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Nomenclature 

Symbol  Meaning 

Latin symbols 

A [m2] Sell surface area or microchannel 

ALp [m2·s·kg-1] Pre-exponential factors for Lp
  

APs [m·s-1] Pre-exponential factors for Ps 

a, e, i, j – Variable 

B [K·s-1] Constant cooling rate 

Bi or Bj [kg·mol-1] Second osmotic virial coefficient for types i or j 

CSTC [J·m-3·K-1] Substitute thermal capacity 

c, cs, cn, cd, 

ck, cw 

[mol·m-3] Molar concentration 

cp, ccw, cf, 

cin, cN, csl 

[J·kg-1·K-1] Specific heat capacity 

cv [J·m-3·K-1] Volumetric heat capacity 

D [m2·s-1] Molecular diffusion coefficient 

EA,Lp, EA,Ps [J·mol-1] Activation energies Lp
 and Ps 

fs – State function 

Gb [m3·s-1·m-3] Blood perfusion rate 

g [m·s-2] Fluid acceleration vector 

H [J] Enthalpy function 

H, Hf, R, Wf, 

Ww 

[m] Dimensions 

h1, h2, h [m] Mesh steps 

J [mol·m-2·s-1] Diffusion flux vector 

k, k1, k2, kcw, 

kf, kin, kN, ksl 

[W·m-1·K-1] Thermal conductivity 

ka [s-1·K-1] Characteristic coefficient 

kB [J·K-1] Boltzmann constant 
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kdiss – Dissociation constant 

kw and ks [m·s-1] Water and solute permeability constant 

L [J·kg-1] Latent heat 

Lp [m2·s·kg-1] Hydraulic conductivity 

M [mol·m-3] Osmolarity 

Mat. [kg·mol-1] Molar mass 

Mu [u] Molecular mass 

m [kg] Mass of the sample 

m, n – Number of nodes 

mi or mj [mol·kg -1] Molality of species i or j 

mη  Fin parameter 

Ns (e.g. Nd) [mol] Intracellular number of permeating solute molecules 

n – Normal vector to the sub-domain 

n – Characteristic coefficient in Einstein-Stokes equation 

Ps [m·s-1] Solute permeability 

p [Pa] Pressure 

Q [J] Amount of heat (energy) 

Qen [cal·mol-1] Activation energy 

Qf [J] Internal heat sources for freezing 

Qint, Qmet, 

Qperf 

[J] Internal, metabolic, perfusion heat source 

Qvol [m3·s-1] Volumetric flow rate 

q [W·m-2] Heat flux (vector) 

R [J·mol-1·K-1] Gas constant 

Re, Rα, RΓ [m2·K·W-1] Thermal resistance 

Rs – Source term 

r, z [m] Geometric coordinates of the cylindrical coordinate 

system 

rcell [m] Isotonic cell radius of cell 

ri,j [m] Radial coordinate of the node (i, j) 

rs [m] Radius of the spherical particle 

S [mol] Intracellular amount of permeating solute 

T, To [°C] or [K] Temperature 
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Tbath [°C] Temperature of bath solution 

Text [°C] or [K] Temperature of the surrounding mediums 

Tl, Ts [K] Liquidus and solidus temperature 

Tm [K] Freezing (melting) temperature 

TΓ [°C] Temperature on the boundary 

t [s] Time 

Δt [s] Time step 

u [m·s-1] Flow velocity field (vector) 

u, v, w [m·s-1] Velocity vector components 

uin [m·s-1] Inlet velocity 

uΓ, vΓ, wΓ [m·s-1] Components of the velocity vectors on the edge 

V [m-3] Volume 

Vb [m3] Osmotically inactive volume 

Vcell [m3] Total volume of cell 

Vs, Vw [m3] Intracellular solute and water volume 

Vw+s [m3] Intracellular volume of water and solute 

Vm [m3·kg-1] Volume per unit of mass  

vj [L·mol-1] Partial molar volume of component j 

We [s·m-1] Mass diffusion resistance 

w, wd, wk, 

ww 

[% (w/w)] Mass fraction 

x [m] Displacement or component of the Cartesian 

coordinate system 

Greek letters 

αΓ [W·m-2·K-1] Convection heat transfer coefficient 

η – Fin efficiency 

μ [Pa·s] Dynamic viscosity 

ν [m2·s−1] Kinetic viscosity coefficient 

π [mol·kg -1] Osmolality 

ρ [kg·m-3] Density 

σ – Reflect coefficient 

τt, τq [s] Thermalization and relaxation time 

Φ, Φe – Shape function 
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φ [mol·m-3] Concentration of the substance (quantities) 

χ – Degree of ice crystallisation 

Other 

∇  Nabla operator 

(∙)̇  First-order time derivative 

(∙)̈  Second-order time derivative 

(∙)̃  Fuzzy number 

(∙)̅̅ ̅  Interval  number 

(∙)′  First-order derivative 

𝜕(∙)/𝜕𝑛  Normal derivative 

Subscript 

a  Variable 

b  Blood parameters 

bath  Bath solution 

cw, sl  Chip wall and sample layer 

d  DMSO 

e  Given node 

ext  Value of variable of surrounding mediums 

f  State below freezing (melting) point sub-domain 

i, j  Nodes (in numerical model) or given component, types 

(in mathematical model) 

in  Intermediate sub-domain 

k  KCl 

l, s  Liquid and solid sub-domain 

N  Natural state sub-domain 

w  Water 

wf  Working fluid 

Γ  Variable on the boundary of the domain 

Superscript 

0  Initial moment 

e, i  Extracellular and intracellular solute 

f  Moment of time 

s  Domain of solution: e or i 



1. Aim and scope of the work 

Cryopreservation is a process that aims to preserve cells or tissues without significantly 

affecting their basic functions, including viability and mechanical properties. During this 

process, biological activity is initially slowed down by cooling to a temperature below 

zero Celsius degrees (for example to about −80 °C or −196 °C) and afterward reclaimed 

by warming to physiological temperature. Cryopreservation is an important field of 

cryobiology and a continuously developing discipline. Cryopreservation involves 

freezing of animal as well as human cells and tissues. The following cells and tissues can 

be frozen: oocytes, embryos, sperm, semen, testicular tissue, hepatocytes and others. 

Research in this field additionally includes the preservation of organs for transplantation. 

Low-temperature stem cell storage is a step in developing tissue engineering, which is an 

opportunity to regenerate soft tissues and treat many diseases. Cryopreservation also 

makes it possible to bank cells or various pathogens in order to preserve them for further 

research [57, 182]. 

In order for this process be effective, it cannot negatively impact the quality of 

the sample after restoring. Cell damage during cryopreservation is related to biophysical 

changes including cell dehydration as well as intracellular and extracellular ice crystal 

formation. Determining the optimum cooling/warming rate is one of the approaches to 

protect the cryopreserved material, thus controlling both water transport across cell 

membranes and intracellular water freezing processes. Another concept to prevent 

cryogenic damage of the biological sample is to use appropriate cryoprotectants (CPA) 

such as glycerol or dimethyl sulfoxide (DMSO) [94, 173].  

According to the cooling rate and the concentration of CPA, the cryopreservation can 

be performed by slow freezing or vitrification, which are the most common methods. 

Slow freezing is mainly characterised by a low cooling rate and low CPA concentration 

compared to vitrification. In contrast, vitrification, in which the glass state transforms 

from the liquid state, is typified by a high cooling rate and high CPA concentration [182]. 

Some other techniques of cryopreservation are also known, such as “liquidus tracking” 

(LT) method. The main idea of the LT approach is to immerse the biological sample 
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in a solution of CPA while controlling its temperature and concentration. There is then 

a change in the freezing (melting) point, and the thermodynamic conditions of 

the solution “track” the liquidus line for the system [65]. 

The cryopreservation process is also accompanied by transport. First and foremost, 

alternations related to heat transfer occur during this process. The mechanism of bioheat 

transfer is considered as a combination of convection and thermal conduction. 

The thermal distribution is most often described by the Fourier equation, the Pennes 

equation, the Cattaneo-Vernotte equation and the dual phase lag equation. When 

preparing a heat transport model for the cryopreservation process, it is also important to 

consider the phase transition phenomena that are associated with ice crystallisation [182].  

In addition to heat exchange, mass transfer also occurs during cryopreservation. It 

should then be considered a momentum transfer described, for example, by the Navier-

Stokes equations. Modelling of the delivery of the cryoprotectant to the sample chamber, 

especially in microfluidic systems, is examined as a fluid flow problem [159, 182]. 

Mass transport is also related to the movement of molecules. It occurs when 

a concentrated cryoprotectant solution diffuses into the extracellular space. 

Consequently, the convection-diffusion equation is used to express this phenomenon. 

In cases where advection is neglected, particle diffusion is characterised by  

Fick's laws [7, 9].  

When modelling cryopreservation, osmotic transport should also be analysed. 

This describes the changes in cell volume caused by changes in the molar number of 

cryoprotectant and the volume of water in the intracellular solution. The two-parameter 

formalism approach or the Kedem-Katchalsky equations can be used to determine  

these values [36].  

It is evident that cryopreservation is an extremely complex process and its modelling 

requires a combination of knowledge from mechanics, biology and chemistry. 

This dissertation is devoted to multi-scale modelling of the heat and mass transfer during 

cryopreservation. Figure 1.1 shows a diagram of the multiphysical coupled phenomena 

of the cryopreservation problem. 

It is important to emphasise that efficient solutions to the more complicated boundary–

initial problems of heat and mass transfer at tissue and cell level can only be obtained 

by numerical methods, for example, by the finite difference method (FDM) [88]. 
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Figure 1.1. Multiphysics cryopreservation model 

 

In addition, some physical quantities used for calculations are determined 

experimentally. As a result, it is common to encounter parameters with approximate 

values that are subject to some imprecision. In order to correctly interpret such inaccurate 

values and apply them in the analysis of technical problems, interval or fuzzy arithmetic 

can be used for calculations. Imprecisely defined quantities are represented as interval 

numbers or fuzzy numbers without sharp boundaries. Interval numbers are considered to 

be the “precursors” of fuzzy numbers. Parameters for which the exact value is not given, 

but the exact values of lower and upper limits of the interval to which the numerical value 

always belongs are known, can be interpreted as interval numbers [68]. 

The use of both fuzzy set theory and interval numbers allows many physical 

phenomena to be better represented in a mathematical model. 

 

The aim of this dissertation is to present various mathematical models of heat and 

mass transfer in biological tissue during the cryopreservation process with imprecisely 

defined parameters in the mathematical description by introducing interval and fuzzy 

numbers. The interval and fuzzy finite difference method was used to solve the problem 

as formulated. In some of the cases presented in the dissertation, the numerical simulation 

results were compared with experimental data reported in the literature [187, 196]. The 

author's computer programmes using directed interval arithmetic and fuzzy arithmetic are 

an integral part of the work. 
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The thesis of the work can be formulated as follows:  

Consideration of the imprecise parameters occurring in the mathematical description 

allows for effective multi-scale modelling of heat and mass transfer during 

cryopreservation of tissues and cells. 

 

The work consists of six chapters, bibliography and abstracts in Polish and English. 

Chapter 2 provides a literature review related to the cryopreservation method. 

The different approaches for conducting this process are presented. It also discusses 

the procedures for the cooling step and the delivery of the cryoprotectant solution to 

the sample. In the chapter the most commonly used cryoprotectants are also described. 

Chapter 3 is devoted to the transport mechanisms that occur during cryopreservation. 

It reviews the mechanism of heat transfer and presents some of the widely applied models 

for defining thermal processes and crystallisation phenomenon in biological samples. 

In addition, the chapter contains mass transfer model related firstly to the flow of the bath 

solution containing the cryoprotectant into the sample (fluid flow) and secondly to 

diffusion of the molecules into the extracellular solution of the biological tissue 

(molecular diffusion). Also, the model for the transfer of water and cryoprotectants 

molecules across the cell membranes (osmotic transport) is depicted in the chapter. 

Chapter 4 introduces the theory of interval sets and fuzzy sets. Basic mathematical 

operations performed on the sets of fuzzy numbers and interval numbers are formulated. 

Chapter 5 considers the problem of the heat transfer presented in three examples. 

Example 1 demonstrates the model defined by the Fourier equation. In contrast, Example 

2 supplements the thermal model with phase changes introduced into the governing 

equation by the one domain method. Example 3 explores, besides the heat transfer model, 

the phenomenon of crystallisation using the zone model and the non-isothermal equation 

proposed by Boutron and Mehl. 

Chapter 6 contains three examples related to the mass transfer problem. Example 1 

analyses the mass transfer described by the Fick's second law, where the advection 

phenomenon is neglected. In Example 2, the osmotic transport model is investigated by 

applying the two-parameter formalism. Example 3 provides a model of a microfluidic 

system in which the advection phenomenon is considered, therefore for this case the mass 

transfer model is represented by the convection-diffusion equation. 

Chapter 7 concludes the dissertation and proposes some directions for further research. 
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2. Cryopreservation process 

2.1. Introduction 

The mechanism of cryopreservation has been observed in animals inhabiting in cold 

regions with seasonal weather change, for example, in the northern forests of Canada and 

Alaska. Over time, science has begun to exploit this mechanism for its own benefit. 

During cryopreservation, many changes in cells may cause cell damage. To prevent this, 

the cooling rate can be regulated. Another milestone in research on the freezing process 

of biomaterials is the discovery of the properties of cryoprotectants. These are chemical 

adjuvants that impact the properties of the cell solution, for example, modify the freezing 

point. Using cryoprotectants also protects cells against injury during the freezing process. 

Various cryopreservation methods are currently distinguished. They differ mainly in 

the cooling rate and the concentration of the cryoprotectant solution. The following 

approaches are the most commonly adopted: slow freezing and vitrification. Alternative 

techniques are also known, for example, the liquidus-tracking protocol. 

In the case of cryopreservation, it is also worth considering how a given sample 

is cooled. The tube in which the biomaterial is placed is often immersed in a refrigerant. 

This approach is called the channel-based method. Other cooling techniques are also 

known, such as the droplet method, which involves immersing the sample solution 

directly into the refrigerant in droplet form. 

The researchers also explore how to deliver the cryoprotectant to the sample. This is 

important, because cells can be damaged due to osmotic changes. For this reason, 

microchannels with different shapes and properties are designed and used. 

2.2. History of cryopreservation  

Nature continues to amaze us in many ways. The northern forests of Canada 

and Alaska are home to the North American wood frog (Rana sylvatica), which has 
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developed an extraordinary strategy for surviving cold winters. Namely, when the 

temperature drops below zero, breathing and heartbeat of the frog stop completely, 

and the water in the body is transformed into ice. This amphibian spends several months 

in a frozen state, after which the animal returns to normal life activities with the arrival 

of spring. This phenomenon is possible because the frog’s liver produces glucose, 

and because the body fluids contain cryoprotective agents also called cryoprotectants 

(CPAs), such as glycerol, sugars, proteins, or urea. As a result, the freezing point of 

the frog's body decreases, and ice crystals in the cells do not form, as well as shrinking of 

the cell membranes does not occur. Ice grows only around cells and organs, “on the 

outside part of the corpus”. This prevents cell and tissue damage that would lead to 

the death of the animal [3, 4, 77, 110, 197]. 

Similar behaviour is also observed in other vertebrates. In addition to the frog 

mentioned above (Rana sylvatica), there are four other species of frog (Pseudacris 

triseriata, Hyla crucifer, Hyla versicolor, Hyla chrysoscelis), as well as one species of 

salamander (Salamandrella keyserlingii), one species of snake (Thamnophis sirtalis) and 

three species of turtle (Chrysemys picta, Terrapene carolina, Terrapene ornata), 

which also exhibit this conduct [25]. 

The described mechanism is named cryopreservation. The word cryopreservation 

comes from Greek κρύος, [kryos] meaning “icy cold” and Latin praeservare 

or conservare meaining “to preserve” [200]. It is defined as the process of storing 

biological constructs, such as cells, tissues, or organelle at low temperature. 

The preservation temperature depends on the use of the refrigerant, for example, for solid 

carbon dioxide it is −80 °C or for liquid nitrogen it is −196 °C. Cryopreservation methods 

are designed to avoid cell damage. One of the problems is the crystallisation of the water 

contained in the cells into ice. As a result, the cell mechanism seeks to equalize osmotic 

pressure. Therefore, solutes in the cytosol become increasingly concentrated, leading to 

the dehydration of organelles. The permeability of the lipid membrane is also altered, 

which is crucial to cell integrity. Damage caused by osmotic stress, membrane 

permeability, and cytoskeletal distortion destabilizes the cell. In addition, the physical 

injury induced by the formation of ice crystals inside ultimately leads the cell  

to death [60, 110]. 

Despite this, scientists would like to use the cryopreservation for its own purposes. 

The basic assumption of cryopreservation is to prevent any damage to a given biological 

structure. This is done by regulating the properties of the cell fluid with the CPAs and the 
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cooling rate. As research was conducted in this area, the cellular mechanisms that occur 

during cryopreservation were better understood [110]. 

In history, a breakthrough moment for the development of this process was 

the discovery of the effect of glycerol on the survival of frozen cells by Polge et al. in 

1949 [133]. Polge et al. demonstrated that poultry sperm preserved in a 15% glycerol 

solution at −79 °C (solid carbon dioxide) or −192 °C (liquid air) gain full motility and the 

ability to fertilize the ovum after thawing. In 1952, Polge et al. [134] confirmed that 

frozen avian spermatozoa were capable of fertilizing eggs. At the same time, they found 

that freezing mammalian spermatozoa posed a greater problem for researchers. 

In 1957, in a paper also published by Polge et al. [135], an experiment was performed 

on the spermatozoa of a ram, boar, colt, and bull. It was then found that there was a critical 

temperature range for the cells between −15 °C and −25 °C. To some extent, this can be 

prevented by leaving the spermatozoa at −2 °C for 18 h or by varying the cooling rate 

within the critical temperature range. 

Further research confirmed the effectiveness of this method for other animals as well, 

for instance rabbits, horses, guinea-pigs, cattle, fowl, pigs, sheep, and goats. 

These inventions are used in animal husbandry. As described in [42, 110], today virtually 

all industrially bred cows are inseminated by cryopreserved semen. 

Over time, cryopreservation has also been used on human materials. Living at the turn 

of the 20th century, Italian scientist and visionary Paolo Mantegazza made attempts to 

freeze frog and human sperm at temperatures between −14 °C and −17 °C. Based on his 

own studies, in 1866 Mantegazza proposed the existence of sperm banks. Mantegazza 

claimed that in the future science would make it possible to improve breeds of oxen and 

horses without the expense of transporting suitable individuals and that fertilization 

would be accomplished through frozen sperm. He also said “It may also be possible for 

a husband fallen on the battlefield to impregnate his wife from his corpse and have 

legitimate children even after his death” [90]. His vision came true almost 100 years later. 

In 1954, the Cedar Rapids Gazette [198] published an article reporting the birth of three 

babies by insemination of sperm that had been previously frozen  

and stored [15, 167, 168].  

Increasingly, more and more researchers began to explore ways to preserve both male 

gametic cells and other reproductive cells, such as oocytes and embryonic cells, as well 

as the possibility of preserving whole animal and human tissues. For example, in 1986 
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Christopher Chen [22] described a case of pregnancy and birth of twins using a slow 

freezing and rapid thawing procedure on a human oocyte applying DMSO [45]. 

In the 1960s, researchers began to think about freezing the entire human body. 

According to rumours, Walt Disney wanted to have his body frozen so that he could come 

back to life years later. He was diagnosed with a developing cancer of the left lung, which 

back then was an incurable disease. When it became known that the famous entertainer 

was terminally ill, a claim spread that he had undergone a cryopreservation procedure. 

The procedure was allegedly performed with the hope that 100 years after 

the philanthropist's death, due to the huge advancement of medicine, it would be possible 

to bring him back to the world of the living and cure the disease. As it turned out, Disney 

did not participate in cryonics treatment, but died of cardiac arrest and his body was 

cremated and buried in a California cemetery in Glendale [83]. 

It was not long before the first typical human body cryopreservation procedure was 

performed. In April 1966, the human body was frozen for the first time. A middle-aged 

woman of unknown name underwent the procedure. About two months after being 

embalmed, her body was placed in liquid nitrogen and stored in the morgue, with the 

temperature in the refrigerator slightly above freezing. The experiment ended with her 

body thawed and then buried by family members [121].  

A more famous cryopreservation treatment is the freezing of James Bedford's body. 

Bedford suffered from kidney cancer with metastases to the lungs. As mentioned in the 

book We Froze the First Man [107], on January 12, 1967, Bedford's body was frozen in 

Nelson's newly established organization by a team consisting of Robert Prehoda, Dante 

Brunol, and Robert Nelson. The procedure was performed after death without embalming. 

In addition, an appropriate CPA solution (DMSO) was injected into Bedford’s corpse. 

Bedford is the only cryopreserved person before 1974 whose body is still stored [83, 121]. 

Currently, the techniques associated with cooling human and animal bodies and 

storing them at liquid nitrogen temperatures (−196 °C) are named cryonics. The main 

idea of this approach is to restore frozen terminally ill organisms to life when medicine 

will be developed sufficiently [203]. This type of treatment can, of course, be conducted 

after patients are clinically dead using CPAs to prevent the formation of ice crystals. 

Interestingly, approximately 250 human corpses had been frozen in the US by 2014, 

and about 1,500 people were preparing for this procedure [83, 101]. 
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2.3. Cryopreservation methods 

The freezing techniques described previously are called slow freezing. In 1963, Mazur 

proposed a cooling rate needed to obtain liquid nitrogen temperature (−196 °C) using 

appropriate CPAs such as glycerol or DMSO [95]. Mazur showed that if sufficiently slow 

cooling is applied, intracellular freezing that destroys the cell can be avoided. Meanwhile, 

as the extracellular fluid is frozen, water can leave the cell. According to Mazur, 

the typical cooling rate for mammalian cells is assumed to be about 1 °C/min, with this 

value varying for individual cells of different sizes or water permeability. 

Furthermore, appropriate CPAs should be used at low concentrations [42, 94] 

As early as 1973, Basile Luyet proposed a cryopreservation method based on ultra-

fast cooling [82]. In 1985 William Rall and Greg Fahy presented the concept of 

cryopreservation by vitrification [139]. The novel approach was based on supercooling 

the medium to very low temperatures. This process occurs in the presence of highly 

concentrated solutions of CPAs. The low temperature causes the solutions to be viscous 

and to solidify (or rather to vitrify) without the formation of cell-dangerous ice. 

In fact, the solution does not crystallize but becomes amorphous ice. Rall and Fahy 

conducted research on mouse embryos [139, 168]. 

Using high concentrations of CPA interferes with the chemical composition of the cell. 

Osmotic shock is mainly responsible for the toxic effects of CPA on cells. 

Therefore, vitrification raises concerns about its security. Several studies related to 

embryo vitrification were conducted in the 1990s. These revealed an unclear relationship 

between high concentrations of DMSO, which is one of the CPAs, in the vitrification 

medium and high losses of normal developing embryos in the post-implantation phase. 

Other studies have suggested that CPA contributes to chromosome breakdown, 

aneuploidy, and other chromosomal abnormalities. Such ambiguities in the research 

results have diminished interest in vitrification as a cryopreservation method [45, 110]. 

In 1999, Lilia Kuleshova et al. [71] reported the first case of the birth of a healthy 

baby, which was fertilized by the in vitro method using vitrified oocytes. 

Vitrification research has also been conducted in the field of tissue engineering. 

Importantly, biomaterials must maintain their structural integrity and cells must be viable 

and retain their function. These conditions will only be met by processes in which no ice 
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formation occurs. In 2004, Lilia Kuleshova et al. presented vitrification of tissue 

engineering constructs [72]. 

The two main methods of cryopreservation, slow freezing and vitrification, are briefly 

compared in Table 2.1 [57]. They differ, for example, in the duration and cost of 

the process, the concentration of CPAs, or the risks present during the procedure.  

Table 2.1 also contains information about the size of the sample being frozen, the status 

of the system, the possibility of contamination, and the ability to manipulate the process. 

 

Table 2.1. Comparison of slow freezing and vitrification [57] 

Feature 
Method 

Slow freezing Vitrification 

Working time More than 3 h Less than 10 min 

Cost 
Expensive, freezing 

machine needed 

Inexpensive, no special 

machine needed 

Concentration of CPAs Low High 

Risk of freeze injury, 

including ice crystal 

formation 

High Low 

Risk of toxicity of CPA Low High 

Sample volume 100 – 250 μL 1 – 2 μL 

Status of system Isolated system only Opened or isolated system 

Potential contamination 

with pathogenic agents 
Low High 

Manipulation difficulty Easy Difficult 

Post-thaw viability High High 

 

Since both slow freezing and vitrification have disadvantages, efforts have also been 

made to develop alternative cryopreservation techniques. In 1965 John Farrant proposed 

a novel way to prevent cell damage, now called the “liquidus tracking” (LT)  

approach [37]. This method was later developed by Barry C. Elford and Clive A. Walter 

in 1972 [35]. Elford and Walter demonstrated that gradual cooling of biological 
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constructs incubated in solution, in which the increase in CPA concentration was also 

achieved in a gradual manner, prevented the freezing of the sample.  

The main idea of the LT protocol is to immerse the biological sample in a CPA 

solution, whose temperature and concentration are controlled. Hence, the freezing 

(melting) point is changed, and thermodynamic conditions of the solution "tracks" 

the liquidus line for the system. For a well-prepared procedure, no ice crystallisation 

occurs in the biomaterial while the sample is not exposed to CPA-induced toxicity. 

The important consideration is the time required to ensure the diffusion process. 

It involves the replacement of water with CPA, for example, in tissues, so that the eutectic 

temperature of the composition coincides with the liquidus conditions [65]. 

In 2006, David Pegg's team became interested in the topic of cryopreservation 

of articular cartilage cells, chondrocytes. Initial attempts were conducted to freeze 

chondrocytes using conventional methods [117, 118]. Pegg et al. also analysed 

experiments to cryopreserve these cells by vitrification proposed by Song et al.  

[155–157]. According to Pegg et al., another advantage of LT protocol in comparison to 

effective vitrification is the very low cooling and heating rates. It is a criterion required 

by orthopaedic surgeons for the methods used in tissue banks. Research on the LT 

technique continued, and in 2007 a paper was published that improves the procedure 

proposed previously [178]. 

2.4. Cooling methods 

In a previous section of this paper, a basic classification of cryopreservation methods 

related to different cooling rates and different concentrations of CPA is presented. 

Another subdivision criterion can also be applied. Note that it is extremely important to 

determine how the solution is cooled with the sample. 

A common technique for cryopreserving samples placed in CPA solution is to immerse 

the sample tube in a Dewar vacuum flask containing a refrigerant. Cryogenic storage 

Dewar vacuum flasks are a type of thermos for storing cryogenic liquids with a boiling 

point below room temperature. Xu et al. termed this cryopreservation as channel-based 

method [182].  

Xu et al. also mentioned another novel technique, the droplet-based method. 

The approach is inspired by bioprinting. It is basically freezing by vitrification, 
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where samples mixed with a medium (for example CPA) are injected directly into liquid 

nitrogen. The cooling rate is high, up to 106 °C/min. This ensures that once 

the solidification point is exceeded, the cell-encapsulating liquid solidifies. The rapid 

transition between the freezing (melting) point and the glass transition temperature 

prevents crystal formation and the droplet becomes amorphous ice [148, 158, 182]. 

The channel-based and droplet-based methods are schematically illustrated  

in Figure 2.1 [182]. 

 

Figure 2.1. Visualization of channel-based and droplet-based methods of 

cryopreservation 

2.5. CPA delivering methods 

It is worth also considering the process of delivering CPAs to a sample. 

Despite appearances, it is an important part of the cryopreservation process that directly 

affects the survival of biological structures. 

In fact, the CPA delivery before cryopreservation and removal during thawing exposes 

cells to isotonic solutions. As a result, the cell volume changes. During the addition of 

CPA, the chemical potential of water is higher in the intracellular space than in 

the extracellular space. Therefore, the cell first dehydrates and its volume decreases. 

The volume then increases again as the solution of CPA and water is transported into 

the cell. CPA molecules are larger than water molecules, so diffusion of water across 

the cell membrane occurs earlier. Figure 2.2 shows a diagram of the cell response during 

the addition and removal of permeable CPAs [192].  
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The cell's response to these volume changes can cause osmotic damage, toxicity, 

and finally its destruction. Hence, an essential role is to optimize the addition and removal 

of CPA to reduce cell volume changes and to neutralize toxic properties of CPA. Note that 

loading/unloading of CPA makes these processes often costly and time-consuming, 

especially for vitrification, which requires a higher concentration of CPA [191]. 

 

 
(a) 

 
(b) 

Figure 2.2. Cell’s volume response during (a) addition and (b) removal of  

permeable CPAs [192] 

 

Standard methods for the supply and elimination of CPAs involve centrifuging 

the mixture with the cells several times. Then the “old” solution is removed, the “new” 

solution is added, and the cell suspension is created again. In recent years, microfluidic 

platforms have been introduced to prevent cell damage induced by toxicity and osmotic 

shock. Microchannels are often made of polydimethylsiloxane (PDMS) or non-PDMS 

materials. The use of microchannels allows the precise control of CPAs loading 

and unloading considering cell behaviour at the microscale. Additionally, microfluidic 

devices can determine the permeability properties of the cell membrane [191]. 

Various microchannel designs using microfluidic perfusion are currently investigated. 

One of the suggestions is the sandwich-structured chamber. This concept has been 

explored by many research groups [23, 79, 143, 144, 159, 169, 193–196]. The papers also 

considered different ways of loading and unloading CPAs. For example, two-stream 

microfluidic devices, three-inlet T-junction or Y-junction microchannels, or membrane-
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based devices can be implemented. Recently, the MEMS Coulter counter has also been 

applied to microfluidic devices to monitor changes in the sample [191].  

2.6. Cryoprotectants 

The following section briefly describes the CPAs. As mentioned previously, to avoid 

injury of biological material during cryopreservation, the properties of the cell fluid are 

altered by CPAs. The added protective chemicals are expected to be low in toxicity 

and biocompatible, as well as to have ability cell penetration. The CPAs can be divided 

as follows: permeating through cell membranes and remaining outside the cell (non-

permeating) [57, 110]. 

The first category, permeating CPA, includes chemical compounds such as glycerol, 

ethylene glycol (EG), propylene glycol (1,2-propanediol), or dimethyl sulfoxide 

(DMSO). Permeable cell membrane CPAs are low molecular weight organic substances 

with a low melting (freezing) point and high viscosity. Due to them, the cell fluid 

is transformed from a liquid to a glass-like form without forming ice crystals. 

This mechanism is called nitrification [110]. 

The second category, the non-permeable cell membrane CPAs are high molecular 

weight substances like sugars (glucose, sucrose, sorbitol, and disaccharides) or polymers 

(polyvinyl pyrrolidone, hydroxyethyl starch). The compounds increase the osmotic 

pressure of the cell fluid, causing controlled dehydration. The application of non-

penetrating CPA reduces the concentration of penetrating CPA. Therefore, a mixture of 

CPAs typically contains both types with the addition of, for example, pH buffers that 

provide the right environment for samples, as well as protein macromolecules, 

which increase the viscosity of the liquid and have a positive effect on the balance of the 

frozen cell. The chemical composition depends on the type of cryopreservation procedure 

and cell type [110]. 

Different types of CPAs are adapted to reduce damage to biological structures. 

Below some examples of cryoprotective chemicals are given. The first commonly used 

CPA is glycerol. Its cryoprotective properties were discovered by Polge et al. [133] 

in 1949. Glycerol is a non-electrolyte that reduces the electrolyte concentration in 

the unfrozen part of the cell solution and around them. It is applied in cryopreservation 

of animal sperm or bacteria, for example [57]. 
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The second example is DMSO. DMSO also has properties similar to glycerol, 

as described by Lovelock and Bishop in 1959 [80]. DMSO was first synthesized as early 

as 1866 by Alexander Zaytsev. Additional advantages of DMSO include its relatively low 

cost and low cytotoxicity. However, DMSO can induce DNA methylation and histone 

alteration, causing an observed decrease in cell survival and induction of cell 

differentiation. It is commonly used in the freezing of mammalian cells, for example [57]. 

Natural compounds such as proteins can also be used as CPAs. One example is sericin, 

which is a viscous water-soluble protein. Sericin is produced by isolating the relevant 

protein from the silkworm cocoon. It is applied instead of DMSO, for instance, 

during cryopreservation of human cells such as stem cells, progenitor cells, hepatocytes 

or foetal bovine serum [57]. 

The above examples describe CPAs as chemical compounds or proteins delivered 

to biological material. A different strategy is used when the CPAs are synthetic polymers 

that belong to the group of non-penetrating CPAs. This approach involves entrapment of 

the CPA in the capsule while loading it into the sample and resuspending the cells in the 

encapsulating material. Such CPAs protect cell scaffolds thereby omitting diffusion 

limitations in the same time [57]. 

 



 

3. Transport phenomena 

3.1. Introduction 

Transport phenomena are defined as the general effects associated with the movement 

of particles, molecules, mass, energy, etc. from one place to another. These are 

irreversible processes that result from the continuous and random movement of particles 

(molecules). According to the minimum energy principle, all systems tend towards 

the lowest energy state, which is closely related to transport phenomena. Examples of 

transport phenomena involve energy transfer (heat conduction), momentum transfer 

(fluid flow), mass transfer (molecular diffusion), electric charge transfer, radiation, etc. 

Transport processes are governed by conservation laws as well as the constitutive 

equations. First and foremost among conservation laws is the assumption of continuity, 

which implies that the analysed medium is a continuum, without gaps, and its 

microstructure is negligible. Other conservation laws include conservation of mass, 

conservation of energy, and conservation of momentum. 

The constitutive relationships used to describe transport processes contain, 

for example, the Fourier's law, the Navier-Stokes equations, or the Fick's laws. 

The Fourier's law describes the correlation of heat flux and temperature gradient. In this 

case, the transport of heat in the system strives to reach thermodynamic equilibrium. 

Meanwhile, the Navier-Stokes equations define the motion of a viscous fluid. The Fick's 

laws express the connection between diffusion flux and concentration gradient. 

Momentum and mass transport aim to achieve mechanical and chemical equilibrium 

in the system, respectively. 

When momentum transfer for fluid with low Reynolds number according to Newton's 

law is considered, such a fluid flow is called a Stokes flow. Then, it is possible to see 

the similarities in the differential equations used to characterize the transfer of heat, 

momentum, and mass. When a fluid flow is described by the Navier-Stokes equations, 

the analogy is not observed for momentum transport with reference to energy and mass 

transfer. 
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Transport phenomena also occur during cryopreservation. In the first instance, 

the changes associated with heat transfer are present during the process. Analysing 

the thermal transfer in the context of inhomogeneous biological structures is complicated. 

Generally, the mechanism of bioheat transfer is considered as a combination of 

convection and thermal conduction. The thermal distribution is most often described by 

the following relations: the Fourier equation, the Pennes equation, the Cattaneo-Vernotte 

equation and the dual phase lag equation. 

When preparing a heat transport model for the cryopreservation process, it is also 

important to include the phase changes phenomena. Macroscopically, this issue can be 

modelled using the method known as “one domain method” or “fixed domain method”. 

It introduces a substitute thermal capacity into the heat transport equation. 

On the other hand, the phase transition is also related to ice crystallisation. 

In the microscopic approach, ice crystal formation is expressed by the degree 

of crystallisation. It can be defined by the uncoupled method, Stefan approach 

(sharp interface method), or zone model. 

Besides heat transfer, mass transfer also occurs during cryopreservation. Firstly, there 

is the momentum transfer described, for example, by the Navier-Stokes equations. 

It is used to model the delivery of CPA to the chamber with samples. 

Mass transport is also related to the movement of molecules. It occurs when 

a concentrated solution of CPA diffuses into the extracellular space. It is often associated 

not only with diffusion, but also with the convection (advection) of the fluid resulting 

from its movement. As a consequence, the convection-diffusion equation is used to 

express this phenomenon. In cases where convection is neglected, the diffusion of 

molecules is characterized by the Fick’s laws. 

Last but not least, during cryopreservation modelling, osmotic transport should be 

analysed. It describes the changes in cell volume caused by the alterations in the moles 

number of CPA and in the volume of water in the intracellular solution. The two-

parameter formalism approach or the Kedem-Katchalsky equations can be applied to 

determine these values. 
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3.2. Mechanism of heat transfer 

Heat transfer is one of the basic phenomena occurring in nature. In fact, it is the result 

of a temperature difference that exists between two objects and energy is transferred 

between them in the form of heat. There are three basic mechanisms of heat transfer: 

thermal radiation, convection and thermal conduction [21]. 

The first, thermal radiation, is the heat transfer by quanta of radiation in a certain range 

of electromagnetic wavelengths initiated by the motion of particles in matter. 

Interestingly, all matter whose temperature is higher than absolute zero emits heat through 

thermal radiation. For example, by using a thermographic camera, it is possible to detect 

infrared radiation (IR) emitted by humans and animals. Compared to thermal conduction 

and convection, thermal radiation does not require the existence of a material medium 

in which it propagates (it can occur in a vacuum). In addition, radiation energy propagates 

at the speed of light. The amount of thermal radiation depends on the type of body surface 

and its temperature [21]. 

The other mechanism of heat transfer is convection. Convection occurs when 

individual particles of a body change their position and transfer heat at the same time. 

The phenomenon is characteristic for fluids – liquids and gases. Energy transfer is caused 

by mixing of fluids, and a necessary condition for convection is the movement of 

the medium. In fact, convection is a combination of conduction in the form of thermal 

diffusion and advection related to the movement caused by fluid flow [21]. 

Convection can be divided into two different types. The phenomenon of natural 

(named also free) convection is initiated by buoyancy forces owing to density differences 

caused by temperature differences. Fluid movement can also be artificially generated by 

an external source, for example pumps, fans. When convection currents are induced, 

it is the phenomenon of forced convection [21]. 

Please note that the given definition of convection refers to the heat transfer, not in the 

context of fluid mechanics. Convection as part of fluid mechanics will be defined in the 

next part of the chapter. 

The third mechanism of heat transfer is thermal conduction. It involves the transfer of 

energy from one particle to the other. Heat is spontaneously transferred from warmer to 

colder parts of body (or between two bodies), with the result that the temperature of 

the cooler parts of body increases and that of the warmer parts of body decreases 
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The process continues until the temperature of the body (or bodies) is equalised in 

the whole considered volume. It refers to direct body-to-body contact or parts of  

the body [21]. 

Continuing on the topic of thermal conduction, it is worth mentioning a few of material 

constants that provide some measure of the body's ability to conduct heat. One of such 

thermophysical parameters is the specific heat capacity. It represents the tendency of 

a substance or material to change temperature when it is supplied with the thermal energy. 

The specific heat capacity often depends on the temperature of the body and its state of 

matter. It can be defined by the following relationship [21]: 

 
1 d

d
p

Q
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m T
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where cp represents the specific heat capacity, m is the mass of the sample, dQ denotes 

the increment of heat, which is needed to raise the body’s temperature by a small amount 

represented by dT. 

The volumetric heat capacity is sometimes used in engineering. It expresses 

the proportion dQ/dT in relation to a unit of volume [21]: 
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where cv is the volumetric heat capacity, ρ and V are the density and the volume of 

the sample, respectively. 

The next thermophysical parameter which determines a material's ability to conduct 

heat is thermal conductivity. It describes the potential of a substance or material to transfer 

internal energy in the form of heat. It is not a constant quantity, as it depends on factors 

such as temperature, density or the structure of the sample [21]. 

Thermal conductivity is defined by the Fourier’s law [21]: 

 k T= − q , (3.3) 

where q is the heat flux, k is the thermal conductivity and ∇T denotes the temperature 

gradient. 

The Fourier’s law is a constitutive equation that explains the phenomenon of heat 

conduction. It is a tensorial relationship between the heat flow as a scalar and 

the temperature gradient as a vector. In fact, thermal conductivity is a second-order 

tensor, which is important for the case of, for example, anisotropic materials [21].  
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3.3. Mechanism of bioheat transfer 

As read in the Encyklopedia biologiczna, an organism is described as a living system 

characterised by the ability to perform vital processes and to exist independently 

as an individual [61]. The organism is composed of an organ system, which is a group of 

organs specialised to execute specific physiological activities. At the same time, an organ 

consists of a collection of tissues that fulfil characteristic functions. Tissue is defined 

as an ensemble of cells and their extracellular matrix that has a specific structure 

and origin, occupies a given place in the body, and performs the corresponding activities. 

Whereas a cell is the smallest naturally occurring viable, self-reproducing structure with 

a complex organisation [202, 204, 206, 207]. 

To understand it better, it is sensible to consider the structure of biological tissues. 

As mentioned above, tissues are made up of cells that differ in shape and size according 

to their function. Meanwhile, cells generally consist of a membrane enclosing the internal 

components, for example, a nucleus surrounded by a mass of protoplasm. 

Importantly, the cell is mainly constructed of about 75% water, and the remaining 

components are lipids, salts, protein, sugars, as well as nucleic acids suspended in water, 

such as DNA and RNA. The semi-permeable membrane is basically composed of lipids 

and its role is to exchange water molecules and ions with the extracellular matrix [201]. 

Analysing the entire human body globally, water is the main component (for males, 

it is about 50% – 70%, for females, it is about 46% – 65%). Body water can be classified 

as follows: extracellular and intracellular. As the name suggests, it is contained in 

the extracellular matrix and inside the cells, respectively. Extracellular water can be 

further split into interstitial (or intercellular) water and plasma, while interstitial water 

represents about 25% of the total water mass and plasma is about 8% of the total water 

mass. To compare, intracellular water contained in the protoplasm is about two-thirds of 

the total water mass. It exists in two types, as free and bound water. Free water can freely 

flow and participate in metabolic processes. Bound water is linked to protein molecules 

by hydrogen bonding induced by dipole attraction, therefore, it is not able to contribute 

to metabolic processes. Obviously, extracellular and intracellular water molecules can 

migrate by osmosis [201]. 

Various tissues are characterised by different water contents. However, this does not 

change the fact that water is the essential component of biological tissues. As a result, 
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the thermal parameters of tissues and cells are similar to the data for water. Table 3.1 

presents examples of thermal conductivity values for selected human tissues 

and water [148, 201]. 

 

Table 3.1. Thermal conductivity values for selected human tissues [148]  

Tissue of Thermal conductivity, k [W·m-1·K-1] 

Brain 0.503 

Cheek 0.487 

Skin 0.476 

Leg 0.450 

Muscle 0.385 

Water 0.609 

 

Due to the structures of organisms, explanation of the heat transfer mechanism 

in living organisms is more complex and complicated than in solids, liquids, or gases. 

The bioheat transfer mechanism is a combination of convection and thermal conduction. 

For instance, convection is related to blood flow in blood vessels. In contrast, thermal 

conduction is the result of metabolic processes and the presence of small blood vessels 

in tissues [58]. 

The individual bioheat transfer equations attempt to reflect, to some extent, 

the inhomogeneous structure of tissues, which are the building materials of organisms. 

Some models treat elements of the vasculature, for example, arteries and veins, and tissue, 

as separate subareas. Unfortunately, this approach is inapplicable for intricate capillary 

structures. In this case, the capillaries can be modelled as a porous structure. It can be 

claimed that no single universal equation for heat transfer in living systems exists [58]. 

The heat equation proposed in 1882 by Jean B. J. Fourier is the governing equation 

used to describe thermal processes [40]: 

 ( ) intρpc T k T Q=   + , (3.4) 

where Qint in this case is the internal heat source. Please note that the thermal parameters 

changes according to temperature cp = cp(T), ρ = ρ(T) and k = k(T) as well as the internal 

heat source is equal to Qint = Qint (T). 

The Fourier heat equation is a parabolic partial differential equation (PDE) that 

describes the unsteady heat transfer in an isobaric, isotropic medium in the presence of 
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internal volumetric heat sources. This equation calculates the temperature distribution 

in a certain medium. The heat transfer is a result of a thermal wave which propagates with 

infinite velocity [98, 136]. 

Moreover, independently of the state of a living organism, heat is generated inside 

the body. This phenomenon is described by: 

 int met perfQ Q Q= +  (3.5) 

where subscript met and perf denote metabolic and perfusion heat sources, respectively.  

The metabolic heat source is often considered to be a constant value. It depends on 

whether the body is at rest or in motion. For example, at rest, the metabolic heat source 

is assumed to be between 245 and 420 W·m-3. During physical exercise, this value 

increases significantly, even a hundredfold [32, 58]. 

On the other hand, the perfusion heat source is associated with the presence of blood, 

which is a component of many tissues. The perfusion parameter characterises 

the quantitative content of blood in the tissue and informs about its flow rate. It also 

depends on the state of the human body because blood circulation in the body is one of 

the mechanisms of thermoregulation. The perfusion heat sources are commonly defined: 

 ( )ρperf b b b bQ G c T T= − , (3.6) 

where Gb is the blood perfusion rate and subscript b denotes the blood of the temperature, 

the specific heat capacity and the density. Table 3.2 contains the blood perfusion rate 

for different tissues [58]. 

The heat equation, which includes internal heat sources such as metabolic heat sources 

and perfusion heat sources, was formulated in 1948 by Harry Pennes [120]. The parabolic 

Pennes model assumes that the blood temperature in the arteries is constant and that 

the blood temperature in the veins corresponds to the tissue temperature. The Pennes 

equation is effective in describing heat transfer in soft tissues where small capillaries are 

present. In such cases, the blood in the capillaries achieves the temperature of the tissue. 

The Pennes equation is applied to the modelling of skin tissue burns [84, 99], laser effects 

on tissue [58], electromagnetic field effects on tissue [86], and also tissue freezing [27, 

43, 152, 179]. 
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Table 3.2. Perfusion ratio for a given tissues [58, 74, 166] 

Tissue of Blood perfusion rate, Gb [m·s-1·m-3
tissue] 

Aorta 78.613 

Thyroid 70.667 

Kidney 60.067 – 62.892 

Brain 8.127 – 17.667 

Liver 15.726 

Skin 2.650 – 8.833 

Urinary bladder 4.717 

Bone 0.509 

Muscle 0.353 – 1.237 

Fat 0.212 – 0.265 

 

The Fourier equation and the Pennes equation as the parabolic heat equations involve 

some disadvantages. As mentioned earlier, the thermal wave spreads with infinite 

velocity, so the thermal distribution also occurs at an infinite rate. It is an unphysical 

approach, because dissipation of the thermal energy requires a certain amount of time. 

To solve this problem, in 1958 Carlo Cattaneo [18, 19] and Pierre Vernotte [175] 

independently invented the following hyperbolic PDE (CV equation): 

 ( ) ( ) int intρ τ τp q qc T T k T Q Q+ =   + + , (3.7) 

where τq is the relaxation time, which reflects a delay in the appearance of heat flux and, 

as a consequence, a delay in thermal conduction through the tissue. 

Dual phase lag model (DPL model) represents a similar approach: 

 ( ) ( ) int intρ τ τ τp q t q

T
c T T k T k Q Q

t

 
+ =   +  + + 

 
, (3.8) 

where τt is the thermalization time, which depicts delay in the temperature gradient caused 

by thermal conduction through structures of small size.  

The problem in applying the CV equation and the DPL model is the difficulty in 

estimating the τq and τt variables. Their values are determined mainly experimentally. 

Despite this, both equations are applied for modelling bioheat transfer, examples can be 

found in the literature: for the CV equation [2, 115, 136, 149] and for the DPL  

model [73, 87, 89, 98, 103]. 
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Another approach used in modelling thermal processes is the application of porous 

body theory. The idea of this method is to divide biological tissue into two subareas: 

the vascular region, and the extravascular region including interstitial tissue and cells. 

The vascular region is considered as a pore, while the extravascular region is the matrix 

of the whole structure. However, equations of this type will not be analysed in  

the work [58, 81, 106]. 

3.4. Crystallisation 

When analysing the heat transfer for cryopreservation, it is necessary to consider other 

physical phenomena. One of them is crystallisation. This is a process involving 

the formation of solids with a crystalline structure. The crystal lattice is characterised by 

a high order of constituents such as molecules, atoms, or ions. The attributes of a crystal 

depend on several aspects, for example, cooling rate, pressure or homogeneity of 

the liquid [105]. 

Crystallisation proceeds in two major stages: ice crystal nucleation and growth. 

Nucleation is the first step of phase change, where the molecules collide with each other. 

As a result, they randomly aggregate to create an amorphous cluster and then gradually 

transform into stable nuclei. Nucleation is caused by local fluctuations that appear on 

the molecular scale in a metastable medium, for instance due to supersaturation 

or supercooling [105, 170, 199]. 

Nucleation can be categorized as follows: primary and secondary. In primary 

nucleation, no crystals are present, or their existence does not affect the process. 

Depending on the conditions, two types of primary nucleation are distinguished: 

homogeneous and heterogeneous. Homogeneous nucleation happens spontaneously 

as a result of fluctuations in the density of a substance without the involvement of foreign 

bodies. On the other hand, heterogeneous nucleation can be observed when impurities 

present in the substance, such as particles from the walls of the device, become seed 

crystals (named also nucleus). Heterogeneous nucleation is more common, as it requires 

less energy than homogeneous nucleation, for which a large supercooling of the liquid is 

necessary [105, 199]. 

The term “secondary” is reserved for nucleation in the presence of crystalline matter. 

Secondary nucleation is initiated by shearing action, contact between seeds, attrition, 
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or fracture [199]. The difference between secondary nucleation and heterogeneous 

(primary) nucleation is that for secondary nucleation the process is induced by crystals, 

whereas for heterogeneous nucleation it is initiated by a foreign particle, for example 

from the device [105]. 

The next step of crystallisation is ice crystal growth. Appearance of first seed crystal 

serves as a convergence point for adjacent particles. As a result, successive layers of 

crystals are formed around the nuclei, causing an increase in their dimensions. The growth 

rate depends on temperature, pressure, surface tension of the solution, etc. It can be 

established as a constant parameter for a particular process [105, 199]. 

If crystallisation is completed at the growth step, applying the appropriate conditions 

it is possible to obtain a monocrystalline. Otherwise, the subsequent process involves 

the reorganisation of the surface layer and the creation of a so-called crystalline 

microstructure. Single crystals clump together to create larger structures, 

producing a polycrystalline structure [105, 170, 199]. 

For a typical clean water crystallisation process, the following stages can be identified. 

Initially, the temperature in the sample is reduced below the freezing point (precooling). 

Once the phase change temperature and the energy barrier are exceeded, nucleation 

begins. During this period, the temperature suddenly increases to the freezing point. 

At the same time, latent heat is removed, crystal growth occurs, and new nuclei form. 

Finally, solidification happens while the temperature of the sample continuously 

decreases. After formation of the crystals, recrystallisation can sometimes take place. 

This is characterised by changes in the number of crystals, their shape and size [170]. 

For cryopreservation, the crystallisation occurs in biological structures in both 

extracellular and intracellular regions, when the temperature approaches the freezing 

point. Obviously, the application of CPAs and the regulation of cooling rate are aimed at 

avoiding the crystallisation of water in tissues and cells, which could damage them. 

However, it is worth examining these phenomena, while the heat transfer is modelled in 

microscopic aspect. In 1990, Pierre Boutron and Patrick Mehl introduced the following 

non-isothermal kinetic equation to describe crystallisation [11]: 

 ( )( )
2

3χ χ 1 χ
enQ

RT
a mk T T e

−

= − − , (3.9) 

where χ represents the degree of ice crystallisation (0 < χ < 1), ka is the characteristic 

coefficient depending on the solution composition, Tm is the freezing (melting) 

temperature, Qen is the activation energy, R is the gas constant (R = 8.314 J·mol-1·K-1). 
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Please note that the crystallisation is the first-order phase transition that involves the 

release of energy as latent heat. It is a concept that contributes to a change in the substance 

state without an increase or decrease of the temperature [21]. Considering the heat transfer 

in the macroscopic approach, the latent heat should be included as an additional element 

of the internal heat source mentioned in the Equation (3.5). 

The three basic methods of creating a macroscopic model of liquid solidification can 

be distinguished: uncoupled method, Stefan approach (sharp interface method) and zone 

model [148, 158, 196]. The first of them, the uncoupled method, assumes that latent heat 

during freezing is negligible. Therefore, the energy equation is decoupled from the liquid 

kinetics. It means the heat transfer equation (Equations (3.4), (3.7) or (3.8)) and 

the crystallisation equation (Equation (3.9)) are calculated independently; the degree of 

ice crystallisation does not affect for the internal heat sources [182]. 

The Stefan problem is a moving boundary issue between a solid and a liquid, whereby 

the boundary between these phases is a sharp interface. This method was proposed by the 

Austrian physicist Josef Stefan in 1891 [162] and developed by Franz E. Neumann et al. 

in 1927 [109]. 

In this approach, the whole analysed area is divided into three time-dependent sub-

domains: solid, liquid and transition interface. In the classical Stefan problem, 

which describes the solidification or melting of ice, the contributions of convection and 

diffusion can be neglected. Therefore, in sub-domains where the solid or the liquid is 

contained, the thermal distribution is determined using classical heat transfer models, 

for instance applying the PDE Equation (3.4) [100, 182].  

At the solid-liquid interface, a boundary condition described by the continuity of 

the heat flux was established, considering latent heat [100, 182]: 
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where n is the normal vector to the sub-domain, L is the latent heat, dx/dt is the normal 

component of the interface velocity, subscript l and s denote to liquid and solid sub-

domain, respectively. The temperature with subscript l or s represent the boundary 

temperatures for given state, i.e. the liquidus temperature and the solidus temperature. 

However, an assumption of the sharp solid-liquid interface is not always proper. 

André Bénard and Suresh G. Advani believed that a smooth phase change is more 

appropriate to characterize the underlying physics, i.e. the smooth ice crystal  
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formation [7]. Therefore, the different groups of researchers introduced a zone model, for 

example, Berger and Schneider [9], Astarita and Kenny [5, 111], Eder et al. [33]. The 

crystallisation phenomenon is described as a propagation zone. The material parameters 

and process conditions impact on the size of the propagation zone, which can be very 

narrow (a sharp interface) or very large (an entire domain). The main postulate of the 

zone model is that the total heat in the system (include sum of latent heat and specific 

heat) is expressed as an enthalpy function:  

 ( )( ) ρ(θ) (θ)dθ ρ 1 ( )

o

T

p s

T

H T c L f T= + − , (3.11) 

where H is the enthalpy function, To is the fixed temperature (To < Tm) and fs is the volume 

solid fraction. 

For heat transfer problem (for example, Equation (3.4)), the internal heat source 

is calculated [7, 182]: 

 int ρ χfQ Q L= =  (3.12) 

where Qf represents the internal heat transfer for freezing. Please remember that Qperf 

and Qmet below the solidus temperature Ts are equal to 0. 

As mentioned earlier, crystallisation microscopically refers to the creation of 

ice crystals, whereas macroscopically it is the first type of phase change. Let us consider 

the modelling of macroscopic heat transfer including phase transition phenomena from 

a slightly different perspective.  

The approach presented below is known in the literature as the “one domain method” 

or the “fixed domain method”. This technique is particularly suitable if the phase 

transformation proceeds over a certain temperature interval. The idea of this method is to 

introduce “a substitute thermal capacity” (STC) into the heat transfer equation. STC 

replaces the internal heat sources and the volumetric specific heat. STC is defined by 

a state function that depends on the temperature in the sub-domain under 

examination [20, 33, 69].  

When analysing the freezing of biological structures including phase changes, 

the source function can take the form [32]: 

 int =f sQ Q Lf= , (3.13) 
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where 𝑓̇𝑠 denotes the local variation of the volume fraction in the intermediate region. 

Please note that the state function fs varies according to the domain under consideration. 

The function fs is equal to 0 and 1 in the liquid and solid sub-domains, respectively. 

In the intermediate region, it is assumed that fs = fs(T). Therefore the Equation (3.13) 

is transformed [32]: 
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After introducing this relationship into Equation (3.4) and organising the equation 

accordingly, STC is defined as [32] 
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where CSTC is the substitute thermal capacity, which depends on the temperature 

CSTC = CSTC(T). Using STC, the entire tissue is treated as a homogeneous domain. 

The non-homogeneity of the area and the associated with that subdivision into sub-

domains is included in the CSTC parameter. 

3.5. Mechanism of mass transfer. Fluid mechanics 

Another very important phenomenon is mass transfer. In the simplest terms, 

this phenomenon describes the movement of mass in the form of a particle, component, 

phase, fraction, stream, etc. from one place to a different location. For example, the causes 

of mass transfer can be concentration difference, where mass migrates between areas from 

higher to lower concentration [21]. 

It is worth mentioning that fluid mechanics, as a discipline of physics, mechanics, 

and engineering, explains the mechanisms of mass transfer in liquids and gases. 

Fluid mechanics involves both fluid statics and fluid dynamics. As a fundament, for any 

mechanical system considered in terms of fluid mechanics the following axioms are 

assumed: conservation of mass, conservation of energy, conservation of momentum, 

the continuum assumption [20]. 

Conservation of mass implies that the mass of a system is constant over time in a closed 

and isolated system. The mass cannot be removed or added to the system, which means 

that it cannot be destroyed or created, but it can instead only modify its form. 

Obviously, this assumption is valid only in classical mechanics. In the context of quantum 
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mechanics and special relativity theory, the law should be revised according to 

the principles of mass-energy equivalence [20]. 

In fluid mechanics, conservation of mass is formulated by means of the continuity 

equation. The differential form of the continuity equation is as follows: 

 ( )ρ ρ 0+  =u , (3.16) 

where u is the flow velocity field. The continuity equation assumes continuity of the fluid 

medium. This means that the flow area is completely filled with fluid and that no gaps 

form in it [46]. 

The conservation of energy is defined similarly. This law states that in an isolated 

(closed) system, the total energy cannot be destroyed or created; it remains constant. 

Energy can only be transformed into another form. A special instance of the conservation 

of energy is represented by the first law of thermodynamics, which holds that a perpetual 

motion machine of the first kind does not exist [20]. 

Conservation of momentum also asserts that total momentum in a closed and isolated 

system is constant. It is based on Newton's laws of motion. By the third law, it is known 

that the interaction of two particles with each other measured by a force is equal in 

magnitude but with opposite directions [20].  

Next it is worth exploring the continuum assumption. According to continuum 

mechanics, the fluid is analysed as a continuous medium. In reality, however, the fluid is 

assembled from particles that collide with each other. This fact is neglected, and 

parameters such as velocity, pressure, temperature, density, etc. are described at infinitely 

small points called Reference Volume Element (RVE). The distance between these points 

is large compared to the molecular scale and small with respect to the whole system. 

Fluid properties change continuously between RVEs [20, 46]. 

The motion of a viscous fluid is described by equations developed in the 19th century 

by Claude-Louis Navier and George Gabriel Stokes. The Navier-Stokes equations are 

expressed as follows [20]: 
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where g represents fluid acceleration vector (mass forces, for instance, earth acceleration), 

p is the pressure and μ is dynamic viscosity. 

The Navier-Stokes equations are a set of non-linear parabolic PDEs. The equations 

define the laws of conservation of momentum and conservation of mass in a flowing fluid. 
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According to them, changes in the momentum of the fluid's RVE depend only on 

the external pressure and internal viscous forces in the medium. Obviously, the Navier-

Stokes equations obey all the principles of conservation [20]. 

Moreover, the Navier-Stokes equations are correct only for Newtonian fluids. 

Newtonian fluids indicate a linear dependence of shear stress on shear rate over time 

(local strain rate). At the same time, the stresses are proportional to the change rate of 

the velocity vector of the fluid layer. In fact, the viscosity stress tensor is associated with 

the strain rate through the dynamic viscosity tensor, which does not correlate with 

the flow velocity and the stress state. When an isotropic fluid is considered, the dynamic 

viscosity tensor is reduced to two independent coefficients that describe the resistance of 

the medium to continuous expansion (compression) as well as shear deformation. Fluids 

that do not correspond to this relationship (Newton's law of viscosity) are called non-

Newtonian fluids [20]. 

Finding a solution based on the Navier-Stokes equations for complex cases is only 

possible using numerical methods. Such issues are the subject of computational fluid 

dynamics (CFD). However, the solution can be obtained for the simpler instances of fluid 

mechanics problems, for example, when the flow is assumed to be laminar without 

disturbance and the fluid is incompressible [20]. 

3.6. Mechanism of mass transfer. Molecular diffusion  

The previous subchapter describes the mechanisms of mass transfer understood mainly 

in the context of fluid mechanics. Nevertheless, it is important to remember that mass 

transfer is primarily related to the convective and diffusive transport of molecules and 

chemical species in physics systems.  

Diffusion (from the Latin diffundere, which means "to spread out") is the process of 

spontaneous spreading and penetration of particles, atoms, ions, energy, etc. in a given 

medium. Different types of diffusion are considered. Tracer diffusion is defined as 

the chaotic movement of a single particle in microscopic aspect. An example of this 

process is Brownian motion, in which the collisions between suspension and fluid particle 

cause chaotic movement of particles in the fluid. This phenomenon was noticed by 

the Scottish botanist Robert Brown in 1827 [21].  
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Macroscopically, chemical diffusion of matter (mass) or energy proceeds, which leads 

to an equilibrium of the concentration of diffusing substances in the system. In 1855, 

the German scientist Adolf Fick formulated the laws, which describe the diffusion 

phenomena [38, 39]. The Fick's first law is expressed by the following formula [21]: 

 φD= − J , (3.18) 

where J represents the diffusion flux vector, which determines the quantity of substance 

flowing through a unit section per unit time, D is the diffusion coefficient (molecular 

diffusion coefficient), φ is the concentration of the substance (quantities), for example 

molar concentration identify as c.  

Similarly to the Fourier's law, this is a constitutive equation that describes a tensorial 

dependence of the diffusion flux vector and the concentration gradient. It implies that 

the solute diffuses from regions with higher to lower concentration.  

On the basis of the Fick's first law and the conservation of mass law, it is possible to 

derive the relationship concerning the Fick's second law [21]: 

 ( )c D c=   . (3.19) 

It is the PDE that specifies the change in local concentration due to diffusion of 

a substance over time.  

In both of these relationships (Equations (3.18) and (3.19)), the diffusion coefficient 

is involved. It predicts the ability of particles to diffuse in a medium under the impact of 

a concentration gradient. The diffusion coefficient depends on many factors, for example 

temperature, viscosity and structure of the medium, speed of diffusing molecules, 

and size of the fluid particles [21].  

The diffusion coefficient was defined in papers describing Brownian motion presented 

independently by scientists [24]: William Sutherland (1904) [165], Albert Einstein (1905) 

[34], and Marian Smoluchowski (1906) [154]. The diffusion coefficient is expressed by 

the Einstein equation based on the Stokes assumption (Einstein-Stokes equation) [24, 79, 

100, 177]: 
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where kB is the Boltzmann constant (kB = 1.38·10-23 J·K-1), n is the coefficient depending 

on the relationship between the size of the diffusing particle and the size of the structural 

units of the medium, rs is the radius of the spherical particle. For example, when spherical 
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particles diffuse in a liquid having a low Reynolds number, the coefficient n is  

equal to 6 [24]. 

As mentioned earlier, mass transfer occurs not only by diffusion, but also by 

convection. In contrast to convection as a heat transfer mechanism, convection in 

the context of mass transfer is the spontaneous movement of a single or multiphase fluid. 

It is caused by the density variation in the fluid resulting from the temperature gradient 

between the sub-areas. The convection flow is also influenced by forces acting on a body 

immersed in a fluid, for example buoyancy, gravity, and by the heterogeneous properties 

of the fluid. In the stationary state, convection flows create closed loops, 

called convection cells [21]. 

A very similar phenomenon to convection is advection. The advection is the transfer 

of a substance by a fluid in motion. The velocity of the transported substance is equal to 

the velocity of the flowing fluid; as is the case with other advected quantities like energy 

or enthalpy, etc [21]. 

The advection phenomenon is described by a hyperbolic PDE: 

 ( ) 0c c+  =u . (3.21) 

The advection equation predicts the behaviour of a given quantity expressed by a scalar 

field under the effect of a velocity vector field. Mathematically, this relationship takes 

the form of a continuity equation. It is obtained by using the conservation laws, Gauss-

Ostrogradsky theorem and assuming an infinitely small limit. 

However, the advection rarely occurs in an independent form in nature. The advection 

phenomenon is mainly coupled with diffusion. The advection-diffusion equation, 

also known as the convection-diffusion equation, is as follows [79]: 

 ( ) ( ) sc D c c R=   − +u , (3.22) 

where Rs denotes the source term, which indicates the occurrence of chemical reactions. 

If particles are created as a result of a chemical reaction, Rs > 0, and if particles are 

destroyed, Rs < 0. In the case of chemical equilibration, Rs is equal to 0.  

The convection-diffusion equation combines parabolic and hyperbolic PDEs. 

This equation determines the change in the concentration of quantities (particles,  

energy, etc.) in the system as a result of movement induced by diffusion and advection 

(convection). It can be seen that Fick's second law is a special case of the convection-

diffusion equation, where advection is ignored. 
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3.7. Mass transfer during cryopreservation process. Osmotic 

transport 

Mass transfer mechanisms in the concept of cryopreservation are considered in relation 

to the delivery and removal of CPAs. The techniques used for this are described in detail 

in the previous chapter. It is worth noting that the models mainly introduce the flow of 

CPA through microfluidic systems and its transport in the extracellular matrix of tissues. 

As can be found in the literature, these phenomena are expressed, for example, by using 

the convection-diffusion equation [79, 129, 159, 182, 194] or its special case, the equation 

resulting from Fick's second law [8, 104, 132, 147, 148, 150, 153, 187, 189].  

Furthermore, while developing a complete description of cryopreservation, it is crucial 

to understand osmotic transport, i.e. the transfer of water and solutes, across the cell 

membrane (see Subsection 2.5). The cell membrane is a plasma membrane that is 

designed to isolate the extracellular from the intracellular space. Substances such as water 

can diffuse through the cell membrane under the influence of a concentration gradient 

until an osmotic equilibrium is reached. Unfortunately, the incorrect selection of 

parameters for the cryopreservation process can result in osmotic changes that are lethal 

to cells [36]. 

The phenomenon of osmotic transport can be explained mathematically. Jacobs and 

Steward in 1932 published the results of an experiment in which cell membrane 

permeability was measured [55, 56]. Based on this, they derived two coupled ODEs that 

simulate the transport of water and solute across the cell membrane [36]: 
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where Vw is the intracellular water volume, Vcell is the total volume of the cell, S is 

the intracellular amount of permeating solute, A is the cell surface area, cs and cn are 

the molar concentration of the permeating solutes (s) and the nonpermeating solutes (n), 

kw and ks are the water and solute permeability constant, respectively. The superscript 

e and 0 denote the extracellular solute and the initial values of the variables; while the 

subscript s and n represent the permeating and nonpermeating solute, respectively. 
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Please note that the total volume of the cell is the sum of the intracellular water (Vw), 

the intracellular solute volume (Vs) and the osmotically inactive volume (Vb) [36, 67]: 

 cell w s bV V V V= + + . (3.25) 

The above Equations (3.23) and (3.24) were deduced from Fick's laws. The following 

assumptions were also applied. During the experiment, the concentration of 

the extracellular solution and the thickness of the membrane were constant. 

Only diffusion through the cell membrane was considered, other diffusion phenomena 

were neglected. In addition, the concentration gradient was expressed as the ratio of 

the concentration difference in the extracellular and intracellular solution to 

the membrane thickness; while the osmotic pressure was assumed as proportional to 

the concentration [36]. 

Based on the above model, a two-parameter (2-P) formalism was formulated.  

The 2-P formalism approach is currently widely used to estimate changes in the volume 

of water and the number of moles in cells during osmotic transport (see examples in  

[8, 36, 67, 76, 129, 132, 184, 193–195]). It is represented by the following equations [36]: 

 ( )e i

w pV L ART M M= − − , (3.26) 

 ( )e i

s sN P A M M= − , (3.27) 

where Ns is the intracellular number of permeating solute molecules, Lp and Ps represent 

the hydraulic conductivity and the solute permeability, respectively; M is the osmolarity 

with the superscripts denoting the extracellular (e) and intracellular (i) area. 

Please note that osmolarity determines the moles number of osmotically active 

substance in 1 L of solution. The osmolarity can be confused with the osmolality, 

which refers to the number of moles osmotically active substances dissolved in 1 kg of 

a solvent, for instance., water. The osmolarity can be computed from the osmolality. 

For example, the osmolality for an undiluted solution of two solutes can be defined [36]: 

 ( )2 2π i j i i j j i j i jm m B m B m B B m m= + + + + + , (3.28) 

where π is the osmolality, Bi or Bj is the second osmotic virial coefficient for species i or 

j, mi or mj is the molality of species i or j, which expresses the number of moles of 

the dissolved substance in 1 kg of solvent. If one of the components in the solution 

dissociates (for example NaCl or KCl), the molality (mi) should be replaced by 

the expression mi·kdiss, where kdiss is the dissociation constant. 
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In subsequent years, research on osmotic transport in cells was continued. In 1951-

1952, Staverman described osmotic transport applying the linear theory of irreversible 

thermodynamics [160, 161]. This theory assumes that osmotic transport associated with 

permeation and diffusion are irreversible. This includes the phenomena of cell volume 

changes resulting from the transfer of substances across the cell membrane. The linear 

theory of irreversible thermodynamics was formalized by Lars Onsager  

in 1931 [113, 114]. 

Based on Onsager's and Staverman's approach, in 1958 Kedem and Katchalsky 

proposed a novel theory [66]. Their model assumes that for systems close to equilibrium, 

the flux is linearly proportional to, for instance, the gradient or the driving force. 

The osmotic transport involving the transfer of water and solute are coupled to each other. 

Therefore, water and solute react with each other, which can be described by the reflection 

coefficient [36, 67]. The Kedem-Katchalsky (K-K) equations are given as [36]: 
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where Vw+s is the intracellular volume of water and solute, σ is the reflect coefficient. 

Compared to the 2-P formalism, in the K-K equations the membrane permeability is 

characterised by three parameters: hydraulic conductivity, solute mobility, and reflection 

coefficient [36]. The K-K equation, like the 2-P formalism, is also commonly used for 

osmotic transport calculations [36, 67, 183–185, 195]. 

In later years, subsequent researchers proposed other models of osmotic transport. 

In 1963, Peter Mazur presented a quantitative temperature dependence of water transport, 

assuming that solute transport is negligible [94]. The relationship is as follows: 

 ( )
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where B is the constant cooling rate, vw is the partial molar volume of water, pe and pi 

is the extracellular and the intracellular pressure of water.  

The ODE shown above was revised in 1976 by Levin et al. [78]. The modification 

aims to include the action of CPAs. Examples of the application of the Mazur and Levin 

et al. models can be found in [29, 172, 181].
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4.1. Introduction 

The “language of mathematics” can describe the behaviour of a given system, process, 

or phenomenon. Mathematical modelling is used in the natural sciences, (for example 

biology, physics, chemistry), in engineering, and also in non-physical fields such 

as sociology.  

Mathematical models are classified in different ways. For example, models can be 

categorised as linear or non-linear, static or dynamic, explicit or implicit, discrete or 

continuous as well as deterministic or stochastic (probabilistic). The last couple of model 

types are worth considering in the context of cryopreservation. In a deterministic model, 

variables or parameters are uniquely determined by an input or dataset from a previous 

state. These models always work in the same way and produce the same results based on 

the given inputs. In contrast, stochastic models involve randomness. Variables are not 

introduced as unique values but, for instance, as probability distributions or random 

variables from a given set of states. The products of the calculations performed by 

the stochastic model for a given initial state vary with each calculation. 

The cryopreservation process is most often modelled in a deterministic manner 

(see examples in [79, 182, 187, 196]). Meanwhile, in modelling this phenomenon, 

input variables are often used that are imprecisely defined. Often approximate values are 

used, especially for the properties of biological constructs, such as thermophysical and 

chemical parameters, which are determined experimentally. This means that the use of 

a deterministic model provides some simplification.  

The phenomenon of cryopreservation can be described by a stochastic model. 

This would allow the calculations performed to better reflect the natural phenomena 

occurring during this process. Unfortunately, stochastic models are time- 

consuming [16, 17]. 

There is another way to model quantities that are inaccurately or imprecisely defined. 

Fuzzy set theory can be used for this type of issue. It involves introducing imprecise 
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parameters in the form of fuzzy or interval numbers. The fuzzy number is a quantity that 

has no “sharp” ends. Each such number that is a part of a fuzzy set is described by 

a characteristic function. The characteristic function, called the membership function, can 

have values in the range from 0 to 1. For comparison, in classical set theory, 

the characteristic function takes the value 1 when an element belongs to the set, or 0 when 

the element is outside the set [48]. Meanwhile, an interval number is defined by 

the boundary values of a closed range. The characteristic function for the interval 

numbers is equal to 0 or 1, as in the case of the classical sets.  

Examples of the application of interval and fuzzy number concepts in engineering 

modelling can be found in the literature [48, 49, 68, 99, 123, 124, 126, 127]. 

4.2. Fuzzy sets 

In 1965, Lofti A. Zadeh proposed the concept of fuzzy sets as an extension of classical 

sets, where each element of the set is assigned to them by a degree of membership [188]. 

For some non-empty space 𝕏(Ã ⊆ 𝕏), the fuzzy set Ã is defined by the following set of 

ordered pairs [26, 48, 62, 125]: 

 ( ) A
A , μ ( ) ;x x x=  , (4.1) 

where the function μÃ is known as the membership function of the fuzzy set.  

The membership function can be expressed as [48, 125]: 

  
A

μ : 0, 1→ . (4.2) 

It means that the membership function μÃ can take any values of the real numbers  

set [0, 1]. It is worth noting that, for a classical set, the value of membership function μÃ 

determined in this way is equal to only 0 or 1. 

Three basic types of membership for individual elements 𝑥 ∈ 𝕏 to the fuzzy set Ã  

are considered: 

▪ when μÃ(𝑥) = 1, the membership of an element to the set is full, hence 𝑥 ∈ Ã; 

▪ when μÃ(𝑥) = 0, the membership of an element to the set is empty, hence 𝑥 ∉ Ã; 

▪ when 0 < μÃ(𝑥) < 1, the membership of an element to the set is partial,  

hence 𝑥 ∈ (0,1). 
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The partial membership of the element x to the set does not occur for classical sets, 

which distinguishes them from fuzzy sets. 

Figure 4.1 illustrates an example of the fuzzy set Ã = {[(𝑥1, 𝑥2), μÃ(𝑥1, 𝑥2)]; 𝑥 ∈ ℝ2} 

in a two-dimensional space for which the membership function is equal to  

μÃ(𝑥1, 𝑥2) = 2 ∙ exp (−
1

2
𝑥1

2 − 3𝑥2
2) [125]. 

 

 

Figure 4.1. Example of fuzzy set Ã in ℝ2 space 

 

An important consideration is the concept known as α-cut of a fuzzy set [14, 30, 41]. 

The α-cut of a fuzzy set Ã in space 𝕏 is defined as a crisp set of all elements for which 

the values of membership functions are greater than or equal to α, where α ∈ [0,1]: 

  A
A : μ ( ) αx x =   , (4.3) 

which is determined by the following characteristic function [30]: 
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The process of subdividing a fuzzy set into α-cuts is called decomposition. 

Figure 4.2 shows an example of a two-dimensional fuzzy set with a marked α-cut, 

where α = 0.5 [125]. 

It is worth mentioning that for α-cuts, the relation is true [125]: 
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2 11 2 A Aa a   →  , (4.5) 

 

 

Figure 4.2. Fuzzy set Ã in ℝ2 space with a marked α-cut (α = 0.5) 

 

The following theorem is important. Any fuzzy set Ã can be written as the sum of all 

its α-cuts [51]: 
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where α ∙ Ã𝛼 is a fuzzy set in 𝕏 , which the membership function is specified as: 
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4.3. Fuzzy numbers 

In the following section, concepts related to fuzzy numbers will be introduced. A fuzzy 

number 𝑎̃ is defined as a fuzzy set of the real line, which is normal (maximum of 

the membership function is equal to 1), bounded convex (all α-cuts are bounded and 

convex) and the membership function is at least piecewise continuous [48]. 
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The fuzzy number 𝑎̃ ⊆ ℝ is called positive (𝑎̃ > 0), if ∀𝑥 ≤ 0, μ𝑎̃(𝑥) = 0 and is called 

negative (𝑎̃ < 0), if ∀𝑥 ≥ 0, μ𝑎̃(𝑥) = 0. The fuzzy number is called mixed if it is non-

positive and non-negative and contains zero [48, 125]. 

In a set of fuzzy numbers, the fundamental arithmetic operations can be formulated. 

Applying Zadeh extension principle, basic arithmetic operations performed on a classical 

set are extended to fuzzy numbers [62, 188]. 

Elementary operations for the fuzzy numbers 𝑎̃ and 𝑏̃ can be performed using 

the relations below [26, 31, 62, 69]: 

a.  addition: 

 
 

1 2

1 2

1 2
,

, μ ( ) sup min μ ( ), μ ( )c a b
x x

y x x

a b c y x x

= +

+ = = , 
(4.8) 

b. subtraction: 

 
 

1 2

1 2

1 2
,

, μ ( ) sup min μ ( ), μ ( )c a b
x x

y x x

a b c y x x

= −

− = = , 
(4.9) 

c. multiplication: 

 
 

1 2

1 2

1 2
,

, μ ( ) sup min μ ( ), μ ( )c a b
x x

y x x

a b c y x x

= 

 = = , 
(4.10) 

d. division: 

 
 

1 2

1 2

1 2
,

/

/ , μ ( ) sup min μ ( ), μ ( )c a b
x x

y x x

a b c y x x

=

= = , 
(4.11) 

e. inverse of a fuzzy number (it is assumed 𝑎̃ > 0 or 𝑎̃ < 0): 

 1

1μ ( ) μ ( ) for 0 or 0aa
x x a a−

−=   . (4.12) 

It is worth mentioning that the presented formulas concern both two- and one-

argument operations. As can be seen, two-argument operations executed on a set of fuzzy 

numbers are complex. It is caused by the presence of a supremum, which requires an 

infinite number of operations on the membership degrees of the arguments. In order to 

avoid complicated arithmetic operations, the fuzzy numbers can be created with specific 

parameters and different types of membership functions. These include triangular 

or trapezoidal fuzzy numbers as well as fuzzy numbers written in the L-R 

convention [42, 110].  

In addition, the problem of fuzzy arithmetic is that there is no fuzzy number opposite 

to addition, nor inverse to multiplication [125]: 
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 0, 1
a

a a
a

−   . (4.13) 

It is a significant disadvantage mainly during the solution of fuzzy systems of equations. 

This limitation can be avoided by using directed fuzzy numbers, the idea of which will 

be explained on the example of directed interval numbers later in the thesis. 

4.4. Triangular and trapezoidal fuzzy numbers 

Let us introduce the definition of triangular fuzzy numbers. The triangular fuzzy 

number 𝑎̃ represents a fuzzy set with a given membership function [49, 125]: 

 

0

0

0

0

0, ,

, ,

μ ( )

, ,

0, ,

a

x a

x a
a x a

a a
x

a x
a x a

a a

x a

−

−
−

−

+
+

+

+

 


−  
 −

= 
−  

 −




 (4.14) 

where 𝑎0 is the core of the number, while the values of 𝑎− and 𝑎+ denote the left and 

right ends of the fuzzy number respectively. The fuzzy triangular number is written 

as an ordered triple 𝑎̃ = (𝑎−, 𝑎0 , 𝑎+). 

Figure 4.3 depicts an example of the fuzzy number 𝑎̃ = (−5, −4 , 1) for which 

the membership function is: 

 

0, 5,

5, 5 4,

μ ( ) 1
, 4 1,

5

0, 1.

a

x

x x

x x
x

x

 −


+ −   −


= −
−  




 (4.15) 
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Figure 4.3. Triangular fuzzy number 𝑎̃ = (−5, −4 , 1) 

 

Elementary mathematical operations can be performed in the set of triangular fuzzy 

numbers, assuming that 𝑎̃ and 𝑏̃ are fuzzy numbers [14]: 

a. addition: 

 ( )0 0, ,a b a b a b a b− − + ++ = + + + , (4.16) 

b. subtraction: 

 ( )0 0, ,a b a b a b a b− + + −− = − − − , (4.17) 

c. multiplication: 

 ( )0 0, ,a b a b a b a b− − + +     , (4.18) 

d. division: 

 
0

0

0

/ , , , , , 0
aa a

a b b b b
b b b

− +
− +

+ −

 
  
 

. (4.19) 

Besides triangular fuzzy numbers, trapezoidal fuzzy numbers are also used in 

the literature [126, 150]. A trapezoidal fuzzy number is a fuzzy set for which 

the membership function is specified as [10]: 
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( )0

0 0

0 0

0
0 0

0 0

σ
, σ ,

σ

1, ,
μ ( )

, β,

0, β  or σ,

a

x x
x x x

x x y
x

y x
y x y

x y x x





− −
−  


 

= 
+ −   +




 +  −

 (4.20) 

where x0 and y0 are the defuzzifiers from the left and the right side, respectively; σ and β 

are the left and the right fuzzinesses. Please note that the trapezoidal fuzzy number is 

described as 𝑎̃ = (𝑥0, 𝑦0, σ, β).  

The example of the trapezoidal fuzzy number 𝑎̃ = (3, 5, 1, 3) is presented  

in Figure 4.4. The membership function for this example is as follows: 

 

2, 2 3,

1, 3 5,

( ) 8
, 5 8,

3

0, 8 or 2.

a

x x

x

x x
x

x x



−  


 


= −
 


 

 (4.21) 

 

 

Figure 4.4. Trapezoidal fuzzy number 𝑎̃ = (3, 5, 1, 3) 

 

Arithmetic operations performed in a set of fuzzy numbers are complicated. In order 

to simplify this arithmetic, the concept of α-cut of fuzzy numbers can be used, as will be 

shown in the next subsection. 
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4.5. α-cuts 

As mentioned earlier, the concept of α-cuts is adopted to omit complicated 

mathematical calculations performed on fuzzy numbers. For a pair of functions 

𝑎−: [0,1] → ℝ and 𝑎+: [0,1] → ℝ defining a fuzzy number, α-cuts are expressed as a set 

of closed intervals [47, 180]: 

   α α αα 0, 1 : ,a a a− +   =   . (4.22) 

In addition, the following conditions need to be satisfied: 

 

α

α

α α

1. : α ,

2. : α ,

3. ,

a a

a a

a a

− −

+ +

− +

→ 

→ 



 (4.23) 

where 𝑎− and 𝑎+ are bounded and monotonic functions for each α ∈ [0,1], while 𝑎− and 

𝑎+ are increasing and decreasing functions, respectively. 

Importantly, it is possible to write any fuzzy number as the sum of all its  

α-cuts [30, 49]: 

 α

α [0, 1]

a a


=  . (4.24) 

Considering the case of a triangular fuzzy number 𝑎̃ = (𝑎−, 𝑎0 , 𝑎+), we can define 

the α-cut as a set of closed intervals of the following form [125]: 

 ( ) ( )α 0 0,a a a a a a a − − + + = − + − +
 

. (4.25) 

On the other hand, for a trapezoidal fuzzy number 𝑎̃ = (𝑥0, 𝑦0, σ, β), the α-cut is  

given as [126]: 

 ( ) ( )α 0 01 α σ, 1 α βa x y= − − − −   . (4.26) 

Figure 4.5 presents an example of the triangular fuzzy number 𝑎̃ = (1, 3, 7) for which 

the α-cut is determined: 

 ( ) ( )  α 3 1 α 1, 3 7 α 7 2α 1, 4α 7a = − + − + = + − +   . (4.27) 

In addition, it is possible to calculate a specific value for a given α,  

for instance for α = 0.5: 

    0.5 2 0.5 1, 4 0.5 7 2, 5a =  + −  + = . (4.28) 
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The proposed decomposition of fuzzy numbers eliminates the need for complex 

arithmetic operations. Due to it, elementary mathematical operations are performed at 

the ends of intervals. 

 

 

Figure 4.5. Triangular fuzzy number 𝑎̃ = (1, 3 , 7) with α = 0.5 

 

The fundamental mathematical operations for α-cuts can be conducted using classical 

or directed interval arithmetic. Applying the rules of the classical interval arithmetic 

for two fuzzy numbers 𝑎̃ and 𝑏̃ (∀α ∈ [0,1]), the basic operations can be defined  

as follows [125]: 

a. addition: 

 ( )
α

,a b a b a b− − + +

   


 + = + + 
, (4.29) 

b. subtraction: 

 ( )
α

,a b a b a b− + + −

   


 − = − − 
, (4.30) 

c. multiplication: 

( )    
α

min , , , ,max , , ,a b a b a b a b a b a b a b a b a b− − − + + − + + − − − + + − + +

               


  =
  , (4.31) 
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d. division(0 ∉ [𝑏𝛼
−, 𝑏𝛼

+]): 

 min , , , , max , , ,
a a a a a a a aa

b b b b b b b bb

− − + + − − + +

       

− + − + − + − +

         

     
=      

      
, (4.32) 

e. multiplication by a scalar (𝑘 ∈ ℝ): 

    
α

min , , max ,k a ka ka ka ka− + − +

    
  =
  , (4.33) 

f. inverse (0 ∉ [𝑎𝛼
−, 𝑎𝛼

+]): 

 
1 1 1

,
a a a 

+ −

 

  
=   

   

. (4.34) 

4.6. Classical and directed interval arithmetic 

Classical and directed interval arithmetic have been mentioned in the work many times 

before. Publication of the book Interval Analysis by Ramon E. Moore’a in 1966 [102] 

is considered as the beginning of interval arithmetic. However, the idea of performing 

calculations on sets and intervals originated earlier, for example in the works of Rosalind 

C. Young (1931) [186] or Teruo Sunaga (1958) [164]. It is worth noting that interval 

numbers can be used to describe uncertain parameters in an interval form [49]. 

Let us introduce the definition of an interval number. A closed interval number is 

the set of all real numbers specified as [53]: 

  , :a a a a a a a a− + − + = =     , (4.35) 

where 𝑎−, 𝑎+ ∈ ℝ represent the beginning and the end of the given interval. 

Compared to fuzzy numbers, partial set membership is not possible for interval 

numbers. For each real number 𝑎 ∈ ℝ, the characteristic function adopts only two 

different values. If the number 𝑎 belongs to the interval [𝑎−, 𝑎+], the value of 

the characteristic function is equal to 1, otherwise the value of the characteristic function 

is 0 [49, 125]. 

The set of all closed intervals is marked as 𝕀ℝ. The interval is called narrow if  

𝑎− = 𝑎+ or wide if 𝑎− < 𝑎+. Its width is defined as dim(𝑎̅) = 𝑎+ − 𝑎− [49, 125]. 

The basic arithmetic operations in the set of interval numbers are an extension of 

the basic operations in the set of real numbers. For two interval numbers 𝑎̅ = [𝑎−, 𝑎+] 
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and 𝑏̅ = [𝑏−, 𝑏+]), (𝑎̅, 𝑏̅ ∈ 𝕀ℝ) the elementary mathematical operations are analogous to 

the ones performed on α-cuts (see Equations (4.29)-(4.34)). The difference is that 

previously fuzzy numbers were used as opposed to interval numbers [49, 125]. 

Importantly, in the set of interval numbers 𝕀ℝ, there is an element equal to zero  

(0̅ = [0,0]) and an element equal to one (1̅ = [1,1]). Unfortunately, in classical interval 

arithmetic there are no operations such as the opposite of addition  

(𝑎̅ − 𝑎̅  0̅) and the inverse of multiplication (𝑎̅/𝑎̅  1̅). This is obviously a major 

complication when solving linear equations and inequalities. To avoid this complication, 

directed interval arithmetic can be applied [91, 92, 137]. 

The set of directed interval numbers is defined as the set of all pairs of real numbers 

that are ordered [137]: 

  , : ,a a a a a a− + − + = =    , (4.36) 

where 𝑎−, 𝑎+ ∈ ℝ denote the beginning and the end of the interval. 

There are three types of directed interval numbers, taking into account the position of 

the interval limits [92, 137]: 

▪ proper, when 𝑎− ≤ 𝑎+, 

▪ improper, when 𝑎− ≥ 𝑎+, 

▪ degenerate, when 𝑎− = 𝑎+. 

The set of all directed interval numbers is denoted as 𝔻 = ℙ ∪ 𝕀, where ℙ and 𝕀 

represent the set of all directed proper and improper intervals, respectively. In addition, 

in the theory of directed interval numbers, a subset ℤ = ℤℙ ∪ ℤ𝕀 is defined, containing all 

directed intervals with element 0 [92]: 

 
 

 

: 0 ,

: 0 .

= a a a

= a a a

− +

+ −

  

  
 (4.37) 

In the set of all directed interval numbers 𝔻, a direction functional and a sign functional 

are defined. The direction functional is expressed as [92, 137]: 

 ( )
, ,

τ
, ,

a a
a

a a

− +

− +

+ 
= 

− 
 (4.38) 

as well as the sign functional is stated as: 

 ( )
, , 0,

σ
, , 0.

a a
a

a a

− +

− +

+ 
= 

− 
 (4.39) 
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In the set of directed interval numbers 𝔻 two additional mathematical operators are 

performed [125]: 

▪ opposite of addition (∀𝑎̅ ∈ 𝔻): ,a a a− + − = − −  , 

▪ inverse of multiplication (∀𝑎̅ ∈ 𝔻\ℤ): 1/ 1/ , 1/a a a− + =   . 

Thanks to these additional mathematical operators and functionals, elementary 

mathematical operations on directed interval numbers can be formulated [125, 137]: 

a. addition (∀𝑎̅, 𝑏̅ ∈ 𝔻): 

 ,a b a b a b− − + + + = + +  , (4.40) 

b. subtraction (∀𝑎̅, 𝑏̅ ∈ 𝔻): 

 ,a b a b a b− − + + − = − −  , (4.41) 

c. multiplication: 

   

 

σ( ) σ( ) ( ) σ( )

σ( )τ( ) σ( ) σ( )τ( ) σ( )

σ( ) σ( )τ( ) σ( ) σ( )τ( )

, , , ,

, , , ,

, , , ,

min , , max , , , ,

max , , min

b a b a

a b a a b a

b b a b b a

a b a b a b \

a b a b a \ b

a b a b a b \
a b

a b a b a b a b a b

a b a b a b

− −

−

−

− + + − − − + +

− − + + − +

    

     

     
 =

     
 

   

( ) ( )

, , , ,

0, , , ,

a b a b

a b a b

+ −










  
 
     


 (4.42) 

d. division: 

 

σ( ) σ( ) σ( ) σ( )

σ( ) σ( ) σ( ) σ( )

/ , / , , ,
/

/ , / , , .

b a b a

b b b b

a b a b a b \
a b

a b a b a b \

− −

−

  
 

= 
    

 (4.43) 

With these two additional operations it is possible to obtain 0̅ = [0,0] for subtraction 

(𝑎̅ − 𝑎̅ = 0̅) and 1̅ = [1,1] for division (𝑎̅/𝑎̅ = 1̅). This is the main difference between 

directed and classical interval arithmetic [125].  

The use of directed interval arithmetic also affects the width of the intervals obtained, 

which is shown in the literature, for example, in [128]. Applying classical interval 

arithmetic to solve systems of equations sometimes receives very wide, non-realistic 

intervals. Therefore, modifications of this technique, such as the directed interval 

arithmetic described above, are becoming more popular. Other methods that are currently 

in use are, for example, generalised interval arithmetic or segmented mathematics [146]. 
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4.7. Solving fuzzy or interval systems of linear equations 

One of the more difficult issues in fuzzy and interval arithmetic is solving systems of 

equations. As a result of many mathematical operations performed on fuzzy or interval 

numbers, the width of the obtained intervals is increased. The method that is most 

commonly used to solve interval systems of equations is the interval Gauss elimination 

method. Other algorithms presented in the literature include the combinatorial method, 

Krawczyk’s method or Gauss-Seidel iteration [70, 108, 141]. 

Please note that in the case of fuzzy systems of equations, the application of 

the concept of α-cuts of fuzzy numbers allows to implement all of the above-mentioned 

methods for solving interval systems of equations [13]. 

As an example, the interval Gauss elimination method is described in this work  

[108, 125]. The basic term used to define the interval systems of linear equations is 

an interval matrix. An interval matrix is the matrix 𝐀̅, whose elements are  

interval numbers: 

 

11 12 1

21 22 2

1 2

m

m

n n nm

a a a

a a a

a a a

 
 
 =
 
 
 

A , (4.44) 

where 𝑎̅𝑖𝑗 ∈ 𝕀ℝ;  𝑖 = 1, 2, … , 𝑛;  𝑗 = 1, 2, … , 𝑚. In a set of interval matrices, 

the elementary mathematical operations are defined [108]. 

The interval system of linear equations can be expressed in the following form: 

  =A x b , (4.45) 

where 𝐀̅ is the interval matrix with dimension 𝑛 × 𝑛 and 𝐛̅ is the interval vector with 

dimension 𝑛 × 1. The above equation can be written: 

 

11 12 1 1 1

21 22 2 2 2

1 2

n

n

n n nn n n

a a a x b

a a a x b

a a a x b

    
    
     =
    
    
      

. (4.46) 

According to the interval Gaussian elimination method, the decomposition of 

the matrix 𝐀̅ needs to be performed [108]. As a consequence, the matrix 𝐀̅ consists of two 

triangular matrices 𝐋̅ and 𝐔̅ defined as: 
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11 12 1

21 22 2

1 2

1 0 0

1 0 0
,

1 0 0

n

n

n n nn

u u u

l u u

l l u

   
   
   = =
   
   
   

L U , (4.47) 

where the individual elements of matrices 𝐋̅ and 𝐔̅ are computed by relations: 

 

1

1

1

1

, , 1, , ,

1
, 1, 2, , .

i

ij ij ik kj

k

i

ji ji jk ki

kii

u a l u j i i n

l a l u j i i n
u

−

=

−

=


= − = +




  = − = + +   




 (4.48) 

By substituting the matrices 𝐋̅ and 𝐔̅ into an interval system of linear equations 

(Equation (4.45)), one obtains: 

 ( ) ( ) =   =   =A x L U x L U x b . (4.49) 

Taking into account that the interval vector 𝐳̅ is equal to: 

 = z U x , (4.50) 

one receives: 

  =L z b . (4.51) 

The interval vector 𝐱̅ which is the solution is calculated from the system of equations 

presented in the Equation (4.50). 

4.8. Example of using fuzzy and interval numbers 

In order to better understand and perceive the subtle difference between fuzzy and 

interval numbers, the following examples are provided.  

The aim of the problem is to determine a steady-state (𝑇̇ = 0), sourceless (Qint = 0) 

temperature field in a one-dimensional region with a length of 0.1 m. It is also assumed 

that the thermal conductivity coefficient does not depend on temperature (k = constant). 

In this case, the Fourier equation (compare with Equation (3.4)) has the form: 

 
2

2

d
0

d

T
k

x
= , (4.52) 

where x is the component of the Cartesian coordinate system. 
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Completing the mathematical model with boundary conditions, the temperature on 

the left edge is equal to 10 °C, while on the right edge the heat flux 104 W·m-2 is given. 

The domain is divided into 5 elements (6 nodes including 2 boundary nodes and 3 internal 

nodes), where the distance between nodes is constant. The calculations have been carried 

out applying the finite difference method (FDM). Explanation of FDM is not the main 

idea of the demonstrated example; therefore, it will not be discussed in detail in this 

section of the thesis. More information on FDM can be found in [88, 100].  

First, an analysis has been performed for a deterministic value of the thermal 

conductivity coefficient, where k = 30 W·m-1·K-1. The results are shown in Figure 4.6. 

 

 

Figure 4.6. Results for deterministic thermal conductivity coefficient 

 

Let us consider the same task for the parameter k introduced as a fuzzy number. 

The thermal conductivity coefficient is a triangular fuzzy number,  

𝑘̃ = (28.5; 30; 31.5) W·m-1·K-1. As mentioned earlier, calculations for fuzzy numbers 

can be complicated; therefore, it is recommended to use α-cuts, taking specific values of 

the parameter α. In the example, it is assumed that the parameter α = 0.5.  

Based on the relationship presented in Equation (4.25), the following transformation 

has been performed: 

 
( ) ( ) ( )

 
0.5 28.5; 30; 31.5 30 28.5 0.5 28.5; 30 31.5 0.5 31.5

29.25; 30.75 .

k = = −  + −  +  

=
 (4.53) 

Then, all mathematical operations have been conducted according to the rules based 

on interval arithmetic, for instance classical or directed arithmetic. Figure 4.7 illustrates 

the results obtained for the coefficient 𝑘̃0.5 = (28.5; 30; 31.5) = 

[29.25; 30.75] W·m-1·K-1. Analysing Equation (4.52) in detail, one can notice that in this 

case only the operation of multiplication by a scalar is required (see Equation (4.33)). 
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Figure 4.7. Results for fuzzy thermal conductivity coefficient for α = 0.5 

 

For comparison, a solution to this example has also been prepared for the interval heat 

transfer coefficient, where 𝑘̅ = [28.5; 31.5] W·m-1·K-1. To perform operations  

for equations with interval numbers, it is necessary to use, for example, the Equations 

(4.40)-(4.43). Figure 4.8 shows the results of calculations involving directed interval 

arithmetic. Similar to the problem with the fuzzy thermal conduction coefficient, 

the calculation of the temperature field is reduced to multiplication interval number  

by a scalar. 

 

 

Figure 4.8. Results for interval thermal conductivity coefficient 

 

In summary, it can be noted that the deterministic temperatures distribution is in 

the range of fuzzy and interval temperatures. Therefore, it is concluded that both 

approaches are correct. However, it is important to remember the essential difference 

between fuzzy and interval numbers in the interpretation of the membership function. 

It should also be remembered that these examples are very simple and did not require 

much calculation on fuzzy or interval numbers. More complex problems need more 

mathematical operations on fuzzy or interval numbers. For example, the heat transfer 

process in the one-dimensional domain is more complicated to model. In this case, 

Equation (4.52) for fuzzy and interval number can be expressed: 

 

2 2

2 2
(fuzzyno.) and (intervalno.)

ρ ρp p

T k T T k T

t c x t c x

   
= =

   
. (4.54) 

As one can see, there are multiplication and division operations. In this case, 

the thermophysical parameters are assumed to be fuzzy and interval numbers, 

respectively, where 𝑘̃ = (33.25; 35.00; 36.75) W·m-1·K-1, 𝑐̃ = (7125; 7500; 7875) 
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J·kg-1·K-1, ρ̃ = (655.5; 690.0; 724.5) kg·m-3 and 𝑘̅ = [33.25;  36.75] W·m-1·K-1,  

𝑐̅ = [7125;  7875] J·kg-1·K-1, ρ̅ = [655.5;  724.5] kg·m-3. 

Firstly, let us consider this problem for fuzzy numbers. In order to avoid complex 

calculations, the α-cuts approach is implemented, where α = 0.5. Therefore: 

 

( ) ( )

( )

 

( ) ( )

( )

 

( )

0.5

0.5

0.5

0.5

0.5

33.25; 35.00; 36.75 35.00 33.25 0.5 33.25;

35.00 36.75 0.5 36.75 ,

34.125;35.875 ,

7125; 7500; 7875 7500 7125 0.5 7125;

7500 7875 0.5 7875 ,

7312.5;7687.5 ,

ρ 655.5; 690.0; 724.5 6

k

k

c

c

= = −  +

−  + 

=

= = −  +

−  + 

=

= = ( )

( )

 0.5

90.0 655.5 0.5 655.5;

690.0 724.5 0.5 724.5 ,

ρ 672.75;707.25 .

−  +

−  + 

=

 (4.55) 

In the next step, calculations can be performed using classical interval arithmetic. 

Based on Equations (4.29)-(4.34): 

1.    

 

 

0.5 0.5

6 6

0.5 0.5

ρ 7312.5;7687.5 672.75;707.25

min 7312.5 672.75;7312.5 707.25;7687.5 672.75;7687.5 707.25 ,

max 7312.5 672.75;7312.5 707.25;7687.5 672.75;7687.5 707.25 ,

ρ 4.920 10 ;5.437 10 ,

c

c

 = 

=    

    

  =   

 (4.56) 

2.  0.5

6 6
0.5 0.5

6 6 6 6

6 6 6 6

34.125;35.875

ρ 4.920 10 ;5.437 10

34.125 34.125 35.875 35.875
min , , , ,

4.920 10 5.437 10 4.920 10 5.437 10

34.125 34.125 35.875 35.875
max , , ,

4.920 10 5.437 10 4.920 10 5.437 10

k

c
=

    

  
=       

 


   

6 60.5

0.5 0.5

,

6.276 10 ;7.292 10 .
ρ

k

c

− −





 =   

 (4.57) 

Using α-cuts, it is also possible to implement the rules of directed interval arithmetic. 

In a further thermal analysis, the obtained coefficient 𝑘̃/(𝑐̃ ∙ ρ̃)  should be entered into 

the bioheat transfer equation. Please note that the temperatures included in the derivatives 

are also fuzzy numbers. 
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Let us similarly demonstrate the procedure for the interval thermophysical parameters. 

Applying directed interval arithmetic (see Equations (4.40)-(4.43)), one can obtain 

the following: 

1.    

  ( )

  ( )

( ) ( ) ( ) ( )

6 6

ρ 7125.0;7875.0 655.5;724.5

ρ ; ρ , because , ρ ,

7125.0;7125.0 , because , 0

ρ 655.5;724.5 , because ρ ,ρ 0

ρ ρ ; ρ 4.670 10 ;5.705 10 ,

b a b a

c

c c c \

c c c c

c

c c c

   





− −

− +

− +

− − + +

 = 

 =   
 

= = + 

= = + 

    =   =     

 (4.58) 

2.  

( ) ( )

  ( )

( ) ( ) ( )

( ) ( )

6 6

( ) ( )( ) ( )

6 6

)

33.250;36.750

ρ 4.670 10 ;5.705 10

/ ρ ; / ρ , because , ρ ,

33.250;36.750 , because , 0

ρ 4.670 10 ;5.705 10 , because ρ , ρ 0

/ ρ ; / ρ
ρ

a ab b

k

c

k c k c c \

k c k k

c c c c

k
k c k c

c

  





−−

− +

− +

− +− +

=
    

 =   
 

= = + 

  =   = +    

 =  
 

6 67.119 10 ;6.441 10 .− − =   

 (4.59) 

As a result of performing operations using directed interval arithmetic, the parameter 

𝑘̅/(𝑐̅ ∙ ρ̅) is an improper interval number. This should be noted for subsequent 

calculations, which additionally require consideration of the interval temperature present 

in the heat transfer equation. 



 

5. Numerical examples: heat transfer 

5.1. Introduction 

Preparing a simulation of the cryopreservation process, it is undoubtedly necessary to 

include the bioheat transfer. As already mentioned in Chapter 3, various relationships are 

applied for analysis and modelling of heat transfer. Among the most popular are 

the Fourier equation, the Pennes equation, the CV equation or the DPL model. 

The analysis of changes in the temperature distribution in the sample is important because 

they are coupled to other transport phenomena, which will be discussed in  

the next chapter. 

To supplement heat transfer model, another physical phenomena should be considered. 

Phase changes occur when the temperature of a certain material is reduced below 

the freezing (melting) point. Obviously, the CPAs provided during cryopreservation 

change the properties of the sample. However, the CPAs do not guarantee full protection 

against the crystallisation of ice crystals, which is a danger to biological structures. 

Phase transitions can be analysed using different approaches. The first of them 

represents phenomena in macroscale. It involves dividing the area under consideration 

into sub-domains according to the state of matter that is present in them. Applying the one 

domain method, a component is introduced into the heat transfer equation that takes 

a specific form depending on the current state of matter in the sub-domain. 

On the other hand, the microscopic approach estimates the degree of crystallised water 

in relation to the total volume of the cell solution. The crystallisation can be explained by 

the non-isothermal equation proposed by Boutron and Mehl. It can be said that 

the crystallisation is one of the markers of damage to a biological sample. 

In the following section, some examples of calculations related to heat transfer and 

phase transitions during cryopreservation are presented. Importantly, the particular 

simulations are performed for models introducing, for example, interval or fuzzy 

numbers. Example 1 demonstrates a model of bioheat transfer in biological tissue 

described by the Fourier equation. In contrast, Example 2 completes the thermal model 
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with phase changes introduced into the governing equation by the one domain method. 

Example 3 analyses also the heat transfer in the biological material, although the model 

additionally considers the phenomenon of crystallisation using the zone model and 

the non-isothermal equation proposed by Boutron and Mehl. 

5.2. Example 1: Bioheat transfer model 

In this example, a mathematical model is prepared to describe the changes in thermal 

distribution in a cylindrical sample of articular cartilage. To begin with, a few words about 

the articular cartilage. The articular cartilage is located at the end of a bone inside 

the joint. This tissue is elastic and carries the loads acting in the joint during movement. 

It is mainly composed of water (65%-80%). The other elements of articular cartilage 

include collagen (10%-20%) and proteoglycan matrix (5%-10%). The extracellular 

matrix (proteoglycan) contains cells named chondrocytes. The articular cartilage has no 

innervation, no nerves, no blood and no lymph vessels [1]. Therefore, it is not necessary 

to consider the perfusion of the tissue, and as a result our proposed heat transfer model is 

based on the Fourier equation. 

It should be mentioned that the issue of cryopreservation of articular cartilage is 

discussed in the literature. Many publications with experimental studies can be found, for 

example [1, 12, 59, 75, 112, 118, 122]. Likewise, many scientists have prepared 

a mathematical model of this process to improve its efficiency  

[76, 104, 147, 183, 187, 189]. In Chapter 2 (see Subsection 2.3) the case of using the LT 

protocol to perform cryopreservation of articular cartilage is described. This idea has been 

developed by, among others, Pegg et al. [116], Wang et al. [178] or Kay et al. [65].  

As this is a constantly developing technique, our computational model investigates the 

temperature distribution in an articular cartilage sample cryopreserved by the LT method. 

In addition, using the LT protocol, the temperature and the concentration of the bath 

solution are properly regulated. This modifies the properties of the sample, for example, 

its freezing (melting) point, while preventing ice crystallisation. For this reason, the phase 

transitions and crystallisation phenomena have been omitted in this example. 

At the start, it is worth repeating that the basic equation describing heat transfer in 

biological structures is the Fourier equation (see Equation (3.4)) [21]: 
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 ( ) intρpc T k T Q=   + . (5.1) 

Please note that the energy equation has to be completed with appropriate unambiguity 

conditions. They determine, for example, the geometry and the physical conditions such 

as thermophysical parameters of the analysed sample. It is also important to define initial 

and boundary conditions. The initial temperature is specified at the starting moment [21]: 

 
0( ,0)T X T= , (5.2) 

where T0 is the initial temperature when t = 0 and X is the geometric coordinate. 

Four fundamental boundary conditions are considered. The boundary condition of the 

1st type (Dirichlet) describes the temperature distribution that occurs on the given 

boundary [21]: 

 ( ),T X t T= , (5.3) 

where TΓ is the temperature on the boundary. 

The boundary condition of the 2nd type (Neumann) describes the heat flux, which is 

normal to the boundary [21]: 

 ( ),q X t k T = − n , (5.4) 

where qΓ is the heat flux and n is the normal vector to the boundary. 

The boundary condition of the 3rd type (Robin) represents the heat exchange between 

the external environment and the boundary : 

 ( ) ( ), α , extq X t k T T X t T = −  = −  n , (5.5) 

where αΓ is natural convection heat transfer coefficient, Text is the temperature of the 

surrounding mediums. 

The last one is the boundary condition of the 4th type, which concerns the boundary 

between heterogeneous bodies. In the case of ideal contact between the bodies, 

this condition has the following form [21]: 

 
( ) ( )
1 2

1 2

,

, , ,

k T k T

T X t T X t

−  = − 


=

n n
 (5.6) 

where subscripts 1 and 2 represent the first and the second body, respectively. 

It is also possible to consider the boundary between bodies without ideal (imperfect) 

contact with thermal resistance [21]: 
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( ) ( )

( )
1 2

1 2

, ,
,

,

T X t T X t
k T k T

R X t

−
−  = = − n n  (5.7) 

where RΓ is the thermal resistance. 

Thermophysical parameters such as specific heat, density or thermal conductivity 

coefficient appear in the governing equation. Normally, the values of these variables are 

obtained deterministically from the experiment. However, in reality these parameters 

depend on a variety of circumstances in the case of humans such as sex, age, and also 

occupation. Hence, our work proposes the introduction of thermophysical parameters in 

the form of interval numbers or fuzzy numbers. This removes the need to apply 

a stochastic model, while replacing a simplified deterministic model. As a result, 

the obtained temperature distributions are also in the form of intervals or fuzzy numbers. 

5.2.1. Example 1 – interval numbers 

First, an example where interval numbers are introduced into the model will be 

demonstrated. Let the volumetric specific heat capacity (cv = cp·ρ) and the thermal 

conductivity (k) be interval numbers. Then Equation (5.1) has the form: 

 ( )
( )

( ) ( ) int

,
,V

T X t
c T k T T X t Q

t


 =   + 

, (5.8) 

In this study it is also assumed that the analysed sample domain is sourceless (internal 

heat sources Qint are neglected) and that interval thermophysical parameters are 

independent of temperature, therefore: 

 
( )

( )2
,

,V

T X t
c k T X t

t


= 


. (5.9) 

For an axisymmetric two-dimensional (2D) sample located in a cylindrical coordinate 

system, this equation is formulated as follows: 

 
( ) 2

2

, , 1 ( , , ) ( , , )
V

T r z t T r z t T r z t
c k r

t r r r z

     
= +  

     

, (5.10) 

or in the form: 

 
( ) 2 2

2 2

, , 1 ( , , ) ( , , ) ( , , )
V

T r z t T r z t T r z t T r z t
c k

t r r r z

    
= + + 

    
, (5.11) 

where r, z  are the geometric coordinates of the cylindrical coordinate system. 
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The heat transfer equation should be supplemented with appropriate boundary and 

initial conditions. These conditions are compliant with the LT protocol, proposed by Pegg 

et al. [116]. The assumptions are as follows. A cylindrical sample is immersed in 

a chamber filled with bath solution. The temperature of the bath solution is computer-

controlled and varies according to the time at which the sample is exposed to the solution. 

Pegg’s protocol involves 8 stages in the cooling phase and 7 stages in the heating phase. 

Table 5.1 contains the assumptions of this protocol, where the entire simulation time 

is 425 min.  

 

Table 5.1. The LT protocol according to Pegg et al. [116, 187] 

Phase Step Time, t [min] Temperature of bath solution, Tbath [°C] 

Cooling 

1 10 22 

2 10 22 

3 30 −5 

4 30 −8.5 

5 30 −16 

6 30 −23 

7 30 −35 

8 30 −48.5 

Heating 

1 30 −48.5 

2 30 −35 

3 30 −23 

4 30 −16 

5 30 −8.5 

6 30 −5 

7 45 22 

 

Knowing how the temperature of the bath solution changes, it is necessary to consider 

how the bath solution affects the model of an articular cartilage fragment. The study 

analyses a two-dimensional domain of a homogenised sample inserted in a cylindrical 

system. The cylindrical sample has the following dimensions: R = 3 mm and H = 1 mm.  

Figure 5.1 depicts a model of a sample inside a chamber filled with bath solution 

containing CPA, on which the area to be analysed is marked (Ω). As can be seen, 



5. Numerical examples: heat transfer 68 

the boundary conditions are symmetrically distributed, hence computations can be 

performed for domain Ω with dimensions equal to R and H/2. As a consequence, 

an adiabatic condition is applied at the boundaries Γ2 and Γ3 [21]: 

 ( ), , 0q r z t k T = −  =n . (5.12) 

On the other boundaries (Γ1 and Γ4), a condition of the 3rd type is determined: 

 ( ) ( ), , α , , bathq r z t k T T r z t T 
 = −  = − n . (5.13) 

It can be observed that the temperature of bath solution Tbath corresponds to 

the temperature of the surrounding medium Text (compare with the Equation (5.5)).  

In this case, the natural convection heat transfer coefficient is equal to  

αΓ = 525 W·m−2·K−1 [187]. 

It is worth adding that the LT protocol also provides the initial temperature T0 = 22 °C. 

This value coincides with the Tbath value in the first step of the cooling phase. 

 

 

Figure 5.1. Model of the cylindrical sample immersed in bath solution inside 

 

Let us introduce the information about physical conditions. The interval 

thermophysical parameter are as follows: the interval thermal conductivity  

𝑘̅ = [0.492; 0.544] W·m−1·K−1 and the interval volumetric specific heat  

𝑐𝑉̅ = [3.728·106; 4.120·106] J·m−3·K−1. Please note that the deviation from 

the deterministic value (k = 0.518 W·m−1·K−1 and cv = 3.924·106 J·m−3·K−1) is 

equal to 5% [129, 132, 152, 153, 187]. 
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In this part of the work a numerical simulation based on the mathematical model 

demonstrated above is presented. The thermal distribution calculated from Equation 

(5.11) is estimated applying the finite difference method (FDM). 

The concept of FDM is to substitute differential quotients, which are obtained from 

the Taylor series expansion, into the differential equation. Due to this, differential 

equations, such as ODEs or PDEs, are solved as a system of linear equations (algebraic 

equations) The derivation of the governing equations in the explicit scheme is performed 

according to the method presented in [88, 100]. 

To begin, a time and domain mesh should be created. For unsteady states, 

a discretisation of the time axis can be formulated [100]: 

 
0 1 2 1... ...f f f Ft t t t t t− −        . (5.14) 

The time step Δt = t f+1 – t f is constant. 

Meanwhile the domain mesh is regular. The nodes are distributed by means of a five-

points star formed by the central node and its neighbouring nodes. Figure 5.2 illustrates 

the five-points star. Please note that the boundary nodes are 0.5h1 and 0.5h2 distance from 

the external edge of the domain Ω, where h1 and h2 are the mesh step in the r- and  

z-direction, respectively. 

 

 

Figure 5.2. Five-points star scheme 

 

After discretisation of the time and domain, the relationships describing 

the temperature at the internal and boundary nodes should be specified. The time 



5. Numerical examples: heat transfer 70 

derivative appearing on the left-hand side of the energy equation (Equation (5.11)) is 

replaced by the following differential quotient [88, 100]: 

 
( ) 1

, ,

,

, ,
f f f

i j i j

i j

T TT r z t

t t

−− 
= 

  
. (5.15) 

The temperature distribution in the internal nodes (i, j) for explicit scheme are 

estimated by the mean quotients in the form [88, 100]: 

( )
1 1

1
2

, 0.5 , 0.5,
, 1 , 0.5 , 0.5

1 1

2 0.5, 0.5,

1 1 ( , , ) ( , , )
, ,

1 ( , , ) ( , , )
,

f f
f

i j i ji j
i j i j i j

f f

i j i j

T r z t T r z t
k T r z t k r r

r h r r

T r z t T r z t
k

h z z

− −
−

+ −

+ −

− −

+ −

     
  = −            

     
+ −    

      

 (5.16) 

where i = 2, 3, …, n – 1 and j = 2, 3, …, m – 1; n and m are the number of nodes; ri,j is 

the radial coordinate of the node (i, j). 

In addition: 
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( )

( )

1 1 1
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



1 1 1

, 1,

20.5,

.

f f f

i j i j

i j

T T
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−

−

− 
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 (5.17) 

Hence, Equation (5.11) has a form: 

 

1 1 1 1 1 1

, , , 1 , 1 , 1 , , 1

2

, 1 1

1 1 1

1, , 1,

2

2

21

2

2
,

f f f f f f f

i j i j i j i j i j i j i j

V

i j

f f f

i j i j i j

T T T T T T T
c k

t r h h

T T T

h

− − − − − −

+ − + −

− − −

+ −

− − − +
= +

 

− +
+ 
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 (5.18) 
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and after conversion: 
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Applying the explicit scheme for FDM, it is important to define and check the stability 

condition. For Equation (5.20) it is formulated: 

 2 2

1 2

2 1 1
1 0

V

k t

c h h

 
− +  

 
, (5.20) 

and as a result: 
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The energy equation for boundary nodes has also been determined. For instance, 

for boundary Γ1 with assumption of the 3rd type condition, the differential quotients are 

the same as in Equations (5.18) excluding the formula for i, j+0.5, where: 
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(5.22) 

where i = 2, 3, …, n – 1 and j = m. 

On the other hand, for a boundary condition of the 2nd type (adiabatic condition  

qΓ = 0), which was given at the boundary Γ2, in Equations (5.18) replacing  

the relation i, j–0.5: 
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, (5.23) 

where i = 2, 3, …, n – 1 and j = 1. 

In analogy, the differential quotients transform for boundary Γ3 (where i = n  

and j = 2, 3, …, m – 1): 
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and Γ4 (where i =1 and j = 2, 3, …, m – 1): 
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(5.25) 

The simulation is executed for the following parameters concerning the numerical 

model: time step Δt = 10-3 s, mesh steps h1 = 10-4 m and h2 = 5·10-5 m [152, 153]. 

The simulation of the defined problem has been performed in an author’s program 

created in Embarcadero Delphi 10.4 Community Edition environment  

(Embarcadero Technologies, Inc.). Figure 5.3 contains a flowchart that briefly shows  

the algorithm’s operation. 

Example results of calculation are presented in Figures 5.4-5.5 and in Table 5.2.  

Figure 5.4 depicts the change of temperature over time for selected points with 

geometrical coordinates r = 0.050 mm and z = 0.475 mm (solid line) and r = 2.950 mm 

and z = 0.125 mm (dashed line). These diagrams refer to 3rd step in the cooling phase (a) 

and to 7th in the heating phase (b). The results have been obtained as interval numbers, 

therefore the upper line (red line) indicates the upper limit of the interval, while the lower 

line (blue line) is the lower limit of the interval. From the graphs it can be deduced that 

the stabilisation of the temperature in the sample is relatively fast compared to the total 

time required for the individual steps. Obviously, it can be seen that a point located closer 

to the edge has a quicker response to changes in the temperature of the bath solution. 

Figure 5.5 shows maps of the temperature distribution in domain Ω at a specific 

moment in time for the nodes with the geometrical coordinates r = 0.050 mm  

and z = 0.475 mm. The temperature distributions clearly illustrate the axisymmetric 

character of the defined boundary conditions. 
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Figure 5.3. Flowchart of algorithm to simulate heat transfer phenomena  

(interval arithmetic) 
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(a) (b) 

Figure 5.4. Interval temperature as function of time for a change:  

(a) from 22 to −5 °C and (b) from −5 °C to 22 °C 

 

 

  

(a) (b) 

Figure 5.5. Distribution of the temperature for step 8 after 10 s in the cooling phase:  

(a) T − and (b) T + 

 

Table 5.2 contains the results obtained at the last moment of each step for the point 

with the geometrical coordinates r = 2.950 mm and z = 0.125 mm. Each temperature 

interval includes the nominal temperature determined by the temperature of  

the bath solution. 
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Table 5.2. Interval temperatures obtained in the simulation 

Phase Step Interval temperature, 𝑻̅ [°C] 

Cooling 

1 [22.000; 22.000] 

2 [22.000; 22.000] 

3 [−5.507; −4.540] 

4 [−9.362; −7.718] 

5 [−17.622; −14.528] 

6 [−25.332; −20.884] 

7 [−38.548; −31.779] 

8 [−53.417; −44.037] 

Heating 

1 [−53.417; −44.037] 

2 [−38.548; −31.779] 

3 [−25.332; −20.884] 

4 [−17.622; −14.528] 

5 [−9.362; −7.718] 

6 [−5.507; −4.540] 

7 [22.000; 22.000] 

 

5.2.2. Example 1 – fuzzy numbers 

Let us consider the same case with application of a different model including fuzzy 

arithmetic. Then, the bioheat transfer equation given in Equations (5.11)-(5.12)  

has the form: 
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, (5.26) 

or: 
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Similarly, the particular boundary conditions are prepared. For Γ2, Γ3: 

 ( ), , 0q r z t k T = −  =n , (5.28) 
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and for Γ1, Γ4: 

 ( ) ( ), , α , , bathq r z t k T T r z t T 
 = −  = − n . (5.29) 

In this instance, the temperature of the bath solution is also controlled according to 

the LT protocol. This time, however, the regulation proposed by Yu et al. [187] 

was implemented. This approach is a modification of the Pegg et al.’s protocol [116]. 

Comparing the two methods, Yu et al.’s protocol omits the last step in the cooling phase 

and the first step in the heating phase, when the temperature of the bath solution is equal 

to −48.5 °C. The other temperatures of the bath solution remain unchanged. As a result, 

this protocol consists of 7 steps in the cooling phase and 6 in the heating phase. 

In addition, Yu et al. introduce shorter individual step times, hence the total process time 

is equal to 276 min. The detailed assumptions of Yu et al.’s protocol can be found  

in Table 5.3 [187]. 

 

Table 5.3. LT protocol according to Yu et al. [187] 

Phase Step Time, t [min] Temperature of bath solution, Tbath [°C] 

Cooling 

1 10 22 

2 9.8 22 

3 18.2 −5 

4 25 −8.5 

5 19.8 −16 

6 26.4 −23 

7 23.8 −35 

Heating 

1 23.8 −35 

2 26.4 −23 

3 19.8 −16 

4 25 −8.5 

5 18.2 −5 

6 29.8 22 

 

The thermophysical parameters are defined as fuzzy numbers. Two types of fuzzy 

numbers are specified: triangular and trapezoidal, as shown in Table 5.4 [131, 150].  

The other unambiguity conditions presented in the previous example remain exactly 

the same. 
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Table 5.4. Fuzzy thermophysical parameters [131, 150] 

 Triangular fuzzy number Trapezoidal fuzzy number 

Thermal 

conductivity,  

𝒌̃ [W·m−1·K−1] 

(0.492; 0.518; 0.544) (0.505; 0.531; 0.013; 0.013) 

Volumetric specific 

heat capacity, 

𝒄̃𝑽 [J·m−3·K−1] 

(3.728×106; 3.924×106; 

4.120×106) 

(3.826×106; 4.022×106; 

0.098×106; 0.098×106) 

 

The numerical model was also created using FDM. Taking into account advantage of 

the relationships presented earlier for interval numbers (see Equations (5.20)), the energy 

equation for the internal nodes is expressed as follows: 
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 (5.30) 

where i = 2, 3, …, n – 1 and j = 2, 3, …, m – 1. 

The stability condition is as follows (compare with Equation (5.22)): 
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The formulas for boundary nodes are determined in a manner analogous to the example 

applying interval numbers, hence this derivation will be omitted in this part of 

dissertation. 

The parameters of the numerical model are as follows: time step Δt = 10-3 s, mesh steps 

h1 = 10-4 m and h2 = 5·10-5 m [131, 150, 152, 153]. 

It is worth mentioning that computations in the set of fuzzy numbers have been 

conducted using the α-cuts introduced in Chapter 4. In this way, complicated arithmetic 

operations on fuzzy numbers are avoided. The calculations carried out involved different 

values of the parameter α. 

The calculation of the example using fuzzy arithmetic, as in Subsection 5.2.1, 

was performed in an author’s program prepared in Embarcadero Delphi 10.4 Community 

Edition environment (Embarcadero Technologies, Inc.). Figure 5.6 shows a flowchart 

which contains the general procedures of the algorithm. 
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Figures 5.7-5.10 present the results received for triangular and trapezoidal fuzzy 

numbers, respectively. The effects of the calculations have been observed for the points 

with the geometrical coordinates r = 0.050 mm, z = 0.475 mm (point A) and  

r = 2.950 mm, z = 0.125 mm (point B). 

Figure 5.7 illustrates the interval temperatures after 20 s of step 7 in the cooling phase 

for selected values of parameter α in the point B. It can be seen that for α = 0, the width 

of the interval is the largest; while as the value of α increases, the interval is getting 

narrower. When α = 1 the interval width is equal to 0. 

The interval widths for different values of the parameter α are also compared  

in Figure 5.8. The graphs show the temperature development over time at the selected 

points at the beginning of the step 3 of the cooling phase (see Table 5.3). Please note that 

point A is marked with a solid line and point B with a dashed line. In this case, it can be 

deduced that the interval width depends on the chosen value of the parameter α. 

Analogous results were obtained using trapezoidal fuzzy numbers. Figure 5.9 depicts 

the interval temperatures for different values of the parameter α. These are the results for 

a moment after 20 s of step 7 in cooling phase in the point B. It can be seen that, as for 

triangular fuzzy numbers, the width of the temperature interval increases as the parameter 

α comes closer to 0. However, the difference between triangular and trapezoidal fuzzy 

numbers occurs for α = 0; then the interval width is the narrowest, but for trapezoidal 

fuzzy numbers it is not equal to 0. 

Figure 5.10 shows the interval temperature changes at the start of step 3 of the cooling 

phase in the point B. Different widths of interval were achieved for various values of  

the parameter α. 



5. Numerical examples: heat transfer 79 

 

Figure 5.6. Flowchart of algorithm to simulate heat transfer phenomena  

(fuzzy arithmetic) 
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Figure 5.7. Values of interval temperature after 20 s of step 3 in cooling phase 

for different values of parameter α – triangular fuzzy number 

 

 

  

(a) (b) 

Figure 5.8. Temperature as function of time for a change from 22 ºC to −5 ºC for: 

(a) α = 0.25; (b) α = 0.75 
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Figure 5.9. Values of interval temperature after 20 s of step 7 in cooling phase 

for different values of parameter α – trapezoidal fuzzy number 

 

  

(a) (b) 

Figure 5.10. Temperature as function of time for a change from 22 ºC to -5 ºC for:  

(a) α = 0.25; (b) α = 0.75 

 

Table 5.5 presents the interval temperature values at the point A at the end of each step 

for α = 0.5. For comparison, the results are given for both triangular fuzzy numbers and 

trapezoidal fuzzy numbers. It can be deduced that the calculated interval temperatures 

include the temperatures that are a consequence of the bath solution temperatures. 

Additionally, the width of the temperature intervals obtained for trapezoidal fuzzy 

numbers is wider than the width of the intervals achieved for triangular fuzzy numbers. 
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The difference increases for higher values of the parameter α (for α = 0 the width of 

the interval is the same in both cases). 

 

Table 5.5. Temperatures obtained in the simulation for α = 0.5 (fuzzy arithmetic) 

Phase Step Interval temperature, 𝑻̃ [°C] 

Cooling 

 Triangular fuzzy numbers Trapezoidal fuzzy numbers 

1 [22.000; 22.000] [22.000; 22.000] 

2 [22.000; 22.000] [22.000; 22.000] 

3 [−5.250; −4.762] [−5.379; −4.648] 

4 [−8.924; −8.096] [−9.145; −7.901] 

5 [−16.799; −15.239] [−17.213; −14.872] 

6 [−24.148; −21.906] [−24.744; −21.379] 

7 [−36.747; −33.336] [−37.654; −32.533] 

Heating 

1 [−36.747; −33.336] [−37.654; −32.533] 

2 [−24.148; −21.906] [−24.744; −21.379] 

3 [−16.799; −15.239] [−16.799; −15.239] 

4 [−8.924; −8.096] [−9.145; −7.901] 

5 [−5.250; −4.762] [−5.379; −4.648] 

6 [22.000; 22.000] [22.000; 22.000] 

 

5.2.3. Summary and conclusions 

In conclusion, the use of directed interval arithmetic and fuzzy arithmetic is valid for 

the study of bioheat transfer in a biological sample. It enables the introduction of 

imprecise defined parameters that are determined, for example, by experiment.  

It is also noteworthy that, in each of simulations presented, the interval results 

coincident with the expected temperatures resulting from the bath solution temperature. 

That confirms the correctness of the created LT process model. Moreover, 

the stabilisation of the temperature distribution in the sample domain to the required 

temperature occurs relatively quick in comparison with the total execution time of 

the individual steps. Therefore, the modifications introduced by Yu et al. [187] to 

the protocol of Pegg et al. [116] reducing the simulation time seem to be appropriate. 

However, it is important to note that it is difficult to assess the behaviour of the sample 



5. Numerical examples: heat transfer 83 

during cryopreservation based only on thermal analysis. It is crucial to examine 

the interaction between sample and CPA, as well as to investigate the degree of 

ice crystallisation. In Chapter 6 one will find a continuation of this example. 

5.3. Example 2: Bioheat transfer model with phase changes 

In this subsection, a model of biological heat transfer, taking into account 

the phenomenon of phase transitions, will be presented. In this case, thermal changes are 

modelled in unspecified soft tissue. It is assumed that the biological material contains 

blood vessels, which means that heat sources for perfusion and metabolism  

have to be considered. 

The topic of phase change processes is present in literature [2, 43, 85, 98, 149, 179]. 

Most of the referred publications are concerned with modelling the phenomena which 

occur during cryosurgery and hyperthermia [43, 85, 98, 149, 179]. An analysis of 

cryopreservation with phase transitions is presented by, among others, Ahmadikia and 

Moradi [2]. In their research, they used the parabolic and hyperbolic heat transfer equation 

(Fourier equation and non-Fourier equation). In contrast, our work presents a parabolic 

model based on the Pennes equation. The aim of this investigation is also to implement 

phase transitions relationships into the governing equation using the one domain method. 

In this study, simulations have been carried out for both techniques of 

cryopreservation: slow freezing and vitrification. These two popular methods have been 

also compared with regard to differences in temperature distribution. 

The basic equation describing thermal processes is the Fourier equation 

(see Equation (3.4)). For bioheat problems, it is appropriate to use the Pennes equation, 

which considers internal heat sources related to perfusion and metabolism [120] as well 

as a component related to phase changes, thus the heat transfer equation has the form [32]: 

 ( )ρp perf met fc T k T Q Q Q=   + + + , (5.32) 

where: 

 ( )perf b b bQ G c T T= − , (5.33) 

and: 

 f sQ Lf= . (5.34) 
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It is assumed that three types of sub-domains can exist in the entire sample, defined 

according to their physical state: natural state, intermediate region, state below freezing 

(melting) point. Identifying the physical state of the given domain is important for 

the determination of the function fs. For the natural state: fs = 0, while for the state below 

the freezing (melting) point: fs = 1. For the intermediate state, the function fs depends on 

the temperature: fs = fs (T) therefore: 
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t T
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The above relationship is inserted into Equation (5.33): 
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As in Example 1, the mathematical model assumes that some thermophysical 

parameters are uncertain and non-deterministic. In this case, only interval numbers were 

used. In the governing equation, the input interval parameters are the thermal conductivity 

and the volumetric specific heat included in the substitute thermal capacity. 

5.3.1. Example 2 – interval numbers 

Assuming a cylindrical system, the heat transfer equation (see Equation (5.32)) is 

expressed as follows: 
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where: 

 ( ) ( ) ( ), , ρ , ,perf b b b bQ r z t G T c T T r z t = −  . (5.39) 

It is worth noting that variables such as the substitute heat capacity, the thermal 

conduction, the internal heat source resulting from the organism’s metabolism and 

perfusion depend on the temperature. The values of these parameters are established 

individually at each point (node) of the sample domain according to the physical state of 

a particular sub-domain. These variables are constant for the natural state and for the state 
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below the freezing (melting) point, while for the intermediate region a linear function 

describes them. The temperature-dependent variables are specified by [32, 98, 151]: 
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where the subscripts N, in, f represent the following sub-domains: natural state, 

intermediate region and state below freezing (melting) point, respectively. The subscripts 

l and s denote the temperatures of the initial and final phase transition  

phenomena, respectively. 

The mathematical model should be completed with unambiguous conditions. This case 

simulates the cryopreservation of a cylindrical, homogeneous biological tissue.  

Figure 5.11 illustrates the conceptual sample model with the selected two-dimensional 

domain Ω, where R = 0.02 m and H = 0.02 m [151]. It is placed in a bath solution, whose 

temperature is linearly modified at a specific cooling rate. The chemical composition of 

the bath solution will not be discussed in detail in this example. 

As the example compares two cryopreservation methods, two different cooling rates 

are considered. For slow freezing, according to Mazur’s research, it is assumed to be 

equal to 1 K·s-1 [95]. On the other hand, for vitrification, the temperature increases 

(decreases) with a cooling rate of 100 K·s-1 [183]. The cooling process continues until the 
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temperature of working fluid is reduced to Twf = −196 °C. This is the temperature provided 

by liquid nitrogen.  

 

 

Figure 5.11. Model of the cylindrical sample immersed in bath solution 

 

As can be seen in Figure 5.11, the bath solution is in contact with the sample domain 

(Ω) only at the base of the cylinder. As a result, a condition of the 3rd type is given on the 

boundary Γ4: 

 ( ) ( ), , α , , bathq r z t k T T r z t T 
 = −  = − n , (5.44) 

where the temperature Tbath changes linearly with a defined cooling rate, the natural 

convection heat transfer coefficient is αΓ = 525 W·m−2·K−1 [187]. 

The boundary Γ1 is isolated from the external environment, consequently the heat flux 

at this edge is negligible. Due to the symmetries existing in the model, an adiabatic 

condition is applied to the other boundaries (Γ2 and Γ3). For Γ1, Γ2, Γ3 it is assumed that: 

 ( ), , 0q r z t k T = −  =n . (5.45) 

The model also needs to be supplemented with initial conditions and other sample’s 

parameters. At the first moment of simulation, the temperature in the entire domain Ω is 

T0 = 37 °C. To determine the blood perfusion rate, the following blood parameters must 

be taken into account: the perfusion in the natural state Gb N = 0.53 kg·m-3·s-1, the specific 



5. Numerical examples: heat transfer 87 

heat capacity of the blood cb = 3770 J·kg-1·K-1, the blood temperature Tb = 37 °C. 

The metabolic heat source in natural state is equal to Q met N = 250 W·m-3. The model also 

includes phase change phenomena; therefore it is important to define their initial 

(liquidus) and final (solidus) temperatures equal to Tl = −1 °C and Ts = −8 °C, 

respectively, as well as the latent heat L = 3.3·108 J·m-3 [98].  

Table 5.6 contains the interval thermophysical parameters for each physical state. 

These values are a deviation of 5% of the deterministic data, where cN = 3.60·106 J·K-

1·m-3, cin = 2.78·106 J·K-1·m-3, cf = 1.93·106 J·K-1·m-3, kN = 0.52 W·m-1·K-1, kin = 1.26 

W·m-1·K-1, kf = 2.00 W·m-1·K-1 [98]. 

 

Table 5.6. Interval thermophysical parameters [151] 

Physical state Interval thermophysical parameter 

 

Interval volumetric 

specific heat,  

×106 [J·K-1·m-3] 

Interval thermal 

conductivity, 

[W·m-1·K-1] 

Natural  3.42; 3.78Nc =   0.494; 0.546Nk =  

Intermediate region  2.641; 2.919inc =   1.197; 1.323ink =  

Below freezing (melting) 

point  1.834; 2.027fc =   1.9; 2.1fk =  

 

A numerical model was prepared. For this purpose, the explicit scheme of FDM was 

adopted. In this case, the equations were derived in an analogous manner to that shown 

in Example 1. 

A discretisation of time and domain was performed. The time mesh was divided into 

constant time steps Δt according to the relationship presented in Equation (5.14). 

The domain mesh was constructed based on the five-points star concept already 

illustrated in Figure 5.2. In this case, the boundary nodes also are located at distances 

0.5h1 and 0.5h2 away from the boundary. 

The next part of this work derives expressions for calculating the temperatures in 

internal and boundary nodes. It should be noted that the thermophysical parameters 

depend on the temperature, which causes Equation (5.38) to become non-linear. 

In practice, the values of the temperature-dependent variables introduced into the energy 

equation are determined for the moment f−1: 
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 ( ) ( )1

,

f

STC STC i jC T C T −= , (5.46) 

 ( ) ( )1

,

f

i jk T k T −= , (5.47) 

 ( ) ( )1

,

f

met met i jQ T Q T −=  (5.48) 

 ( ) ( )1

,

f

b b i jG T G T −= , (5.49) 

where i = 1, 2, …, n and j = 1, 2, …, m. 

The left-hand side of the heat transfer equation (Equation (5.39)), in which the time 

derivative occurs, is calculated from Equation (5.16). The derivatives on the right-hand 

side of the Equation (5.39) are estimated from the mean quotient: 
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where i = 2, 3, …, n – 1 and j = 2, 3, …, m – 1. 

The approximation of the above derivatives proceeds as follows: 
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where 𝑅𝑒
𝑓−1

 is the interval thermal resistances expressed as: 
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The temperature at internal nodes is calculated from the relationship: 
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after sorting: 
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where i = 2,3, …, n – 1 and j = 2,3, …, m – 1, the individual a corresponds to  

e = {(i, j + 1); (i, j – 1); (i + 1, j) ; (i – 1, j)} and Φe is the shape function given by: 
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For the FDM explicit scheme, the following stability condition must be met: 
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where a corresponds to e = {(i, j + 1); (i, j – 1); (i + 1, j) ; (i – 1, j)}. 

By analogy, the temperatures at the boundary nodes are defined. On the boundary Γ4, 

on which the condition of the 3rd type is applied, one of the differential quotients is 

“exchanged”, thus the equation has the form: 

 
( ) ( ) ( )

( ) ( ) ( )

1 3
1, 1, 1,1 1 1 1 1

1, 1, 1,1 1
1

1 1 1

1, 1, 1, ,

f f

j j i jf f f f fe
STC j e j bath jf f

a e

f f f

met j b j b b j

T T
C T T T T T

t R R

Q T G T c T T



−

−− − − − −

− −
=

− − −

−  
= − + − 

  

+ + −


 (5.57) 

 

  



5. Numerical examples: heat transfer 90 

and after conversion: 
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where j = 2, 3, …, m – 1, individual a corresponds to e = {(i, j + 1); (i, j – 1); (i + 1, j)} 

and: 
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In contrast, an adiabatic condition is given at the other boundaries. For instance, 

the temperature at the boundary nodes on the boundary Γ3 is specified: 
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after transforming this relationship: 
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where j = 2, 3, …, m – 1 and individual a corresponds to e = {(i, j + 1); (i, j – 1);  

(i – 1, j)}. 

The temperatures at the boundary nodes on edges Γ1 and Γ2 are determined by 

an analogous method. 

The numerical model is characterised by the following parameters: the mesh steps are 

h1 = h2 = 0.0002 m (m = n = 100) and the time step is Δt = 0.005 s [151]. 

Let us demonstrate the calculation algorithm for this example – see Figure 5.12. 

A program dedicated to the phenomenon of heat flow complemented by phase changes 

was created in MATLAB R2021a environment (The MathWorks, Inc.). 

Tests were carried out for cryopreservation by slow freezing and vitrification.  

In Figures 5.13 and 5.14, the temperature changes at selected points are studied:  

A (0.0001 m; 0.0001 m), B (0.0009 m; 0.0001 m), C (0.0029 m; 0.0001 m),  

D (0.0049 m; 0.0001 m). Figures 5.15 and 5.16 represent temperature distributions 

in the form of maps with isotherms. 
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Figure 5.12. Flowchart of algorithm to simulate heat transfer phenomena including 

phase change (interval arithmetic) 

 

Figure 5.13 illustrates the variations of the mean value of the interval temperature 

for points A-D and the temperature of the bath solution (solid line) over time. Note that 

the graphs presented above demonstrate the mean values of interval temperatures. 

Calculations for slow freezing are very time-consuming and, as a result, only cooling was 
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simulated in the study. For vitrification, however, computations were carried out for both 

cooling and heating. It can be observed that there are some differences between the results 

obtained by the two methods. 

Figure 5.14 depicts the interval temperature history at point A in the first 20 s of 

the simulation. It would seem that the interval temperature-time curves for both methods 

are the same. However, please note the y-axis scale (temperature scale), indicating how 

little change there is in the slow freezing at 20 s compared to vitrification. 

Table 5.7 includes the interval temperatures in particular time at point A. The width of 

the interval increases as the temperature of the bath solution decreases. 

Figures 5.15 and 5.16 show the distribution of the mean values of the interval 

temperatures in the sample domain for slow freezing and for vitrification, respectively. 

Two different distribution maps were prepared for each cryopreservation technique: 

when the freezing process is at half-time and when the temperature of the bath solution 

reaches a minimum value (Tbath = −196 °C). 

At half time of the cooling simulation, a wide intermediate region is observed for slow 

freezing. In contrast, it is not present when Tbath = −196 °C, because then the entire domain 

is below the freezing (melting) temperature (𝑇̅ < Ts). 

Vitrification is characterised by a different temperature distribution. A small 

intermediate region exists in both diagrams. Interestingly, when Tbath = −196 °C, all three 

physical states appear inside the sample domain. 

 

  

(a) (b) 

Figure 5.13. Mean value of interval temperature as function of time for:  

(a) slow freezing; (b) vitrification 
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(a) (b) 

Figure 5.14. Interval temperature as function of time (20 s) for point A:  

(a) slow freezing; (b) vitrification 

Table 5.7. Interval temperatures in point A 

Time, t [s] Interval temperature, 𝑻̅ [°C] 

 Slow freezing Vitrification 

0 [37.00; 37.00] [37.00; 37.00] 

10 [36.92; 36.93] [28.88; 30.35] 

20 [36.80; 36.84] [16.70; 21.34] 

30 [36.66; 36.75] [3.07; 11.68] 

40 [36.52;36.65] [−3.21; 3.82] 

50 [36.37; 365] [−6.64; −4.37] 

139.5 [34.94; −36.61] [−152.13; −65.22] 

13980 [−195.86;  −73.71] – 

 

  

(a) (b) 

Figure 5.15. Distribution of mean value of interval temperature for slow freezing 

method: (a) t = 6990 s, Tbath = −79.5 °C; (b) t = 13980 s, Tbath = −196 °C 
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(a) (b) 

Figure 5.16. Distribution of mean value of interval temperature for vitrification method: 

(a) t = 70 s, Tbath = −79.67 °C; (b) t = 139.8 s, Tbath = −196 °C 

 

5.3.2. Summary and conclusions 

In summary, it is worth to compare the two cryopreservation approaches with each 

other. In the case of slow freezing, the temperature distribution is more stable and regular. 

That means that the heat flow in the sample requires a certain amount of time.  

In the context of cryopreservation, it is confirmed by the assumptions formulated by 

Mazur [95]. He noted that the application of an appropriate cooling rate enables 

the osmotic transport of water into the extracellular matrix from the intracellular solution 

while protecting the cell from damage. Unfortunately, a quite wide intermediate region is 

observed over a certain period of time simulation. It suggests a high risk of ice 

crystallisation. However, in order to assess the potential tissue damage caused by 

the formation of ice crystals, the mass transport phenomenon and the degree of 

crystallisation should be additionally investigated. 

For vitrification, on the other hand, all three physical states can be observed during 

the cooling process as well as when Tbath = −196 °C. It can therefore be concluded that it 

is not complete freezing after the cooling time. In fact, vitrification consists in receiving 

amorphous ice while the solution vitrifies (solidifies) without ice crystallisation. 

This process is achieved by using a highly concentrated solution of CPA. The interaction 

of CPA causes changes in the properties of the solution (for example its freezing/melting 

point). Therefore, it is difficult to assess the condition of the vitrified sample on the basis 

of thermal analysis alone. Furthermore, misaligned concentrations of CPA lead to 
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cytotoxicity and damage to the biological structure. For this reason, it is important to 

analyse the impact of CPA and to study osmotic transport phenomena. 

5.4. Example 3: Bioheat transport with degree of ice 

crystallisation 

The final example in this Chapter describes thermal processes including 

the phenomenon of ice crystallisation in microscopic terms. As cells and tissues consist 

mainly of water, a cell-free CPA solution is modelled instead of a biological sample. 

It is possible to find publications in which the degree of crystallisation is determined 

in the context of cryopreservation [148, 190, 196]. The indicated works are devoted to 

vitrification by cryopreservation. The aim of this method is to achieve an amorphous 

structure avoiding ice crystallisation. Consequently, the degree of crystallisation should 

be reduced to minimum.  

Zhou et al. [196] proposed a special microfluidic system in which a working fluid 

flows through microchannels. In addition, the geometry of the thin-film sample ensures 

a uniform thermal distribution inside the piece of biological tissue. Our model is based 

on their device concept and the geometry invented by Tuckerman and Pease [174]. 

Figure 5.17 illustrates the conceptual project of microfluidic system with a single cell 

unit marked. It can be seen that a thin layer of sample is located in the microcavities in 

the central part of the device. During simulation, the sample layer is substituted by 

the cell-free solution which consists of 55% water and 45% ethylene glycol (EG). 

The entire system is enclosed in a housing in which microchannels are extracted. 

This housing (chip wall) is made of silicone. The microchannels provide the working 

fluid that regulates the cooling rate. The thermal insulation (heatproof cover) encapsulates 

the entire device. This ensures that the heat flux between the system and the environment 

is negligible. 

The analysis is performed for a microfluidic system, where the heat transfer model is 

coupled with the degree of crystallisation. To describe the solidification process, a zone 

model is adopted. Moreover, the thermophysical parameters depend on the temperature 

and introduce a weak non-linearity into the heat transfer equation. 
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Figure 5.17. Concept of microfluidic system 

 

The energy equation was defined according to the Fourier equation. The internal heat 

source in the sample layer is related to the ice crystallisation, therefore: 

 ( )ρ ρ χpc T k T L=   + . (5.62) 

It is important to note that the internal heat source associated with crystallisation 

appears only in the sample layer, while for the silicon chip wall ρ𝐿χ̇ = 0. 

In the above equation exists a derivative defining the change in the degree of 

crystallisation over time. As it can be read in Chapter 3, Boutron and Mehl proposed 

the calculation of the degree of crystallisation using the non-isothermal kinetic equation: 

 ( )( )
2

3χ χ 1 χ
enQ

RT
a mk T T e

−

= − − . (5.63) 

One of the variables appearing in Equation (5.63) is the activation energy, 

which induces nucleation and growth of ice crystals. Its value is calculated using the 

Kissinger method, the Augis-Bennett method, the Baswell method, or the Gao-Wang 

method. These techniques determine the relationship between the degree of heating 

(cooling) and the freezing point. The activation energy affects the degree of 
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crystallisation, because the smaller the ratio of activation energy to average kinetic energy 

(RT), the greater the time derivative of the degree of crystallisation [6]. 

As mentioned, the sample is a layer of thin film. This guarantees that heat transfer 

proceeds mainly in one direction and that the temperature distribution is uniform in the 

other directions. Therefore, the problem analysed can be examined as a one-dimensional 

problem. Figure 5.18 shows the sample cross-section under consideration. Points A, B 

and C represent the boundary nodes where the boundary conditions are defined.  

Analogous to Example 1, this example introduces thermophysical parameters into the 

mathematical model in the form of both interval and fuzzy numbers. This is a novel 

approach compared to other research from the literatures, for example in [148, 190, 196]. 

First, research for interval numbers will be demonstrated. 

 

 

Figure 5.18. One-dimensional sample model (cross-section) 

5.4.1. Example 3 – interval numbers 

Applying the interval numbers and specific coordinate system, the governing equation 

is of a form: 

 
( ) ( )( )

( )
( ) ( ), χ χ,,

ρ ρ
p

w w
t

c T T z t TT z t
k T L

z z t


=



 
+ 

   
, (5.64) 

where ρ, 𝑘̅, 𝑐𝑝̅ can be defined as parameters in chip wall (cw) or in sample layer (sl) and 

subscript w denotes parameters of water. The growth rate of degree of crystallisation  

is defined: 
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Please note that in this case the values of thermal parameters depend on 

the temperature. They are expressed by polynomials whose coefficients were obtained 

from experimental studies. This is an argument for using a non-deterministic approach, 

as the values of these parameters are imprecise and unpredictable. 

We will first investigate the specific heat capacity as well as the thermal conductivity 

for the silicon chip wall. Thermal parameter characteristics were prepared based on 

the measurements reported in the literature [28, 44, 205]. The interesting thing is that in 

the literature (for example in [28]), the molar specific heat capacity is sometimes given 

in J·mol-1·K-1. Then, to obtain the specific heat, the molar specific heat capacity has to be 

divided by the molar mass.  

According to experimental data, in the range 20-300 K (from –253 °C to 27 °C), 

fourth- and fifth-order polynomial functions of 𝑇̅ (in °C) were estimated using the linear 

regression method: 
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8 5 5 4 3 2

( ) 2.4923 10 9.1657 10 0.0023
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 (5.66) 

where subscript cw denotes the chip wall. The coefficients of determination are equal to 

R2 = 0.999 and R2 = 0.989 for the specific heat capacity and the thermal  

conductivity, respectively. 

On the other hand, polynomial functions of 𝑇̅ in °C were used to determine 

the thermophysical parameters for the EG solution. The characteristics were based on 

product information provided by the producer MEGlobal™ [97, 196]: 

 
( )2 2

( ) 2.8467 2727.7,

( ) 2.7041 10 17.741 1442.8 /1000,

sl

sl

c T T

k T T T−

= +

= −  − +
 (5.67) 

where subscript s represents the sample layer. 

In our study, the deviation is introduced at the first time step (t = 0), when the initial 

condition is specified in the entire domain. The deterministic value for the interval 

specific heat and for the thermal conductivity are equal to 5%, hence  
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𝑘̅ = [𝑘 − 0.05𝑘; 𝑘 + 0.05𝑘] and 𝑐̅ = [𝑐 − 0.05𝑐; 𝑐 + 0.05𝑐]. In the next steps of 

the simulation, the interval temperature are applied to the Equations (5.66) and (5.67). 

The model also includes thermophysical parameters assumed to be constant values. 

The chip wall made of silicone is characterized by its density ρcw = 2330 kg·m-3. A cell-

free solution consisting of water and EG is described by the properties for water:  

Lw = 334·103 J·kg-1, ρw = 1000 kg·m-3 [93]. Whereas, the crystallisation parameters of 

the sample layer are ka = 3.933·107 s-1·K-1 for cooling [138, 196] and ka = 1.287 s-1·K-1 

for warming [63, 196], Tm = 243.5 K, Qen = 4.187·103 J·mol-1 [11, 140]. 

After discussing the mathematical model, it is necessary to define also the initial and 

boundary conditions. The initial temperature that dominates the entire domain at the first 

moment of simulation time is equal to T0 = 22 °C. The initial condition should also include 

the initial degree of crystallisation, where, χ0 = 0 [130]. 

Then, it is worth exploring the boundary conditions established at the boundary nodes 

marked A, B and C (see Figure 5.18). The working fluid contained in the microchannels 

causes thermal modifications in the system. In the study, as the working fluid is adopted 

liquid nitrogen and water for cooling and warming, respectively. The temperatures 

assured by the working fluid are Twf = −196 °C and Twf = 40 °C. In the one-dimensional 

model, the point of contact between the working fluid and the chip wall is point A. 

The heat flux at this point defines a boundary condition of the 3rd type. The condition also 

includes the geometry of the unit cell. The heat flux can be expressed [196]: 

 ( ) ( ) ( )( )2 α ( , ) 2η
A f w f f fq T W W T z t T W H  + = − + , (5.68) 

where Wf, Ww, Hf  are the microchannel dimensions (see in Figure 5.19) and η̅ is  

the interval fin efficiency.  

The interval fin efficiency is formulated as [196]: 

 
( )tanh

η
f

f

m H
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
= , (5.69) 

where 𝑚̅η is the interval fin parameter calculated from the relation [196]: 

 
( )
2α

2cw w

m
k T W


=


. (5.70) 

One of the components of Equation (5.70) is the external heat transfer coefficient (αΓ). 

Determining its value experimentally for a working fluid placed in microchannels is 
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difficult. Instead, a theoretical relationship was developed to compute it. Considerations 

for the external heat transfer coefficient are presented, for example, in [196].  

In our work, two types of flows related to the type of working fluid are modelled. 

During cooling, there is a two-phase flow, which is due to the properties of liquid 

nitrogen. In fact, not only liquid nitrogen but also small quantities of vapour nitrogen are 

present in the microchannel. On the other hand, water is responsible for warming 

the sample. Water exists only in liquid form and therefore it represents a single-phase 

flow. In our study, the constant values of the external heat transfer coefficient are assumed 

for the particular flows.  

Other boundary conditions are given at points B and C. The contact between 

the sample layer and the silicon chip wall (point B) is described by the condition of  

the 4th type. As it is assumed that there is no thermal resistance in the system, this 

condition can be expressed as [130]: 

 

( ) ( )

( , ) ( , )
,

, , ,

cw sl
cw sl

cw sl

T z t T z t
k k

z z

T z t T z t

  
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n n
 (5.71) 

where subscripts cw and sl represent the chip wall and the sample layer, respectively. 

In contrast, at point C exists an adiabatic condition. It results from the fact that 

the system is symmetrical [130]: 
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( , ) 0
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T z t
q z t k

z

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= −  =
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n . (5.72) 

In order to determine the individual relationships at the boundary nodes, let us 

introduce the following variables. Firstly, the dimensions of a single unit cell  

(see Figure 5.18) are equal to Wf = 5·10-5 m, Ww = 2.5·10-5 m, Hf = 3.5·10-4 m,  

Hw = 10-4 m and Hs = 10-4 m [196]. 

As mentioned, the working fluids are liquid nitrogen and water at appropriate 

temperatures. The constant external heat transfer coefficients (natural convection heat 

transfer coefficients) are determined according to their thermal properties and for cooling 

αΓ = 1.048·104 W·m-2·K-1, as well as for warming αΓ = 4.74·104 W·m-2·K-1 [196]. 

After deriving the mathematical model, its numerical form should be developed. 

Analogous to the previous examples, the interval FDM is applied. It should be noted that 

this time a one-dimensional domain is analysed. In addition, the governing equation is 



5. Numerical examples: heat transfer 101 

non-linear, as the thermophysical parameters depend on the temperature and the internal 

heat sources depend on the degree of crystallisation.  

As FDM is a mesh method, therefore the timeline and space are segmented into nodes. 

The time step Δt (compare with Equation (5.14)) and the mesh step h are assumed 

constant. Figure 5.19 illustrates three-points star, which generates the domain mesh.  

 

 

Figure 5.19. Three-points star scheme 

 

The elements introducing non-linearity into the equation are defined for the 

temperature values at moment f−1: 

 ( ) ( )1f

p p ic T c T −= , (5.73) 

 ( ) ( )1f

ik T k T −= , (5.74) 

where i = 1, 2, …, n. It is also assumed that these variables are weakly non-linear. 

In contrast to the previous examples, an implicit scheme is used here. The implicit 

scheme is always stable, so there is no need to define a stability condition and a maximum 

time step condition [88, 100]. 

The temperature time derivative is determined according to the relationship presented 

earlier in Equation (5.15). In a similar procedure, the time derivative of the degree of 

crystallisation is estimated: 
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. (5.75) 
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The substitution of the differential quotients into the derivative of the coordinates on 

the right-hand side of the Equation (5.64) is slightly different. As the implicit scheme is 

used, the time derivative of the temperature in is computed for the moment f; hence for 

internal nodes: 
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 (5.76) 

where i = 2, 3, …, n-1. 

The thermal conductivity values in our case are given in the form of a harmonic mean: 
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By introducing interval thermal resistances, differential quotients can be expressed by: 
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where: 
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Finally, for internal nodes, the Equation (5.65) in the implicit scheme is of the form: 

 ( ) ( )
1 12

1

1
1

χ χ
ρ ρ

f f f f
f f fi i i i

p i e i w wf
a e

T T
c T T T L

t R t

− −
−

−
=

 − −
= − + 

  
 , (5.80) 

where i = 2, 3, …, n-1, the individual a corresponds to e = {i + 1, i-1} and Φ is  

the shape function: 
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1

h
 = . (5.81) 

Let us also analyse the temperature calculations at points A, B and C. At point A, 

the heat flux is known, and its value depends on the temperature. It is assumed that: 
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When we introduce the relationship from Fourier’s law (see Equation (3.3) 

in Chapter 3) into the above formula, one obtains the dependence: 
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On the other hand point B is characterised by ideal contact between two different 

bodies. It implies that for nodes near this point, the equation derived for internal nodes 

(Equation (5.80)) is valid. 

At the centre of the sample layer is point C. As the microfluidic system is symmetrical, 

an adiabatic condition is given at this point, therefore: 
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Knowing the relationships shown for the internal nodes (Equation (5.80)), a matrix 

system of equations can be determined: 
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where: 
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where i = 2, 3, …, n-1. In a similar procedure, first and n row of the matrix were defined 

considering the boundary conditions (Equations (5.83) and (5.84)). The resulting matrix 

equation is as follows: 
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 (5.87) 

The above numerical model can be considered as incomplete, there is no information 

about the determination of the value of  the degree of crystallisation at a given time f. 

The non-isothermal kinetic equation (see Equation (5.64)) is complex, so computing 

the degree of crystallisation is difficult [196]. In this example, the fourth-order  

Runge-Kutta algorithm is applied. 

In practice, after estimating the thermal distribution at time level f, the value of 

the degree of crystallisation at time step f+1 is determined. According to the differential 

quotient from Equation (5.75), a relation is derived for the interval degree of 

crystallisation χ̅𝑖
 𝑓+1

: 
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Let us simplify the notation of the derivative: 
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Using the Runge-Kutta method, the interval degree of crystallisation χ̅𝑖
 𝑓+1

 is given as: 
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where: 
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and: 

 1f fT T T − = − . (5.92) 

Once the interval degree of crystallisation has been determined for time level f+1,  

it is possible to proceed from time moment f to f+1 and re-estimate the temperature 

in the domain concerned.  

The parameters input to the numerical model are: the mesh step h = 2.0202·10-6 m and 

the time step Δt = 0.01 s. The domain is divided into 99 elements and the interval 

temperature or the interval degree of crystallisation are estimated in 100 nodes [130]. 

The general procedures for the algorithm to simulate heat transfer and crystallisation 

phenomena are presented in Figure 5.20. The author’s program was prepared in 

MATLAB R2021a environment (The MathWorks, Inc.). 

Before showing the simulation results, the effect of temperature on the deterministic 

values of the thermophysical parameters was analysed. Using Equations (5.66) and (5.67) 

for the deterministic temperature, the following graphs have been prepared –  

see Figure 5.21. These diagrams indicate the importance of introducing temperature-

dependent parameters as a function of temperature into the model. 
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Figure 5.20. Flowchart of algorithm to simulate heat transfer phenomena including 

crystallisation (interval arithmetic) 

 

The subsequent section introduces the simulation products describing the change in 

temperature distribution with relation to the degree of crystallisation. Figure 5.22 

demonstrates the alterations of the interval temperature during cooling. The results are 

presented at the point which is situated in the central part of the sample layer,  

for z = Hw + Hs (point C). As can be seen, the interval widths obtained are quite narrow. 

For this reason, it was decided to create an approximation for the time interval  



5. Numerical examples: heat transfer 107 

0.00 – 0.02 s and 0.30 – 0.32 s. The temperature of the sample layer reaches the desired 

values given by the working fluid within a few seconds. The domain of the whole sample 

is cooled to −196 °C after 14.1 s. 

 

  

(a) (b) 

  

(c) (d) 

Figure 5.21. Thermal conductivity temperature for chip wall (a) and sample layer (b); 

and specific heat capacity for chip wall (c) and sample layer (d) as a function of time 

 

Analogically, the results are provided for warming. Figure 5.23 shows the changes of 

the interval temperature over time in the centre of the sample layer (point C). It takes  

7.15 s to warm the analysed domain to 40 °C. In the graph (see Figure 5.23), one notices 

a sudden and temporary reduction in temperature over a certain time interval, which can 

suggest the existence of a recrystallisation phenomenon. 

Complementing the thermal study are the computational results obtained for the degree 

of crystallisation. In Figure 5.24, there are diagrams representing the history of 

the interval degree of crystallisation for cooling. The obtained results also indicate 
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changes in the central part of the sample (point C). After some time, the degree of 

crystallisation stabilises. 

 

 

 

Figure 5.22. Interval temperature as a function of time during cooling  

with zoomed fragments 

 

 

 

Figure 5.23. Interval temperature as a function of time during warming  

with zoomed fragments 
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Figure 5.25 illustrates similar graphs prepared for warming. At a certain time during 

the simulation, the interval degree of crystallisation increases sharply, after which 

it decreases to 0. This indicates the existence of a recrystallisation phenomenon that 

disappears when the sample domain is warmed. 

In the characteristics shown in Figures 5.24 and 5.25, a peak can be observed, 

which occurs when the temperature in the sample domain is between −90 °C and −20 °C.  

In the literature, this range is defined as the dangerous temperature region (DTR) which 

particularly impacts the value of the total degree of crystallisation [140, 196]. 

Consequently, the DTR is a critical moment for ice crystal formation, and its duration 

should be as short as possible. In our case, the DTR durations are equal to 0.2 s and  

0.26 s for cooling and warming, respectively. 

 

 

 

Figure 5.24. Interval degree of crystallisation as a function of time during cooling  

with zoomed fragments 

 

It is also worth considering the highest mean value of the interval degree of 

crystallisation. On this basis, it is possible to estimate whether cell damage will occur due 

to ice crystallisation. According to the results of simulation, the maximum values of this 

parameter are: for cooling χmax = 1.075·10-7 and for warming χmax = 0.999. This may 

suggest that during warming there is a higher risk of sample destruction caused by ice 

crystallisation. This is the effect of recrystallisation, which disappears during warming of 
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the sample layer. In the case of cooling, after passing through the DTR, the interval degree 

of crystallisation remains stable and constant. 

 

 

 

Figure 5.25. Interval degree of crystallisation as a function of time during warming  

with zoomed fragments 

 

In addition, the examples of the results obtained in the central part of the sample 

(point C) are included in Table 5.8. This provides a better view of the interval values, 

whose interval widths are relatively narrow. 

The last series of plots for this task concerns the interval temperature development at 

a selected moment of the simulation in the cross section of the sample layer. Figure 5.26 

presents the interval temperature at time t = 0.1 s for cooling (a) and warming (b). At point 

B, which is the contact point between the chip wall and the sample layer, the temperature 

is the lowest (highest) at a given moment in the simulation. The reason for this is that 

point B reacts most rapidly to changes caused by the thermal interaction between 

the silicon housing and the working fluid. Of course, after some time the interval 

temperature equalizes across the domain. 
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Table 5.8. Selected results for interval variables 

Time, 

t [s] 

Interval 

thermal 

conductivity, 

𝒌̅𝒔𝒍 [W·m-1·K-1] 

Interval specific 

heat coefficient, 

𝒄̅𝒔𝒍 ×103 [J·kg-1·K-1] 

Interval 

temperature, 

𝑻̅ [°C] 

Interval degree 

of 

crystallisation,  

𝛘̅ ×10-8 

During cooling 

0.0 [0.987; 1.091] [2.651; 2.930] 
[22.000; 

22.000] 
[0.000; 0.000] 

0.1 [2.125; 2.120] [2.611; 2.612] 
[−41.007;  

−40.677] 
[0.3976; 0.3789] 

0.2 [2.582; 2.578] [2.522; 2.523] 
[−72.112;  

−71.873] 
[6.108; 6.182] 

0.4 [3.195; 3.193] [2.383; 2.383] 
[−121.158;  

−120.973] 
[6.832; 6.932] 

0.8 [3.651; 3.650] [2.253; 2.253] 
[−166.894;  

−66.848] 
[6.832; 6.932] 

1.0 [3.720; 3.720] [2.229; 2.229] 
[−175.088;  

−175.040 
[6.832; 6.932] 

During warming 

0.0 [3.6872; 4.0753] [2.061; 2.278] 
[−196.000;  

−196.000] 
[6.832; 6.932] 

0.1 [2.485; 2.496] [2.542; 2.540] 
[−65.211;  

−65.984] 

[1.6×105;  

1.3×105] 

0.2 [2.442; 2.443] [2.551; 2.550] 
[−62.254;  

−62.270] 

[5.352×107; 

5.301×107] 

0.4 [1.303; 1.310] [2.750; 2.749] 
[7.811; 

7.427] 

[7.811×108; 

0.000] 

0.8 [0.794; 0.794] [2.827; 2.827] 
[34.752; 

34.739] 
[0.000; 0.000] 

1.0 [0.754; 0.754] [2.832; 2.832] 
[36.765; 

36.758] 
[0.000; 0.000] 
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(a) (b) 

Figure 5.26. Interval temperature in the cross-section of the sample at simulation  

time t = 0.1 s: (a) for cooling; (b) for warming 

 

5.4.2. Example 3 – fuzzy numbers 

Complementing the above example, an analysis was also carried out for the given 

model using triangular fuzzy numbers. Introducing fuzzy arithmetic, the heat transfer 

equation for a one-dimensional system is of the form (compare with Equations (5.64) 

and (5.65)): 
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where: 
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The parameters, geometry (see Figures 5.17 and 5.18) and numerical variables that are 

applied in this case are exactly the same as in example with interval arithmetic 

(Subsection 5.4.1). However, the difference is in the definition of the thermal conductivity 

and the specific heat for the respective layers. The polynomials determined in  

Equations (5.66)-(5.67) are exploited here; the triangular fuzzy numbers are inserted 

in place of the thermophysical parameters: 
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and: 
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The values of triangular fuzzy numbers for the above thermophysical parameters 

determined as: 𝑘̃ = (𝑘 − 0.05𝑘; 𝑘;  𝑘 + 0.05𝑘) and 𝑐̃ = (𝑐 − 0.05𝑐; 𝑐;  𝑐 + 0.05𝑐), 

where k and c are the deterministic value calculate in the initial moment for T0, while in 

each subsequent step for the interval temperature. 

Analogously, the initial-boundary conditions are defined. The interval numbers were 

replaced by fuzzy numbers, while the descriptions of the individual relationships 

(Equations (5.68)-(5.72)) remained unchanged. Therefore, it was decided to omit the rest 

of the mathematical formulas for fuzzy arithmetic. 

In preparing the numerical model for this example, the implicit scheme of the FDM 

was adopted. As in the previous section, a discretisation of the time scale axis and 

computational domain was performed according to Equation (5.14) and the three-points 

star concept (see Figure 5.19). 

All derivations of the relationships for calculating the interval temperatures and 

the interval degree of crystallisation at the individual nodes, which are shown in 

Equations (5.15) and (5.75)-(5.92), are also appropriate for the example with fuzzy 

arithmetic, where the interval numbers are replaced by fuzzy numbers. Therefore, in this 

part of the work only the final versions of the individual relationships will 

be demonstrated. 

The governing equations in the internal nodes for the heat transfer are as follows: 

 ( ) ( )
1 12

1

1
1

χ χ
ρ ρ

f f f f
f f fi i i i

p i e i w wf
a e

T T
c T T T L

t R t

− −
−

−
=

 − −
= − + 

  
 , (5.97) 

where i = 2, 3, …, n-1. Obviously, once the relationships for the boundary nodes have 

been defined, a matrix system of equations containing fuzzy numbers can be created 

(compare with Equation (5.87)). 
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Meanwhile, the fuzzy degree of crystallisation is estimated based on the Runge-Kutta 

algorithm, that the value at moment f+1 is: 

 ( ) ( ) ( ) ( )1

1 2 3 4

1
χ χ χ ' χ ' χ ' χ '

6

f f

i i t+  = +  + + + 
, (5.98) 

where the individual components of the partial derivatives (χ̃′)1−4 are obtained as in 

Equation (5.92), where the interval numbers are substituted by fuzzy number. 

Next, this example is computed by using the fuzzy algorithms with α-cuts 

(see Chapter 4). This approach makes it possible to perform calculations by omitting 

complex operations on sets of fuzzy numbers. It is worth noting that the model was 

simulated for different values of the parameter α.  

The general simulation procedure in Figure 5.27 for this case is very similar to the 

algorithm prepared in Subsection 2.4.1 (compare with Figure 5.20). The author's 

programme was developed in the MATLAB R2021a environment  

(The MathWorks, Inc.). 

Figures 5.28 and 5.29 depict the distribution of the fuzzy temperature and the fuzzy 

degree of crystallisation at the centre of the sample layer (point C) for different values of 

the parameter α. It can be observed that the width of intervals changes depending on 

the value of the parameter α, while for α = 0 deterministic results are obtained. 

Figures 5.30 and 5.31 present the history of the interval temperature and the interval 

degree of crystallisation for chosen values of the parameter α. It can be see that the width 

of the intervals depends on the value of the parameter α – the intervals for α = 0.75 are 

narrower than for α = 0.25. These differences are mainly visible for interval temperatures. 
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Figure 5.27. Flowchart of algorithm to simulate heat transfer phenomena including 

crystallisation (fuzzy arithmetic) 
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(a) (b) 

Figure 5.28. Interval temperature after 0.3 s for different values of parameter α 

(triangular fuzzy numbers) for: (a) cooling; (b) warming 

 

  

(a) (b) 

Figure 5.29. Interval degree of crystallisation after 0.3 s for different values of 

parameter α (triangular fuzzy numbers) for: (a) cooling; (b) warming 

 

  

(a) (b) 

Figure 5.30. Interval temperature as a function of time during cooling for:  

(a) α = 0.25; (b) α=0.75 
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(a) (b) 

Figure 5.31. Interval degree of crystallisation as a function of time during cooling for: 

(a) α = 0.25; (b) α = 0.75 

 

5.4.3. Summary and conclusions 

To summarise Example 3, it can be said that thermal processes are investigated 

including the phenomenon of crystallisation. In the study, the thermophysical parameters 

are in the form of characteristics described by polynomial functions. The data used to 

create these relationships are taken from the experiment, which provides an additional 

argument for the use of interval and fuzzy arithmetic. 

Our results are collated with data from a simulation conducted by Zhou et al. [196]. 

First of all, it can be concluded that the temperature distributions in the centre of 

the sample layer (point C) are similar in both cases. There is little difference in 

the warming curve, because in our case the temperature decrease is higher and more 

noticeable than in Zhou et al. [196]. This may mean that in our calculations the impact of 

recrystallisation is higher. Furthermore, the temperature reaches equilibrium in the whole 

domain after a relatively short period of time (14.1 s for cooling and 7.15 s for warming). 

This confirms that the main vitrification assumption of high cooling rate is fulfilled. 

On the other hand, comparing our graphs of the degree of crystallisation as a function 

of time with the curves presented by Zhou et al. [196], one can also deduce that they 

coincide to each other. Nevertheless, it can be noted a difference in the magnitude that 

occurs on the diagrams during the warming process (in paper of Zhou et al. [196]  

the scale is lower). 
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The time required for the DTR transition is also noteworthy. In our case, it seems to 

be very short compared to the entire process of stabilisation (these time is equal to 0.20 s 

and 0.26 s for cooling and warming, respectively). However, the obtained values are 

higher than those reported by Zhou et al. [196] (the time in paper of Zhou et al. [196] is 

equal to 0.042 s and 0.057 s for cooling and warming, respectively). Therefore, in further 

work, the geometry of the device can be improved and the process parameters can be 

modified to reduce the time in the DTR. 

When analysing the degree of crystallisation, it is also interesting to consider it as 

an indicator of damage to biological material. The literature provides methods for finding 

a criterion for the total volume of the crystallised fraction [64]. In our research, the degree 

of crystallisation is assumed to be lower than 10-6 [11, 140, 196]. A similar criterion was 

set in the work of Zhou et al. where the maximum degree of crystallisation is 2·10-11 and 

2.4·10-3 for cooling and warming, respectively.  

The indicated criterion is also confronted with the maximum average values of the 

interval (fuzzy) degree of crystallisation in our case. It can be deduced that during cooling, 

the risk of damage of biological structure is negligible. The situation is slightly different 

during warming. The maximum average value of the interval (fuzzy) degree of 

crystallisation is greater than the given criterion. This is the effect of recrystallisation, 

which disappears after passing the DTR; it can therefore be assumed that no damage of 

the sample occurs.  

Finally, it is reasonable to compare the results obtained for interval and fuzzy numbers. 

It can be seen that the received ranges coincide with each other. In addition, fuzzy 

arithmetic enables the width of the intervals to be adjusted by an appropriate choice of 

the parameter α. Although both techniques are suitable for carrying out calculations of 

problems with imprecisely defined variables. 

Example 3 provides a kind of introduction to further research into the phenomenon of 

crystallisation. Determining the degree of crystallisation, it is possible to assess whether 

the biological material would be damaged by the formation of ice crystals.  

The extended model of heat transfer including crystallisation phenomena should 

include examination of the value of activation energy and also information about ice 

nucleation by investigating the nucleation rate and ice crystal growth (measured by 

changing the radius of the ice crystals). As a result, the maximum volume of crystallised 

ice can be estimated. In addition, the presence of CPA impacts the water content of 

the cells through osmotic transport, as well as the processes  of nucleation and further 
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growth. Therefore, the mass transfer model taking osmotic transport into account should 

be included in the mathematical description of cryopreservation. The changes in cell 

volume thus detected provide an additional marker of damage to the biological sample. 

Examples of such an expanded model can be found in the literature in [50, 64]. Obviously, 

the listed examples from literature are presented for a deterministic model, hence in 

the future they would additionally require the introduction of interval or fuzzy numbers. 



 

6. Numerical examples: mass transfer 

6.1. Introduction 

The heat transfer mentioned in Chapter 5 is not the only transport phenomenon to be 

considered in simulating cryopreservation. During the process, there is also mass transfer 

induced by molecular diffusion, as well as osmotic transport describing  

cellular behaviour. 

In the beginning, it is worth adding that mass transfer is related to the infiltration of 

moles of CPA into the sample structure. The CPA is presented in the bath solution and 

can be distributed in different ways. When the sample is placed in the test tube and 

immersed in the solution, diffusion is predominant and advection is negligible. In this 

situation, the mass transfer equation is based on the Fick's second law. 

On the other hand, cryopreservation is increasingly being performed using more 

complex apparatus, such as microfluidic systems, in which CPA is continuously delivered 

via microchannels to a sample placed in a microchamber. The moving fluid induces 

an advection process that affects the transport of CPA particles into the sample structures. 

For this reason, both advection and diffusion phenomena must be taken into account when 

modelling mass transfer. One component of the advection-diffusion equation  

is the velocity vector of the moving fluid, which is determined using  

the Navier-Stokes equations. 

The quantity determined from the mass transfer equation is the molar concentration in 

the extracellular matrix. Changes in the extracellular solution contribute to 

the phenomenon of osmotic transport, because the presence of CPA disrupts the osmotic 

balance between the intracellular solution and the extracellular matrix. To restore 

the osmotic balance, an exchange of water, CPA, and other solution components proceeds 

across the cell membrane. This phenomenon is described by the 2-P formalism or 

the Kedem-Katchalsky model. 

In the following section, three examples are explored. Example 1 analyses the mass 

transfer defined by the Fick's second law for the instance, which is a continuation of 
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Example 1 from Chapter 5. Example 2, on the other hand, is a supplement to Example 1 

with an osmotic transport model. Meanwhile, Example 3 provides a comprehensive 

model introducing the phenomena of heat and mass transfer, fluid (bath solution) flow, 

and osmotic transport for a cryopreservation problem using a microfluidic system. 

All computations have been performed using directed interval and fuzzy arithmetic. 

6.2. Example 1: Mass transfer – diffusion phenomena 

It should be mentioned at the beginning that this example is a continuation of 

Example 1 in Chapter 5. This example presents a mass transfer model for the sample that 

is an articular cartilage disk. For experimental research, such samples are prepared from 

the knee joint of animals, for example, lambs [116, 178]. 

Example 1 of the previous chapter assumes that the simulation presented models 

the LT protocol. The LT protocol is divided into several steps in the cooling phase and in 

the warming phase. When considering mass transfer, it is worth examining in more detail 

the device system used to control temperature and concentration. In our case, the device 

invented by Wang et al. [178] was applied. Figure 6.1 illustrates the diagram of 

the apparatus for performing cryopreservation by the LT method. The idea is to place 

the sample in a tube filled with a solution that is regularly replaced depending on 

the desired concentration of CPA. The whole is installed in a temperature-controlled 

chamber. It should be noted that the sample is immersed in the bath solution, 

therefore convection is neglected and u = 0 is assumed. 

Let us introduce some information about the composition of the bath solution. 

The basis of the solution is CPTes2, which was proposed by Taylor and Hunt [171] and 

modified by Pegg et al. [116]. The CPTes2 solution contains DMSO as the CPA with 

different concentrations depending on given steps of the process. The other  

components of CPTes2 are water and KCl, which makes the bath solution  

a potassium-rich mixture [178].  
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Figure 6.1. System for performing cryopreservation by LT protocol 

 

Analysing the mass transfer without considering convection (u = 0), the governing 

equation is defined as follows [21]: 

 ( )c D c=   . (6.1) 

Obviously, this is a mass transfer equation describing molecular diffusion based on 

Fick's second law. In addition [79, 100, 177]: 

 
6π μ

B

s

k T
D

r
= , (6.2) 

where the temperature T is in K. 

As in the case of thermal phenomena, unambiguity conditions must also be formulated. 

When preparing a mathematical model of the unsteady state, the geometry of the domain 

considered, the biomaterial parameters, and initial-boundary conditions need  

to be defined. The initial condition determines the molar concentration at  

the starting moment [21]: 

 
0( ,0)c X c= , (6.3) 
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where c0 is the initial molar concentrations for t = 0. 

Next, the following boundary conditions are defined. The mass diffusion equation is 

comparable to the heat transfer equation, therefore the boundary conditions are also 

determined in a similar way. To calculate the concentration distribution, mainly two 

boundary conditions are used, which determine the concentration in a given domain  

(1st type) and the mass flux (2nd type) [21]. 

The boundary condition of the 1st type (Dirichlet) specifies the molar concentration at 

a given edge [21]: 

 ( ),c X t c= , (6.4) 

where cΓ is the molar concentration at the boundary. 

The boundary condition of the 2nd type (Neumann) concerns the mass flux [21]: 

 ( ),q X t D c = − n  (6.5) 

where qΓ is the given mass flux. 

As this instance is a continuation of Example 1 from Chapter 5, therefore, 

all mathematical operations are performed on the basis of the rules of directed interval 

and fuzzy arithmetic. It is worth noting that this is a novel approach to mass transfer 

analysis. Previous publications including the study of molecular diffusion, have mainly 

used a deterministic model [8, 104, 132, 147, 148, 150, 153, 187, 189].  

6.2.1. Example 1 – interval numbers 

In this example, calculations for directed interval arithmetic will be presented first. 

In the mass transfer equation (Equation (6.1)), takes into account the interval diffusion 

coefficient, which is weakly coupled to the temperature obtained in the form of intervals. 

Consequently: 
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, (6.6) 

and: 

 ( )
( ),

6π μ

B

s

k T X t
D T

r
= , (6.7) 

where the superscript e denotes the extracellular matrix and the subscript d represents 

DMSO as CPA. The division into extra- and intracellular regions in this section is crucial 

in the context of multiscale analysis. As mentioned in Chapter 5 (Section 5.2), articular 



6. Numerical examples: mass transfer 124 

cartilage tissue consists mainly of collagen and extracellular matrix (proteoglycans) with 

chondrocytes (intracellular region). From Equation (6.6), the concentration in 

the extracellular matrix can be determined, where mass diffusion is caused by changes in 

concentration in the surrounding medium. 

As the sample under analysis is cylindrical in shape (see Figure 5.1), the following 

coordinate system is adopted: 
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( ) ( )
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c r z t c r z t c r z t
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t r r r z z
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= +   
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. (6.8) 

When considering unambiguity conditions, it is first necessary to introduce 

the boundary conditions determined by the LT protocol invented by Pegg et al. [116]. 

Information about controlling the temperature in the chamber is shown in Table 5.1, 

while the mass fraction (concentration) of the bath solution is specified in Table 6.1.  

It is important to note that the concentration of DMSO in the CPTes2 solution is expressed 

as a mass fraction, which describes the mass percentage ratio of the substrate to 

the mixture. Knowing the mass fraction, the molar concentration is determined using 

the following relationship: 

 
.,

ρi
i

at i

w
c

M
= , (6.9) 

where the subscript i denotes the given component and wi is the mass fraction, Mat.,i is the 

molar mass related to the molecular mass Mu (Mat.,i ≈ Mu ·1 g·mol-1), ρ is the density of 

the solution determined according to the rule of mixtures. 

The geometry of the system and the dimensions of the considered domain remain 

unchanged from Example 1 in Chapter 5 (see Figure 5.1). As the marked area (Ω) is 

axisymmetric, an adiabatic condition is given on the boundaries Γ2 and Γ3: 

 ( ) ( ), , 0e

dq r z t D T c = −   =n . (6.10) 

On the other hand, at the boundaries Γ1 and Γ4, unlike in the case of thermal analysis, 

a boundary condition of 1st type is fixed: 

 ( ), , 0.9e

dc r z t c= , (6.11) 

where the interval molar concentration 𝑐Γ̅ calculated from mass fraction wbath provided 

by LT protocol and the coefficient of 0.9 reflect the real exchange phenomenon between 

the external solution and the sample. 
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Table 6.1. LT protocol according to Pegg et al. [116, 187] 

Phase Step Time, t [min] 
Mass fraction (concentration) of bath 

solution, wbath [% (w/w)] 

Cooling 

1 10 10 

2 10 20 

3 30 29 

4 30 38 

5 30 47 

6 30 56 

7 30 63 

8 30 72 

Warming 

1 30 63 

2 30 56 

3 30 47 

4 30 38 

5 30 29 

6 30 20 

7 45 0 

 

When preparing the mathematical model, the initial condition should also be given: 

𝑐̅𝑒,0 = 0 mol·m-3 [153]. Other parameters required for further calculations are 

the constants needed to determine the diffusion coefficient, namely the radius of 

the spherical particle rs = 2.541·10-10 m [145] and the dynamic viscosity  

μ = 1.996·10−3 Pa·s [208]. It is also useful to know the quantities such as: the density of 

DMSO ρd = 1.1 kg·m-3, the density of water ρw = 997 kg·m-3 and the molar mass of DMSO  

Mat.,d = 78.13 10-3 kg·m-3 [208]. 

The next step is to develop a numerical model using an explicit scheme of FDM. 

The mass transfer is an unsteady problem, therefore the time grid has to be discretised 

similarly to the heat transfer problem (compare with Equation (5.14)): 

 
0 1 2 1... ...f f f Ft t t t t t− −        , (6.12) 

where Δt = t f+1 – t f is a constant time step. 
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As in the previous chapter, the domain considered has been divided using a regular 

grid. The nodes that store the temperature values coincide with the nodes for the molar 

concentration. The mesh is constructed based on the five-points star already used in 

Example 1 in Chapter 5 (see Figure 5.2). 

Then, relationships for calculating the interval molar concentration at the individual 

nodes have been established. In the mass flow equation on the left-hand side,  

the time derivative takes the form of: 

 
( ) ( ) ( )

1

, ,

,

, ,
f f

e ef
e

d di j i jd

i j

c cc r z t

t t

−

− 
= 

  
, (6.13) 

where i = 1, 2, …, n and j = 1, 2, …, m; n and m are the number of nodes. 

Mean quotients are applied to determine the interval molar concentration at  

the internal nodes (i, j): 
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where i = 2, 3, …, n – 1 and j = 2, 3, …, m – 1. 

Detailing exactly the individual elements of the above equation: 
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while 𝑊̅𝑒 are the interval mass diffusion resistances formulated as: 
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Based on Equation (6.8) and the above derivation, the interval molar concentration at 

the internal nodes (i, j) is calculated: 
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and as a result: 
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where i = 2, 3, …, n – 1 and j = 2, 3, …, m – 1, the individual a corresponds to  

e = {(i, j + 1); (i, j – 1); (i + 1, j); (i – 1, j)}, while Φe is the shape function defined in 

the same way as in thermal analysis: 
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The following stability condition needs to be defined for an explicit scheme of FDM: 
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and after the conversion the time step is: 
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Let us also introduce information about boundary nodes. Considering the boundaries 

with condition of the 1st type (Γ1 and Γ4 – see on Figure 5.1), the relationships  

are as follows: 
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where i = 2, 3, …, n – 1 and j = 2, 3, …, m – 1. 

The interval molar concentration for boundary nodes with an adiabatic condition 

consists of replacing one of the “element” in Equation (6.14) with the relationship 

received from Equation (6.10). For the boundary Γ2 (see Figure 5.1), it is expressed as: 
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where i = 2, 3, …, n – 1 and individual a corresponds to e = {(i, j + 1); (i + 1, j);  

(i – 1, j)}. 

For the edge Γ3, the boundary condition it of the form: 
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where j = 2, 3, …, m – 1 and individual a corresponds to e = {(i, j + 1); (i, j – 1);  

(i – 1, j)}. 

To conclude the description of the numerical model, it is worth recalling its 

parameters, which coincide with those specified for the time-space mesh for heat transfer. 

They are equal to: the time step Δt = 10-3 s, the mesh steps h1 = 10-4 m and h2 = 5·10-5 m. 

The above mathematical and numerical model was implemented in an author's 

program prepared in Embarcadero Delphi 10.4 Community Edition environment software 

(Embarcadero Technologies, Inc.). A flowchart compactly representing the algorithm is 

shown in Figure 6.2. 

The following section presents the results obtained during the mass transfer 

investigation applying directed interval arithmetic – see Figures 6.3-6.5. Please note that 

all results for the interval molar concentration have been converted to the interval mass 

fraction. This makes it easier to compare the received values with the mass fraction of 

the bath solution. 
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Figure 6.2. Flowchart of algorithm to simulate mass (diffusion) transfer phenomena 

(interval arithmetic) 
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Figure 6.3 represents the history of the interval mass fraction over the complete 

simulation time at the point with coordinates r = 0.050 mm and z = 0.475 mm. It can be 

seen that in the first few iterations of a given step, the concentration rises rapidly, but then 

it gradually stabilises. The interval mass fraction in the sample never reaches the value 

desired by the bath solution. It can be observed that the results obtained are close to 

the mass fraction multiplied by a factor of 0.9 determined by the boundary conditions. 

Table 6.2 contains the exact values obtained at the end of each process step at the given 

point. These results were also compared with the experimental data reported by 

Pegg et al. [116] and the simulation results received by Yu et al. [187]. The relative error, 

which varies for each step, was also calculated. It can be said that the simulation results 

from Yu et al. [187] are more compatible with experimental data [116]. 

As the interval widths are narrow, Figure 6.4 only illustrates a certain fragment of 

the entire simulation in a few seconds of step 8 for the cooling phase (a) and the first few 

seconds of step 1 for the warming phase (b). The solid and the dashed line represent 

the history for points with coordinates r = 0.050 mm, z = 0.475 mm and r = 2.950 mm,  

z = 0.125 mm, respectively. 

Figure 6.5 presents the distribution of the interval mass fraction (in % (w/w)) in 10 s 

of step 8 for the cooling phase. It confirms that the domain is axisymmetric. 

Unfortunately, the interval widths are so small that it is difficult to see the difference 

between the upper and lower bounds of intervals on the distribution maps. 

 

 

Figure 6.3. Interval mass fraction over whole simulation time 
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(a) (b) 

Figure 6.4. Interval mass fraction as a function of time for: (a) step 8  

in cooling phase and (b) step 1 in warming phase 

 

Table 6.2. Comparison of interval mass fraction with experimental data [116] and 

simulation data [187] 

Phase Step 

Interval mass 

fraction, 

𝒘̅𝒅
𝒆   

[% (w/w)] 

Experimental 

data 

Relative 

error, 

δ [%] 

Simulation 

data, 

w [% (w/w)] 

Cooling 

1 [8.6281; 8.6281] – – 8.04 

2 [17.5895; 17.5895] 16.3 ± 1.3 7.91 16.97 

3 [26.0937; 26.0938] 24.5 ± 1.1 6.50 25.87 

4 [34.1936; 34.1938] 34.2 ± 0.9 0.02 33.86 

5 [42.2921; 42.2927] 41.7 ± 3.3 1.42 41.10 

6 [50.3905; 50.3913] 47.8 ± 2.8 5.42 48.03 

7 [56.6897; 56.6911] 52.2 ± 1.3 8.60 52.52 

8 [64.7810; 64.7844] 55.9 ± 2.9 15.89 55.85 

Warming 

1 [56.7191; 56.7156] – – 54.78 

2 [50.4104; 50.4090] – – 51.98 

3 [42.3096; 42.3087] – – 44.62 

4 [34.2079; 34.2087] – – 35.83 

5 [26.1064; 26.1062] – – 26.75 

6 [18.0058; 18.0057] – – 18.18 

7 [0.0002; 0.0002] – – 0.01 
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(a) (b) 

Figure 6.5. Distribution of the interval mass fraction in 10 s of step 8 for  

cooling phase: (a) 𝑤̅𝑑
𝑒− and (b) 𝑤̅𝑑

𝑒+ 

 

6.2.2. Example 1 – fuzzy numbers 

After presenting the mathematical and numerical model and example calculations for 

interval numbers, the discussions conducted for fuzzy numbers will be demonstrated. 

Obviously, this is still a continuation of Example 1 from Chapter 5 (Subsection 5.2.2). 

The mass transfer equation for fuzzy arithmetic for this example is formulated in 

the following form: 

 
( )

( ) ( )
, , ( , , ) ( , , )1

e e e
d d d

c r z t c r z t c r z t
D T r D T

t r r r z z

      
= +   

       
, (6.25) 

where: 

 ( )
( ), ,

6π μ

B

s

k T r z t
D T

r
= . (6.26) 

The previously specified boundary conditions remain unchanged, therefore: 
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n

 (6.27) 

It is very important to note that calculations for fuzzy numbers have been performed for 

the LT protocol improved by Yu et al. [187] This protocol neglects the last step for 

cooling and the first step for warming of the Pegg et al. protocol [116], while modifying 

the exposure times of the sample to the bath solution with specific parameters. 
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Detailed procedures for mass fraction regulation are provided in Table 6.3. It should be 

noted the initial condition is as follows: 𝑐̃𝑒,0 = 0 mol·m-3. 

All parameters completing the mathematical model are the same as in Example 1 in 

Chapter 5 (Subsection 5.2.2), including volumetric specific heat and thermal conductivity 

defined as triangular and trapezoidal fuzzy numbers, respectively (see Table 5.4). 

Whereas the parameters directly related to the CPA are the same as those listed in 

the previous example considering interval analysis. 

 

Table 6.3. LT protocol proposed by Yu et al. [187] 

Phase Step Time, t [min] 
Mass fraction of bath solution, 

wbath [% (w/w)] 

Cooling 

1 10 10 

2 9.8 20 

3 18.2 29 

4 25 38 

5 19.8 47 

6 26.4 56 

7 23.8 63 

Warming 

1 23.8 63 

2 26.4 56 

3 19.8 47 

4 25 38 

5 18.2 29 

6 29.8 20 

 

In the next part, the numerical model is derived using explicit scheme of FDM. 

The mass transfer Equation (6.25) in fuzzy form can be expressed as follows: 

 ( ) ( ) ( ) ( )
4

1 1 1

1, , ,
1

f f f f
e e e ee
d d d dfi j i j e i j

a e

c c t c c
W

− − −

−
=

  = + −
   , (6.28) 

where i = 2, 3, …, n – 1 and j = 2, 3, …, m – 1, the individual a corresponds to  

e = {(i, j + 1); (i, j – 1); (i + 1, j); (i – 1, j)}, while the fuzzy mass diffusion resistances are 

expressed by the formulas: 
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The stability condition for the explicit scheme of FDM is as follows: 
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Based on Equation (6.27), the relationships for the boundary nodes have been 

determined. As these relations are very similar to those presented in the version with 

interval arithmetic, it was decided not to show these derivations in the thesis. 

The author's program was written to perform the appropriate calculations – its 

flowchart is included in Figure 6.6. The simulation was carried out in  

Embarcadero Delphi 10.4 Community Edition (Embarcadero Technologies, Inc.) 

environment software. 

It should be noted that α-cuts were used for the numerical calculations, which allow 

the simplification of complex mathematical operations in the set of fuzzy numbers. 

By using the α-cuts, elementary mathematical operations are performed at the ends of 

the intervals. Numerical simulations were carried out for several values of  

the parameter α. 

Figure 6.7 shows diagrams of the interval mass fraction values for triangular (a) and 

trapezoidal (b) fuzzy numbers, depending on the value of the parameter α. The results 

were obtained for nodes with coordinates r = 0.050 mm and z = 0.475 mm for step 3 of 

the cooling phase (in 20 s). One can observe from both graphs that the largest interval 

width occurs for α = 0. In contrast, for α = 1 the width is the lowest, and for triangular 

numbers it is equal to 0̃. 

This conclusion is also evident in Figure 6.8, which demonstrates a certain fragment 

of step 7 for the cooling phase for α = 0.25 (a) and α = 0.75 (b) for triangular fuzzy 

numbers in selected point. Meanwhile, Figure 6.9 depicts the same moment of simulation 

for two selected values of the parameter α for trapezoidal fuzzy numbers. 
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Figure 6.6. Flowchart of algorithm to simulate mass (diffusion) transfer phenomena 

(fuzzy arithmetic) 
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(a) (b) 

Figure 6.7. Values of interval mass fraction after 20 s of step 3 in cooling phase for 

different values of parameter α: (a) triangular and (b) trapezoidal fuzzy number 

 

  

(a) (b) 

Figure 6.8. The interval mass fraction as a function of time for triangular fuzzy 

numbers: (a) α = 0.25; (b) α = 0.75 

 

  

(a) (b) 

Figure 6.9. The interval mass fraction as a function of time for trapezoidal fuzzy 

numbers: (a) α = 0.25; (b) α = 0.75 
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Furthermore, Table 6.4 presents a comparison of the values obtained for the interval 

mass fraction for α = 0.5 in given point with the result of the simulation performed by 

Yu et al. [187]. Unfortunately, the fuzzy mass fraction values do not always include 

the values obtained by Yu et al. [187]. In our case, a different mathematical model has 

been used, e.g. to determine the diffusion coefficient, which can induce differences 

in the results. 

 

Table 6.4. Interval mass fraction obtained in the simulation for α = 0.5 (fuzzy arithmetic) 

Phase Step Interval mass fraction, 𝒘̅𝒅
𝒆  [% (w/w)] Simulation data 

(centre of disk), 

w [% (w/w)] 

Cooling 

 
Triangular fuzzy 

numbers 

Trapezoidal fuzzy 

numbers 

1 [7.839; 7.839] [7.839; 7.839] 6.80 

2 [16.663; 16.663] [16.663; 16.663] 15.73 

3 [25.838; 25.839] [25.837; 25.840] 23.23 

4 [34.139; 34.140] [34.139; 34.140] 32.22 

5 [42.099; 42.104] [42.098; 42.105] 37.62 

6 [50.338; 50.340] [50.337; 50.341] 44.30 

7 [56.599; 56.605] [56.597; 56.606] 47.50 

Warming 

1 [50.500; 50.494] [50.501; 50.493] – 

2 [42.362; 42.360] [42.362; 42.359] – 

3 [34.401; 34.396] [34.402; 34.395] – 

4 [26.161; 26.160] [26.161; 26.160] – 

5 [18.235; 18.234] [18.2356; 18.233] – 

6 [0.0232; 0.0232] [0.0232; 0.0232] – 

 

6.2.3. Summary and conclusions 

In summary, Example 1 introduces an analysis of mass transfer caused by molecular 

diffusion. The model presents the system in which the articular cartilage sample has 

a form of a disk immersed in a bath solution derived from the CPTes2 mixture. 

Therefore, the phenomenon of mass convection has been neglected and the governing 

equation is based on the second Fick’s law equation. The mass transfer equation  

also includes the diffusion coefficient, which is weakly coupled to temperature.  
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For that reason, this example is closely related to Example 1 in Chapter 5, where a thermal 

analysis of the same sample was performed. 

Both examinations, conducted on interval numbers (LT protocol by Pegg et al. [116]) 

and fuzzy numbers (LT protocol by Yu et al. [187]), have been compared with simulation 

data from Yu et al. [187] and, in the case of the analysis with interval numbers, also with 

experimental data from Pegg et al. [116]. It can be noted that not all ranges coincide with 

the values indicated in the literature (the relative error oscillates between 0.02% and 

15.89%). Differently from Yu et al. [187], the model presented in this study uses the 

Einstein-Stokes equation to determine the diffusion coefficient, which could be the reason 

for the differences observed in the results. In the above examples, after each step of the LT 

protocol the mass fraction is close to the mass fraction of the bath solution multiplied by 

a factor of 0.9, which results from the boundary conditions. 

Then, let us compare the results received for both interval and fuzzy numbers, 

for which two various LT protocols were used (compare, for example, results in  

Tables 6.2 and 6.4). It can be noticed that the interval mass fraction values obtained in 

both cases are quite similar, even though the LT protocol proposed by Yu et al. [187] 

involves a shorter exposure of the sample to the bath solution with the given 

concentration. The interesting thing to note is that for each step of the process, Yu et al. 

in their paper [187] determine the freezing point of the tissue based on the concentration 

of CPA in the extracellular solution (according to the equation in [119]). Thanks to that 

it is possible to estimate the risk of formation of ice crystals. This is a marker of tissue 

damage and it is worth considering in the analysis of the cryopreservation process 

in the future.  

Another factor of dangerous behaviour of biological cells are changes in cell volume 

induced by osmotic transport of CPA and water into intracellular matrix. 

Such considerations will be presented in the next example. 

6.3. Example 2: Osmotic transport 

Example 2 is devoted to a description of the exchange of water and CPA molecules 

across the cell membrane. Osmotic transport is caused by the chemical potential 

difference between the extracellular matrix and the intracellular solution. The presence 

of CPA in the extracellular solution results in the transport of water from the intracellular 
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space (dehydration). After that, water enriched with CPA molecules is again transferred 

to the intracellular solution. In our case, changes in cell volume have been estimated from 

alterations in the volume of water and the number of CPA moles in the cell. To determine 

these parameters, the 2-P formalism has been used, which is commonly adopted in 

the literature [8, 36, 67, 76, 129, 132, 184, 193–195]. 

The bath solution presented here is the same as in Example 1 (Subsection 6.2). It is the 

CPTes2 mixture proposed by Pegg et al. [116], which consists mainly of water, DMSO 

as CPA, KCl and other components. 

It is worth adding that in this example, the change in volume of articular cartilage cells 

and chondrocytes was analysed. Chondrocytes are dispersed in the extracellular 

(proteoglycan) matrix and constitute approximately 1% – 2% of the total articular 

cartilage composition. Close to the contact surface of the articular cartilage with 

the external membrane layer, chondrocytes are relatively densely distributed, tangential 

to the surface. In contrast, near the cartilage-bone interface, chondrocytes are evenly 

dispersed vertically. In the intermediate zone, chondrocytes are randomly placed and their 

density of distribution decreases. Chondrocytes are responsible for the production and 

maintenance of the extracellular matrix (not only proteoglycans, but also collagen). 

Articular cartilage does not contain blood vessels, so the process of nutrient delivery 

occurs through the extracellular matrix [1]. 

Generally, the 2-P formalism is defined by the following pair of  

governing equations [36]: 

 ( )e i

w pV L ART M M= − − , (6.32) 

 ( )e i

s sN P A M M= − . (6.33) 

Please note that the subscript s denotes the solute molecules and, in our case, this is 

represented by CPA, more specifically DMSO. In the following work, the subscript d is 

inserted instead of s. 

The above equations need only to be supplemented by an initial condition (t = 0): 

 ( ) 0,0w wV X V= , (6.34) 

 ( ) 0,0d dN X N= , (6.35) 

where 𝑉𝑤
0 and 𝑁𝑠

0 are, respectively, intracellular water volume in cell and intracellular 

number of permeating solute molecules in the initial moment. 
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As can be seen, Equations (6.32)-(6.33) are weakly coupled to temperature. 

In addition, in the model it is necessary to know the osmolarity of the extracellular and 

intracellular solution. Osmolarity is calculated on the basis of mass fraction, and it 

indicates that the model is also weakly coupled to the concentration of cellular solutions. 

Hence, to conduct the osmotic transport examination, the thermal and the mass diffusion 

analysis performed in Chapter 5 (Example 1) and Chapter 6 (Example 1) have been 

applied. In this example, only the considerations for the rules of directed interval 

arithmetic are shown. 

6.3.1. Example 2 – interval numbers 

For the mass diffusion problem (Example 1), the introduction of interval numbers into 

the osmotic transport model is a novel approach compared to previous  

publications [8, 36, 67, 76, 129, 132, 184, 193–195]. As a result, no stochastic model 

needs to be prepared. In addition, the interval results better illustrate natural cellular 

processes due to osmotic changes compared to the deterministic approach. 

The interval 2-P formalism can be expressed as: 
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where the interval hydraulic conductivity and the interval permeability of CPA through 

cell membrane explain the water and CPA permeability across the cell membrane, 

respectively. These quantities are calculated from the relationships [187]: 
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where ALp and APs are the pre-exponential factors for  𝐿̅𝑃 and  𝑃̅𝑆, respectively, while EA,Lp 

and EA,Ps are the activation energies for 𝐿̅𝑃 and  𝑃̅𝑆, respectively. 

Equations (6.36)-(6.37) also include the interval osmolarity, which can be determined 

from the interval osmolality [187]: 
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where the superscript s denotes extracellular (e) or intracellular (i) solution, the subscript 

j denotes the species j, π̅𝑠 is the interval osmolality, 𝑤̅𝑤
𝑠  is the interval mass fraction of 

water in solution s and 𝑉̅𝑚𝑗
𝑠 is the interval volume per unit of mass of species j in solution 

s. In our considerations, the following types j are included: w, d, k. They represent water 

(w) as the main element of the bath solution, DMSO (d) as CPA, and KCl (k) as 

the component of CPTes2, which is a potassium-rich mixture. 

The interval volume per unit of mass of types j can be defined as [187]: 

 ( )
.
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where vj is the partial molar volume of types j. 

There is also an interval osmolality in Equation (6.40), which is defined as [36, 187]: 
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where the interval molality of types j (d or k) is computed according to the mass fraction 

of the solution s: 
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At this moment, it is worth considering how to determine the mass fraction for 

extracellular and intracellular solutions. The problem of calculating the interval molar 

concentration of DMSO in the extracellular matrix is demonstrated in Example 1 in 

Chapter 6 (Subsection 6.2.1)., and the results obtained previously have been implemented 

for this case. 

The interval molar concentration of KCl in the extracellular matrix is a constant 

isotonic concentration. Assuming that it is equal to the molar concentration of KCl in  

the bath solution: 

 ,

e

k k bathc c= , (6.44) 

where ck,bath is the isotonic molar concentration of KCl in the bath solution including 

CPTes2 mixture. 
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In contrast, intracellular solution parameters have been determined from the 

relationships [144, 183, 184]: 
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where 𝑉̅𝑐𝑒𝑙𝑙 is the interval cell volume, Vb is the osmotically inactive volume of cells equal 

to Vb = 0.41V0
 [96, 118, 183], where V0 is the is the isotonic volume of cells calculated 

from the isotonic cell radius rcell. Obviously, the superscript 0 denotes the initial moment 

of the simulation. The initial cell volume is assumed to be equal to the isotonic cell 

volume at the initial moment of the simulation. 

The interval cell volume is the sum of the volume of water, DMSO and the osmotically 

inactive volume of cells in the intracellular solution (compare with  

Equation (3.25)) [36, 67]: 

 ( ) ( ) ( )cell w d bV t V t V t V= + + , (6.47) 

and introducing the time derivative, which occurs in the 2-P formalism [79], one obtains: 

 
( ) ( ) ( ) ( ) ( )d d d d d

d d d d d

cell w d w d

d

V t V t V t V t N t
v

t t t t t
= + = + . (6.48) 

Analysing the formulae from which the intracellular molar concentrations are 

determined, it can be seen that they are strongly coupled. This is a logical conclusion, 

as the number of moles of DMSO depends on the concentration of DMSO in the 

intracellular solution and inversely. 

Equations (6.36)-(6.46) should also be supplemented with information on the initial 

state of the intracellular solution: 

 ( ) 00d dV V= , (6.49) 

 ( ) 00d dN N= , (6.50) 

 ( ) 00cell cellV V= , (6.51) 

 ( ) ,0, ,0e e

k kc r z c= , (6.52) 
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,0( , ,0) ( , ,0)i i i

k dc r z c r z c= = . (6.53) 

The next step is to define the parameters of chondrocytes and bath solution necessary 

in the mathematical model. Table 6.5 contains the input data for the osmotic transport 

model. Please note that the molar concentration of KCl at the initial moment is equal to 

the isotonic molar concentration of KCl in the bath solution. The table provides 

concentration of KCl as a mass fraction, not as its molar concentration. 

The rest of parameters that are necessary to analyse the thermal and mass transfer from 

the bath solution to the extracellular matrix problem are given in the previous  

examples (thermal analysis – Subsection 5.2.1, extracellular mass transfer problem –  

Subsection 6.2.1). 

 

Table 6.5. Input data for osmotic transport model [129, 132, 187] 

Parameters of cells (chondrocytes)  

Parameters Values 

A [m2] 8.04×10-10 

rcell [m] 8×10-6 

Chemical properties of bath solution 

Parameters Values 

  DMSO KCl H2O 

ρj [kg·m−3] 1.1×103 1.98×103 997 

Mat.,j [kg·mol−1] 7.813×10−4 7.455×10−4 1.802×10−4 

Bj [kg·mol−1] 0.108 0 – 

vj [L·mol−1] 7.097×10−4 3.75×10−4 1.807×10−4 

kdiss – – 1.772 – 

Initial data 

Parameters Values 

𝑤𝑘
𝑒,0 = 𝑤𝑘,𝑏𝑎𝑡ℎ [% (w/w)] 0.85 

𝑐i,0 [mol·m-3] 0 

𝑉𝑐𝑒𝑙𝑙
0 = 𝑉0 [m3] 2.144×10−15 

𝑉𝑤
0 = 𝑉𝑐𝑒𝑙𝑙

0  [m3] 2.144×10−15 

𝑁𝑑
0 [mol] 0 
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Let us now introduce a numerical model for the 2-P formalism approach. For this 

purpose, FDM has been applied considering the rules of interval arithmetic. The process 

of time meshing and domain discretization is the same as for heat and mass transfer by 

diffusion (see Equations (5.15) and (6.12) and Figure 5.2).  

Please note that in Equations (6.36) and (6.37) are only time derivatives, 

therefore the following differential quotients have been introduced: 
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and as a result: 

 ( ) ( ) ( ) ( )
1 1 1

, ,, ,

f f f f e i

w w p i j i ji j i j
V V t L T ART M M

− − −= −  − , (6.56) 

 ( ) ( ) ( ) ( )
1 1

,, ,

f f f e i

d d s i ji j i j
N N t P T A M M

− −= +  − . (6.57) 

The mesh parameters are assumed as in previous coupled analyses: the time step  

Δt = 10-3 s, the mesh steps h1 = 10-4 m and h2 = 5·10-5 m [132]. 

To perform the numerical calculations, the author's program written in 

the Embarcadero Delphi 10.4 Community Edition (Embarcadero Technologies, Inc.) 

environment was used. Figure 6.10 shows the flowchart which shortly explains its 

working procedures. 

Figures 6.11-6.16 present the simulation results for the osmotic transport analysis 

during cryopreservation performed by LT protocol. Figure 6.11 depicts the change in 

the interval mass fraction of DMSO during the entire process. These results are presented 

for the point at the centre of the sample (r = 0.050 mm, z = 0.475 mm). As can be seen, 

the appearance of the graph coincides with the interval mass fraction characteristic of 

the extracellular matrix (see Figure 6.3). 

Table 6.6 shows the results at the end of each step of the individual simulation phases. 

These data were compared with the simulation data from Yu et al. [187].  
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Figure 6.10. Flowchart of algorithm to simulate osmotic transport phenomena  

(interval arithmetic) 
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Due to the small width of the intervals, other diagrams have also been prepared.  

Figure 6.12 demonstrates a certain part of the simulation results in step 8 of the cooling 

phase (a) and step 1 of the warming phase (b). 

Moreover, Figure 6.13 illustrates the distribution of the interval intracellular mass 

fraction of DMSO in the whole domain. It represents the history of interval mass fraction 

of DMSO in cell after 20 s of step 8 of the cooling phase. As for the interval extracellular 

mass fraction (see Figure 6.5), the differences between the lower and upper limits of 

the interval are very small. 

 

 

Figure 6.11. Interval mass fraction of DMSO in chondrocytes over  

whole simulation time 

 

  

(a) (b) 

Figure 6.12. Interval mass fraction as a function of time: (a) step 8 in cooling phase  

and (b) step 1 in warming phase 
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Table 6.6. Interval results compared with simulation data from Yu et al. [187] 

Phase Step 
Interval mass fraction, 

𝒘̅𝒅
𝒊  [% (w/w)] 

Simulation data, 

w [% (w/w)] 

Cooling 

1 [6.455; 6.455] 6.70 

2 [14.562; 14.562] 15.69 

3 [21.132; 21.137] 24.42 

4 [29.842; 29.850] 31.86 

5 [38.035; 38.046] 38.33 

6 [46.661; 46.672] 44.02 

7 [53.609; 53.622] 47.26 

8 [62.640; 62.748] 48.63 

Warming 

1 [54. 097; 53.678] 50.32 

2 [46.702; 46.697] 50.75 

3 [38.061; 38.067] 44.99 

4 [29.862; 29.867] 36.27 

5 [21.152; 21.155] 27.05 

6 [14.977; 14.973] 18.86 

7 [0.032; 0.033] 0.03 

 

  

(a) (b) 

Figure 6.13. Distribution of the interval mass fraction in 20 s of step 8 for cooling 

phase: (a) 𝑤̅𝑑
𝑖− and (b) 𝑤̅𝑑

𝑖+ 

 

Using the 2-P formalism, it has been also determined the changes in the interval 

number of DMSO moles and the interval volume of water in chondrocytes. Figure 6.14 

shows the history of these parameters during the entire simulation. The plots present 
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the results obtained in the centre of the sample (r = 0.050 mm, z = 0.475 mm). It can be 

observed that the interval number of DMSO moles increases rapidly to a certain level, 

and then stabilises at them. In contrast, the interval volume of water decreases to a specific 

level, which indicates the occurrence of dehydration. Figure 6.15 depicts an enlarged 

fragment for step 3 of the cooling phase. 

Consequently, the interval normalised cell volume throughout the process has also 

been estimated. This is the relation of the interval cell volume 𝑉̅𝑐𝑒𝑙𝑙 to its initial volume 

𝑉𝑐𝑒𝑙𝑙
0 , which coincides with the isotonic cell volume  V0. From the graph in Figure 6.16, 

it can be seen that the cells have been shrinking for most of the process. This indicates 

a greater influence of dehydration than the infusion of DMSO moles. 

 

  

(a) (b) 

Figure 6.14. Interval number of DMSO moles (a) and interval volume of water (b) in 

chondrocytes over whole simulation time 

 

  

(a) (b) 

Figure 6.15. Interval number of DMSO moles (a) and interval volume of water (b) in 

chondrocytes in the certain fragment of step 3 
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Figure 6.16. Interval normalized volume of chondrocytes over whole simulation time 

 

6.3.2. Summary and conclusions 

In summary, the above example provides a numerical analysis of osmotic transport 

during cryopreservation. This phenomenon is described using the 2-P formalism that is 

coupled to both the heat and mass distribution problem. Therefore, in this case, 

the previous instances presented in Example 1 in Chapter 5 (Subsection 5.2.1) and 

Example 1 in Chapter 6 (Subsection 6.2.1) are used. This example uses the previously 

proposed sample geometry (see Figure 5.1) and the composition of the bath solution 

(CPTes2 consisting of water, DMSO and a potassium-rich mixture). 

The study primarily considered the interval molar concentration of DMSO as CPA in 

chondrocytes (see Figure 6.11). As can be seen, these changes are dependent on 

alterations in the concentration of CPA in the extracellular matrix (compare  

with Figure 6.3). In addition, the intracellular interval mass fraction of DMSO is 

compared with the simulation data from Yu et al. [187] (see Table 6.6). It can be 

concluded that these results are quite compatible with each other, with the most 

significant discrepancies occurring at high mass fraction values. 

After calculating the interval molar concentrations of DMSO in the cell solutions, 

the interval number of DMSO moles and the interval volume of water in the intracellular 

space have also been estimated (see Figure 6.14). It can be observed that the interval 

number of DMSO moles initially increases to a specific level. This value remains constant 
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until a certain moment, at which lasts the removal of CPA process. Obviously, this is 

closely related to a decrease and then an increase in the interval water volume. 

This illustrates the phenomenon of dehydration, in which water leaves the intracellular 

solution and DMSO moles enter at the same time. When the sample is warmed up, 

the interval volume of water returns to its original level. 

It is worth noting the graph of interval normalised cell volume as a function of time 

(Figure 6.16). Based on this, it can be concluded that chondrocytes shrink for a longer 

time during the process and that the influx of DMSO into the intracellular space 

contributes less to this than dehydration.  

Yu et al. [187] suggest that the dehydration rate should be higher than the addition of 

DMSO. For this purpose, Yu et al. [187] convert the hydraulic conductivity (LP) into 

a filtration coefficient and compare it with the cell membrane permeation coefficient (PS). 

They report that the difference between dehydration rate and DMSO penetration rate 

increases with decreasing temperature.  

Although the phenomenon of cell shrinkage is very dangerous, it should be mentioned 

that chondrocytes are assumed to be active if the relevant conditions are fulfilled. 

The normalised volume must be in the range of 0.46 – 2.49, while the intracellular mass 

fraction of KCl is to be equal to a value in the range 0.24 – 9.50 % (w/w) [187]. 

In this case, only the volumetric condition was considered, and it was satisfied 

(the minimum value of the interval normalized cell volume is equal to [0.4641; 0.4640]). 

6.4. Example 3: Mass transfer – convection and diffusion 

phenomena 

Example 3 presents a model of heat and mass transfer as well as osmotic transport, 

considering the method of CPA delivery to the sample. Improper loading and unloading 

of CPA can cause osmotic damage to cells induced by osmolality imbalance. For this 

reason, it is often a time-consuming process. Satisfactory CPA delivery can be achieved 

using, for example, a microfluidic system. Such devices are often complex techniques, 

as shown in [143, 144, 176, 191, 193–195]. 

The preparation of a model of the entire microfluidic device can be complicated,  

so a simplified geometry has been created. In the case considered, a system similar to 

the concept proposed by Liu et al. was prepared [79]. The geometric model of the system 
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is schematically illustrated in Figure 6.17. The main element of the microfluidic system 

is a cylindrical microchannel, which is enclosed in a glass slide. Input and output holes 

are drilled in the housing and a bath of solution is injected and extracted continuously. 

Therefore, the mass transfer model takes into account not only the diffusion phenomenon, 

but also convection caused by the movement of the bath solution (u ≠ 0). 

 

 

Figure 6.17. Simplified microfluidic system 

 

Several further elements of the model were adopted from previous examples, mainly 

from Example 1 in Chapter 5 and Examples 1 and 2 in Chapter 6. The bath solution is 

again based on the potassium-rich CPTes2 mixture with DMSO as CPA [116]. 

Moreover, the temperature and the concentration of the bath solution is controlled 

according to the LT protocol suggested by Yu et al. [187]. Consequently, the phenomena 

of ice crystal formation and phase transitions were ignored. The simulation was 

performed on a sample of articular cartilage, which has a cylindrical disc shape. 

The articular cartilage does not contain lymphatic or blood vessels [1], 

therefore perfusion and metabolic heat source were neglected (Qint = 0). 

The following governing equations have been applied to describe this multiscale 

problem. First, thermal phenomena are defined by the Fourier equation [40]: 

 ( )ρpc T k T=   . (6.58) 

It can be said that the heat transfer equation occurs in the same form as in Example 1 

of Chapter 5. Similarly, the phenomenon of osmotic transport is specified using the 2-P 

formalism presented in Example 2 in Chapter 6 [36]: 

 ( )e i

w pV L ART M M= − − , (6.59) 
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 ( )e i

d sN P A M M= − . (6.60) 

In contrast, the mass transfer equation differs from the relationship considered 

in Chapter 6 (Subsection 6.2.1 and 6.2.2). This equation describes the mass migration 

from the bath solution into the extracellular matrix of the biological sample, which is 

caused by diffusion of CPA (DMSO) molecules. However, in the case of microfluidic 

systems, where there is a continuous flow of the bath solution, advection must also be 

taken into account. The mass transfer phenomenon is determined by the convection-

diffusion equation (compare with Equation (3.22)) [79, 194]: 

 ( ) ( )e e e

d d d sc D c c R=  − +u . (6.61) 

The advection (convection) phenomenon is related to the velocity vector, which 

describes the flow of the solution through a microfluidic system. The bath solution is 

a viscous and Newtonian fluid, hence the fluid flow is explained by the Navier-Stokes 

equations [52, 142]: 

 
2(ρ ) μ

( )(ρ ) ρ μ ( )
3

p
t


+  = − +  +  



u
u u g u u , (6.62) 

and the continuity equation: 

 ρ (ρ ) 0+ =u . (6.63) 

In the problem under consideration, the fluid is assumed to be incompressible  

(p = const. and ∂p/∂t = 0), while the fluid acceleration vector is ignored (g = 0), thus: 

 
2(ρ )

( )(ρ ) μp
t


+  = − + 



u
u u u , (6.64) 

and: 

 0 =u . (6.65) 

The fluid flow equations should be supplemented with initial and boundary conditions. 

When defining them, it is important to remember that it is a vector field. By setting 

boundary conditions for considered edge, an exact value can be given to the values of 

the components of the velocity vector, for example [20]: 

 

( )

( )

( )

,

,

,

u X t u

v X t v

w X t w







   
   

=   
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, (6.66) 

where uΓ, vΓ, wΓ are constant values of the velocity on the boundary. 
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A special type of boundary condition occurring in fluid mechanics is the no-slip 

condition. This condition appears at the boundary between a fluid and a solid. It is 

associated with the phenomenon of “sticking” of fluid particles to the wall surface as 

a result of viscosity [20]. 

The initial condition, on the other hand, determines the values of the velocity vector at 

the initial moment: 

 

( )

( )

( )

0

0

0

, 0

,0

,0

u X u

v X v

w X w

  
  
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   

, (6.67) 

where the superscript 0 represents the initial moment. 

When considering this extended multiscale model describing the behaviour of 

the sample during cryopreservation, it can be seen that, also in this case, some of 

the parameters can be treated as inaccurate. In earlier publications  

[79, 143, 144, 176, 193–195], experimentally determined parameters are introduced into 

the model as deterministic values, ignoring the stochastic nature of biological phenomena. 

The concept presented in this paper involves a novel approach implementing interval and 

fuzzy arithmetic. In this example, thermophysical parameters such as volumetric specific 

heat as well as thermal conductivity coefficient are provided as imprecise. 

6.4.1. Example 3 – interval numbers 

As a first step, some quantities were introduced into the mathematical model in 

the form of interval numbers. A two-dimensional domain oriented in a cylindrical 

coordinate system was analysed. A simplified computational domain in Figure 6.18 was 

prepared based on the microfluidic system presented in Figure 6.17. 

 

 

Figure 6.18. Model of microchannel 
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The interval heat transfer equation is of the form (see Equations (5.10) and (5.11)): 

 
( ) 2

2

, , 1 ( , , ) ( , , )
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, (6.68) 

or: 
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Please note that this example assumes that the thermal conductivity coefficient and 

the volumetric specific heat are independent of temperature. 

Another transfer phenomenon is the migration of CPAs associated with advection 

initiated by the flow of the bath solution in the microfluidic system. The interval 

convection-diffusion equation for a two-dimensional domain can be expressed as: 

 

( )
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e e e
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e
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−  +u

 (6.70) 

This equation describes a multiphysical field weak coupling problem, which combines 

mass transfer caused by fluid flow and diffusive mass migration, as well as thermal 

analysis due to the presence of a temperature-dependent interval diffusion coefficient 

(see Equation (6.7)). Please also note that no chemical reactions take place during 

the supply of the bath solution, therefore Rs = 0. 

Let us analyse the component related to convection that remains undetermined in 

Equation (6.70). As the velocity determines the movement of the incompressible fluid 

and its divergence is equal to 0, the following form is obtained: 

 ( )e e

d dc c = u u . (6.71) 

When considering a two-dimensional domain Ω (see Figure 6.18), the velocity vector 

is defined by two components: u = [v (r, z, t), u (r, z, t)]. In the model under consideration, 

there are no obstacles disrupting the flow. Therefore, the considered model of 

the convection phenomenon is simplified to a one-dimensional and u = u (z, t). As a result, 

the interval convection-diffusion equation is of the following form: 
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 (6.72) 

The exact value of the velocity vector is calculated from the Navier-Stokes equations 

(Equation (6.64)). These equations for the one-dimensional model, considering 

the previous assumptions, can be formulated as follows: 
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, (6.73) 

while the continuity equation is of the form: 

 
( , )

0
u z t

z


=


, (6.74) 

where ν = μ·ρ-1 is the kinetic viscosity coefficient. 

Remembering that the fluid is incompressible and introducing the Equation (6.74) 

(continuity equation) into the Equation (6.73): 

 
( , )

0
u z t

t


=


. (6.75) 

It causes the velocity to be constant in the entire domain Ω. 

The aforementioned model represents the macroscopic movement of molecules and 

their diffusion into the extracellular matrix. During cryopreservation, the phenomenon of 

osmotic transport also occurs. The interval 2-P formalism for the two dimensional model 

can be expressed as follows: 
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t
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The derivations and explanations of the individual components occurring in this 

equations can be found in previous example – Subsection 6.3.1 (see Equations  

(6.38)-(6.43)). 

The mathematical model needs to be supplemented with boundary and initial 

conditions. For the domain Ω shown in Figure 6.18, the following boundary conditions 

are formulated for the heat transfer problem: 
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and initial condition: 

 ( ) 0, ,0T r z T= . (6.79) 

Similarly, the boundary and initial conditions for the mass transfer problem from 

the bath solution into the extracellular matrix of the sample are determined: 
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and: 
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For fluid flow problem, the boundary-initial conditions are as follows: 
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and: 

 ( ) 0, 0u z u= , (6.83) 

where uin is the inlet velocity. 

Please note that the velocity vector is provided only at the inlet. At the outlet, 

the normal derivative of the velocity is equal to 0, which is equivalent to the adiabatic 

condition. In addition, knowing that the time derivative of the velocity is equal to 0 

(compare with Equation (6.75)): 

 ( ), inu z t u= . (6.84) 

The final problem to be considered in the example under consideration is osmotic 

transport involving the exchange of particular components between extracellular and 

intracellular solution. The boundary-initial conditions for this problem reduce to 

the initial condition of the form: 
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All the parameters needed to complete the mathematical model are shown  

in Table 6.7. Most of the variables are repeated from the previous examples (Example 1 

in Chapter 5 and Examples 1 and 2 in Chapter 6). Noteworthy is the information regarding 

the description of the fluid flow part. Interesting is the fact that the given inlet velocity 

represents the volumetric flow rate Qvol  = 2.5·10-10 m3·s-1 [79]. The value of the inlet 

velocity on the basis of the volumetric flow rate can be easily calculated from the relation: 

 
vol

in

Q
u

A
= , (6.86) 

where A is the surface area of the cylinder. 

In this example, the lower and upper limits of the interval numbers correspond  

to a 5% deviation from the deterministic value of k = 0.518 W·m−1·K−1 and  

cv = 3.924·106 J·m−3·K−1 [129]. 

Table 6.7 should be complemented by the values of the variables at the initial moment 

defined by the initial condition, as detailed in Table 6.8. It is necessary to determine at 

the initial time: (1) the interval initial temperature (for the heat transfer problem);  

(2) the interval molar concentration in the extracellular solution for DMSO and KCl and 

the value of the initial component of the velocity vector (for the mass transfer problem); 

(3) the interval cell volume and water volume in the intracellular solution, the interval 

molar concentration in intracellular solution, the interval mole number of DMSO in 

the intracellular solution (for osmotic transport). 

No values for the bath solution parameters have yet been introduced. Apart from 

the fact that the microfluidic channel system differs from the device proposed by 

Wang et al. [178], for example (see Figure 6.1), it was decided to use the LT protocol. 

The idea of this approach has already been explained in some previous examples. In this 

case, an improved procedure invented by Yu et al. [187] was applied. Table 6.9 represents 

the LT protocol as conceived by Yu et al. [187]. 
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Table 6.7. Parameters of modelled sample 

Parameters Values 

Dimensions of microfluidic channel [79] 

R [m] 2×10-3 

H [m] 5.5×10-2 

Thermal analysis parameters [129, 187] 

k  [W·m−1·K−1] [0.492; 0.544] 

Vc  [J·m−3·K−1] [3.728×106; 4.120×106] 

α [W·m−2·K−1] 525 

Mass diffusion analysis into extracellular matrix [145, 208] 

rs [m] 2.541×10−10 

μ [Pa·s] 1.996×10−3 

𝑤𝑘,𝑏𝑎𝑡ℎ [% (w/w)] 0.85 

Fluid flow analysis [79] 

uin [m·s−1] 1.99×10-5 

Osmotic transport analysis [187] 

ALp [m2·s·kg-1] 9.1×10-6 

APs [m·s-1] 1.2×1012 

EA,Lp [J·mol-1] 45.73×103 

EA,Ps [J·mol-1] 107.40×103 

Parameters of cells [145, 187] 

A [m2] 8.04×10-10 

rcell [m] 8×10-6 

Chemical properties of bath solution [187, 208] 

  DMSO KCl H2O 

ρj [kg·m−3] 1.1×103 1.98×103 997 

νj [m2·s-1] 1.945×10-6 – 10-6 

Mat.,j [kg·mol−1] 7.813×10−4 7.455×10−4 1.802×10−4 

Bj [kg·mol−1] 0.108 0 – 

vj [L·mol−1] 7.097×10−4 3.75×10−4 1.807×10−4 

kdiss –  – 1.772 – 
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Table 6.8. Initial data [129] 

Parameters Values 

T0 [°C] 22 

𝑐𝑑
𝑒,0

 [mol·m−3] 0 

𝑤𝑘
𝑒,0 [% (w/w)] 0.85 

u0 [m·s-2] 0 

ci,0 [mol·m-3] 0 

𝑉𝑤
0 = 𝑉𝑐𝑒𝑙𝑙

0  [m3] 2.144×10−15 

𝑁𝑑
0 [mol] 0 

𝑉𝑐𝑒𝑙𝑙
0 = 𝑉0 [m3] 2.144×10−15 

 

 

Table 6.9. LT protocol according to Yu et al. [187] 

Phase Step 
Duration,  

t [min] 

Temperature, 

Tbath [°C] 

Molar 

concentration, 

wbath [% (w/w)] 

cooling  

1 10 22 10 

2 9.8 22 20 

3 18.2 −5 29 

4 25 −8.5 38 

5 19.8 −16 47 

6 26.4 −23 56 

7 23.8 −35 63 

warming 

1 23.8 −35 56 

2 26.4 −23 47 

3 19.8 −16 38 

4 25 −8.5 29 

5 18.2 −5 20 

6 29.8 22 0 

Total: 13 276 – – 
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Let us introduce a numerical model for this problem. The numerical model is based on 

an explicit scheme of FDM combined with interval arithmetic. Analogously to the earlier 

examples, the time axis is discretised with a constant time step Δt (compare Equations 

(5.15) and (6.12)). On the other hand, the geometric mesh differs from the previous 

approach. Its base is a five-points star, whereas the nodes where the velocity vector is 

stored do not coincide with the nodes representing temperature and molar concentration. 

The mesh step between individual nodes are h1 and h2 in the r- and z-axis directions, 

respectively. In contrast, the value of mesh step between nodes for the velocity vector 

component and for the other components (interval temperature, interval molar 

concentration, etc.) is equal to h2/2. This concept is demonstrated in Figure 6.19. 

 

 

Figure 6.19. Five-points star 

 

The derivations for the thermal analysis correspond to the procedure presented in 

Example 1 in Chapter 5. For this reason, it was decided to show only the final relationship 

for determining the interval temperature at the internal nodes: 

 

1 1 1 1 1
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, 1 1

1 1 1

, 1 , , 1
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2
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f f f f f
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c r h h
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 − − +
= + +



− +
+ 



 (6.87) 

where i = 2, 3, …, n – 1 and j = 2, 3, …, m – 1; n and m are the number of nodes. 

It should be remembered that in the case of an explicit scheme, the stability condition 

has to be respected (see Equation (5.22)). 
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In the next step, a relation was prepared to calculate the interval molar concentration 

at internal nodes. Three main components can be distinguished in the convection-

diffusion equation (Equation (6.72)). The first of them is the time derivative of the interval 

molar concentration, which is replaced by the differential quotient – see Equation (6.13). 

The second component is related to the diffusion phenomenon. Its derivation is presented 

in Example 1 in Chapter 6 (Subsection 6.2.1) – compare with Equations (6.14)-(6.18). 

The last element contains the velocity vector u for which the differential quotient has 

the following form [129]: 

 
( ) ( )

1 1

1 , 1 , 1

,
22

f f
e e

d df i j i je

d i j

uc uc
c

h

− −

− + −
−

  = u , (6.88) 

where i = 2, 3, …, n – 1 and j = 2, 3, …, m – 1. 

The convection-diffusion equation using the explicit scheme of the interval version of 

FDM can be expressed as follows: 

 
( ) ( )

( ) ( )
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1 1 1

4
1 1, , , 1 , 1

1 ,
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d d d df fi j i j i j i je ee
d df e i j

a e

c c uc uc
c c

t W h

− − −

− − + −

−
=

− −  = − −
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 , (6.89) 

and after transformation: 

( ) ( ) ( ) ( )
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 , (6.90) 

where i = 2, 3, …, n – 1 and j = 2, 3, …, m – 1, the individual a corresponds to  

e = {(i, j + 1); (i, j – 1); (i + 1, j); (i – 1, j)}, and: 
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 (6.91) 
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It is worth considering the multiplication product of the velocity vector component u 

and the interval molar concentration 𝑐𝑑̅
𝑒. It is calculated from the relationship [142, 163]: 
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 (6.93) 

Importantly, for Equation (6.90), it must satisfy the stability condition indicated 

in Equations (6.20)-(6.21). 

Another coupled phenomenon modelled numerically is the osmotic transport of CPA 

particles and water into intracellular solution across the cell membrane. In this case, 

only the differential quotient is introduced instead of the time derivative (compare with 

Equations (6.54)-(6.55)): 

 ( ) ( ) ( ) ( )
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= +  −  (6.95) 

As in previous examples, relationships for the boundary and initials conditions 

were derived: 

For Γ1 (j = m; i = 2, 3,…, n-1): 
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For Γ2 (j = 1; i = 2, 3,…, n-1): 
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For Γ3 (i = n; j = 2, 3,…, m-1): 
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For Γ4 (i = 1; j = 2, 3,…, m-1): 
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In addition, the following constant values are given in the entire domain  

(i = 1, 2, …, n  and j = 1, 2, …, m): 
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The following input variables were introduced into the numerical model: the time step 

Δt = 0.001 s, the mesh steps h1 = 4·10-4 m, h2 = 5·10-4 m and h2/2 = 2.25·10-4 m (the step 

between the nodes with the values of the velocity vector component u and 

the other variables). 

To solve the problem, an algorithm has been developed in the Embarcadero Delphi 

10.4 Community Edition environment (Embarcadero Technologies, Inc.). Figure 6.20 

provides a flowchart briefly describing the calculation procedures. 

Let us present the results obtained in the simulation. Figure 6.21 shows the change in 

interval temperature as a function of time for a selected portion of the step 3 in the cooling 

phase (a) and the step 4 in the warming phase (b). Obviously, the red line indicates the 

upper limit and the blue line the lower limit of the interval temperature. In all graphs 

relating to this example, the results were prepared for points with coordinates  

r = 0.0002 m and z = 0.0548 m (point A) and r = 0.0006 m and z = 0.00075 m (point B). 

Figure 6.22, on the other hand, presents the temperature distribution in the domain after 

20 s of step 7 of the cooling phase.  
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Figure 6.20. Flowchart of algorithm to simulate multiphysical coupled field  

(interval arithmetic) 
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(a) (b) 

Figure 6.21. Interval temperature as a function of time for a change (a) from 22 to −5 °C 

and (b) from −16 °C to −8.5 °C; point A – solid line, point B – dashed line 

 

  

(a) (b) 

Figure 6.22. Distribution of the interval temperature in 20 s of step 7 for cooling phase: 

(a) 𝑇̅− and (b) 𝑇̅+ 

 

Figure 6.23, in turn, depicts the curve of interval mass fraction of DMSO change as 

a function of time in the extracellular (a) and intracellular (b) space. The results were 

prepared for mean values of interval mass fraction for the entire simulation. In the graph, 

the solid and the dashed lines indicate the results for point A and for point B, respectively. 

It can be seen that there is a difference in the concentration of DMSO for points A and B. 

The point B, which is located closer to the inlet, faster reaches the concentration given by 

the bath solution. In addition, the curves with asterisks represent the mean results obtained 

for u = 0. It can be concluded that, for microfluidic systems, it is important to specify 

the appropriate input velocity for the bath solution. The lack of the velocity vector  

(u = 0) can cause the sample to be inadequately enriched in CPA and consequently, 

for example, induce the formation of ice crystals. 
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(a) (b) 

Figure 6.23. Mean value of interval mass fraction as a function of time over whole 

simulation time in: (a) extracellular solution; (b) intracellular solution;  

point A – solid line, point B – dashed line; asterisks – results for u = 0 

 

Figure 6.24 illustrates the history of interval mass fraction for a certain moment of step 

3 in the cooling phase in point A. Figure 6.25 shows maps of the mean values of interval 

mass fraction distribution for the extracellular (a) and intracellular (b) region, 

respectively, after 20 s of step 7 of the cooling phase. It can be seen that the two graphs 

are similar to each other, which confirms the fact that the magnitude of CPA concentration 

in the extracellular matrix directly influences the presence of CPA molecules  

inside the cells.  

The example also examines the response of cells to phenomena induced by osmotic 

transport. Figure 6.26 shows the progression of mean values of the interval number of 

DMSO moles (a) and the interval water volume (b) in the cells as a function of time.  

It can be seen that results in point A coincide with results obtained for case when u = 0. 

However, for point B, the discrepancy between these curves is more significant. 

This shows that the speed of CPA delivery has a greater impact for nodes located closer 

to the inlet. Figure 6.27 demonstrates interval number of DMSO moles (a) and the interval 

water volume (b) in the cells at a certain part of step 3 during the cooling phase.  

The normalised interval cell volume was determined on the basis of these two 

quantities (Figure 6.28). It can be seen that the cells of the biological sample are 

compressed and the dehydration phenomenon dominates for the longer duration of 

the process. 

Table 6.10 contains the comparison of the selected results at point A For two variants 

of the simulation when u ≠ 0 and u = 0. 
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(a) (b) 

Figure 6.24. Interval mass fraction as a function of time in extracellular (a) and 

intracellular (b) solution in certain moment of step 3 during cooling phase 

  

(a) (b) 

Figure 6.25. Distribution of mean values of the interval mass fraction for step 7 after  

20 s in the cooling phase for: (a) extracellular solution; (b) intracellular solution 

  

(a) (b) 

Figure 6.26. Mean values of interval number of DMSO moles (a) and interval water 

volume (b) in cell as a function of time over whole simulation time; point A –  

solid line; point B – dashed line; asterisks – results for u = 0 
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(a) (b) 

Figure 6.27. Interval number of DMSO moles (a) and interval water volume (b) in cell 

as a function of time in certain moment of step 3 during cooling phase 

 

 

 

 

Figure 6.28. Mean value of normalized interval cell volume over whole simulation time; 

point A – solid line; point B – dashed line; asterisks – results for u = 0 
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Table 6.10. Selected results for simulations when u = 0 and u ≠ 0 at point A 

P
h

a
se

 

Step 

𝛚̅𝒅
𝒆  

[%], 

when  

u = 0 

𝛚̅𝒅
𝒆  

[%], 

when 

u ≠ 0 

𝛚̅𝒅
𝒊  

[%], 

when 

u = 0 

𝛚̅𝒅
𝒊  

[%] 

when 

u ≠ 0 

𝑵̅𝒅  

×10-13 

[mol], 

when 

u = 0 

𝑵̅𝒅  

×10-13 

[mol], 

when 

u ≠ 0 

𝑽̅𝒘  

×10-15, 

when 

u =0 

[m3] 

𝑽̅𝒘  

×10-15 

[m3], 

when 

u ≠ 0 

C
o
o
li

n
g

 

1 
[0.25; 

0.25] 

[0.25; 

0.25] 

[0.18; 

0.18] 

[0.18; 

0.18] 

[0.29; 

0.29] 

[0.29; 

0.29] 

[2.14; 

2.14] 

[2.14; 

2.14] 

2 
[1.71; 

1.71] 

[1.71; 

1.71] 

[1.29; 

1.29] 

[1.29; 

1.29] 

[1.69; 

1.69] 

[1.69; 

1.69] 

[2.10; 

2.10] 

[2.10; 

2.10] 

3 
[7.34; 

7.38] 

[7.34; 

7.38] 

[4.08; 

4.13] 

[4.08; 

4.13] 

[2.05; 

2.07] 

[2.05; 

2.07] 

[1.88; 

1.88] 

[1.88; 

1.88] 

4 
[17.20; 

17.34] 

[17.20; 

17.34] 

[9.75; 

9.93] 

[9.75; 

9.93] 

[2.13; 

2.17] 

[2.13; 

2.16] 

[1.26; 

1.26] 

[1.26; 

1.26] 

5 
[24.27; 

24.53] 

[24.56; 

24.81] 

[14.60; 

14.93] 

[14.60; 

14.93] 

[2.13; 

2.18] 

[2.13; 

2.18] 

[1.04; 

1.04] 

[1.04; 

1.04] 

6 
[33.76; 

34.24] 

[36.00; 

36.38] 

[21.60; 

22.21] 

[23.50; 

24.05] 

[2.14; 

2.18] 

[2.14; 

2.18] 

[0.99; 

0.99] 

[0.99; 

0.99] 

7 
[41.66; 

42.38] 

[44.44; 

44.93] 

[28.38; 

29.32] 

[31.04; 

31.81] 

[2.14; 

2.18] 

[2.14; 

2.18] 

[0.95; 

0.95] 

[0.95; 

0.95] 

W
a
rm

in
g
 

1 
[47.21; 

47.91] 

[50.02; 

50.42] 

[33.88; 

34.90] 

[36.83; 

37.56] 

[2.14; 

2.18] 

[2.14; 

2.18] 

[0.93; 

0.93] 

[0.93; 

0.93] 

2 
[47.62; 

48.08] 

[50.45; 

50.69] 

[34.43; 

35.20] 

[37.42; 

37.98] 

[2.14; 

2.18] 

[2.14; 

2.18] 

[0.92; 

0.92] 

[0.92; 

0.92] 

3 
[45.15; 

45.53] 

[47.62; 

47.92] 

[32.03; 

32.70] 

[34.55; 

35.15] 

[2.14; 

2.18] 

[2.14; 

2.18] 

[0.92; 

0.92] 

[0.92; 

0.92] 

4 
[38.92; 

39.24] 

[39.81; 

40.06] 

26.21; 

26.74] 

27.02; 

27.50] 

[2.13; 

2.18] 

[2.13; 

2.18] 

[0.94; 

0.94] 

[0.94; 

0.94] 

5 
[34.09; 

34.35] 

[33.87; 

34.04] 

[22.00; 

22.43] 

[21.81; 

22.17] 

[2.12; 

2.17] 

[2.12; 

2.17] 

[0.95; 

0.95] 

[0.96; 

0.96] 

6 
[19.22; 

19.34] 

[18.08; 

18.13] 

[10.13; 

10.34] 

[9.32; 

9.48] 

[1.74; 

1.78] 

[1.69; 

1.73] 

[1.01; 

1.01] 

[1.02; 

1.02] 
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6.4.2. Example 3 – fuzzy numbers 

In the next example, coupled phenomena are modelled for a microfluidic system 

during the cryopreservation process applying fuzzy arithmetic. Using the previously 

prepared relationships, the governing equations are determined. 

Knowing that the problem involves a two-dimensional domain in a cylindrical system, 

the heat transfer equation including fuzzy numbers is of the form (compare with 

Equations (5.27) and (5.28)): 

 
( ) 2
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c k r

t r r r z

     
= +  
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, (6.101) 

or: 
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. (6.102) 

Meanwhile, the mass transfer in macroscopic terms is defined by the convection-

diffusion equation. Considering that the mass transfer is coupled to a fuzzy temperature 

via a fuzzy diffusion coefficient, this equation is expressed (see also Equations (6.26) 

and (6.70)): 
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 (6.103) 

where: 

 ( )
6π μ

B

s

k T
D T

r
= . (6.104) 

It should be noted that this time the velocity vector contains only one non-zero 

component relative to the z-direction (u = [0; u(z, t); 0]). The derivation of its value from 

the Navier-Stokes equations are shown in Equations (6.73)-(6.75). Finally, the following 

relationship has been obtained: 

 
( , )

0
u z t
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
=


. (6.105) 
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The phenomenon of osmotic transport is described using the 2-P formalism 

(compare with Equations (6.36)-(6.37)): 

 
( )

( ) ( )( )
d
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w e i
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= − − , (6.106) 
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d
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s

N t
P T A M M

t
= − . (6.107) 

The mathematical model has to be supplemented with boundary and initial conditions 

defined similarly to the case of interval numbers presented in Subsection 6.4.1 

(compare with Equations (6.78)-(6.85)). 

For the boundary Γ1, the boundary conditions are of the form: 
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For the boundary Γ2: 
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 (6.109) 

For the boundary Γ3: 
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For the boundary Γ4: 

 
( )

( )

, , 0,

, , 0.e

d

q r z t k T

q r z t D c





 = −  =


= −  =

n

n
 (6.111) 

 

  



6. Numerical examples: mass transfer 172 

However, the initial conditions are as follows: 
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The inputs to the mathematical model are given in Tables 6.6 and 6.8. In turn, 

the following thermophysical parameters were introduced as triangular fuzzy numbers:  

𝑘̃ = (0.492, 0.518, 0.544) W·m-1·K-1 and 𝑐̃𝑉 = (3.798·106, 3.924·106, 4.12·106) J·m-3·K-1. 

The bath solution properties were assumed to change according to the LT protocol by 

Yu et al. [187], as shown in Table 6.9. 

The numerical model for Example 3 using triangular fuzzy numbers was prepared on 

the basis of the explicit scheme of FDM. First, the time and geometric mesh was 

established in a similar way as for interval numbers. The time mesh consists of fixed and 

constant time steps determined according to the relation given in Equation (6.12), 

where the time step was taken as Δt = 0.001 s. A divergent grid was again used to 

discretise the domain (see Figure 6.19). This means that the nodes for the velocity vector 

component are separated by h2/2 from the other nodes. The mesh steps are equal to:  

h1 = 4·10-4 m, h2 = 5·10-4 m and h2/2 = 2.55·10-4 m.  

Using the explicit scheme of FDM, it is possible to determine the relationships for 

individual variables. As the derivations of these formulas are similar to previous 

considerations (see Subsection 6.4.1), it was decided to indicate only the final 

relationships. The fuzzy temperature at the internal nodes is calculated from the fuzzy 

heat transfer equation (compare with Equation (6.87)): 
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where i = 2, 3, …, n – 1 and j = 2, 3, …, m – 1; n and m are the number of nodes.  

In addition, a stability condition is given for the explicit scheme – see Equation (5.21). 

Using the fuzzy convection-diffusion equation, the fuzzy molar concentration at 

the internal nodes is determined: 
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where i = 2, 3, …, n – 1 and j = 2, 3, …, m – 1, the individual a corresponds to  

e = {(i, j + 1); (i, j – 1); (i + 1, j); (i – 1, j)}, while the fuzzy shape functions are defined 

as in Equation (6.19). The fuzzy mass diffusion resistances are as follows: 
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The multiplication rules for the velocity vector component and the fuzzy molar 

concentration are analogous to those presented in Equation (6.93).  

Obviously, for the fuzzy mass transfer equation, the stability condition have to be 

satisfied – see Equation (6.30). 

The last important element of the multiscale mathematical model of 

the cryopreservation process is the description of the osmotic transport phenomenon. 

The  cell response associated with the change the fuzzy number of DMSO moles and the 

fuzzy volume of water in the intracellular region is expressed by the relations: 
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where i = 1, 2, …, n and j = 1, 2, …, m. 

The procedure for determining the dependencies for boundary nodes is the same as for 

the previous example considering interval numbers (compare with Equations (6.96)-

(6.100)), therefore this part of the numerical model has been omitted for fuzzy numbers. 

Based on the mathematical and numerical model presented, an algorithm has been 

created in Embarcadero Delphi 10.4 Community Edition environment software 
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(Embarcadero Technologies, Inc.). The flow chart for this example is given  

in Figure 6.29. 

It should be mentioned that also in this example, α-cuts were used for fuzzy numbers, 

which allowed the simplification of the basic mathematical operations. Figure 6.30 

illustrates the variation depending on the value of the parameter α for the interval 

temperature (a), the interval mass fraction in the extracellular solution (b) as well as 

the interval number of DMSO moles (c) and the interval volume of water (d) in 

the intracellular solution. These are the charts for the 20 s simulation time of step 4 in 

the cooling phase. The results were prepared for the following node: r = 0.0002 m and  

z = 0.0548 m. It can be concluded that the previously indicated relationship is maintained, 

according to which the width of the interval decreases with increasing value of 

the parameter α. 

Figures 6.31-6.34 have been prepared to give a better view of certain parts of 

the simulation. Figure 6.31 depicts the interval temperature as a function of time for step 

3 of the cooling phase for α = 0.25 (a) and α = 0.75 (b) for a point with coordinates  

r = 0.0002 m and z = 0.0548 m. Similar curves are included in Figures 6.32-6.34, 

which represent the dependence as a function of time of the interval mass fraction 

(extracellular region), the interval number of DMSO moles, and the interval volume of 

water in the cell, respectively. It can be clearly seen that for α = 0.25 the width of 

the interval of the mentioned quantities is greater than for α = 0.75. Table 6.11 presents 

the selected results for α = 0.5 at given point. 
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Figure 6.29. Flowchart of algorithm to simulate multiphysical coupled field  

(fuzzy arithmetic) 
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(a) (b) 

  

(c) (d) 

Figure 6.30. Values of interval temperature (a), interval extracellular mass fraction (b), 

interval number of DMSO moles (c) and interval water volume (d) in cell after 20 s of 

step 4 in cooling phase for different values of parameter α (triangular fuzzy numbers) 

 

  

(a) (b) 

Figure 6.31. Interval temperature as a function of time for triangular fuzzy numbers:  

(a) α = 0.25; (b) α = 0.75 
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(a) (b) 

Figure 6.32. Interval extracellular mass transfer as a function of time for  

triangular fuzzy numbers: (a) α = 0.25; (b) α = 0.75 

 

  

(a) (b) 

Figure 6.33. Interval number of DMSO moles in cell as a function of time for  

triangular fuzzy numbers: (a) α = 0.25; (b) α = 0.75 

 

  

(a) (b) 

Figure 6.34. Interval water volume in cell as a function of time for triangular  

fuzzy numbers: (a) α = 0.25; (b) α = 0.75 
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Table 6.11. Selected results at given  point for α = 0.5 

Phase Step 𝛚̅𝒅
𝒆  [%] 

𝛚̅𝒅
𝒊  

[%] 

𝑵̅𝒅  

×10-13 [mol] 

𝑽̅𝒘  

×10-15 [m3] 

Cooling 

1 [0.25; 0.25] [0.18; 0.18] [0.29; 0.29] [2.14; 2.14] 

2 [1.71; 1.71] [1.29; 1.29] [1.69; 1.69] [2.10; 2.10] 

3 [7.34; 7.37] [4.09; 4.12] [2.05; 2.07] [1.88; 1.88] 

4 [17.24; 17.31] [9.80; 9.89] [2.14; 2.16] [1.26; 1.26] 

5 [24.62; 24.75] [14.68; 14.85] [2.15; 2.17] [1.04; 1.04] 

6 [36.10; 36.29] [23.64; 23.91] [2.15; 2.17] [0.99; 0.99] 

7 [44.57; 44.81] [31.24; 31.62] [2.15; 2.17] [0.95; 0.95] 

Warming 

1 [50.13; 50.32] [37.02; 37. 39] [2.15; 2.17] [0.93; 0.93] 

2 [50.51; 50.63] [37.56; 37.84] [2.15; 2.17] [0.92; 0.92] 

3 [47.69; 47.84] [34.70; 35.00] [2.15; 2.17] [0.93; 0.93] 

4 [39.87; 40.00] [27.14; 27.38] [2.15; 2.17] [0.94; 0.94] 

5 [33.91; 34.00] [21.90; 22.08] [2.13; 2.16] [0.96; 0.96] 

6 [18.09; 18.12] [9.36; 9.44] [1.70; 1.72] [1.02; 1.02] 

 

6.4.3. Summary and conclusions 

In summary, Example 3 presents a multiscale model of the cryopreservation process. 

The problem examines the behaviour of an articular cartilage sample placed in 

a cylindrical microfluidic system, which is invented according to the idea of  

Liu et al. [79]. 

First, the model describes the macroscale phenomena that result directly from 

the delivery of the bath solution via a microfluidic device. The parameters of the bath 

solution were again controlled according to the LT procedure according to Yu et al. [187] 

even though the system is not specifically dedicated to this cryopreservation technique. 

The fact of bath solution delivery was introduced into the mathematical model through 

the velocity vector component determined from the Navier-Stokes equations. 

Analysing mass transfer with fluid flow, in this case both diffusion and advection 

phenomena occur, defined by the convection-diffusion equation. As for the equation 

based on the Fick's second law, the convection-diffusion equation is weakly coupled to 
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the temperature distribution in the biological sample calculated from the Fourier equation. 

Information extracted from the macroscopic model is implemented into the microscopic 

model, which focuses on the exchange of components between the cells and 

the extracellular matrix (osmotic transport phenomenon). 

In this example, it is assumed that the thermophysical parameters are imprecisely 

defined because their deterministic values are determined experimentally. 

Therefore, two options were considered: thermophysical parameters introduced as 

interval numbers or triangular fuzzy numbers. 

Analysing the results, it is first worth comparing the values of the variables obtained 

for two cases: when u ≠ 0 and when u = 0. This kind of comparison can be seen in 

the charts prepared for the problem with interval numbers (see Figure 6.23). It can be 

observed that the discrepancy between these results is significant, mainly in nodes close 

to the inlet. This means that when modelling, for example, microfluidic systems in which 

the bath solution is supplied continuously, advection should be included in the mass 

transfer model. This is an important observation, as researchers are investigating 

the process of delivering the solution with CPA in relation to its significance  

on cell damage. 

In Example 3, it can be noted that the required temperature is achieved relatively 

quickly with respect to the individual steps of the LT protocol. In contrast, the mass 

fraction values in the extracellular matrix are close to the present value of 

the concentration of the bath solution reduced by a given factor of 0.9. 

Obviously, the values for u = 0 are underestimated and do not coincide so well with 

the concentration of the bath solution.  

The products of the macroscopic model indicate directly into the results of 

the microscopic model. It can be stated that the cell volume changes due to osmotic 

transport. The crucial condition is the range of the normalised volume, which is equal to 

0.46 – 2.49 [187], as already mentioned in Example 2 (Subsection 6.3). One can say that 

in this case the condition is met. 

Finally, let us compare the results of the problems for interval and fuzzy numbers, 

which coincide with each other. It can be observed that the fuzzy results for the α = 0 are 

the same as for interval numbers. However, it should not be forgotten that the nature of 

the results obtained is different due to different definitions, for example the membership 

function of them. 
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In further work on the demonstrated model, it is worth exploring a different protocol 

to control the temperature and concentration of the bath solution. This involves 

consideration of the phenomenon of phase transitions and water crystallisation in 

the sample, including analysis of their nucleation and growth. In addition, the model can 

be supported by estimates of the changes in freezing temperature that occur with 

variations in the concentration of CPA.  

 



 

7. Conclusions and further research recommendations 

Theoretical considerations and results of calculations presented in this dissertation lead 

to the following conclusions: 

1. Interval and fuzzy arithmetic are effective instruments for simulating transport 

phenomena occurring in the cryopreservation process. These methods make 

it possible to introduce into a mathematical model a set of imprecisely and 

inaccurately defined parameters, for example experimentally determined quantities 

describing the thermophysical properties of a given biological tissue, which often 

depend on many factors, such as age, sex, etc. 

2. In the literature, phenomena that occur during cryopreservation are mainly 

described based on deterministic approach. Behaviour of biological structures is 

rather random and stochastic, therefore it can be stated that deterministic models 

are a simplification of natural occurrences. While, stochastic models can be 

implemented to investigate those problems, which are unfortunately time-

consuming. The dissertation presents a novel approach by introducing interval or 

fuzzy numbers into the model. Consequently, the results are obtained in the form 

of certain sets (intervals) containing the correct values of computations. 

3. Cryopreservation is a complex process that involves many coupled multiphysical 

phenomena. The complete model should primarily consider heat and mass transfer 

as well as osmotic transport. It can be noted that Chapter 5 of the work is mainly 

related to simulation of thermal phenomena, including modelling of phase 

transitions and crystallisation, while Chapter 6 is devoted to mass transfer at 

the macroscale and osmotic transport (molecular transfer at the microscale). 

Undoubtedly, one can observe that the model of the cryopreservation process is 

a multiscale problem. 

4. Example 1 in Chapter 5 (Subsection 5.2) and Examples 1 and 2 in Chapter 6 

(Subsections 6.2 and 6.3) demonstrate a multiscale cryopreservation model of 

an articular cartilage sample using the LT protocol. The particular conclusions are 

as follows: 
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4.1. Analysis of the temperature distribution (Subsection 5.2) shows that in 

the biological tissue, the temperature reaches the desired value relatively 

quickly compared to the duration of each step. 

4.2. In contrast, when considering mass transfer (Subsection 6.2), it can be noted 

that there are discrepancies in the obtained results compared to data from 

the literature [116, 187]. This may be caused, for example, by the proposed 

method of determining the mass diffusion coefficient. 

4.3. The transport of moles of DMSO and water across the cell membrane 

(osmotic transport, Subsection 6.3) was also discussed. Changes in 

the volume of the cells (chondrocytes) are an indicator of their damage during 

the process. In this case, the condition, which assumes that the change in 

normalized volume must be in the range of 0.46 – 2.49 of the initial cell 

volume, was fulfilled. 

5. Example 2 in Chapter 5 (Subsection 5.3) simulates thermal processes including 

phase transformations by modifying thermophysical parameters. The study was 

conducted for slow freezing and vitrification. Depending on the method chosen, 

the width and timing of the intermediate region varies. The results may suggest, 

for example, that for slow freezing there is a high risk of cell-damaging ice crystal 

formation.  

6. Example 3 in Chapter 5 (Subsection 5.4) presents heat transfer analysis coupled 

with crystallisation problem. In addition, the thermophysical parameters are defined 

by temperature-dependent polynomial function. The received results coincided 

with simulation data from literature [195]. In this example, the marker of cell 

damage was the maximum degree of crystallisation (<10-6), which depended on 

the time of passage through the DTR. During cooling, this condition was satisfied, 

while during heating it was temporarily exceeded due to the presence of 

recrystallisation phenomena. 

7. Example 3 in Chapter 6 depicts the multiscale model of cryopreservation performed 

in the microfluidic system. This issue belongs to the group of coupled multiphysics 

problems. It considers not only heat and mass transfer with osmotic transport, 

but also fluid flow. Because of the delivery method of the bath solution to 

the sample placed in the microchamber, the mass transport equation needs to 

include the component with advection phenomenon. In this case, no obstacle is 

presented in the microchannel, therefore the velocity is constant over the entire 
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domain. The results were compared with an example without a velocity vector. 

The obtained discrepancies show that for microfluidic systems, the introduction of 

a velocity vector into the mass transport model is crucial to the correctness of 

the calculations. 

 

Based on the work completed, the following further research directions can  

be proposed: 

▪ Introduce of temperature-dependent thermophysical parameters as polynomial 

functions into presented mathematical models. Currently, this approach is only used 

in Example 3 in Chapter 5 (Subsection 6.4). 

▪ Preparation of mass transfer and osmotic transport analyses for cryopreservation by 

slow freezing and vitrification. In Chapter 6, the researches were performed only 

for the LT protocol. 

▪ Application of other governing equations of heat and mass transfer and osmotic 

transport for modelling cryopreservation. It would be worthwhile to analyse 

whether fuzzy and interval arithmetic work effectively, for example,  

for the Cattaneo-Vernotte equation (heat transfer) or the Kedem-Katchalsky 

equation (osmotic transport). 

▪ Analysis of other examples of cryopreserved biological samples. In the dissertation, 

among others, the results of the numerical analysis are presented for a sample of 

articular cartilage. However, experimental research is also performed on many 

other biological materials for which numerical models could be supplemented. 

▪ Complete the simulation of the crystallisation process with a study on nucleation. 

This is related to the analysis of the activation energy that induces nucleation and 

growth. It also includes an assessment of the nucleation rates and changes in the ice 

crystals radius (ice crystals growth). 

▪ Determination of the freezing point of the samples, which changes during 

cryopreservation by exposure to CPA. It would verify whether a cell-dangerous 

crystallisation process occurs for the specified parameters. 

▪ Extension of a two-dimensional model to a three-dimensional model.  
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Streszczenie 

Niniejsza praca poświęcona jest modelowaniu wielkoskalowemu sprzężonych ze sobą 

zjawisk, które zachodzą podczas kriokonserwacji. Jest to proces, który polega na 

spowolnieniu aktywności materiału biologicznego poprzez obniżenie temperatury 

poniżej temperatury fizjologicznej, a następnie na przywróceniu funkcji 

kriokonserwowanych tkanek lub komórek, zachowując równocześnie ich podstawowe 

czynności życiowe. W celu uniknięcia negatywnych skutków procesu stosuje się związki 

chemiczne zwane krioprotektantami oraz regulację szybkości chłodzenia. W pracy 

zaprezentowano przykładowe metody kriokonserwacji, takie jak wolne zamrażanie, 

witryfikacja oraz protokół „śledzenia krzywej likwidus”. Przedstawiono również 

zjawiska transportowe, takie jak: przepływ ciepła wraz z krystalizacją, przepływ masy  

w kontekście dyfuzji masy i przepływu cieczy oraz transport osmotyczny. W rozprawie 

zamieszczono przykładowe symulacje numeryczne poszczególnych zjawisk 

transportowych. Rozpatrywano przepływ ciepła opisany równaniem Fouriera lub 

równaniem Pennesa. Rozważano również zagadnienia związane z przemianami 

fazowymi oraz krystalizacją kryształów lodu, w której stopień krystalizacji oszacowano 

za pomocą nieizotermicznego równania kinetycznego Boutrona-Mehla. W pracy badano 

również przepływ masy sprzężony z zagadnieniem termicznym. Wykorzystując równanie 

konwekcji-dyfuzji lub drugie prawo Ficka w przypadku pominięcia adwekcji, 

analizowano problem dyfuzji cząsteczek z roztworu kąpieli do roztworu macierzy 

zewnątrzkomórkowej. W pracy zawarto również opis zjawiska transportu osmotycznego 

za pomocą modelu dwuparametrycznego, który pozwala oszacować zmianę objętości 

komórek wywołaną wymianą cząsteczek wody i krioprotektanta pomiędzy roztworami 

zewnątrz- i wewnątrzkomórkowym. Występujący w pracy model numeryczny oparto na 

metodzie różnic skończonych uzupełnionej o arytmetykę interwałową oraz rozmytą,  

w której wykorzystano koncepcję α-przekrojów. W modelu matematycznym 

wprowadzono w miejsce parametrów deterministycznych liczby rozmyte oraz 

interwałowe, biorąc pod uwagę ich nieprecyzyjność. Opracowano algorytmy i autorskie 

programy komputerowe w środowisku Embarcadero Delphi 10.4 Community Edition.  



 

Abstract 

This thesis is devoted to large-scale modelling of the coupled phenomena that occur 

during cryopreservation. This is a process that involves slowing down the activity of 

biological material by lowering the temperature below physiological temperature and 

then restoring the function of the cryopreserved tissues or cells, while preserving their 

basic vital activities. In order to avoid the negative effects of the process, chemical 

compounds called cryoprotectants and regulation of the cooling rate are used. This paper 

presents examples of cryopreservation methods such as slow freezing, vitrification and 

the “liquidus tracking” protocol. Transport phenomena such as heat transfer with 

crystallisation, mass transfer in the context of mass diffusion and fluid flow, and osmotic 

transport are also presented. The work includes examples of numerical simulations of 

individual transport phenomena. Heat transfer described by the Fourier equation or  

the Pennes equation was considered. Issues related to phase changes and  

the crystallisation of ice crystals, in which the degree of crystallisation was estimated 

using the non-isothermal Boutron-Mehl kinetic equation, were also considered. The work 

also investigated mass transfer coupled to the thermal problem. Using the convection-

diffusion equation or Fick's second law in the case of neglecting advection, the problem 

of diffusion of molecules from the bath solution to the extracellular matrix solution was 

analysed. The paper also includes a description of the osmotic transport phenomenon 

using a two-parameter model to estimate the change in cell volume induced by  

the exchange of water and cryoprotectant molecules between the extracellular and 

intracellular solutions. The numerical model appearing in this paper is based on the finite 

difference method supplemented by interval and fuzzy arithmetic, in which the concept 

of α-cuts was used. In the mathematical model, fuzzy and interval numbers were 

introduced in place of deterministic parameters, taking into account their imprecision. 

Algorithms and original computer programmes were developed in the Embarcadero 

Delphi 10.4 Community Edition environment.  
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