
STUDIA INFORMATICA 2012

Volume 33 Number 2A (105)

Aleksander POHL

Jagiellonian University, Departament of Computational Linguistics

ROD – RUBY OBJECT DATABASE

Summary. Ruby Object Database is an open-source object database designed for

storing and accessing data which rarely changes. The primary reason for designing it

was to create a storage facility for natural language dictionaries and corpora. It is

optimized for reading speed and easiness of usage.

Keywords: object database, Ruby, natural language processing

ROD – OBIEKTOWA BAZA DANYCH DLA JĘZYKA RUBY

Streszczenie. ROD (Ruby Object Database) jest otwartą, obiektową bazą danych

zaprojektowaną do przechowywania i odczytywania danych, które rzadko ulegają

zmianie. Podstawowym powodem jej utworzenia była chęć stworzenia bazy dla słow-

ników oraz korpusów wykorzystywanych w przetwarzaniu języka naturalnego. Baza

ta jest zoptymalizowana pod kątem szybkości odczytu danych oraz łatwości jej

użycia.

Słowa kluczowe: obiektowa baza danych, Ruby, przetwarzanie języka naturalne-

go

1. Introduction

ROD (Ruby Object Database) is an open-source object database distributed under the

MIT/X11
1
 license and available at http://github.com/apohllo/rod. ROD is designed for

storing and accessing data which rarely changes. It is an opposite of RDBMS as the data is

not normalized, while “joins” are much faster. It is an opposite of in-memory databases, since

it is designed to cover out of core data sets (10 GB and more). It is also an opposite of simple

key-value stores, since it provides an expressive object-oriented interface.

1
 http://www.opensource.org/licenss/mit-license.php

282 A. Pohl

The primary reason for designing it was to create storage facility for natural language dic-

tionaries and corpora. The data in a fully fledged dictionary is interconnected in many ways,

thus the relational model (joins) introduces unacceptable performance hit. The size of corpora

forces them to be kept on disks. The in-memory databases like Redis [11] are not suited for

large corpora. They would also require the data of a dictionary to be kept mostly in RAM,

which is not needed (in most cases only a fraction of the data is used at the same time). And

the last but not the least, the key-value stores however fast, provide an interface that is not ex-

pressive enough for Natural Language Processing tasks. That is why a storage facility which

minimizes the number of disk reads and overcomes the defects of the mentioned storage sys-

tems was designed. The database is accessible via the Ruby language [8], which is both its

data definition and data manipulation language. Thanks to its great expressiveness and true

object-orientedness the data manipulation is done as easy as if a domain specific language

was defined, still giving full access to a modern and very powerful programming language.

2. Motivation

The primary reason for designing ROD was to create a facility for storing linguistic data,

which would be easily accessible from Ruby. This was motivated by the research in Natural

Language Processing (NLP) and the lack of an object oriented database that would be suited

for the specific NLP needs. The primary resources used in NLP are machine readable dictio-

naries and corpora – these resources have several features that are not very common in infor-

mation technology in general.

First of all dictionaries rarely change – although natural languages evolve, this process is

quite slow. Assuming that a dictionary has reached some maturity, it is not needed to update

it more than several times a year. Similar situation concerns corpora – they are composed of

texts, which are not modified after being incorporated. These types of resources tend to ac-

cumulate data rather than to change or remove their contents – in this respect they are similar

to data warehouses.

However, the second feature of these resources makes them very different from data

warehouses – that is the number of types of relations and number of relations that are regis-

tered for the data. If one wishes to build a decent dictionary for Polish one has to consider the

following: the relation between a word form and its lemma (e.g. dogs – dog, Polish has much

more inflected forms than English – 14 in the case of a typical noun), the relation between

a word and its senses (e.g. grain – a small granular particle, a weight unit, a seed-like fruit;

Princeton WordNet 3.0 [2] registers 11 senses for grain), the different relations between

senses of words (e.g. hyperonymy, hyponymy, meronymy, holonymy, troponymy etc.), the der-

ROD – Ruby Object Database 283

ivational relations between words (e.g. house – housing) and similar. These might be further

enriched with statistical data, so the data model is quite complex. In the case of corpora, the

situation is similar – for a fully annotated corpus there would be many syntactic and semantic

relations involved. If we used a relational database to store such a data, obtaining a full se-

mantic or syntactic information, even for a single word form or a text segment would produce

a very large number of table joins, causing an unacceptable performance. For this reason lexi-

cographers tend to use SGML and (recently) XML to store dictionaries and textual data rather

than relational databases.

The last important feature of these resources is their size. If it was relatively small, a good

choice for such data would be in-memory databases like memcached
2
 or Redis, which offer

very good performance, even for highly interrelated data. But the size of dictionaries and cor-

pora is often much larger than the available physical memory, even on modern machines. Size

of a fully-fledged dictionary is two or three orders of magnitude larger than the number of

entries (hundreds of thousands for words and millions for word forms), while sizes of the

largest corpora are counted in tens or hundreds of gigabytes. On the other hand – the per-

formance provided by in-memory databases is not really needed for these resources. Although

it is good to have the largest dictionary and the largest corpus available, the data provided by

them is never needed at-once. Usually only a small fraction of the data is processed at one

moment, so it is not necessary to keep it in the operating memory. Only a good memory man-

ager is needed: one that would keep the data that is often accessed in RAM and remove the

rarely accessed data.

Such requirements are not very common in the other fields of information technology,

thus there are not many general purpose storage systems that would suite them, the only ex-

ception being the graph databases. But on the other hand, the semi-structured graph model

offered by these systems is too general for such needs – the data models of dictionaries and

corpora, although evolve, are rather fixed, mostly due to the fact, that a change in the struc-

ture makes sense only if new data is available for the whole dictionary or corpus, obtaining

which is usually very expensive.

Besides the features of the linguistic resources, the important factor taken into account

when designing ROD was the language for accessing and processing the data. Instead of de-

signing a new one like SQL or SPARQL, it was assumed that Ruby is a very good choice

when it comes to navigate the data. If the database provided an object oriented interface with

simple indexing, more complex queries could be easily expressed in that language due to its

fully object oriented nature and simple, yet very powerful syntax.

2
 http://memcached.org/

284 A. Pohl

3. Related Work

Designing a new data storage system should always have a good rationale, since there are

so many storage system that there is a big chance that the problem at hand was already solved

and it doesn't make sense to implement yet-another-home-made-storage-facility. On the other

hand the number of the available solutions makes it quite hard to find the one that suites the

best (which may change during the development of the client system). Thus the review of

related work will focus on the systems used in Polish NLP as well as systems available for

Ruby.

Finite state machines and finite state transducers are the primary means for obtaining tag-

gings and lemmas from inflected word forms [1,10] (e.g. pies+noun:plural:nominative

for psy (dogs)). The whole dictionary for a given language is transformed into finite state

transducer, where each state transition corresponds to a letter in an analysed word form. The

result of the analysis is a lemma or lemmas (in the case of ambiguity) of the word plus corre-

sponding taggings. Since many word forms share some of the letter sequences, the informa-

tion is much compressed and such a system works with very high performance characteristic

for finite state machines.

For the specific task of providing lemma and tagging for a word form, finite state trans-

ducers seems to be the best option. But they fall short when it comes to provide more infor-

mation about the word in question. The first problem is that the result of the analysis might be

ambiguous – at least for Polish the lemma plus the tagging is not enough to distinguish words

such as rządy (governments) and rzędy (rows), which both are nouns of the same gender and

have the same lemma: rząd. The other problem is that if one wishes to obtain more than

a lemma and a tagging (such as the senses of the word) the result of the analysis has to be

parsed once again, which introduces significant processing cost. On the contrary in such

a case an object database will return an object or objects that are distinguishable merely by

their abstract ids and may provide any additional data via unified object interface (method

call).

Another data stores used in NLP are engines build to store and efficiently query corpora,

not only via key-words, but also via various features of the words. For example Poliqarp,

a corpus engine build by IPI PAN [6], allows for storing large amounts of text and query them

with Poliqarp query language by lemmas as well as by a specific part of speech or other mor-

phosyntactic features such as gender, case or number.

Although Poliqarp provides quite expressive query language, its problem is similar to fi-

nite state transducers – it doesn't provide an object oriented interface to the data. So if

a developer wishes to remember some result, he/she has to remember the query sent to the

ROD – Ruby Object Database 285

server and the offset of the interesting result. This significantly impairs subsequent data re-

trieval performance, especially when the query returned many results. The other problem is

that the data is transferred in the form of a semi-structured text so the result of the query has

to be parsed, which further impairs its performance. As a result the system has to be aug-

mented with another storage engine to remember the issued queries or the processed results,

which makes it impractical as a standalone data storage solution.

The last interesting related work in the field of NLP is the access layer build on the top of

PolNet – one of the two WordNets build for Polish. [3] describes the architecture of the

POLINT-112-SMS system and the reasons for building a custom query language on the top of

XML-based data store used to store the WordNet, which the POLINT system interacts with.

The author argues that a direct integration of the WordNet with the system implementation

language (Prolog is given as an example) would introduce high coupling between the NLP

system and the storage system. But the author also indicates that the adoption of a generic

solution such as SQL database, XML store or RDF store with SPARQL interface would yield

a system which is less suited for NLP tasks, such as navigation over the WordNet structure or

reasoning over the data – the queries would be much more verbose and less meaningful for

the developers. So it would be harder to maintain the interoperability between the systems.

It is true that the general purpose data manipulation languages like SQL or SPARQL are

more verbose than the language provided by the access layer. It is also true, that direct inte-

gration of the data with the system would introduce high coupling. Still it is not obvious that

if an object oriented interface was provided, the queries expressed in the same language as the

client system implementation language would not be concise enough. Most of the examples

provided by the author are easily expressible in modern programming languages like Ruby or

Python, so there is no need to create such a domain specific language. This solution is more

powerful since it is much easier to write code in such general purpose languages, than extend

syntax and implement semantics of a domain specific language.

Concerning Ruby and the solutions that bring the benefits of object-orientedness into the

data storage world, there are many of them. However we compare only the most known and

most used library, that is ActiveRecord [7], since it is the most popular object-relational map-

per for Ruby. The important omission is Neo4j [9] – a graph database which seems to be most

similar to ROD. The reason is that this database is available only for JRuby, that is a Ruby

implementation for the Java Virtual Machine, while ROD is targeted at MRI – the primary

Ruby implementation in C.

286 A. Pohl

4. Database Design

4.1. Overview of implementation

The database features described in the “Motivation” section impose two primary con-

straints on its design – raw read performance and easiness of use provided by the Ruby inter-

face. This language does not seem to be the best choice for implementing the fastest data

storage engine, that's why the core of the database is implemented in C. Still its interface is

pure Ruby, which mimics the well know object-relational mapper for Ruby – ActiveRecord

used as the default ORM in Ruby on Rails framework. To bridge the gap between the fully

object-oriented and dynamically typed Ruby and the procedural and statically typed C

a RubyInline
3
 library is used. It was created to allow developers replace slow, but critical Ru-

by code with a C implementation. Its name comes from the fact that the C code is written

directly in a Ruby class so there is no need to maintain separate C files nor manually compile

them. The C code is generated and compiled when the Ruby code containing it is run for the

first time. As a result a shared library is created and linked in the run-time while the dynamic

nature of Ruby allows for extending the already defined classes with new methods. The

RubyInline library maintains the changes in the Ruby/C code, so the C code is re-complied

only if the developer provides new methods or changes the C implementation.

This library allows ROD to generate C code providing access to database for each class

that is intended to be stored in the database. As a result this ensures the highest performance

provided by statically typed C while maintaining flexible interface of dynamically typed Ru-

by. It is not a surprise that this design introduces some restrictions concerning the types of

Ruby values that might be stored in the database. But these restrictions are soften by the

mechanisms provided by the database itself – the fact that is very easy to create a new type

storable in the database as wall as a serialization mechanism, that allows for storing immedi-

ate Ruby values (if referential integrity does not have to be maintained).

4.1.1. Access method

The access method of the database is provided by the mmap system call available on most

of the modern operating systems, Linux in particular. This call allows for mapping a file

stored on a disk to a physical memory region. The pages containing the data are loaded only if

the particular memory address is accessed. This greatly simplifies the implementation of the

data access routines and it transfers the responsibility of memory management to the operat-

ing system. The only operations that have to be maintained by the database are growing the

data file and its re-mapping. The OS is responsible for the rest – reading of the data, mainte-

3
 http://www.zenspider.com/ZSS/Products/RubyInline/

ROD – Ruby Object Database 287

nance of the buffered pages and writing the data back to disk. So the primary memory manag-

er of the database is just the memory manager of the OS. Such a solution should suite needs

of most of the developers. If it is not the case, it is usually possible to select a different

memory manager of the whole OS.

4.2. Data model

The primary storage unit of ROD is a Ruby object, but the core implementation language

is C, so the data model of the database is mapped directly to the C data types. This means that

any Ruby object apt for being persisted in ROD has to be represented as a C struct. Thanks to

the RubyInline library this struct is defined at run-time by calling Ruby methods and it is used

to represent the attributes and associations of the persisted object. There are several base rules

of mapping between Ruby objects and C structs. The first is that the name of the attribute or

association in the class is used as the name or prefix of the names of corresponding fields in

the C struct. The second is that the name of the struct is a transformation of the fully qualified

name of the Ruby class, with colons replaced by underscores. The last is that the C structs of

a single class constitute a continuous array in the memory and are uniquely identified by their

index (that is the offset in the corresponding memory-mapped file). This index is the database

identifier of the object, it is named rod_id and its smallest value is 1.

4.2.1. Attributes

The database defines several types of attributes: atomic, fixed length attributes; atomic,

variable length attributes and complex attributes. Atomic, fixed length attributes are these

attributes that might be directly mapped to atomic C data types – such as Ruby Fixnum, In-

teger and Float. In fact at present only the following C types are used: int, unsigned long

and double. The first type is used to map values of Ruby Fixnum type, the second – positive

values of Ruby Integer type that are smaller or equal to the maximum value of unsigned

long and the third – values of Ruby Float type, with the restrictions imposed by the double

type. If there is such an attribute in the persisted class, a corresponding field is created in the

C struct and the value is stored using Ruby built-in Ruby-to-C mapping macros and read us-

ing built-in C-to-Ruby macros.

Ruby strings are represented by atomic, variable length attributes, which are stored in

a flat file. Since Ruby strings may contain non-string terminating zeros, they are identified by

their offset in the file and their length. These two values are represented in the C struct as

_offset and _length fields respectively, prefixed with the name of the attribute.

Complex attributes have to be further divided into two groups: immediate values, that do

not have to preserve referential integrity, such as Ruby arrays of integers or hashes of strings

288 A. Pohl

and complex Ruby objects that have to preserve referential integrity. The values of the first

type are marshaled using Ruby built-in marshal function or encoded using a JSON
4
 format

(the method is left as a choice for the user). They are stored in the same way as strings, with

the exception that strings are always UTF-8 encoded before being stored. This also applies to

values of atomic Ruby types besides Integer, Fixnum and Float such as Symbol.

If the complex values are supposed to preserve referential integrity, they have to be de-

fined by classes that use ROD storage mechanism and such attributes have to be transformed

into singular associations. In most circumstances this should not be a problem, since Ruby

incorporates the uniform accessor pattern, so from the point of view of object's interface at-

tributes are indistinguishable from singular associations.

4.2.2. Singular Associations

Singular associations that is 1-to-1 and n-to-1 associations from the point of view of the

class on the left are treated as follows: the C struct defines an unsigned long field with the

name of the association as prefix and _id suffix, that stores the rod_id of the referenced ob-

ject. If the association is empty, the value of the field is 0 (since the smallest valid rod_id is

1). In the default scenario the type of the object is guessed form the name of the association,

that is if there is a user associated with one address and the association's name is address then

the guessed Ruby class is Address. This might be changed with an option class_name,

which directly indicates the name of the association's class. But this might be further changed

with a polymorphic option. Polymorphic association indicates that the values of the associa-

tion don't have one type. In such a case, the struct has an additional field of unsigned long

type with __class suffix, which holds most significant bits of the SHA1 checksum of the

name of the class of the associated object (the class_id of the class). The pair

(rod_id,class_id) uniquely identifies the object in question.

4.2.3. Plural Associations

Plural associations that is 1-to-n and n-to-m associations from the point of view of the

class on the left are treated similar to the variable length atomic attributes. The C struct stores

their offset and count as _offset and _count fields, prefixed with the name of the associ-

ation. The offset of the association indicates its index in an auxiliary memory-mapped file

used to store all plural associations of the database. This file contains C structs that have

a rod_id field capturing the rod_id of a single associated object. A continuous array of such

structs is used to represent one plural association. As a result navigation via these association

4
 http://www.json.org/

ROD – Ruby Object Database 289

is vary fast, since in most circumstances the structs referring to the objects in one association

are loaded during one disk look-up, which is unlike to happen in relational databases.

The types of the objects in plural association are also guessed from its name, but the same

as in ActiveRecord the name of the association is in plural, while the guessed class is in sin-

gular, e.g. if there is a user that has many items, the guessed Ruby class is Item. The same as

in singular association the class may be given explicitly or the association may be polymor-

phic. In the second case the C struct besides the rod_id of the object stores the class_id of

its class, which is computed the same way as in the case of singular associations.

4.2.4. Indexing

Attributes and singular as well as plural associations might be indexed. This seems to be

strange in the case of associations, since in most circumstances it is easier to create a bidirec-

tional association instead of indexing it on one side (which from the point of view of the data

is equivalent). However, since the database is not normalized, an index on the association

allows for maintaining a consistent bidirectional association without any extra effort from the

user of the database. This feature has another, maybe even more important application – it

allows for maintaining bidirectional associations across separate databases. While it is quite

easy to create associations from one database to another and use them simultaneously, it is

usually not feasible (or convenient) to define them as bidirectional (the databases have to

form a partially ordered set). There are some use cases in NLP, which use such a configura-

tion and while there is no enough space for explaining such a scenario in details, it turns out

that indexed associations are very useful in such a case.

There are three options for indexing the objects: the first (named flat) that uses Ruby

hash table to map the attribute/association values to the corresponding object, the second

(named segmented) that uses the same method but splits the hash keys into buckets and the

third one (named hash) which uses Berkeley DB [4] Hash access method. In the first two

cases the resulting hash/hashes are kept in memory when the database is open and are mar-

shaled and stored on the disk when the database is closed. The only difference is that the se-

cond method have better observed start-up time, since the whole index do not have to be read

at-once – only the part of the hash that contains the keys of a particular bucket. The third

method is without comparison in performance both in the case of loading and writing the in-

dex into disk, but imposes an additional dependency on the library, that is the Oracle Berkeley

DB. Since the Berkeley DB is distributed under GPL and commercial licenses, in some cir-

cumstances it might be better to use pure ROD which is distributed under much more permis-

sive MIT/X11 license.

290 A. Pohl

4.2.5. Metadata

Besides the files that store the structures corresponding to the Ruby objects, variable

length attributes and associations, the database has an additional file in YAML
5
 format, that

contains its metadata. The metadata cover the version of the ROD library, the database crea-

tion and last modification time, the number of objects stored for each class and the structure

of each of the persisted classes. The last information allows for detecting if the run-time data

model is the same as the data model in the database. It also allows for generating the run-time

model (that is the Ruby classes) as well as migrating from one data model to another.

5. Database Interface

As described in the “Motivation” section the database was designed for the Ruby pro-

gramming language. This means that both the data definition language and the data access

language are just subsets of that language. Although this language is not as popular as Java or

even Python, its syntax is so simple, that even for an unacquainted person it should look al-

most like a pseudo-code. It is hoped that most of the code will be intelligible with the mini-

mal comments provided.

5.1. Data Definition Language

In order to be persisted in ROD, a class have to inherit from the Rod::Model class (the

Rod:: in the class name is its namespace). It also have to indicate the database class that in-

herits from the Rod::Database class, which represents the ROD database. This might be

omitted if the database was indicated in its parent class. Thus a minimal code for a class is as

follows:

require 'rod'

class Database < Rod::Database

end

class User < Rod::Model

 database_class Database

end

The first line loads the ROD library. The first class definition, which starts with the class

and ends with the end key-words, defines the Database class, while the second defines the

User class that uses the Database class. The < sign indicates the inheritance relation. The

5
 http://www.yaml.org/

ROD – Ruby Object Database 291

database_class call on the User class is used to indicate the database class associated with

the class.

Attributes are defined with the field method, singular associations with has_one and plu-

ral associations with has_many method. All of them treat the first argument as the name of the

attribute/association. The attribute also have to define its type as a Ruby symbol (which starts

with a colon) and might be one of: :string (for strings), :integer (for integers), :float (for

floating point numbers), :ulong (for unsigned long integers), :object (for marshaled values)

and :json (for values stored in JSON format). The options available for the attributes and

associations are provided as key – value pairs (where the key is separated from the value by

=>). For instance if one needs to define a flat index for one of the attributes, one has to pro-

vide :index => :flat option for the field method call.

A more sophisticated example looks as follows:

require 'rod'

class Database < Rod::Database

end

class Model < Rod::Model

 database_class Database

end

class User < Model

 field :name, :string

 field :surname, :string, :index => :flat

 has_one :account,

 :class_name => 'DatabaseAccount'

 has_many :addresses

end

class DatabaseAccount < Model

 field :login, :string,

 :index => :flat

 field :password, :string

 has_one :user

end

class Address < Model

 field :street, :string

 field :number, :integer

 field :city, :string

 has_one :user

end

The Model class is defined only to prevent all the other classes to repetitively define their

databases. This code defines the User class that has name and surname attributes of the

String type, where the second attribute is indexed with flat index as well as singular asso-

ciation account pointing to an object of the DatabaseAccount class and plural association

addresses pointing to the objects of the Address class; the DatabaseAccount class that has

login and password attributes, both of the String type and singular association user point-

ing to the object of the User class; the Address class, that has street, number and city at-

tributes of the String, Integer and String types respectively and singular association user

pointing to the object of the User class.

It should be restated that the above code examples are all valid Ruby programs – the data

definition language is just a subset of Ruby, not its super-set. The calls to field, has_one

and has_many methods are just ordinary method calls whose callee are the respective classes.

292 A. Pohl

5.2. Data Manipulation Language

When the class defines the respective attributes and/or associations, the following data

manipulation methods become available. The class constructor (new) may be called without

parameters, which creates a new, empty object; it may be called with a hash of key-value

pairs that initialize the respective attributes/associations with the values given and it may be

also called with the rod_id of an object that has been stored in the database. In the last case

the first access to the attributes or associations causes the object to be loaded from the data-

base. Furthermore the values of the respective attributes and singular associations might be

read and modified via getters and setters whose names are the same as the name of the attrib-

ute or association. In the case of plural association there are also a getter and a setter which

allow for reading and writing a whole collection of objects. This collection might be read and

modified like an array of objects.

The newly created object as well as an object retrieved from the database is always in

a detached state, that is any changes made to it are only propagated to the database when

a store method is called on it. If the object is fresh, the call to this method creates new entry

in the database and sets the rod_id of the object. If the object was retrieved from the data-

base, the call propagates to the database only the values that have changed (dirty tracking).

There are finders created for the attributes and associations that are indexed for a given

class. The finders start with find_by_ and find_all_by_ prefix and are suffixed with the

name of the attribute. The call of the first type returns at most one object or nil (which is also

an object in Ruby by the way) in case it was not found, while the second returns a collection

of objects, which is empty in case no such objects were found. Both these finders are class

methods, so the query looks as follows: User.find_by_surname('Smith'). So far the li-

brary does not provide specific mechanism to query by attributes and associations that are not

indexed. However the Rod::Model class includes the Enumerable mix-in which offers a gen-

eral purpose query mechanism.

The following code shows how the data manipulation language works (assuming we have

access to the data model defined in the previous listing) – the explanation is given in com-

ments which start with the # sign:

creation of an object with the initialized attributes

user = User.new(:name => 'Fred', :surname => 'Smith')

 # storing the object in the database

user.store

creation of a fresh object

user = User.new

setting the values of the attributes via setters

user.name = 'Fred'

user.surname = 'Smith'

storing the object in the database

 user.store

 # initializing the user with rod_id = 10

ROD – Ruby Object Database 293

 user = User.new(10)

 # reading the values of the attributes via getters

 user.name

 user.surname

 # a singular association example

 account = Account.new(:login => 'fred', :password => 'querty')

 user.account = account

 user.store

 account.user = user

 account.store

 # plural association example

 address1 = Address.new(:street => 'Straight', :number => 10,

 :city => 'Warsaw')

 address1.user = user

 address2 = Address.new(:street => 'Short', :number => 20, :city => 'Krakow')

 address2.user = user

 user.addresses << address1

 user.addresses << address2

 user.store

 address1.store

 address2.store

 # searching an address with 'Short' street for a given user using general

 # query mechanism

 user.addresses.find{|address| address.street == 'Short'}

 # searching a user with 'Smith' surname using the built-in query mechanism

 User.find_by_surname('Smith')

 # searching for all users with 'Smith' surname

 User.find_all_by_surname('Smith')

Two peculiarities should be noted regarding the data manipulation. The first concerns the

bidirectional associations – unlike in object-relational mappers, the objects on both sides have

to be set independently. If not, only one direction is persisted. The second peculiarity con-

cerns associations between fresh objects. The association is persisted only if both of the ob-

jects received the store method call. However it does not matter which of the objects was

stored first, as long as both of them were stored in the same open-close database cycle.

6. Results

The primary goal of the database is to be used as a storage engine for NLP tasks. As such

it is used in three libraries: rlp-grammar
6
 providing access to an inflectional dictionary of

Polish, rlp-semantics
7
 providing access to a semantic dictionary of Polish and rlp-

corpus
8
 providing access to a corpus with Polish texts. All these libraries are building blocks

of a framework for information extraction from Polish texts. Although there are many miss-

ing features in ROD, it proved to be quite stable and offering a much better performance than

a relational database and providing more uniform interface than the other solutions available

for Polish.

6
 https://github.com/apohllo/rlp-grammar

7
 https://github.com/apohllo/rlp-semantics

8
 https://github.com/apohllo/rlp-corpus

294 A. Pohl

ROD was compared with SQLite [5] working with ActiveRecord ORM. The test used to

compare the libraries works as follows – a text in polish is scanned and each text segment is

looked up in an inflectional dictionary. If the segment belongs to the dictionary, it is checked

if the word form is unambiguous, that is it belongs to only one flexeme. If this is true it is

checked that the flexeme has more word forms and that it is a noun. In such a case the occur-

rence of the word form is counted (to make sure that the implementations work the same).

This test case represents a quite simple text processing task – in real applications much more

data about given word form and its flexemes usually have to be fetched from the database. In

Ruby the kernel of the test looks as follows (this is exactly the same code for ROD and

ActiveRecord – the only difference is the WordForm class on which the first call is made):

form = WordForm.find_by_value(word)

if form && form.flexemes.count == 1 &&

 form.flexemes.first.word_forms.count > 1 &&

 form.flexemes.first.taggings.any?{|t| t.tags.map(&:value).include?("subst")}

 count += 1

end

The tables 1 and 2 show the performance comparison between ROD and SQLite used

with ActiveRecord. Full code of the benchmark is available at http://github.com/-

apohllo/rod-benchmark.

The results should be interpreted as follows: two texts file were used as input for the

benchmark: text_1.txt and text_2.txt. For each text 10 iterations of the benchmark were

run (the table shows only the 3 first result, the whole data is available under the address of

rod-benchmark). The time measured is the real value returned by the time command under

Linux. All the benchmark runs were performed within the scope of one process. As a result

ROD performance seems to be quite varying, but in fact the first large number (11 seconds

for the 0
th

 iteration for the text_1.txt file) is due to the fact, that the relevant dictionary file

pages are load into memory. Then cache of objects is used, so the test runs quite fast (around

1 second). When a new text is processed (which is larger than the first one) some new objects

are created in the first run, but in general the test runs much faster than the first one (around 3

seconds). In all cases this gives significant performance improvements compared to

ActiveRecord.

Table 1

SQLite 2.8.16 performance with ActiveRecord 3.1.1

 File Iteration Time [s] Difference [s] Speed up [times]

text_1.txt 0 33.65 - -

text_1.txt 1 33.66 - -

text_1.txt 2 33.54 - -

text_2.txt 0 42.48 - -

text_2.txt 1 41.87 - -

text_2.txt 2 42.47 - -

ROD – Ruby Object Database 295

Table 2

ROD 0.7.1 performance compared with SQLite

 File Iteration Time [s] Difference [s] Speed up [times]

text_1.txt 0 11.32 -22.33 x 2.97

text_1.txt 1 0.99 -32.67 x 34.00

text_1.txt 2 1.08 -32.46 x 31.05

text_2.txt 0 2.79 -36.69 x 15.22

text_2.txt 1 1.27 -40.60 x 32.97

text_2.txt 2 1.27 -41.20 x 33.44

However, the results presented in tables 1 and 2 should be treated only as illustrative –

they are not meant as a full performance comparison of ActiveRecord and ROD libraries.

This only shows that ROD might have much better performance in scenarios covering Natural

Language Processing. It should be noted that no fine tuning (besides proper indexing of fields

that are involved in the presented algorithm) of ActiveRecord or SQLite was done in order to

improve their performance in this task. There is also no comparison in the size of memory

used by the libraries, which is an important factor when comparing such libraries. But on the

other hand the reader has full access to the benchmark code as well as the library and is ad-

vised to perform his/her own tests.

7. Conclusions and Perspectives

Although the performance gains provided by Ruby Object Database are important in the

case of NLP tasks, there are many drawbacks of using ROD: lack of normalization, no trans-

actions, data modification anomalies, no support for removal of objects, data portability prob-

lems, tight coupling between the database and the Ruby language, batch updating of the data,

missing support for Windows platform and more. As such the database is not mature yet.

Some of the deficiencies will be addressed in the next version of the library, which will based

on Oracle Berkeley DB. Among the other benefites this will provide full support for ACID

transactions, data portability and this will lose the coupling between the database and Ruby

opening possibility for implementations in other programming languages.

BIBLIOGRAPHY

1. Daciuk J.: Incremental Construction of Finite-State Automata and Transducers, and

their Use in the Natural Language Processing. 1998.

296 A. Pohl

2. Fellbaum C.: WordNet. Theory and Applications of Ontology. Computer Applications,

2010, p. 231÷243.

3. Kubis M.: An Access Layer to PolNet-Polish WordNet. Human Language Technology.

Challenges for Computer Science and Linguistics, 2011, p. 444÷455.

4. Olson M., Bostic K., Seltzer M.: Berkeley DB. Proceedings of the FREENIX Track:

1999 USENIX Annual Technical Conference, 1999, p. 183÷192.

5. Owens M.: The denitive guide to SQLite. Apress, 2006.

6. Przepiórkowski A.: Korpus IPI PAN. Wersja wstępna. Instytut Podstaw Informatyki

PAN, 2004.

7. Tate B. A., Hibbs C.: Ruby on Rails: Up and Running. O'Railly Media, 2006.

8. Thomas D., Fowler C., Hunt A.: Programming Ruby. Pragmatic Bookshelf, 2004.

9. Vicknair C., Macias M., Zhao Z., Nan X., Chen Y., Wilkins D.: A comparison of

a graph database and a relational database: a data provenance perspective. Proceedings

of the 48th Annual Southeast Regional Conference ACM, 2010, p. 42.

10. Woliński M.: Morfeusz-a practical tool for the morphological analysis of Polish. Intel-

ligent information processing and web mining, 2006, p. 511÷520.

11. Zawodny J.: Redis: Lightweight key/value Store That Goes the Extra Mile. Linux Ma-

gazine, http://www.linux-mag.com/id/7496/, 2009.

Wpłynęło do Redakcji 16 stycznia 2011 r.

Omówienie

W artykule przedstawiono ROD – obiektową bazę danych dla języka Ruby do zastoso-

wania w zagadnieniach przetwarzania języka naturalnego. Baza ta została zaprojektowana

z uwzględnieniem specyficznych wymagań stawianych elektronicznym słownikom oraz kor-

pusom tekstów stosowanych w tej dziedzinie wiedzy. W artykule przedstawiono specyficzne

wymagania stawiane zasobom tego rodzaju oraz przedstawiono kilka alternatywnych imple-

mentacji stosowanych w szczególności w kontekście języka polskiego.

Istotna część artykułu poświęcona jest sposobowi implementacji przedstawianej bazy da-

nych. W szczególności omówiono mechanizm persystencji danych oraz mechanizm odwzo-

rowania obiektów języka Ruby na struktury bazy danych, ze szczególnym uwzględnieniem

atrybutów, związków jeden-do-wiele i wiele-do-wiele oraz mechanizmu indeksowania.

W dalszej części artykułu przedstawiono język definicji danych oraz język manipulacji da-

nymi.

ROD – Ruby Object Database 297

W tabelach 1 i 2 pokazano porównanie wydajności opisywanej bazy danych z relacyjną

bazą danych SQLite, współpracującą z biblioteką ActiveRecord. Jakkolwiek dane te mają

charakter wyłącznie ilustratywny, pokazują, że zastosowanie odmiennego sposobu przecho-

wywania danych niż baza relacyjna pozwala uzyskać znaczące przyspieszenie w zagadnie-

niach przetwarzania języka naturalnego. Z tego względu prace nad bazą danych będą konty-

nuowane w celu zwiększenia zakresu jej możliwych zastosowań.

Address

Aleksander POHL: Jagiellonian University, Departament of Computational Linguistics,

Łojasiewicza 4 st., 30-348 Krakow, Poland, aleksander.pohl@uj.edu.pl.

	1. Introduction
	2. Motivation
	3. Related Work
	4. Database Design
	4.1. Overview of implementation
	4.1.1. Access method

	4.2. Data model
	4.2.1. Attributes
	4.2.2. Singular Associations
	4.2.3. Plural Associations
	4.2.4. Indexing
	4.2.5. Metadata

	5. Database Interface
	5.1. Data Definition Language
	5.2. Data Manipulation Language

	6. Results
	7. Conclusions and Perspectives

