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2 MODEL-BASED ALGORITHMS

1 Introduction

Unsupervised clustering is a widely used technique in data analysis and machine learning.
The goal is to group similar objects or observations into clusters without prior knowledge
of the true class labels. This can be a challenging task, especially when dealing with high-
dimensional and complex datasets. Many di�erent algorithms and approaches can be
used to perform unsupervised clustering. One way to categorize unsupervised clustering
algorithms is based on their underlying models or assumptions.
One such group are model-based algorithms, which assume that the data is generated

from a mixture of probability distributions. Those algorithms aim to estimate the param-
eters of these distributions to identify the clusters. An example of such an algorithm is
the Expectation-Maximization (EM) algorithm.

1.1 GitHub Code availability

The code is available at the github: https://github.com/callimae/multivarEM
To install the package, R should be installed. It is free, open-source programming

environment, available on the website: https://www.r-project.org/
Commands to execute after opening R:

install.packages(“devtools”)
install_github("callimae/multivarEM")

2 Model-based algorithms

The EM is a powerful computational technique used to estimate the parameters of a
statistical model in the presence of missing or incomplete data. The algorithm consists of
two alternating steps: the E-step and the M-step.
In the E-step, the algorithm calculates the expected value of the missing data given the

observed data and the current estimate of the parameters. This step involves calculating
the posterior distribution of the missing data using the current estimate of the parameters.
In the M-step, the algorithm updates the parameter estimates based on the expected

values of the missing data calculated in the E-step. This step involves �nding the param-
eters' maximum likelihood estimate given the missing data's expected values.
The EM algorithm is used in various �elds, including machine learning, computer vision,

natural language processing, and bioinformatics. It is e�ective when data is incomplete
or missing and traditional maximum likelihood methods are not applicable.
One of the strengths of the EM algorithm is that it is guaranteed to converge to a local

maximum of the likelihood function and often the global maximum. However, the algo-
rithm can be sensitive to the choice of initial parameter values and can be computationally
intensive, particularly for large datasets. It is especially true in multidimensional data.
To minimize computationally heavy cases, two version of EM has been implemented.

2.1 Multivariate Gaussian Mixture EM

The Gaussian Mixture Model EM uses only diagonal variances of the covariance matrix
instead of a full one. Derivation of the algorithm lead to condigtional distribution of
hidden variables, q-function and the equation to update the parameters.
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2.1 Multivariate Gaussian Mixture EM 2 MODEL-BASED ALGORITHMS

2.1.1 Conditional distribution of hidden variables

We accept some values of parameters as initial values for iterations. We call this param-
eter guess. We indicate those guessed parameters by the letter g in superscript. Using
Bayes Theorem, we can calculate the conditional distribution of the hidden variable using
parameter guess.

p(zi = k|µgk , (Σ
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The likelihood is multiplied by its prior probability (mixing proportion). Then the
standardization is done by summing the likelihood multiplied by the prior of all other
mixture components. The result is the posterior probability of zi generated by k mixture
component.

2.1.2 Conditional expectation of the log likelihood function (Q-function)

Using 1 we can derive conditional expectation of the log-likelihood function. Following
nomenclatrure often used in the literature we also call this conditional expectation a
Q-function.
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In the equation above terms were already explained before. M is a number of dimen-

sions.
Maximizing Q-function with respect to parameters αk,µk,Σk we obtain
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∑N
i=1 p(k | i)

N
(3)
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i=1 p(k | i)

, k = 1, 2, . . . , K (4)
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where:

diag(y) =


y1 0 · · · 0
0 y2 · · · 0
...

...
. . .

...
0 0 · · · yM

 - is a diagonal matrix composed with elements of a

vector y
y = [y1, y2, ..., yM ]T
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2.2 Multinomial Mixture EM 3 DISTANCE-BASED ALGORITHMS

2.2 Multinomial Mixture EM

2.2.1 Conditional distribution of hidden variables

As before, guessed parameters are denoted with �g� in superscript. They are needed
initialize the iterations and calculate the conditional distribution of the hidden variable
through the Bayes Theorem.

p(k|d) =
αg
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To obtain the posterior probability of the variable zi generated by the k-th mixture
component, the corresponding prior probability (mixing proportion) is �rst multiplied by
the likelihood. The resulting value is then standardized by adding it to the product of
the likelihood and prior probabilities of all the other mixture components.

2.2.2 Conditional expectation of the log likelihood function (Q-function)

Q-function for multinomial mixture models is as follows:

E
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Maximizing Q-function with respect to parameters αk, pk, we obtain:

α̂ =

∑D
d=1 p(k|d)

D
(8)

where:
α̂ - is vector of new mixing proportions
D - is the count of observations

p̂km =

∑D
d=1 ndmp(k|d)∑M

n=1

∑D
d=1 ndmp(k|d)

(9)

where:
ndm - is an observation vector
p̂km - is a vector of new probabilities proportions

3 Distance-based algorithms

Hierarchical clustering is a clustering algorithm that groups data points into clusters based
on similarity. The algorithm creates a tree-like structure of clusters called a dendrogram,
where each node represents a cluster, and the leaves represent individual data points.
There are two types of hierarchical clustering: agglomerative and divisive. In agglomer-
ative hierarchical clustering, the algorithm starts with each data point as its cluster and
merges the closest pairs of clusters until all points belong to a single cluster. In divisive
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4 STUDY PIPELINE

hierarchical clustering, the algorithm starts with all data points in a single cluster and
recursively splits it into smaller clusters until each point is in its cluster.
K-means is a centroid-based clustering algorithm that partitions data into k clusters,

where k is the number of prede�ned clusters. The algorithm starts by randomly assigning
k centroids to the data points. Then, iteratively reassigns each data point to the nearest
centroid and updates the centroids based on the newly formed clusters until the algorithm
converges.
K-medoids is a variant of k-means that uses medoids, representative data points within

each cluster, instead of centroids. The algorithm starts by randomly selecting k medoids
from the data points. Then iteratively reassigns each data point to the nearest medoid
and updates the medoids based on the newly formed clusters until convergence.
Fuzzy c-means is a soft clustering algorithm that assigns each data point a membership

value for each cluster, indicating the degree to which the point belongs to each cluster.
The algorithm randomly assigns membership values to each point and iteratively up-
dates the membership values and cluster centroids based on the current assignments until
convergence.
The signi�cant di�erence between hierarchical clustering and the other three algorithms

is that hierarchical clustering produces a hierarchy of clusters, while the others produce
a �xed number of clusters. The main di�erence between k-means and k-medoids is how
they represent each cluster, using centroids or medoids, respectively. Fuzzy c-means di�ers
from the other algorithms in assigning membership values to each point rather than hard
cluster assignments.
Those algorithms between these algorithms are that they use distance metrics to mea-

sure the similarity between data points and assign them to clusters.

4 Study pipeline

4.1 Data gathering

All datasets can be divided into two parts. The �rst one comprises arti�cially created
data that can present a more controlled challenge to algorithm performance. The second
subset includes real datasets that were selected with the criterion of multidimensionality
in mind.

Simulated multivariate normal data Multivariate normal mixtures were generated
using random vectors (µ), matrices (Σ), mixing proportions (α), and �xed dimensions
(d). µ was derived from a uniform distribution between 0 and 10, while Σ assumed zero
correlation between variables. Variances came from a uniform distribution between 0.1
and 1, and α was drawn from a uniform distribution between 0.1 and 1, with the vector
of mixing ratios standardized to sum to 1. Over 15,000 �les were created with 2 to 10
components and 5 to 1600 dimensions, using two PRNG packages: MASS and MultiRNG.
Over 15,000 �les were created.

Simulated multinomial data Multinomial mixtures were generated using random prob-
ability vectors (p), observation numbers (n), mixing proportions (α), and �xed dimensions
(d). p was derived from a uniform distribution between 0 and 1 and standardized to sum
to 1. n was generated from the interval [3, n], and α was calculated using a uniform

Silesian University of Technology 4



4.1 Data gathering 4 STUDY PIPELINE

Data set Source
Somatic Mutations Counts TCGA
Gene Expressions TCGA/cBioportal
Codons Frequency UCI
Sport Activities UCI
The Free Music Archive GitHub
Arthythmia UCI
NASA Kepplers Kaggle

Table 1: Real data-set with their sources

distribution between 0.1 and 1, with values standardized to sum to 1. Over 8,000 �les
were created containing 2 to 10 clusters and 5 to 1600 dimensions.

4.1.1 Real data

The most important part of our comparative analysis of unsupervised clustering algo-
rithms is computational experiments concerning some publicly available data sets. Ex-
tensive real-world datasets collections can be used, e.g., Kaggle, UCI, NCBI or NCI. When
choosing data sets for clustering, the following criteria were used:

� high dimensionality

� numerical features (real or integer).

� variety of data types

� ground-truth availability

According to mentioned criterions, the data should have many dimensions, to begin with.
The mixture should not be univariate or bivariate, and features cannot be categorical.
Various data types assume that data comes from di�erent expertise �elds or is measured

di�erently. For example, somatic mutation count and gene expression came from the same
TCGA project but were measured di�erently.
Real data consist of various datasets from a few di�erent �elds, although majority have

some genetic and medical background. As such following data was chosen:

Somatic Mutation Counts This study focuses on somatic mutations of DNA in cancer
patients, a critical topic in cancer research. Somatic mutations can be caused by expo-
sure to mutagens, replication errors, or other factors. They can be classi�ed into two
major types: driver mutations, which are related to cancer development, and passenger
mutations, which have little or no impact. Distinguishing between these mutations is
complex and involves various factors, including their positions in DNA and their e�ects
on transcripts.
This study aims to cluster patients diagnosed with di�erent types of cancer based on

counts of somatic mutations in genes. To achieve this, the counts of mutations in genes
were used as observational vector data. The hypothesis is that this information can be
used to distinguish between various types of cancer.
The data used in the study were obtained from The Cancer Genomic Atlas (TCGA)

and annotated using the somatic variant caller Mutect2. The processed data included
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4.1 Data gathering 4 STUDY PIPELINE

information on the sample number, the name of the gene in which the mutation occurred,
and the frequency of mutations. Full data consisted over 10 000 observation and about 35
000 of features. The study also aimed to determine which clustering algorithms performed
best in the clustering task. Overall, the study contributes to understanding the complex
nature of somatic mutations in cancer.

Gene Expressions Gene expression is the process by which the cell utilises information
stored in the genome to create functional proteins, leading to the manifestation of ob-
servable traits or phenotypes from genetic data. This process requires the participation
of enzymes and proteins to convert the information encoded in DNA into RNA particles,
collectively known as the transcriptome. Messenger RNA (mRNA) is an RNA molecule
that plays a critical role in translating genetic information into proteins. During trans-
lation, the mRNA sequence is decoded into amino acids, which are the building blocks
of proteins. Any changes in the expression level of mRNA can a�ect protein synthesis
and lead to the development of various diseases, including cancer. cBioPortal is an online
platform that provides access to molecular and clinical data from various cancer genomic
studies. The data available on the platform include DNA methylation, mRNA expression,
microRNA expression, and protein level data.
Presented analysis focused on mRNA expression data to investigate whether this type of

data can distinguish between di�erent kinds of cancer based on their expression patterns.
The gene expression data on cBioPortal is multidimensional, containing information on
numerous genes across multiple cancer types. A matrix transposition technique was used
to reformat the data, enabling us to present the sample numbers as observations and genes
as variables. This allowed us to explore the relationships between di�erent cancer types
based on their gene expression patterns, providing valuable insights into cancer biology.
Full data consisted over 9 000 observation and about 35 000 of features, similarly as in
the case of Somatic Mutation Counts.

Codons frequency The genetic code translating DNA sequences into amino acids was
long thought universal across all species. However, recent discoveries have shown that
there are exceptions to this rule, particularly in the non-standard codons used by mito-
chondria genomes. Understanding the frequency of codon usage in di�erent organisms
can provide insights into their genetic composition and taxonomic identity. A dataset of
codon frequency usage in diverse organisms, sourced from the Codon Usage Tabulated
from GenBank (CUTG) database, was analysed using unsupervised learning algorithms
to investigate whether the species' structure could be restored by dividing them into their
respective kingdoms based on codon frequency. The dataset was provided by Bohdan
Khomtchouk of the University of Chicago and included frequencies of di�erent codons
used by species across several kingdoms. The results suggested that codon usage fre-
quencies can be a helpful tool for distinguishing between species and identifying their
taxonomic a�liations. However, it was also found that the e�ectiveness of this approach
varies depending on the speci�c algorithm used.
The study highlights the importance of considering di�erent methods when analysing

codon usage data and underscores the value of machine learning techniques for under-
standing biological phenomena.

Sports activities Popularno±¢ smartwatchów znacznie wzrosªa w ostatnich latach, a
wiele z nich oferuje szereg funkcji wykraczaj¡cych poza standardowe funkcje, takie jak

Silesian University of Technology 6



4.1 Data gathering 4 STUDY PIPELINE

poª¡czenia telefoniczne i wiadomo±ci. Niektóre modele mog¡ ±ledzi¢ t¦tno, spalanie kalorii
i ró»ne statystyki zwi¡zane z aktywno±ci¡ sportow¡. Bardziej zaawansowane smartwatche
mog¡ automatycznie wykrywa¢ dziaªania u»ytkownika i rejestrowa¢ odpowiednie metryki.
W badaniu tym przeanalizowano dane udost¦pnione przez profesora z Yale, Billura Bar-
shana, na platformie UCI. Dane zawieraªy informacje o 19 aktywno±ciach sportowych
wykonywanych przez o±miu uczestników, czterech m¦»czyzn i cztery kobiety, w wieku od
20 do 30 lat, którzy nie otrzymali »adnych instrukcji dotycz¡cych wykonywania ¢wicze«.
Dane zostaªy zebrane za pomoc¡ czujników umieszczonych na ró»nych cz¦±ciach ciaªa, z
cz¦stotliwo±ci¡ próbkowania 25 Hz, co daªo 45 atrybutów i 1140000 obserwacji.

The Free Music Archive Free Music Archive to kompleksowy projekt analizy muzyki,
który oferuje ogromn¡ bibliotek¦ 106 577 utworów pokrytych przez 16 341 artystów na
14 854 albumach. Dane, które zostaªy udost¦pnione publicznie pod koniec 2016 roku,
obejmuj¡: Wst¦pnie obliczone cechy audio. Metadane na poziomie u»ytkownika i ut-
woru. Peªnowymiarowe, wysokiej jako±ci audio dla wybranych gatunków. Cechy au-
dio zostaªy obliczone przy u»yciu librosa, bogatej biblioteki Pythona do analizy audio i
muzyki, która umo»liwia niskopoziomow¡ ekstrakcj¦ cech, takich jak chromagramy, spek-
trogramy Mel, Mel Frequency Cepstral Coe�cient (MFCC) oraz inne cechy spektralne i
rytmiczne. Wszystkie utwory w archiwum s¡ zorganizowane w hierarchiczn¡ taksonomi¦
161 gatunków, w tym rock, jazz, pop, czy muzyka klasyczna.
W badaniu z wykorzystaniem danych pochodz¡cych z Archiwum wolnej muzyki, dane

zostaªy zredukowane do dwunastu najcz¦±ciej wyst¦puj¡cych gatunków. Ostateczny zbiór
danych skªadaª si¦ z 49 598 obserwacji i 518 cech.

Arrhythmia Arrhythmias are a type of heart condition where the heartbeat is irregular,
too fast, or too slow. Atrial �brillation, a speci�c type of arrhythmia, is known to increase
the risk of stroke by up to �ve times. Atrial �brillation is responsible for almost 20% to
30% of strokes, and these strokes are often more severe and fatal than those caused by
other factors. Shockingly, strokes caused by atrial �brillation lead to death much more
frequently than strokes due to other causes. According to a study conducted in 2016,
nearly 7.6 million people in the European Union had atrial �brillation. This number is
predicted to increase by 89% to 14.4 million by 2060, with the current prevalence rising by
22% from 7.8% to 9.5%. The treatment of arrhythmia consumes a considerable amount of
European funds spent on healthcare, with the yearly treatment cost ranging from 0.28%
to 2.6% of the funds. The data analysed in the thesis comes from a study that aimed to
di�erentiate between the presence and absence of cardiac arrhythmia. The observations
were grouped into sixteen categories, with the �rst category representing regular ECG
classes and the remaining categories representing various types of arrhythmia. Although a
computer program currently classi�es the data, there are di�erences between the grouping
done by the program and the classi�cation done by a cardiologist.

NASA Kepplers NASA's Kepler Space Telescope was launched on March 6, 2009, to
identify other habitable planets beyond our solar system. Focusing on an area with ap-
proximately 150,000 stars like the sun, Kepler has made signi�cant discoveries, including
hundreds of star systems hosting multiple planets and identifying planets that orbit in
so-called habitable areas, where the surface temperature may be �t for life-giving liq-
uid water. Numerical data measured by the telescope was analyzed with unsupervised
algorithms to check similarities between the planets.
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4.2 Data preprocessing

After the data was downloaded and cleaned, it was parsed into a �xed format. A matrix
of size n×d was created for each dataset, with observations n placed in rows and variables
d in columns to ensure consistency across all analyzed datasets.
Except for the NASA Kepler dataset, the remaining datasets typically contained ten

or more classes. The permutation method was employed to generate 10 datasets for 2,
3, 4, 5, and 6 component mixtures to create multiple datasets for analysis. In this way,
each set of six component mixtures always contained at least one or more di�erent classes.
Consequently, 50 datasets with classes in various con�gurations were created from a single
real dataset.
This methodology was applied to all datasets.

4.3 Data �ltration and scaling

No �ltration

In this case, the datasets containing all the original variables were left unchanged. They
were used in the scaling step and in the clustering stage of the analysis.

Variance decomposition

The respective variance for each variable was calculated, resulting in a vector of n vari-
ances with varying values of n, dependent on the dataset used. The resulting vector
was assumed to represent a one-dimensional mixture comprising essential variables and
additional noise. A mixture decomposition technique was employed using the mclust
package to di�erentiate between these elements. The mixtures were aligned to contain
two to twenty-�ve components, and the �nal number of groups was determined using the
Bayesian Information Criterion.

Scaling

Scaling was performed separately on the complete and reduced datasets to preserve the
variance. The variables were scaled by subtracting the mean value from the vector of
observations and dividing the resulting values by the standard deviation. After scaling,
two additional �les were created for each dataset.

4.4 Data clustering

All algorithms mentioned in the table were employed to cluster the data. Each algorithm
generated a separate �le, which was saved to disk for future processing.

4.5 Clusters evaluation

In this study, clusters were evaluated based on their correct assignment. For this purpose,
the Hungarian algorithm was employed to assign results to the labels. Then, a few metrics
were implemented to compare algorithms' performance from various perspectives. Finally,
the results were visualized using di�erent plot types.
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No Abbreviation Full name
1 CMN C-means
2 MANCMN C-means with Manhattan distance
3 GMM Gaussian Mixture EM
4 GMMK Gaussian Mixture Models with k-means
5 HC Hierarchical Clustering
6 MANHC Hierarchical Clustering with Manhattan distance
7 KMN K-means
8 KMN++ K-means++
9 KMD K-medoids
10 MMM Multinomial Mixture EM
11 MMMK Multinomial Mixture EM with k-means

Table 2: Algorithms used in the clustering

4.5.1 Cluster assigment - Hungarian algorithm

The Hungarian algorithm is an e�cient method to solve the operations research assign-
ment problem. A combinatorial optimisation algorithm aims to �nd the optimal matching
between two sets of equal size. Here, the algorithm was used to relabel clustered data.

4.5.2 Clusters validation metrics

The following metrics were used to measure quality of clustering:

� Adjusted Rand Index

� Jaccard and Weigted Jaccard Index

� Balanced Accuracy Index

� Simple Matching Coe�cient

� Weighted Simple Matching Coe�cient

� Beta-binomial conjugate distribution

4.5.3 Visualization

Dimensionality reduction Dimensionality reduction methods allow the representation
of observations in space with fewer dimensions than in the original data. It makes visu-
alization easier. In this study following techniques were used:

� PCA

� tSVD

� tSNE

� Random projection
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5 SUMMARY AND CONCLUSIONS

No Algorithm Complete Reduced Scaled Scaled And Reduced
1 GMM 1.00 0.79 0.96 0.81
2 KMN 0.81 0.57 0.84 0.58
3 KMN++ 0.73 0.51 0.75 0.52
4 GMMK 0.74 0.48 0.71 0.41
5 MANHC 0.67 0.42 0.67 0.42
6 HC 0.63 0.40 0.63 0.40
7 CMN 0.54 0.39 0.56 0.40
8 MMMK 0.59 0.37 0.04 0.00
9 MMM 0.53 0.32 0.04 0.00
10 MANCMN 0.16 0.10 0.15 0.10
11 KMD 0.13 0.05 0.13 0.06

Table 3: Entries represent numbers of successes (correctly assigned clusters) normalized
to all assigments in Simulated Multivariate Normal Mixtures

Metrics report Various plots were used to report the metrics.

� The ARI Index - was shown by using boxplots.

� Beta binomial distribution - was drawn using the beta probability density function.

� A median of Balanced Accuracy - was drawn on a polar coordinate plane.

� WSMC, SMC and WJACC - the three metrics were drawn similarly to violin plots.
In addition, plots also contain means and single score points.

� Correlation plot � correlation coe�cient was calculated between every two metrics
to measure the linear relationship's strength and direction of clustering quality.

5 Summary and conclusions

5.1 Aggregated results

There are plethora numbers of metrics. Depending on the case, some might be better
than others, especially in unbalanced data. However, the simplest one, a rough number
of successes, was used in the aggregation. The scores have been normalized using the
min-max method, where the lowest score is set to 0, the highest score is set to 1, and all
other scores are scaled proportionally. The scores in the table represent the proportion
of correctly assigned clusters, with a higher score indicating better performance. Lastly,
the data were sorted based on the highest sum across di�erent data types.

5.2 Simulated data

The results of the study showed that GMM algorithm performed the best overall, with a
score of 1 for complete data. KMN algorithm also performed well, with scores ranging from
0.57 to 0.84 depending on the type of data used. The KMN++, GMMK, MANHC, and
HC algorithms had moderate performance, while CMN, MMMK, MMM, MANCMN, and
KMD algorithms had poor to inferior performance. Overall, GMM and KMN algorithms
are good choices for clustering in this dataset, especially when using complete and scaled
data.
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No Algorithm Complete Reduced Scaled Scaled and Reduced
1 MANHC 0.92 0.52 0.94 0.51
2 HC 0.92 0.5 0.92 0.5
3 KMN 0.89 0.52 0.91 0.52
4 KMN++ 0.86 0.5 0.89 0.5
5 GMM 0.23 0.58 0.79 0.59
6 GMMK 0.84 0.35 0.58 0.33
7 CMN 0.59 0.32 0.61 0.34
8 KMD 0.6 0.32 0.53 0.33
9 MMM 1 0.54 0 0.18
10 MMMK 0.97 0.54 0.01 0.08
11 MANCMN 0.05 0.13 0.02 0.12

Table 4: Entries represent numbers of successes (correctly assigned clusters) normalized
to all assigments in Simulated Multinomial Mixtures

No Algorithm Complete Reduced Scaled Scaled and Reduced
1 GMM 0.78 0.49 0.51 0.53
2 GMMK 0.76 0.36 0.64 0.5
3 HC 0.42 0.38 0.77 0.51
4 MMMK 0.91 0.82 0.12 0.2
5 KMN++ 0.4 0.44 0.66 0.56
6 KMN 0.41 0.43 0.6 0.55
7 MANHC 0.45 0.41 0.64 0.46
8 MMM 1 0.67 0 0.27
9 KMD 0.38 0.39 0.49 0.44
10 CMN 0.12 0.1 0.72 0.32
11 MANCMN 0.15 0.08 0.39 0.31

Table 5: Entries represent aggregated successes (correctly assigned clusters), normalized
to all assignments in Real Data

Based on the results, the MMM algorithm had the highest score across algorithms, with
a score of 1 on the complete dataset, while the MMMK algorithm also performed well with
a score of 0.97 on the complete dataset. HC, KMN, and KMN++ also performed well,
with scores ranging from 0.86 to 0.92 on the complete dataset, and consistent performance
across all datasets. GMMK had better performance than GMM on the complete dataset
but performed worse on the reduced, scaled, and scaled and reduced datasets. CMN and
KMD had lower scores ranging from 0.32 to 0.61 on the complete dataset, while GMMK
scored 0.58.
Overall, the study suggests that MMM and MMMK are e�ective algorithms for clus-

tering, particularly on complete datasets.

5.3 Real data

In the study, GMM and GMMK had the highest sum scores, with GMM achieving the
highest scores in the Scaled dataset and GMMK achieving the highest scores in the
Reduced dataset. However, the highest score achieved was MMM when the data was
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complete. HC, KMN, and KMN++ performed similarly across all four datasets, while
MANHC performed slightly better than HC. KMD and CMN had the lowest scores among
all algorithms, while MANCMN performed marginally better than KMD and CMN.
In summary, while GMM and GMMK had the highest sum scores, it's important to

note that MMM achieved the highest score in the complete dataset.

5.4 Conclusions

This PhD project aimed to compare the performance of distance and model-based al-
gorithms on various datasets. In particular, in the study, two model-based algorithms
were implemented (Gaussian Mixture EM and Multinomial Mixture EM). Those two
algolrithms and four distance-based (agglomerative hierarchical clustering, k-means, k-
medoids, and fuzzy c-means) were applied to both simulated and actual datasets. The
study used several metrics to evaluate the clustering results, including Adjusted Rand
Index, Simple Matching Coe�cient, Weighted Jaccard Index, Balanced Accuracy, and
metrics based on Beta-Binomial conjugate distribution. These metrics helped to quantify
the quality of the clustering results and compare the performance of di�erent algorithms
on di�erent datasets. The study results were presented graphically, along with a brief
description of the �ndings.
Intuitively, we know, that performance of the di�erent algorithms varies depending

on the type and complexity of the dataset. While distance-based algorithms are very
powerful, the model-based algorithms presented in this thesis are highly competitive and
can be considered as potent tools in unsupervised clustering methods.
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