
STUDIA INFORMATICA 2012

Volume 33 Number 2A (105)

Ewa PŁUCIENNIK-PSOTA

Silesian University of Technology, Institute of Computer Science

OBJECT RELATIONAL INTERFACES SURVEY

Summary. Object relational interface, within the meaning of a tool for mapping

of a relational database to a set of objects, is an essential element of modern applica-

tions co-operating with relational databases. Nowadays at least a few dozen of this

type tools exists. For one programming language sometimes there are even a dozen or

more to choose from. So the choice is broad. The article presents a review of such

tools and proposes basic evaluation criteria for their suitability.

Keywords: impedance mismatch, object relational mapping, object application,

relational database

INTERFEJSY OBIEKTOWO RELACYJNE – PRZEGLĄD

Streszczenie. Interfejs obiektowo relacyjny, w rozumieniu narzędzia pozwalają-

cego na mapowanie relacyjnej bazy danych na zbiór obiektów, jest niezbędnym ele-

mentem współczesnych aplikacji współpracujących z bazą danych. Obecnie funkcjo-

nuje przynajmniej kilkadziesiąt tego typu narzędzi. Dla danego języka programowania

czasami mamy ich do wyboru nawet kilkanaście. Wybór jest więc szeroki. Artykuł

przedstawia przegląd takich interfejsów oraz proponuje podstawowe kryteria oceny

ich przydatności.

Słowa kluczowe: aplikacja obiektowa, mapowanie obiektowo relacyjne, niezgod-

ność impedancji, relacyjna baza danych

1. Introduction

Nowadays most of applications cooperate with databases. This cooperation mostly takes

place at the meeting point of two realms: object and relational. The object realm encompasses

applications developed using object programming language (Java, C++, C#, Python, etc.).

Relation databases constitute the relation realm. Both of these realms have different para-

300 E. Płuciennik-Psota

digms which lead to a very adverse effect called object-relational impedance mismatch
1
. Of

course one can say: “why we do not use object databases instead of relational ones? We avoid

then this discrepancy”. This is true, but for now object databases are not able to threaten rela-

tional databases position on the market. Relational model is standardized and well known. Its

strength lies first of all in general query language - SQL. Object databases, despite the fact

that from early 1990s attempts for creating such language were undertaken [1], do not have

general and standard query language. So, as for now, in most of IT projects we have object

applications and relational data.

The term object-oriented programming is known from the early 1960s and object pro-

gramming languages have become widely used in the early 1990s. First successful and popu-

lar solution for a cooperation with relational databases was application programming interface

Open DataBase Connectivity (ODBC 1992) and Java DataBase Connectivity (JDBC 1996).

In this technique SQL query is sent from object application to a relational database, executed

and its results are returned usually in a form of a RecordSet – design pattern which has the

same structure as SQL query results and can be processed by other system’s components [2].

There exists many techniques for embedding SQL in the application code, but none is all-

natural and moreover, when programmer does not have the good SQL knowledge, queries can

be ineffective [2].

Nowadays object-relational interfaces (within the meaning of a tool for mapping of

a relational database to a set of objects - ORM) are the most popular solution for object appli-

cation and relational database cooperation. They constitute additional layer which mediates

between an object application (and its classes that need to be persisted) and relational data-

base access mechanism.

Fig. 1. Scheme of ORM functioning

Rys. 1. Schemat działania ORM

Access mechanism can be ODBC/JDBC or any other like, for example Ruby/DBI (Direct

database access layer for Ruby), OCI (Oracle Call Interface), etc. Information about mapping

objects into database tables are stored in external XML files or in form of annotations placed

1
 Term “impedance mismatch” comes from electrical engineering and stands for resistance mismatch of

source and receiver, which causes loss of power.

Relational

Database
 Object Application

Access

mechanism ORM

Mapping files/
Configuration

Object relational interfaces survey 301

directly in classes code. Annotations are shorter and easier to use as programmer has all in-

formation about mapping in one class file. On the other hand XML mapping files can be

modified without recompiling the code. There are many ORM tools features which should be

considered before developer or project manager will decide which will be the best choice.

The aim of this article is to propose ORM evaluation criteria which should help to choose

ORM meeting the criteria appropriate for a given project or application.

2. History of ORM development

In 1989 The Object People was founded by Carleton University Professors John Pugh,

Wilf Lalonde, and Paul White [3]. In the early 90’s first object-relational mapper TopLink for

SmallTalk emerged. In 1996 TopLink for Java 1.0 was built with the internal code name

“Wallace and Grommit” (Grommit was the “Mapping Workbench”). In 1999 TopLink was

integrated with a number of J2EE application servers (for example WebLogic and Web-

Sphere) to support EJB (Enterprise Java Beans) container-managed persistence. In 2000 Top-

Link was sold to WebGain and in 2002 acquired by Oracle [4]. In 2001 arises Hibernate cre-

ated by Gavin King. The main goal of Hibernate creators was to offer better persistence capa-

bilities and simplicity than offered by EJB 2 [5]. In 2003 Hibernate2 become "de facto" stan-

dard for persistence in Java [5]. Hibernate 3 (2005) became an inspiration for EJB 3 [6, 7]. In

EJB 2.1 entity beans were heavyweight and dependable of application server and the Java EE

runtime. In EJB 3 entity beans became plain old Java lightweight objects (POJO) thanks to

the Java Persistence API
2
 specification [7]. JPA is now standard for object persistence in Java

– specified in JSR 317 (JPA 2.0) [9]. In 2007 Oracle starts cooperation with Eclipse Founda-

tion. Former TopLink developers get involved in Eclipse Persistence Services Project (in

short called EclipseLink) - extensible framework that will enable Java developers to interact

with relational databases (based on JPA), XML, and Enterprise Information Systems (EIS)

[10]. In 2008 Sun, the lead for the Java(TM) Persistence API (JPA) 2.0, has selected the

EclipseLink project as the reference implementation [11]. In Oracle TopLink 11g, TopLink

Essentials has been replaced with EclipseLink JPA [8].

Now JPA has many implementations – mentioned above including Hibernate 3.5 and

higher (latest version 4.1.0 was released at the begging of 2012) [12] and also Open JPA [13]

or DataNucleus (formerly JPOX) [14]. OpenJPA was created based on SolarMetric’s Kodo

product. SolarMetric was purchased by BEA Systems SolarMetric in November of 2005.

BEA Systems donated the bulk of the code to the Apache Software Foundation and the result

2
 It is an API for creating, removing and querying across lightweight Java objects and can be used both

within a compliant EJB 3.0 Container and a standard Java SE 5 environment [8].

302 E. Płuciennik-Psota

was OpenJPA [15]. JPA implementations among themselves with their own specific annota-

tions. For example, Hibernate ForeignKey annotation allows to define foreign key name. List

of specific annotation for particular JPA implementation can be found in its documentation.

But Java is not the only programming language. On the Internet one can find some pro-

gramming language popularity indices
3
. They using different methods of popularity measure:

book sales, web searches, line of codes in GNU/Linux distribution, job advertisements, etc.

After analyzing such information one can see that, besides Java mostly used programming

languages are “C family” (C#, C++, C, Objective-C), Ruby, PHP, Python, etc. When it comes

to programming .NET framework should not be forgotten – main Java and its virtual machine

competitor. In 2003 the NHibernate (Hibernate for .NET) project was started by Paul Hatcher,

Mike Doerfler and Sergei Koshcheyev [16]. NHibernate 3.0 (2010, .NET 3.5) was the first

version integrating LINQ (Language INtegrated Query) support. The newest version of

NHibernate 3.2.0 was released in 2011.

LINQ, introduced in 2007, is the result of research carried out in Microsoft Research in

Cambridge and Redmond. Microsoft’s aim was to provide a solution for the object-relational

mapping and create simple and universal tool for the interaction between objects and data

sources. LINQ eventually become a general-purpose language-integrated querying toolset.

LINQ to SQL uses POCO (Plain Old CLR
4
 Object) objects to represent application data (the

entities) [16]. LINQ to Entities was designed to work with the ADO.NET Entity Framework

(ORM framework for the .NET Framework) [17]. It should be noted that the first Microsoft’s

attempt at object-relational mapping was ObjectSpaces (2001) – a set of data access APIs

which allowed to treat data as objects, independent of the underlying data store. This project

was abandoned in 2005 [17]. In the same year at Microsoft’s Professional Developers Con-

ference (PDC) early versions of the EDM (Entity Data Model) Designer and XML mapping

files was presented. EDM’s basic elements – “Incremental Approach to an Object - Relational

Solution” was patented by Microsoft on March 8, 2007 (U.S. Patent and Trademark Office,

patent no. 20070055692). The first Community Technical Preview (CTP) of Entity Frame-

work was released in mid 2006. At the end of August 2007 EF Beta 2 and EDM Designer

CTP 1 was released, followed by EF Beta 3 and EDM Designer CTP 2 in early December

2007. The Visual Studio 2008 included updates to EF and the EDM Designer [18]. The new-

est release of EF (version 4.2) has appeared in 2011.

This is the history of ORM development by two main competitors on IT market. Of

course other players did not fall behind. Most existing applications cooperate with database,

3
 For example: The Transparent Language Popularity Index http://lang-index.sourceforge.net/, Programming

Language Popularity http://langpop.com/, TIOBE Programming Community Index for January 2012

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
4
 The Common Language Runtime - the virtual machine component of Microsoft's .NET framework.

Object relational interfaces survey 303

so most of object programming languages have ORM tools, created since XXI century begin-

ning, own or third party. For example, ActiveRecord ORM is the Ruby implementation of the

Active Record pattern (Active Record is an object which wraps a row in table or database

view and provides methods for insert, update or delete data [2]). There are also other ORM

for Ruby like Rhino or Massive Record for HBase. Phyton programmers can use for example

SQLAlchemy, SQLObject or DJango. For application written using scripting languages like

PHP or JavaScript developer can choose among LightOrm, Propel, Doctrine, KOHANA,

CakePHP for PHP or JazzRecord, Impel, ActiveJS for JavaScript. Interesting proposition for

Java and .NET is MyBatis
5
 (formerly IBatis) – ORM which, instead relational tables, maps

SQL statements results into objects. .NET developers can also choose KyneticORM,

OpenAccess ORM or ORM.NET. C++ developers can use, for example ODB or QDjango.

It is impossible to mention all ORM solutions. There exists at least several dozen popular

ORMs. There are many ORM tools (sometimes a dozen or so) even for one programming

language so choice is wide and should be make thoughtfully.

3. Assessment Criteria

When one needs to use ORM tools a few things should be considered. It is very important

to remember that the main goal of using ORM is not application performance improvement

but faster and simpler application creation. ORM is an additional application layer and can be

considered as an overlay for ODBC/JDBC – using ODBC/JDBC directly will be faster. Of

course decline in performance is not desirable so ORM has to deliver some performance im-

provement mechanisms.

First one is caching mechanism. Most databases offers such mechanism, but still query re-

sults have to be transmitted through network – cache resides on database server. We can

avoid such transfer using client cache. Some ORMs offer first (L1) and second level (L2)

cache for data (for objects and query results). L1 is provided by ORM and it is related with

a single session, which can be considered as a logical transaction (single client connection to

the database). L2 cache is external, so ORM should provide only interface to use it. Of course

it cannot be said that using cache is always a good solution. Before user decides to use it, he

or she needs to analyze queries frequency and types and also data mutability in the production

environment. For environment where queries are not repeatable, improper cache configura-

tion can lead not only to performance decline but also to errors caused by out-of-date data.

5
 http://www.mybatis.org/

304 E. Płuciennik-Psota

Second mechanism which can improve performance is possibility to use native SQL que-

ries – let us remember that ORM generates SQL queries (mostly even series of SQL queries

per one user request) and user do not have much influence on this process. Experienced SQL

programmer can write some unusual or complicated queries better than any artificial genera-

tor. Using native SQL with ORM is like using an inline assembler in high level programming

language – sometimes it is necessary to achieve better performance. So ORM should offer

some method to run native queries. Of course if such method does not exists (which is

unlikely) user can always use direct database access mechanism, for example JDBC. Very

good solution is a possibility to store such queries in external files. They are then much easier

to manage, especially for database administrators. It has to be remembered that using native

queries with some constructions peculiar to a specific database, the application becomes less

portable (if it comes to changing the database server). So it is better to avoid such queries or

store them in external files where they can be modified without having to recompile whole

application or module.

Another way to improve performance is the lazy loading mechanism. It allows an entity or

collection of entities associated with some other entity to be loaded when they are directly

requested. For example, if we have Department entity with employees property of list of Em-

ployer type and we request Department list we do not need load employees data until they are

explicitly referenced. In opposition to lazy loading we have eager loading. Default retrieving

mode in ORMs is mostly lazy. Decision which mode will be better depends on a concrete

operation and its degree of interaction with user. When an operation is of batch type

(e.g. script execution), eager mode would be appropriate. If operation requires interaction

with the user, for example the user explores the list of products and for chosen products want

to see some details, lazy loading should perform better than eager one. Lazy loading uses less

memory but increases database server traffic [18].

When it comes to performance, it has to be stated that each ORM generates SQL queries

in its own way. So if developer can choose from few or more ORM tools with similar func-

tionality it is good idea to compare their performance in environment close to production sys-

tem (with some inserting, selecting, updating, joining queries typical for a particular applica-

tion) to check how fast SQL queries are processed by database server and how much memory

is used for these operations.

When application cooperates with database it is obvious that it processes not only single

records but also group of records meeting some criteria. So ORM should provide some

mechanism to retrieve such records. It can be SQL-like object query language (for example

Java Persistence Query Language or Doctrine Query Language) which syntax is usually not

checked during compilation or some other way to query with mostly compile-time syntax-

Object relational interfaces survey 305

checking (for example Criteria API for Hibernate or find method for Active Record). It is

always better to use ORM query language instead of pure SQL if it comes to application port-

ability amongst (between) different database servers. It have to be stated that there are no

standard for ORM query language but most of these languages are similar (due to similarity to

SQL). Some standardization is JPQL for JPA.

As was mentioned above goal of using ORM is simpler and faster application creation.

ORM should have tools for generating entities classes and XML mapping files on the basis of

existing database (reverse engineering) or UML class diagrams. Also basic code generator for

manipulating entities would be useful. But it has to be remembered that generated code or

configuration always needs developer’s review. Sometimes some changes are needed or even

necessary and it is better to make them instantly. Interesting example of easy way to use ORM

is Ruby Active Record which is based (as whole Ruby framework) on “convention over con-

figuration” principle. For developer this principle means quick and simple start up without

spending time on configuration [19]. For example, Ruby convention assumes that database

table name is the pluralized lowercase name of the class defined in Active Record program

with separating underscores if class name includes multiple words that begin with capital

letter [19]. So developer must know all convention’s assumptions and if he wants to break the

convention it will involve additional work. Active Record does not need any XML configura-

tion file(s) or annotations, so as opposite to other ORMs stays in accordance with DRY

(Don’t Repeat Yourself) rule – avoids multiple representation of information until developer

sticks to convention [19, 20, 21].

Of course very important question is if chosen ORM is able to cooperate with a particular

database. Most of ORMs offer enough wide range of adapters/dialects/data providers for most

popular databases. Sometimes developer can use adapter offered directly by database pro-

ducer or third-party one. For example, IBM DB2 offers own adapters for SQLAlchemy, Ac-

tive Record, EF. EF offers own data provider only for Microsoft SQL Server, list of third-

party providers encompasses, for example MySQL, Oracle, SQLite
6
. Eventually developer

can create his own adapter but probably it won’t be necessary.

What makes the biggest difference between realm of relation and world of objects is in-

heritance. When we need to persist some classes hierarchy we can use one of mapping inheri-

tance patterns: Single Table Inheritance (STI), Class Table Inheritance (CTI) and Concrete

Table Inheritance (CoTI) [2]. Since in relational database inheritance does not exist, mapping

classes hierarchy on table(s) is always bound up with some inconvenience. In STI all hierar-

chy classes are persisted in single table which causes data redundancy and requires a dis-

6
 Microsoft MSDN Data Developer Center > Learn > ADO.NET > ADO.NET Data Providers,

http://msdn.microsoft.com/en-us/data/dd363565

306 E. Płuciennik-Psota

criminator column. With CTI, where all hierarchy classes have own tables, retrieving single

object requires relatively many joins in SQL query. CoTI, where each concrete class has its

own table with all attributes including inherited ones, avoids joins but is troublesome when

changes in parent classes are needed [2]. ORM should offer these patterns or their variations.

Possibility to decide if superclass will be persisted is/(might be) very useful. For example,

JPA defines @MappedSuperclass annotation – class designated with this annotation has no

table, but its attributes are persisted in subclasses tables. To sum up, it seems that it is better

to avoid inheritance in persistent classes especially if application works with legacy data-

base(s).

Table 1

Comparison of chosen ORM tools

Feature ORM

Hibernate Entity Framework Active

Record

MyBatis Doctrine

Cache L1, L2 L1, L2 L1, L2 L1, L2 L1, L2

 for objects yes yes yes yes yes

 for queries yes yes yes yes yes

Native SQL

execution

method

cre-

ateSQLQuery

ExecuteStoreQuery,

ExecuteStoreCommand

find_by_sql yes Doc-

trine_Ra

wSql

Queries stored

in external files

yes no no yes no

Lazy/eager

loading

yes/yes yes/yes yes/yes yes/yes yes/yes

Inheritance

mapping

all

patterns
7

all

patterns

STI STI all pat-

terns

Query language HQL LINQ no N/A DQL

Query with

compile-time

syntax-checking

Criteria API LINQ no N/A no

Generating

tools (own or

external)

yes yes no yes yes

Operating sys-

tem

any
8
 Windows any any any

Language

/framework

Java .NET Ruby Java

.NET

PHP

Open source yes no yes yes yes

For some developers it is very important if a given ORM is open source (Open source

ORM-s are very important to some developers). They obtain much more control over its be-

7
 Mentioned above inheritance patterns or their variations.

8
 Windows or Linux.

Object relational interfaces survey 307

haviour or can fix errors themselves. For example, in Hibernate full join does not work
9
 al-

though org.hibernate.sql.JoinType includes FULL_JOIN option
10

 – solution is a slight modi-

fication of JoinProcessor class. A question of licence and operating system is also vital.

A good documentation is also very important. Tutorials and developer forums – the more

popular ORM the more materials, discussions, tests can be found on the Internet. If ORM is

widely used by programmers it probably means that it is worthwhile.

 Last, but not least criteria is programming language or development framework used to

built the application. It narrows down the list of (possible)available ORMs. If the desired

ORM is not on this list, developer or project manager can think about including an add-on

module in the application in a language proper for this ORM.

Table 1 presents a few basic features of selected ORMs. Table was created on the basis of

technical documentation of presented tools.

As one can see there are no big differences in functionality, but some can be substantial

depending of what is expected from a given ORM. It has to mentioned that although Ruby’s

Active Record does not have own query language it offers methods, for example find, first,

select, for query database [19]. If it comes to generating tools, on the Internet one can find

very useful Ruby codes for reverse engineering etc.

4. Summary

Of course criteria defined above do not exhaust list of ORM desirable features like trans-

action management, locking, versioning, dynamic and named queries etc. There are more or

less advanced ORM-s in terms of functionality. ORM choice should be sensible and adequate

to particular project’s needs. ORM always constitutes an additional layer in application.

Sometimes Data Access Object component or smaller and simpler ORM could be sufficient

for application proper functioning [21].

It should be mentioned there are more and more ORMs which operate not only with rela-

tional databases but also with NoSQL and object databases. To name a few Versant JPA for

Versant Object Database, DataNucleus which supports NoSQL (for example Mongo DB and

Google’s BigTable) and object databases (db4o and NeoDatis ODB) in addition to relational

ones, or Hibernate Object/Grid Mapper for NoSQL databases. This kind of ORMs can be

very helpful in case of IT projects co-operating with hybrid data storage and data migration.

When discussing object-relational impedance mismatch issue it is impossible to omit ob-

ject features of relational databases. For the first time some of this kind of features were de-

9
 https://hibernate.onjira.com/browse/HHH-2664.

10
 http://docs.jboss.org/hibernate/orm/4.0/javadocs/org/hibernate/sql/JoinType.html.

308 E. Płuciennik-Psota

fined in SQL:1999 standard. Relational databases creators equipped their products with pos-

sibility to define complex types and methods, inheritance or object view of relational table,

etc. IBM DB2, Oracle, Microsoft SQL Server support object technology with varying degree

and most popular open source, object-relational database is PostgreSQL. As for now ORMs

are the mainstream solution of object-relational impedance mismatch problem.

BIBLIOGRAPHY

1. Lausen G., Vossen G.: Models and Languages of Object-Oriented Databases. Addison-

Wesley, 1997.

2. Fowler M. et al.: Patterns of Enterprise Application Architecture. Addison-Wesley,

2003.

3. The original Object People, https://sites.google.com/a/objectpeople.com/objectpeople-

com/About [online, access 2012-01-15].

4. Smith D.: A Brief History of TopLink, http://www.oracle.com/technetwork/topics/

history-of-toplink-101111.html [online, access 2012-01-15].

5. History-Hibernate-JBoss Community, http://www.hibernate.org/about/history [online,

access 2012-01-15].

6. Bauer Ch., King G.: Hibernate in Action. Manning Publications, 2005.

7. Burke B., Monson-Haefel R.: Enterprise JavaBeans 3.0, 5th edition. O'Reilly Media,

2006.

8. Oracle TopLink JPA, http://www.oracle.com/technetwork/middleware/toplink/index-

085257.html [online, access 2012-01-29].

9. JSR-000317 Java Persistence 2.0 – Final Release, http://jcp.org/aboutJava/community-

process/final/jsr317/index.html [online, access 2012-01-15].

10. EclipseLink Project, EPS Creation Review, http://www.eclipse.org/projects/project.

php?id=rt.eclipselink [online, access 2012-01-15].

11. http://www.eclipse.org/org/press-release/20080317_Eclipselink.php [online, access

2012-01-29].

12. Minter D., Linwood J.: Beginning Hibernate. Second Edition, Apress 2010.

13. Apache OpenJPA, http://openjpa.apache.org/ [online, access 2012-02-02].

14. DataNucleus, http://www.datanucleus.org/ [online, access 2012-02-02].

15. Apache OpenJPA, http://openjpa.apache.org/faq.html#FAQ-Whatisthehistoryof Open-

JPA%253F [online, access 2012-02-02].

16. Kuaté P. H., Harris T., Bauer Ch., King G.: NHibernate in Action. Manning Publica-

tions, 2009.

Object relational interfaces survey 309

17. Marguerie F., Eichert S., Wooley J.: LINQ in Action. Manning Publications, 2008.

18. Jennings R.: Professional ADO.NET 3.5 with LINQ and the Entity Framework. Wiley

Publishing, 2009.

19. Marshall K., Pytel Ch., Yurek J.: Pro Active Record. Databases with Ruby and Rails.

Apress, 2007.

20. Hunt A., Thomas D.: The Pragmatic Programmer. From Journeyman to Master. Adi-

son-Wesley, 1999.

21. Ford N.:The Productive Programmer. O'Reilly Media, 2008.

Wpłynęło do Redakcji 31 stycznia 2012 r.

Omówienie

We współczesnym świecie większość nietrywialnych aplikacji współpracuje z bazą da-

nych. Współpraca ta odbywa się na styku dwóch światów: obiektowego i relacyjnego. Świat

obiektowy to świat obiektowych języków programowania, takich jak Java, C++, C#, Python

itd. Świat relacji to świat relacyjnych baz danych. Oba te światy opierają się na różnych para-

dygmatach, co prowadzi do niekorzystnego zjawiska, zwanego niezgodnością impedancji

obiektowo relacyjnej. Można stwierdzić, że najprostszym sposobem na uniknięcie problemów

jest zastosowanie obiektowej bazy danych. Jednak na chwilę obecną obiektowe bazy danych

nie są w stanie zagrozić rynkowej pozycji baz relacyjnych.

Obecnie najpopularniejszym sposobem współpracy obiektowej aplikacji z relacyjną bazą

danych jest interfejs obiektowo relacyjny, w rozumieniu narzędzia pozwalającego na mapo-

wanie relacyjnej bazy danych na zbiór obiektów (ORM). Ich historia zaczęła się we wcze-

snych latach 90. Obecnie funkcjonuje przynajmniej kilkadziesiąt tego typu narzędzi. Dla da-

nego języka programowania czasami mamy do wyboru nawet kilkanaście możliwości. Wybór

jest więc szeroki i powinien być dokonywany rozważnie.

ORM stanowi dodatkową warstwę pośredniczącą między aplikacją a bazą danych, wyko-

rzystującą natywny mechanizm dostępu do bazy danych, jak np. JDBC, oraz informacje

o sposobie odwzorowania relacji na obiekty zapisane w plikach XML bądź w postaci adnota-

cji umieszczanych bezpośrednio w kodzie. Jako dodatkowa warstwa, ORM może wpłynąć

ujemnie na szybkość działania aplikacji. Jego głównym zadaniem jest uproszczenie tworzenia

aplikacji, a nie zwiększenie wydajności. Jednym z podstawowych kryteriów wyboru narzę-

dzia ORM powinny więc być mechanizmy pozwalające na zwiększenie szybkości jego dzia-

łania, takie jak np. możliwość korzystania z pamięci podręcznej bądź natywnych zapytań do

310 E. Płuciennik-Psota

bazy danych. W artykule zaproponowano również kilka innych podstawowych cech, pozwa-

lających ocenić przydatność danego narzędzia. W tabeli 1 zaprezentowano zestawienie tych

cech dla kilku wybranych narzędzi ORM. Zwrócono również uwagę na narzędzia pozwalają-

ce odwzorowywać obiekty aplikacji do baz NoSQL lub obiektowych.

Address

Ewa PŁUCIENNIK-PSOTA: Silesian University of Technology, Institute of Computer

Science, Akademicka 16, 44-100 Gliwice, Poland, Ewa.Pluciennik-Psota@polsl.pl.

	1. Introduction
	2. History of ORM development
	3. Assessment Criteria
	4. Summary

