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1 Introduction

Unsupervised clustering is a group of algorithms that belong to scienti�c areas of data anal-

ysis, machine learning and arti�cial intelligence. They aim to solve problems of assigning a

certain number of objects/items into groups based on some similarity/distance criterion/met-

rics between objects.

Unsupervised clustering is a vital and fast-developing area with numerous applications in

current data science algorithms. In scienti�c data applications, unsupervised clustering can

be de�ned as an independent problem, with suitably speci�ed quality criteria or as a part of

some data analysis pipelines with many possible functions, e.g., data �ltering, estimation of

data structure, computing of some quality indices of algorithms or their parts [1]. There are

many approaches to constructing unsupervised clustering algorithms [2, 3], and many surveys

devoted to comparisons between di�erent unsupervised algorithms [4].

Despite very intensive research already done in the area, problems still require attention

and more profound studies. One of the problems data scientists often face in their research

work very often encounter is the choice of the unsupervised clustering algorithm. The choice

becomes di�cult with many available methods often accompanied by software implementa-

tions. The expensive and tedious solution is implementing and comparing many unsupervised

clustering algorithms for a studied problem. The possibility which can support a decision on

the choice of the algorithm is using results of studies comparing classes of algorithms. Two

classes de�ned in [5] are model-based clustering algorithms versus heuristic clustering algo-

rithms. In this thesis, we distinguish two classes of unsupervised clustering algorithms, which

more rigorously are de�ned as follows:

- Model-based Algorithms: unsupervised clustering algorithms based on mixtures of multi-

variate distributions of feature vectors/observations vectors,

- Distance-based Algorithms: unsupervised clustering algorithms based on distance func-

tions de�ned for pairs of feature vectors/observations vectors.

The above-de�ned classes correspond to the algorithms de�ned in [5]. The aim of the study

in this thesis, as speci�ed below, is a comparison of algorithms for these two classes.

1.1 Aim

The PhD project's aim, realised and described in this document, was to derive, implement and

compare models and related algorithms of unsupervised clustering. The work emphasises the

usage of model-based algorithms using multivariate mixture distributions. We compare them

1



1.2. THESES CHAPTER 1. INTRODUCTION

with distance-based algorithms, k-means, k-medoids, agglomerative hierarchical clustering

and fuzzy c-means.

We implemented two model-based unsupervised clustering algorithms and four distance-

based unsupervised clustering algorithms to achieve this aim. The �rst model-based algo-

rithm, Gaussian Mixture EM, is based on a multivariable mixture of normal distributions.

The second one, Multinomial Mixture EM, is based on a mixture of multinomial distributions.

The naming convention with EM stresses that these clustering algorithms rely numerically on

using expectation maximisation (EM) algorithms for mixtures [6]. Distance-based algorithms

are agglomerative hierarchical clustering, k-means, k-medoids, and fuzzy c-means.

Along with implementing model-based and distance algorithms, we applied those algorithms

to several data sets. Part of the data was simulated mixtures of multivariable distribution,

both gaussian and multinomial. The other part, and most data, consists of actual data

downloaded from various, mostly publicly available sources. Having the clustering results, to

quantify them, we have used a few di�erent metrics. Those metrics included the Adjusted

Rand Index, Simple Matching Coe�cient with weighted variant, Weighted Jaccard index,

Balanced Accuracy and metrics based on Beta-Binomial conjugate distribution. Then, we

presented our �ndings graphically, along with a brief description of the results.

1.2 Theses

1. Unsupervised clustering methods based on mixtures of distributions achieve optimal

performance when data statistics are consistent with actual distributions.

2. Unsupervised clustering based on distributions' mixtures is competitive compared to

distance-based methods.

3. Applicability of clustering based on mixtures of distributions to practical problems relies

on elaborating algorithmic implementation specialized for large sizes of datasets.

1.3 Original elements of the thesis and publications related to the

thesis

The original elements and contributions of the submitted theses are as follows:

� Formulating algorithms for decomposing mixtures of multivariable Gaussian and multi-

nomial distributions

� Elaborating software tools in an R language environment implementing unsupervised

clustering algorithms based on mixtures of Gaussian and multinomial distributions. Op-

timizing the elaborated implementation such that it enables clustering of large datasets

or order of hundreds of thousands of features/observations.

2



CHAPTER 1. INTRODUCTION

1.3. ORIGINAL ELEMENTS OF THE THESIS AND PUBLICATIONS RELATED TO THE

THESIS

� Based on code sources available in the literature, implementing several distance-based

clustering algorithms.

� Elaborating software tools implementing a collection of quality indices of clustering in

the R language environment

� Elaborating software tools for simulating multidimensional data of Gaussian or multi-

nomial distributions

� Creating a collection of the real dataset for comparison study with possible variable

structure and sizes of practical importance

� Performing comparison study for all analyzed clustering algorithms for the real and

simulated dataset

Publications/conference presentation related with this thesis are:

Kania, M., Pola«ski, A., Unsupervised clustering for detection of gene expression

patterns in human cancers. 2022 , Recent Advances in Computational Oncology

and Personalized Medicine, Volume 2, Silesian University of Technology Publish-

ing House

The publication consist of the comparison of distance and model based algorithms in the

gene expression data of di�erent human cancers. We compared how various unsupervised

algorithms can distinguish di�erent cancer patterns.

Unsupervised clustering of gene data of TCGA patients by using mixtures of

multidimensional Gaussian distributions,5th Advanced Online & Onsite Course

on Data Science & Machine Learning | August 22-26, 2022, Castelnuovo Berar-

denga (Siena) Tuscany, Italy

This conference presentation describes the use of Gaussian Mixture Models, along with

distance based algorithms, to compare and �nd patterns in various TCGA expressions.

In the papers below, unsupervised clustering techniques were used / implemented as parts

of data analysis scenarios.

Mika, J., Tobiasz, J., Zyla, J., Papiez, A., Bach, M., Werner, A., Kozielski, M.,

Kania, M., Gruca, A., Piotrowski, D. and Sobala-Szczygieª, B., 2021. Symptom-

based early-stage di�erentiation between SARS-CoV-2 versus other respiratory

tract infections�Upper Silesia pilot study. Scienti�c reports, 11(1), pp.1-13.

Henzel, J., Tobiasz, J., Kozielski, M., Bach, M., Foszner, P., Gruca, A., Kania,

M., Mika, J., Papiez, A., Werner, A. and Zyla, J., 2021. Screening Support

System Based on Patient Survey Data�Case Study on Classi�cation of Initial,

Locally Collected COVID-19 Data. Applied Sciences, 11(22), p.10790.

Kania, M., Szymiczek, K., Labaj, W., Foszner, P., Gruca A., Szcz¦sna A.,

Polanski A., Computational methods for modelling cancer clonal evolution, 2022,

Silesian University of Technology 3
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(in press), POB2, Arti�cial Intelligence and Data Processing, Silesian University

of Technology Publishing House.

1.4 Code availability

The code is available on the github platform, by the link or code QR below.

To install the package, R should be installed. It is free, open-source programming environ-

ment, available on the website: https://www.r-project.org/

Commands to execute after opening R:

install.packages(“devtools”)

install_github("callimae/multivarEM")

4



2 Model-based algorithms

In this chapter, we describe model-based, unsupervised clustering algorithms implemented

in the thesis using mixtures of multivariable distributions. In the beginning, we list the

probability distribution used in modelling. Then, we introduce models of mixtures and re-

lated concepts. Finally, we present algorithms constructed with the help of the expectation

maximization (EM) method.

2.1 Foundation

2.1.1 Probability distribution models

Probability distributions more or less accurately re�ect natural phenomena around the world.

The basis for unsupervised clustering is parametric, multivariate probability distribution

models, which we described in this subsection. Two models are suitable and often applied in

multivariate distributions, multivariate Gaussian and multinomial distributions.

2.1.1.1 Univariate and Multivariate Gaussian distribution

Univariate Gaussian (normal) distribution The normal distribution has two parameters:

µ the mean value and σ, the standard deviation. The mathematical notation of normal

distribution is X ∼ N(µ, σ2). Independently of mean and standard deviation values, all

normal distributions have symmetric, bell-curved shapes.

The standard normal distribution is the normal distribution which has a mean equal to

0 and a standard deviation equal to 1. The following formula shows the probability density

function[7]:

f(x, µ, σ2) =
1√
2πσ

exp
−(x−µ)2

2σ2 , (2.1)

where: x is observation, µ is a mean, and σ is standard deviation

Multivariate Gaussian (normal) distribution The multivariate normal distribution is a

generalization of the univariate normal distribution. It may have n dimensions where n ∈
{0,∞}. The multivariate normal distribution plays a fundamental role in a multivariate

analysis, thanks to its various properties. While it is true that real data is never exactly

multivariate normal, it is often helpful to use normal density because of its close approximation

to the �true� population distribution.

5



2.1. FOUNDATION CHAPTER 2. MODEL-BASED ALGORITHMS

Due to a central limit theorem, the sampling distributions of many multivariate statistics

are approximately normal, despite of the form of the parent population. An n-dimensional

random variable X with mean vector and covariance matrix Σ is said to have a non-singular

multivariate normal distribution when its density function is of the form[7]:

f(x, µ,Σ) =
1

(2π)M/2|Σ|1/2
exp−

1
2
(x−µ)TΣ−1(x−µ) (2.2)

where:

x = [x1, x2...xM ] - a vector of observations

µ = [µ1, µ2, . . . , µM ] - a vector of means

Σ =


σ11 σ12 · · · σ1M

σ12 σ22 · · · σ2M
...

...
. . .

...

σM1 σM2 · · · σMM

 is a covariance matrix

|Σ| - denotes matrix determinant

xT - stands for vector x transposition.

Multivariable diagonal normal distribution In the case of normal distributions, an im-

portant aspect is a high requirement for computational power and memory requirement for

multidimensional cases. If we have an observation given by a vector with 1000 = 103 entries,

the size of the covariance matrix will be dim(Σ) = 103 × 103, which requires one million

records of memory space. This calls for more e�cient approaches to handling this kind of

data.

We de�ne multivariable diagonal normal distribution as a multivariable normal distribution

with a diagonal covariance matrix. Elements of observation vector x are uncorrelated, so we

use the index �U � to distinguish it. Its probability density function is therefore de�ned as

follows

fU (x, µ,ΣU ) =
1

(2π)M/2|ΣU |1/2
exp−

1
2
(x−µ)TΣ−1

U (x−µ) (2.3)

where:

x = [x1, x2...xM ] - a vector of (uncorrelated) observations,

µ = [µ1, µ2, . . . , µM ] - vector of means,

ΣU =


σ21 0 · · · 0

0 σ22 · · · 0
...

...
. . .

...

0 0 0 σ2M

 - a diagonal covariance matrix,

|ΣU | - denotes matrix determinant,

Σ−1
U - superscript −1 denotes inverse of the matrix,

xT - stands for vector x transposition.
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CHAPTER 2. MODEL-BASED ALGORITHMS 2.1. FOUNDATION

2.1.1.2 Bernoulli, binomial and multinomial distribution

In order to present multinomial distributions, we begin with Bernoulli and binomial distri-

butions. The reason is that the binomial distribution is a generalization of Bernoulli and a

multinomial generalization of the binomial distribution. We can express the values of those

distributions as non-negative integers.

Bernoulii distribution If we consider a probabilistic experiment with two outcomes, it is

called a Bernoulli trial. The result might be a success with a probability of p or failure with

a probability of 1 − p. An intuitive example of a Bernoulli trial might be a quality check of

products in the factory. It is either a success or a failure.

Binomial distribution Binomial distribution describes results of repeating Bernoulli trials

with probability of success p. The most common example is tossing a coin a �nite number of

times and more than one. We can assume that the tail is a success and the head is a failure.

The following formula gives a binomial distribution probability function[7]:

Pr(k, n, p) =

(
n

k

)
pk(1− p)n−k, n = 0, 1, . . . , n. (2.4)

in the above:(
n

k

)
- binomial coe�cient,

n - number of trials,

k - number of successes,

pk - probability of success,

(1− p)n−k - probability of failure.

Multinomial distribution We can consider multinomial distribution as a multidimensional

generalization of the binomial distribution. It inherits binomial properties and introduces

new ones. The name �multi� suggests that we have more than two categories. A typical

example of multinomial distribution is rolling a die a �xed number of times. Whether the die

is fair or not, each side, called category, has some probability p. As a di�erent case, consider

testing the durability of an intricate car component under crash conditions. The part may be

damaged in di�erent ways, each with distinct probabilities. We could apply the multinomial

distribution to estimate the probability of a particular combination of failures.

The following equation describes the multinomial distribution probability function [8]:

Pr(N, x, p) =
N !

n1! · · ·nM !
pn1

1 · · · p
nM

M = N !

M∏
i=1

(
pni

i

ni!

)
, (2.5)

n1 + n2 + ...+ nM = N (2.6)
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p1 + p2 + ...+ pM = 1 (2.7)

in the above:

N - the number of trials,

n = [n1, n2...nM ] - one observation vector of recorded counts of categories,

p = [p1, p2, ...pM ] - a vector of probabilities of categories

2.1.1.3 Mixture distributions

It is a worth reading story about mixtures related to the biologist Raphael Weldon and

mathematician Karl Pearson, which presents probably the �rst mathematical approach to a

mixture distribution [9].

A straightforward but less common example of the mixture distribution might be shown

upon di�erent races of dogs. There is a signi�cant di�erence between, e.g. labrador and

chihuahua. Those di�erences account for the weight, height, but also size of organs as well.

If we combine such measurements from many dogs, we will receive a mixture of dog breeds.

Then, if we would like to describe such data with single multivariate normal distribution, we

will lose much information.

In general, mixture models provide a broader spectrum of information than single distri-

butions.

In medicine, they might be used to analyze gene expression data or in early drug develop-

ment [10]. They are also successfully used to approximate speci�city and sensitivity in the

case of a lack of the golden standard. Albeit, mixture models are broader than just biology

and medicine. Fields like astronomy, psychology and engineering, to name a few, also bene�t

from them. Their �exibility and usefulness are described in several books [11][10]

A mixture distribution is a mixture of at least two distributions of the same or di�erent

types. As an example, the discrete case of distribution of weight in the population of adults

might be expressed as follows:

w(weight) = p(man) ∗ wman(weight) + p(woman)wwoman(weight|woman)

Where the probabilities p(man), p(woman) are also called mixing probabilities or propor-

tions wman and wwoman are probability density functions of weights of man and woman.

More formally, if a random variable or random vector x, takes values in sample space, Ω,

a K component mixture distribution f(x) is represented as follows:

f(x) = α1f1(x) + · · ·+ αKfK(x) (x ∈ Ω) (2.8)

where:

αj > 0, j = 1, . . . , K; α1 + · · ·αK = 1, - mixing proportions or component weights,

fj(x), j = 1, . . . , K - probability density functions of K component distributions

8
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Most often component densities have forms dependent on parameters,

fk(x) = fk(x | Θk)

thus we write

f(x|Θ) = α1f1(x | Θ1) + · · ·+ αKfK(x | ΘK) =

K∑
k=1

αkfk(x | Θk) (2.9)

where:

αk- mixing proportion of the k-th component,

Θk- parameters of of the k-th component,

fk(x | Θk) - probability density function of data x given parameters Θk

Mixtures of normal distributions Mixtures that consist of only normal distributions are

either univariate or multivariate. Simply put, a mixture of univariate distribution consists

of one only feature, while multivariate has many. Sometimes we also distinguish bivariate

normal distributions.

Mixture of univariate normal distribution It is a mixture where each component that

belongs to K follows its respective normal distribution.

A typical example of the mixture of the univariate normal distribution is the height of

some populations. However, how we will create and interpret clusters depends on many

circumstances. Let us consider the situation when we want to distinguish between a man's

height and a woman's. When our data is labelled, we can use statistical tests to check if

there are statistically signi�cant di�erences. In the case of unlabelled data, we can no longer

rely on statistical tests. We could no longer ask about di�erences between the two groups, as

we are presented with one feature. At this point, we want to answer whether there are two

subgroups in the given data. The potential trap here is that we will �nd as many clusters as

we want. We need further analysis to verify how signi�cant those results are for our research.

f(x|µ, σ, α) =
K∑
k=1

αkfk(x|µk, σk) (2.10)

where:

µ = [µ1, µ2, ...µK ],

σ = [σ1, σ2, ...σK ],

α = [α1, α2, ...αK ],

parameters of components are:

µk - a mean of the k-th component

σk - a standard deviation of the k-th component,

αk - a mixing proportion of the k-th component.
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Mixture of multivariate normal distributions Each component is a multivariable normal

density function. The probability density function of the mixture is as follows

f(x|µ,Σ, α) =
K∑
k=1

αkfk(x|µk,Σk) (2.11)

where:

arguments of the density functions are:

µ = [µ1, µ2, ...µK ] - a matrix composed of vectors of means,

Σ = [Σ1,Σ2, ...ΣK ] - a list of covariance matrices,

α = [α1, α2, ...αK ] - a vector of mixing proportions.

parameters of components are:

µk = [µk1, µk2, ...µKM ] - a vector of means of k-th component,

Σk =


σk,11 σk,12 · · · σk,1M

σk,12 σk,22 · · · σk,2M
...

...
. . .

...

σk,M1 σk,M2 · · · σk,MM

 - a covariance matrix of k-th component,

αk - a mixing proportion of k-th component

Mixture of diagonal multivariate normal distributions For a reason previously stated,

we focus on the particular case of multivariable normal distributions - diagonal multivariable

normal distribution. The probability density function of the mixture is as follows:

f(x|µ,ΣU , α) =

K∑
k=1

αkfk(x|µk,ΣU
k ) (2.12)

where:

f(x|µ,ΣU , α) - is probability density function of normally distributed random variable X

given parameters,

arguments of the density function on the left hand side are:

µ = [µ1, µ2, ...µK ] - a matrix composed of vectors of means,

ΣU = [ΣU
1 ,Σ

U
2 , ...Σ

U
K ] - a list of covariance matrices,

α = [α1, α2, ...αK ] - a vector of mixing proportions

parameters of components are:

µk - a vector of means of k-th component,

ΣU
k =


σ2k,1 0 · · · 0

0 σ2k,2 · · · 0
...

...
. . .

...

0 0 0 σ2k,M

 - a diagonal covariance matrix of k-th component,

αk - a mixing proportion of k-th component.
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Mixtures of multinomial distributions

Mixtures of binomial distributions Binomial mixtures consist of more than one binomial

distribution and can be described by the following probability function

Pr(l, N, p) =

K∑
k=1

αk

(
n

k

)
pkk(1− pk)

n-k, l = 0, 1, . . . , n, (2.13)

where:(
n

k

)
- a binomial coe�cient,

n - number of trials,

k - number of successes,

αk - a mixing proportion of k-th component,

plk - a probability of success for k-th component,

(1− pk)
N−l - a probability of failure for k-th component

The above formula described one observation (i.e., l successes) from a mixture of k binomial

distributions. Assume that we record D observations l1, l2,..., lD.

Mixtures of multinomial distribution Below we present the formula for the probability

function of K component mixtures of multinomial distributions for one observation:

pn1,n2,...,nM =
N !

n1!n2! . . . .nM !

K∑
k=1

αkp
n1

k1p
n2

k2 · · · p
nM

kM (2.14)

n1 + n2 + ...+ nM = N (2.15)

p1 + p2 + ...+ pM = 1 (2.16)

in the above:

N - the number of observations

K - the number of components in the mixture

αk - a mixing proportion of k-th component

n = [n1, n2...nM ] - a vector of observed counts of observed categories,

pk = [pk1, pk2, ...pkM ] - a vector of probabilities of categories for k-th component

2.2 EM algorithm

Clustering methods are based on a matrix of similarity or dissimilarity measures between

objects. The purpose was to segregate data so that objects in one group were similar to

themselves but di�erent from the other groups. However, this approach still lefts many
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questions unanswered. Which clustering method should we use for particular data? What to

do with outliers or objects that did not fall into groups? How do we assess uncertainty about

clustering results?

A statistical approach that uses probability distributions might address some of those ques-

tions. We can use it for clustering problems using the �nite mixture model (FMM). Inside

this model, each mixture component is described by a probability distribution. One of the

�rst successful methods that used FMM and answered some of the questions was presented in

the 1950s by Paul Felix Lazarsfeld. The model was called the latent class model, and it used

discrete multivariate data as input. The model was based on the assumption that within each

group, its characteristics were statistically independent [(Lazarsfeld, 1950a,c)]. In 1963, Wolfe

introduced a model for clustering continuous data, along with the software NORMIX that he

was developing. It allowed us to analyze mixtures of multivariate normal distributions. In

his proposal, the estimation of model parameters was done by maximum likelihood using the

Expectation-Maximization algorithm. It was followed with relevant theory in the next years

(Wolfe, 1965, 1967, 1970) [5].

EM gained worldwide popularity after publishing it in 1977 by Arthur Dempster, Nan

Laird, and Donald Rubin. The article �Maximum Likelihood from Incomplete Data via EM

algorithm� presented a structured and general way to parameter estimation method based on

the maximum-likelihood method. The algorithm was called EM since each step consisted of

an expectation step, followed by a maximization step.[12].

The Expectation-Maximization (EM) algorithm is an iterative method for �nding maximum

likelihood (ML) estimates in problems with latent or hidden variables. The main idea behind

EM algorithms is existing of a hidden or latent variable which is never directly observed. It is

often referred to as a factor that combines several other variables and indicators. An example

of such a hidden variable is the existence of groups among observations. The algorithm itself

alternates between two steps: the E-step (Expectation), where the expected value of the

latent variables given the current estimates of the parameters is computed. Then is the M-

step (Maximization), where the parameters are re-estimated based on the expected values of

the latent variables calculated in the E-step. These two steps are repeated until convergence

occurs, i.e., the parameters' estimates stop changing.

The EM algorithm has become popular in machine learning and statistics because it can be

applied to many models. The list includes Gaussian mixture models, hidden Markov models,

missing data, truncated distributions, and censored or grouped data. As McLachlan points

out, also in statistical models such as random e�ects, convolutions, log-linear models, latent

class and latent variable structures. However, one of the limitations of the EM algorithm

is that it can be sensitive to the initial parameter estimates and may converge to a local

maximum of the likelihood function instead of the global maximum [6].
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2.3 Multivariate Gaussian Mixture EM

2.3.1 Derivation of Univariate Gaussian Mixture EM

The steps below present the derivation of the Univariate Gaussian Mixture EM.

2.3.1.1 Likelihood and log-likelihood of the observed data

After observing some x = [x1, x2, ...xN ] that is a vector of observations containing N obser-

vations, the likelihood will be written as follows:

lO(x|µ, σ, α) =
N∏
i=1

K∑
k=1

αkfk(xi, µk, σk) (2.17)

The notation of lO indicates that the function describes the likelihood of the observed

data. Then the log-likelihood function of the observed data will take the following form,

LO(x|µ,Σ, α) =
N∑
i=1

ln

[
K∑
k=1

αkfk(xi, µk, σk)

]
(2.18)

However, the above log-likelihood function cannot be maximised analytically. One solution

to that is the EM algorithm. It involves introducing hidden variables z1, z2, ...zN and the idea

of complete data, as described in the following subsections.

2.3.1.2 Hidden variables

Hidden variables z1, z2, ...zN are de�ned as follows:

zi = k if observation xi was generated by the component of the mixture of number k

2.3.1.3 Complete data

By combining observed and hidden variables, we de�ne complete data vectors:

[xi, zi].

One can observe that maximizing likelihood becomes tractable under the assumption of the

knowledge of complete data, as described below.

2.3.1.4 Likelihood and log-likelihood of the complete data

The complete data likelihood, thanks to introducing the hidden variables zi, has the

following simple form:

lC(x, µ,Σ, α) =

N∏
i=1

αzifzi(xi, µzi , σzi) (2.19)
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Complete data have the C as superscript to distinguish it from the observed data. Now,

we can compute the complete data log-likelihood function

LC(x, µ,Σ, α) =

N∑
i=1

lnαzi +

N∑
i=1

ln [f(xi, µzi , σzi)] . (2.20)

Maximizing complete data log-likelihood function LC can be done analytically, but we do

not know the hidden variable z. Therefore we use the iterative approach.

2.3.1.5 Conditional distribution of hidden variables

The �rst thing needed is a parameter guess, denoted by the superscript letter "g", to initialize

the iterations and calculate the conditional distribution of the hidden variable through the

application of Bayes Theorem.

p(zi = k|µg
k , σ

g
k , αg

k ) = p(k | i) =
αg
k f
(
xi, µ

g
k , σ

g
k

)∑K
χ=1 α

g
χ f
(
xi, µ

g
χ , σ

g
χ

) (2.21)

Likelihood is �rst multiplied by its corresponding prior probability (mixing proportion).

Then, the resulting value is standardized by summing it with the product of the likelihood and

prior of all the other mixture components. This computation yields the posterior probability

of the variable zi, generated by the k-th mixture component.

2.3.1.6 Conditional expectation of the log likelihood function (Q-function)

Using 2.21 we can derive conditional expectation of the log-likelihood function (2.20). Fol-

lowing nomenclature often used in the literature we also call this conditional expectation a

Q-function.

E
(
LC | data, parameter guess

)
= Q =

=

N∑
i=1

K∑
k=1

(lnαk) p(k | i) +
N∑
i=1

K∑
k=1

[
ln(

π

2
)− lnσk −

1

2

(xi − µk)
2

σ2

]
p(k | i)

(2.22)

In the above equation, terms were already explained before.

Maximizing Q-function with respect to parameters αk, µk, σk we obtain

α̂k =

∑N
i=1 p(k | i)

N
(2.23)

µ̂k =

∑N
i=1 xip(k | i)∑N
i=1 p(k | i)

, k = 1, 2, . . . , K (2.24)
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(σ̂k)
2 =

∑N
i=1 (xi − µ̂k)

2 p(k | i)∑N
i=1 p(k | i)

k = 1, 2, . . . , K (2.25)

2.3.2 Derivation of Multivariate Gaussian Mixture EM

2.3.2.1 Likelihood and log-likelihood of the observed data

To describe the likelihood of the observed data x = [x1, x2, ...xN ], where x is a matrix of

observations consisting of M -dimensional vectors x1, x2, ...xN , we can use the following ex-

pression:

lO(x|µ,Σ, α) =
N∏
i=1

K∑
k=1

αkfk(xi, µk,Σk) (2.26)

Once again lO indicates that the function describes the likelihood of the observed data.

Its logarithmic equivalent will take following form,

LO(x|µ,Σ, α) =
N∑
i=1

ln

[
K∑
k=1

αkfk(xi, µk,Σk)

]
(2.27)

In the form above, multiplication was changed to summation. However, in this state,

the function is not possible to maximize analytically. To overcome this, we use the EM

algorithm, which involves introducing hidden variables z1, z2, ...zN and the idea of complete

data as described in the following subsections.

2.3.2.2 Hidden variables

Hidden variables z1, z2, ...zN are de�ned as follows:

zi = k if observation xi was generated by the component of the mixture of number k

2.3.2.3 Complete data

Complete data vectors are de�ned by merging the observed and hidden variables:

[xi, zi]

One can observe that under the assumption of the knowledge of complete data the task of

maximizing likelihood becomes tractable, as described below.

2.3.2.4 Likelihood and log-likelihood of the complete data

Incorporating the hidden variables zi into the likelihood expression results in a following

complete data likelihood equation:
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lC(x, µ,Σ, α) =

N∏
i=1

αzifzi(xi, µzi ,Σzi) (2.28)

Complete data have the C as superscript to distinguish it from the observed data. Now,

we can compute complete data log-likelihood function

LC(x, µ,Σ, α) =

N∑
i=1

lnαzi +

N∑
i=1

ln [f(xi, µzi ,Σzi)] (2.29)

Analytical maximization of the log-likelihood function LC , which requires complete data,

is feasible. However, an iterative method is employed since the hidden variable zi needs to be

estimated.

2.3.2.5 Conditional distribution of hidden variables

Some values of parameters are accepted as initial values for iterations and referred to as

parameter guess, indicated by the letter �g� in superscript. The conditional distribution of

the hidden variable using parameter guess can be calculated using Bayes Theorem.

p(zi = k|µg
k ,Σ

g
k , α

g
k ) = p(k | i) =

αg
k f
(
xi, µ

g
k ,Σ

g
k

)∑K
χ=1 α

g
χ f
(
xi, µ

g
χ ,Σ

g
χ

) (2.30)

The likelihood is multiplied by its prior probability (mixing proportion). Then the stan-

dardization is done by summing the likelihood multiplied by the prior of all other mixture

components. The result is the posterior probability of zi generated by k mixture component.

2.3.2.6 Conditional expectation of the log likelihood function (Q-function)

Using 2.30 we can derive conditional expectation of the log-likelihood function (2.29). Fol-

lowing nomenclatrure often used in the literature we also call this conditional expectation a

Q-function.

E
(
LC | data, parameter guess

)
= Q =

=

N∑
i=1

K∑
k=1

(lnαk) p(k | i) +
N∑
i=1

K∑
k=1

[
−M

2
ln(2π)− 1

2
ln |Σk| −

1

2
(xi − µk)

T Σ−1
k (xi − µk)

]
p(k | i)

(2.31)

In the equation above terms were already explained before. M is a number of dimensions.

Maximizing Q-function with respect to parameters αk,µk,Σk we obtain

α̂k =

∑N
i=1 p(k | i)

N
(2.32)
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µ̂k =

∑N
i=1 xip(k | i)∑N
i=1 p(k | i)

, k = 1, 2, . . . , K (2.33)

Σ̂k =

∑N
i=1 (xi − µ̂k) (xi − µ̂k)

⊤ p(k | i)∑N
i=1 p(k | i)

(2.34)

2.3.3 Derivation of Diagonal Multivariate Gaussian Mixture EM

2.3.3.1 Likelihood and log-likelihood of the observed data

If we observed some x = [x1, x2, ...xN ] which is a matrix of observations containing M -

dimensional vectors x1, x2, ...xN , to describe its likelihood of the data we have:

lO(x|µ,ΣU , α) =

N∏
i=1

K∑
k=1

αkfk(xi, µk,Σ
U
k ) (2.35)

Once again lO indicates that the function describes the likelihood of the observed data.

Its logarithmic equivalent will take following form,

LO(x|µ,ΣU , α) =

N∑
i=1

ln

[
K∑
k=1

αkfk(xi, µk,Σ
U
k )

]
(2.36)

In the form above, multiplication was changed to summation. However, in this state, the

function is not possible to maximize analytically. To overcome this, we use the EM algorithm,

which introduces hidden variables z1, z2, ...zN and the idea of complete data as described in

the following subsections.

2.3.3.2 Hidden variables

Hidden variables z1, z2, ...zN are de�ned as follows:

zi = k if observation xi was generated by the component of the mixture of number k

2.3.3.3 Complete data

Complete data vectors are formed by the combination of observed and hidden variables.

[xi, zi]

If we assume that we know all the data completely, then we can optimize the likelihood is

feasible, as explained below.
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2.3.3.4 Likelihood and log-likelihood of the complete data

The complete data likelihood, thanks to introducing the hidden variables zi, has the

following simple form

lC(x, µ,ΣU , α) =

N∏
i=1

αzifzi(xi, µzi ,Σ
U
zi) (2.37)

Complete data have the C as superscript to distinguish it from the observed data. Now,

we can compute complete data log-likelihood function

LC(x, µ,ΣU , α) =

N∑
i=1

lnαzi +

N∑
i=1

ln
[
f(xi, µzi ,Σ

U
zi)
]

(2.38)

Analytical maximization of the log-likelihood function LC , which requires complete data,

is feasible. However, an iterative method is employed since the hidden variable zi needs to be

estimated.

2.3.3.5 Conditional distribution of hidden variables

We accept some values of parameters as initial values for iterations. We call this parameter

guess. We indicate those guessed parameters by the letter g in superscript. Using Bayes

Theorem, we can calculate the conditional distribution of the hidden variable using parameter

guess.

p(zi = k|µg
k , (Σ

U )gk , α
g
k ) = p(k | i) =

αg
k f
(
xi, µ

g
k , (Σ

U )gk
)∑K

χ=1 α
g
χ f
(
xi, µ

g
χ , (ΣU )gχ

) (2.39)

The likelihood is multiplied by its prior probability (mixing proportion). Then the stan-

dardization is done by summing the likelihood multiplied by the prior of all other mixture

components. The result is the posterior probability of zi generated by k mixture component.

2.3.3.6 Conditional expectation of the log likelihood function (Q-function)

Using 2.39 we can derive conditional expectation of the log-likelihood function (2.38). Fol-

lowing nomenclatrure often used in the literature we also call this conditional expectation a

Q-function.

E
(
LC | data, parameter guess

)
= Q =

=

N∑
i=1

K∑
k=1

(lnαk) p(k | i) +
N∑
i=1

K∑
k=1

[
−M

2
ln(2π)− 1

2
ln
∣∣ΣU

k

∣∣− 1

2
(xi − µk)

T (ΣU )−1
k (xi − µk)

]
p(k | i)

(2.40)

In the equation above terms were already explained before. M is a number of dimensions.
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Maximizing Q-function with respect to parameters αk,µk,Σk we obtain

α̂k =

∑N
i=1 p(k | i)

N
(2.41)

µ̂k =

∑N
i=1 xip(k | i)∑N
i=1 p(k | i)

, k = 1, 2, . . . , K (2.42)

Σ̂U
k =

∑N
i=1[diag (xi − µ̂k)]

2p(k | i)∑N
i=1 p(k | i)

(2.43)

where:

diag(y) =


y1 0 · · · 0

0 y2 · · · 0
...

...
. . .

...

0 0 · · · yM

 - is a diagonal matrix composed with elements of a vector

y

y = [y1, y2, ..., yM ]T

2.3.4 Implementation

The implementation part consist of a way of implementing algorithm in the R programming

language.
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Algorithm 2.1 Pseudocode of EM algorithm for Multivariate Gaussian Mixture Model

Input : X: data matrix, k: number of clusters, em.itr: maximum number of iterations
Output: pki: log-likelihood of the prior, means: cluster means, vars: cluster variances, alpha:

cluster mixing proportions

change ← 100; itr ← 0
pki ← matrix with nrow(X) rows and k columns
for i ← 1 to 100 do
clusters ← sample(1:nrow(X), size = nrow(X))
means ← applyByCluster(X = X, fun = colMeans, by = clusters)
vars ← abs(means) + 1e-4
varmin ← vars
alpha ← runif(k, min = 0.05); alpha ← alpha/sum(alpha)
for j ← 1 to k do
pki[,j] ← LLmvnorm(X, means[j,], vars[j,], alpha[j], ncol(X))

end
iniLL ← log(sum(exp(pki)))

end
while change > 1e− 8 and itr ≤ em.itr do

meanso ← means; varso ← vars; alphao ← alpha
for j ← 1 to k do
pki[,j] ← LLmvnorm(t(X), means[j,], vars[j,], alph[j], ncol(X))

end
denum ← colMaxs(pki)
post ← pki - denum
post_plus ← exp(post - rowLogSumExps(post))
alphas ← colsums(post_plus)/nrow(post)
means ← crossprod(post_plus, X)/colsums(post_plus)
for j ← 1 to k do
xvar ← tcrossprod(post_plus[,j], ((t(X) - means[j,])2))
vars[j,] ← c(xvar/sum(post_plus[,j]))
vars[j,][vars[j,] ≤ 0] ← varmin[j,][vars[j,] ≤ 0]

end
varmin ← vars
change ← abs(sum(meanso - means)) + abs(sum(varso - vars)) + abs(sum(alphao -
alpha))
itr ← itr + 1

end
return pki, means, vars, alphas
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2.3.4.1 Initialization

The initialization step requires �rst estimates of the parameters: µk, Σ̂U
k , and αk, of the k-th

component. It was already shown in the literature that a good choice of starting point for

EM might be deciding factor for its quick and correct convergence [13][14]. We have tested

two types of initialization - random and based on k-means.

Random initialization - means

The �rst choice was random sampling from the dataset. Given K mixture components,

I created a vector whose length was equal to the number of observations N in the dataset.

Each k should appear at least once to provide a starting point for each component. Then I

calculated their means within each k.

k-means initialization - means

I based k-means on the armadillo library as it was already parallelized and o�ered random

initialization and enhanced kmeans++ variant. Here, centroids were used instead of cluster

assignments.

Variance

The variance was calculated in the same way despite the initialization method. To calculate

initial variances, the absolute value of the means was multiplied by 1e− 4. In this way, no

initial variance contained negative or zero values, as they would result in a numerical error in

the later calculations.

A copy matrix of variances was created to replace any variances that will become zero or

less.

Mixing proportions

Mixing propotrions were sampled from uniform distribution, were minium value was 0.1 and

maximum 0.9.

On top of that, intialization was repeated many times, in order to found the highest initial

likelihood.

2.3.4.2 E-step

In the numerator of 2.39 we obtain the likelihoods of the values xn (observations) over the

guessed parameters µk (mean), Σ̂U
k and αk. Next, they are multiplied by the probability of

occurrence (mixing proportion of k-th element). The results are interpreted as the probability

that observationsxnbelong to the normal distribution with parameters µk, ΣU
k , and αk. We

repeat this step for all k components. The denominator is used to normalize the results so

that they can sum up to 1. However, calculating probability density should be done on the
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logarithmic scale. It is crucial, especially in multidimensional data. Any value below 1e-323

will become zero and might result in a numerical error. The other important thing in the

E-step is that only diagonal part of covariance matrix was used. The result of the expectation

step is a p(k|i) matrix that contains likelihood values for each k group. This matrix will be

used in the maximization step.

2.3.4.3 Maximization step

Since we know the likelihood of the data under k di�erent parameters, they can be updated

with obtained equations. The �rst equation will allow us to calculate new mixing proportions

where we sum the likelihood of k columns and divide by the number of observations N. To

calculate new vectors of µ̂kwe had to multiplicate the data by likelihood and divide by the

sum of likelihood. Finally, we subtract the mean value from the observations and multiply it

by the likelihood of updating the variances. We sum all the terms in the numerator across

the columns to standardize them by the sum of likelihood.

Since we are dealing with a log-likelihood matrix, we can standardize the log-likelihood

matrix, staying on the logarithmic scale. We can take the largest value from each row and

then subtract created vector from each matrix column. This result will be standardized again,

but now using the LSE trick.

Small numbers and LSE trick

One of the challanges in machine learning are extremaly small numbers. Following statements

were produced in R software:

1e=323 > 0 ; 1e=324 == 0

The �rst statement returns TRUE, and the second statement also returns TRUE. In the

example above, we checked if one after 323 decimal places is bigger than zero. The result

was, of course, accurate. However, the result was false when we tested whether one after 324

decimal places was bigger. Another test returned true for equality between this value and zero.

Value 1e-324 was approximated to zero. R language uses the IEEE 754-2008/IEC60559:2011

standard, called the `binary64' format or double-precision �oating point. Computers use

�oating points to represent fractions of values. The problem with tiny numbers is common

in computer sciences, especially machine learning. Although it is not a rule, it might occur if

the data has many dimensions, like in multivariate datasets.

The exemplary algorithm that should address this kind of issue is multidimensional Expectation-

Maximization. Because of its nature, it often has to deal with exceptionally small or large

numbers. When calculating variances or the probability of categories, a similar will be valid

for overly big numbers. Moreover, we will face a similar problem operating on high numbers,

like 1.124124e+308. Shown example is the limit in R, after which we will receive the inf value.

Staying on a logarithmic scale allows us to avoid such problems in both cases. However, to
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standardize logarithmic values, we cannot simply add them because such an operation equals

multiplication.

Bene�cial is Log-Sum-Exp (LSE) function. It allows for logarithms standardization, avoid-

ing zero error at the same time. The general formula for the LSE is as below [15]:

LSE(x1, x2...., xM ) = ln(exp(x1) + ln(exp(x2) + ...+ ln(exp(xM )) (2.44)

where:

xM - observation

ln - natural logarithm

exp - exponentiation

2.3.4.4 Stop criteria

The algorithm �nishes when convergence occurs. It might be done in several ways. One is to

use a change in the parameters or stop after some number of iterations. The algorithm stopped

when the absolute change between old and new parameters was less than 1e-8. Otherwise, it

stopped after 500 iterations.

2.3.5 Key points

Despite the R language in which the EM algorithm was implemented, it is considerably fast.

Mainly because only diagonal variances are calculated instead of a full covariance matrix.

However, it comes at the cost of accuracy.

2.3.6 Methods of initialization

To compare initial conditions of convergence, a few initialization methods were compared:

� random

� k-means with a random subset

In addition to di�erent types of initialization, the capabilities of some existing GMM algo-

rithms have also been examined. One of the most popular is Mclust, an excellent implemen-

tation of the EM algorithm. However, a considerable drawback regarding multidimensional

data has been identi�ed in it. The full covariance matrix is computed, making it exceptionally

computationally demanding.

Here, another version of GaussEM has been presented, which should perform well even with

limited resources.
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2.4 Multinomial Mixture EM

2.4.1 Derivation of Multinomial Mixture EM

2.4.1.1 Likelihood and log-likelihood of the observed data

The likelihood function (lO) of the observed data for mixture of the multinomial distribution

is as follows:

lO =

D∏
d=1

N !

nd1!nd2! . . . .ndM !

K∑
k=1

αkp
nd1

k1 pnd2

k2 . . . p
n
dM

kM (2.45)

n1 + n2 + ...+ nM = N (2.46)

p1 + p2 + ...+ pM = 1 (2.47)

in the above:

N - the number of observations

k - the number of components in the mixture

αk - a mixing proportion of component k

n = [n1, n2...nM ] - vector of observed counts of observed categories,

p = [p1, p2, ...pM ] - vector of probabilities of categories

It is often helpful to change the likelihood function to log-likelihood. It will make partial

derivatives easier to obtain. Thus, changing to logarithm we will have

LO = C +

D∑
d=1

ln

[
K∑
k=1

αkp
nd1

k1 pnd2

k2 . . . p
n
dM

kM

]
(2.48)

In the above:

C is N !
nd1!nd2!....ndM ! which is constant term

However, as before, this function is di�cult to maximize. The solution for that is to

introduce hidden variable z.

2.4.1.2 Hidden variables

Similarly as in the previous cases, hidden variables z1, z2, ...zN are de�ned as follows:

zi = k if observation xi was generated by the component of the mixture of number k

2.4.1.3 Complete data

By combining observed and hidden variables, we de�ne complete data vectors:

[xi, zi].
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One can observe that maximising likelihood becomes tractable under the assumption of the

knowledge of complete data, as described below.

2.4.1.4 Likelihood and log-likelihood of the complete data

The function for the complete data likelihood, together with hidden variablezi, takes the

following form:

lC =
N !

nd1!nd2! . . . .ndM !

D∏
d=1

αzdp
nd1

zd,1p
nd2

zd,2 . . . p
ndM

zd,M (2.49)

And its log-likelihood equivalent:

Lc = C +

N∑
n=1

[
ln (αzn) +

M∑
m=1

ndm ln
(
pzd,m

)]
(2.50)

Although the complete data log-likelihood function LC can be maximized analytically, the

hidden variable z is unnkown. Therefore we use the iterative approach.

2.4.1.5 Conditional distribution of hidden variables

As before, guessed parameters are denoted with �g� in superscript. They are needed initialize

the iterations and calculate the conditional distribution of the hidden variable through the

Bayes Theorem.

p(k|d) =
αg

k × pg,nd1k1
× pg,nd2k2

× ...× pg,ndMkM∑K
κ=1

αg

κp
g,nd1
κ1 × pg,nd2κ2 × ...× pg,ndMκM

=
αg

k

∏M
m=1 p

g,ndm
km∑K

κ=1
αg

κ

∏M
m=1 p

g,ndM
κM

(2.51)

To obtain the posterior probability of the variable zi generated by the k-th mixture com-

ponent, the corresponding prior probability (mixing proportion) is �rst multiplied by the

likelihood. The resulting value is then standardized by adding it to the product of the likeli-

hood and prior probabilities of all the other mixture components.

2.4.1.6 Conditional expectation of the log likelihood function (Q-function)

Using 2.51 we can derive conditional expectation of the log-likelihood function (2.50). Follow-

ing the jargon often used in the literature, we call this conditional expectation a Q-function.

E
(
LC | data, parameter guess

)
= Q =

= C +

D∑
d=1

[
K∑
k=1

ln (αk) p(k | d) +
M∑

m=1

K∑
k=1

ndm ln (pkm) p(k | d)

]
(2.52)

Maximizing Q-function with respect to parameters αk, pk, we obtain:\
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α̂ =

∑D
d=1 p(k|d)

D
(2.53)

where:

α̂ - is vector of new mixing proportions

D - is the count of observations

p̂km =

∑D
d=1 ndmp(k|d)∑M

n=1

∑D
d=1 ndmp(k|d)

(2.54)

where:

ndm - is an observation vector

p̂km - is a vector of new probabilities proportions

2.4.2 Implementation

In the case of multinomial mixture EM, process of implementation is similar with a few

important di�erences.

2.4.2.1 Input data

For presented cases, we treat each observation as a row, and each variable as a column.

Data points belong to N. The data shows counts of how many times observation was noted

within each variable.

n11 + n12 + n1m . . .+ ndM

n21 + n22 + n2m . . .+ ndM

nd1 + nd1 + ndm . . .+ ndM
...

nDm + nDm + nDm . . . nDM

(2.55)

The usual requirement to start EM for multinomial mixture is to provide k number of

clusters. Knowing the number of subgroups in the data, we are able to initialize parameters

in the �rst step of an algorithm.

2.4.2.2 Initialization

During initialization, we need to create �rst guess of the parameters. In case of multino-

mial mixture we need to initialize mixing proportions (α) and probabilities (p) for each

category/variable. This should be done for each mixture component k ∈ {1..K}.
Mixing proportions indicates how much of the mixture space belong to K. Depending on

the number of components K we need to provide equal number of αk 2.56.

α1 α2 α3 · · · αk (2.56)
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Algorithm 2.2 Pseudocode of EM algorithm for Multinomial Mixture Model

Input : X, k, itrs = 1000
Output: List containing pki and parameters

Function maximization(pki, X):
alphas ← colSums(pki)/nrow(X)
prob.mat ← abs(crossprod(pki, X))
rS ← rowSums(prob.mat)
rS[rS==0] ← min(rS[rS!=0])
probs ← prob.mat/rS
return probs, alphas

end

Let probs ← matrix of uniform probabilities from interval [0.1, 1]
Normalize each row of probs to have unit sum.
α← uniform(k,min = 0.1,max = 1);α← α∑k

i=1 αi

δ ← 100; itr ← 0
while δ > 1e− 6 and itr ̸= itrs do
itr ← itr + 1
probs.old ← probs
alphas.old ← alphas
prob.not.stand ← tcrossprod(X, log(probs)) + log(alphas)
pki ← exp(prob.not.stand - logSumExp(prob.not.stand))
alpha, probs ← maximization(pki = pki, X = X)
δ ← sum(abs(alphas.old - alphas))+sum(probs.old - probs)

end
return pki = pki, parameters = parameters

Assume that we have a mixture where k = 3. In that case, we need to create 3 α parameters.

We can use uniform distribution αK ∼ U(0.1, 1) to obtain initial alphas. It is better to keep

the interval within the range of [0.1, 1]. Shallow values might cause over-dominance of larger α

during the estimation step. After choosing values from the uniform distribution, they should

be standardized.

α̂K = α1+α2+...+αk∑K
k=1

αk

and
∑K

k=1
α̂k = 1

The number of probabilities equals the number of dimensions/categories in the data. If the

dataset consists of 10 categories, we should provide a probability for each category, for each

element in K.

Probabilities depict how likely given variables will occur in the given group.
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p11 + p12 + . . .+ pkM

p21 + p22 + . . .+ pkM

pk1 + pk2 + . . .+ pkM
...

pKm + pKm + . . . pKM

(2.57)

The �rst guess of the parameters, αk(mixing proportion) and pk of the k-th component,

was done in two ways - randomly and based on the k-means results.

Random initialization - means

In the case of random sampling, for each k I sampled M observation from Poisson distri-

bution. Lambda was equal to the number of M . Then, I standardized them, so they will sum

up to 1 for each k.

k-means initialization - means

k-means initialization was based on the armadillo library. I used centroids and standardized

them, to sum up to 1 for each k component.

Mixing proportions

The mixing proportions were already described above.

2.4.2.3 E-step

During the E-step we calculate likelihood for each observation. It is done by multiplying

each mixing proportion parameter αk by all probabiliby successes rised to their number of

occurences in the data (respective observation). Then we standardize this value, by divinding

numerator by the sum of calculated numerators for all of the components.

p(k|d) =
αk × pnd1k1

× pnd2k2
× ...× pndMkM∑K

k=1
αkp

nd1
k1
× pnd2k2

× ...× pndMkM

=
αk

∏M
m=1 p

ndm
km∑K

k=1
αk

∏M
m=1 p

ndm
km

(2.58)

The critical part here is that we can change to a logarithmic scale. Then, because of the law

of logarithms, powers are changed to multiplication, and we can use matrix multiplication. It

is usually much faster than creating any loop. After that, instead of multiplying by alpha, we

subtract the logarithm of alpha. Standardization might be done using the already mentioned

LSE trick. The values can then be safely exponentiated.

2.4.2.4 M-step

In the Maximization step, the model parameters are updated based on the posterior prob-

abilities computed in the E-step. The goal is to maximize the expected complete data log-
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likelihood function with respect to the model parameters derived from Q-function 2.53 and

2.54.

2.4.2.5 Stop criteria

Generally, the algorithm was stopped when the absolute change between old and new pa-

rameters was lower than 1e-8. In some cases, especially when the data was not suited, the

algorithm �nished after 1000 iterations.
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3 Distance-based algorithms

We often perceive and describe the distance between objects as we constantly use various

metric measures. For example, we must estimate the distance between cars to know if we can

safely change lanes. When we are in a hurry, we might want to choose the shortest path to

our destination.

In this chapter, we will present four algorithms based on distance functions. Those algo-

rithms are based on various statistical distance metrics, like euclidean or manhattan.

3.1 Foundation

3.1.1 Input

Assume there are n objects, e.g. trees, people, stocks, words. To gather them in groups,

we need some way to compare how similar or not they are. Clustering applications typically

work on either two type of structure.

In the �rst structure, we can describe objects with their attributes. Those might be, e.g.,

height, weight, count of words or value. We can also provide the real value for each: 165

cm, 55 kg, 15 words or 17 euros. The �rst structure can be arranged into an n ×m matrix,

where rows correspond to objects and columns to the attributes. Such an objects-by-variables

matrix is two-mode because rows and columns di�er.

The second structure has the same set of objects in rows and columns. It contains two types

of proximity measures between all pairs of objects. They are called similarity and dissimilarity.

Similarity measures how much objects resemble each other, while dissimilarity estimates how

far away two objects are from each other. This second structure, object-by-object matrix, is

called one-mode [3].

3.1.2 Variables

3.1.2.1 Scale

Units of measures have a signi�cant impact on clustering results in the case of vector data

points. When expressed in di�erent scales, some coordinates of data vectors can dominate

clustering results. Therefore, aiming to reduce/compensate for that, we apply scaling and

standardization procedures presented below.
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3.1.2.2 Di�erent variables

Di�erent variables, i.e., di�erent data vector entries, can exhibit ranges variability based on

two factors. One factor will be that they are di�erent types and measured in di�erent units.

Another factor will be that even when measured in the same system of units, they can exhibit

physical di�erences leading to di�erences that need to be compensated.

3.1.2.3 Standardization

Standardization makes cluster structure more shallow by reducing the e�ect of large samples

since it lowers their contribution. Standardization is an attempt to achieve objectivity across

di�erent units. Standardization makes data independent of unit measures. We can put all

units on the same scale.

In the procedure of standardization, �rst, we have to calculate the mean value of some

variable given by:

µ =
1

n
(x1 + x2 + · · ·+ xi) (3.1)

where: n - number of observations, µ - a mean, xi - observation

Next, we have to calculate the measure of dispersion in the data. One of the most commonly

used is standard deviation:

σ =

√
1

n− 1

{
(x1 − µ)2 + (x2 − µ)2 + · · ·+ (xn − µ)2

}
(3.2)

The equation for standardization is as follows:

zn =
xi − µ

σ
(3.3)

Sometimes those standardized measurements are called z-scores. They lack unit measures

because the numerator and denominator are expressed in the same units.

3.1.3 Statistical distance

Statistical distance contains a broad spectrum of probability or information theory methods.

Di�erent measures can be used to quantify the distance between two statistical objects. It

can be a distance between two probability distributions, random variables or samples. We

present de�nitions and properties of distance functions and will show the most crucial function

measures applied in this thesis.

Statistical distances are essential notions for developing applications of grouping algorithms.

Four properties will characterize them.
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No. Property
1 d(x, y) ≥ 0 (non-negativity)
2 d(x, y) = 0 if and only if x = y
3 d(x, y) = d(y, x) (symmetry)
4 d(x, z) ≤ d(x, y) + d(y, z) ( triangle inequality).

Table 3.1: Conditions to determine di�erent types of metrics

1. Distances are always nonnegative, meaning that they can never be negative values.

2. The distance from an object to itself is always equal to 0, as an object is always the

same distance away from itself.

3. The distance between object x and object y is equal to the distance between object j

and object i, suggesting that the distance between two objects is independent of the

order in which they are listed.

4. If there are three objects x, y, and z, and the distance from x to y is shorter than the

combined distance of going through object z, then the shortest distance between x and

y is the direct distance between them.

Generally, it is a distance or metric if all four conditions are met. It is essential to distinguish

between them because when only the �rst and second property is satis�ed, the statistical

distance is called a divergence. In the algorithms that we are presenting, all four criteria are

satis�ed.

3.1.3.1 Distance between two points

A necessary step to quantify the degree of dissimilarity between objects is the choice of

distance metric. We must compute the distance between each i and j pair of objects. One

commonly used metric to do that is a Euclidean or Manhattan distance.

Euclidean distance

Pythagorean famous theorem allows us to calculate the hypotenuse of a perpendicular triangle.

Since AB2 +BC2 = AC2 then

AC =
√

(AB2 +BC2). This straight line is the shortest distance between points A and

C. Now, let us impose the triangle on the Cartesian plane and assume that two points are

single objects. Each is described by x and y coordinates, so they are within two dimensions.

Analogically as in the Pythagorean theorem, we can calculate the distance between objects

A and C as (Ax1 − Cx2)
2 + (Ay1 − Cy1)

2.

The Euclidean distance is the straight-line distance between any two points. It is a non-

negative real number such that R≥0 = {xϵR|x ≥ 0}.
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If we consider two points from distribution X = (x1, x2 . . . xn) and from distribution Y

= (y1, y2 . . . yn) in Cartesian coordinates, then Euclidean distance, between those points are

given by the general equation:

dEuc(X, Y ) =
√

(x1 − y1)2+(x2 − y2)
2 + · · · (xn − yn)

2 = (3.4)√√√√ n∑
i=1

(xi − yi)2. (3.5)

where:

X,Y - variables

xi,yi - realizations of X and Y√
n∑

i=1

(xi − yi)2- root of sum of squares between all xi and yi

Euclidean distance is a practical and straightforward tool for �nding the nearest hospital,

considering an emergency helicopter �ight (disregarding weather and terrain it is the shorthest

path). It is increasingly used in molecular conformation in bioinformatics, localization of

sensor networks, or dimensionality reduction methods [16][17].

Minkowski distance

Minkowski distance is a generalization of both Euclidean and Manhattan distance. It is also

called Lp metric and is given by the following equation where p is any non-negative, real

number.

dMink (X, Y ) =

(
n∑

i=1

|xi − yi|p
) 1

p

(3.6)

where:

X,Y - variables

xi,yi - realizations of X and Y∑n
i=1 |xi − yi|p - sum of absolute di�erence between all xi and yi raised to the power of p.

Minkowski distance is a generalization of Euclidean and Manhattan distance. If p = 2, it

is the same as Euclidean distance; with p = 1, it is equivalent to Manhattan distance.

Minkowski distance is applied in fuzzy clustering, and all applications are from Euclidean

distance and Manhattan distance.

Manhattan distance

Manhattan distance, also called city block distance, owns its peculiar name thanks to the

following reasoning. Think of a city where streets are part of a grid, so we have only vertical

and horizontal line segments. Suppose one wants to get from block A to block B. Then, the
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shortest possible distance might be described by the following equation: |xA−xB|+ |yA−yB|.
It assumes a helicopter is out of the question and �ying is generally impossible. Otherwise,

the shortest path will be a euclidean distance. The following formula gives the Manhattan

distance:

dMan(X,Y) =

n∑
i=1

|xi − yi| (3.7)

where:

X,Y - variables

xi,yi - realizations of X and Y∑n
i=1 |xi − yi|p - sum of absolute di�erence between all xi and yi

The Manhattan distance can be used in various applications such as image processing,

pattern recognition, and data analysis. It is particularly useful when calculating the distance

between discrete objects or points with known coordinates. [18]

3.2 Hierarchical clustering

Hierarchical clustering owns its name thanks to its structure and how it creates the clusters. It

produces a series of partitions. Speci�cally, data points are gathered into clusters resembling

an upside-down tree shape (pic!). The choice of a presented shape is arbitrary, as it might

be circular or graph-like (pic!). What is shared by all three pictures is a visible hierarchy.

Each data point is part of a systematically growing cluster that incorporates all the data at

the end. To achieve this result, we can agglomerate or divide the data. In the �rst case, the

agglomerative or top-down method, individual data points are grouped into larger clusters

until they cover the data set. In the divisive or bottom-down approach, data is divided into

smaller groups up to single data points[19].

3.2.1 Agglomerative clustering

Agglomerative clustering is the most common approach in Hierarchical Clustering.

Before performing clustering, two decisions has to be made. The �rst one is how one will

measure the distance or similarity between points. It might be Euclidean, Manhattan distance

or many others. The second decision is the linkage method. It dramatically in�uences how

data points will be clustered in consecutive iterations. Some common examples are single,

complete or average linkage. Following clustering, we can decide on any number of clusters

without repeating the calculations. It is a characteristic feature of Hierarchical Clustering not

found in other unsupervised algorithms.

In the �rst step, we need to measure how far points lie from each other. To do that, we can

use similarity (e.g. Jaccard index) or distance (e.g. Euclidean) metric. The choice depends on

scienti�c questions and the data itself. Next is the choice of linkage method. It will determine

the way how the data will be clustered together. It has a tremendous impact on the results.
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The last but important thing is deciding the number of clusters we would like to see. We

are provided with two di�erent approaches to that problem. The �rst one is to choose the

number of groups exactly. Another way is to cut the branches at a speci�c tree height. The

tree's height depends on the largest distance between the two clusters in the data. Thus

choosing this way will give us groups of data with alike similarity or distances between each

other [20] .

3.2.2 Divisive clustering

Divisive hierarchical clustering reverses the question presented in agglomerative hierarchical

clustering. It asks how to divide trivial solutions with one cluster to n singleton clusters. This

approach is much less common than agglomerative methods, primarily due to the extensive

use of computational power. In divisive methods, one cluster is consecutively split into two

smaller clusters. The challenge is how to �nd an optimal splitting space. Exploring all the

possibilities is computationally expensive, as in the �rst step, 2(n−1)−1 ways exist to split the

�rst cluster into two separate ones. The DIvisive ANAlysis Clustering (DIANA) presented

one solution to this problem.

Initially, DIANA has to split the data into two separate groups. It is done without con-

sidering all possible divisions but rather iteratively. First, the average distance between the

object and the group of objects is calculated for each of them. Then, the object with the most

signi�cant average dissimilarity is chosen to initiate the "splinter group". Next, average dis-

similarity is calculated between the object and the remaining objects in the larger group. The

results are compared with the splinter group. Object with the highest average dissimilarity

di�erence is then moved to the splinter group, creating one cluster. [3].

3.2.3 Linkage methods

When the distance metric was calculated, it showed how similar or how close the objects were

to each other. Linkage methods join such objects or observations using distance measures

as a base. In other words, it is a function that creates clusters from the objects based on

similarity. There are several linkage methods, each providing slightly di�erent results. In the

default, the R package provides eight di�erent methods: single, complete, average, Ward's,

Ward's 2, McQuitty, median and centroid. Some are presented below.

3.2.3.1 Single linkage

The two clusters with the smallest minimum pairwise distance are merged in each step.

ls(X, Y ) = min
x∈X,y∈Y

d(x, y) (3.8)

where:

ls - single linkage
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X, Y - two sets of elements (clusters)

min
x∈X,y∈Y

d(x, y) - minimal distance between the two elements x ∈ X and y ∈ Y .

3.2.3.2 Complete linkage

In each step, the two clusters with the smallest maximum pairwise distance are merged.

lc(X, Y ) = max
x∈X,y∈Y

d(x, y) (3.9)

where:

lc - complete linkage

X, Y - two sets of elements (clusters)

max
x∈X,y∈Y

d(x, y) - maximum distance between the two elements x ∈ X and y ∈ Y .

3.2.3.3 Average linkage

It might be found under name Unweighted Pair Group Method with Arithmetic Mean or

UPGMA. In this method, distance between points from both clusters is measured. Then,

the average distance is calculated and clusters with smallest average distance are merged.

1

|X| · |Y|
∑
x∈X

∑
y∈Y

d(x, y) (3.10)

l(X∪Y ),Z =
|X | · dX ,Z + |Y| · dY,Z

|X |+ |Y|
(3.11)

where:

l(X∪Y ),Z - average linkage

X, Y - two sets of elements (clusters)

d(x, y) - distance between the two elements x ∈ X and y ∈ Y .

3.2.3.4 Ward's

Ward's method shares some similarities with analysis of variance (ANOVA). It aims to mini-

mize error sum of squares (ESS), when linking clusters together.

ESS(X) =

NX∑
i=1

∣∣∣∣∣xi − 1

NX

NX∑
j=1

xj

∣∣∣∣∣
2

(3.12)

l(X, Y ) = ESS(XY )− [ESS(X) + ESS(Y )] (3.13)

where:

ESS(X) - error sum of squares of variable X
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ESS(Y ) - error sum of squares of variable Y

d(x, y) - distance between the two elements x ∈ X and y ∈ Y ,

NX - number of observations in set X

Ward's linkage method was used in the Hierarchical Clustering for all datasets.

3.2.4 Distance metric - euclidean or manhattan

Manhattan and Euclidean distance are commonly used distance metrics in machine learning

and data analysis. While both metrics have their strengths and weaknesses, there are cases

where one metric may be more appropriate than the other.

In general, Manhattan distance (also known as city block distance or taxicab distance)

is better than Euclidean distance for high-dimensional data. This is because, Manhattan

distance measures the distance between two points by adding up the absolute di�erences

between their coordinates. This makes it less sensitive to changes in any single dimension

and more e�ective at capturing the distance between points in high-dimensional space.

On the other hand, Euclidean distance is more prone to being a�ected by changes in

individual dimensions, which makes it less e�ective in accurately measuring the distance

between points in high-dimensional space [21].

3.3 K-means

The k-means algorithm is an iterative, distance-based algorithm. It is relatively fast, simple

and computationally e�ective. In addition, low memory usage makes it suitable for cluster

detection in large data sets. It is a signi�cant advantage over hierarchical clustering methods

based on dissimilarity matrix. Although they allow exploration of any number of clusters,

they might become computationally demanding with growing data. Lastly, k-means might

be successfully used as a starting step in other algorithms. A concrete example of that is the

Expectation-Maximization algorithm's initialisation part.

From a mathematical point of view, k-means is an approximation of the normal mixture

model. Parameters are estimated using the maximum likelihood method. The main idea

behind the k-means is that observations are gathered around arti�cially introduced centres

called centroids. Centroid can be perceived as a generalisation of the mean, a geometric

centre of a convex object. In general, the distance between centres and observations should

be minimal. Data points closest to the particular centre are part of its cluster.

The initial number of centroids is equivalent to the number of clusters k in the data. k

is required to start the algorithm. If we have a strong assumption regarding the number of

clusters, we can use it. Otherwise, there are few ways to determine the number of clusters

experimentally. The algorithm stops when it reaches stability, which depends on the con-

vergence criteria. An example of that will be creating groups with the highest similarity of

points within a given cluster and the lowest between di�erent clusters. In the commonly used
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Hartigan-Wang implementation, the stop criterion can be satis�ed in two ways. One is min-

imising the total sum of variance within clusters (WCSS) as given in the following equation

[22].

WCSS =

k∑
i=1

ni∑
j=1

∥xij − ci∥2 (3.14)

where:

WCSS - total sum of variance within clusters

ci - centroid

xij - observation ij

There are few k-means algorithms: Lloyd, Forgy, MacQueen and the one already mentioned

Hartigan-Wong. The last one is the default k-means algorithm in the R software, that we

have used in our comparison.

3.3.1 Hartigan-Wong

The Hartigan-Wong algorithm aims to �nd the best way to group data into clusters based on

minimizing the sum of squared errors (SSE) within each cluster. To achieve this aim, it may

reassign data points to a di�erent cluster, even if they are currently assigned to the closest

centroid if it would result in a lower total SSE for the entire set of clusters. In other words,

the algorithm prioritizes �nding the best overall �t for the data rather than strictly sticking

to the closest centroid for each data point[23].

SSE2 =
Ni

∑
j ∥xij − ci∥2

Ni − 1
< SSE1 =

N1

∑
j ∥x1j − c1∥2

N1 − 1
(3.15)

where:

SSE1 - the sum of the squared Euclidean distances of each point to the �rst centroid

SSE1 - the sum of the squared Euclidean distances of each point to the second centroid

ci - centroid

xij - observation ij

3.3.2 Initialization

We compared di�erent two di�erent types of initializations for kmeans:

� Hartigan wong, as implemented in R

� k-means++ from package ClusterR

From the results we can see that
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3.4 Fuzzy clustering

Fuzzy k-means clustering, often called fuzzy c-means (FCM), can be considered a soft version

of k-means. Each observation has some set of degree of belonging to a cluster. This is di�erent

approach than in k-means, where membership is binary and given observation belong (1) or

not (0) to particular group.

FCM centroids are the means of all observations weighted by their degree of membership

to the cluster. They can be calculated using the formula:

ck =

∑
iwk (xi)

m × xi∑
iwk (xi)

m (3.16)

where:

ck - centroid of a cluster k,

wk - degree of membership to the cluster,

m - fuzzi�er coe�cient

The FCM tries to minimize objective function:

argmin
C

n∑
i=1

c∑
j=1

wm
ij ∥xi − cj∥2 , (3.17)

where: wij indicates the degree of the belonging to the cluster. It allows to calculate the

distance between the observation and the centroid k. Formula is given by :

wij =
1∑c

k=1

(
∥xi−cj∥
∥xi−ck∥

) 2
m−1

(3.18)

where:

m - fuzzi�er coe�cient

The fuzzi�er m playes important role in fuzziness of clusters. It can take values from [1,

∞]. A large value of m results in lower degree of belonging wij , resulting in fuzzier groups.

For the data without any apriori knowledge, parameter m is commonly set to 2. When the

m = 1, the cluster membership should converge to 0 or 1, as in the k-means algorithms.

Due to vast similarities to k-means, FMC su�ers from the same problem. It does not

guarantee convergence to the global optimum. It might get stuck in local minima. In addition,

the results heavily depend on the initial choice of weights.

Di�erent distance metrics, namely the Manhattan and Euclidean distances, were also ex-

amined for fuzzy c-means.

3.5 k-medoids

The most signi�cant advantage of the k-means algorithm is computational e�ciency. Calcu-

lating averages and assigning them to the closest mean is algebraically fast. It is relatively
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easy to parallelize. Those merits make this algorithm applicable to large databases.

Unfortunately, it is based on the square of the Euclidean distance. However we are not

always interested in this kind measure of similarity. Such a measure is also susceptible to

large distances, and a single outlier can signi�cantly a�ect the sum of squared distances.

PAM works similarly to k-means, except that the centres of the clusters are the cases in

the data set (called centroids or clusters). Therefore, the set of possible cluster centres in

the PAM method is much smaller than in the k-means method. Usually, the results of the

PAM method are more stable. Moreover, the k-medoid algorithm will allow us to use other

distance measures at the price of higher computational complexity. In other words k-medoids

method is an extension of the k-means method.

The k-medoids method �nds such objects representing clusters (k-medoids) among the

observations, to minimize the sum of the distances of all non-medoid elements from their

closest medoids.

Another di�erence between the k-means algorithm and the k-medoid method is how the

distance between observations is de�ned. In the case of the k-means Euclidean distance is

used, while the PAM uses mainly Manhattan distance. In addition, k-medoids are supposed

to deal with the problem of outliers as well as noise in the data. It is considered more robust

than k-means. However, its computational usage can be considered high even by today's

standards. It performs slowly in large data sets.

We can distinguish two phases of PAM namely construction phase and swap phase.

Construction phase:

1. Split the dataset into k clusters with k medoids assigned

2. Calculate the distance matrix between the medoids and the other observations

3. Assign each observation (non-medoid) to the closest cluster

Swap phase:

1. Using iteration, replace one of the medoids with one of the non-medoids and check that

the distances of all non-medoids from their nearest medoids are smaller.

2. If at least one medoid swap has occurred, repeat step 3. Otherwise, end the algorithm.
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4 Study pipeline

This chapter presents the entire pipeline, starting with the method for choosing and initially

preparing datasets. The �ltration and scaling methods that were used are then presented.

Following that, cluster evaluation methods are introduced, which consist of visualization

techniques for data and ways to present the algorithms' performance or e�ciency.

The chart will be explained in the next sections.

4.1 Data gathering

All datasets can be divided into two parts. The �rst one comprises arti�cially created data

that can present a more controlled challenge to algorithm performance. The second subset

includes real datasets that were selected with the criterion of multidimensionality in mind.
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4.1.1 Simulated data

Data simulation is a vast research �eld with plenty of practical applications. We can use it in

data prediction and during testing new programs or algorithms, to name a few. Simulation

of data is a way to generate random numbers from the stochastic process. A stochastic

process is a time-ordered sequence of random variables or something described by probability

distributions. For example, we can model height population data using a mixed normal-

uniform distribution model. [24].
hi ∼ Normal(µ, σ)

µ ∼ Normal(160, 15)

σ ∼ Uniform(0, 10)

,

where hi is i-th observation,

Both µ and σ parameters are generated from separate distributions. First parameter, µ

is generated from the normal distribution with parameters µ = 160, and σ = 15. Second

parameter, σ is generated from the uniform distribution with minimal value of 0 and maxi-

mum value of 10. Here, our exemplary model doesn't describe the height of any particular

population. It is a very rough example that is within reasonable limits. Extreme values of

this model will barely go lower than 95 cm and exceed 240 cm. The reason is that the shortest

person recorded was Chandra Bahadur Dangi, who measured 54.6 cm [25]. On the opposite,

the record for the tallest man recorded belongs to Robert Wadlow, with 272 cm of height [26].

Data simulation can become pretty handy. The ground truth is fully known, contrary to

the actual data, when we are sometimes only partially aware of the groups in the data. We

know the exact model parameters and can compare them with the estimated values.

Some models might get exceptionally complicated by having many di�erent parameters. It

may become untraceable to predict their e�ect on the data. However, since we have complete

control over model parameters, we can tune them accordingly and observe the result. In

this manner, we can perceive data simulation as a re�ection of some natural system and a

controlled experiment [27].

Using data simulation techniques, we are no longer limited by actual measurements. We

can generate an almost in�nite number of data with the structure and parameters we want. It

allows us to test di�erent kinds of data. However, it might not re�ect the real data accurately,

giving us false estimations of model e�ciency. It is based on a few limitations. The very special

that should be taken into mind is Random Number Generation.

Random Number Generator (RNG)

As of the time of writing the thesis, there is no genuinely random number generator. Instead,

we have PRNG. The letter "P" stands for the "pseudo". Although some e�orts exist to create

such a system using quantum computers, we will focus on PRNG. It is a program, or part of

it, that generates numbers based on some initial information. This base information is called

a seed. It can use many di�erent sources of initial data. Depending on the software, it can be
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actual time, active processor time or key inputs transformed into numerical values. It is why

pseudo-random number generators don't produce random numbers. When a seed initializes

PRNG, it can take an in�nite number of di�erent values. However, most of the time, it is

restricted by software design or by computer memory.

4.1.1.1 Simulated multivariate normal data

Mixtures were generated according to multivariate normal distribution properties. Each mix-

ture component consisted of random vector µ, matrix Σ, mixing proportion α and a �xed

number of dimensions d, across all mixture components. Each random vector µ was gener-

ated from uniform distribution such that µ : U (0, 10) from the interval [0,10]. Σ was created

assuming that the correlation between variables (elements of data vectors) equals 0, so they

are independent. Variances were then generated from a uniform distribution from the interval

[0.1, 1] to avoid 0 variances. Mixing proportions were obtained from a uniform distribution

from the interval [0.1, 1] to prevent one component from dominating the mixture. The vector

of mixing ratios was standardized, to sum up to 1.

Counting di�erent �ltration and scaling, over 15 000 �les were created. They contained

from 2 to 10 clusters and between 5 and 1600 dimensions. Step between dimension was taken

arbitrally. The higher number of �les than in multinomial data comes from the fact that two

di�erent PRGN packages were used, namely MASS and MultiRNG.

4.1.1.2 Simulated multinomial data

Mixtures were generated according to multinomial distribution properties. Each mixture

component consisted of: random vector p of probability successes, number of observations n,

mixing proportion α and d �xed across all groups. p was generated from a uniform distribution

from the interval [0, 1]. Then all values were standardized so that all elements sum up to 1. n

was generated from the interval [3, n]. Mixing proportions of all components were calculated

using uniform distribution from the interval [0.1, 1] and standardized, to sum up to 1.

Over 8,000 �les were created with di�erent types of �ltration. Similarly to multivariate

data, these �les contained 2 to 10 clusters between 5 and 1600 dimensions with arbitrarily

selected steps between dimensions.

4.1.2 Real data

The most important part of our comparative analysis of unsupervised clustering algorithms

is computational experiments concerning some publicly available data sets. Extensive real-

world datasets collections can be used for comparative experiments of unsupervised clustering

algorithms, e.g., Kaggle, UCI, NCBI or NCI. When choosing data sets for clustering, the

following criteria were used:

� high dimensionality
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� numerical features (real or integer).

� variety of data types

� ground-truth availability

According to mentioned criteria, the data should have many dimensions. The mixture should

not be univariate or bivariate, and features cannot be categorical.

Various data types assume that data comes from di�erent expertise �elds or is measured

di�erently. For example, somatic mutation count and gene expression came from the same

TCGA project but were measured di�erently.

Real data consist of various datasets from a few di�erent �elds, although majority have

some genetic and medical background. As such following data was chosen:

Data set Source
Somatic Mutations Counts TCGA
Gene Expressions TCGA/cBioportal
Arthythmia UCI
Codons Frequency UCI
Sport Activities UCI
The Free Music Archive GitHub
NASA Kepplers Kaggle

Table 4.1: Real data-set with their sources

The TCGA project started in 2005, with the aim of identi�cation of complex genomic

interactions in majors cancers. Five year later, the TCGA was made available to public. Then,

in December 2013, TCGA concluded sample collection with over 20 000 biospecimens across

32 types of cancer. The data become publicitly available for academic purposes worldwide.

The UCI repository is a vast collection of databases and data generators. It is an open

access repository of data, which people worldwide donate. The machine learning community

generally uses it for empirically studying various ML algorithms. UCI repository was �rstly

created in 1987 as an ftp archive by David Aha and students of UC Irvine. As UCI site

reports, since that time, it was cited over 1000 times, placing it among the top 100 most

quoted "papers" in all computer science.

cBioPortal is a web-based platform that allows researchers to explore and analyze large-

scale cancer genomics datasets. It provides access to a wide range of cancer genomics data,

including DNA copy number, gene expression, DNA methylation, protein expression, and

phosphoprotein expression data. The platform is free and open to the public. It has been

widely used in cancer research to identify potential biomarkers, therapeutic targets, and other

cancer-associated genomic alterations.

Kaggle is a platform for data science competitions, where companies and researchers can

post their data and problem statements and invite the data science community to develop

solutions. It was founded in 2010 and acquired by Google in 2017. Participants can compete
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individually or as teams to build the best models and algorithms to solve the problem. Kaggle

also o�ers courses and tutorials on data science and machine learning, but it is also a vast

data source that the community shares.

4.2 Data processing

4.2.1 Preparation

After the data was downloaded and cleaned, it was parsed into a �xed format. A matrix of

size n× d was created for each dataset, with observations n placed in rows and variables d in

columns to ensure consistency across all analyzed datasets.

Except for the NASA Kepler dataset, the remaining datasets typically contained ten or

more classes. The permutation method was employed to generate 10 datasets for 2, 3, 4, 5,

and 6 component mixtures to create multiple datasets for analysis. In this way, each set of six

component mixtures always contained at least one or more di�erent classes. Consequently,

50 datasets with classes in various con�gurations were created from a single real dataset.

This methodology can be applied to all datasets for analysis.

4.3 Data �ltration and scaling

In the �ltration part, either the data was left unchanged, or the variance decomposition

method was employed to reduce the "noise" in the data.

4.3.1 No �ltration

In this case, the datasets containing all the original variables were left unchanged. They were

used in the scaling step and in the clustering stage of the analysis.

4.3.2 Variance decomposition.

The respective variance for each variable was calculated, resulting in a vector of n variances

with varying values of n, dependent on the dataset used. The resulting vector was assumed

to represent a one-dimensional mixture comprising essential variables and additional noise.

A mixture decomposition technique was employed using the mclust package to di�erentiate

between these elements. The mixtures were aligned to contain two to twenty-�ve components,

and the �nal number of groups was determined using the Bayesian Information Criterion.

4.3.2.1 Bayesian Information Criterion (BIC)

Bayesian Information Criterion is a usefull tool in model selection. Given by following equa-

tion:

BIC = k ln(n)− 2 ln(L̂). (4.1)
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where:

L̂- the maximized value of the likelihood function of the modelM i.e.L̂ = p(x | θ̂,M), where

θ̂ are the parameter values that maximize the likelihood function;

x - the observed data;

n - the number of data points in x, the number of observations, or equivalently, the sample

size;

k - the number of parameters estimated by the model.

It penalizes model for using more parameters and is scalable because it takes into equation

number of observations. I have used it during variance mixture decomposition, to group

variances into k groups.

4.3.3 Scaling

Scaling was performed separately on the complete and reduced datasets to preserve the vari-

ance. The variables were scaled by subtracting the mean value from the vector of observations

and dividing the resulting values by the standard deviation. After scaling, two additional �les

were created for each dataset.

4.4 Data clustering

No Abbreviation Full name
1 CMN C-means
2 MANCMN C-means with Manhattan distance
3 GMM Gaussian Mixture EM
4 GMMK Gaussian Mixture Models with k-means
5 HC Hierarchical Clustering
6 MANHC Hierarchical Clustering with Manhattan distance
7 KMN K-means
8 KMN++ K-means++
9 KMD K-medoids
10 MMM Multinomial Mixture EM
11 MMMK Multinomial Mixture EM with k-means

Table 4.2: Algorithms used in the clustering

All the clustering algorithms mentioned above were employed to cluster simulated data on

multivariate normal mixtures, simulated multinomial mixtures, and real data. Each clustering

algorithm generated a separate �le, which was saved to disk for future processing.

4.5 Clusters evaluation

In this study, clusters were evaluated based on their correct assignment. For this purpose,

the Hungarian algorithm was employed to assign results to the labels. Then, a few metrics
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were implemented to compare algorithms' performance from various perspectives. Finally,

the results were visualized using di�erent plot types.

4.5.1 Cluster assigment - Hungarian algorithm

The increased number of clusters poses a few challenges. One of them is assigning clustering

results to appropriate labels. Because, in principle, unsupervised clustering is done without

prior group knowledge, results are unlabeled.

One potential solution to this problem is The Hungarian matching algorithm, also called

the Kuhn-Munkres algorithm.

It is a combinatorial optimisation algorithm used to solve the assignment problem in math-

ematics. The goal is to assign a set of workers to a group of tasks while minimising the

total cost or maximising the total pro�t. The algorithm uses a matrix to represent the cost

of assigning each worker to each job and iteratively �nds the optimal assignment utilising a

series of augmenting paths. The result is a one-to-one mapping between workers and tasks

that minimises the total cost or maximises the total pro�t. In the case of this study, clustered

observations were assigned to corresponding labels based on their maximisation.

4.5.2 Clusters validation

There is a plethora of various metrics that allow us to compare the similarity or dissimilarities

between two clustering methods. We applied a few di�erent to describe the algorithms'

performance by comparing created clusters with the ground truth.

4.5.2.1 Rand Index and Adjusted Rand Index

Rand index is a popular metric to measure the results of clustering.

Rand Index =
TP + TN

TP + FP + FN + TN
(4.2)

where:TP - number of true positives; FP- the number of false positives; FN- the number

of false negatives; TN- the number of true negatives.

The RI index takes ranges between 0 and 1, including themselves. In the perfect aligment,

the term n21 + n12 = 0 and Rand Index = 1.

This scenario is su�cient only for two-class problems. If we have to estimate clustering

quality or similarity of more than two classes, the table remains squared but its dimensionalty

equals to k. Matrix below is similar to the matrix from the chapter 2. However, it shows

groups of clusters. Bold characters indicates correctly assigned observations, that are located

on the diagonal line. We will use this assumption for the rest of the thesis. Note that directly

after the clustering, groups often will be scattered on the matrix. However, we ensured that

this statement is true by assigning labels to clusters, using the Hungarian algorithm. Then,

sorting is easily done internally in the R, when creating confusion matrix.
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X Y1 Y2 Ym · · · YM sums

X1 n11 n12 n1m · · · n1M a1

X2 n21 n22 n2m · · · n2M a2

Xd nd1 nd2 ndm · · · ndM ad
...

...
...

...
. . .

...
...

XD nD1 nD2 nDm · · · nDM aD

sums b1 b2 bm · · · bM n

(4.3)

In the above matrix:

X - ground truth labels,

Y - clustering labels,

aD - a sum of all observations that belongs to XD,

bM - a sum of all observations that belongs to YM

n =
∑

i

∑
j nij - all observations

In this case, Adjusted Rand Index (ARI) was proposed[28]:

ARI =

∑
dm

(
ndm

2

)
−

[∑
d

(
ad

2

)∑
m

(
bm

2

)]
/

(
n

2

)
1
2

[∑
d

(
ad

2

)
+
∑

m

(
bm

2

)]
−

[∑
d

(
ad

2

)∑
m

(
bm

2

)]
/

(
n

2

) (4.4)

4.5.2.2 Jaccard and Weigted Jaccard Index

In simpli�ed form for two-class case, Jaccard index takes a following formula:

Jaccard =
TP

TP + FP + FN
(4.5)

The basic di�erence from the Rand Index, is that it does not contain TN counts [29].

The Weighted Jaccard index, based on the two class equation. First, we substituded

denominator as in following

We are substracting term n11, since both a1 and b1 have and we need only one. Then, we

can generalize the equation for all of the groups

Weighted Jaccard = WJACC =

∑
d,m

ndd

ad+bm−ndd

K
(4.6)

where: ad - is the sum of FP values in any group, bm- is the sum of FN values in any

group, ndm - is the value of TP in any group, k is the number of components
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4.5.2.3 Accuracy and Balanced Accuracy Index

Accuracy is a common evaluation metric used in machine learning to measure a classi�cation

model's performance. It is the ratio of correctly classi�ed samples to the total number of

samples in the dataset. Accuracy can be expressed as:

Accuracy = ACC =
TP + TN

TP + FP + FN + TN
(4.7)

In the equasion above, Accuracy index is the same as Rand index, thus sometimes it is

called Rand accuracy. In our comparison we used its variation, called Balanced Accuracy.

However, Accuracy may not always be the most suitable metric to use, particularly in cases

where the dataset is imbalanced. For example, if the dataset contains 90% of one class and

only 10% of another, a model that always predicts the majority class will have an accuracy of

90% but may not be useful for practical purposes. Balanced accuracy is a modi�ed version of

accuracy that considers the dataset's imbalance by calculating each class's average accuracy.

It is de�ned as the average of each class's sensitivity (true positive rate) and speci�city (true

negative rate). Balanced accuracy is as follows:

BalancedAccuracy = BACC =
Sensitivity + Specificity

2K

where:

Sensitivity =
TP

TP + FN

Sensitivity =
TN

TN + FP

Balanced accuracy provides a more meaningful evaluation metric when dealing with im-

balanced datasets, as it gives equal weight to both positive and negative classes rather than

favouring the majority class.

This metric was used to create the Median Accuracy assignment plot. It shows how, on

median given algorithm assigned observations to the correct group. The higher the bar, the

better. For the bigger picture, the mean with standard deviation was superimposed on the

plot. From the perfect assignment, we expect a mean of size 1 and 0 variances at the same

point as the median value.

4.5.2.4 Simple Matching Coe�cient

The SMC is easy statistic, which calculates e�ciency of the clustering. To obtain this metric,

we have to divide sum of all true postivie values by all observations. As one may already

knew, this metric might not be suitable choice, when we have signi�calntly di�erent number

of observations.
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SMC =
TP

TP + FP + FN + TN
=

∑
d ndd∑

dm ndm

In the SMC metric we calculate numerator in a di�erent way, than it was in the case

accuracy index.

When we calculate the value of TN it contains

4.5.2.5 Weighted Simple Matching Coe�cient

The presentedWSMC is balanced version of SMC. It accounts for di�erent number observation

in the groups, thus might be more accurate, where the classes are not balanced.

WSMC =

∑
d,m

ndm

ad

K

The weighting factor, nDM

aD
, represents the proportion of correct predictions for each row,

which is a way to incorporate the varying number of predictions made for each row. The

metric calculates the weighted average of these row-wise proportions, with each row weighted

by the total number of predictions made for that row.

4.5.2.6 Beta-binomial conjugate distribution

Beta-binomial conjugation is a statistical concept that involves using a beta distribution as a

prior distribution for a binomial distribution. In Bayesian inference, a prior distribution is a

probability distribution that represents the degree of belief or uncertainty about the model's

parameters before the data is observed. A prior conjugate is a prior distribution that, when

combined with the likelihood function, results in a posterior distribution of the same family

as the prior distribution. The binomial distribution and the beta distribution are conjugated.

This means that if the prior distribution for the parameter of a binomial distribution is a beta

distribution, the resulting posterior distribution will also be a beta distribution.

The beta-binomial model is often used to model count data. The outcome is the number of

successes in a �xed number of trials, and the probability of success in each trial is unknown.

The beta distribution is used as the prior distribution for the probability of success, and the

binomial distribution is used as the likelihood function for the observed data. The resulting

posterior distribution is also a beta distribution, which provides a way to update the prior

belief about the probability of success based on the observed data. It provides a valuable

framework for estimating the probability of success while allowing for data uncertainty and

variability.

Beta distribution consist of two parameters: α and β. Thanks to conjugation they can be

easily updated:

p(θ|k, α, β) ∼ Beta(α, β) (4.8)
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α′ = α + k (4.9)

β′ = β + n− k (4.10)

where: n - a number of trials, k - number of successes

Using parameters α and β, we can calculate its mean and standard deviation.

µ =
α

α′ + β′ (4.11)

σ =

√
α′β′

(α′ + β′)2(α′ + β′ + 1)
(4.12)

The beta distribution is a conjugate prior to the binomial distribution. When we use

a beta distribution as a prior distribution for the binomial likelihood function, the resulting

posterior distribution will also be a beta distribution. This makes it easier to update the prior

distribution with new data, as we do not have to recalculate the model e�ciency repeatedly.

Additionally, the beta-binomial distribution has a simple and robust structure, making it a

popular choice for Bayesian analysis.

If a model is given a higher probability of better performance, the beta-binomial distribution

will adjust its parameters accordingly once evidence is seen. However, if an initial prior

is provided without evidence, beta-binomial distribution will assign a higher probability to

speci�c outcomes. This will be immediately noticeable to the reader.

4.5.3 Visualization

In the tesis, all of the graphic charts were created using ggplot2 package as the base[30].

4.5.3.1 Dimensionality reduction

Dimensionality reduction methods allow the representation of observations in space with fewer

dimensions than in the original data. Dimensionality reduction is often an intermediate step in

classi�cation, cluster analysis, or regression. In certain situations, it improves the e�ectiveness

of these methods, increases stability and sometimes allows the inclusion of many variables in

the analysis. The data is reduced to a two-dimensional space, making it easy to present them

on a graph. Methods from this group are also called feature extraction methods. It is also a

popular method for visualising multidimensional variables, which was used in this study.

PCA

Its purpose is to extract the essential data from the matrix. It is then represented as a set of

new orthogonal variables called principal components to display the pattern of similarity of

the observations and the variables as points in two or three-dimensional space.
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The principal component analysis de�nes new variables by combining their smallest possible

subset. They are linear, weighted combinations of the original data set. The aim of creating

new variables is that they will explain the total variability in the data set as much as possible.

The new variables will form an orthogonal basis in the feature space. We should select

variables so that the �rst variable re�ects as much variability in the data as possible. After

projecting the observations onto this vector, we want the variance of the projections to be the

highest. After determining the �rst variable, the second is orthogonal and explains as much

of the remaining variability as possible. Another variable should be orthogonal to the �rst

two, and the procedure continues until no variable remains.

SVD and tSVD

Singular Value Decomposition (SVD) is a factorization of a real or complex matrix into

three matrices: U , Σ, and V ∗. The matrix U and V ∗ are unitary matrices, and Σ is a

diagonal matrix containing the singular values of the original matrix. Truncated Singular

Value Decomposition (tSVD) is a variation of SVD that only retains a subset of the singular

values and corresponding singular vectors of a matrix. The idea behind tSNE is to reduce

the computational cost of SVD by only considering the largest singular values that capture

essential information of the original matrix. tSNE is commonly used in dimension reduction,

denoising, and compression tasks.

tSVD was used to visualize datasets.

tSNE

tSNE stands for t-Distributed Stochastic Neighbor Embedding. It is a non-linear, unsuper-

vised technique of dimensionality reduction. Its primary purpose is to explore and visualise

multidimensional data. The tSNE algorithm computes a measure of similarity between pairs

in large- and small-dimensional spaces. For the next step, it tries to optimise both measures

of similarity. In simple terms, tSNE tries to simplify how multidimensional data is distributed

in euclidean space. tSNE is not designed to cluster data but primarily to explore and visualise

data. However, we can assess how many groups may be hidden in the data by visualising

data in two or three-dimensional space. [31]

Several R packages can create a tSNE map: tsne, Rtsne or cuda.ml.

In the thesis, package cuda.ml was used, as it utilizes graphic card capabilities to produce

results, aided by Rtsne. Using hundreds of cores is a huge advantage when dealing with large

datasets. The major drawback is the VRAM storage. The VRAM capacity in the average

graphics card oscillates between 4GB-8GB. The 6GB I used was insu�cient for some datasets,

so we had to resort to RAM/CPU calculations.
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Random projection

Random projection is another computational technique used for dimensionality reduction.

It is a method of representing high-dimensional data in a lower-dimensional space by using

random linear projections.

In random projection, a random matrix is generated and multiplied with the original high-

dimensional data points to produce the lower-dimensional projections. The idea behind ran-

dom projection is that, for many applications, the high-dimensional data lies on or near a

lower-dimensional subspace. The random projection provides a way to estimate this lower-

dimensional subspace. One of the critical advantages of random projection is that it is fast and

computationally e�cient. Unlike dimensionality reduction techniques like PCA or SVD, ran-

dom projection does not require eigendecomposition or singular value decomposition, which

can be time-consuming.

4.5.3.2 Metrics report

Colours that are occuring across report are consistent and assigned to each algorithm.

The ARI Index

The ARI Index was shown by using boxplots.

Beta binomial distribution

Beta-binomial distrubtion was drawn using beta probability density function

A median of Balanced Accuracy

A median of Balanced Accuracy was drawn using bars on a polar coordinate plane. The

height of a bar was related to the value of the median BACCU. In addition, mean and

standard deviation were added.

WSMC, SMC and WJACC

The three metrics were drawn similarly altogether as violin plots. Those plots also consist

of means and points of scores. The points were randomly scattered across the x-axis, which

completes the density.

Correlation plot

The correlation coe�cient was calculated between every two metrics to measure the linear re-

lationship's strength and direction. A strong correlation indicates strong agreement regarding

clustering quality.
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4.6 General Computation optimization

Optimizing performance is an essential aspect of many applications, including solving arith-

metic equations quickly. For instance, matrix or vector multiplication may involve several

steps to obtain the desired result. To streamline this process, high-level programming lan-

guages like Python and R and mid-level languages like C++ come with pre-built libraries

that o�er these functionalities. By utilizing these libraries, developers can save time and

e�ort manually coding these computations.

BLAS

The shortcut refers to Basic Linear Algebra Subprograms. In general, BLAS provides classic

interfaces for linear algebra calculations. Inside the BLAS library, we can distinguish three

di�erent BLAS levels. BLAS1 (level 1) allows for vector-vector operations. BLAS2 is respon-

sible for matrix-vector operations. Finally, BLAS3 makes matrix-matrix operations possible.

In summary, BLAS is the computational kernel for linear algebra and other scienti�c applica-

tions. If we can make BLAS optimise its libraries, the whole application written with it will

bene�t.

LAPACK

LAPACK stands for Linear Algebra PACKage. It is used along with BLAS. The actual lan-

guage that LAPACK is written in is Fortran 90. It consists of routines for more comhttps://spankbang.com/2sgkx/playlist/ishida+karenplex

algebra, like least-squares, eigenvalues or singular value decomposition. LAPACK also handles

routines for solving QR factorisation, lower�upper (LU) decomposition, or Cholesky decom-

position, to name a few. It handles dense and some sparse matrices, precisely banded ones.

However, it lacks routines for sparse matrices in general. Regarding types of numbers, similar

functionality is provided for real and complex matrices, and both double and single precision

is supported.

The relation between BLAS and LAPACK is as follows: LAPACK heavily depends on

BLAS as it is built upon it.

https://csantill.github.io/RPerformanceWBLAS/ provides some results that compare men-

tioned alternatives to BLAS. In this comparison, each library has its fortes. However, Intel

MKL has the highest number of the best results in all comparisons. However, it does not

mean it is the best choice. Mostly because the test comparison is precise. It is more di�cult

to say how those libraries will perform in more complex applications.

In our computations, we have used OpenBLAS libraries. The decision was based upon the

fact that OpenBLAS was open source from the beginning, and its performance was second

best.
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OpenMP

OpenMP is a multi-threading API for C, C++, and Fortran programming languages. It

provides a parallel programming model for shared memory systems, making it easier for de-

velopers to write parallel applications. OpenMP simpli�es the process of parallelizing loops

and sections of code, allowing workloads to be distributed among multiple threads for im-

proved performance and faster execution times.

Installing all of the metioned libraries required recompiling R kernel and its libraries. How-

ever it resulted in increased performance, without overuse of memory.

R speci�c optimisation

There is a common idea that R is slow, which is somewhat valid. R is a high-level programming

language. It was designed with statistical analysis in mind. Many functions are not created

with speed and e�ciency but with stability and reliability.

That said, here is the mean() function code found in R. To see what the mean contains,

we should execute the mean.default() instead of mean(), as the former will only give us

information about methods.

mean.default <- function (x, trim = 0, na.rm = FALSE, ...) {
if (!is.numeric(x) && !is.complex(x) && !is.logical(x)) {

warning("argument is not numeric or logical: returning NA")
return(NA_real_)}

if (isTRUE(na.rm)) x <- x[!is.na(x)]
if (!is.numeric(trim) || length(trim) != 1L)

stop("’trim’ must be numeric of length one")
n <- length(x)
if (trim > 0 && n) {

if (is.complex(x))
stop("trimmed means are not defined for complex data")

if (anyNA(x)) return(NA_real_)
if (trim >= 0.5)

return(stats::median(x, na.rm = FALSE))
lo <- floor(n * trim) + 1
hi <- n + 1 - lo
x <- sort.int(x, partial = unique(c(lo, hi)))[lo:hi]}

.Internal(mean(x))}

First, the function includes several sanity checks to ensure correct input, such as checking for

NA values. It also handles various data types, including time, date, and date-time classes.

While these checks require additional time to execute, they ensure the accuracy and reliability

of the results. Using a clean mean function will be faster in the long run, provided the data

is appropriately formatted.

While R allows for e�cient function writing, it is still a high-level language and optimised C

code may o�er better performance. Generally, lower-level languages may be preferable when

dealing with speci�c data types or frequently used functions. Nonetheless, there is always

room for improvement.
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5 Results

The following chapter presents the results of clustering simulated data and real (actual mea-

surements) data. Each dataset clustering is preceded by its brief characteristic and descrip-

tion.

5.1 Simulated data analysis

The �rst part consists of simulated data analysis, starting with Multivariate Normal Mixtures.

The second part presents Multinomial Mixtures.
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5.1.1 Multivariate Normal Mixtures

Results

Figure 5.1: The ARI index in Simulated Multivariate Normal Mixtures

The ARI index in Figure 5.1 indicates that GMM was the best-performing algorithm in all

datatypes, with consistently high median scores. Although GMM did not necessarily wholly

overwhelm the other algorithms, its spectrum of values often reached higher values than the

other algorithms. KMN had a similarly broad spectrum of values, but its median score was

consistently lower than GMM. It's worth noting that as the number of components increased,

the scores of all algorithms tended to decrease, likely due to the limitations of the data

simulation scripts favouring overlapping data. In contrast, MMMK performed similarly to

HC but with slightly lower median scores in the complete and reduced data. However, when
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the data was scaled and reduced, its performance was worse than KMD, which generally had

low scores in each data type.

Figure 5.2: Beta-binomial distribution as a quality metric in Simulated Multivariate Normal
Distributions

In Figure 5.2 the Beta-Binomial distribution plot indicates that the highest scores of correct

clustering were obtained by GMM, located on the furthest right of the �gure. The mean dif-

ference between GMM and KMN, the second-best performing algorithm, was around 0.05 for
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all data types. The �rst three algorithms (GMM, KMN, and MANHC) scored approximately

0.07-0.1 points, with MANHC performing the worst. The degree of overlap between the top

three algorithms varied depending on the data type, with MANHC being more overlapped

with KMN in complete and reduced data. However, when data was scaled, KMN and GMM

had increased overlap.

CMN performed similarly across di�erent data types, overlapping almost entirely with

MANHC when any scaling was involved and partially overlapping when it was not. KMD had

better scores in complete and scaled data but performed poorly in reduced data, where it had

the lowest performance. MMMK had the best performance when the data was complete, and

it overlapped almost entirely with CMN, with a score of 0.47 points. However, its performance

decreased when data reduction and scaling were involved, placing it as the worst-performing

algorithm.

Figure 5.3: A median of balanced accuracy with mean and standard deviation in Simulated
Multivariate Normal Distributions
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In Figure 5.3, GMM achieved the highest score in the balanced accuracy metric in each

data type. Despite a slight di�erence of approximately 0.04-0.05 points between GMM and

un�ltered k-means, this result was based on many datasets, increasing its reliability. The

trends followed by CMN and MANHC were similar, with CMN performing slightly better.

Scaling the data improved by 0.01 points for both algorithms, but reducing the data decreased

their scores by 0.04 and 0.07 points, respectively. MMMK and KMD were the second and

lowest-scoring algorithms, respectively.

Figure 5.4: Other quality indices in Simulated Multivariate Normal Distributions
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The mean values were generally located near the median value, except for some discrepan-

cies in MANHC, MMMK, and KMN, especially for the �rst two. Nevertheless, even consid-

ering the standard deviation and the highest score, GMM still achieved the best result.

By design of simulated data, groups are generally balanced. In Figure 5.4, comparing

SMC, WSMC and WJACC, GMM and KMN are generally on pair, when in a few cases,

GMM performed slightly better, considering the mean value. However, when the data was

not �ltered or scaled, the Jaccard index showed a higher mean of k-means than in other

algorithms.

GMM also has the broadest spectrum of values, which might be related to suboptimal

initialization. It is easiest to observe in the WSMC and WJACC, where some points are closer

to 0 than other algorithms. We can also observe that in distance-based algorithms altogether

with MMMK, more density is gathered at the lower values. The most condensation is around

0.3 in the case of WSMC and SMC metrics and around 0.1 in the WJACC.

Figure 5.5: Metrics correlation in Simulated

Multivariate Normal Distributions

The metrics are highly correlated, which

is a close agreement between metrics. GMM

performed the best across all presented al-

gorithms, with k-means in second place.

MMMK, on the other hand, was the second

worst, which is not surprising, given that it

uses di�erent probability distributions to es-

timate the parameters.
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5.1.2 Multinomial Mixtures

Results

Figure 5.6: The ARI index in Simulated Multinomial Distributions

The ARI chart in Figure 5.6 shows that MMM had the highest score when the data was

complete. With the increased number of components, MMM, MANHC and KMN performed

slightly worse. On the contrary, KMD CMN had a steady decrease. GMM was only slightly

a�ected but had the lowest performance in this data. When the data was reduced, the algo-

rithm's medians were closer to each other. Initially, GMM was better than other algorithms,

but with the increased number of clusters, MMM median score was the highest. Scaling of the

data increased scores for all algorithms but MMM. Data reduction with scaling worsened the

scores in general but slightly improved those of MMM. However, they were still the lowest.
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Figure 5.7: Beta-binomial distribution as a quality metric in Simulated Multinomial Distri-
butions

In the �gure 5.7, we can see that the highest result belongs to MMM. With approximately

0.84 points, it is the highest score across all types of �ltration. Moreover, the probability

density of the mean value is also the highest, which gives us more con�dence compared to

the other algorithms. However, it is valid only when the data is complete. Scaling of the

data sent the MMM to the most left position, which was to be expected since the data no

longer contained counts. Its probability density also became lower by almost 10 points. Here,
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MANHC had the highest mean value of about 0.807. In addition, it overlapped with c-means

and k-means, as the di�erence in the results was about 0.02. MMM scored as the second-best

algorithm in the reduced data, overlapping with the GMM, which scored 0.69 points. Also,

MMM and GMM have the lowest SD, but only 0.001, compared to the other algorithms.

Finally, when the data was scaled and reduced, GMM was again �rst, with a mean score

of 0673. MANHC, c-means, and k-means were highly overlapped, with scores of 0.06 points

worse than GMM. MMM was again the lowest-performing algorithm, but its results were

better by 0.119 points than when the data was only scaled.

Figure 5.8: A median of balanced accuracy with mean and standard deviation in Simulated
Multinomial Distributions

The index of balanced accuracy shows that distance-based algorithms scored the highest

results. We can see that MANHC scored 0.94 in the complete data when MMM was about

0.03 points lower. However, in MMM, the black dot of the mean value is in the same spot

as the median value, whereas in the case of MANHC, it is below 0.9, with more spread.
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GMM scored the lowest, but its mean was slightly higher than the median. Also, its standard

deviation is relatively small compared to other algorithms. After the data scaling, we can see

that MANHC was barely a�ected. The same is true about KMN, but not for CMN, which

scored higher by 0.03 points. KMD, on the other hand, scored 0.03 points lower. Data scaling

enabled GMM to retrieve more information, improving its initial result by almost 0.21 points.

Figure 5.9: Other quality indices in Simulated Multinomial Distributions

Contrarily, it a�ected MMM negatively, as it received the lowest score across all algorithms.

68



CHAPTER 5. RESULTS 5.1. SIMULATED DATA ANALYSIS

We also saw it in the beta-binomial distribution, where MMM was on the very left side of the

�gure.

Data reduction impacted scores negatively for all algorithms but only partially for MMM.

Notably, variance decomposition had more impact on distance-based algorithms than model-

based ones. GMM had a better score when the data was reduced than in the complete data.

Additionally, it outperformed MMM by only 0.01 points. When the data was scaled and

reduced, MMM performed better than in the case when data was only scaled. GMM had the

highest score of 0.74 points, losing only 0.06, while the other distance-based algorithms lost

between 0.16 to 0.25 points, apart from k-medoids, which lost only 0.06 to 0.08 points.

The Figure 5.9 presenting the three indices shows that MMM had the highest scores when

the data was complete. It is visible comparing the mean value, as well as density. In MMM

it is more condesed close to 1, than in the other algorithms. Contrary, GMM had the lowest

scores, which is also seen by the wider distribution near the lower values. KMN and MANHC

performed only slightly worse than MMM.

Reduction of the data decreased the score of all algorithms but increases the mean value for

GMM. Scaling of the data makes MMM scoring the lowest across all algorithms, elevating HC

and KMN. Finally, when the data is scaled and reduced, the mean value of GMM is higher

than in the other algorithms. MMM keep the lowest results, which are now slightly higher

than when the data was only scaled. From the perspective of MMM, important information is

lost during the scaling. It is expected since the algorithm operates on models of Multinomial

Mixtures.

Figure 5.10: Metrics correlation in Simulated

Multinomial Distributions

In the case of simulated mixtures of multi-

nomial distributions, the correlation of var-

ious metrics is even higher than in Nor-

mal distributions. However, it is more chal-

lenging to point out the best algorithm.

Distance-based algorithms had very high

scores overall. They did exceptionally well

when the data was scaled, which was ex-

pected. However, MMM has the best perfor-

mance if we deal with data that is not trans-

formed or reduced. Notably, if the data is

reduced, it gives similar results as GMM. In

addition, MMM was the best if we measured

the raw number of successes.
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5.2 Real data analysis

5.2.1 Somatic Mutation Counts

The �rst dataset concerned somatic mutations in DNA in cancer patients. Somatic mutations

in cancers are an essential and extensively researched topic. Somatic mutations can be caused

by exposure to exogenous or endogenous mutagens or during DNA replication errors. Two

major types of somatic mutations are distinguished: driver and passenger. Driver mutations

are considered to confer cell growth and are related to cancer development, while passenger

mutations have less or no impact on cancer growth in the organism. The di�erence between

driver and passenger mutations can be caused by their positions in DNA or their impact on

transcripts (mRNAs, proteins) produced. If a mutation hits an exon, it is more likely to be-

come a driver. Contrary mutations in introns would rather be passengers. In protein-coding,

the nucleotide substitution in the DNA can be synonymous or non-synonymous. Synonymous

somatic mutations leave the amino acid unchanged, while non-synonymous results in mod-

ifying the amino acid or producing no amino acid. However, the problem of distinguishing

between driver and passenger mutations is much more complex. Numerous studies are trying

to estimate the impact of mutations on the risk of cancer development [32].

We wanted to cluster patients diagnosed with di�erent cancer types based on counts of

somatic mutations in genes. Due to the complicated problem of distinguishing between driver

and passenger mutations, in our computational experiments, we take numbers (counts) of

mutation occuring in genes as our observational vector data. The hypothesis behind this

computational experiment is that the recorded information (mutation counts in genes) can be

used to distinguish between various types of cancer. The second goal is to determine which

clustering algorithms will perform best in the clustering task when the quality criterion agrees

between unsupervised clustering results and the ground truth.

Original, raw data was taken from The Cancer Genomic Atlas (TCGA)[33]. BAM �les

submitted to TCGA were converted to FASTQ format for the initial analysis. DNA sequences

were aligned using BWA-MEM or BWA-aln, depending on the read length. The human

genome used as a reference was in version GRCh38.d1.vd1. In parallel to the BWA algorithm,

GATK was also used to improve the alignment quality. Five Somatic Variant Callers were

used in the next step: MuSE, MuTect2, VarScan2, SomaticSniper, and Pindel.

The data we used in the experiment was annotated using somatic variant caller Mutect2.

It is one of the few popular tools to detect SNVs (Single Nucleotide Variations) and indels

(insertions and deletions in the DNA) [34]. According to Mutect2 probabilistic model, we

�ltered predicted somatic mutations. The data we extracted included the following infor-

mation: sample number, which re�ects a single, anonymized patient, name of the gene in

which mutation occurred and frequency of mutations. For the experiment, we have chosen 10

di�erent types of cancer, semi-arbitrally.
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Figure 5.11: Visualization of dimensionality reduction techniques of TCGA Somatic Muta-
tions Counts
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Variant E�ect Predictor was used for each �le. Ensembl database is a comprehensive

source of genomic data, and the Variant E�ect Predictor (VEP) is a part of it. It is a

multipurpose tool to annotate possible mutation e�ects. It can predict whether the mutation

was synonymous, missense, or stop gained. VEP also estimates the potential impact on

the organism, which ranges from low to moderate up to high. The vital characteristic of

VEP is that it provides many predictions regarding possible gene variants or transcripts. It

means that numerous di�erent variants might describe one mutation. In rare cases, we can

obtain contracting suggestions, like missense and synonymous variants of the exact mutation

location. It also provides information on possible gene mutations that occurred in the desired

format. We choose Ensembl genes over common HGNC names. The structure presented by

Ensembl seems to be more consistent and not prone to drastic changes, as in the case of

HGNC - when one gene might have had a few di�erent aliases.

To �lter data variants, if a patient in a particular location had more than one variant, they

were added up. The variant that occurred the most frequently, along with its corresponding

gene, was selected for analysis. If there were two genes, the �rst one was taken.

The complete dataset consisted of more than 10 000 observations and 35 000 variables.

As shown in Figure 5.11, the separation of groups is relatively poor regardless of the dimen-

sionality reduction technique used, with only three or four groups appearing more isolated

than the rest. The random projection method resulted in the lowest separation, while the

t-SNE plots showed the most distinct groups. Although separated groups can also be seen in

PCA and t-SVD, they are more overlapped than in the case of t-SNE. It is worth noting that

t-SVD is mirrored PCA, but on a di�erent scale.

Results

Figure 5.12 displays the ARI index scores for various algorithms. HC and GMM achieved the

highest scores, with MMMK ranking third. The median value increased for all algorithms

up to around four components before decreasing, as observed in complete, reduced, and

scaled-and-reduced data. This trend was particularly evident in HC and MMMK. Notably,

after scaling, most algorithms remained close to zero, including GMM. The MMMK variant

performed better due to its k-means initialization, but the median score for HC was still

twice as high. Both model-based algorithms consistently scored in the top three. After

reduction and reduction with scaling, more algorithms achieved positive scores. Nonetheless,

the highest single scores were obtained by GMM in the two-component mixture with complete

data and MMMK in the two-component mixture with reduced data. These results suggest

opportunities for future improvements.
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Figure 5.12: The ARI index in TCGA Somatic Mutations Counts

Looking at Beta-binomial distribution in Figure 5.13, we can see that the highest score

belongs to HC with 0.462, when the data was complete. It also performed best when the

data was scaled and scaled and reduced. However, each time it was also overlapped with

other algorithms. Right after HC, we can see that MMMK scored very high when the data

was reduced. Its score is comparable with the highest score of HC, performing only by 0.003

points less. Scaling visibly stretched score range of the algorithms,. Suprisingly GMM was

the last and MMMK was again second. When the data was scaled and reduced, all algorithms

performed within range of point 0.423 to 0.45. Here MMMK was the last and it was almost

entriely overlapped with GMM that scored 0.425.
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Figure 5.13: Beta-binomial distribution as a quality metric in TCGA Somatic Mutations
Counts

The highest score in the balanced accuracy index, as shown in Figure 5.14, was achieved

by HC across di�erent data types. MMMK was the second-best performing algorithm, with

a score of 0.59 points, which scored highest when the data was reduced. However, MMMK

results varied signi�cantly depending on the data type. In general, scaling improved the

results of HC and MMM, but it worsened the scores of the other algorithms. On the other

hand, reducing the data improved the performance of di�erent algorithms.
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Figure 5.14: A median of balanced accuracy with mean and standard deviation in TCGA
Somatic Mutations Counts

The data reduction positively impacted GMM, but only when the data was scaled. In

complete data, GMM scored almost 0.55, and scaling worsened the result by 0.09. In scaled

and reduced data, it scored 0.54, the same as in the case of only reduced data, which was

only 0.01, worse than its best score.
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Figure 5.15: Other quality indices in TCGA Somatic Mutations Counts

In Figure 5.15, there is not much agreement between the three presented metrics. Each

of the metrics presents a di�erent report. According to the WSMC metric, KMD performed

best in all datatypes. It has the highest median, slightly about 0.6 points, compared to the

other algorithms. Also, it had the highest density, about 0.8 points, compared to the others.

The lowest-performing algorithm was CMN. Then, model-based algorithms were placed in the

middle. We can see that the tendency remains through di�erent data types, but the di�erences

are more emphasized or shallow across the algorithms. When the data was complete or scaled,
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the di�erence was much more visible than when the data was reduced and scaled and reduced.

In contrast, looking at the SMC metric, the situation is slightly di�erent. GMM and

MMMK are the second and third best-performing algorithms, respectively. In complete data,

we can see that GMM had some scores even higher than HC, but there were only a few of them,

and more density was placed below 0.6 points. When the data was reduced, MMMK slightly

outperformed HC, but the di�erence was negligible. With fewer variables, the di�erences in

scores across algorithms were lower.

Finally, the WJACC metrics show the most signi�cant di�erences across the various al-

gorithms. In the complete case, GMM was on par with HC. After data reduction, MMMK

performed best, with the highest mean and the lowest values higher than the other algorithms.

After scaling the data, MMMK lost some of the highest-scoring values, making it the second-

best-performing algorithm behind HC. When the data was scaled and reduced, GMM, CMN,

KMN, and KMD performed slightly better, while MMMK and HC performed worse than in

the previous data type. Therefore, the mean across algorithms is similar, ranging between

0.2-0.3 points.

Figure 5.16: Metrics correlation in TCGA So-

matic Mutations Counts

While all correlations are positive, the re-

sults vary. Especially the ARI index and

BACCU metric exhibit more disagreement

with the other metrics but at the same time,

they are more consistent with each other.

When taking a large number of observa-

tions in di�erent cancers, the di�erences in

somatic mutation counts gradually become

less observable. This may be due to the ho-

mogeneity of somatic mutations across dif-

ferent cancers. Additionally, due to the lack

of an explicit probability model for selecting

an appropriate variant, we receive a mixture

of similar mutations.[35].

78



CHAPTER 5. RESULTS 5.2. REAL DATA ANALYSIS

5.2.2 Gene Expressions

Gene expression is a series of events leading to information displayed in the cell. Roughly

speaking, gene expression lets phenotype arise, something we can observe from genotype.

We can consider the genome as information storage. However, it cannot pass the informa-

tion to cells on its own. To use biological information encoded in the genome, enzymes and

various proteins must participate in complex biochemical reactions that lead to Genom ex-

pression. The �rst product of Genom expression is transcriptome, a group of RNA particles.

They come from those protein-coding genes that the cells need the most. The transcriptome

is created during transcription when genes are rewritten as RNA particles.

Some of those particles are called mRNAs or messenger RNA. The primary role of mRNA

is to function as a template for translation. Their sequences are �rst translated to amino

acids during this process, which then builds functional proteins. During various events, like

gene mutation, the expression level of mRNA might be increased, decreased or even halted.

It can be related to multiple diseases, including cancer [36].

cBioPortal is an interactive interface to the resources such as TCGA. It provides open

access to molecular pro�les and clinical attributes of di�erent cancer genomic studies.

The data is primarily multidimensional and contains, but is not limited to, data on DNA

methylation, mRNA and microRNA expression or phosphoprotein level data (RPPA). We

used mRNA (messenger RNA) expression data for our analysis. First, we wanted to con�rm

if such kind of data contains enough information to distinguish between di�erent types of

cancer. In other words, various cancers show di�erent expression patterns.

The gene expression format of cancers was already suitable for our input purposes, requiring

only transposition to convert sample numbers into observations and genes into variables.

The complete dataset consisted of more than 10 000 observations and approximately 35 000

variables.

In the Figure 5.17, PCA shows limited distinction within groups, with only a small section

of the blue tail and a few orange points pointing to the lower left corner of the �gure. Random

Projection reveals some groups, but they are centered and overlap. tSVD is similar to PCA

but provides better distinction within the cancer group. However, a clearer visualization is

achieved with the tSNE plot, which shows well-separated groups with minimal overlap.
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Figure 5.17: Visualization of dimensionality reduction techniques of TCGA Gene Expressions
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Results

The analysis of the clustering algorithms using the ARI index is presented in Figure 5.18.

Model-based MMM and HC algorithms achieved the highest scores when the data was com-

plete, with MMM scoring higher than HC. Although GMM and MANHC were almost on par

in the case of reduced data, MMM outperformed both algorithms in both scenarios.

Figure 5.18: The ARI index in TCGA Gene Expressions

On the other hand, when the data is scaled, MMM generally performs worse than other

algorithms. However, the performance of MMM increases with the increased number of

clusters, which is not easily observed in the case of other algorithms.

Furthermore, we observed that most algorithms have the broadest spectrum of results in

two clusters, which gradually decreases with increased clusters, focusing more on the median

value. However, this is not necessarily the case for the MMM algorithm, where the scores are
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tightly focused around the median, even in two cluster cases.

Finally, it's worth noting that most distance-based algorithms (excluding HC) have lower

performance with the increased number of clusters.

Figure 5.19: Beta-binomial distribution as a quality metric in TCGA Gene Expressions

Figure 5.19 shows the beta-binomial distributions of correct assignments. MANHC scored

the highest on the right side of the pitch, followed by MMM. These two algorithms have

slightly overlapping scores, with a di�erence of approximately 0.027 points. Furthermore,
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they have the highest probability density, which provides more con�dence in their probability

of correct assignment than the other algorithms. Notably, both algorithms have standard

deviations almost twice as low as the other algorithms, indicating that their scores are more

focused on the mean.

When the data was scaled, the model-based algorithms performed visibly worse than the

others, with performance levels similar to CMN, which had the lowest score in this data type.

However, with the additional reduction of features, MMM showed better performance, with

GMM scoring as the third-best algorithm with a result of 0.841

Figure 5.20: A median of balanced accuracy with mean and standard deviation in TCGA
Gene Expressionss

Figure 5.20 shows the median balanced accuracy metric, where the means are almost iden-

tical to the medians in all cases, except for a slight di�erence in the scaled CMN. In the

un�ltered data, while MMM and MANHC had similar scores, the results of the model-based

algorithm were more spread out. However, MMM could correctly assign most data sets in
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reduced data, whereas distance-based algorithms performed worse. GMM performed second

best in this scenario. Data scaling increased the correct assignment of distance-based algo-

rithms, especially in k-medoids. Finally, when the data was scaled and reduced, MANHC was

still the �rst, but KMD was worse only by 0.02, followed by GMM.

Figure 5.21: Other quality indices in TCGA Gene Expressions

Figure 5.21 presents the results of various metrics, where CMN had the highest spectrum

of scores, indicating that it was the worst-performing algorithm. This can be observed in the
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WSMC and WJACC metrics, where the violin plot is wider below the value of 0.4. KMN

performed better than CMN, with fewer small scores and a mean primarily between bands

0.85 and 0.6, mainly in scaled data.

Regarding GMM, the data type played a crucial role in its performance. It scored worse

than KMN only when the data was scaled, but after data reduction, it had better results,

with a mean close to 0.9 points.

Figure 5.22: Metrics correlation in TCGA ex-

pressions

In Figure 5.22, all metrics show a high

positive correlation, indicating signi�cant

agreement regarding algorithm performance.

When the data was complete, MANHC

achieved the highest score, but MMM was

only slightly worse by approximately 0.025

points. Overall, the algorithms performed

exceptionally well, consistent with the �nd-

ings from the tSNE map.
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5.2.3 Codons frequency

Proteins are built from codons, with 20

amino acids coded by these codons. Each codon comprises three DNA bases. In the past, the

DNA code was believed to be universal among all species, with most using the same codon of

three nucleotides to code for a speci�c amino acid. However, it is now known that this state-

ment is only partially valid, with many exceptions found in various species. Non-standard

codons are frequently used in mitochondria genomes, for instance. The frequency of codon

usage may also di�er across organisms.

Bohdan Khomtchouk from the Section of Computational Biomedicine and Biomedical Data

Science, University of Chicago, shared the dataset we used. The codon frequency set was

built using CUTG (Codon Usage Tabulated from GenBank, which is available on the site

(https://www.kazusa.or.jp/codon/). The data contains frequencies of codon usage by several

diverse organisms. Each organism was assigned to its respective kingdom. The "Kingdom"

is an abbreviation code consisting of a 3-letter corresponding to the names from the CUTG

database. Data from UCI slightly di�ers from the original data, as the author describes that

they manually changed the class of bacteria into archaea, plasmids, and bacteria proper.

The DNA type is coded by an integer representing the genomic composition in the given

species. "SpeciesID" is a unique integer number that di�erentiates various species, along

with the "SpeciesName". The codons' number in the column "Ncodons" was obtained by

summing the codons for di�erent species found in the CUTG database. Then, the number of

codons was normalized by dividing each codon (like UUU, UUA) by the codons species sum,

as listed in the "Ncodons" column. That is how frequencies of codons were obtained. All

codons columns are �oats with �ve decimal digits.

The goal of the original paper "Codon Usage Bias Levels Predict Taxonomic Identity and

Genetic Composition", which used the data, was to build a machine learning classi�er to

distinguish between species. Meanwhile, we want to determine if we can restore the species'

structure by dividing them into their respective kingdoms based on codon frequency with

di�erent unsupervised learning algorithms [37].

In this study, plasmids were omitted because they constituted the smallest group, account-

ing for only 18 observations. The �nal dataset consisted of about 13 000 and 69 variables.

In �gure 5.23 all four methods reveal visible groups; however, their substantial overlap

could pose a challenge for clustering.
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Figure 5.23: Visualization of various dimensionality reduction techniques of standardized
Codons by animal Kingdoms
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Results

In Figure 5.24 of the ARI index, MMM and GMM algorithms had the highest scores overall.

In the complete data case, values of ARI for MMM are much higher than in any of the

other algorithms. Also, its median score increases with the increased number of clusters.

This tendency can also be seen in the other algorithms, but only for up to four mixture

components. After that, median scores decrease for all algorithms but slightly for GMM. The

median of MMM increased again in a mixture of �ve components, to fall a little when six

groups were present.

Figure 5.24: The ARI index in Codons

When the data was reduced, we noticed that GMM and MMM started from higher median

scores than distance-based algorithms. Moreover, the tendency to decrease or increase the

ARI index is similar to those in the complete data. However, here, overall scores were lower, as
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well as the di�erence between the median of MMM and GMM. Additionally, GMM performed

better when the data was reduced.

Figure 5.25: Beta-binomial distribution as a quality metric in Codons

Scaling improved the ARI index of all algorithms, but MMM. A considerable di�erence is

visible starting from 2 groups. MANHC, GMM and MMM are almost at a similar level. Data

reduction made the GMM score even higher, but its best median score was still relatively low,

about 0.1 points.
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In the case of codons, we can see a few negative scores. It means that compared partitions

have little in common and are not helpful in clustering or pattern recognition. There are

fewer such values in model-based than distance-based algorithms.

In Figure 5.25 of beta-binomial distribution, the most right peak belongs to MMM in the

case of complete and reduced data. In the former case, it overlaps with the distributions of

values from KMN++ and MANHC. After scaling, MMM was the last, which seems to be a

repeating pattern. GMM was usually positioned in the last place, with the lowest mean, but

when the data was scaled, it performed minimally better than in the original data. It also had

a better score when the data was reduced. Finally, when the data was scaled and reduced,

it performed better by 0.018 points. The di�erence between GMM, the last, and KMN++,

which scored the �rst, was 0.024 points. All the algorithms' mean values had the least spread

in this type of data. The probability density was similar for all algorithms and was relatively

high, over 60.

Figure 5.26: A median of balanced accuracy with mean and standard deviation in Codons
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In Figure 5.26, the range of values of median balanced accuracy is relatively low because of

about 0.11 points. The highest score belonged to the MMM when the data was complete. It

was also highest in the metrics shown previously. The rest of the algorithms have very similar

scores. It also applies to means and standard deviations. After reducing, the MMM still had

the highest score but 0.03 points lower. On the other hand, GMM gained 0.01 points when

the scores of the rest of the algorithms remained the same.

Figure 5.27: Other quality indices in Codons
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Data scaling lowered the scores of MMM signi�cantly but only slightly improved the results

of the other algorithms. Apart from GMM, which gained 0.01 points more, the means and

standard deviations of distance-based algorithms are also higher than in the case of previous

data types. Finally, when data was scaled and reduced, MMM scored similarly to GMM

because of 0.53. However, the lowest-performing algorithm in this data type, KMN++,

scored 0.51, so there are no vast di�erences.

Figure 5.27 presents various quality metrics. In the complete data, MMM achieved the

highest scores in all three metrics, with KMN++ in second place. The lowest scores belonged

to GMM and CMN. When the data was reduced, all algorithm scores were slightly lower.

However, the mean value of MMM was still the highest, at least in the WJACC and SMC

metrics. For WSMC, the mean of KMN++ was slightly higher, but the density around the

mean was greater for this algorithm than for MMM.

Scaling the data visibly reduced the MMM scores while elevating the distance-based al-

gorithms' values. Further data reduction almost �attened the means of scores in all metrics

except for WSMC. Here, the means of the distance-based algorithms were slightly higher than

those of the model-based algorithms. A closer look shows that the model-based algorithms

failed to achieve any score higher than 0.85, while the distance-based algorithms did.

The algorithms performed similarly, with no signi�cant di�erences between their scores.

However, MMM achieved the highest scores when the data was complete.

Figure 5.28: Metrics correlation in Codons

The correlation between metrics exhibits

signi�cant variation, with the ARI index dis-

playing the weakest correlation to other met-

rics. The following weakest correlation is ob-

served in the BACCU metric. However, a

high level of correlation (0.76) is observed be-

tween the ARI index and BACCU.

From the perspective of ARI index,

BACCU or SMC, or BBD, GMM and MMM

had the highest scores. However, according

to WSMC and WJACC metrics, MANHC

and KMN++ performed better.
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5.2.4 Sport activities

In recent years, there has been a rise in popularity for the terms 'smart' and particularly

'smartwatch', as evidenced by a Google trend. Smartwatches o�er more than standard func-

tions, such as phone calls, messaging, and playing music, with the ability to measure heart

rate, calorie burn, and daily step count.

Many smartwatches can also gather statistics on sports activities, including distance and

speed. Sophisticated smartwatches can automatically detect and record a person's actions

and corresponding metrics.

Data shared by Yale professor Billur Barshan on the UCI platform was used for this com-

parison. Barshan specializes in wearables, machine/deep learning, and robotics. The gathered

data included information about various sports activities performed by eight individuals be-

tween the ages of 20 and 30, including four males and four females.

Without prior instruction, participants were asked to perform 19 activities, such as jumping,

cycling, running, or walking, which may have introduced individual variation among subjects.

Various sensors were used to record the data, with a single unit consisting of 9 accelerometers,

gyroscopes, and magnetometers in x, y, and z coordinates. In total, �ve units were placed on

the torso, both arms, and legs. The sensors were calibrated to gather data with a sampling

frequency of 25 Hz. Each activity lasted 5 minutes, resulting in 45 attributes and 1,140,000

observations.

Looking at the dimensionality reduction plots if Figure 5.29, we see that although sports

activities are incredibly mixed, their distribution has some visible pattern. The immense

cloud of points in the middle might be the initial position that has been recorded. A few

activities like running, walking, and climbing stairs share the same initial position - standing

still. However, our study does not �lter any potential noise and uses all the available data.
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Figure 5.29: Visualization of various dimensionality reduction techniques in Sport Activities
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Results

In the case of daily sports activities, including Hierarchical Clustering and k-medoids methods

was not possible. This was because even two mixture components comprised over 100 thou-

sand observations, resulting in a minimal RAM allocation of around 50 GB. This increased to

as much as 1000 GB with up to 6 components. Although some algorithms can overcome this

limitation of RAM, their completion time was signi�cantly higher than any other presented

algorithms.

From the perspective of the ARI index in Figure 5.30, two-component mixtures have the

broadest spectrum of outcomes across all datasets. It applies to all of the algorithms, but in

the case of MMMK, those spectrums are the lowest, similarly to its results.

Figure 5.30: The ARI index in Sport Activities

We can see that the GMMK has the best scores of all the algorithms. Notably, even with
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the increased number of clusters, it maintained a higher ratio of correct assignments than

the others. Scaling bene�ts all of the algorithms. With the increased number of clusters,

results became denser around the median. Contrary to MMM, the range of results became

more scattered and chaotic. In the case of variable reduction, algorithms performed worse,

as if some information was lost in the process. Once again, scaling positively impacted the

reduced data, but results remained relatively low.

Figure 5.31: Beta-binomial conjugate distribution as a quality metric in Sport Activities
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In the Figure 5.31, the highest and most right-side peak belongs to GMMK, with a mean

value of 0.76. After data reduction, it was impacted by lowering its performance by almost

0.1, while the other algorithms were a�ected only slightly. When the complete data was

scaled, the result was even higher than when the data was unchanged, probably taking more

advantage of kmeans initialization.

Finally, the scaled and reduced data scores of GMM and KMN++ were shifted to the left

side, but at the same time, those of MMM and CMN were brought more to the right side.

When it was still last, it was the best performance of MMM across di�erent data types.

Regarding probability density, we can see that this of GMMK was higher than in the case

of their algorithms. It gives us slightly more credibility of the result. On the opposite, the

MMMK algorithm scored the lowest probability density.

Figure 5.32: A median of balanced accuracy with mean and standard deviation in Sport Ac-
tivities

Median balanced accuracy (Figure 5.32) also shows that GMMK performed the best across
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all the compared algorithms. Scaling improved its scores by 0.04 points. CMN performed

minimally better than KMN in complete, reduced, scaled, and reduced data. When the data

was scaled, KMN++ had a better score of almost 0.08 than CMN, with a score of 0.75. It was

the highest result, excluding GMMK. On the contrary, MMM had the lowest scores across all

data sets. However, scaling and reducing the data improved its results slightly.

Figure 5.33: Other quality indices in Sport Activities

In Figure 5.33, all metrics agree that GMMK based on k-mean initialization had the highest
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scores, despite various data types. Contrary, MMM scored the lowest. When the data was

reduced, we can see that its density is located near the higher values than in the case of

complete data. Scaling the data helped GMMK obtain even better results, which might be

seen by comparing the densities of values. CMN and KMN++ were similarly distributed,

but it can be noted that when data was reduced, CMN had small values than KMN++. The

opposite was true when the data was scaled.

Figure 5.34: Metrics correlation in Sport Ac-

tivities

Figure 5.34 shows that the metrics are

highly correlated, which shows vast agree-

ment between them. So far, these Sports

Activities' results were the most straightfor-

ward ones. We can see that GMMK out-

performed other algorithms, even in di�erent

data types. It is also notable that it is almost

impossible to calculate the distances as a dis-

tance matrix when dealing with such a mas-

sive number of observations. Thus we can-

not use the HC algorithm and KMD in the

standard form. We must resort to methods

that calculate the distance on the �y, which

vastly increases execution time, sometimes to

the point of impossibility.
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5.2.5 The Free Music Archive

The Free Music Archive is a large music analysis project, that was started in 2009 by the

East Orange, New Jersey community radio station WFMU, cooperating with KBOO and

KEXP. It aimed to publish music under Creative Commons licenses, permitting unrestricted

downloading and usage of the music in various other works.

The data was made publicly available around the end of 2016. Its vast library consists of

106 577 songs covered by 16,341 artists. All of that is inside 14,854 albums. The FMA delivers

pre-computed audio features jointly with user-level and track-level metadata. It is not only

a valuable resource for music researchers and enthusiasts but also for musicians themselves.

By providing a platform for free and legal music downloads, the FMA supports independent

artists and promotes creative expression.

Moreover, it is also possible to use full-length, high-quality audio�a complete archive

weight of around 879 GiB. However, it comes with di�erent packages, limited to selected gen-

res. Over 500 features describe each song. They were pre-computed with a package librosa, a

rich python audio and music analysis library. The package allows for low-level feature extrac-

tion, such as chromagrams, Mel spectrogram, Mel Frequency Cepstral Coe�cient (MFCC),

and other spectral and rhythmic qualities. The library on the site https://librosa.org o�ers

more information to create such an analysis. It includes tutorials and documentation [38].

The tracks in the archive are organised into a hierarchical taxonomy of 161 genres, such

as rock, jazz, pop, or classical music. However, the data was signi�cantly reduced for the

analysis for several reasons. First, roughly half of the songs were assigned multiple genres,

and there was no information about the leading or most-voted genre. As a result, some

songs had numerous labels, and these were excluded from further analysis to simplify actual

labelling values during clustering. Unfortunately, as of late 2018 the project ended.

Moreover, the research data was reduced to the twelve most frequent genres mentioned in

the table, and the cuto� value was arbitrary. The last genre in the data, "Spoken", had 423

observations, while the rest that was not included were below 194. This way, the groups were

more balanced.

The �nal dataset consisted of 49598 observations with 518 features. From this point, the

procedure followed the general pipeline.

Figure 5.35 presents various dimensionality reduction visualizations. However, it is chal-

lenging to point out any speci�c groups.
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Figure 5.35: Visualization of various dimensionality reduction techniques in The Free Music
Archive
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Results

In Figure 5.36, the ARI index was low for all of the algorithms, as they barely excceed 0.2

score. The only case when the median value was above that threshold was in the case of

HC and KMN++, when the data was scaled and the mixture had three components. MMM

performed better when the data was complete, whether GMM when the data was reduced.

Figure 5.36: The ARI index in The Free Music Archive

Beta-binomial distribution in Figure 5.37 shows that GMM scored about 0.57 with the

highest mean across all algorithms when the data was complete. The second one was MMM,

lower by about 0.03 points. The distance-based algorithms were placed closely together in the

0.4 to 0.42 points. After data reduction, the di�erences between scores went down. Although

both GMM and MMM preserved their highest position, they switched places, leaving MMM

as a better-performing algorithm by 0.04. points.
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Scaling improved the performance of distance-based algorithms, but also of GMM, com-

pared to the previous dataset. It impacted MMM negatively, as it took last place, having

0.35 points, the lowest score in those datasets. When the data were reduced, it brought up

MANCMN at the front with a score of 0.474. Moreover, it shifted all other algorithms to the

left, but MMM improved the score by 0.02. points.

Figure 5.37: Beta-binomial distribution as a quality metric in The Free Music Archive

Median scores of balanced accuracy scores in Figure 5.38 are in the same place as the mean
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value. Results from all algorithms are between 0.49 to 0.6. However, the highest score belongs

to the MMMK variant regarding not �ltered data. Data reduction again positively impacted

the model-based algorithms but did not signi�cantly worsen the distance-based algorithms'

results. Scaling of the data was advantageous for distance-based algorithms in both cases

where data was not �ltered and reduced. However, the best scores were obtained by k-means

and MANHC when the data was complete and scaled.

Figure 5.38: A median of balanced accuracy with mean and standard deviation in The Free
Music Archive

In the �gure that shows other quality metrics, we can see that algorithms show a similar

pattern of scores. SMC scores were the highest, then WSMC and the case of WJACC scores

were the lowest. In addition, WSMC and WJACC are more consistent together than with

SMC. Comparing the complete data, MMMK scored the highest, apart from SMC, which

showed that GMMK performed slightly better. When the data was reduced, all metrics had

much more agreement. Model-based algorithms scored higher results, with MMMK being
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�rst than distance-based algorithms. Those di�erences are much more visible in the SMC

metric.

Figure 5.39: Other quality indices in The Free Music Archive

Distance-based metrics performed better when the data was scaled than model-based ones,

at least according to WSMC and WJACC. In the case of SMC, GMMK had the highest mean

score across all algorithms.
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Figure 5.40: Metrics correlation in The Free

Music Archive

The presented metrics are slightly corre-

lated. The lowest correlation is observed be-

tween the ARI index and SMC. Apart from

SMC and Beta mean, the highest correla-

tion between WSMC and Jaccard index is

observed. It indicates that there is no �rm

agreement between di�erent metrics.

The results obtained from the Free Music

Archive are intriguing. From the point of

correct assignment to groups, they are chal-

lenging to interpret. In this perspective, we

try to answer the question: �Which algorithm

performed the best clustering according to

subjected opinion of people?�

106



CHAPTER 5. RESULTS 5.2. REAL DATA ANALYSIS

5.2.6 Arrhythmia

Atrial �brillation is a complex and multifaceted condition that poses signi�cant challenges

for diagnosis and treatment. Although several risk factors for atrial �brillation have been

identi�ed, including age, hypertension, obesity, and diabetes, the underlying mechanisms of

the disease are not fully understood. Recent research suggests that atrial �brillation may

involve multiple factors, such as in�ammation, oxidative stress, and autonomic dysfunction,

which interact in complex ways. Furthermore, managing atrial �brillation requires a compre-

hensive and individualized approach that considers the patient's medical history, symptoms,

and comorbidities.

Patients with atrial �brillation have �ve times more increased risk of stroke. At the same

time, atrial �brillation causes almost 20% to 30% of strokes. In addition, strokes caused by

atrial �brillation are much more severe and fatal. They led to death much more often than

strokes due to other causes.

According to a studies, in 2016, almost 7.6 million people in the European Union had

atrial �brillation. Studies estimate that this number will increase by 89% to 14.4 million by

2060. The current prevalence will rise by 22%, from 7.8% to 9.5%. Last but not least, yearly

treatment consumes from 0.28% to 2.6% of European funds spent on healthcare. [39]

The data we will explore in our thesis comes from the study whose original purpose was to

di�erentiate between the presence and absence of cardiac arrhythmia. After that, observations

were organized into one of the sixteen groups. The �rst class, 01, refers to "normal" ECG

classes. Then, the number from 02 to 15 refers to various arrhythmia categories. Finally,

category 16 refers to the rest of the unclassi�ed ones. For the time being, a computer program

exists that classi�es the data. However, there are di�erences between the cardiologist and the

grouping done by the program.

Visualizations created by dimensionality reduction techniques in Figure 5.41 share some

similarities. The points are scattered. However, after closer examination, they are making

many small groups. It might be caused by the low number of observations in the data or the

high similarity within groups.
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Figure 5.41: Visualization of various dimensionality reduction techniques in Arrhythmia
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Results

Figure 5.42 of the ARI index in Arrhythmia shows MMM in the last place. In the �rst

part of the chart, we can see that its spectrum of values is narrower than in the case of other

algorithms, with a median value of about 0.3. At the same time, GMM and MANHC medians

were lower, close to zero. However, their spectrum of scores was high enough to reach even

the highest scores. Other distance-based algorithms also obtained almost 1 in a few cases.

Figure 5.42: The ARI index in Arrhythmia

Data reduction generally had a negative impact, but there are few exemptions. The third

quantile of the boxplot of MMM was higher than when the data was complete. Also, the

median value of GMM in the two components mixture increased. When more groups were

present, the di�erences were not that visible.

Scaling of the data improved the results for MANHC and CMN but worsened the scores
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of the others. GMM obtained the highest results from all other algorithms when the data

was reduced and scaled. As for the negative ARI index, most values came from the MANHC,

KMD, KMN++ and MMM.

Figure 5.43: Beta-binomial distribution as a quality metric in Arrhythmia

In the case of beta-binomial distribution in Figure 5.43, MMM had the highest score across

all algorithms. It means the correct assignment had 0.73 and the lowest standard deviation,

nevertheless, only in the case of complete data. When the data was reduced, MMM and

110



CHAPTER 5. RESULTS 5.2. REAL DATA ANALYSIS

GMMK were at a similar level with almost 0.01 mean di�erence, having the highest scores.

After the complete data was scaled, GMMK had lower scores, had scored lower by nearly

0.04, and MMM was the last. Those two algorithms are highly overlapped as the di�erence in

correct assignment between them is small. When the data were additionally scaled, GMMK

performed better than other algorithms, for which data reduction worsened the results. Still,

data reduction seems to bene�t also MMM, which now was second last. Overall the worst

and the best scores, 0.329 and 0.726, respectively, belong to MMM.

Figure 5.44: A median of balanced accuracy with mean and standard deviation in Arrythmia

According to the median balanced accuracy index in Figure 5.46, the best-performing al-

gorithm was MANHC. The highest result was 0.66, and the lowest was 0.65. The second

was GMMK, with the highest result of 0.63 and the lowest of 0.58, so the di�erence is much

more extensive for the advantage of MANHC. Scaling a�ected GMMK, KMN++ and MMM

negatively. However, it did not impact KMD. As for CMN, it even improved its results by

0.02 points. However, when the data was reduced, KMD performed worse than in any other
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data type�scaling of reduced data brought back its highest result of 0.61. The reduction of

the data also helped GMMK and MMM. We can see that both performed worse after scaling

but better after data reduction.

Figure 5.45: Other quality indices in Arrhythmia

Figure 5.45 shows a slight disagreement among the WSMC, SMC, and WJACC results.

For instance, in the complete data, the mean value of MMM was comparable to MANHC and

slightly above KMD, according to WSMC. However, SMC shows that MMM had the highest
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score, followed by GMM and MANHC. On the other hand, MANHC obtained the best mean

score in WJACC. After data reduction, the results were slightly worse for all algorithms, but

GMM scored better than before.

Scaling of the data slightly improved the results of the distance-based algorithms, even

in CMN. The violin plot became more uniformly distributed, and the lower values were not

as wide as in the case of complete or reduced data. However, scaling lowered the scores of

MMM, with more density observed below 0.4 values. Moreover, it decreased the mean value

of GMM, which was previously above 0.6 and slightly below after scaling.

Regarding the raw number of successes, according to the SMC index, MMM scored highest

when the data was complete.

Figure 5.46: Metrics correlation in Arrhythmia

Figure 5.46 shows that metrics are posi-

tively correlated and only slightly disagree

in showing the best-performing algorithm.

Considering di�erent metrics, HC was the

best-performing algorithm, and GMMK was

the second-best. However, if we measure the

rought number of successes, then the MMM

algorithm had the highest results across all

of the algorithms.
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5.2.7 NASA Kepplers

On 6 March 2009, The Delta II rocket took NASA's Kepler Space Telescope and carried it into

space. The telescope was focused on an area with about 150,000 stars, like the sun within our

solar system. Its ultimate purpose was to identify other habitable planets, excluding our own.

Kepler's discoveries contain planets that orbit in so-called habitable areas. The habitable

area means it orbits su�ciently far from a star. Su�cient is when the surface temperature

may be �t for life-giving liquid water.

The �rst discovery important discovery was Kepler-22b. It is an example of a habitable zone

planet found during the mission. However, because it is almost 2.4 times the size of Earth,

it is considered too large to be solid and life-supporting. However, scientists are convinced

that di�erent habitable zone planets found by the Kepler mission might be rocky, such as

Kepler-62f, which is 40% larger than Earth. A twin to Earth that has the same temperature

and size as Earth was yet to be discovered. Still, the analysis is far from over as scientists

continue to search the Kepler data for the tiny signature of such a planet. Other Kepler

discoveries include hundreds of star systems hosting multiple planets and have established a

new class of planetary systems where planets orbit more than one sun.

The mission ended its science observations after a faulty reaction wheel a�ected the tele-

scope's ability to point precisely. However, the telescope remained in service due to its

next-generation mission proposal, K2.

By analysing Kepler's information, the scienti�c community has recognised over 3,600 can-

didates considered planets. They con�rmed that 961 are indeed planets, many as small as

Earth. Findings using the Kepler Space Telescope account for over half of all the known

exoplanets. The dataset used was a cumulative Activity Table of Kepler Objects of Interest

(KOI). The KOI table contains information about the single KOI activity tables. It represents

the actual results of di�erent �ndings of the Kepler light curves. The goal of the cumulative

table is to gather suitable qualities and stellar and planetary data for all KOIs, in one place.

All of the data presented originates in other KOI activity tables. The last status update was

on 27 September 2018 and is considered complete.

In the Figure 5.47, the observations consited of only two classes - planets con�rmed as

Keppler type and the false positive ones. PCA one again re�ects tSVD results but on a

di�erent scale. It is not easy to read the groups from the picture. Randon Projection shows

more spread between clusters, but the points are densely packed. In the case of tSNE, we can

see some patterns, but the groups are highly overlapping, and it will be challenging to guess

them from the picture.
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Figure 5.47: Visualization of various dimensionality reduction techniques in Kepplers
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Results

Figure 5.48: Beta-binomial distribution as a quality metric in Kepplers

Figure 5.48 showing beta-binomial distribution has a signi�cant advantage. We can prepare

complete visual �gures having even one data set. When the data was complete, the highest

score overall belonged to the GMM. After scaling the data, KMN++ and MMM are highly

overlapped with a di�erence of 0.003 points, rendering them the best in this data type.

KMED, MANCMN, and GMM scored similarly, with a maximum of 0.01 di�erence between
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their means. HC scored better than them, by 0.04 points, but worse than KMN++ and

MMM by almost 0.07 points.

Reduction of the data does not impact KMN++ scores. We can see that MMM was very

close to it, with a mean of 0.651. Scaling of the reduced data improved the GMM result,

making it the best in this �le category. In both cases of data reduction, MMM was the last

in the comparison.
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6.1 Aggregated results

There are plethora numbers of metrics. Depending on the case, some might be better than

others, especially in unbalanced data. However, here, the simplest one, a rough number of

successes was used in the aggregation. The scores have been normalized using the min-max

method, where the lowest score is set to 0, the highest score is set to 1, and all other scores are

scaled proportionally. The scores in the table represent the proportion of correctly assigned

clusters, with a higher score indicating better performance. Lastly, the data were sorted based

on the highest sum across di�erent data types.

6.1.1 Simulated data

No Algorithm Complete Reduced Scaled Scaled And Reduced
1 GMM 1.00 0.79 0.96 0.81
2 KMN 0.81 0.57 0.84 0.58
3 KMN++ 0.73 0.51 0.75 0.52
4 GMMK 0.74 0.48 0.71 0.41
5 MANHC 0.67 0.42 0.67 0.42
6 HC 0.63 0.40 0.63 0.40
7 CMN 0.54 0.39 0.56 0.40
8 MMMK 0.59 0.37 0.04 0.00
9 MMM 0.53 0.32 0.04 0.00
10 MANCMN 0.16 0.10 0.15 0.10
11 KMD 0.13 0.05 0.13 0.06

Table 6.1: Entries represent numbers of successes (correctly assigned clusters) normalized to
all assigments in Simulated Multivariate Normal Mixtures

Looking at the results, the GMM algorithm performed the best overall, with a score of 1 for

complete data, 0.79 for reduced data, 0.96 for scaled data, and 0.81 for scaled and reduced

data. This suggests that GMM is a good choice for clustering this dataset, mainly when using

complete data. The KMN algorithm also performed well, with scores ranging from 0.57 to

0.84 depending on the type of data used. However, it did not perform as well as GMM overall.

The KMN++ and GMMK algorithms had similar performance, with scores ranging from

0.41 to 0.73 depending on the type of data used. They performed better than most other

algorithms, except for GMM and KMN. The MANHC and HC algorithms had scores ranging
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from 0.4 to 0.67 depending on the type of data used, indicating moderate performance.

The CMN, MMMK, and MMM algorithms had lower scores, ranging from 0 to 0.56, indi-

cating poor performance. Finally, the MANCMN and KMD algorithms had the lowest scores,

ranging from 0 to 0.16, showing inferior performance.

The results suggest that GMM and KMN are good choices for clustering in this dataset,

mainly when using complete and scaled data.

No Algorithm Complete Reduced Scaled Scaled and Reduced
1 MANHC 0.92 0.52 0.94 0.51
2 HC 0.92 0.5 0.92 0.5
3 KMN 0.89 0.52 0.91 0.52
4 KMN++ 0.86 0.5 0.89 0.5
5 GMM 0.23 0.58 0.79 0.59
6 GMMK 0.84 0.35 0.58 0.33
7 CMN 0.59 0.32 0.61 0.34
8 KMD 0.6 0.32 0.53 0.33
9 MMM 1 0.54 0 0.18
10 MMMK 0.97 0.54 0.01 0.08
11 MANCMN 0.05 0.13 0.02 0.12

Table 6.2: Entries represent numbers of successes (correctly assigned clusters) normalized to
all assigments in Simulated Multinomial Mixtures

Based on the results, the MMM algorithm outperformed all the other algorithms with

a score of 1 on the complete dataset, indicating the highest score across algorithms. The

MMMK algorithm also performed well, with a score of 0.97 on the complete dataset, showing

a high score in cluster assignment. However, MMM performance was vastly in the reduced,

scaled, and scaled and reduced datasets.

Among the other algorithms, HC, KMN, and KMN++ also performed well, with scores

ranging from 0.86 to 0.92 on the complete dataset. These algorithms showed consistent per-

formance across all the datasets. GMMK performed much better than GMM in the complete

dataset but had worse performance on the reduced, scaled, and scaled and reduced datasets.

CMN and KMD had lower scores ranging from 0.32 to 0.61 on the complete dataset, while

GMMK scored 0.58.

Overall, these results suggest that MMM and MMMK are e�ective algorithms for clustering,

particularly on complete datasets.
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6.1.2 Real data

No Algorithm Complete Reduced Scaled Scaled and Reduced
1 GMM 0.78 0.49 0.51 0.53
2 GMMK 0.76 0.36 0.64 0.5
3 HC 0.42 0.38 0.77 0.51
4 MMMK 0.91 0.82 0.12 0.2
5 KMN++ 0.4 0.44 0.66 0.56
6 KMN 0.41 0.43 0.6 0.55
7 MANHC 0.45 0.41 0.64 0.46
8 MMM 1 0.67 0 0.27
9 KMD 0.38 0.39 0.49 0.44
10 CMN 0.12 0.1 0.72 0.32
11 MANCMN 0.15 0.08 0.39 0.31

Table 6.3: Entries represent aggregated successes (correctly assigned clusters), normalized to
all assignments in Real Data

GMM and GMMK had the highest sum scores, with GMM achieving the highest scores in the

Scaled dataset and GMMK achieving the highest scores in the Reduced dataset. However, it's

worth noting that the highest score achieved belongs to MMM when the data was complete.

HC, KMN, and KMN++ performed similarly across all four datasets, with scores ranging

from 0.40 to 0.77. MANHC performed slightly better than HC, with scores ranging from 0.41

to 0.64. KMD and CMN had the lowest scores among all algorithms, ranging from 0.12 to

0.39. MANCMN performed slightly better than KMD and CMN, with scores ranging from

0.08 to 0.39.

In summary, GMM and GMMK had the highest sum scores, but MMM achieved the highest

in the complete dataset.

6.2 Conclusions

This research formulated appropriate versions of the EM algorithm to decompose Gaussian

Multivariable Mixtures and Multinomial Mixtures. Numerical stability was ensured by switch-

ing to the logarithmic scale when necessary and adding small normalizing constants to avoid

division by zero.

The implementation of these algorithms, named MultinomEM and GaussEM for Multino-

mial Mixture Models and Gaussian Mixture Models, respectively, was created in R and is

openly available on the GitHub platform. The package is still undergoing rigorous testing,

but the algorithm should be stable for most computational instances. Regular updates will

be made, and future implementations may involve rewriting some parts of the code in Rcpp

or Armadillo for e�ciency.

To compare the performance and e�ciency of the algorithms, several distance-based algo-

rithms were implemented using the available source code, and several metrics were formulated.
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While some of these metrics, such as those derived with the help of the Hungarian algorithm,

are highly correlated, each metric has advantages and shortcomings. The ARI index, for

example, is easy to implement without additional steps but may only be suitable in some

cases. The proposed metric provides additional information about probability density based

on beta distribution but requires more mathematical work to balance appropriately.

An extensive simulation study was conducted using thousands of Multivariate Gaussian

Mixtures and Multinomial Mixtures to test the algorithms' performance. An R script was

prepared for this purpose, allowing the creation of selected mixtures with any desired number

of observations, dimensions, and components. This enabled a controlled comparison of the

algorithms with di�ering numbers of parameters, dimensions, and clusters.

A curated set of real datasets from various publicly available sources, including genomic-

s/medical data, was also prepared. Based on these datasets, hundreds of di�erent components

were prepared, with each group combination occurring only once in the same set. This allowed

testing the algorithm's performance with a controlled and di�ering number of components.

The model-based algorithms presented in this thesis are potent tools in unsupervised clus-

tering methods and are highly competitive compared to distance-based algorithms.
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