carbon footprint and 

operational expenditures (OPEX) [248]. With the recent increase in energy prices, the cost of energy has 

become the dominating operational cost for mobile network operators 1197[. Although the base stations of
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Figure 6.1 : The architecture of a green base station site.
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next-generation mobile networks (5G/6G mobile networks) are designed to be energy efficient, the dense 
and large-scale deployment of these base stations will increase the energy demands of mobile networks. 
Therefore, increasing the energy mix of mobile networks to include renewable energy sources and energy 
storage systems could reduce the carbon emission and operation of mobile networks.

Because of the transient fluctuations in the supply of energy from renewable energy sources [2011 and 
the fluctuation in the energy demand of some computer systems and ICT infrastructure. BESS is essential 
to absorb the energy harvesting intermittency and demand fluctuations. The harvested energy is temporarily 
buffered in the BESS and then drawn to power computer systems or ICT infrastructure. In this chapter, we 
apply Markovian and diffusion approximation models to analyse the performance of BESS for a green base 
station site. We compared the results obtained from the two modelling approaches.

In this chapter, we present an architecture of a green base station site. We develop Markovian and 
diffusion approximation models for the analysis of steady-state and transient-state performance of battery 
energy storage systems. We apply Markovian and diffusion approximation model to derive the time after 
which the battery energy storage system is completely discharged or fully charged. By assuming that the 
energy harvesting and the energy consumption processes are exponentially distributed, we compare the 

result obtained from the Markovian model to those from diffusion approximation models. A portion of the 
material presented in this chapter was published in [58. 53].

6.1 The architecture of battery energy storage systems for a base station

The architecture of a green base station site consists of renewable energy sources (e.g.. wind or solar), 
an energy storage system (e.g.. battery bank), a battery management system, and the base station system 
with other hardware infrastructure. Renewable energy sources generate energy that is stored in the batteiy
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energy storage system. The stored energy is drawn and transferred to the base station power system and used 

to power the base station.

Consider a base station that is located in a remote area without access to an electricity grid, as shown in 

figure 6. Renewable energy sources such as photovoltaic or wind are installed to generate enough electrical 

energy' to power the base station, the transmission systems, and all the other electrical infrastructure installed 

on the base station site. Since the energy generated by renewable energy sources may fluctuate depending on 

the weather conditions, a battery energy storage system is installed between the renewable energy sources 

and the base station to store the excess energy generated and smoothen the output power delivered to the 

base station.

The battery management system performs supervisory control and data acquisition. The data about the 

state of charge and state of health of the BESS, the average energy generation rate, and the average energy 

consumption rate is collected. The data collected can be used for local supervisory and control and sent to 

the operation, maintenance, administration (OM A) centre of the mobile operator for further processing and 

optimization. If the energy stored in the BESS is depleted below a defined energy threshold, the battery 

management system should switch the base station from die battery to die backup generator to ensure dial 

the base is not shut down when the battery is fully drained. A shut down of a base station results in significant 

losses for the mobile operator.

Suppose the weather condition or the deployed renewable energy resources is able to generate sufficient 

amounts of energy diat can supply the base station with little or no fluctuations. In that case, the supervisory 

control should be configured so dial the energy infrastructure can supply the base station directly and charge 

the BESS simultaneously. In this case, when the weather condition is not sufficient for generating enough 

energy to supply the base station directly, the base station is powered through the BESS. When the energy 

stored in the BESS decreases below a defined threshold, and the renewable energy sources are not sufficient 

to power the base station, it is switched from the BESS to a backup generator to avoid service interruption.

6.2 Stochastic model for a battery energy storage systems

The amount of energy generated by the PV systems or Wind turbine is non-deterministic because it 

depends on variable environmental factors such as intensity of the sunlight, duration of the sunlight, tem

perature. humidity, and win speed. The energy drawn from the battery to power the base station is non- 

deterministic because it depends on the service traffic which is random [ 167]. Therefore, since the energy 

generation and energy consumption processes are non-deterministic. the dynamic changes in the amount of 

energy present in the battery at lime t can be modelled using stochastic processes e.g.. Markovian models 

and diffusion approximation models.

The metric that is used to represent the available storage capacity of a battery energy storage system is 

the state-of-charge (SoC)[256]. It provides information about the relative amount of energy remaining in the 

batter, ft can be estimated using the Coulomb counting (Ampere-hour integral) as 12371

SoC(t) =  1 + * 100 (6.1)

where //,. is the battery’s coulombic efficiency. /  is the battery terminal current, and Q is the rated capacity 

of the battery (in Ah), and assuming that the battery is full initially at time / =  0. The use of state-of-charge
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metric is sometimes preferable because it is can be expressed in terms of the battery voltage which is in- 

Hunced by by environmental factors and battery parameters such as discharging rate, ambebient temperature, 

and battery aging. It provides information about the residual energy of the battery and is defined as the ratio 

of the remaining energy to the total energy [252]. Il can be expressed as

SoE (t) =
B

, . %£■(/)]

Where V  is the battery voltage. / ’ is (he power, B  is the energy rating of the battery (in Wh). and The energy 

present in the battery at time t. The changes in SoC or SoE indicates changes in the energy content of the 

battery e.g.,

— [SoE(t +  A) -  5oE(/)] =  E(J +  A) -  E (t)  (6.3)
11)1) * T/e

The amount of energy present in the battery at time / is

E W  =  E x t f  -  E D (t) (6.4)

where E u^t) is the cummulalive amount of energy harvested and stored in the battery and E p it)  up to lime 

/ is the cummulative amount of energy drawn from the battery to supply the load up to time f. The change 

in the amount of energy in the queue between time / and / +  A is

E(l, +  A) -  E (t) = [E H (t +  A) -  EH^ }  -  {E D ( t  +  A) -  E D (i)}  (6.5)

For small energy changes (A — >  0), the energy present in the battery at any given time t satisfies the 

following differential equation:
d E (tj d E u (t)  d E D (t)
—  =  — d r + ~ d r  ( “ >

The differential equation in 6.6 is difficult to solve because the function E (t)  is not differentiable at some 

points [233]. Also, it is difficult to express E n (t)  and Ejy(l) as continuous functions, instead what is often 

available is the data of the power generated by the photovoltaic systems and the data of the energy con

sumption of the base station. Since the rate at which the energy is generated and stored into the battery and 

the rale al which energy is drawn from the battery to supply the base station are non-deterministic, then, the 

SoC. SoE. or the amount of energy present in the battery at any given lime is also non-deterministic. and 

can be modelled as a stochastic process.

6.3 Markovian model of the BESS for a base station site

To apply Markovian models to model the batten' energy storage system of a base station site of a mobile 

network, we suppose that the energy generated by the photovoltaic system is stored into the battery energy 

storage system in discrete amounts called energy units or energy packets. Also, we discrctisc the energy 

drawn from the battery to power the base station into energy units. Since the amount of energy generated 

and the amount of energy drawn from the battery varies randomly over time, we assume that the arrival
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process of energy packets into the battery follows a Poison process with mean rate PH (in W) and that the 
discretised energy consumption process is exponentially distributed with mean rate Pp (in W).

The discretization and these assumptions are used for mathematical convenience to treat the battery 
energy storage system as an energy buffer that is continuously supplied with random amounts of energy 
and random amounts of energy is drawn from it to power the basse station. It enables the application of 
well-known Markovian models developed for the analysis of queueing systems in computer systems and 
networks, manufacturing, and the service industry. When the battery is charged to full capacity, additional 
amounts of energy generated is not added to the battery (it is either redirected to another energy storage 
system or wasted). Therefore, we model the battery as an M/M/l/B Markovian model, which is simple 
and its results are well-known in the queueing theory literature. The symbol M  represents the the energy 
generation and consumptions processes. B  is the capacity of the battery. 1 indicates that we have a single 
load (base station) that is supplied by the batery.

A Markovian process is a stochastic process that possess the "memoryless" property in which the future 
of the process depends only only on its present state (regardless of its past states): that is, the knowledge 
about the future states of the process, depends entirely on the present states. Let N (f) ,l  0 be a random 
process that represents the number of energy units present in the batter at time t, and the probability that 
there are n energy units in the battery be P {N (t) =  77} =  Pn (t), where. Pn is the state probability of 
having n  energy units in the battery. If the process is at stale n (that is n energy units in the battery), and 
with the arrival of an energy unit the process jumps to the state 71 +  1. The difference-differential equations 
for the time-dependent evolution of the process is

-  - P Ô P H + P ^ P D (6.7)at
p  (+} ~ ~

-  Pn - l ( t ) P f f - P n (P)(PH  + PD ) + ^^  0 < n < B

-  P B -i(t)P n  -  P ^ P D

Where Po(t) and PHB) is the probability that the battery is empty (that is. the energy stored in the battery is 
completely depleted) at lime t and the probability that the battery is fully charged to its maximum capacity 
at lime L

6.3.1 Transient-sate analysis

We use ihe method developed by Sharma and Gupta [218] for the transient analysis of an M/M/l/k 
queueing model to analyse the transient behaviour of the BESS. Suppose that Po(O) =  1 and Pn (0) =  0. for 
77 /  0 (that the BESS is initially empty), and taking the Laplace transform of the equations in (6.8) we have

(PH + W W  = 

(PH + PD  + ^ P r M  = 

(PD + S)PB W  =

l + P (s )P n

A - i (^ P u  + PU+I^ P D 0 < n  < B

PB - I ^ P H

(6.8)

where.
/•OO

Pn (s) = /  e~°‘P„(t)dt 
Jo

127



and.

~ PnW

Also, suppose that PQ(0) =  9 “nd Pn (0) =  1. for H 0 (that the BESS is not empty initially), then the 
Laplace transform of the equations in (6.8) becomes

(PH + s)P0 (s) 

(PH + PD  + s)Pn (.s') 

(PD + S)PB (S)

PI ^ P D

1 + P „ ^  ̂ P H  + P„+i (S^PD 0 < n < B

1 +  PB - I^ P H

(6.9)

The set of equations in 6.9 and 6.10 can be solved using any linear solver to obtain the state probabilities. 
The solution to the equations in (6.9) were developed by the authors in [218J. Therefore, the transient-state 
probability of having n energy packets in the BESS is given by

where,

X(s) =

and

w(s) -

n + 1 ] — [xS  n  — u>B  ”] 
^ + ^ 3 « + * ]

•s +  PH + Po + \ /  (« + PH  + PD)2 — ^PR PD

2PD

* + PH + PD -  \/(s  +  PH + PD )2 -  ^PH ^ D 

Z^D '
The transient state probability of having n  =  0 energy units in the BESS is

-u > 8 + l]

and the transient state probability of having n = B  energy units in the BESS is

PB (*) =

For large capacity of the BESS, which is possible if the BESS is oversized.

lim P ^ s)  = 13^00

(6.10)

(6.11)

(6.12)

(6.13)

We consider some numerical examples to study the transient state probabilities and the influence of en
ergy supply-demand ratio, o on the transient state probability. We invert the Laplace transform in (6.10) 
numerically using the Stchfest algorithm |230],

In Figure 6.3.1, it can be seen that the probability that energy stored in the battery will be completely 
depleted, Po(t) decreases with time and then attains steady-slate. The observed decrease is because, we 
assumed that the BESS is empty at time t = 0 (e.g. Po(O) =  1). Il can also be seen that for small values 
of «, the decrease is very rapid, while for larger values of Q the decrease is very gradual. After some time. 
Pn(l) attains steady-state, and the steady-state value attained decreases with increasing value of o as shown 
in Figure 6.3.2 in the next subsection below.

Fig. 6.3.1 shows the transient behaviour of the slate probabilities of having n energy packets in the 
BESS. The state probabilities increase for n  > 0 and then attain a steady state. In this case, it is assumed
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0.014

Figure 6.2: The influence of g on the transient-state probability that the energy stored in the BESS is com
pletely depleted.

Figure 6.3: The transient-state probabilities for the BESS, for Q =  0.60.
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charged.

Figure 6.4: The influence of p on the transient-state probability for n = 10.

Figure 6.5: The influence of Q on the transient-state probability that the energy stored in the BESS is fully
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Figure 6.6: The variation of P  ̂ and PH with the energy generation to demand ratio, p.

that at t = (). the BESS is empty and / ’„ (()) =  0 for n > 0. For small values of n,, the increase is rapid, and 
for larger values of n, the increase is gradual.

Figure 6.3.1 shows the influence of o on the transient-state probability for n =  10. As p increases, it 
takes longer to attain steady-state. A similar observation can be seen in figure 6.3.1 on the influence of p 
on the transient-state probability. PB ^ )  that the energy stored in the BESS is fully charged. When PB (() 
attains steady-state, its steady-stale value increases with increasing p as shown in Figure 6.3.2 in the next 
subsection below.

6.3.2 Steady-state analysis

In steady-state, the equations in (6.8) becomes linear equations, and the steady-stale probability distri
bution of the number of energy units in the battery is given by

' 1
. 5 + 1

for p 1 , 

for p — 1
(6.14)

where p = ^ -  is the energy generation to demand ratio. The probability that the energy stored in the 

battery' is completely depleted is an important performance metrics because when there is no energy in the 

battery', the base station will be shutdown, resulting in service outage which is undesirable for users and 
results in financial loses for the operator. The steady-state probability that the energy stored in the battery is 
completely depleted is given by

1 -  g
1 -  p6 * 1

5  + 1

for p /  1 ,

for p =  1
(6.15)

The probability (hat the battery is fully charged is important because when the battery is fully charged, 
additional energy generated could be wasted. The photovoltaic resourse should be provisioned in such as

131



Figure 6.7: The variation of battery depletion probability. Pn  with the energy generation to demand ratio, p 

and BESS capacity B.

way as to ensure that it generates sufficient amount of energy to ensure that the battery does not become 

empty. However, the capacity of the battery is limited (due to cost and technological limitations), and it 

is unneccessary Io deploy more sources to generate more energy in which a majority of it is wasted. The 

steady-state probability that the battery is fully charged is

PB =  {
P ^ for g 0  1 , 

for p =  1
(6.16)1

B + \

Figure 6.3.2 shows that the probability that the energy stored in the battery is completely depleted. PQ 

decreases as the energy generation to demand ratio, g increases. For g < \ (PH < PD )- the battery is 

discharging and there is a higher probability that the battery will be completely drained. Also, for p >  1 

(PH PD ), the probability that the battery will be completely drained is low but the probability that the 

battery will become fully charged is higher. Therefore, the resources of the photovoltaic system should be 

determined in such a way as to ensure that value of g is as high as possible, but reasonable enough as to keep 

the probability of overcharging the battery within reasonable limits. By selecting desirable or target values 

of P<) and g. the capacity of the battery can be determined as

The capacity of the battery should be a large as possible to ensure that enough energy is stored during 

the periods where a lot of energy is generated and then used when little or no energy is generated. The 

capacity should be large enough to ensure that energy generated is not wasted to due to battery overcharging. 

However, the capacity of the battery that can be selected is limited cost. size, energy density of the material, 

and the battery technology.
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Figure 6.8: The variation of energy wastage probability. PB with the energy generation to demand ratio, Q 
and BESS capacity B.

Figure 6.3.2 shows the variation of energy depletion probability, PQ with the energy generation to de
mand ratio, o and BESS capacity B. Based on the energy demands on the base station site, the renewable 
energy generation system should be designed in such a way as to ensure that the energy depletion proba
bility. PQ is as low as possible. Figure 6.3.2 shows the variation of energy energy wastage probability. PB 
with the energy generation to demand ratio, p and BESS capacity B. It is desirable that Q > 1. to reduce 
the probability of completely draining the battery, but it increases the probability of overcharging the battery 
PB . which damages the battery and also waste excess energy. The energy capacity of the BESS decreases 
over time, and sharply increases the probability of battery overcharging PB - Therefore. The probability of 
battery overcharging increases sharply with decreasing battery capacity B  and also increases sharply with 
increasing energy generation to demand ratio, o.

6.4 Markovian models for the analysis of the time required to completely 

discharge or fully charge the BESS

6.4.1 The time after which the energy stored in the BESS is completely depleted

Suppose that initially, we have i energy packets (for i E [1 B\) in the battery at time i =  0. Also, let the 

random variable T  represents the lime after which the battery becomes empty which is the first passage time 
of the process from ATO) =  i to A (t) =  0 ( when all the energy stored in the battery is completely depleted), 
that is T  = in f{ t  > 0 : N (t) =  0 | A’(0) =  ¿}. This time is a very important parameter because when 
the energy stored in the battery is deleted, a more expensive backup energy source is activated, otherwise, 
the base station and all the other transmission equipments on the site will be shutdown resulting in financial 
loses for the mobile network operator. It is equivalent to the duration or the length of the busy period of an 
M/M/l/B Markovian process that started from ATO) =  i and ends at N (t) =  0. Therefore. PDF of the first 
passage time of a Markovian "birth-death" process in (6.8) from AT(0) =  i to A'(0 =  0 (duration of the
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busy period), with a reflecting barrier at 13 can be expressed in the Laplace domain as [236]:

- 1] + -  u  
[^(s)]B ['?(«) -  1] +  [<(*)]*[<(») -  1]

(6.18)

where,
s + PH  +  PD  ~ \ / (s + PH 3- PD )2 -  ^P H PD 

2PH

and
+  PH  +  PD  +  \ / (* +  PH  +  PD Y -  ¿PH PD 

2^H
Ils mean is

7 _ 5-i+l 1 ~ g*
PD -  PH '  W  ~ £-)2 
i(2B  -  z + 1)

2PD

for Q 1 ,

for Q =  1
(6.19)

and variance
var(T) = E[T2] -  E[T] (6.20)

where.

i2 , z(l +  Q + + 2̂ B+1)
* 2 „ "f" * 9

PD  (1 -  p)2 PD 33  -  e y
2gB-»+l(l-£A)[2+2B(l-i0 + ^

PD (1 -  e)4

lor Q 7̂  1 and

12Pp2

for Q =  1.
Figure 6.4.1 shows the influence of i on the probability density of the time after which the energy stored 

in the BESS is completely depleted. It can be seen that as initial amount of energy stored in the BESS i 
increases, the probability of the time after which the energy stored in it is completely depleted decreases. 
Figure 6.4.1 shows the influence of p on the probability density of the time after which the energy stored in 
the BESS is completely depleted. It can be seen that as the probability of the time after which the energy 
stored in the BESS is completly depleted decreases with increasing ratio of the energy supplied to the BESS 
to the energy drawn, g. For very large battery capacity.

lim h ^ s )  = [£(«)]’13—oo (6.21)

and
E[T\ = — -—-—— for Q <  1 and B -  > oo 

PH - P D

Assuming that the BESS is initially empty and that the arrival of one unit of energy starts that charging
process, then, the busy period of the BESS is

(6.22)

Also, assuming that initially, the BESS is fully charged (i = B). then, the first passage time from ;V(0) =  13
to N (t)  =  0 is

IiBsM (6.23)
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Figure 6.9: The influence of i on the probability density of the time after which the energy stored in the 
BESS is completely depleted, for o =  0.60.

Figure 6.10: The influence of o on the probability density of the time after which the energy stored in the 
BESS is completely depleted, for i — 10.
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6.4.2 The time after which the BESS is fully charged

It is the time required lor the energy stored in the battery to increase from its initial amount of i G 
[0 B  — 1] to the the full capacity of the BESS 13. It is important to know the lime required for the energy 
stored in the BESS to increase to its full capacity. B, for a given supply to demand ratio, p. When the BESS 
is fully charged, if the base station cannot be supplied directed with the harvested energy, then it is will be 
wasted which is not desirable. It can be obtained by deriving the first passage time of the Markovian process 
from N (0) =  i to N (t) = B. with a reflecting barrier at 0. The time required for the energy stored in the 
BESS to increase from i to B  is given in the Laplace domain can be adapted from equation (6.18) as:

for o = 1. For very large battery capacity.

with mean,

—-B-- ---- -i ;--------;------------ rto r p , 1. , 
E\T] = < P r > ~  P h  P r ) ^  “--------------------------------------------------- (6 25)

------------ ------------ for p =  1 
2PD

and variance
var(T) =  E[T2] -  E[T] (6.26)

where.

E [ ^ 2] =  ~  0 2 +  ( g - i ) ( l  + p + 2p - i +  2p-»)

PD2 (& -yy- PA O- W
20^(1 -  e - ( B  -  ¿))[2p +  2 B ^  -  1) +  p—B]

A / ( p - l ) 4

for p 1 and

£ [ r 2 ] _  ( B -  W *  -  * w ®  -  * -  

BPD
(B  -  i){ 4 5 (5 2 +  (3 +  2i)B  4- 2 -  i2 )}

12Pp

lim =  [¿(.s)]B - '  (6.27)
B—oo

and
B -  i

ElTl = ---- =-------for p < 1 and B -  > oo
PH - PD

Figure 6.4.2 shows the influence of the capacity of the BESS B. on the probability density of the time 
after which the BESS is fully charged. It can be observed that the mean lime required to charge from i to its 
full capacity, decreases with decreasing value of B. When the BESS is full, any additional energy harvested 
is wasted. Figure 6.4.2 shows the influence of p on the probability density of the time after which the BESS is 
fully charged. It can be seen that the probability of the time after which the BESS is fully charged increases 
with increasing ratio of the energy supplied to the BESS to the energy drawn p. The energy harvesting 
resources should be provisionsed in such a way as to avoid quicktly over charging of the BESS.
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Figure 6.11: The influence of B  on the probability density of the time after which the BESS is fully charged.

i° r  * =  10, p =  0.60.

Figure 6.12: The influence of o on the probability density of the lime after which the BESS is fully charged.
h i.s ity  for i = 10, Q — 0.60.
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6.5 Diffusion model of the BESS for a base station site

The assumption that the energy generation process follows the Poison process and that the energy con
sumption process is exponentially distributed is not exactly true in reality. Other alternative approaches to 
realistically model the stochastic and continuous nature of energy is the use of fluid flow models [83] and 
diffusion approximation models [5], In applying fluid flow models to model the time evolution of the energy 
stored in the battery, the changes in the amount of energy present in the battery at time t are considered 
to be analogous to the changes of a fluid in a reservoir. With diffusion approximation, the changes in the 
energy content of the buffer are modelled using diffusion or Brownian motion process, which is a continu
ous stochastic process. The advantage of using the diffusion approximation model is that it requires realistic 
distributions of the energy generation and consumption processes, which gives room for the use of historical 
data collected over time in the design and dimensioning of base station sites powered by renewable energy 
sources.

If we assume that the changes in the energy content of the battery A F(/) =  E(l +  A) -  E(l) are 
normally distributed, then we can approximate the energy changing process of the battery by a diffusion or 
Brownian motion process X (t)  whose changes A X (i) =  X (t  +  A) — X (t)  are normally distributed with 
mean dX t and variance o Af where:

= ,  
A t^O  Ai

Var[X(t +  Ai) -  X(f)] 
a =  Inn ----- -— --- r—  ------------.

A t—0 Ai

The dynamic changes in the energy content of the battery (during charging and discharging) can then be 
described by the second order partial differential equation of a diffusion process [44]

d f^ x ^ x o )  a d ~ f(x , t : x 0 ) d f ( x , t ; x 0 )
— 01—  =  2 — f a * ----------- 1 3 — & — ' < 6 9 )

The Diffuson process X(t) on the interval [0. /?[ represents the amount of energy present in the battery at 
lime I. Its probability density function f ( x .  I: XQ) gives probability that the amount of the energy present in 
the battery at time t is x. given that the initial amount of energy in the battery was .ry- The model is equivelent 
to G/G/l/B queueing model, where the symbol G means that the distribution of the energy generation and 
and energy consumption are general (not limited to any particular distribution). By restricted the diffusion 
process, X(t) within the interval [0. B], the diffusion equations describing the energy changes in the battery 
becomes [84]

d f(x , t; x 0 ) _  iYd2 f(x ,t:x » )  _  d f ( x , t ; x 0 ) 
dt 2 9 x 2 dx

+PnPo(t)6(x -  1) +  PixPH(t)ti(x -  B  +  1) ,

~ d T  =  2 — f a ---------

+  w  ( M 0 )

at x-^B Z ox

where 5(x) is the Dirac delta function. po(t), PB^) arc probabilities that the process is at the barriers at 
x  =  0 or x  = B. (battery is empty or fully charged). If the battery is charged at the beginning, then 

PBW  =  1.
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6.5.1 The transient analysis

The transient solution of (6.30) may be compulalionaly obtained with the approach of [47], [56] pre
sented in chapter three. In this chapter, we adapt the method to the analysis of the transient state probabilities 
of having x  amount of energy in the BESS at time t. In the first step we consider a diffusion process with 
two absorbing barriers at x =  0 and x  = B. that started al t — 0 from x  =  XQ. Ils probability density 
function <p(x, t; xo) has for t > 0 the following form [44]

=
1 V  ~  ^0  ~  ~  ^ ) 2

« 2o/

FL a  2af

where x„ =  2nB, x"t — -2xo  -  x„ .

The Laplace transform of 0(x,f:xo) is

(6.31)

^(x,s;xo) =

(6.32)

_  e x p f -^  ^ ( . s ) ] } .

with .4(s) =  \//52 +  2as.

The probability density function f (x ,  i; B) of the diffusion process with jumps from the boundaries is 
composed of a spectrum of functions d>(x, / -  T : 1). 0(x, / — r: B  — 1) representing diffusion processes with 
absorbing barriers at x = () and x  = B, that started with densities <71 (r) and gp-\ (r) at time T <  / at points 
x  -  1 and x = B  — 1 due to jumps from the barriers:

f ( x . t :B )  = /  gi(r)d)(x,t — r; l)dr  
Jo

+ /  <)B-i(r)<i>(x,t ~  T ; B  -  l)dr
Jo

= yi(t) * /: 1) +  gB -i(t) * 0(x, t: B  -  1)

(6.33)

where * denotes convolution, and densities g \(f). gB-i (f). as well as po(f) and P B W- are obtained from the 
probability balance equations at the barriers.

The densities 70(f), 7B (<) of probability that at time / the process enters a barrier at x =  0 or x  = B are
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7oU) =  /  - r ) d r
Jo

+ -  T)dT
Jo

— th (f) * 71,o(i) +  9B - \ ^ )  * 78-1.0(0,
7B (0  =  [  g ^T )^ \.B (t -  T )(IT

Jo

Jo
= PB W W )  + <Jk(  ̂*71.B (0

+ 9B -l(t) * 'kB-l.B^t), (6.34)

where 71.0(f). 71./?(/). 7B - I ,O(O» are densities of the first passage times between the correspond
ing points. The density of the first passage time of the diffusion process from the point T =  To to T =  () is 
the first passage time distribution for a diffusion process that starts from the point x  =  .To and is absorbed at 
T =  0 is

P 0 ,0: 5 2/ (x ,  t; .T0 ) . ^ / ( T , t: TO) .
=  U ~ ---------13 d t  | d T

-------- I ^ X x 0 ]

with the Laplace transform

v^ITaf3

7®u .o(s)

(6.35)

(6.36)

Eq. (6.35) presents a probability density function in case of (J < 0, when probability that the process 
will reach the barrier equals 1. and ,'ix0 ,o(t)dl — 1. Otherwise, for id > 1. the probability that the 
process ends at the barrier is and the conditional pdf is 7^, o(O =  7a:n.o(f)e2^a'<,' 0  and =

• The same refers to the case < 0 with the initial point TO placed left to the absorbing 
barrier. The first passage time of the diffusion process from the point TI to another point T?. TI < x? is

7ri,X '> (() —
T2 -  T l  (* » -* !-M )2

— e 2«f

v/2nat3
(6.37)

and its corresponsing Laplace transform is

7 z t  ,X2 (®) =  e -.(X 2- x l ) S ± ^ ± ^ (6.38)

The densities of jumps in Eq. (6.33) depend on 70(f). " B ^ )  in the following way:

01(0 = [  70(t ~
Jo

9B -i(t) = I  7 s (i -  T)lB (T)dr * IB U), 
Jo

(6.39)
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Figure 6.13: The influence of C^, on the transient mean energy content of (he BESS. A =  0.5.

where /o(f), I BW are the densities of sojourn times in x  =  0 and r  =  B  (they have means 1 /A and 1 /ft but 
are of general type).

With the use of (6.34) and (6.39) we obtain all information needed in the solution (6.33). To simplify 
the task, we use these equations in Laplace domain where the transform of the convolution of functions 
becomes a prodact of the transforms of these functions and at the end we seek numerically the original of 
the obtained transform of f ( x .  f; B).

Probabilities that the proces is at barriers are

?o(i) =  I  b o M -5 i(r ) ]d 7 - ,
JO

pB(t) =  [  -  gB - i(r )]d T . (6.40)
./o

Figure 6.5.1 shows the influence of ( on the transient mean energy content of the BESS. It was assumed 
that at time I = 0, the BESS is not empty. Since p < 1. the energy content of the BESS decreases with with 
time and then attains steady state. For small values of C^. the crease is rapid, and as increases, the 
decrease becomes slower.

Figures 6.5.1 shows the influence g = on the transient mean energy content of the BESS. For small 
values of g, the crease is rapid, and as g increases, the decrease becomes slower

The probaility that a BESS that started with .r0 amount of energy will never become empty is ¡3 is
-20Xn

1 — e » (6.41)

6.5.2 The steady analysis

Suppose that the battery is supplied by energy energy generated from a solar energy system, which 
converts solar energy directly into electrical energy, then the battery energy storage system is supplied by 
the photovoltaic output power. The output power of the photovoltaic system is given by:
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Figure 6.14: The influence of p on the transient mean energy content of the BESS, C \  =  1 // = 1.

Figure 6.15: The influence of C \  on the probabbility that a BESS that started with x’o amount of energy will 
never become empty, for o = 0.8, p =  1.
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In steady-state, the partial differential equations in (6.30) become ordinary differential equations and 
the state probabilities for the amount of energy present in the battery are independent of time, e.g., 

lini^oc po(O =  Po> — pp, t; .ro) =  f  The steady-state distribution of
the amount of energy present in the buffer is

/M  =

- =“ )

^D P B J

for 0 <  x  < 1 ,

(6.42)for 1 C x < B  — 1 ,

for B  -  1 <  x  < B .

where z = and pp is the probability that the battery is empty (that the energy stored in the battery is 
completely depleted), and pp is the probability that the battery is fully charged, po and pp are obtained 
through normalization, po +  f ( x )  + pp =  1. as:

P0 =

{1 +  ^ -(B -t)  +  ^ [ 1  -  
1 -  Q

for Q 1.

for 0 =  1
(6.43)

2[1 +  (B  -  l)P H /a]

and

Q Poe^  for p 0 1 ,
1 

------------------- :------ for 0 =  1 
2[1 +  (B  -  l)P H /a]

(6.44)

For a given probability of completely depleting the amount of energy stored in the BESS. po and the energy 
supply to load ration 0. (he capacity of the BESS can be selected using the diffusion model as

Figure 6.5.2 shows the influence of p on the steady state probability density of the amount of energy 
present in the BESS. For small values of p <  1 the probability of having larger amounts of energy stored 

in the BESS is smaller and as p increase the probability of having larger amounts of energy stored in the 
BESS in creases. For larger values of p > 1. the probability of having smaller amount of energy stored in 
the BESS is smaller while the probability of having larger amounts of energy stored in the BESS increases.

The probability of having x  = 0 amount of energy in the BESS, po and the probability of having x = B 
amount of energy in the BESS, pp are also computed using the diffusion approximation model. The variation 
of po and pp  with p shown in 6.5.2 computed using the diffusion approximation model, and it is similar to 
the results obtained using the Markovian model shown in figure 6.3.2. A comparison of po and pp from the 
Markovian model and diffusion approximation is shown in figure 6.5.2.

for 0 0 1 ,

for 0 =  1
(6.45)
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0.05

Figure 6.16: The influence of the energy generation to demand ratio, p on the steady-state distribution of the 
amount of energy present in the battety, for () < x  < B.

Figure 6.17: The variation of PQ and Pg with the energy generation to demand ratio, g: diffusion model.
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Figure 6.18: The variation of PQ and Pn with the energy generation to demand ratio, p: comparison of 
diffusion and Markov models model.

6.6 Diffusion models for the analysis of the time required to completely dis
charge or fully charge the BESS

6.6.1 The time after which the energy stored in the BESS is completely depleted

We use diffusion approximation to derive the time after which the energy stored in the BESS is com
pletely depleted and then compare the results obtained using diffusion approximation with those obtained 
using Markovian model. Suppose that the random variable T  represent the first passage time of the diffusion 
process from -¥(0) =  i (for i >  0) to X (t) = 0; that is, T  = in f{ t  > 0 : X (t) =  0|X(0) =  /}. The 
time after which the energy stored in the BESS is completely depleted, /*, o(f) is a combinations of the first 
passage time of a G/G/l/B diffusion process from x  = i to x =  0 or the duration of the busy period of a 
G/G/l/B diffusion process. The process may start at x  = i and moves directly to x  =  0 or the process starts 

at x  — i and moves to x  — B. stays there for a time that is exponentially distributed with mean /z, and then 
jumps to x B  -  1. From x  = B  -  1, the process can move to x  =  0 and is absorbed or it can jump back 
to x. = B. stays there for a time that is exponentially distributed and then jumps back to x  = B.

To determine the probabilities of the possible sequence of movement of the diffusion process (e.g., 
whether a diffusion process that started at x  = z will move from x  — i to x — 0 or it will move to x  = B  
and if the process is at x  = B  1. the probaility that it will either move to .r =  0 or to x = B). Let us 
consider a diffusion process that started at a: =  jp  and is absorbed at x =  0, then the probability that the
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process does not reach a certain J;„. for > x’o. is given as
roo

H{xo,xn ) -  / g (i,x n ;x ())dt 
Jo

=  sli—m0[7o(s) -  %0 ,x„(s)7.r„,o(s)] 

=  1 -  lim 7 ^ , ,  (s)

1 -  -  ^b)]
1 -  

(6.46)

where
To determine the probabilities of all these sequences, assume at first a diffusion process having an 

absorbing barrier at x  =  0. started at x  = XQ and compute the probability that it does not go beyond a 
certain x„ before ending at the origin. The pdf that the process is ended at / may be written as

7o(0 =  +  /  7xo .x„(-r)7xn .o(̂  -  ^ d r
Jo

where //(/,i„ ; XQ) is the probability density (hat the process will finish its motion at time / without 
reaching the point x n  >  a:o, 7 3 |) .X„ (T ) is the probability that the process that started at x = 0 will reach the 
point x„ for the first time at within the time r. for r  < /. and 7i„.o(f — r) is the probability density that 
the process will pass from x„ to x  — 0 during the time, I — T . The density that the process is ended at the 
barrier at x  = 0. at lime t is given as

ToW =  s(t,.r„;a;o) +  /  '7xO.x ,l (T)yX n .o(t. -  r)dx  
Jo

It should be noted that fora function f (x ) .  and its Laplace transform /(s )  we have /(0 ) =  f(x )d x , and 
if f ( x )  is a probability density function defined for x  0. /(0) = 1. The duration of the busy period of 
a G/G/l/B diffusion process that starts at A'(0) =  i and is absorbed at X (t)  =  0 which represent the time 
after which the energy stored in the BESS is completely depleted is given by

= H (i, B ^ t )  +  [1 -  H(i, B )]{H (B  -  1, B ) ^ )  * * Ts-t.oW  (6-47)

+ [1 -  H (B  - \,B )]H (B  -  1. B ^ t )  * * 7B- I .OW

+ [1 -  H (B  -  1, B)]2 H (B  -  1. B ^ V )  * * TB- LOW + • •

with the Laplace transform

M » )  =  W  B ) ^ a (t) +  [1 -  H(i. B )]{H (B  -  1. B ) - ^ )  * /«(/) * TB- LOW + 

+  [1 -  H (B  -  1 ,B )]H (B  -  1, B ^ t )  * IB ^ ' B- ^ )  * 75-1,o(«) +  

+  [1 -  H (B -  1. B f H ( B  -  1. + •-•}

=  3 ) 7 '0 (.s) +  [1 - « M
1 — [1 — n ( B  — 1, 3)] }B - I ,B \S )'B {S J

(6.48)

where '* denotes /-fold convolution, with its Laplace transform ///.«(s) (we denote the Laplace transform of 
any function /( f)  by /(s ))

Figure 6.6.1 shows the comparison of the Markovian and Diffusion models of the probability density of 
the time required to completely deplete the energy stored in the BESS. /»,,o(f). The comparison is done for
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Figure 6.19: Comparison of the Markovian and Diffusion models of the probability density. 7iito(O’ for 
i =  10, f l =  1, =  1. B  =  100.
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Figure 6.20: The influence of i on the probability density, for /J =  0.G, =  1, =  1.

B  =  100..
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different values of o and it can be seen that the densities from the two models are exactly the same. In order 
to compare these two models, we assume that C4 =  CR = 1. Figure 6.6.1 shows the influence of i on the 
density of the time required to completely deplete the energy stored in the BESS. The pattern is exactly the 
same as that obtained using Markovian models as shown in Figure 6.4.1. That is. for larger i, the average 
time required to completely deplete the energy stored in the BESS increases.

For very large battery capacity, liinjg^oc H (i. B ) =  1 and

lim h i 0 (s) =  7io(s) (6.49)

The average duration of the busy period E[T]. for very large B. is the same as that obtained using Markovian 

model in the previous section and is given by

E[T] =  — -—-— — for Q < 1 and B -  > oo 
PH - P D

6.6.2 The time after which the BESS is fully charged

We use diffusion approximation to determine the time required to charge the BESS to its full energy 
capacity. Suppose that at time I =  0, we have have i amount of energy in the BESS. then, die time required 
to charge the BESS to its full capacity is the first passage time of the G/G/l/B diffusion process from the 
point x =  i to x  = B. The process starts at x =  i, at time t  =  (). and moves to x = B  and is absorbed 
with probability H. 0, or the process moves to x =  0. stays there for a time exponentially distributed with 
mean rate A, and then jumps to x =  1. At x =  1. process can move to X  = B. with probability 1 -  H( 1. i) 
and is absorbed or it moves to x =  0 with probability H (l. i). stays there for a time that is exponentially 
distributed with mean rate A. and the movements of the process are repeated until the process is absorbed at 
x =  B. The time required for the process to move from x =  z to x = B, taking into consideration all the 
movements is

h ^ t )  = H(L  +  [1 -  H (i, 0)]{/f (1, i ^ t )  * ?o(O * (6.50)

+ [1 -  * 7 ' . ^ )

+ [1 -

with the Laplace transform

I ' M  = H(i, 0 7 ^ ( 0  +  [1 -  * i0 (i) * +

+  [1 -  +

+ [1 -  * Z o W ^ o W 2* * +  ■ • ■}

=  + [i - H .
1 |1 H (1, G |7I ,O(S )W(*)

(6.51)

Figure 6.6.2 shows the comparison of the Markovian and Diffusion models of the probability density 
of the lime required to charge the BESS to its full capacity. It can be observed that the probability 
densities obtained using both models at exactly the same assuming that the energy supply and energy con
sumption processes are exponentially distributed (e.g.. =  1). Figure 6.6.2 shows the influence of
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B = 100.

0.0030

Figure 6.21: Comparison of the Markovian and Diffusion models of the probability desnisty, for 
i =  io, Q =  0.80, p =  1. =  C j  =  1. B =  100.

Figure 6.22: The influence of o on the probability density, /ij.B(t), for i =  10, /i =  1, C% =  Cg =  1,
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Figure 6.23: The influence of z on the probability density, for =  0.6, ¡i = I, =  Gg =  1.

B  =  100.

Figure 6.24: The influence of B on the probability density, /zt .g(/), for i =  10, g =  0.6, // =  1, C \  =  C g =

1.
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o on the probability density of the time required to charge the BESS to its full capacity, hi.n(t). It can be 
observed that as o increases, density of the time required to charge the BESS to its full capacity increases.

Figure 6.6.2 shows the influence o f/ on the probability density of the lime required to charge the BESS 
to its full capacity. Il can he seen that as / increases, the probability density of the lime required to 
charge the BESS to its full capacity decreases. That is, for larger i. the average time required to charg the 
BESS to its full capacity decreases. Figure 6.6.2 shows the influence of B  on the probability density of time 
required to charge the BESS to its full capacity, It can be observed that for a fixed /, the mean time 
required to charge the BESS from i to its full capacity. B. decreases with decreasing value of B.

For very large capacity of the BESS.

lim h i , B ^  =  .̂B^

The average duration of the busy period EfT]. for very' large B. is the same as that obtained using Markovian 
model in the previous section and is given by

E[T] =  — —— — for o < 1 and B — > oo 
PH -P D

6.7 Conclusion

We have analysed the performance of BESS that is continuously charged by renewable energy sources 
and discharged to supply base station. We have presented an architecture of a green base station site. We 
developed Markovian and diffusion approximation models for the analysis of steady-state and transient-state 
performance of battery energy storage systems. We applied Markovian and diffusion approximation model 
to derive the lime after which the battery energy storage system is completely discharged or fully charged. 
By assuming that the energy harvesting and the energy consumption processes are exponentially distributed, 
we compared the result obtained from the Markovian model to those from diffusion approximation models.
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Chapter 7

Conclusion

When studying, designing, or deploying computer systems and networks, researchers, systems archi

tects, and designers are often required to understand the relationship between the design parameters and the 

performance metrics of the systems. That is. they seek to understand how the design parameters influence 

the performance of the various parts of the computer system or network and the performance of the computer 

system or network as a whole. The most popular methods used for planning, dimensioning, optimization, 

and performance evaluation of computer systems and networks are experimental lest beds, real computer 

systems (or networks), simulations, or mathematical modelling.

Mathelhical modelling together with computer simulations is the most commonly used method in the 

analysis and performance evaluations of computer systems and networks, although they have their limita

tions. One of the limitations of mathematical modelling and computer simulations is the assumptions that 

are often made which are usually different from reality. For example. Markovian models are often used for 

mathematical modelling and simulation of computer systems and networks due to their simplicity but the 

assumption dial the jobs or packets arrive into queues in computer systems and network equipment follow

ing a Poison process and that the service times are exponentially distributed is sometimes far from reality. 

Thus, mathematical and simulation models arc valid provided the assumptions are true which are sometimes 

far from reality.

7.1 Design and performance modelling of the packet aggregation algorithms 

and their applications

One of the problems addressed in this dissertation is the design and performance modelling of the packet 

aggregation algorithms and their applications in access (loT and mobile networks). Core, and data center 

networks. A detailed review of packet aggregation algorithms implemented in loT access networks. loT 

over SDN networks. loT over mobile radio networks. Cloud Radio Access networks. IP over all-optical net

works. and cloud computing servers (to transfer data between driver domains and the virtual machine) was 

performed. The existing mathematical models for the design, analysis and evaluation of packet algorithms 

were based on the assumption that the intcrarrival of packets into the aggregation buffers follows a Poison 

process and that the packet sizes are exponentially distributed. These assumptions are not true in reality 

as revealed by the traffic datasets (of the interarrival times and packet sizes) that we downloaded from the
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repository of the Center for Applied Internet Data Analysis (CA1DA) based at the University of California's 
San Diego Supercomputer Center. We also looked at the dataset of the arrival times of loT traffic and it 
showed that the interarrival limes of loT packets are far from being Poison distributed. Thus. Poison-based 
packet aggregation performance evaluation models are far from reality and are likely to be less accurate.

We proposed a Brownian motion or diffusion-based performance evaluation model for the evaluation of 
packet aggregation algorithms. The novelty of our proposed models is that they can take real (measured) 
traffic parameters such as the mean arrival rate of packets, the mean of the packet sizes, the variance of 
the interarrival times of packets into the aggregation buffer, and the variance of the packet sizes as inputs 
and then the distribution of the performance metrics like the sizes of the aggregated packets and the in

terdeparture times (or the delays experienced by the packets in the aggregation buffer). We validated our 
proposed mathematical models with discrete event simulations. Despite the benefits of packet aggregation, 
they introduce the problem of delays which degrade the Quality of service (which is a problem for real-time 
traffic, especially in Industry 4.0 applications). We modelled the trade-off between throughput efficiency, 
energy consumption, and delays. As a continuation of this study, we intend to conduct empirical studies and 
mathematical modelling to evaluate the impact of packet aggregation on quality of service parameters like 
delays, packet dropping, and jitter in loT traffic over IP networks (implementing priority-based mechanisms 
to sort and aggregate only non-real-lime traffic).

7.2 Performance modelling of a Software Defined Networking (SDN) 
Switches and Network

Another problem that was adressed as part of the dissertation is the modelling of the performance of a 
Software Defined Networking (SDN) switch. Software defined networking (SDN) is a dynamic, adaptable, 
and manageable paradigm that facilitates innovations and rapid prototyping and deployment of flexible rout
ing mechanisms in computer networks. Unlike traditional networking which involves manual configurations 
of distributed proprietary network devices, a cumbersome and error-prone process that can underutilize net
work resources, SDN offers a programmable architecture where routing decisions are moved to centralized 
controllers. The SDN data plane switches are simple forwarding devices that forward the data traffic de
pending on the controller’s flow forwarding rules.

At the time of our study, most of the models for the design, analysis, and evaluation of the perfor
mance of SDN switches and networks were based on the assumption that the arrival of packets into an SDN 
switch follows a Poison process and that the packet processing times of an SDN switch are exponentially 
distributed. It was shown that these assumptions are inaccurate, therefore, better performance evaluation 

models are required. We proposed diffusion approximation models for the evaluation of the performance of 
an SDN switch. One of our key contribution was the modelling of the flow matching process or the process 
of searching the flow tables to find the appropriate flow rules required to process the packet (both in the 
case of hardware and software switches). We then used the mean packet arrival rate and the variance of the 
interarrival times from the CAIDA datasets together with the mean packet processing rate and the variance 
of the processing times (from our proposed packet processing model in an SDN switch) as an input to the 
diffusion models to estimate the performance metrics (delays and tail dropping of packets when the buffer 
is full).

154



In existing studies, it is assumed that the network is always in a steady state but in SDN networks 

where the controller may frequently change the routing decisions (like those developed during the SerloT 

project for SDN core networks designed to be resilient, secure, ensure acceptable QoS. and to optimise the 

energy consumption), the network may frequently enter into transient states. The broader use of Software 

Defined Network (SDN) controllers to create periodic changes in the network's topology sometimes lead to 

changes in traffic intensities at the various switches. Thus, the SDN network constantly enters into transient 

states and the transient behaviour of network components, particularly data switches, is becoming of great 

interest. We extended the model for an SDN switch to a network model of SDN switches and investigated the 

influence of constantly changing traffic intensities resulting from changes logical topology of the network 

as the controller updates the routing tables of the switches with new flow rules.

The modelling of the performance of the controller was out of the scope of this study, although it could be 

a performance bottleneck. Packets whose flow rules arc not found on the SDN switch have to ensure delays 

due to packet processing at the SDN switch and waiting for the controller to determine the flow rule for the 

packet and update the switches. A single controller serves multiple switches and could be a performance 

bottleneck. The performance modelling of an SDN switch was out of the scope of this dissertation. Future 

studies could model the processing mechanism of the controller and then apply the diffusion approximation 

models discussed in this study to evaluate the performance of an SDN controller.

7.3 Performance modelling of battery energy storage systems

We adapted Markovian and diffusion approximation models that we applied to the modelling of QoS in 

a computer network to the modelling of the energy depletion process in battery energy storage systems. We 

proposed a Brownian motion or diffusion-based model for the energy depletion process in an energy storage 

system without the presence of energy harvesting sources. We applied our model to study the problem 

of energy depletion attacks in loT networks. We modelled ghost energy depletion attacks (GEDA) in loT 

networks. The two main ghost energy depletion attacks in loT networks that were modelled are the high 

computational load on device GEDA and the MAC misbehaviour GEDA. With high computational load 

GEDA. the adversary overwhelms its victims with bogus messages to quickly drain the energy stored in their 

batteries. While for a MAC misbehaviour GEDA. the ghost attacker deliberately abuses the MAC protocol 

(e.g.. CSMA/CA protocol) to create collisions on the shared wireless channel, thus, forcing other devices 

within its interference range to consume more energy (quickly draining their batteries) and to deprive them 

of accessing the channel.

We used the diffusion-based model for the energy depletion process of a battery energy storage system 

to estimate the life of an loT device that is powered by a battery (without any harvesting source). We then 

used (he data on the energy consumption of an loT device as the input to the di ( fusion model and estimate the 

impact of active power and the sleep time of the loT device on its lifetime. It was shown that an attack model 

that is aimed at manipulating lite sleep time (increasing the active power of the loT) or manipulating transmit 

power of the device will quickly drain energy stored in the battery of the device and reduces its lifetime 

significantly. The sleep lime of the device could be manipulated through high computational attacks (sending 

bogus messages and forcing the device to perform unnecessary energy-demanding security computations), 

creating collisions in the channel, and reconfiguring the device to generate more data for transmission than
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necessary (increasing the sensing or measuring frequency).
We extended the model for the modelling of a batter}' energy storage system (in the absence of an 

energy harvesting source) to incorporate the presence of an energy harvesting source. We investigated the 
impact of the ratio of the mean energy harvesting rate to the energy consumption rale on the lime required 
to completely drain the energy stored in the battery and on the lime required to fully charge the battery. It 
was shown that as this ratio increases the time required to completely drain the battery increases while the 
time required to fully charge the battery decreases. Thus, when sizing the energy harvesting system it is 
important to ensure that this ratio is not far less to increase the time required to drain the battery (lifetime of 
the device) and reduce the time required to charge the battery to its full capacity.

We compared the results obtained using diffusion approximation to those obtained using the Markovian 
model. The comparisons showed an almost perfect match. The advantage of using diffusion models for 
the lime evolution of the energy stored in the battery traditional queueing theoretic models and fluid flow 
models is that it takes into account fluctuations in the amount of energy harvested from the environment and 
the fluctuations in the amount of energy drawn from the battery (energy consumed). Another advantage of 
using diffusion approximation to other methods is that energy can be treated as a continuous quantity. The 
changes in the amount of energy in the battery could be considered to be analogous to the changes of a fluid 
in a reservoir (modelled using lluid How differential equations). The changes in the amount of energy in the 
battery can also be modelled as a Brownian motion or diffusion process which is a continuous process and 
is suitable for modelling energy changes in the battery because energy is a continuous quantity. With data 
about the mean and variance of the energy harvesting or energy consumption process, the diffusion-based 
model of the battery can conveniently predict the lifetime of a computer system device (loT device or drone).

The limitation of performance evaluation modelling is that ihe systems are often studied in isolation. 
It should be noted that improving the performance of a part of a computer system or network, does not 
guarantee the improvement of the performance of the computer system or network as a whole. That is, the 
performance of computer systems and networks is often influenced by a combination of multiple factors 
and by the performance of the various subsystems that constitute the computer system or networks. Thus, 
improving the performance of a computer system or network does not guarantee that performance of the 
computer system or network as a whole will be improved (some unintended problems may be created). 
Performance evaluation studies that treat the system as a whole and investigate the influence of queueing on 
the performance of the computer system and network as a whole may be more useful.

7.4 Future research direction

As a continuation of this study, we intend to apply diffusion approximation to study the problem of 
reneging and correlated reneging (impatience) in the performance evaluation of queues in computer systems. 
One of the significant challenges in cloud computing is the impact of impatient users or request (task) 
reneging. When a request has been compromised, missed its execution deadline, or depends on other rejected 
ones, it must be removed from the queue without being processed. The reneging or removal of tasks from 
queues may trigger the reneging or removal of other tasks that depend on them. We refer to this reneging of 
requests from the load balancing or computing queues as correlated reneging. Existing studies on reneging 
tasks from cloud computing servers did not take into account the possibility of correlated reneging (or

156



dropping of tasks without processing them). All of the studies that modelled the reneging or dropping of 
tasks from the cloud computing queues did not consider the possibility that the reneging of tasks could be 
correlated.

In [150. 151, 1491, we developed queueing models for the evaluation of cloud computing queues with 
correlated reneging (sometimes with resubmission of reneged tasks) and used them to propose a framework 
for evaluating cloud computing infrastructures. Existing models on the modelling of reneging in cloud com
puting queues are based on the assumption that the arrival rates of tasks into the cloud computing buffers 
follow a Poison a Poisson process and that the processing times are exponentially distributed. It is also as
sumed that the reneging times are exponentially distributed. We intend to use diffusion approximation to 

study the problem of task reneging in cloud computing queues.
We adopted the queueing model with correlated reneging to model the problem of patient balking and 

reneging (impatience) in the health care management system in [147]. In a recent paper that was recently 
accepted in the International Journal of Services, Economics, and Management, we introduced a mechanism 
of customer retention (through incentives that motivate the customer to wait long and don’t leave the queue) 
and adaptively decrease or increase the service time (by increasing or reducing the processing or service 
resources) depending on the queue size. We intend to conduct similar studies using diffusion approximation 
given its advantages in evaluating queues with real data. Diffusion approximation offers an effective mod
elling methodology for the time evolution of the waiting lime or probability of rejection (for limited capacity 
queues).
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