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1 Motivation, aims, and thesis 

Breast cancer is a highly heterogeneous disease with diverse clinical outcomes, manifesting 

various molecular and histological backgrounds. The clinical classification of breast cancer 

cases routinely used remains unmodified over several decades, based on expressions of several 

marker genes and proteins. Hence, it does not perfectly reflect the molecular portraits 

of breast cancer patients and has several limitations. 

Gene expression profiling allowed for the identification of five intrinsic molecular subtypes 

of breast cancer in the early 2000s. Despite noteworthy inconsistencies with clinical 

classification, they are still referred to as the gold standard. With the increased biological 

knowledge and a better understanding of tumor molecular background, the intrinsic 

classification appears to insufficiently reflect the complex character of breast cancer 

and the diversity of tumor behaviors. Moreover, various mechanisms affect the gene 

expression between transcriptomic and proteomic layers, which remain unrepresented 

by currently used breast cancer classifications. 

Advances in high-throughput technologies for expression investigation beyond 

the transcriptomic level and in machine learning approaches for biological big data mining 

now provide powerful tools to retrieve a more comprehensive insight into breast cancer 

stratification. Nonetheless, large data sets delivered by high-throughput analysis require 

thoughtful and statistically advanced analysis to appropriately assess the variability 

in the data and accurately select the most informative features explaining the diversity 

and distinguishing breast cancer subtypes. Therefore, providing a pipeline with dedicated 

statistical learning techniques, including unsupervised methods to deliver stratification 



uninfluenced by well-established breast cancer subtyping, is worthwhile and crucial 

for drawing biologically relevant conclusions. 

Re-identifying breast cancer subtypes may complement the existing subtyping approaches 

and reflect previously hidden sources of tumor diversity. Accurate breast cancer subtype 

determination is crucial for treatment choice and allows for prognosis prediction. Examining 

disease subtypes can deliver clinically relevant information and discover new candidate 

therapeutic targets. This may find applications in personalized medicine and improve therapy 

tailoring, which now aims to provide each patient with a possibly optimized 

and individualized treatment plan to reduce side effects. 

This dissertation aimed to identify and evaluate breast cancer patient subpopulations. 

As the already existing and well-established intrinsic molecular subtypes were developed 

with gene expression profiling, the re-identification in this work relies on the proteomic 

profiles. The first step of the investigation required choosing an appropriate machine learning 

approach for subpopulation detection. Moreover, the methods to assess the performance 

of tested methods were necessary. 

Subsequently, the breast cancer subpopulations proposed with the appropriate machine 

learning pipeline must be evaluated and characterized. The purpose was to investigate 

the revealed subtypes regarding their clinical experience. The final goal was to provide 

statistical tools and machine learning methods for identifying molecular signatures 

of revealed subpopulations. Based on the statistical test supported by the corresponding 

effect size measures, the molecular signature describing the proteomic and transcriptomic 

differences between identified patient subpopulations was delivered and investigated 

with a literature review and dedicated functional analysis methods. 

Based on the motivation and the aim of this dissertation, the following theses have been 

formulated: 

I. The application of advanced machine learning and mathematical modeling methods 

allows the identification of novel molecularly different subpopulations of breast 

cancer patients. 



II. In the case of highly imbalanced and varying-in-size samples, comprehensive 

statistical testing supported by effect size analysis allows the definition of robust 

molecular and clinical subtype profiles. 

2 Background 

Currently used, four clinical breast cancer subtypes are determined based on the presence 

of three key markers: estrogen receptor (ER), progesterone receptor (PR), and human 

epidermal growth factor receptor 2 (HER2) (Jassem, Shan, & Buczek, 2020).  

The most common subtype is the hormone receptor-positive (HR+), defined with negative 

HER2 status (HER2-) and positive ER or PR statuses (ER+, PR+). HER2-positive (HER2+) breast 

cancer contains cases with both HER2+ status and HR- status. Triple-Negative Breast Cancer 

(TNBC) is defined as ER-, PR-, and HER2-. The last clinical subtype, defined as ER+, PR+, and 

HER2+, is called Triple Positive (TPBC) (Szymiczek, Lone, & Akbari, 2020).  

Clinical subtypes demonstrate diversity in terms of therapy outcomes. Hence, new approaches 

to breast cancer classification were proposed with the advancements in high-throughput 

platforms. Gene expression profiling with hierarchical clustering allowed the identification 

of five molecular subtypes in Perou et al. (Perou, et al., 2000) and Sørlie et al. (Sørlie, et al., 

2001). The first subtype, luminal A, is characterized by high expression levels of HRs 

and luminal epithelial genes and a low level of HER2. The luminal B subtype is also HR+, but 

its HR levels are low compared to luminal A. In some luminal B cases, HER2 levels 

are elevated. HER2-enriched subtype shows high levels of HER2 and low expression of luminal 

epithelial genes. The most specific intrinsic subtype is basal-Like, in which luminal genes, HR, 

and HER2 are not expressed. However, genes characteristic for basal cells are highly 

expressed. The last subtype, normal-like, is not in use anymore as it was regarded 

as an artifact resulting from the contamination of tumor biospecimens with normal tissues 

(Parker, et al., 2009). Initially, clinical and intrinsic subtypes were regarded as consistent. 

HER2+ and HER2-enriched, TNBC and basal-like, and HR+ and luminal subtypes 

were assumed interchangeable, with luminal A and B being distinguishable based on Ki67 

protein levels (Szymiczek, Lone, & Akbari, 2020; Sali, et al., 2020). 



Nevertheless, with the growing availability of high-throughput platforms and the increasing 

number of studies concerning breast tumor profiling, a noteworthy discrepancy between 

clinical and intrinsic subtypes has been suggested. Hence, various machine learning 

approaches have been applied for cancer subtyping and further evaluating the obtained 

stratification. 

50-gene Prediction Analysis of Microarray (PAM50) classifier is considered a gold standard 

for intrinsic molecular subtype prediction based on gene expression profiles. It was developed 

by (Parker, et al., 2009) using microarray data supported by the qRT-PCR results. Hence, this 

method is transcriptomic-based. 

3 Materials 

The data sets used for this study were collected from The Cancer Genome Atlas (TCGA Breast 

Invasive Carcinoma (BRCA) project. Only the primary tumor samples collected 

from the female patients were considered. The protein levels were measured with the Reverse 

Phase Protein Array (RPPA) platform. The mRNA gene expression levels were obtained 

with the Agilent custom 244K whole genome microarrays. Both data sets were downloaded 

from the Genomic Data Commons (GDC) Data Portal (Genomic Data Commons Data Portal, 

2022) or Legacy Archive (Genomic Data Commons Legacy Archive, 2021) in the normalized 

form. Data sets were checked for the batch effect and adequately corrected if necessary. Data 

were discarded for those patients for whom a PAM50 classifier result was not available. 

Moreover, TCGA Research Network provided demographic information concerning 

the patients, including age at the initial diagnosis, declared race, and ethnicity. Each patient 

was also annotated with the tissue source site (TSS), the medical center of the patient's initial 

diagnosis and sample collection. The clinical information provided per patient included 

the vital status, time from the initial diagnosis to the last contact with a patient, and, 

in the case of a patient's death, the time survived from the initial diagnosis. The follow-up 

records were also collected, although, unfortunately, follow-up intervals and collected details 

are not consistent for the whole cohort. Moreover, the American Joint Committee on Cancer 

(AJCC) cancer staging fields of tumor T, regional nodes N, metastases M, and stage 

are available per patient. 



The relative proportions of 22 immune cell types in the tissue further characterized the tumor 

samples. The immune cellular fractions for the TCGA-BRCA cohort were estimated 

in (Thorsson, et al., 2018) with the CIBERSORT method (Newman, et al., 2015) for cell 

composition identification based on  RNA-Seq data. 

4 Identification of patient subpopulations 
Various combinations of clustering algorithms and feature engineering methods were tested 

for the subtyping based on the levels of 166 proteins. Representative methods of density-

based, graph-based, and centroid-based approaches to data grouping were used: Hierarchical 

Density-Based Spatial Clustering of Applications with Noise (HDBSCAN (Campello, Moulavi, 

& Sander, 2013), Louvain community detection (Blondel, Guillaume, Lambiotte, & Lefebvre, 

2008), and custom Divisive intelligent K-means (DiviK) (Mrukwa & Polanska, 2022), 

respectively. DiviK algorithm consists of stepwise k-means clustering in a locally optimized 

feature domain, selected with the log2-scaled variances Gaussian Mixture Model (GMM) 

decomposition (Mrukwa & Polanska, 2022). 

The used clustering methods deal with the high dimensionality of data to a different extent, 

so data dimensionality reduction was required in some cases, and the clustering was applied 

either to the levels of all proteins or the reduced feature space. Depending on the grouping 

algorithm, various feature selection or extraction procedures were applied to prepare the data 

set for the clustering. Table 1 presents the summary and abbreviations of the variants, later 

used for referring to results. 

  



Table 1 Combinations of clustering algorithms and data dimensionality reduction methods 

Abbreviations for each combination are written in italics. DiviK is marked with (*) to indicate that 
the GMM-based filtration is built in each algorithm iteration. 

The table is taken from (Tobiasz & Polanska, 2022). 

 
Feature engineering 

No reduction PCA UMAP 

Clustering Complete 
GMM 

filtered 
Complete 

GMM 
filtered 

Complete 
GMM 

filtered 

HDBSCAN     HUMAP-C 

✓ 
HUMAP-F 

✓ 

Louvain LC 

✓ 
LF 

✓ 
LPCA-C 

✓ 
LPCA-F 

✓ 
  

DiviK*  ✓     

For the feature selection, the GMM decomposition approach was used. The variances of each 

protein levels were calculated and transformed to the logarithmic scale. Then, 

the distribution of resulting values was decomposed as described in (Marczyk, Jaksik, 

Polanski, & Polanska, 2019). The intersection point of the two components corresponding 

to the highest variances determined the threshold value for filtration: only the proteins 

with a higher variance of levels were considered in the clustering procedure. 

The feature extraction methods included the Principal Components Analysis (PCA) to select 

the top principal components (PC) explaining 90% of the variance in the data and Uniform 

Manifold Approximation and Projection (UMAP) performed on the PCA-reduced set 

(McInnes, Healy, & Melville, 2018). 

Following the HDBSCAN algorithm, some patients may be left unassigned to any resulting 

cluster. However, for further analysis, a new subtype label is required for each patient. Hence, 

merging the left cases with the groups as similar as possible was necessary. The following 

variants of the cluster assignment prediction were tested, all based on the Euclidean distance 

between the data point and the cluster centroid: 

1. HUMAP-C1: Proximity in 2-dimensional UMAP; 

2. HUMAP-C2: Proximity in the dataset with all protein levels (complete); 

3. HUMAP-C3: Proximity in the set of top PCs explaining 90% of the variance. 



Finally, the set of cluster assignments was obtained per patient for each of the nine 

combinations of data dimension reduction and clustering. The resulting clusters 

are considered patient subpopulations and will be described as such or as breast cancer 

subtypes. 

The results of different combinations of feature engineering and clustering algorithms 

are presented in Figure 1. 

 

Figure 1. UMAP visualization with results of all clustering approaches and the original PAM50 
subtype labels 

Each figure corresponds to a different clustering approach combined with various pre- 
or postprocessing procedures: data dimension reduction prior to clustering with feature selection 



and/or extraction, or in the case of the HDBSCAN method, the techniques to predict the subtype for 
unassigned patients. The data point color marks subtype: either predicted in this study, or obtained 
with the PAM50 predictor.  

The figure is adapted from (Tobiasz & Polanska, 2022). 

 

Two effect-size-based metrics were proposed for selecting the most reliable clustering 

approach and, consequently, for defining breast cancer subtypes investigated in this work. 

Firstly, the levels of each protein were compared between the clusters with the 𝜂2 effect size 

measure. The higher 𝜂2 value, the higher the variance between the groups compared 

to the variances within the groups and the better the cluster separation. 𝜂2 values for each 

protein were obtained per clustering approach. To integrate those scores per method, mean, 

median 1st quartile (Q1), and 3rd quartile (Q3) of protein 𝜂2 values were computed. 

However, all clusters are considered jointly, which is the limitation of 𝜂2 metrics. Therefore, 

high 𝜂2 values do not provide detailed information on whether all clusters are well-separated 

or just some are highly isolated. Thus, another metric was proposed by modifying Cohen's d 

effect size (Cohen, 2013). The concept relied on referring each obtained cluster one by one 

to all remaining clusters considered jointly. This effect has been achieved by comparing 

the average protein levels between patients assigned and unassigned to a given 

subpopulation. One hundred sixty-six d values were obtained per cluster for each evaluated 

clustering approach. To easily compare the clustering approaches, one score should represent 

each. Therefore, several lists of d scores per method were integrated to obtain one pooled d 

score. Each cluster was annotated with the Q3 of protein d absolute values. Those Q3 values 

were projected as a point in the k-dimensional space, where k was the number of subtypes 

detected. Finally, the pooled d score was calculated as the distance between the created point 

and the beginning of the coordinate system. The procedure for obtaining pooled d values 

per clustering approach is presented in Figure 2 (Tobiasz & Polanska, 2022). Furthermore, 

the Dice coefficient (Dice, 1945) was calculated to assess the similarity between the subtypes 

detected with each clustering approach and those given by the PAM50 predictor. 

Table 2 shows the values of 𝜂2 quartiles and mean, pooled d scores, and Dice coefficient values 

per clustering approach. The Dice coefficients were compared with pooled d and Q3 of 𝜂2 

in Figure 3. 

 



 

Figure 2. The procedure of pooled d calculation 

Table 2.  Metrics obtained with various combinations of feature engineering methods 
and clustering algorithms 

The table is taken from (Tobiasz & Polanska, 2022). 

Method 
No. 

clusters 

η2 
Pooled d 

Dice 
Coeff. Q1 Median Mean Q3 

HUMAP-C1 5 0.0764 0.1587 0.1963 0.3083 1.7053 0.7125 

HUMAP-C2 5 0.0749 0.1519 0.1954 0.3002 1.7204 0.7052 

HUMAP-C3 5 0.0785 0.1598 0.1949 0.3034 1.6847 0.7052 

HUMAP-F 6 0.0844 0.1661 0.2113 0.3173 1.8529 0.7469 

LC 6 0.0806 0.1702 0.2050 0.2966 1.8534 0.7469 

LPCA-C 6 0.0800 0.1665 0.2030 0.2989 1.8105 0.7445 

LF 6 0.0889 0.1687 0.2105 0.3151 1.8342 0.7396 

LPCA-F 6 0.0839 0.1698 0.2100 0.3168 1.8066 0.7371 

DiviK 6 0.1123 0.2040 0.2413 0.3379 2.0568 0.7273 

 



 

Figure 3. Comparison of η2 and pooled d with Dice coefficient for tested clustering approaches 

Panel A shows the 3rd quartile of η2 versus Dice coefficient values plotted versus the 3rd quartile of η2 
(Panel A) and pooled d (Panel B). 

The figure is taken from (Tobiasz & Polanska, 2022). 

 

As for the comparison to PAM50 subtype labels based on the Dice coefficient, all methods 

which gave six clusters outperformed those which detected just five subpopulations. 

The highest Dice coefficient was observed for the Louvain algorithm applied to the whole 

feature space and for HDBSCAN clustering preceded by GMM-based feature selection 

and feature extraction with UMAP. Finally, the DiviK clustering approach was selected 

as the most appropriate method of patient subpopulation identification. DiviK clustering 

results are referred to the PAM50 subtypes regarding the number of cases in Table  3. 

Table 3. Number of patients in DiviK-based clusters referred to PAM50 subtypes 

PAM50 subtype 
DiviK-based predicted subtype 

TOTAL 
Basal 

HER2-
enriched 

Luminal 
A1 A2 A3 B 

Basal 79 0 4 0 2 1 86 
HER2-enriched 8 34 2 0 2 4 50 

Luminal A 2 9 27 47 65 23 173 
Luminal B 0 11 11 14 18 44 98 

TOTAL 89 54 44 61 87 72 407 

 

 

        

        

        

       

  

        

      

      

    

    

    

    

    

                

 
  
            

 

 
  
 
  
 
 
  
  
  
 
 

 

        

        

        

       

  
      

  

      

      

    

    

    

    

    

            

        

 
  
 
  
 
 
  
  
  
 
 

 

                                                



5 Clinical characteristics of patient subpopulations 
The identified subpopulations of breast cancer patients were evaluated by investigating 

individuals' clinical and demographic profiles in different subtypes. This part of the analysis 

mainly aimed to verify whether the survival and clinical experiences or the demographic 

background carry any differentiating significance and support the protein-based detection 

of subpopulations. In particular, this part was focused on a comparative analysis 

of the detected luminal subtypes, which were the main modification compared to the set 

of subtypes provided by the PAM50 transcriptomic-based classifier. The purpose was to verify 

whether demographic background, survival, and clinical outcomes the decision to divide 

luminal cases into four subgroups instead of only two luminal A and B, like the PAM50 

predictor. 

5.1 Survival analysis 
The survival function's Kaplan-Meier (KM) estimator (Kaplan & Meier, 1992) was used to plot 

the survival curves for the breast cancer patients' subpopulations. The comparison of survival 

experiences for different subtypes was visually examined based on the KM graphs. 

The appropriate statistical testing was also performed to quantify the differences between the 

groups and verify if they were statistically significant. The log-rank test was calculated 

for each comparison. It is the most common approach, in which the same importance is put 

on differences between the survival functions throughout the whole timespan of the study 

(Mantel, 1966; Peto & Peto, 1972; May, Hosmer, & Lemeshow, 2014). However, in the case 

of some comparisons, the differences in survival outcomes were mainly visible in the initial 

phases of the illness and therapy. Thus, the generalized Wilcoxon rank sum test, also called 

the Gehan-Wilcoxon test, was applied to compare the subpopulations. In this approach, the 

weights of differences between the survival outcomes are defined as the number of patients 

still at risk. 

Moreover, the Cox proportional hazard model was fitted to estimate the hazard ratio (HR) 

corresponding to each subtype compared to the one defined as the reference (Cox, 1972). HR 

can be regarded as the effect size measure, interpreted analogously to the relative risk. 

The thresholds for HR interpretation were adjusted for the imbalance between the sizes 

of the compared groups. The survival analysis was performed for four endpoints: Overall 

Survival (OS), Disease-Specific Survival (DSS), Disease-Free Interval (DFI), and Progression 



Free-Interval (PFI). The first two, however, are not recommended for the breast cancer cohort 

of TCGA, as the follow-up time is too short to observe a sufficient number of events. 

The KM graphs for all four endpoints are shown in Figure 4 for luminal subpopulations 

identified with DiviK proteomic-based approach. A comparison of luminal subgroups 

is highlighted here to investigate the main difference between DiviK- and PAM50-based 

subtyping approaches. HER2-enriched and basal subtypes were highly concordant for both 

proteomic and transcriptomic subtyping. 

 

Figure 4. Kaplan-Meier survival curves of luminal subpopulations identified with DiviK 



Moreover, the test statistics and p-values are presented in Table  for DiviK-based and PAM50 

luminal subtypes. 

Table 4. Results of log-rank and Gehan-Wilcoxon tests for comparison of survival functions 
of luminal subtypes identified with DiviK or based on PAM50 classifier 

Endpoint type 
χ2 p-value 

Log-rank 
test 

Gehan-Wilcoxon 
test 

Log-rank 
test 

Gehan-Wilcoxon 
test 

Subpopulations identified with DiviK 
Overall Survival 4.99 0.68 0.1724 0.8788 
Disease-Specific 

Survival 
4.06 5.08 0.2552 0.1661 

Disease-Free Interval 6.97 9.12 0.0730 0.0277 
Progression-Free 

Interval 
4.87 6.41 0.1818 0.0932 

PAM50-based subtypes 
Overall Survival 2.32 0.57 0.1280 0.4521 
Disease-Specific 

Survival 
3.01 0.70 0.0828 0.4043 

Disease-Free Interval 0.01 0.10 0.9333 0.7488 
Progression-Free 

Interval 
0.56 0.003 0.4530 0.9512 

 

Interestingly, for comparing luminal subpopulations identified with DiviK, the p-value was 

higher for the Gehan-Wilcoxon test than for the log-rank test only for OS, which is the most 

biased endpoint among all considered here. However, no differences in survival outcomes can 

be spotted for OS based on both test results and KM curves. When the emphasis was placed 

more on the early changes in the survival experience in the Gehan-Wilcoxon test, the p-value 

decreased for DSS, DFI, and PFI. Those results were also supported by the KM graphs, 

especially for DFI and PFI, where the distinct drop in the survival function of luminal A2 cases 

can be observed during the first year of follow-up. The p-value is lower than 0.05 only for DFI. 

For DSS, two groups of similar curves can be noticed: one with luminal A2 and A3 

subpopulations with a better prognosis and one consisting of luminal A1 and B subtypes 

with a worse outcome. Based on the KM graphs, it can be concluded that the luminal A3 

subtype generally can be associated with the best prognosis regarding recurrence among all 

investigated patient subgroups. 

 



5.2 Statistical analysis of demographic and clinical profiles 
Several categorical variables related to demographic and clinical factors were considered 

to verify their association with subpopulations identified on RPPA data. The relationship 

with transcriptomic-based PAM50 subtypes was also evaluated to compare the outcomes 

between those two subtyping approaches. 

Pearson χ2 test of independence was conducted to check for the association between each 

of the demographic or clinical categorical factors and analyzed subtypes. For the 2-by-2 

contingency table case, when two groups were tested for association with two categories, 

Yates's correction for continuity was applied (Yates, 1934). Notably, contingency tables 

generated for different tested combinations of subtypes and categorical variables differed 

in dimensions. This impeded the comparison of subtyping outcomes provided by PAM50 

and the method proposed in this dissertation. Pearson χ2 test p-value, therefore, fails 

to provide a good characterization of dependency between the subtypes and demographic 

or clinical factors. Consequently, Cramér's V effect size was calculated to assess the strength 

of the association. Results of the association analysis are shown in Table 5 for the subset 

of luminal subtypes. Cramér's V values are colored based on the effect size interpretation. 

Table 5. Association between categorical demographic and clinical factors and luminal subtypes 
identified with DiviK or based on PAM50 classifier 

Test statistics and p-value from Pearson's χ2 test of independence, Cramér's V effect size 
of the association, and small, medium, and large effect thresholds adjusted for the number 
of categories. 

Feature χ2 p-value Cramér's V 
Cramér's V effect threshold 

Small Medium Large 
Subpopulations identified with DiviK 

Race 13.42 0.0368 0.1712 0.0707 0.2121 0.3536 
Ethnicity 0.23 0.9718 0.0346 0.1 0.3 0.5 
AJCC Stage 18.61 0.0287 0.1536 

0.0577 0.1732 0.2887 AJCC Tumor 19.34 0.0225 0.1566 
AJCC Node 13.23 0.1526 0.1292 
AJCC Tumor Binarized 13.86 0.0031 0.2295 

0.1 0.3 0.5 AJCC Node Binarized 3.75 0.2900 0.1191 
AJCC Metastasis 2.23 0.5254 0.0922 
PAM50-based subtypes 
Race 3.74 0.1543 0.1269 

0.1 0.3 0.5 
Ethnicity 1.26 0.2610 0.0793 
AJCC Stage 9.19 0.0269 0.1848 
AJCC Tumor 14.40 0.0024 0.2309 



Feature χ2 p-value Cramér's V 
Cramér's V effect threshold 

Small Medium Large 
AJCC Node 0.91 0.8228 0.0580 
AJCC Tumor Binarized 13.25 0.0003 0.2215 
AJCC Node Binarized 0.67 0.4133 0.0497 
AJCC Metastasis 1.42 0.2335 0.0725 

The results indicate a small but statistically significant association between  DiviK-based 

subtypes considered together and all categorical factors, apart from ethnicity and metastasis, 

for which the effect was negligible. A similar dependency was shown for PAM50 subtypes. 

However, a small association with ethnicity and even moderate with race was detected for this 

approach. For luminal cases, the effect was also small regarding all factors but ethnicity 

and metastasis. Nonetheless, for the AJCC node fields, no significant dependency was shown 

by the Pearson χ2 test. The effect was also negligible for PAM50 subtypes. Furthermore, 

no significant dependency between categorical factors and luminal A subpopulations 

identified with DiviK was found with the Pearson χ2 test. However, a small association effect 

was observed for all factors, apart from ethnicity and binarized tumor size. 

Numerical variables used for the subtyping results evaluation included patient age 

at diagnosis and CIBERSORT immune cellular fraction estimates. They were compared 

between the subpopulations with tests selected according to the normality and variance 

homogeneity assumptions. Moreover, appropriate effect size measures supported 

the classical testing approach. Figure 5 summarizes the differentiation testing pipeline 

for comparing more than two subtypes. 

 

Figure 5. Differentiation testing pipeline for comparison of more than two groups 



 

The subtypes in all tested variants differed significantly in age. Nonetheless, the effect was 

small. The exemption was comparing PAM50 luminal A and B cases, for which no significant 

differences were detected, and Cohen's d effect size was classified as very small. 

The fractions varied significantly among all subtypes for 13 immune cell types: naïve and 

memory B cells, plasma cells, activated and resting memory CD4 T cells, follicular helper T 

cells, monocytes, macrophages M0, M1, and M2, resting and activated dendritic cells, and 

resting mast cells. Conover post hoc tests supported by plots indicated an elevated fraction of 

follicular helper T cells and lack of resting mast cells in basal tumors, significantly 

distinguishing this subtype from others. Visual inspection revealed a relatively small number 

of non-zero records for memory B cells, activated T cells, and dendritic cells. In those cases, 

outliers had a great impact on the test results. 

The fractions significantly varied for the subset of luminal subtypes for nine immune cell 

types: naïve and memory B cells, plasma cells, resting memory CD4 T cells, monocytes, 

macrophages M0, M1, and M2, and resting dendritic cells. According to the Conover post hoc 

test results, the main significant differences were detected for the luminal A2 subtype referred 

to others. The fraction of naïve B cells was significantly higher with medium effect in luminal 

A2 compared to A1 and A3 and in luminal A3 compared to B. The highest number of non-zero 

records was observed for the luminal A2 subtype. Moreover, plasma cell fraction was 

significantly lower in the luminal A2 subtype than in luminal A3 and B, with a medium effect. 

Interestingly, compared to other luminal subtypes, luminal A2 fractions of macrophages M1 

and M2 were relatively small and big, respectively. For macrophages M1, the effect was 

medium in all those pairs, while for M2, only if luminals A1 and A3 were compared. 

6 Molecular signature of patient subpopulations 
Considered breast cancer patient subpopulations were detected by the chosen clustering 

method applied to the RPPA data set. Hence, the obtained subtypes were expected to differ 

in their protein levels. Nevertheless, further analysis was required to identify proteomic 

profiles characteristic of each group. Also, it remained unclear whether similar information 

can be gathered from mRNA gene expression measurements and if transcriptomic signatures 

support the obtained subtyping. Therefore, this part aims to characterize the identified breast 



cancer subpopulations with proteomic and transcriptomic signatures, either specific 

for a single subtype or sufficient to differentiate the subtypes. 

6.1 Subtype-specific marker identification 
Subtype-specific markers were identified with the differentiation testing pipeline shown 

in Figure 5. The subtype comparison with the selected testing approach was performed 

separately for each transcript or protein. Tests for normality and variance homogeneity 

assumption verification were also applied feature-wisely with Benjamini-Hochberg correction 

for multiple testing (Benjamini & Hochberg, 1995). Their results were interpreted per omics 

to ensure that all measurements from the same platform were analyzed consistently. 

The markers were identified based on either p-values or effect sizes. Considering large 

numbers of comparisons and subpopulations varying in size, the effect-size-based approach 

appeared to be a more reliable solution. Subtype-specific markers were defined as proteins 

or transcripts with a significantly higher or lower level in only one subtype. The markers were 

identified in three feature spaces: proteomic data, transcriptomic data, and transcriptomic 

data limited to genes coding the proteins measured by the RPPA platform. Figure 6 presents 

the scheme of the subtype-specific marker identification process. 

 

Figure 6. The subtype-specific marker identification process 



Table 6 shows the numbers of subtype-specific markers identified with the effect-size-based 

approach. The number of transcriptomic markers is larger due to the bigger feature space. 

Table 6. Number of subtype-specific markers selected based on effect sizes 

"P" denotes the protein levels data set, "T" denotes the whole mRNA gene expression levels 
(transcriptomic) data set, and "LT" denotes the transcriptomic data set limited to genes coding 
the proteins included in the protein levels data set. (*) indicates the thresholds used for 𝜂2 and Cohen's 
d effect size interpretation were lowered to medium and large, respectively, for the transcriptomic data. 

Subtype set All subtypes Luminal Luminal A 

Feature space P T LT P T LT P T LT 

Basal 1 1146 9 - - - - - - 

HER2-enriched 0 21 0 - - - - - - 

Luminal A1 5 0 0 12 0 0 19 1 0 

Luminal A2 0 2 0 1 13 1 13 45 1 

Luminal A3 0 0 0 0 0 0 0 0 0 

Luminal B 0 0 0 1 33 2 - - - 

TOTAL 6 1169 9 14 46 3 32 46 1 

On the transcriptomic level, the most considerable differences were revealed for the basal 

subpopulation, with many specific markers. Moreover, identification of HER2-enriched-

specific markers was achievable only based on mRNA gene expression levels. To select 

markers characteristic for luminal subtypes, basal and HER2-enriched cases were removed. 

Subsequently, the highest number of specific markers was found for luminal B and A2 

subpopulations; the latter observation was also reinforced in the luminal A cases comparison. 

As can be concluded based on those results, the effect-size-based approach occurred more 

restrictive. Identified subtype-specific markers are listed regarding the direction of level 

changes compared to other subtypes in Figure 7 for the proteomic data set. 



 

Figure 7. Subtype-specific markers identified based on the protein levels 

Panels A, B, and C show markers selected by comparing all subtypes, luminal subtypes, and luminal A 
subtypes, respectively. Purple and turquoise colors indicate the marker level was respectively higher 
or lower for a given subtype than for all remaining ones. 

Over-Representation Analysis (ORA) was performed on the sets of selected subtype-specific 

markers, including KEGG signaling pathways and Molecular Signatures Database (MSigDB) 

terms (Liberzon, et al., 2011; Liberzon, et al., 2015; Subramanian, et al., 2005).  

Due to the relatively small number of identified markers for both data sets and the insufficient 

RPPA-measured protein universe, ORA did not produce significant results for KEGG pathways 

following the Benjamini—Hochberg correction for multiple testing (Benjamini & Hochberg, 

1995). However, for MSigDB collections and transcriptomic feature space, many gene sets 

were overrepresented in the obtained lists of subtype-specific markers, especially for basal 

and HER2-enriched tumors. For the basal-specific transcripts, hallmark gene sets related 



to an early or late response to estrogen were enriched. Moreover, ORA applied on MSigDB 

revealed several overlaps with previously published breast cancer-related gene sets, mainly in 

the context of markers specific for HER2-enriched and basal subtypes (Doane, et al., 2006; 

Charafe-Jauffret, et al., 2005; Farmer, et al., 2005; Yang, et al., 2005; Smid, et al., 2008; van't 

Veer, et al., 2002). 

To solve the problem of insufficient set size for ORA and further investigate the differences 

between four revealed luminal subpopulations, the CERNO test was applied on absolute 

values of d effect size per each luminal subtype pairwise comparison. For the proteomic data 

set, following the Benjamini-Hochberg correction for multiple testing (Benjamini & 

Hochberg, 1995), only the comparison of luminal A2 versus B subtypes provided statistically 

significant enrichment results. All pairwise comparisons provided significantly enriched 

KEGG pathways for the transcriptomic data set. Regardless of the comparison variant, 

the obtained pathways included those crucial for proper cell functioning and many involved 

in tumor biology. 

6.2 Subtype differentiating signature 
Another approach was proposed based on the multinomial logistic regression to identify 

the molecular signature, distinguishing all considered subtypes. Logistic regression 

is commonly applied as the classification method. However, it can also select meaningful 

features, such as the molecular signature of the identified subpopulations. 

Multiple Random Cross-Validation (MRCV) procedure was used for model building with 100 

iterations. MRCV was chosen due to the limited number of patients and the high imbalance 

between the breast cancer subtypes. In each iteration, 10% of patients from each subtype were 

left as the test set, and the remaining 90% served for training. The multinomial logistic 

regression model was built on this set using the forward selection method. In each step, 

the model with the highest Bayes Factor (BF) was selected until BF dropped below ten or no 

more potential features were left. The performance of the resulting model was assessed based 

on the test set. Figure 8 presents the scheme of the MRCV procedure. 

 



 

Figure 8. MRCV procedure for multinomial logistic regression model building 

Outcomes of MRCV 100 repetitions served for the creation of the feature ranking. Features 

were sorted and assigned weights for each resulting model based on the selection order. 

Each weight was multiplied by the model's overall balanced accuracy (BA) calculated on each 

test set. Products summed up among all 100 models gave an importance score for each feature. 

Hence, feature ranking merges two approaches of model assessment: goodness-of-fit-based, 

as the order of features corresponds to BF, and prediction-quality-based, represented by BA. 

Feature ranking served to identify the final molecular signature differentiating all subtypes. 

The elbow method was used to select the cut-off for top features. It involved the feature 

ranking scores sorting, plotting, and connecting the highest and lowest values by line. 

The inflection point was the score with the maximal distance to the resulting line. All features 

with scores higher than the inflection point were selected as the model signature. The author 

described a similar pipeline for the binary logistic regression (Henzel, et al., 2021) 

and (Kozielski, et al., 2021). Three variants of regression models were fit: for the proteomic data 

set, for the reduced transcriptomic data set, and for those two data sets combined. 

Figure  illustrates the feature ranking scores per protein obtained in the MRCV procedure. For 

clarity, the plot was truncated to show only top features, without those appearing in only one 

out of 100 MRCV iterations. The top 9 proteins were identified as the proteomic signature 

based on the elbow method. 



 

Figure 9. Feature ranking for the proteomic multimodal logistic regression model 

For clarity, the plot was truncated to show only features selected for more than one model in the MRCV 
procedure. 

Levels of proteins included in the subtype-differentiating proteomic signature are presented 

in Figure 10 for the top three proteins. 



 

Figure 10. Levels of the top three proteins selected for the multinomial regression model 
concerning subpopulations identified with DiviK 

Panels 1 show boxplots of protein levels per subtype. Panels 2 show the UMAP projection obtained 
based on the protein level data set, with the color of data points reflecting the protein level. 



Figure 11 compares the selected model-based protein signature and the sets of subtype-

specific markers selected based on the effect sizes between all luminal subpopulations (Panel 

A) or between luminal A subpopulations (Panel B). The model-based signature and luminal-

wise subtype-specific markers shared three proteins. 

 

Figure 11. Comparison of proteomic model features and proteomic subtype-specific markers 
identified based on the effect size 

A link means a particular protein was included in the model and identified as the subtype-specific 
marker. Pink and turquoise colors indicate the increase or decrease in protein level compared to other 
luminal subtypes (Panel A) or other luminal A subtypes (Panel B). 

 

After removing the missing records, the mRNA gene expression data set included 

measurements for 17328 genes. Feature selection with the forward method would 

be insufficient, so the data set was limited to only 1124 genes with the highest variance within 

the cohort. The variance threshold was identified based on the GMM decomposition. 

Feature ranking obtained in the MRCV procedure is shown in Figure 12. The maximal distance 

in the elbow plot was obtained for the sixth gene (C7). Hence, the top five genes formed 

the transcriptomic signature for subpopulations' differentiation. mRNA gene expression 

levels of those top 3 selected genes are presented in Figure 13. 

 



 

Figure 12. Feature ranking for the transcriptomic multimodal logistic regression model 

Interestingly, the first two genes selected for the model (ESR1 and PGR) code the top two 

proteins from the proteomic signature (estrogen and progesterone receptors). Nonetheless, 

the corresponding genes and proteins did not show the same pattern, especially in the case 

of the luminal A1 subpopulation. 

The combined set of measurements for 166 proteins and 1124 genes following the GMM-based 

filtration served the creation of the joint multinomial logistic regression model. The top 

nine proteins were identified as the combined signature. Interestingly, all those features were 

proteomic, as the first mRNA gene expression level has the eleventh position in the ranking. 

Furthermore, the order of those top features is identical as in the case of the proteomic-only 

model.  



 

Figure 13. Levels of the top three transcripts selected for the multinomial regression model 
concerning subpopulations identified with DiviK 

Panels 1 show boxplots of mRNA gene expression levels per subtype. Panels 2 show the UMAP 
projection obtained based on the protein level data set with the color of data points reflecting 
the mRNA gene expression level. 

 



7 Conclusions 
The goals of this thesis in the identification of breast cancer patient subpopulations and their 

clinical and molecular evaluation have been achieved. The results described in this 

dissertation justify the thesis. Thesis I was confirmed by the analysis outcomes shown 

in Chapter 4 (Identification of patient subpopulations). It was demonstrated that various 

tested combinations of feature engineering and clustering algorithms reveal novel 

subpopulations of breast cancer patients based on their proteomic profiles. The proposed 

metrics for clustering outcome comparison allowed the selection of the approach producing 

the most distinct subpopulations. Thesis II was proved in Chapters 5 (Clinical characteristics 

of patient subpopulations) and 6 (Molecular signature of patient subpopulations). 

The differences in survival experiences between the defined subpopulations were confirmed. 

HR+ and HR- subtypes were shown to vary in prognosis, and the newly revealed additional 

luminal subgroups were diverse in their survival outcome. A small association between 

investigated subpopulations and demographic or clinical factors was found, similar 

to PAM50-based subtypes. It was also detected that identified subpopulations demonstrate 

diversity in immune cell fractions, including the luminal subgroups. The differentiation 

testing pipeline relying on classical statistical testing and effect size estimation allowed 

the definition and functional characterization of proteomic and transcriptomic profiles 

of the majority revealed subpopulations. Proteomic signature distinguishing between all 

subtypes was selected. The transcriptomic signature allowed mainly HR+ and HR- subtype 

recognition but performed poorly in distinguishing between revealed luminal subtypes. 

This dissertation addressed the need for the re-identification of established breast cancer 

classification with the use of machine learning and mathematical modeling approaches. 

Firstly, machine learning techniques recognized breast cancer patient subpopulations 

in protein levels. Subsequently, the obtained clusters were evaluated regarding demographic 

and clinical factors. Finally, the subtypes were characterized molecularly with comprehensive 

statistical methods and statistical learning approaches. The pipeline proposed in this 

dissertation provided satisfactory results and dealt with the challenging data set. 

All applied machine learning approaches proved that the luminal A intrinsic subtype 

is the most heterogeneous in the TCGA-BRCA cohort and should be further divided into two 

or three subgroups. Feature selection or extraction steps before clustering were crucial 



for the outcome quality. GMM-based feature filtration improved the detection of highly 

distinct clusters, regardless of the clustering algorithm. The proposed centroid-based 

approach with iterative k-means clustering in locally GMM-filtered feature space provided 

the best results among all tested approaches. It identified six patient subpopulations named 

according to their consistency with PAM50 labels as basal, HER2-enriched, luminal B, 

and three luminal A subgroups: A1, A2, and A3. 

The demographic and clinical evaluation of identified subpopulations highlighted 

the importance of an appropriate statistical testing approach. Given the insufficient follow-

up time for cancer with a relatively good prognosis, it was crucial to properly define 

an endpoint relating to time to relapse rather than death. Furthermore, extending 

the classical log-rank test with a weighted Gehan-Wilcoxon approach enabled the detection 

of significant early changes in survival between subpopulations. Estimating the effect size 

using HR interpreted with adjustment for unbalanced groups partially resolved the problem 

of varying study sample sizes and allowed subpopulations to be compared despite the small 

number of events of interest captured during follow-up. Cramér's V effect size allowed 

analysis of the association between subpopulations and demographic or clinical factors 

in a manner adjusted to varying category numbers. 

Greater diversity in survival experience was shown than in the case of well-established 

PAM50-based subtypes. Interestingly, the revealed luminal subtypes varied in their survival 

outcome, especially regarding the time to new cancer events. The luminal A2 subtype was 

associated with a prognosis comparably poor to HER2-enriched and basal tumors. On the 

other hand, luminal A3 cases showed a favorable prognosis. 

Subpopulations revealed in this study based on the proteomic portrait demonstrated a slight 

dependency on demographic and clinical factors, comparable to well-established PAM50-

based subtypes. Four luminal subtypes identified in this dissertation demonstrated a small 

association with lymph nodes affected, which was not observed for the PAM50 classification 

of luminal A and B subtypes. Moreover, the subpopulations proposed here were suggested 

to vary in their immune response among both the whole cohort and only the luminal group. 

Classical statistical tests and effect size were used to select non-specific and subtype-specific 

markers in both proteomic and transcriptomic spaces. Due to the large number of features 

compared to sample sizes, effect size outperformed the classic approach and provided a more 



rigorous list of markers specific to subtypes. Transcriptomic differentiation between subtypes 

was smaller than proteomic one. 

The method choice was also crucial for the functional analysis. Due to insufficient marker lists 

and protein universe sizes, the first-generation method ORA did not perform satisfactorily. 

Nevertheless, the second-generation CERNO test conducted on effect size estimates delivered 

the lists of significantly enriched pathways. The results indicate distinct differences between 

identified subpopulations on the transcriptomic and proteomic levels, including 

the significant diversity within the luminal group. The differentiating genes and proteins 

are involved in various processes meaningful for proper cell functioning and cancer 

development. 

Finally, the dedicated machine learning approach identified the protein signature 

distinguishing all six revealed subtypes. Similarly, the transcriptomic signature was obtained. 

Some of the signature genes and proteins are well-established in their role in breast cancer. 

For some, however, the association with this disease remains unknown. 

Interestingly, the luminal A1 subtype demonstrated distinct differences in the expression 

of signature genes and proteins compared to the three remaining luminal subgroups. Some 

similarities to basal and HER2-enriched tumors were demonstrated, as well as distinct 

differences compared to all subtypes. Moreover, a relative drop in ER expression was observed 

between mRNA and protein levels. This suggests that luminal A1 cases might have been 

misclassified as luminal based on gene profiling and are closer to ER- tumors, which cannot 

be reflected in their transcriptomic portraits. 

To conclude, proteomic data carry information concerning breast cancer stratification, which 

remains hidden at the transcriptomic level. Subtyping based on the proteomic profile 

complements the intrinsic molecular classification of breast cancer and provides superior 

information on breast cancer heterogeneity not reflected by gene expression profiling. 

Various mechanisms participate in expression regulation between the mRNA and protein 

layer. Therefore, the results obtained in this dissertation suggest that those processes impact 

tumor behavior. Proteomic-based patient subpopulations demonstrate differences in clinical 

outcome, which were not observed in PAM50 luminal subtypes. Hence, profiling of protein 

levels can potentially deliver a more comprehensive insight into tumor biology and provide 

clinically relevant information beyond gene expression profiling. Identified markers can 



possibly serve for the optimization of therapy planning and contribute to new targeting 

options research. Nonetheless, further independent validation is required to gain evidence 

supporting the potential prognostic or clinical applications and assess whether the current 

clinical and intrinsic subtyping approaches can be complemented with those findings 

and applied in the clinical routine. 
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