
STUDIA INFORMATICA 2012

Volume 33 Number 2A (105)

Łukasz WARCHAŁ

Silesian University of Technology, Institute of Informatics

USING NEO4J GRAPH DATABASE IN SOCIAL NETWORK

ANALYSIS

Summary. This article describes how Neo4j database capabilities can be utilized

to implement measures often used in social network analysis. It gives a brief overview

of the concept of Neo4j graph database. The UML class diagram of domain model is

presented and discussed in details. On the basis of implementation of degree centrality

and local clustering coefficient measures, several Neo4j core features are presented.

In the summary, some general comments on using this database as a tool in a social

network analysis are provided.

Keywords: graph database, nosql, social network analysis, neo4j

WYKORZYSTANIE GRAFOWEJ BAZY DANYCH NEO4J DO

ANALIZY SIECI SPOŁECZNYCH

Streszczenie. Artykuł opisuje wykorzystanie możliwości bazy danych Neo4j

w implementacji algorytmów stosowanych w analizie sieci społecznych. Przedsta-

wiono w nim koncepcję Neo4j jako grafowej bazy danych oraz omówiono na diagra-

mie klas podstawowe pojęcia z dziedziny przedmiotowej. Na podstawie implementa-

cji dwóch miar (stopień węzła, lokalny współczynnik klasteryzacji), często używa-

nych w analizie sieci społecznych, pokazano kilka podstawowych cech Neo4j.

W ostatniej części znajduje się podsumowanie, w którym zebrano uwagi na temat

wykorzystania tej bazy danych w analizie sieci społecznych.

Słowa kluczowe: grafowa baza danych, nosql, analiza sieci społecznych, neo4j

1. Introduction

Nowadays, social networking technologies allow people to communicate and share in-

formation with each other. Many individuals manage relationships with several close friends

and hundreds of other persons, respectively. These relationships make them a part of bigger

272 Ł. Warchał

structures called communities, which in turn can also be connected to each other making so-

cial networks.

1.1. Social network analysis

Social network analysis (SNA) is focused on these relationships. It tries to find the way in

which individual`s interactions with others influence their behavior or decisions [1]. Instead

of investigating one`s static properties, SNA rather takes into consideration how actors coop-

erate and exchange information.

In real world, social networks are mainly very complex. They consist of thousands of in-

dividuals and millions of interactions (relations) between them. Performing any analyze of

such a big amount of data requires building a model, which on one hand simplifies many

things and on the other it is still representative.

1.2. Modeling social networks

In the most common approach, a social network is modeled as a graph G=(V,E) [2,3],

where V is a set of nodes and E is a set of edges. Edge eij connects node vi with vj, so E can be

defined as .

When modeling a social network, each node represents an individual (actor, person). Re-

lationships between each two individuals, which can be derived from common activities or

interactions, became the edges connecting (linking) two nodes. To model the relation strength

(i.e. the more messages exchanged between two persons the bigger relation strength), each

edge can have a weight assigned. Set W denotes then edges weights: and

the whole graph is defined as G=(V,E,W).

As mentioned in the previous section, the final graph can be huge – thousands of nodes

and billions of edges. Performing any analyze requires it to be persisted in some data store,

which then should provide quick and efficient access to nodes and edges. This can be done

using either SQL or NoSQL databases. While all well known RDBMS are optimized to store

structured and organized data, persisting a graph in such database is neither straightforward

nor optimal solution. Considering NoSQL databases, Key-Value, Column-Family or Docu-

ment databases can be used [4]. But the most intuitive solution – assuring natural modeling –

is a graph database. Among others [5], Neo4j graph database [6] is emerging, a robust and

high-performance graph database. In remaining part of this paper, utilizing capabilities of this

solution in SNA will be discussed. Section 2 gives a brief overview of Neo4j. In section 3

implementation of several graph measures used in SNA is presented. Section 4 gives a short

summary and general conclusions about performing analysis in the Neo4j environment.

Using Neo4j graph database in social network analysis 273

2. Neo4j database overview

Neo4j is implemented in Java programming language and can be used as an embedded or

server database. In the first case, the data can be accessed through Neo4j Java API, in the

second one, over the REST protocol [7].

Neo4j implements the graph data model in which core parts are nodes and relations between

them. For better understanding how it is architected and organized, an UML class diagram

with domain model is presented on Fig. 1.

2.1. Domain model

In every graph database, nodes and relationships play the most important role. As shown

in Fig. 1, in Neo4j each Node can have multiple Properties, which are simply key-value pairs.

Possible types of value are Java primitives (or arrays of): boolean, byte, short, int,

long, float, double, char, String. Each Node can have different set of properties.

Nodes are connected to each other by relationships. Each Relationship has a Start Node and

an End Node. It can have an explicit Type and Direction, and also a set of Properties. Both

nodes and relationships can be indexed, which allows to access them quickly when querying

data. Indexes are implemented using Lucene Search Engine [8,9].

Fig. 1. Neo4j graph database domain model

Rys. 1. Model pojęć grafowej bazy danych Neo4j

Nodes connected by relationships form a Path. Each Path has beginning (Start Node),

end (End Node) and length (number of relationships between nodes). A single Node creates

shortest possible path with length equal to 0. Path is a result of visiting nodes and following

their relationships according to some rules, which is called graph traversal.

 c la ss D oma in M ode l

N ode

+ Id

R e la tionship

+ Type

Prope rty

+ Key

+ Value

N ode Inde x

R e la tionship

Inde x

Pa th

+ Length

D ire c tion

+ BIDIRECTIONAL {readOnly}

+ INCOMING {readOnly}

+ OUTGOING {readOnly}

Properties

0..*

Properties

0..*

Start node

1

End node

1

Relationships

0..*

Index

0..*

Index

0..*

Start node

1
End node

1Nodes on path

0..*

Relationships between nodes

Direction

1

274 Ł. Warchał

2.2. Key features

Neo4j is a mature database with many advanced features. It supports true ACID transac-

tions, which guarantee data consistency and reliability. It is architected in a way which allows

to scale to billions of nodes and relationships. Databases can be installed on a single machine

or be distributed over several machines to provide high availability. To decrease time spent

on searching for particular nodes or relationships indexes can be used (also with full text

search support [8]).

Neo4j does not provide explicit data encryption capabilities, but allows to use standard secu-

rity solutions built into Java programming language and Java Virtual Machine. It is also pos-

sible to run it on an encrypted file system.

2.3. Cypher Query Language

In the Neo4j environment, data stored in a graph (nodes and relationships) can be quickly

and efficiently accessed through traversals. It can be done either by direct Traversal API or

by implemented in Neo4j Cypher Query Language [7]. This language is inspired by several

well known and established practices for expressive querying. Many of used keywords like

e.g. WHERE, COUNT, SELECT, have their counterparts in SQL. Construction of patterns

used in filtering expressions is similar to those in SPARQL language [10]. With Cypher, it is

possible to introduce in queries regular expressions, which are implemented using the Scala

programming language [11].

In Cypher, each query can be composed of several distinct parts:

 START – defines start points (nodes or relationships) in the graph, pointed either by iden-

tifier or by index lookup,

 MATCH – defines pattern to match (graph traversal),

 WHERE – defines filtering criteria,

 RETURN – defines what should be returned as a query result.

In WHERE part it is possible to compose complex filtering expressions with boolean op-

erators like and, or, not.

There are also several modifiers that can be applied to RETURN part to additionally

shape the final result like e.g. ORDER BY to order objects in the result or LIMIT to return

only subset of it.

Several example queries written in Cypher are shown in following section.

Using Neo4j graph database in social network analysis 275

3. Performing social network analysis in the Neo4j environment

Social network analysis (SNA) is a set of methods utilized to extract knowledge from so-

cial structures. Majority of them are very complex, but frequently they use some basic

measures like degree centrality, local and global clustering coefficient or other indicators

based on shortest paths. While algorithm calculating shortest path between two nodes is al-

ready available in Neo4j, other two measures have to be implemented by the end user. Fol-

lowing sections consider possibility of implementing them using Cypher query language and

Java code.

3.1. Datasets

Neo4j is a data store in which the social network modeled as a graph can be persisted. In

this paper the scientific collaboration networks modeled as a graph are stored in Neo4j data-

base. One of this network (graph) was created on the basis of information about publications

in Institute of Informatics at Silesian University of Technology. Nodes represent authors and

relationships connect those, who authored a paper together. Additionally, each relationship

holds (as a property) the number of common publications. Thus the whole network is the one-

mode network (with only one type of nodes) with weights on ties [12]. The second network is

co-authorship network used by Newman in [17].

3.2. Degree centrality

Degree centrality is a basic, easy to calculate indicator very often used at the early stage

of network studying [12]. It describes the involvement of the node in the network and can be

defined as the total number of nodes connected to examined node [12,13]. In weighted net-

works this measure can be modified to take into consideration not only node degree but also

its strength (meant as a sum of weights at relationships to other nodes). Recently, Opsahl [12]

proposed degree centrality measure defined as:

iiD skiC)1()((1)

where ki is the number of nodes connected to the i-th node, si is the sum of weights from rela-

tionships to other nodes and α is a positive tuning parameter. If α is between 0 and 1, high

node degree is preferred, whereas if it is grater then 1 low degree is favored.

Using Neo4j as an embedded database in the Java environment this measure can be calcu-

lated using Cypher and little Java code. The query counting node degree and sum of weights

on its ties can be write as follows:

start n1=node:AUTHORS_INDEX(id = ‘408’)

match (n1)-[r:CO_AUTHOR]-(n2)

276 Ł. Warchał

return COUNT(distinct n2) as DEGREE, SUM(r.NUM_OF_COMMON_PUBS) AS STRENGTH

The query first locates node n1 with id property equal to 408 using index with name

AUTHORS_INDEX. Then in match part, graph traversal is done – starting from node n1, all

nodes that are connected by relationship of type CO_AUTHOR are located and saved in n2

node list. As a result, query returns n1 degree (number of distinct nodes in n2) and sum of

weights on ties. Using this information final degree centrality can be calculated:

CypherParser parser = new CypherParser();

 ExecutionEngine engine = new ExecutionEngine(DB_HANDLE);

Query query = parser.parse(DEGREE_QUERY_TEXT);

Map<String, Object> resultMap = engine.execute(query).iterator().next();

Integer nodeDegree = (Integer) resultMap.get("DEGREE");

Integer nodeStrength = (Integer) resultMap.get("STRENGTH");

double degreeCentrality = Math.pow(nodeDegree, 1 - ALPHA)

 * Math.pow(nodeStrength, ALPHA);

As shown above, using Neo4j Java API it is possible to compile text with Cypher query into

a Query object, and using ExecutionEngine instance execute it and obtain results. Once

parsed, Query instance can be used several times (with different parameters).

3.3. Local clustering coefficient

Among others, the degree to which nodes in a network tends to cluster together is very in-

formative indicator, especially when analyzing real-world social networks. Many researchers

find out, that in case of this kind of networks, nodes tend to cluster into a smaller groups,

which are heavy interconnected inside [1416]. To observe this tendency, a global and local

clustering coefficient measures were introduced [15,16]. First describes the overall level of

clustering in particular network, second gives information about density of connections in

node`s neighborhood.

Local clustering coefficient for the i-th node v can be defined as:

)(

)(
)(

v

v
iC

G

G
local

 (2)

where)(vG is number of triangles on)(GVv on graph G, and)(vG is number of paths

of length 2 centered on v node. In undirected graph)(vG can be defined as:

)1(
2

1
)(iiG kkv (3)

where ki is the number of nodes in v`s neighborhood.

In Neo4j environment local clustering coefficient for a node can be obtained using Cy-

pher queries and simple Java code. According to eq. (3) denominator from eq. (2) can be eas-

Using Neo4j graph database in social network analysis 277

ily calculated knowing node`s degree. Nominator is number of triangles that given node is

part of and can be obtained by following query:

start n1=node:AUTHORS_INDEX(id = ‘408’)

match p = (n1)-[:CO_AUTHOR]-()-[:CO_AUTHOR]-()-[:CO_AUTHOR]-(n1)

return COUNT(p) as NUM_OF_TRIANGLES_X_2

This query finds all paths that starts from node n1 and ends on n1 and have length 3. This

corresponds to the number of triangles in n1 neighborhood multiplied by 2, because path n1-

n2-n3-n1 and n1-n3-n2-n1 is counted twice. Sample Java code calculating local clustering

coefficient is shown below.

CypherParser parser = new CypherParser();

 ExecutionEngine engine = new ExecutionEngine(DB_HANDLE);

Query query = parser.parse(LCC_QUERY_TEXT);

Map<String, Object> resultMap = engine.execute(query).iterator().next();

Integer triangles = (Integer) resultMap.get("NUM_OF_TRIANGLES_X_2");

if (triangles == null)

 return 0;

 return triangles / (double) (degree * (degree - 1));

3.4. Performance

Authors claim that Neo4j is a high performance and robust database, however some ad-

vanced performance tests have to be done to prove it. Nevertheless, calculating degree cen-

trality and local clustering coefficient measures for test datasets did not take a lot of time.

Table 1 contains summary calculation time of those measures for every node in a network.

Table 1

Degree centrality and local clustering coefficient calculation time

Dataset Nodes Relations Degree centrality
Local clustering

coefficient

Publications in IoI at Silesi-

an University of Technology
346 924 1.51s 9.373s

Newman’s scientific collab-

oration network
16264 47594 10.4s 8min 55s

Each value in column 4 and 5 is an average calculation time from five runs of an experiment

on a computer with 2 x 2,53GHz CPU and 4GB RAM.

4. Summary

Emerging growth of social media caused that relations between individuals became an in-

teresting subject of scientific analysis. To perform it, interactions between people are com-

monly modeled as a network, and some measures like degree centrality or clustering coeffi-

278 Ł. Warchał

cient are applied to it. Because this kind of networks is mainly very large, it is crucial to use

tools that allow to calculate this measures fast. This paper shows that Neo4j database capabil-

ities can be successfully utilized when performing analysis. The use of this database allows to

naturally model a real-world network as a graph and persist it. Indexing capabilities assures

that locating particular nodes is fast and easy. Implemented in Neo4j Cypher Query Lan-

guage makes graph traversal and querying data straightforward. Nevertheless, to implement

basic measures shown in this paper or those more advanced, it is necessary to write an addi-

tional code. However, features mentioned above combined with Neo4j Java API gives a solid

foundation to build social network analysis tools on the top of it.

This work was partially supported by the European Union from the European Social Fund.

BIBLIOGRAPHY

1. Wasserman S., Faust K.: Social Network Analysis: Methods and Applications. Cam-

bridge University Press, New York 1994.

2. Hanneman R. A., Riddle M.: Introduction to social network methods. University of

California, Riverside CA 2005.

3. Chakrabarti D., Faloutsos Ch.: Graph Mining: Laws, Generators, and Algorithms.

ACM Computing Surveys, Vol. 38, Article 2, March 2006.

4. Han J., Haihong E., Le G., Du J.: Survey on NoSQL database. In Proc. of 6th Interna-

tional Conference on Pervasive Computing and Applications (ICPCA), October 2011,

p. 363÷366.

5. Angles R., Gutierrez C.: Survey of graph database models. ACM Computing Surv. 40,

Vol. 1, Feb. 2008, p. 1÷39.

6. Neo4j Graph Database, http://neo4j.org/.

7. The Neo4j Manual, http://docs.neo4j.org/chunked/stable/.

8. Hatcher E., Gospodnetic O.: Lucene in Action. Manning Publications, 2004.

9. Apache Lucene, http://lucene.apache.org/java/docs/index.html.

10. Segaran T., Evans C., Taylor J.: Programming the Semantic Web. O’Reilly Media

2009, p. 84÷96.

11. Pollak D.: Beginning Scala. Apress, 2009.

12. Opsahl T., Agneessens F., Skvoretz J.: Node centrality in weighted networks: General-

izing degree and shortest paths. Social Networks, Vol. 32, 2010, p. 245÷251.

13. Freeman L. C.: Centrality in social networks: Conceptual clarification. Social Net-

works, Vol. 1, 1978, p. 215÷239.

http://neo4j.org/
http://docs.neo4j.org/chunked/stable/
http://lucene.apache.org/java/docs/index.html

Using Neo4j graph database in social network analysis 279

14. Holland P. W., Leinhardt S.: Transitivity in structural models of small groups. Compar-

ative Group Studies, Vol. 2, 1971, p. 107÷124.

15. Watts D. J., Strogatz S. H.: Collective dynamics of small-world networks. Nature,

Vol. 393, 1998, p. 440÷442.

16. Opsahl T., Panzarasa P.: Clustering in weighted networks. Social Networks, Vol. 31,

2009, p. 155÷163.

17. Newman M. E. J.: The structure of scientific collaboration networks. PNAS 98, 2001,

p. 404÷409.

Wpłynęło do Redakcji 31 stycznia 2012 r.

Omówienie

Artykuł omawia wykorzystanie możliwości bazy danych Neo4j w analizie sieci społecz-

nych. W pierwszej części przedstawiono ogólną charakterystykę ww. bazy danych oraz na

rys. 1 zaprezentowano diagram klas, przedstawiający pojęcia z dziedziny przedmiotowej oraz

powiązania między nimi. W dalszej części zaprezentowano przykłady wykorzystania grafo-

wej bazy danych Neo4j w analizie sieci społecznych. Jako źródło danych wykorzystano in-

formacje o autorach i ich publikacjach w Instytucie Informatyki Politechniki Śląskiej. Na-

stępnie przedstawiono implementację dwóch podstawowych miar użytych do analizy powsta-

łej sieci społecznej. Pierwsza z nich – stopień węzła – została wyrażona równaniem (1). Dru-

ga – lokalny współczynnik klasteryzacji – opisana została równaniem (2). Obie miary zostały

zaimplementowane przy użyciu języka zapytań Cypher wbudowanego w Neo4j oraz języka

programowania Java. Na przykładzie realizacji tych wskaźników pokazano możliwości ope-

rowania na węzłach i wykorzystywania łączących ich relacji do nawigowania po sieci (gra-

fie).

W podsumowaniu zawarto ogólne wnioski dotyczące wykorzystania grafowej bazy da-

nych Neo4j jako kluczowego składnika, który może zostać wykorzystany do budowy kom-

pleksowych narzędzi do analizy sieci społecznych.

Address

Łukasz WARCHAŁ: Silesian University of Technology, Institute of Informatics,

Akademicka 16, 44-100 Gliwice, Poland, lukasz.warchal@polsl.pl.

	1. Introduction
	1.1. Social network analysis
	1.2. Modeling social networks

	2. Neo4j database overview
	2.1. Domain model
	2.2. Key features
	2.3. Cypher Query Language

	3. Performing social network analysis in the Neo4j environment
	3.1. Datasets
	3.2. Degree centrality
	3.3. Local clustering coefficient
	3.4. Performance

	4. Summary

