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Researchers in the field of biology are always striving to expand our knowledge of 

the processes that occur in living organisms. A deeper understanding of our biology 

and the biology of other organisms can significantly improve the quality of our lives 

and help fight diseases. In the 20th century, on the shoulders of genetics and molecular 

biology, a new field of study, the “omics” sciences, began. These sciences are large-

scale studies of organisms that aim to study and quantify the entire process of gene 

expression from DNA to the biological phenotype of organisms (see Figure 1.1) and 

the effects of various processes, such as diseases and drug treatments, on this 

expression. The general idea is that a complex system can be understood more 

thoroughly if considered as a whole [1]. 

Proteomics is one of the “omics” sciences, it studies the protein composition of 

cells, tissues, and even entire organisms. Proteomic research became the viral source 

of knowledge about organisms, helping us to better understand the information 

encoded in genomes. The biggest challenge in proteome research is to find out as 

precisely as possible which proteins are present in the organism under study and in 

what amounts. This is a very difficult task, but great advancements in mass 

spectrometry (MS) have made it possible. The discovery of the soft ionization method, 

for which John B. Fenn and Koichi Tanaka were awarded the Nobel Prize in 

Chemistry in 2002, was particularly important for proteomics research.  

Mass spectrometry is a tool that can be used to study the protein composition of 

biological samples. With the help of MS, we can identify and quantify proteins in the 

analyzed mixture [2]. Usually, there are three distinct steps: ionization, mass analysis 

and ion detection. During the ionization step, molecules of the analyzed mixture are 

given an electric charge. Ionization makes it possible to separate molecules during 

mass analysis based on their mass-to-charge ratio (m/z). In the final step, the molecules 

are detected and counted, giving us the product of MS analysis, the mass spectrum (see 

Figure 1.2).  

1. Introduction 
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Figure 1.1: Schematic visualization of gene expression from DNA to a disease. 

Source: https://baranzinilab.ucsf.edu/data-science. 

 

 

Figure 1.2: An example of the mass spectrum (after baseline correction). 
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The various types of mass spectrometry differ in the way they analyze protein 

mixtures. Each technique has its advantages and disadvantages. The main indicators of 

mass spectrometry performance are molecular resolution, mass accuracy, sensitivity, 

range and throughput. Molecular resolution is the ability to separate ions with similar 

m/z values. Mass accuracy determines how precisely the mass spectrometer measures 

the mass of ions. Sensitivity is the ability to detect ions of low intensity. The range is 

the minimum and the maximum m/z values that can be measured, and the throughput 

describes the speed of the analysis [3]. 

 

 

Figure 1.3: An example of an image acquired by MSI. The yellow color marks regions where the 

molecule has the highest intensity. 

 

Mass spectrometry imaging is another important tool for proteomics research. 

Mass spectrometry imaging (MSI) adds a physical dimension to the data by defining 

an (x, y) grid over the surface of the sample. MS data are collected for each pixel of 

the grid, and images (heat maps) of the individual m/z values can be generated, as 

shown in Figure 1.3 [4]. Obtaining information about the spatial distribution of 

molecules greatly improves the ability to investigate processes like diseases and drug 

treatments. In 1997 Richard Caprioli published a paper [5] on the first steps in this 

field. Since then, many improvements have made the MSI an established tool in 

biological research, clinical practice, pharmaceutical industry and other fields [4].  

Great efforts are constantly being made to improve the performance of mass 

spectrometry and mass spectrometry imaging. Improvements are being made for all 

stages of the analysis, sample preparation, ionization methods, mass analysis 

techniques and detection methods. In general, the focus is to improve two areas, the 

molecular resolution of mass spectrometry and the spatial resolution of mass 

spectrometry imaging for both bulk and single-cell analysis, although other aspects 
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like range and throughput are also important. Some mass spectrometers can identify 

and quantify proteins with great precision but can only detect a narrow m/z range at a 

time. On the other hand, some methods allow for the analysis of a very wide m/z range 

but result in lower-quality mass spectra. Data quality is very much dependent on the 

data acquisition parameters (scanning time or dwell time for non-scanning 

instruments). Thus, usually, trade-offs have to be made between data quality and 

throughput [3]. For our purposes, the desired traits of mass spectrometry are high 

resolution, wide range and high throughput.  

An obstacle in the meaningful analysis of the MS data is the noise in mass spectra. 

The noise obscures small intensity signals in measurements and can produce fake 

peaks. Usually, the noise is dealt with by some kind of filtration, but this also leads to 

information loss. Noise in data from MS occurs in several forms, including systemic 

background noise called the baseline, high-frequency noise due to interference with an 

ion source, noise due to sample contamination, and other types of noise that depend on 

the type of mass spectrometry [6, 7]. In this work, we are interested in high-throughput 

mass spectrometry, which can analyze very complex mixtures of proteins with a wide 

range of m/z values. The quality of the data generated by such methods is far from 

ideal. Such mass spectra consist of Gaussian-shaped peaks around the actual m/z value 

of molecules they represent and are surrounded by noise. Information about protein 

localization and abundance must be extracted by careful and thorough analysis. 

During knowledge discovery in mass spectrometry data, understanding the nature 

of the data is most important. The initial dimensionality of tens of thousands or even 

up to a million mass channels is far too large for the application of most data mining 

methods without prior dimensionality reduction. The preprocessing of the data must be 

done with field-specific knowledge about mass spectrometry. A typical workflow 

involves raw data access, baseline correction, peak picking and selection, mass 

alignment, signal normalization, and molecular annotation [8]. Only then are the 

traditional steps of feature engineering and machine learning applied, e.g., genetic 

algorithms [9], neural networks [10], linear discriminant analysis [11], simulated 

annealing algorithm [12], support vector machine [13], k-means [14, 15] etc. 

Imaging adds another layer of complexity to the analysis of MS data, making the 

analysis a complex and multistep process. Many publications focus on a particular step 

of the analysis like baseline correction, peak detection or classification of images. 

Other publications are per case study, customized for a singular application and hard to 

apply for different data sets. There is a need for a set of tools that enable 

a comprehensive, automated and data-driven analysis of MSI data, a detailed 
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workflow that takes raw data and produces a set of meaningful features that can be 

used with the help of machine learning to train high-performing classifiers. Studies are 

being done in pursuit of this goal, but the topic is yet insufficiently explored. In 

particular, there is no workflow that utilizes the imaging information gained form MSI 

to enhance the feature engineering on the MS data. Proposing such a workflow is one 

of our goals. 

1.1. Goals 

The main goal of this dissertation is to prepare a robust, data-driven and detailed 

workflow for processing mass spectrometry imaging data obtained from biological 

samples taken from patients with cancer. The result of such processing should be 

a small non-redundant set of features related to specific peaks in the mass spectra that 

can be used for training of classifiers and for biomarker discovery. The goal is to 

prepare a workflow that can be used for any data set acquired with MALDI-TOF mass 

spectrometry imaging. 

The second goal of our work is to apply machine learning on the acquired feature 

set and examine the quality of our data processing. The goal is to prove that the 

processing retained the information and hidden patterns in the data and it is possible to 

use it to train well performing classifiers. 

We are also trying to improve on existing methods used during the multi step 

workflow we propose. In  particular we are trying to improve the process of spectrum 

modelling during the peak detection step and compare it with other state-of-the-art 

peak detection methods. 

The motivation behind this research is that there seems to be a lack of an approach 

to feature extraction and dimensionality reduction of MALDI-TOF MSI data that 

simultaneously uses both protein composition information from mass spectrometry 

and spatial distribution information from imaging. This inclined us to develop 

a method that uses spatial distribution to help with processing of MS data. 

There are also only a few works [16, 17] that describe a fully data-driven approach 

to the analysis of MALDI-TOF MSI data, and this field is still insufficiently 

investigated. 

The aim is also to propose a workflow that provides a set of features that can be 

used for protein identification and quantification as well, and, subsequently, for the 

preparation of a clinical trial. 
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We state the following. Thesis 1. Peak detection method based on spectrum 

modelling with Gaussian mixture models with prior mass spectrum segmentation is 

able to identify peaks in complex mixtures and provide information about peak 

location as well as its relative intensity. 

Thesis 2. Using statistical tests for comparing the spatial distribution is a good 

approach for redundancy removal and dimensionality reduction of the data, including 

isotope envelope detection.  

Thesis 3. Reasoning about feature importance by aggregating results from many 

unit models enables to determine feature importance in heterogeneous data, and to find 

all important features even highly correlated with each other. 

1.2. Contributions 

The thesis includes several contributions to the field of mass spectrometry imaging 

data analysis. First, we prepared a complete process of MALDI-TOF MSI data 

analysis with detailed steps of peak detection, noise filtering and feature engineering 

that ultimately leads to a well-defined and non-redundant set of features that can be 

used to train well-performing classifiers. 

 The second contribution is the examination of the process of spectrum division for 

modeling individual parts during spectrum modeling [18] and the proposition of 

indicators to specify the aims of this process and the proposition of a new method for 

the division. 

The third contribution is the novel application of spatial distribution-based 

decision-making during the feature engineering of the MSI data and during the isotope 

envelope detection process. 

1.3. Organization of the thesis 

This thesis is structured as follows. 

Chapter 2 provides background information about mass spectrometry and mass 

spectrometry imaging. The chapter briefly explains why the analysis of imaging data 

of biological samples is important and introduces the main concepts related to this 

topic. It also provides important insights into the techniques, most commonly used for 

this purpose. The information in this chapter helps to understand the challenges a data 
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analyst faces when working with MSI data by explaining the process of acquiring 

mass spectra and the differences between mass spectrometry techniques. 

Chapter 3 provides a detailed description of the data processed during the 

experiments. It contains a step by step description of sample preparation and data 

acquisition, along with all the important parameters and the specification of the used 

mass spectrometer. This chapter also describes the initial steps taken to prepare the 

raw data for peak identification. 

Chapter 4 is the introduction to the main topic of mass spectrometry data analysis, 

peak identification. It is an overview of the state-of-the-art peak detection methods for 

mass spectrometry data. In this chapter we use our data to find peaks using popular 

methods and compare the results. 

Chapter 5 is an in detail description of a custom method for peak detection by 

spectrum modeling based on Gaussian mixtures. The chapter starts with the inspection 

of various methods for the division of the spectrum into smaller fragments. It then 

describes the process of fitting Gaussian mixture models to the fragments with 

a detailed description of the algorithm and the implementation used to fit the model. 

Important part of the chapter is the process of choosing the optimal number of mixture 

elements. At the end of the chapter, we present the results of applying this peak 

detection method to our data. 

Chapter 6 chapter is devoted to feature engineering, with the goal of reducing the 

dimensionality of the data and removing redundancy. It is a description of the entire 

process of dimensionality reduction from the set of thousands of Gaussian components 

of the spectrum model to a small set of features using real-life knowledge about the 

process of MSI data acquisition. The chapter contains one of the key concepts of the 

thesis, that is the usage of spatial distribution of features to facilitate the feature 

engineering process. In detail description of the used methods and the entire feature 

engineering process is provided. 

Chapter 7 describes the application of statistical and machine learning methods to 

train classifiers capable of making a prediction for a new observation based on the 

processed data. It contains the strategy for data set division into training, testing and 

validations sets as well as extensive set of tools for model comparison and 

performance evaluation. Chapter then describes algorithms used to train classifiers. 

The algorithms are, multinominal logistic regression-based algorithm and neural 

networks. This is followed by the comparison of classification performance achieved 

by both algorithms and the in detail description of the feature importance evaluation. 
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The final chapter contains discussion about the conducted experiments, drawn 

conclusions, and plans for future research. 



12 
 

MSI experiments generate hundreds of thousands of mass spectra. For each mass 

spectrum, the number of different m/z values can reach millions, depending on the type 

of MS. Processing such large amounts of data is not easy. One approach might be to 

treat mass spectrometry as a black box and consider only the output, treating each m/z 

as a separate feature. The downside of this approach is that the real features, are the 

molecules present in the analyzed mixture, and although there are types of mass 

spectrometry with very high resolution, a single molecule is usually described by 

many successive values in the mass spectrum. Also, the large number of features is 

a problem because most machine learning algorithms cannot train models on data sets 

with millions of features in a reasonable amount of time. Very extensive feature 

selection is then required to provide a manageable set of features for classification. 

A better solution is to process the spectral data using field-specific knowledge to 

reduce the dimensionality. In this way, the information about the analyzed mixture is 

preserved, and at the same time we can remove the noise and address other problems 

within the data. Therefore, an understanding of the fundamentals of mass spectrometry 

and mass spectrometry imaging is necessary for effective analysis of MSI data. 

2.1. Mass spectrometry 

The first mass spectrometers were built in the late 19th century. Initially with very 

limited applications, but over the years they became complex and sophisticated 

instruments used in many different fields of science [19]. In simple terms, a mass 

spectrometer (mass analyzer) separates ions according to their mass-to-charge ratio, 

although mass spectrometry is usually referred to as the entire process that begins with 

the ionization of the sample and ends with the acquisition of the mass spectrum. There 

are many types of mass spectrometry, which differ in the methods of ionization, ion 

separation and detection. 

2. Basics of Mass Spectrometry Imaging 
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The first step in mass spectrometry is ionization of the sample. In this step, the 

molecules of the analyzed substance are electrically charged. This can be done, for 

example, by attaching an additional proton to the molecule or by removing an electron 

from the molecule. In the next step, the ions are directed into the mass spectrometer, 

where they are separated according to their m/z value. This is done based on the 

physical properties of the ions in the electric or magnetic field. Finally, during the 

detection step, the charge induced by the ions or generated by their current is 

measured. The result is a function of the relative abundance and mass-to-charge ratio 

of the ions, called the mass spectrum. 

As mentioned earlier, mass spectrometry is used in many different fields, but it's 

only relatively recently that it has been used for the analysis of biological samples. 

Thanks to advances in the performance of MS and especially to the invention of soft 

ionization methods, MS has become an irreplaceable technique in the analysis of 

biologically related molecules [1, 20]. 

2.2. Mass spectrometry imaging 

The goal of proteomics is not only to map all proteins in an organism, but also to 

measure and link protein expression to specific processes. Another interest of 

proteomics research is to study the movement of proteins, the rates of their production 

and degradation, the interaction between them and others [21]. To be able to study 

such complex issues, simple inspection of protein composition is not enough. What 

can be helpful is information about the physical localization of proteins and their 

concentrations in different regions of a cell or tissue. This information can be obtained 

by mass spectrometry imaging. 

The first step in the field of MSI was taken by Richard Caprioli in 1997, as 

described in his paper [5]. Since then, the number of publications on this topic has 

been increasing every year with reports of new applications and improvements in both 

apparatus and data analysis techniques. Application of this technique to biological 

samples provides information about the spatial distribution of peptides and proteins, 

which in turn can provide valuable insights about the organism state. For example, the 

presence or absence of certain proteins can be correlated with the pathological 

condition of a tissue, such as cancer. The combination of information about the protein 

composition in the tissue and their spatial distribution helps us to better understand the 

processes taking place in organisms.  
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Imaging involves dividing the area of the sample into a grid of pixels. Mass 

spectrometry is then performed for each pixel, adding a new dimension to the MS data. 

In this way, a heat map (see Figure 2.1) can be created for each ion, showing how a 

particular molecule is physically distributed on the tissue. 

The main feature of MSI is the spatial resolution of the image, which depends on 

the size of the pixel on the grid. The higher the spatial resolution, the smaller the pixels 

and the better the quality of the image. The bottleneck for the spatial resolution of the 

MSI is the ionization of the sample. The minimum size of the pixel is the smallest area 

that an ionization method can ionize at one time. Ionization methods for MSI are 

constantly being improved, and a great emphasis is put on improving spatial 

resolution. 

 

 

Figure 2.1: An example of a mass spectrometry image. The image shows the spatial distribution                 

of a specific mass-to-charge ratio. Each pixel on a sample is taken form a different mass 

spectrum. 

2.3. Ionization 

Ionization is arguably the most important part of mass spectrometry, as it has great 

impact on the data and the overall characteristics of a mass spectrometry technique. As 

mentioned earlier, the sole purpose of ionization is to give an electrical charge to the 

molecules on the sample, creating ions. The challenge is to ionize as many molecules 

as possible, preferably all with the same charge, and keep them intact during the 
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process. Ideally, every single molecule on the sample would receive an identical 

electrical charge, then all ions would be directed to the mass analyzer. However, real 

ionization methods are not ideal. Each ionization method approaches the task 

differently and has different characteristics and limitations, therefore, choosing a mass 

spectrometry type is a per-case decision. 

Ionization is especially difficult for biological samples because molecules like 

proteins and peptides are very fragile. Therefore, one of the most important features of 

an ionization method for biological samples is the amount of energy used. The amount 

of energy introduced to the sample categorizes ionization methods into two groups, 

hard ionization and soft ionization. The difference lies in the excess energy generated 

during the process. In hard ionization methods, there is greater excess of internal 

energy of the ions, which leads to the fragmentation of the molecules. In soft 

ionization methods, smaller amounts of energy are introduced. For biological samples, 

this means that the chemical bonds in the molecules can remain intact. 

Some methods, by definition, work only with samples in a particular physical state, 

and the first step of the ionization is the conversion to the into liquid or gaseous phase. 

Apart from the inability to work with solid samples, the problem with such methods is 

the introduction of an additional medium as a source of electrons in which the sample 

is dissolved. The used solvent or medium can negatively interact with the molecules of 

the sample and is the source of noise in the mass spectrum. For MSI, of course, only 

methods that can ionize solid samples are applicable. 

Another important feature of an ionization method is the requirement for a specific 

environment in which the ionization takes place. Many methods require a vacuum or 

high vacuum to operate, and for many applications such conditions are unacceptable. 

Ionization also does not always give molecules the same charge. Multiply charged 

molecules have the same mass as their singly charged equivalents, but their m/z values 

are different. With such ionization methods, a single molecule is present more then 

one location in the mass spectrum. 

In this work, we are primarily interested in ionization methods that can be used for 

MSI. In addition, we are interested in studying protein and peptide mixtures, which 

means that we are interested in soft ionization methods. 

Currently, the most commonly used soft ionization techniques for MSI of 

biological samples are desorption methods like DESI, MALDI and SIMS. 
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2.2.1. Desorption electrospray ionization - DESI 

Electrospray ionization (ESI) is a soft ionization technique for the analysis of liquid 

samples. Ions are created by passing a solution of sample and solvent through a small 

capillary. When a voltage is applied to the liquid, the electrostatic field and surface 

tension of the liquid affect the shape of the liquid at the end of the nozzle. At a certain 

voltage, the shape becomes a pointed cone (called a Taylor cone), and from the tip of 

the cone, an aerosol of charged droplets is ejected [22, 23] (see Figure 2.2). These 

droplets consist of both the analyte and the solvent, and after the droplets leave the 

nozzle, the solvent evaporates, the ions are released, and are directed into the mass 

analyzer. 

This simple design practically has no limit to the size of ionized molecules, which 

makes this ionization method good for studying proteins and even protein-protein 

complexes. However, the sample is constantly consumed, and ions cannot be analyzed 

continuously by the mass analyzer. Therefore, some of the information is lost and the 

higher-concentration analytes can suppress the signal from lower-concentration 

analytes. Finally, since the method requires a liquid form of the sample, it cannot be 

used for mass spectrometry imaging.  

 

 

Figure 2.2: Electrospray ionization. The stream of sample and solvent mixture is ionized by an 

electrostatic field and directed into the mass analyzer. 

 

For mass spectrometry imaging, electrospray ionization was combined with the 

desorption ionization method in desorption electrospray ionization (DESI). This 

method was developed in 2004 by R.G. Cooks et al. [24]. In ESI the solution of the 

sample and solvent is sprayed through the capillary. In contrast, in DESI, only solvent 

droplets are sprayed. The droplets are the ion source and are sprayed on the sample, 

which is placed on an insulating surface. The impact of the charged particles on the 
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surface of the sample produces gaseous ions from the sample molecules. The ions are 

then directed into the mass analyzer (see Figure 2.3). 

Ionization occurs under atmospheric pressure. This is an important advantage of 

DESI over other ionization techniques used for MSI. Also advantageous is the lack of 

a sample preparation step, as this eliminates many potential errors and noise in the 

data. DESI is a high-throughput method, and the results are obtained very quickly, 

which is especially important for proteomic research. The mass resolution offered by 

this method is quite good. DESI offers a spatial resolution of 50-200 μm for most of 

the current studies, with maximal spatial resolution reaching 10-20 μm. [25, 26]. The 

downside of DESI is that it produces multiply charged ions. 

Overall, DESI is an appealing method for MSI analysis, and it is frequently used 

for proteomics-related studies. The sensitivity and spatial resolution of DESI can be 

increased, and improvements are constantly made with such methods as, for example, 

nano-DESI [27] or AFADESI [28]. 

 

 

Figure 2.3: Desorption electrospray ionization (DESI). Charged droplets directed at the sample cause 

desorption and ionization of the sample molecules. 

2.2.2. Matrix-assisted laser desorption ionization - MALDI 

Matrix-assisted laser desorption ionization (MALDI) is the most widely used 

ionization technique for imaging of biological samples. As the name implies, ions are 

generated with the help of a laser that serves as the energy source for desorption. The 

laser pulse is directed at the sample mixed with the matrix material. The energy 

emitted by the laser pulse causes the desorption (ejection) of the sample and matrix in 
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the direction of the mass analyzer. The matrix material vaporizes after desorption and 

transfers its charge to the sample molecules, creating ions. Figure 2.4 shows the 

visualization of this process. 

The use of the matrix material has two functions. First, the matrix absorbs the 

energy of the laser and protects the molecules from excess energy, making MALDI 

a very soft  ionization technique. Second, the matrix is the source of protons for ion 

formation during matrix evaporation. 

The presence of the matrix also has disadvantages, as it adds the sample 

preparation step to the process. The matrix material is also a source of noise in the 

mass spectrum. DESI doesn't have such disadvantages. Another disadvantage of 

MALDI over DESI is the need for a vacuum environment. 

The biggest advantage of MALDI is that the laser can be directed very precisely on 

the sample. Therefore MALDI offers a spatial resolution of about ten micrometers, and 

in some experiments, it reaches about 1.4 μm [26]. Thanks to the use of the laser, this 

method also has high sensitivity. The laser can be applied with short burst so that very 

little of the sample is wasted, unlike ESI where the sample is consumed continuously. 

This, in turn, means that even low-intensity molecules can be detected. Another key 

feature of MALDI is its high throughput. The ability to generate a large number of 

mass spectra in small amount of time is critical for obtaining data sets large enough for 

effective knowledge discovery. The high spatial resolution combined with high 

throughput, wide m/z range and reliable results make MALDI the leading ionization 

method for MSI of biological samples. 
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Figure 2.4: Matrix-assisted laser desorption ionization (MALDI). Laser beam is the energy source for 

desorption of the matrix-sample mixture. 

2.2.3. Secondary ion mass spectrometry - SIMS 

Secondary ion ionization is another desorption method used for imaging of 

biological samples. The working principle is very similar to that of the MALDI, but 

the energy for desorption is provided by a primary ion beam instead of a laser. 

Ionization is achieved by directing a primary ion beam on the sample. Collision of the 

ion beam with the molecules of the sample causes sputtering of secondary ions. The 

beam of secondary ions is then directed at the mass analyzer.  

The sample doesn’t require prior preparation of any kind. SIMS method doesn’t 

use matrix material because the primary ions are the source of electric charge. This 

also means that the molecules of the sample are not protected from the excess energy 

by the matrix and the method is not as soft as MALDI. On the other hand, the ion 

beam can be focused much more precisely than the laser beam, with a precision up to 

50 nm (0.05 μm). This leads to the very high spatial resolution of this method. 

The downside is that only a fraction of disrobed molecules are ionized, and the 

molecules are exposed to much higher energies than in laser or electrospray methods. 

Crucially, the ionization occurs under an ultrahigh vacuum to avoid collisions between 

primary and secondary ions. This limits the application of this method to samples that 

can survive these conditions. SIMS offers very high spatial resolution, and although it 

can be used with some biological samples, MALDI is still considered a go-to method 

for proteomic-related studies. However, there are improvements being made to 

mitigate the problems with SISM and utilize superior spatial resolution. The problem 
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with excess energy has been addressed by the development of primary ion guns used 

for MSI, that reduces the fragmentation in molecules [29]. More recent developments 

are related to the use of gas cluster ion beams, which have increased the applicability 

of SIMS for analysis of biological samples [30]. 

2.2.4. Other ionization methods 

DESI, SIMS and MALDI remain the most commonly used ionization methods for 

MSI of biological samples. The majority of publications on the topic of MSI data 

analysis analyze the data obtained by these methods. There are, however, other 

ionization techniques and variations of mentioned methods that could be considered 

better in some aspects or have the potential to be better in the future like LAESI [31], 

SMALDI [32],  IR-MALDI [33], SALDI [34], EASI [35] to mention just some of 

them. 

2.4. Ion separation and detection 

Proper ionization is an important part of mass spectrometry, but the ion separation 

is also complex and important step. Similar to ionization, separation by mass-to-charge 

ratio is a task that can be accomplished in different ways. In general, the differences in 

the behaviour of ions of different masses in an electric or magnetic field are used to 

separate the ions. 

The most important characteristics of a mass spectrometer are mass resolution, 

sensitivity, range, accuracy, and throughput. Mass resolution describes the ability of 

mass analyzer to separate ions with very similar m/z values. Sensitivity describes how 

well the mass analyzer detects ions with a given mass-to-charge ratio. For example, 

some mass analyzers have high sensitivity for certain ions and lower sensitivity for the 

remaining ions. Others have high sensitivity for low m/z and low sensitivity for high 

m/z. The range of the mass analyzer is the minimum and maximum m/z values that it is 

capable of separating. Mass accuracy describes how accurately m/z value is measured 

and finally the throughput is the speed of the analysis just like for ionization. 

There are various designs for mass analyzers. Sector mass spectrometers, for 

example, use the electric or magnetic field to bend the trajectories of the ions. The 

detector distinguishes the m/z value of the ions based on how much the ion's path or 

velocity has changed. A different design is the quadrupole filter mass analyzer. In this 
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mass spectrometer, ions are passed through two pairs of rods with a specific voltage 

applied to them. Based on the voltage, only the ions within a specific m/z range reach 

the detector, and others crash into rods and are therefore filtered out. Quadrupole ion 

traps have similar design, but instead of passing through the quadrupole, the ions are 

trapped inside, then, changes in the voltage applied to the rods release ions of specific 

m/z to the detector. Another design is the orbitrap, a method that offers high accuracy 

and sensitivity and a wide range of m/z values. Orbitrap traps the ions in a static field 

and then continuously measures the m/z values of trapped ions.  

In this work we are processing the data acquired by MALDI time-of-flight (TOF) 

mass spectrometry. Therefore we are primarily interested in TOF mass analyzer. 

Time-of-flight mass spectrometry was first proposed by Stephens [36] in 1946. The 

proposed technique was based on a simple physics principle that ions with different 

mass-to-charge ratios, but equal energy or momentum, separate in a constant electric 

field according to their m/z values [37]. Different way of putting it is that ions with the 

same charge have the same kinetic energy and therefore their velocity in an electric 

field depends only on their mass. Knowing the strength of the accelerating field, the 

length of the path, and the time of flight of ions, their mass can be calculated. The first 

experimental instrument using this principle was created by Cameron and Eggers [38], 

and the first commercial design was created in 1955 by Wiley and McLaren [39] (see 

Figure 2.5). 

 

 

Figure 2.5: Schematic diagram of the early design of the time-of-flight mass spectrometer. 

 

First, a pulsed voltage is applied to the source backing plate in order to form ions. 

The duration of the pulse is sufficient to remove all ions from the ionization region. 

The acceleration region has a constant electric field that gives ions their energy. The 
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ions travel through a field-free drift tube with velocities dependent on their m/z ratios 

and then reach the detector. 

At first the performance of TOF mass analyzers wasn’t particularly good because 

of the uncertainty with the initial position of ions entering the mass analyzer. A great 

improvement in the resolution of TOF mass analyzers was achieved witch the 

Reflectron (see Figure 2.6). In Reflectron, the path of ions is a curve instead of a 

straight line. The ions from the source are directed to the electric field that decelerates 

and then reflects ions to the detector. Ions with the same m/z ratios but different kinetic 

energies due to initial position, have different velocities when entering the decelerating 

electric field. The ions with higher kinetic energies travel further and, therefore, for a 

longer time before being reflected. This difference in time of flight compensates for 

initial differences in kinetic energies of ions with the same m/z ratios and results in 

better performance. 

 

 

Figure 2.6: Schematic diagram of the Reflectron type of TOF mass analyzer. 

 

Since then, many other designs and improvements have been made to increase the 

resolution and compatibility of TOF analyzers with various ionization methods, but the 

working principle remains the same. One of the most important reasons why TOF 

mass spectrometry is used for imaging is the speed of the analysis. Time-of-flight mass 

spectrometry is very fast because it can scan the entire mass spectrum at once. 

Thousands measurements are made during imaging, so the speed is of the essence. 

There is also no limit to the mass of ions it can separate. TOF mass spectrometers are 

also used with SIMS and DESI ionization methods. 
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MALDI has a good balance of properties with good spatial resolution, soft 

ionization and minimal sample preparation. The time-of-flight mass analyzer, with its 

high resolution, sensitivity, and ability to process the entire mass range at once, is 

successfully being used together with MALDI in MALDI-TOF mass spectrometry 

[40]. 

There are also other mass analyzers that are paired with MALDI, such as 

quadrupole mass analyzers, ion trap analyzers, or Fourier transform ion cyclotron 

resonance [41]. However, the majority of imaging data for clinical research is provided 

by MALDI-TOF [42]. 

There are also experiments being made with three-dimensional mass spectrometry 

for biological samples [43]. The interest in 3D mass spectrometry increases with 

the number of publications on the topic [17, 44], but the amount of data that needs to 

be processed is orders of magnitude grater then for two-dimensional imaging. 

Therefore, most imaging data for clinical research is still two-dimensional and 

acquired using MALDI-TOF mass spectrometry.  

For this reason, the focus of this work is on processing MALDI-TOF MSI data, 

although the entire workflow or parts of it can be applied to all MSI data. 

3.1. Sample preparation and data acquisition 

Four patients with head and neck cancer underwent surgery that provided samples 

evaluated by a specialist pathologist (see Figure 3.1). Samples were then frozen and 

then 10 µm tissue sections were cut and dried under vacuum. Samples were then 

washed twice in 70% ethanol and once in 100% ethanol, dried, coated with trypsin 

solution and  incubated for 18 hours at 37 °C in a humid chamber to perform tryptic 

digestion of proteins. 

3. Data acquisition and preprocessing  



24 
 

Tissue sections were imaged using a MALDI-TOF/TOF ultrafleXtreme mass 

spectrometer (Bruker Daltonik, Bremen) equipped with a smartbeam II™ laser 

operating at 1 kHz repetition rate. Ions were accelerated at 25 kV with PIE time of 

100 ns. Spectra were acquired in positive reflectron mode in the 800–4000 mass range. 

A detailed description of the data acquisition steps is given in a publication by 

Bednarczyk, Gawin et al. [15].  

 

 

Figure 3.1: Tissue sections from patients with squamous cell carcinoma of the head and neck in 

which the cancerous and normal epithelial areas were marked by a specialist pathologist. 

3.2. Preprocessing 

MALDI-TOF MSI can produce gigabytes of data. The four samples produced over 

150 thousand mass spectra, each with over 100 thousand mass channels (distinct m/z 

values). The data produced by MALDI-TOF needs a number of transformations before 

machine learning algorithms can be applied. The reason for this is the nature of 

MALDI-TOF mass spectrometry. A number of preprocessing steps have been 

recognized as necessary to control factors that can obscure true differences between 
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disease classes. Normalization, baseline correction, spectrum alignment and peak 

detection are among the most common adjustments employed [45]. 

There are already some tools for MALDI-TOF data processing. Universal tools like 

Mass-Up [46], MALDIquant [47] or MassSpecWavelet [48] and tools specialized for 

a specific part of the preprocessing, e.g. SpecAlign [49] for spectrum alignment. There 

are also general purpose tools for data manipulation and data processing of other types 

of mass spectrometry, that can also be helpful when working with MALDI-TOF data 

[50, 51].  

Baseline correction is the process of removing the baseline shift caused by the 

matrix ions reaching the detector at random times [52]. This shift appears in the mass 

spectrum as a curvature of the signal, especially al low m/z values. The baseline shift 

can be thought of as low-frequency noise in the mass spectrum. Methods used for 

baseline correction include wavelet-based techniques [53], splines, stochastic 

Bernstein approximation [52]. In this work we used an approach described in the work 

of Bednarczyk et al. [54]. It is a modification of the standard cubic spline approach 

with adaptively adjusting frame width. The Pearson correlation coefficient and 

appropriate statistical tests were used to examine the trend within the frame. When the 

frame width is set, 10% signal quantile inside the frame is calculated and cubic spline 

algorithm is used to obtain the corrected baseline (see Figure 3.2).  

 

Figure 3.2: Mass spectrum before (left) and after (right) baseline correction. 

 

The next step was to normalize the mass spectra and remove the outliers. 

Normalization is the scaling of each spectrum for better comparison of intensities 

between spectra. This is necessary because the mass spectrum is not strictly 

quantitative, intensities only describe the relative abundance of ions in the context of 
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a single mass spectrum. In order to compare or aggregate multiple mass spectra, 

normalization is required. There are a several common methods for mass spectrum 

normalization. For this work, we used the most common method, called Total Ion 

Count (TIC) normalization. TIC is the sum of all intensities in the mass spectrum. The 

normalization is done by dividing each intensity in the mass spectrum by the TIC. In 

addition, the outlying spectra with too high and too low total ion count were removed 

using the Bruffaerts’s criterion for extremely skewed distributions [55]. Finally all 

mass spectra were aligned using the Fast Fourier Transform [56]. 

After the initial processing of the raw mass spectra, the most important part of the 

MS data analysis can begin, the peak detection. Peak detection aims to extract the real 

information about the composition of the sample from the noisy mass spectrum. In the 

next chapters, we will describe and compare the state-of-the art peak detection 

methods in detail. We will also present a customized peak detection method based on 

Gaussian mixture spectrum modeling. 
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Preprocessing of data from MS is crucial for successful knowledge discovery. The 

goal of this process is to identify all peaks in the signal that correspond to a real 

component in the analyte and convert thousands of data points into a set of features 

small enough for further analysis. After peak detection, the data can be further 

analyzed, e.g., for the purpose of biomarker discovery or classification. The mass 

spectra processing steps mentioned in the previous chapter often precede peak 

detection, but many peak detection methods have built in mechanisms for baseline 

correction and other steps such as smoothing and denoising. A good example is 

a wavelet transform-based approach described by Du Pan et al. [48] where all these 

steps are done at once. In general, we divide peak detection methods into three groups: 

peak picking, peak modeling, and spectrum modeling. 

4.1.  Data aggregation 

Peak detection can be performed for a single mass spectrum or for aggregated mass 

spectra. It might be advantageous to look at each mass spectrum individually, but only 

simple peak picking methods can do this in a reasonable amount of time considering 

the number of mass spectra in the data set. With more complex methods that take more 

time, peak detection for each spectrum is not feasible. Therefore, here we will compare 

peak detection methods using aggregated representation of all mass spectra in our data 

set. 

Aggregation of mass spectra ensures that all data are used and that computation 

time does not depend on the number of mass spectra. Aggregation of mass spectra is 

done by applying aggregate for each m/z value across entire population of mass 

spectra. This requires an additional step of m/z unification across mass spectra by 

binning.  

4. Methods of peak detection 
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The aggregate, of course, affects the final shape of the signal and thus the outcome 

of the dimensionality reduction process. Usually the mean spectrum is used, e.g., in 

[57] the undecimated discrete wavelet transform is used for feature extraction on 

a mean spectrum. Using the mean as an aggregate results in a smooth signal. However, 

using such an aggregate can hide meaningful information. Potentially, peaks that are 

very important to the problem under study may go undetected during peak detection 

because their averaged intensity in the aggregated signal is below the signal-to-noise 

ratio. This is especially true for unbalanced data sets, where only a small number of 

mass spectra contain a particular peak. In such a case, it is even more difficult for that 

peak to rise above the noise level in the averaged mass spectrum. Since our data is 

unbalance this might not be the best approach. Figure 4.1 shows how the averaged 

mass spectrum compares to a single mass spectrum randomly selected from the data 

set. 

 

Figure 4.1: Part of the averaged mass spectra (left) and the corresponding part of a random mass 

spectrum (right).  

 

To solve this problem, another aggregate can be chosen. Using maximum as the 

aggregate is one option. In this case, class balance in not a problem because the 

number of mass spectra does not affect the aggregate. The problem with this approach 

is that the aggregate signal is rough due to imperfect normalization of mass spectra and 

further analysis is more difficult (see Figure 4.2). 
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Figure 4.2: Part of the maximum aggregation of mass spectra (left) and the corresponding part of 

a random mass spectrum (right). 

 

 In this work, we used an intermediate solution. The aggregate mass spectrum is 

determined using the 95th percentile. Although the result is very similar to the mean 

spectrum, using this aggregate leads to different results. For this method, peak 

detection is able to find peaks that are obscured in the mean spectrum. Using this 

approach provides an optimal trade-off between signal smoothness and information 

loss due to underrepresented peaks being obscured by the noise (see Figure 4.3). 

 

Figure 4.3: Part of the mass spectra aggregated with 95th quantile (left) and the corresponding part of 

a random mass spectrum (right). 
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4.2. Peak picking 

Pick-picking is the most basic approach to peak detection, usually preceded by 

baseline correction and smoothing. Methods that fall into this category generally select 

peaks based on some sort of threshold. 

Many such methods are listed in [58]. For example, the threshold can be set for the 

left and right slopes of the candidate peak. Peak picking can also be done by simply 

searching for maxima within the local neighborhood. Regardless of the measure for 

which the threshold is set, its value is calculated based on the definition of the noise. 

Therefore, the common feature of peak picking methods is their inability to detect low-

intensity peaks obscured by the noise, and their sensitivity to the definition of noise 

and threshold. Figure 4.4 shows an example of the simplest peak picking method with 

a globally set threshold for peak intensity. On the left we see a raw mass spectrum and 

on the right the processed spectrum with marked peaks. 

 

Figure 4.4: Raw mass spectrum (left) and the spectrum after baseline correction and peak picking with 

signal-to-noise ratio-based global threshold (right). 

 

The most commonly used peak picking method identifies peaks by searching for 

local maxima with a threshold based on the local signal-to-noise ratio (SNR) [48]. The 

most important part of this method is, of course, the definition of noise. In statistics, 

noise can be defined as the median absolute deviation (MAD). In signal processing, it 

can be defined as the estimated background [59]. A threshold for SNR determines the 

sensitivity to low intensity peaks. In general, the SNR above 3 is considered minimally 

acceptable, and the SNR of 10 and above is considered good [60]. A good signal-to-

noise ratio means that the signal is distinguishable from noise. For peak identification, 
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this means that the detected peaks are most likely not correlated with noise. The lower 

the value of the threshold, the less conservative the identification of peaks, which in 

turn leads to the increased false positive rate (identification of false peaks). We defined 

the SNR as: 

𝑆𝑁𝑅 =
𝑓

𝑀𝐴𝐷
 , (1) 

where 𝑓 is the peak intensity, and 𝑀𝐴𝐷 is the mean absolute deviation. 

 

The MAD and the SNR for each point in the signal are calculated using a local 

window of a given width. Figure 4.5 shows the peaks detected in the aggregate 

spectrum. The method was applied for two sizes of the window for which the SNR is 

calculated and for different peak detection thresholds. The figure illustrates the 

significant impact of parameters values on the outcome of peak detection. As the 

threshold value decreases, more and more peaks are detected and the problem of false 

peaks increases, especially for high m/z values. 

 

 

Figure 4.5: Peaks found in the signal using different thresholds and local window widths. 

 

Peak picking is a simple, fast, has a small number of parameters and is easy to 

implement. On the other hand, the outcome depends heavily on the definition of the 

noise and values selected for parameters. Overall, peak picking is a good choice for 
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simple experiments and for the analysis of low complexity mixtures or when the 

detection of low intensity peaks is not a priority. For more complex mass spectrometry 

data, effective peak detection can take into account the shape of the peaks. This is 

because true peaks have a specific shape, unlike peaks associated with noise. Methods 

that take this into account are categorized as peak modeling. 

4.3.  Peak modeling 

Peak modeling is a more complex method for peak detection. This approach 

assumes that true peaks have a specific shape. One method is to use the shape ratio of 

the peak, understood as the area under the curve around the peak candidate divided by 

the maximum of the entire peak population. The shape ratio is used as the threshold for 

peak picking. Another example is the continuous wavelet-based approach described in 

[48]. This method uses continuous wavelet transform (CWT), to transform the signal 

into wavelet space, and then searches this space for ridge lines that mark the peaks in 

the signal. CWT is a good method for pattern matching, it is mathematically 

represented by equation 2 [61]. 

𝐶(𝑎, 𝑏) = ∫ 𝑠(𝑡)𝜓𝑎,𝑏(𝑡)𝑑𝑡, (2) 

𝜓𝑎,𝑏(𝑡) =
1

√𝑎
(𝑡)𝜓 (

𝑡 − 𝑏

𝑎
) , 𝑎 ∈ ℝ+\{0}, 𝑏 ∈ ℝ, (3) 

where 𝑠(𝑡) is the signal, a is the scale, 𝑏 is translation, 𝜓(𝑡) is the mother wavelet, 

𝜓𝑎,𝑏(𝑡) is the scaled and translated wavelet and 𝐶 is the two-dimensional matrix of 

coefficients. 

 

The values in the coefficient matrix indicate how well the signal matches the shape 

of the wavelet. The first dimension of the matrix corresponds to the translation, and its 

length is equal to the length of the signal. The second dimension of the matrix 

corresponds to the scale. Each row in the coefficient matrix describes a single scale of 

the wavelet. High values imply a better correlation between the signal and the wavelet 

shape at the given location for the given scale of the wavelet.  

The mother wavelet used in the publication by Du et al. [48] is the Mexican Hat 

Wavelet (see Figure 4.6). 
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Figure 4.6: Mexican Hat wavelet. 

 

 

Figure 4.7: Heat map (bottom) of the coefficient matrix calculated for aggregated spectrum (top). 
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The advantage of using CWT instead of, a simple filter is that the shape of the 

wavelet changes with the scale. This is important because the shape of true peaks 

changes with the increase of m/z. At higher m/z values, peaks tend to be wider and 

smaller than at lower m/z values. Figure 4.7 shows how part of the spectrum looks in 

the wavelet space. For scales between 10 and 20 we see clear edges between peaks and 

valleys appearing in the signal. With higher scale values we can distinguish the groups 

of peaks that rise above the background. 

The next step in this peak detection method is the identification of the ridge lines. It 

is done numerically by local maxima search. The search for maxima is done at each 

scale, with a moving window of width proportional to the o wavelet support region at 

the given scale. The local maxima are then connected to produce ridge lines. Details of 

the algorithm used to detect the ridge lines are in the paper by Du et al. [48]. Simply 

put, the algorithm starts the search from the largest scale (at the top), where each local 

maximum starts as a ridge line. The search continues by connecting ridge lines with 

local maxima from the next scale if they are within a range. If  there is no continuation 

for a ridge line for a specified number of scales, it is removed. If a local maximum at 

a scale is not a continuation of any ridge line from previous scales, it is considered 

a new ridge line. After the ridge line identification is done, the peaks identified based 

on the length of ridge lines. Signal-to-noise ratio is calculated where signal is defined 

as the highest coefficient on the ridgeline within a range, and the noise is a 95th 

quantile of the absolute CWT coefficient values at the lowest scale. Figure 4.8 shows 

the ridge lines for the coefficient matrix and the peaks ultimately identified with this 

method with the SNR threshold set to 3. 
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Figure 4.8: Coefficient matrix heat map (top), ridge lines (middle) and detected peaks (bottom) for 

a part of the signal. 
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During the peak modeling method described in the previous chapter, the expected 

peak shape was used to transform mass spectra into wavelet space and then used for 

peak identification. Wavelets are well suited for modeling local features such as 

spectral peaks, but the coefficients and basis functions used to represent expected 

intensity have no inherent biological interpretation [62]. Gaussian mixture spectrum 

modeling [18, 63] aims to solve this problem. In this chapter, we describe the complete 

spectrum modeling process based on the GMM spectrum modeling method described 

in [62]. In this work, we propose different strategies to acquire the spectrum model 

than presented in the publication. 

The idea of spectrum modeling is that each molecule in the mixture is represented 

by an element of the spectrum model. Of course, only in an ideal case each element of 

the model is correlated with a molecule in the mixture under study. In reality, most 

elements model only noise. Regardless of the source of the noise, whether it is from 

sample impurities, mass spectrometry imperfections, or some other source, these 

elements always exist. An important future of spectrum modeling is that each element 

of the spectrum model is described by a set of parameters that can be used to filter out 

noise and outliers. In the case of GMM-based spectrum modeling, the elements of the 

model are Gaussian distributions described by three parameters σ, λ and µ. 

The fact that elements of the model can be easily interpreted as specific molecules, 

if the model element indeed is correlated with a molecule, is one of the greatest 

advantages of this approach. Another is the ability to filter the noise and select features 

not only based on the intensity of the peaks, as most peak detection methods do. This 

is why this method of peak detection is used in this work. Thanks to all this, the results 

of further analysis are easy to interpret and therefore can be useful in real applications. 

The main concepts involved in this chapter are wavelet-based peak detection, Gaussian 

mixture model decomposition, expectation maximization algorithm, structural analysis 

of images, and spatial distribution comparison. 

5. Gaussian mixture model-based 

spectrum modeling 
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5.1.  Partitioning of the mass spectrum 

The general idea of GMM-based spectrum modeling is described in [62]. In this 

publication, the Gaussian Mixture Model was fitted, using the Expectation 

Maximization algorithm, to the entire mass spectrum at once, creating a model in 

which each peak (model component) is described by a normal distribution. 

This method of spectrum modeling can be used for mass spectra of simple mixtures 

containing a relatively small number of peaks. For more complicated mixtures, where 

the number of different molecules in the analyzed mixture reaches hundreds, it is 

better to first decompose the mass spectrum into smaller parts, as described for 

example in [18]. The final model of the spectrum is then the combination of the 

Gaussian mixtures fitted separately for each part. In [18], a method for splitting the 

mass spectrum into fragments is described. However, no clear goals or rules are 

defined for what the result of such a process should be. In this work, the process of 

splitting the signal into parts is studied in more detail. Rules for division are 

established, and various methods for finding such parts are tested. 

5.1.1. Rules for partitioning of the mass spectrum 

Due to the complexity of the samples being analyzed in this work and the 

resolution of MALDI-TOF mass spectrometry, the mass spectra potentially contain 

hundreds of true peaks that may overlap. For this reason, modeling of the spectrum 

using the Gaussian mixture model must be done independently for small portions of 

the signal and then combined into a general model. This raises the important issue of 

splitting the signal into these parts. 

In the [18] a method for such a division is described. In this method the splitting of 

the mass spectrum is done with the help of 'splitters'. Splitters are the fragments of the 

mass spectrum defined as regions around 'clear' peaks, where 'clear' peaks are the 

peaks found by a peak detection method. In [18] 'mspeaks' function from the Matlab 

bioinformatics toolbox was used to find 'clear' peaks. Subsequently, the signal was 

split into parts using the splitters. This method successfully split the signal into smaller 

parts, however, it was not investigated whether the results of this method were suitable 

for the actual purpose of modeling the entire spectrum. To answer this question, the 

goal of the splitting method must be defined, and the criteria that determine a "good" 

part must be established. 
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The first property of a part of the mass spectrum that we want to study is its size. 

The reason for splitting the mass spectrum is that its size is too large for the EM 

algorithm to accomplish an optimal decomposition into the Gaussian mixture model. 

Ideally, a part would contain a single peak modeled by a single normal distribution. In 

this case there would be no randomness, due to the indeterministic nature of the 

expectation maximization algorithm, since only one normal distribution, that optimizes 

the likelihood, exists for that part. The more elements of the GMM there are, the 

stronger the effect of the random nature of the EM algorithm. Therefore, the smaller 

the part, the better. 

However, as mentioned earlier, peaks describing different molecules may overlap, 

and such elements should not be split into different parts. In view of this, the parts 

should be as small as possible but a peak or series of overlapping peaks should be 

contained in a single part.  

Figure 5.1 shows the averaged spectrum with a small section for which the optimal 

points of division were selected manually and the Gaussian mixture model of the part 

with overlapping peaks. What we can see is that, first, each peak that is most likely 

related to high-frequency noise is put in a single part. In the middle, a section that may 

contain a true peak or multiple peaks that overlap each other is put in the same part. In 

the last section (D) the result of the GMM decomposition of that part is shown. The 

gray lines show the individual components of the GMM model. It is clear that in 

addition to the elements that are correlated with noise, there are also elements that 

potentially model true peaks in the spectrum. The red line shows the sum of all GMM 

components. 
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Figure 5.1: Example of the division of the mass spectrum and decomposition of the part with GMM. 

A - Entire mass spectrum. B - zoom into a mass spectrum. C – Example of good points of 

division. D – GMM of the single part of the spectrum. 

 



40 
 

5.1.2. CWT-based peak identification 

Having defined the characteristics of a "good" part, the next step is to choose an 

algorithm capable of finding division points that split the mass spectrum into parts that 

meet these expectations. A logical solution to find such points is to look for peaks in 

the mass spectrum and use these peaks to divide the signal. This is the main idea of the 

"splitters" used in [18]. We opted to try a similar but simpler approach, where parts are 

created by finding peaks and then cutting the spectrum at the lowest point between 

adjacent peaks. In this case, we used the continuous wavelet transform-based peak 

detection method described in detail in the previous chapter. As it was described, in 

this method, peaks are detected by transforming the signal into wavelet space and then 

identifying ridge lines that indicate the positions of the peaks. The MassSpecWavelet 

package from the Bioconductor project was used to calculate the location of the peaks. 

After finding peaks, division points are identified by searching for the minimum value 

between neighboring peaks. 

The results of this process are shown in Figure 5.2. The red stars mark the peaks 

discovered by CWT. In sections B and C, we zoom in on the smaller fragments of the 

mass spectrum for low and high m/z values. The green dots mark the locations where 

this method decided to cut the signal. It can be clearly seen that at high m/z values the 

gaps between the peaks increase. This is due to the fact that there are fewer true peaks 

in this part of the mass spectrum and the signal-to-noise ratio is lower at high m/z 

values. 

The partitioning of mass spectra with this method is not ideal. Even though at low 

and medium m/z values the method succeeds in splitting the signal into small parts, at 

high m/z values, where there are few true peaks, it does not meet the first requirement 

for the "good" part. The fact that very broad parts are produced in regions of mass 

spectra where there are few true peaks is not a major problem, since most of these 

spectrum model elements are filtered in later phases. A far greater problem with this 

method is its inability to satisfy the second requirement for a "good" part. As can be 

seen in Figure 5.2 the regions containing potentially overlapping peaks are split into 

multiple parts. This becomes even clearer in Figure 5.3. Figure 5.3 A shows 

a previously selected small fragment of our mass spectrum with manually marked, 

ideally placed division points that put a single group of peaks into a single part. Figure 

5.3 shows that the CWT-based method does not achieve the same results. 
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Figure 5.2: Identification of division points using CWT peak detection. A – peaks found for the entire 

mass spectrum, B – points of division identified in the section of the mass spectrum with 

low m/z values, and C - points of division identified in the section of the mass spectrum 

with high m/z values. 
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Figure 5.3: Comparison of the manual (A) and the CWT peak detection-based (B) division into parts 

of an exemplary part of the mass spectrum. 

5.1.3. Identification of points of division 

The approach for locating points of division by first finding peaks and then using 

them to locate points of division gave poor results. To find a better solution, a custom 

algorithm was developed that searches directly for division points without first 

searching for peaks in the spectrum. The algorithm attempts to find division points in 

a way that satisfies both requirements for "good" parts by performing a search for local 

minima with an additional constraint. 

The algorithm searches for local minima based on the monotonicity of the signal 

and then selects division points at locations where the local minimum satisfies the 

constraint. 

The constraint is set for the maximum value of the local minimum. To avoid 

splitting overlapping peak into separate parts, the value of the local minimum must not 

exceed a certain threshold. If the value of a local minimum exceeds the threshold, the 

local minimum is not considered as a split point. 

The threshold is calculated for a local neighborhood and is equal to the 15th 

percentile of all values in that neighborhood. As mentioned earlier, the resolution of 

the mass spectra changes with the increase of the m/z value. At the lower m/z values, 

the difference in atomic mass between neighboring channels is 0.018 DA and 

gradually increases to 0.041 DA at the end of the spectrum. For this reason, the width 

of the window for searching local minima changes and is expressed in a number of 

channels and not in DA. This means that the width of the window, measured in 
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Daltons, changes as the search progresses. The pseudocode for this algorithm is shown 

in Box 1. 

 

BOX1 - Algorithm for the search of points of division 

Output: POD – vector of indexes of points of division  

Input: MS – mass spectrum (vector of intensities), W – threshold 

window width, MinDist – minimum distance between points of division 

 

BEGIN 

 POD := []; 

 isBT := false   // is the current value below  

     // the threshold 

 idx := -1; 

 FOREACH MSi DO     // for each mass channel 

 isD := (MSi < MSi-1); // is the signal decreasing 

 t:=calculate-threshold(MS,W,i); 

     // calculate threshold based on  

     // the local neighborhood 

 IF (MSi<t AND !isBT) 

 idx := i;  // remember the last index for   

   // which the signal dropped    

   // below the threshold; 

 isBT := true; 

 END IF 

 IF (MSi>t AND isBT) // if the signal increased above  

     // the threshold, find a new point 

         // of division 

 isBT := false; 

 window := MS(idx:i); 

 PODIdx := min(window); 

 lastPOD := POD(end); // remember the last   

     // entry in POD vector 

 IF (lastPOD + MinDist > PODIdx)    

 IF (POD(end) > PODIdx) 

 POD(end) := PODIdx;  

     // if the minimum found within  

     // MinDist is lower than the last  

     // entry in POD, then the entry is 

     // replaced 
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 END IF 

ELSE 

 POD := [POD PODIdx];  

 END IF 

 END IF 

 END FOREACH 

END 

 

Procedure – calculate-threshold 

Output: t – threshold value 

Input: MS – mass spectrum (vector of intensities), W – window width, 

i – current index; 

 

BEGIN 

 IF (i <= W/2)     // first W/2 elements 

 window := MS(1:W);  

 ELSE  

 IF (i + W >= size(MS)) 

 window := MS(end-W:end);  // last W elements 

 ELSE 

 window := MS(i-W/2:i+W/2); 

 END IF 

 END IF 

 t := prctile(window, 15);  // threshold value is   

      // the 15th percentile   

      // of the window 

END 

 

The result of this algorithm is shown in Figure 5.4. The green dots in section 

A mark all the division points made for the spectrum. The first thing to notice is that 

there are no large gaps as in the previous method. This means that the first rule for 

"good" parts is satisfied. Sections B and C are the same zoomed in fragments shown 

for the previous method. The most evident difference between the algorithms is visible 

in the section C with high m/z values. Single peaks are placed in separate parts, while 

the groups of peaks are put into a single parts. 

In Figure 5.5 comparison between all three methods is made. Section A shows the 

manual points of division, section B the points found after CWT peak picking, and 

section C shows the points found by local minima search. We can see how the 

different methods split the same section of the mass spectrum. For this fragment of the 
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mass spectrum, the local minima based method succeeded in dividing the mass 

spectrum into optimal parts, while CTW-based method failed. 

 

Figure 5.4: Identification of division points using moving window local minimum search. A – points 

of division identified for the entire mass spectrum, B – points of division identified in the 

section of the mass spectrum with low m/z values, and C - points of division identified in 

the section of the mass spectrum with high m/z values. 

 

Figure 5.5: Comparison of the manual (A), CWT peak detection-based (B) and local minimum-based 

(C) division into parts of an exemplary part of the mass spectrum. 
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5.2. Gaussian mixture models 

After splitting the signal, the next and most important step is fitting a Gaussian 

mixture model to each part. Each element in the GMM is described by three 

parameters: Mean (µ), Standard Deviation (σ) and Scale (λ). Mean and standard 

deviation describe the normal distribution of an element, and scaling provides 

information about the element share of the whole mixture model. 

5.2.1. Estimation of the parameters with the EM algorithm 

To find estimates of GMM parameters we maximize log-likelihood. defined by 

formula (4). Finding parameters that maximize log-likelihood is impossible 

analytically, therefore expectation maximization (EM) algorithm is used.  

𝐿(𝛩|𝑥1, … , 𝑥𝑛) =  ∑ log (∑ 𝜆𝑘𝑛(𝑥𝑖 , µ𝑘, 𝜎𝑘)

𝑀

𝑘=1

)

𝑛

𝑖=1

, (4) 

where 𝛩 – model parameters (λ, µ, σ) , 𝑀 – number of GMM elements, 𝜆𝑘 – weight of 

kth element, 𝑛 – number of observations, 𝑥𝑖 – ith observation, and 𝛮(𝑥, µ, 𝜎) is the 

normal distribution defined by the formula (5) 

𝛮(𝑥, µ, 𝜎) =  
1

𝜎√2𝜋
𝑒

−(𝑥−µ)2

2𝜎2 . 
(5) 

 

The EM algorithm is a well-established method for estimating unknown 

parameters. This algorithm follows an iterative approach to reach a local optimum. 

Initially, the parameters of the model can be chosen either randomly or by data-driven 

approximation. During iterations, the values change and gradually improve until they 

reach a stop condition. 

EM algorithm finds parameters by alternating between expectation (E) and 

maximization (M) steps. The expectation step of EM algorithm calculates the 

probabilities that an observation belongs to each GMM element. The probability that 

an observation belongs to the kth element is given by the equation 6. 

𝑃𝑘,𝑥 =  
𝜆𝑘𝑛(𝑥, µ𝑘 , 𝜎𝑘)

∑ 𝜆𝑘𝑛(𝑥, µ𝑘, 𝜎𝑘)𝑀
𝑘=1

 (6) 



47 
 

 

This is followed by the maximization step, where the new values of the model 

parameters are calculated using the following equations. 

µ̂𝑘 =  
1

∑ 𝑃𝑘,𝑥𝑖

𝑛
𝑖=1

∗ ∑ 𝑃𝑘,𝑥𝑖

𝑛

𝑖=1

∗ 𝑥𝑖 , (7) 

�̂�𝑘
2 =  

1

∑ 𝑃𝑘,𝑥𝑖

𝑛
𝑖=1

∗ ∑ 𝑃𝑘,𝑥𝑖

𝑛

𝑖=1

∗ (𝑥𝑖 −  µ𝑘)2, (8) 

�̂�𝑘 =  
∑ 𝑃𝑘,𝑥𝑖

𝑛
𝑖=1

𝑛
, (9) 

where µ̂𝑘 – new mean of kth
 element, �̂�𝑘

2 − new variance of kth element, �̂�𝑘 – new scale 

of kth element. 

 

EM algorithm ensures that the likelihood calculated with parameters of the next 

iteration is not worse than the previous iteration. If the likelihood doesn’t improve in 

the next iteration, the algorithm reaches a local optimum, and the search stops. 

Another way used to terminate the EM loop is to set a threshold value for the 

improvement of the likelihood score. Figure 5.6 shows an example of how the 

algorithm works.  

 

Figure 5.6: Gaussian mixture model during iterations of EM algorithm. 

 



48 
 

In this work, we used a custom implementation of the EM algorithm that works 

quickly with our particular type of input data, where the intensity in the mass spectrum 

describes the number of elements in the total population for a given m/z value. This 

means that the size of the population is very large, but the number of different values 

is several orders of magnitude smaller. The execution time of our implementation 

depends only on the number of distinct values in the population and not on the total 

size of the population. The implementation of the EM algorithm was written as 

a MATLAB function. A simplified pseudocode for this implementation is shown in 

Box 2. 

 

BOX2 - EM Algorithm 

Output: params – GMM parameters  

Input: N – number of elements in GMM, values – 2D array of values 

and their numerical strength (intensity) 

 

BEGIN 

 params := randomly choose initial GMM parameters; 

 init_L := calculate log-likelihood for given values and  

 params; 

 ε = -Inf;     

 shift = 0; 

 WHILE (shift > ε) //EM algorithm loops until the shift  

    //between iterations is smaller than  

    //the value of ε. 

 IF (any(params.sigma < 103))  

 GO TO BEGIN   

//Rarely, the EM algorithm gets stuck in a loop where  

//σ of one of GMM elements goes to infinity, giving 

//useless results. In such a case, the algorithm 

//restarts. 

 END IF 

 params := calculate new GMM parameters; 

 L := calculate log-likelihood using new params; 

 shift := L – init_L; //Calculating the shift between  

     //iterations. 

 IF (ε == -Inf)  //Initializing ε during the  

      //first iteration. 

 ε := shift / 103;  
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 END IF 

 init_L := L; 

 END WHILE 

END 

5.2.2. Choosing the number of GMM components 

One of the inputs of the EM algorithm is the parameter N. This parameter defines 

the number of Gaussian elements that the algorithm tries to fit into the data. Finding 

the optimal value for the parameter N is crucial. To find out how many elements 

should be included in the GMM of a given part, a few things must be considered. In 

general, we try to choose a number of elements that results in a model that describes 

the data as well as possible while being as simple as possible to avoid overfitting. The 

approach is to add elements to the GMM and examine how the likelihood of models 

changes with more and more elements. 

Additional problem is that the EM algorithm is an indeterministic algorithm, i.e., 

the likelihood of models with the same number of elements changes each time the 

algorithm is run. To determine the extent to which the results change with each run 

and the effect this has on the likelihood, four random parts of the signal were selected 

for investigation. For each part, a GMM was fitted with up to ten elements. For each 

number of elements, the EM algorithm was repeated 1000 times. Figure 5.7 shows the 

boxplot of the log-likelihood values for this experiment. The plot shows that the 

variance of the log-likelihood is large for a small number of elements and then 

gradually decreases. The average log-likelihood increases with N, but the rate of 

improvement decreases. 

The second problem is that adding an element to a GMM usually leads to a better 

likelihood score because more complicated models can be better fitted to the data. This 

is a pervasive problem in data modeling called overfitting. The solution to this 

problem is to introduce a penalty for model complexity into the assessment of the 

goodness of fit of the model. A commonly used value that introduces a penalty for 

model complexity is the Bayesian Information Criterion (BIC) (equation 10).  

𝐵𝐼𝐶 = 𝑘 ∗ 𝑙𝑛(𝑛) − 2 𝑙𝑛(𝐿), (10) 

where 𝑘 is the number of parameters in the model, 𝐿 is the likelihood of the model and 

𝑛 is the number of observations. 
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The number of parameters in the model (k) depends on the number of elements in 

the model and the number of parameters of each element. As mentioned earlier, each 

element of the GMM is described by three parameters: mean (µ), standard deviation 

(σ), and scale (λ). Considering that the sum of all λ-values is 1, we calculate the k with 

equation 11. 

𝑘 = 3𝑁 − 1 (11) 

where N is the number of elements in the GMM. 

 

Figure 5.7: Graphical demonstration of the GMM complexity on the log-likelihood of the models for 

four random parts of the spectrum model. Each box plot represents the results for a single 

part fitted with Gaussian mixture models with up to ten elements. 

 

After considering these problems, we decided that the final number of GMM 

elements for a part is chosen as follows. The EM algorithm is used to fit the part with 

a GMM, then the number of elements in the model is increased and the BIC value for 

the new model is calculated. If the BIC value of the model with an increased number 

of elements is worse than that of the previous model, the search is completed and the N 

of the previous model is the result. Due to the stochastic nature of this process, it is 

repeated several times. From the distribution of the entire population of results the 
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final N parameter is chosen as the one appearing most often. Figure 5.8 illustrates this 

process. Section A shows the analyzed fragment of the mass spectrum, section B plots 

the average BIC for each number of model elements and section C shows the 

distribution of the results. Ultimately chosen value of N is marked with color red. 

 

Figure 5.8: Results of the N search. Part of the signal (A), Plot of the average BIC (B), Histogram of 

N values (C). 

5.2.3. Fitting Gaussian mixture models 

Finally, when the value of parameter N is selected, the part is fitted with a GMM. 

This process is also repeated a few times to get the best result. After this is done for 

each part, we obtain the final spectrum model. The model (see Figure 5.9) consists of 

9454 elements. The number of elements in the spectrum model changes very little 

when the entire algorithm is run again. The changes are, once more, the result of the 

indeterministic nature of the EM algorithm, but because of the steps taken during the 

modeling process, these changes are insignificant in the scale of the entire model. The 

changes in the number of elements of the spectrum model are around 1% of the size. 

The pseudocode of the entire spectrum modeling is presented in Box 3. 
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Figure 5.9: Final spectrum model. 
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BOX3 - GMM Modelling  

Output: model – Array of model parameters  

Input: POD – vector of indexes of points of division 

BEGIN 

 parts_array := divide_signal(POD); 

 FOREACH part in parts_array DO 

 part_likelihood := -inf; 

 part_parameters := []; 

 values := 2D array of part values and their numerical 

 strength (intensity) 

 k := find k value; 

 FOR (100 times) 

 gmm_parameters := EM_Algorithm(k,values); 

 likelihood := calculate_likelihood(gmm_parameters); 

 IF likelihood > part_likelihood 

 part_likelihood := likelihood; 

 part_parameters := gmm_parameters; 

 END IF 

 END FOR 

 model := add part-parameters to array; 

END 
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The spectrum model is a set of normal distributions (components), and each 

distribution is described by the parameters σ, µ, and λ. Using these parameters, we can 

calculate the values of the features. Ideally, each component would represent 

a particular molecule in the mixture under study. However, a large fraction of the 

components are present at this point only because of the high frequency noise in the 

signal. The number of components in the spectrum model is 9454. This can be treated 

as a set of features and be used to train a classifier, but for most machine learning 

methods this number is still too high to train a classifier in a reasonable amount of 

time. 

For this reason, we try to filter out the components correlated with the noise in the 

mass spectrum. At this point it is important to remember that filtering the noise also 

potentially removes features correlated with low intensity true peaks and some of these 

low intensity peaks may have a great impact on the predictor. For this reason, it may 

be beneficial to train classifiers on the unfiltered feature set if the time is not a great 

concern, especially because biomarkers correlated with low-intensity peaks may still 

be unknown to specialists. However, the time and computational power required for 

such methods might be too high for such an approach to be useful for a diagnostic test. 

In the next steps, we aim to further reduce the dimensionality of the data by filtering 

out some of the components. 

6.1.  Noise filtering 

Analysis of MALDI-TOF MS data is a multistep process. When performing 

multiple experiments small differences (shifts) appear between the mass spectra. These 

differences can be caused by the calibration of the instruments or the handling of the 

samples and instruments [45]. This problem occurs mainly when there is a larger time 

interval between experiments. This problem is handled at the beginning of the data 

6.  Feature engineering 
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processing with spectrum alignment. Another key problem with the data is the noise. 

The noise has many sources and each step of MS can add to the problem. Denoising 

can be done in many different ways. For example the noise is often filtered during 

other preprocessing steps such as baseline correction or peak detection. 

In this work, the first step to remove the noise is to remove the Gaussians with 

values of λ below the noise level. The parameter λ is directly related to the intensity of 

the peak. Filtering based on the peak intensity is the basis of most, commonly used 

methods. We examined how the values of this parameter are distributed in the model. 

Figure 6.1 shows the distribution of λ values in the entire spectrum model. The 

highlighted threshold is used to filter low intensity components. We assume that the 

left part of the distribution models the elements that model the noise, and the right part 

is correlated with true peaks in the spectrum. As we can see, removing the noise 

components also removes some of the true peaks. Nevertheless, removing the first 

element of the distribution removes only some of true peaks and most of the noise 

from the signal. The number of elements in the model was reduced from 9560 to 2884. 

Figure 6.2 to Figure 6.4 show parts of the spectrum model before and after noise 

filtering. 

 

 

 

Figure 6.1: Distribution of λ values. 
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Figure 6.2: Aggregated mass spectrum with spectrum model before (top) and after (bottom) noise 

filtering. The displayed part shows a fragment of the spectrum with high m/z values. 
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Figure 6.3: Aggregated mass spectrum with spectrum model before (top) and after (bottom) noise 

filtering. The displayed part shows a fragment of the spectrum with medium m/z values. 
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Figure 6.4: Aggregated mass spectrum with spectrum model before (top) and after (bottom) noise 

filtering. The displayed part shows a fragment of the spectrum with low m/z values. 
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6.2. Feature selection con. 

The number of elements (features) after filtering has decreased substantially, but is 

still far from the expected number of several hundred. At this point, a crucial part of 

the proposed workflow begins, namely feature engineering based on the spatial 

distribution of features.  

This feature selection phase is a two-step process. The first step compares the 

spatial distribution of nearby features. Figure 6.5 shows a simple part of the 

aggregated spectrum. As we can see, it contains three components, but the part looks 

like a single peak and perhaps should be described by a single normal distribution. 

There may be several reasons why this part was split into three components when 

modeling with the Gaussian mixture. One is that after aggregation of the mass spectra, 

imperfections in the baseline correction are more significant and the offset has led to 

this situation. Another is the fact, that the shape of the peak is not an ideal Gaussian 

distribution. Due to uncertainties in peak detection caused by slight variations during 

ion motion in the magnetic field, the true peaks in the mass spectrum are slightly 

skewed. This is characterized by a slight flattening of the right slope of the peak. This 

can result in a single peak being broken down into multiple components. Finally, it 

may be that the part actually describes two or more overlapping peaks and it should be 

described by two or more components in the spectrum model. 

To decide whether nearby components are correlated with a single molecule, we 

compare how these components are spatially distributed among the samples. We 

assume that if there is no statistical difference between the spatial distributions, these 

components are correlated with a single molecule of the mixture. In such a case, the 

components are combined into a single feature. The component with the smaller area 

is removed and the larger one remains with the new area (value of the feature) as the 

sum of the areas of the two components. If, on the other hand, there is a statistical 

difference in the spatial distribution of the components, then we assume that they 

model different molecules, and both remain in the spectral model. 
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Figure 6.5: Potentially a single peak decomposed into multiple GMM components. 

6.2.1. Peacock’s test 

To find out whether a population has a certain distribution, we use a statistical test. 

Such a test checks whether there is a significant difference between distributions by 

calculating a value, called the test statistic, and comparing it to a particular 

distribution, such as for example, the chi-square distribution, and then accepting or 

rejecting the null hypothesis at the chosen significance level. This is the best practice 

when comparing an empirical distribution with a theoretical distribution, for example, 

when checking whether the empirical data is normally distributed. There are many 

different tests that can be used depending on the specifics of the task at hand. To 

compare two empirical distributions, a good choice is the Kolmogorov-Smirnov test 

[64]. 

The Kolmogorov-Smirnov (K-S) test can quantify the distance between two 

empirical distribution functions of two samples. Figure 6.6 shows the visualization of 

the K-S test statistic. The figure shows two artificially generated distribution functions. 

In the example, the value of the K-S test statistic is 0.28. Using the tables, the p-value 

is 0.0317 at 5% significance level. This means that we reject the null hypothesis at the 

5% significance level and conclude that the samples are not similarly distributed. 



61 
 

 

Figure 6.6: Kolmogorov-Smirnov test example. 

For comparing the distribution of our components, the Kolmogorov-Smirnov test is 

inadequate because it can only compare one-dimensional data, whereas we are trying 

to compare two-dimensional spatial distributions. In his paper Peacock at el. [65] 

described a method for comparing two-dimensional distributions with the extension of 

the Kolmogorov-Smirnov test. We use Peacock's test to decide whether the spatial 

distributions of two components are statistically different. 

To better illustrate how the Peacock test statistic is calculated, we compared two 

random components and showed the steps to calculate the value of the Peacock’s test 

statistic. Figure 6.7 shows the spatial distribution of the randomly selected components 

numbered 16 and 931. It is clear by visual inspection, that their spatial distribution on 

the sample is completely different. 
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Figure 6.7: Spatial distribution of component number 16 and 931 on sample 1. 

 

The method by which the value of the Peacock’s test statistic is calculated is as 

follows. For each pixel of the image, the difference between the continuous 

distribution functions in four directions is calculated (see Figure 6.8). Each section of 

the figure illustrates the difference between the continuous distribution functions in 

each direction. The highlighted pixel is the location where the difference is the highest 

in all four directions. Figure 6.9 shows the difference in all directions at once. The 

value of each pixel is the maximum difference for that pixel in any direction. 

 

 

Figure 6.8: Difference between features CDF in each direction. 
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Figure 6.9: Overall difference in compared features CDF's. 

 

A critical value can be calculated for the K-S test, but significance levels cannot be 

established for the Peacock’s test, especially for very large sample size [22]. To find 

the critical values, we performed numerical simulations. For each sample, we 

performed a permutation test to find the empirical distribution of the Peacock’s test 

statistic. We computed several thousand values of the Peacock’s test by comparing 

random pairs of features. Figure 6.10 to Figure 6.13 show how these values are 

distributed for each sample. 

As we can see, the distributions for each sample are very similar. The critical 

values are different, of course, because each sample has a different size. The 

distribution of Peacock’s test statistic in each sample consists of three components, 

representing three categories of Peacock’s test scores. We assume that the left 

component models tests for very similar spatial distributions. The middle component 

models reasonably similar spatial distributions, and the right component models the 

Peacock’s test statistic values for completely different spatial distributions. 
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Figure 6.10: Empirical distribution of Peacock's test statistic for sample 1. 

 

 

Figure 6.11: Empirical distribution of Peacock's test statistic for sample 2. 

 

 

Figure 6.12: Empirical distribution of Peacock's test statistic for sample 3. 
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Figure 6.13: Empirical distribution of Peacock's test statistic for sample 4. 

 

6.2.2. Merging of nearby features 

After determining how to test the spatial distribution between two components and 

how to interpret the results, it can be decided whether to merge nearby or overlapping 

components or leave them separate. 

For each sample, the p-value was calculated for a one-tailed test. The null 

hypothesis is that the compared features have a very similar spatial distribution. In this 

way, we obtain four p-values. To combine them into a single p-value and make the 

final decision, Fisher's method is used [66].  

The Fisher method is a way of combining the results of independent tests with the 

same overall hypothesis. Fisher's method uses equation 12 to combine p-values. The 

value calculated using Equation 12 is then compared to the chi-squared distribution 

with 2k degrees of freedom (where k is the number of tests) to obtain a p-value for 

combined tests. 

χ2𝑘
2  ~ − 2 ∑ log (𝑝𝑖)

𝑘

𝑖=1

 (12) 

The components that satisfy the null hypothesis are merged into a single 

component. As described earlier, the dominant component, i.e., the component 

described by a Gaussian distribution with the larger area, remains in the spectrum 

model, and its value is now a sum of both components. The other component is 

removed from the model. The location of the dominant component remains 

unchanged. We consider two components to be close if they are too close to be part of 

the isotopic envelope. What this means exactly is explained in the next subsection 
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about isotope envelope detection. This feature engineering step reduced the number of 

components in the spectrum model from 2884 to 2392. 

6.2.3. Isotope envelope detection 

A single type of a molecule can often be observed in the mass spectrum as a series 

of successive peaks i.e., the isotope envelope. The isotopic envelope is an expression 

of a specific molecule that contains different isotopes of atoms in its chemical 

composition, causing differences in mass and therefore differences in mass-to-charge 

ratio (m/z). Isotopic envelopes hinder the analysis of mass spectrum and it is beneficial 

to represent them as a single feature at the place of the dominant peak. Usually the 

difference in atomic mass between consecutive peaks is 1 Da. Peaks in an isotopic 

envelope should have similar shape and their spatial distribution should be the same. 

Using this information an algorithm for isotope envelope search was created. 

By the nature of isoform envelopes the peaks of such series are uniformly 

distributed, with a spacing of 1 DA between them in the mass spectrum. But again, the 

positions of the features in the spectrum are not exact, and therefore an attempt must 

be made to determine the interval of values around 1 DA that is considered a valid 

spacing between features in an isoform envelope. A permutation test was performed 

between every pair of model components within the range of 1.5 DA (see Figure 6.14). 

The Gaussian distribution around the 1 DA distance was used to calculate the critical 

value. Using a two-sided test with a confidence level of 95%, the critical value is 

approximately 0.22 DA. This value was used in the previous subsection to calculate 

the threshold (1 - 0.22) for the maximum distance between nearby features. 

 

Figure 6.14: Distribution of distances between nearby features. 

 



67 
 

The second condition that two components must satisfy to be considered valid 

members of an isoform envelope is similarity of shape. To find the interval of valid 

ratio between the σ-values of the compared features, the ratios of 10 thousand random 

pairs of σ-values were calculated (see Figure 6.15). A two-sided test with the 

confidence level of 95% yielded the critical value of 0.62 for the σ ratio around one. 

 

 

Figure 6.15: Distribution of sigma ratios. 

 

The search for isoforms starts with the first component (lowest µ-value). Within 

the valid range, components are searched for. If such a component exists, the sigma 

ratio between the components is evaluated. If the components are within the valid 

range and have a similar shape, their spatial distribution is checked in the way 

described above. If there is no statistical difference between their spatial distribution, 

the components are considered to be the beginning of an isoform envelope and the 

search continues.  

When the isotopic envelope ends, i.e., for the last element of the envelope there are 

no other components within the valid distance, shape, and with the same spatial 

distribution, the envelope is merged into a single feature. The value of this feature is 

the sum of the areas of all envelope components, and the location is equal to the 

location of the dominant component. Figure 6.16 shows an example of an isoform 

envelope reduced to a single feature. The dominant orange component was the 

beginning of the envelope, and the feature is present at the component's location. The 

other, blue feature is the component that was not part of the envelope. 

Then, the search for the next component after the first component of the envelope 

continues and so on until the last component of the mass spectrum model. As a result 
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of this process, the remaining number of 2392 components was reduced to 888 

features. The diagram of the whole process of dimensionality reduction of the data 

from the aggregated mass spectrum to the final feature set is shown in Figure 6.167. 

 

Figure 6.16: Elements of the spectrum model (top) and final features after isotope envelope detection 

(bottom). 

 

Figure 6.167: Dimensionality reduction of Mass Spectrometry data. 
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7.1.  Construction of a robust classification system 

The topic of applying machine learning to the data acquired by MS is well 

documented with many publications on the subject. Both supervise and unsupervised 

machine learning methods have been successfully applied for data sets acquired with 

MALDI-TOF MS [67, 68, 69, 70] with neural networks and logistic regression among 

the most successful. In most cases, classifiers achieve very good accuracy. However, 

the performance of classifiers highly depends on the data. The size of the data set, the 

preprocessing of the mass spectra, and the complexity of the sample vary greatly from 

case to case. Therefore, it is difficult to compare the results of different experiments, 

but it is clear that MS data can be used to train well performing classifiers.  

We use neural networks and logistic regression to evaluate weather our spectral 

preprocessing workflow, particularly spectrum modeling, provides a feature set that 

can produce well performing classifiers. We use neural networks because of their high 

predictive power and logistic regression due to its interpretability. The first step is to 

split the data set into training, test and validation sets. 

7.1.1. Splitting the data set 

Before training the classifiers, the data set is divided into training, test and 

validation sets. 10% of the data is used as the validation set. The rest is used for the 

training and test sets. A single split into training and test set is used to train a single 

regression-based model and a neural network. The number of observations related to 

normal tissue is much higher than the number of observations related to epithelium or 

cancer. The epithelium is the least represented class with below 10% of observations 

labeled as epithelium. For highly imbalanced data, the training and test sets must be 

7. Classification 
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appropriately chosen to ensure sufficient representation in each set. We used 

a standard stratified sampling strategy to select the training and test sets. For each 

draw, the training set consists of 70% of the remaining data and the test set consists of 

30% of the remaining data. 

7.1.2. Confusion matrix and performance measures 

Each classifier is evaluated by applying the model to the test set. The model 

assigns some observations to the correct class and some to the incorrect class. The 

performance of the classifier is summarized by the confusion matrix. Table 7.1 shows 

the confusion matrix for a binary classification. Of course, the confusion matrix can be 

constructed for any number of classes. In this work, we model data labeled with the 

three classes: "cancer", "epithelium", and "normal tissue". Since the main goal of the 

analysis is to detect cancerous tissue, we evaluate our models by deconstructing the 

three-class problem into three cases of binary classification: "cancer-vs-rest", 

"epithelium-vs-rest", and "normal tissue-vs-rest ". 

 

Table 7.1: Confusion matrix for binary classification. 

  PREDICTED CLASS 

 All observations = 

Cancer + Healthy Tissue 

Positive (PP) 

Predicted Cancer 

Negative  (PN) 

Predicted Healthy Tissue 

A
C

T
U

A
L

 C
L

A
S

S
 

Positive (P = TP + FN) 

Actual Cancer 

True positive (TP) 

Correctly classified Cancer 

False negative (FN) 

Cancer incorrectly classified 

as Healthy Tissue 

Negative (N = FP + TN) 

Actual Healthy Tissue 

False positive (FP) 

Healthy Tissue incorrectly 

classified as Cancer 

True negative (TN) 

Correctly classified Healthy 

Tissue 

 

The confusion matrix summarizes the results of the classification. To evaluate the 

performance of a model, the values presented in the confusion matrix are used to 

calculate performance measures. There are many measures that can be calculated for 

binary classification, but the decision about which are useful should be made on 

a case-by-case basis. Therefore, it is important to understand what exactly the measure 
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describes and how its value is affected by the characteristics of the data before making 

a judgment about the usefulness of the model. In what follows, we describe only the 

measures that were most useful in our experiments. The binary classification "cancer-

vs-rest" is used as the context to explain the measures. In this case, cancer is the 

"positive" class and others (i.e., epithelium or normal tissue) is the "negative" class. 

The first measure we calculate is the accuracy of the model, which is given by 

Equation 3. Accuracy is the percentage of correctly classified observations. High 

values for accuracy indicate that the classifier is good at predicting the correct class for 

a given problem. Accuracy is not an ideal measure and can be misleading for 

unbalanced data sets. For example, accuracy may be high due to a high rate of 

correctly classified observations of the majority class, even if the percentage of 

correctly classified observations from minority class is very low. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 

(13) 

The second measure is precision. Precision, or positive predictive value (PPV), is 

the ratio of true positives to all observations that the model has classified as positive 

(Equation 4). In the context of a diagnostic test, high precision means that we can be 

confident in the positive outcome of the test. In other words, the probability of 

a positive result being a false positive is low.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑃𝑃𝑉 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(14) 

The third measure is the negative predictive value (NPV). The NPV describes 

exactly the same property as the PPV, but for the negative class instead of the positive 

class. It is calculated with equation 5. 

𝑁𝑃𝑉 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

(15) 

The next measure that enters into our evaluation is sensitivity, also called recall or 

true positive rate (TPR). Sensitivity is calculated with equation 6. For our research, 

a high sensitivity of the model means that there are few cases for which the model 

cannot detect the cancer. As sensitivity increases, the number of false positives usually 

increases as well. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(16) 
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Finally, specificity (equation 7) is the opposite of sensitivity. High specificity 

means that the classifier is good at detecting the negative class. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =   
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(17) 

The above values are the most basic measures that describe the overall 

performance of a classifier. Although there are many more, these values are sufficient 

for an initial assessment in the context of a diagnostic test. It is important to remember 

that each classification problem should be considered separately, based on the 

objectives of the classification and, most importantly, on the cost of wrong decisions. 

There are two types of errors that a classifier can make. A type I error is a false 

positive, which is when the classifier assigns a positive class to an observation that is 

actually negative (or any other class in a multiclass classification). Similarly, an error 

of type II (false negative) is when the classifier fails to recognize an observation of 

a particular class. In our work, the task is to classify cancerous tissue, therefore that the 

type II error has a much higher cost than the type I error. In such a case, high 

sensitivity is crucial. On the other hand, if the positive result of the diagnostic test 

means aggressive and dangerous treatment, then the number of false positives is also 

important and can not be ignored. Optimization of one value has an impact on all other 

values. For example, perfect sensitivity of a model can be achieved by simply 

classifying all observations as positive. This would, of course, defeat the purpose of 

data modeling, but this example illustrates the danger of maximizing a single measure 

of classification performance. 

In summary, none of the measures described can be used by themselves to evaluate 

the usefulness of our model. Therefore, none of them can be used to compare models 

with each other. For this purpose, other values and techniques are used that ensure an 

optimal trade-off between the different aspects of classifier performance. 

One of such values is F1 score (equation 8). F1 score is the harmonic mean of 

sensitivity and precision. The higher the F1 score, the better the trade-off between 

precision and sensitivity. 

𝐹1 =  2 ∗
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
=  

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

(18) 
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7.1.3. Receiver operating characteristic 

Although F1 score can be used as an overall measurement of a model performance 

a better method is to plot the receiver operating characteristic. The receiver operating 

characteristic (ROC) is a plot that visualizes the quality of a probabilistic model for 

each threshold and  shows the trade-off between sensitivity and specificity of the 

model. The plot has 1-specificity on the x-axis and sensitivity on the y-axis (see Figure 

7.1). The plot can be easily used to compare the performance of classifiers by 

calculating the area under the ROC curve (AUCROC or simply AUC) [71].  

A number of curves have been plotted in Figure 7.1 to show how the performance 

of the classifier affects the representation of ROC. An ideal classifier that perfectly 

classifies every observation with 100% confidence is indicated in green. Such 

a classifier has an AUC value of 1. The red line is the no-discrimination line. It marks 

the worst possible classifier with the AUC equal to 0.5. The black line is an example 

of a more realistic curve for a model without classification capabilities. It is drawn for 

a classifier that randomly predicts the outcome class based on a coin toss. Finally, the 

blue line in Figure 7.1 represents a classifier that has some ability to discriminate 

between classes, although it makes quite a few errors and its overall performance is 

not very good. 

The value of AUC may be less than 0.5, even if 0.5 is the worst value. If the AUC 

value is below 0.5, the classifier is able to distinguish classes, and the lower the value, 

the better. In such cases, the criterion for "positivity" must be reversed, and the AUC 

will then take values in the range of 0.5 to 1. 

As we can see, for each case there are initially no type I errors. The model perfectly 

detects the negative class (specificity is 1), but has a low ability to detect the positive 

class (sensitivity is 0). As the probability threshold for placing an observation in the 

positive class increases, the number of true positives increases along with the number 

of false positives. Eventually, the roles reverse and specificity is 0 and sensitivity is 1. 

The shape of the curve describes how the number of true and false positives changes 

as the threshold changes. 

At some point there is an optimal balance between sensitivity and specificity. What 

is an optimal balance can be defined in several ways. We chose to find the optimal 

threshold by maximizing the Youden index (J) (see equation 10). Geometrically, the 

Youden’s index on the ROC curve is the vertical distance between the ROC curve and 

the no-discrimination line (identity line). A similar option is to maximize the absolute 
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distance between the ROC curve and the zero discrimination line (labeled T in 

Figure 7.1). In this case, the result is the same for both methods. 

𝐽𝑚𝑎𝑥 =  𝑚𝑎𝑥𝑡{𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑡) + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑡) −} 
(19) 

 

 

Figure 7.1: Example of ROC curves for classifiers with different predictive capabilities. J is the 

visualization of the maximum Youden’s index. T is the maximum distance between ROC 

and the no-discrimination line (red line). 

7.1.4. Precision-sensitivity trade-off 

Although ROC is generally considered a good tool for model comparison, there is 

a problem when dealing with highly imbalanced data sets. The problem is that 

specificity is highly dependent on the number of true negatives. In very unbalanced 

data with a small number of positive observations, this can mask meaningful 

differences between classifiers. The AUC value may be deceptively high due to the 

high detection rate of true negatives. In such cases, the AUC value is insensitive to 

differences in the precision of the compared models. This is unacceptable for 

diagnostic tests where precision is very important. It is nevertheless useful to plot ROC 

and calculate AUC values for an overall assessment of models. 



75 
 

For a better visual and numerical comparison of models trained on imbalanced 

data, the trade-off between precision and sensitivity can be plotted. The precision-

sensitivity plot is very similar to the ROC plot. On the y-axis it has precision and on 

the x-axis it has 1-sensitivity (see Figure 7.2). Precision-sensitivity plots are more 

resilient to data sets with a small number of positive classes, since neither precision 

nor sensitivity is affected by high numbers of true negatives. Since the high rate of true 

negatives does not affect the plot, the area under the precision sensitivity curve is 

a better measure for comparing such data sets. 

There is a crucial drawback to the precision sensitivity curves. While the baseline 

of the ROC curve is always the same, the baseline of the precision sensitivity curve 

depends on the balance between the positive and negative classes. Figure 7.2 A shows 

the precision-sensitivity curve for a perfectly balanced data set where the positive and 

negative classes are equally represented in the data set. In such a case, as with ROC, 

the worst possible AUC value is 0.5 and the best is 1. The situation changes when 

there are more observations of one class. Figure 7.2 B shows the precision-sensitivity 

plot for the data set where only 25% of the data is the positive class. In such a case, the 

minimum value for the AUC is 0.25. 

In summary, the ROC curves can be used to compare any pair of classifiers, 

whereas the precision-sensitivity curve can only be used to compare models trained on 

data with similar proportions of positive and negative classes. 

 

 

Figure 7.2: Precision-sensitivity plot for a model trained on data set with balanced classes (A) and 

a model trained on data with ¼ ratio of positive and negative classes (B). 
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7.2. Multinominal regression-based classifier 

Training the classifier using multinomial regression is done iteratively by adding 

features to the list of predictors used for multinomial regression until the stop 

condition is reached. One of the goals, of course, is to train the best possible classifier, 

but at the same time the most valuable features are identified, and thus, potentially 

biomarkers, that are directly correlated with the presence or absence of the disease. 

The algorithms are run multiple times to mitigate the randomness of the division into 

training and test sets. 

Features are selected sequentially and added to the list of predictors used for 

regression in future iterations. Selection of the best feature in the current iteration of 

the algorithm is done by running regression on the training set separately for each 

feature (along with the features already in the list of predictors). The feature that, when 

added to the predictor list, produces the model with the best likelihood is selected as 

the best feature. Then the process is repeated until the stop condition is satisfied. The 

algorithm stops when the Bayes factor indicates a very strong similarity between the 

models before and after adding a new feature to the predictor list. The Bayes factor is 

calculated based on the Bayesian information criterion computed for models with and 

without the new feature. As explained in previous chapters, BIC introduces a penalty 

for model complexity. Such a stopping condition protects the trained models from 

overfitting. 

Classification is done by assigning the class to which the model gives the highest 

probability for the given observation. In classification, the main goal of this work is to 

assess whether a good diagnostic test can be performed. For this reason, this multiclass 

classification is transformed into a binary classification in a one-vs-rest strategy. We 

are particularly interested in the performance of the cancer-vs-rest binary 

classification. The full results are shown in Table 7.2. 

Figure 7.3 shows how the ROC curve changes as new features are added to the list 

of predictors for multinomial regression, and Figure 7.4 illustrates how the precision-

sensitivity curve changes as new features are added to the list. As we can see, the 

regression with a single predictor has very poor results, but the model trained with 

three features already has a decent ability to predict the cancer class. 



77 
 

 

Figure 7.3: Influence of model complexity (number of regression predictors) on the ROC curve of the 

classifier. 

 

 

Figure 7.4: Influence of model complexity (number of regression predictors) on the precision-

sensitivity curve of the classifier. 

After several runs of the algorithm, each time with a new random division into 

training and test sets, we have the following results. The final complexity of the 

models varies. The simplest model has 16 predictors and the highest number is 27. 



78 
 

Figure 7.5 shows ROC and precision sensitivity curves for ten randomly selected 

models trained with the algorithm. Initial assessment can be drawn that multinomial 

regression based classifiers work well with the data processed with our workflow. 

Comparing the two plots, we can also notice the differences between the ROC and the 

precision-sensitivity curves. The differences between models are more visible in the 

precision-recall curve. 

Coefficients for multinomial regression were calculated using the MATLAB 

function "mnrfit". The training process took several hours using an eight-core Intel(R) 

Core(TM) i7-11700K processor. The training time is considerable, but it is proof of 

concept that the proposed dimensionality reduction and feature engineering process, 

which reduces the hundreds of thousands of data points to less than a thousand features 

is able to extracts the most important patterns from the data. 

 

 

Figure 7.5: ROC (A) and precision-sensitivity (B) curves for randomly selected 10 models trained 

with multinominal regression-based algorithm. 

 

Assigning the class with the highest probability score given by the regression 

model leads to models with good performance with mean accuracy above 90% and 

mean precision above 90%. Low specificity for epithelium-vs-rest classification is the 

result of unbalanced data. The measurements for all binary classifications in one-vs-

rest strategy are presented in the Table 7.2. The values are the mean values from all 

trained models with the 95% confidence intervals for the mean. The last column 

presents the averaged results from all three binary classifications. AUCROC is the area 

under the ROC curve and AUCPS is the area under the precision-sensitivity curve. 



79 
 

 

Table 7.2: Mean performance measures for multinominal regression models with 95% confidence 

intervals. 

Measure [%] Caner-vs-rest Epithelium-vs-rest 
Normal tissue-

vs-rest 
Overall mean 

Accuracy 
88.70 

[87.99 ; 89.42] 

96.88 

[96.81 ; 96.94] 

86.98 

[86.29 ; 87.67] 

90.85 

[90,37 ; 91,34] 

Precision 

(PPV) 

91.34 

[90.75 ; 91.94] 

97.29 

[97.20 ; 97.38] 

85.72 

[84.80 ; 86.63] 

91.45 

[90.97 ; 91.93] 

NPV 
83.68 

[82.55 ; 84.82] 

85.71 

[84.65 ; 86.76] 

87.76 

[87.12 ; 88.41] 

85.72 

[85.19 ; 86.24] 

Sensitivity 
91.44 

[90.79 ; 92.09] 

99.46 

[99.41 ; 99.51] 

81.03 

[79.95 ; 82.12] 

90.65 

[90.15 ; 91.14] 

Specificity 
83.49 

[82.29 ; 84.69] 

53.72 

[52.20 ; 55.24] 

90.96 

[90.35 ; 91.58] 

76.06 

[75.13 ; 76.98] 

F1 score 
91.39 

[90.84 ; 91.94] 

98.36 

[98.33 ; 98.40] 

83.30 

[82.39 ; 84.21] 

91.02 

[90.53 ; 91.51] 

AUCROC 
94.90 

[94.46 ; 95.35] 

96.71 

[96.45 ; 96.96] 

93.98 

[93,52  ; 94,43] 

95,20 

[94.85 ; 95,54] 

AUCPS  
89.10 

[88.11 ; 90.10] 

78.56 

[77.70 ; 79.42] 

96.20 

[95.92 ; 96.49] 

87,96 

[87,31 ; 88,61] 

 

 

Classifiers can be further improved by balancing the trade-off between 

performance measures. As mentioned, for ROC it can be done by maximizing the 

Youden’s index. Maximizing the Youden’s index for ROC curve optimizes the 
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balance between sensitivity and specificity. With the same strategy other pairs of 

measures can be balanced. Threshold can be chosen for example for the balance 

between positive and negative predictive values. Each binary classifier was optimized 

for PPV-NPV trade-off by maximizing the distance between the curve and no-

discrimination line, analogically to Youden’s index (see Figure 7.6). 

 

 

Figure 7.6: Threshold optimization using PPV-NPV curve. J is analogical to the Youden’s index for 

ROC curves. T is the distance from no-discrimination line. 

 

After calculating the threshold the binary classification is done by assigning the 

positive class to the new observation if the probability of that class in the multinominal 

regression model is higher then the threshold. Results are presented in the Table 7.3. 
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Table 7.3: Mean performance measures for multinominal regression models after balancing PPV 

and NPV with 95% confidence intervals. 

Measure [%] Caner-vs-rest Epithelium-vs-rest 
Normal tissue-

vs-rest 
Overall mean 

Accuracy 
89.13 

[88.46 ; 89.79] 

94.84 

[94.71 ; 94.97] 

87.73 

[87.13 ; 88.34] 

90.57 

[90.13 ; 91.00] 

Precision 

(PPV) 

92.47 

[91.99 ; 92.96] 

94.82 

[94.70 ; 94.94] 

83.66 

[82.32 ; 84.99] 

90.32 

[89.78 ; 90.86] 

NPV 
83.15 

[81.73 ; 84.58] 

97.55 

[96.72 ; 98.39] 

90.69 

[90.04 ; .91.34] 

90.47 

[89.73 ; 91.20] 

Sensitivity 
90.82 

[89.89 ; 91.74] 

99.99 

[99.99 ; 99.99] 

86.37 

[85.22 ; 87.52] 

92.39 

[91.92 ; 92.86] 

Specificity 
85.91 

[84.92 ; 86.91] 

08.78 

[06.48; 11.09] 

88.65 

[87.45 ; 89.84] 

61.12 

[60.08 ; 62.15] 

F1 score 
91.63 

[91.09 ; 92.17] 

97.34 

[97.27 ; 97.40] 

84.96 

[84.28 ; 85.63] 

91.31 

[90.91 ; 91.71] 

AUCROC 
94.90 

[94.46 ; 95.35] 

96.71 

[96.45 ; 96.96] 

93.98 

[93,52  ; 94,43] 

95.20 

[94.85 ; 95.54] 

AUCPS 
89.10 

[88.11 ; 90.10] 

78.56 

[77.70 ; 79.42] 

96.20 

[95.92 ; 96.49] 

87.96 

[87.31 ; 88.61] 

 

7.3. Neural network classifier  

Neural networks are a great tool for pattern recognition and are used in numerous 

fields, providing high efficiency and flexibility. Neural networks are capable of 
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handling the most difficult tasks depending on their type, architecture and complexity. 

While the regression-based algorithm required several hours to train models, a simple 

neural network trained a model within a few minutes. Figure 7.7 shows the ROC and 

precision-sensitivity curves for the models trained with the same training sets and 

evaluated on the same test sets that were used for multinomial regression. The neural 

network architecture is very simple and consists of two hidden layers, each with the 

same number of nodes as the number of features in the data set. The MATLAB 

implementation "patternnet" of the neural network was used for model training. The 

performance of the classifiers is very good, although not as good as achieved by the 

multinomial regression-based algorithm. The results for all binary one-vs-rest 

classifiers presents Table 7.4. Table 7.5 shows the performance of the models after 

balancing PPV and NPV. 

 

 

Figure 7.7:  Description. ROC (A) and precision-sensitivity (B) curves for randomly selected 10 

models trained with neural networks. 
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Table 7.4: Mean performance measures for neural network models with 95% confidence intervals. 

Measure [%] Caner-vs-rest Epithelium-vs-rest 
Normal tissue-

vs-rest 
Overall mean 

Accuracy 
86.06 

[84.89 ; 87.24] 

96.74 

[96.60 ; 96.89] 

84.92 

[83.77 ; 86.07] 

89,24 

[88,43 ; 90,05] 

Precision 

(PPV) 

88.07 

[86.70 ; 89.44] 

97.05 

[96.90 ; 97.20] 

85.38 

[84.70 ; 86.06] 

90,17 

[89,48 ; 90,86] 

NPV 
81.86 

[80.81 ; 82.92] 

87.65 

[85.91 ; 89.38] 

84.71 

[83.28 ; 86.14] 

84.74 

[83.69 ; 85.79] 

Sensitivity 
91.14 

[90.76 ; 91.52] 

99.58 

[99.50 ; 99.65] 

75,22 

[72,45 ; 77,99] 

88,65 

[87,68 ; 89,62] 

Specificity 
76.39 

[73.31 ; 79.47] 

49.39 

[46.72 ; 52.07] 

91.41 

[91.12 ; 91.70] 

72.40 

[70.61 ; 74.18] 

F1 score 
89.57 

[88.77 ; 90.37] 

98.30 

[98.22 ; 98.37] 

79.93 

[78.09 ; 81.77] 

89.27 

[88.37 ; 90.16] 

AUCROC 
93.76 

[92.99 ; 94.53] 

95.92 

[95.03 ; 96.80] 

93.52 

[92.95 ; 94.09] 

94.40 

[93.69 ; 95.11] 

AUCPS 
86.72 

[85.16 ; 8829] 

74.54 

[71.65 ; 77,.42] 

96.06 

[95.69 ; 96.42] 

85.77 

[84.23 ; 87.31] 
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Table 7.5: Mean performance measures for neural networks models after balancing PPV and NPV 

with 95% confidence intervals. 

Measure [%] Caner-vs-rest Epithelium-vs-rest 
Normal tissue-

vs-rest 
Overall mean 

Accuracy 
85.73 

[82.11 ; 89.35] 

94.62 

[94.49 ; 94.75] 

87.09 

[86.26 ; 87.92] 

89.15 

[87.71 ; 90.59] 

Precision 

(PPV) 

89.43 

[85.11 ; 93.75] 

94.61 

[94.49 ; 94.74] 

80.71 

[79.13 ; 82.29] 

88.25 

[86.46 ; 90.05] 

NPV 
81.69 

[78.75 ; 84.86] 

94.67 

[91.64 ; 97.70] 

92.29 

[91.51 ; 93.07] 

89.55 

[88.17 ; 90.93] 

Sensitivity 
90.00 

[87.96 ; 92.05] 

99.99 

[99.99 ; 99.99] 

89.27 

[88.03 ; 90.51] 

93.09 

[92.41 ; 93.76] 

Specificity 
77.59 

[63.72 ; ] 

04.95 

[02.62 ; 07.29] 

85.63 

[84.07 ; 87.19] 

56.06 

[51.00 ; 61.12] 

F1 score 
89.42 

[87.54 ; 91.29] 

97.23 

[97.16 ; 97.29] 

84.73 

[83.87 ; 85.59] 

90.46 

[89.57 ; 91.35] 

AUCROC 
93.76 

[92.99 ; 94.53] 

95.92 

[95.03 ; 96.80] 

93.52 

[92.95 ; 94.09] 

94.40 

[93.69 ; 95.11] 

AUCPS 
86,72 

[85,16 ; 88,29] 

74,54 

[71,65 ; 77,42] 

96,06 

[95,69 ; 96,42] 

85,77 

[84,23 ; 87,31] 

 

7.4.  Multinominal regression vs neural network 

Finally, we compared both algorithms by classifying the validation set with models 

without PPV-NPV balancing. Figure 7.8 shows the ROC and precision sensitivity 
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curves for the averaged results of each method with 95% confidence intervals (for the 

binary classification cancer-vs-rest). The multinomial regression-based method is 

shown in blue and the neural networks are shown in yellow. As we can see, the 

multinomial regression-based classifier has better overall performance than the neural 

networks. The performance measures for the validation set classification are shown in 

Table 7.6. 

 

 

Figure 7.8: ROC (left) and precision-sensitivity (right) curves for neural networks (yellow) and 

multinominal regression (blue) with 95% confidence intervals. 
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Table 7.6:  Comparison of performance for cancer-vs-rest classifiers on validation set. 

Measure [%] 
Multinominal 

regression 
Neural networks 

Accuracy 
88.51 

[87.78 ; 89.23] 

86.07 

[84.94 ; 87.19] 

Precision 

(PPV) 

91.54 

[90.88 ; 92.20] 

88.18 

[86.90 ; 89.46] 

NPV 
82.87 

[81.87 ; 83.87] 

81.68 

[80.58 ; 82.79] 

Sensitivity 
90.88 

[90.33 ; 91.42] 

90.99 

[90.56 ; 91.43] 

Specificity 
83.99 

[82.69 ; 85.30] 

76.69 

[73.84 ; 79.53] 

F1 score 
91.20 

[90.66 ; 91.75] 

89.55 

[88.78 ; 90.33] 

AUCROC 
94.91 

[94.45 ; 95.38] 

93.77 

[92.89 ; 94.65] 

AUCPS 
89.42 

[88.44 ; 90.40] 

87.18 

[85.47 ; 88.90] 
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7.5. Feature scoring 

A machine learning model is interpretable if some of its properties can be 

understood by a human [72]. In other words, a model is interpretable if we can judge 

how the input affects the output of the model. There are interpretable methods that can 

always be understood by humans at some level, for example decision trees or linear 

models. Decision trees can be represented as a set of "if, then, else" rules that a human 

can understand. Linear models assign weights to each feature so the impact of 

a feature can be easily compared with another feature by a human. With so-called 

"black-box" models, the interpretability of a machine learning model can be difficult to 

achieve, because there is no easy way to figure out how much of an impact a feature 

has on the outcome. The topic of interpretable (or explainable) machine learning is 

well documented with descriptions of model-independent methods that can be used for 

any machine learning model [73] and model-specific methods developed to interpret 

the results of a particular algorithm. Model-specific methods for interpretable neural 

networks [74] attempt to explain image classification using neural networks and are 

not useful for our application. 

The importance of interpretability cannot be overstated when it comes to diagnostic 

tests. Being able to make a diagnosis based on a sample is crucial, but ultimately the 

reasons for the diagnosis are most important. Only when we know what causes the 

disease can we begin to develop appropriate drugs. In recent years, both global and 

local methods for interpreting "black box" machine learning methods have been 

developed, and new approaches have emerged. Here, we propose feature scoring 

systems for our two classification algorithms based on well-established methods for 

interpreting ML models. 

For our multinomial regression-based algorithm, assigning a score to a feature is 

not a problem. The final product of the algorithm is an ordered list of features. On this 

basis, it is easy to create some kind of scoring system. In this case, we simply assign 

features a score equal to 1/x, where x is the position of the feature in the list. In this 

way, we emphasize the influence of the first few features on the overall score. The 

total score of the features is the average score from all trained models. 

For neural networks, the task is not so simple. Although neural networks are based 

on simple mathematical operations, the neurons are interconnected with nonlinear 

activation functions through several hidden layers. This means that there is no simple 

mathematical expression that can explain the influence of a feature on the result. For 

this type of methods, interpretation tools must be used. 
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The interpretability of a model is a spectrum. The outcome may be the result of 

numerous interacting factors. We may have all the knowledge about the decision 

process or only a few facts. Interpretation methods provide the knowledge in the form 

of feature statistics, visualizations, or entire models that explain the model under study 

[75]. In this work, we are satisfied with knowing the relative importance of the 

features and obtaining a numerical score to rank the features by importance. 

7.2.1. LIME 

One of the model-agnostic methods is the local interpretable model-agnostic 

explanation (LIME). LIME is an algorithm that can explain the predictions of any 

classifier or regressor by approximating it locally with an interpretable model [76]. 

LIME is a local method, which means that it explains the decision behind a single 

observation. Using the observation LIME creates a new data set, by perturbing the 

feature values to create new observations. The new value for a feature is drawn from 

its normal distribution, and the mean and standard deviation for that distribution are 

calculated based on the entire data set or a local neighbourhood. In this work, we used 

the entire data set. Then, new observations are assigned a weight based on their 

similarity to the observation under study. Each new observation is also given 

a prediction using the black box model that we are trying to explain. This labeled data 

set is then used to train an interpretable model such as a decision tree, linear 

regression, or other interpretable method. Finally, using this interpretable model, 

inferences can be made about the original observation. 

In this work we try to find important features for the whole model and not just for 

a single observation. To do that we run the LIME algorithm a few thousand times for 

randomly selected observations. The simple interpretable model trained on perturbed 

observations were decision trees. Each time, the LIME algorithm returns an ordered 

list of the most important features. The feature are then scored in the same way as in 

our regression-based method. Repeating the LIME algorithm thousands of times 

provides insight into the global interpretation of the model. The advantage of this 

approach over using a global model-agnostic model is that we can focus on a specific 

type of observation, for example, by applying LIME only to observations labeled as 

cancer. 

LIME algorithm is not ideal, new observations are made without considering 

correlations between features, the results depend on the definition of the local 

neighbourhood, which is difficult with tabular data and requires the choice of 
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a parameter value that has a significant impact on the result. The results also change 

slightly each time the algorithm is run. The stochastic nature of this algorithm is 

mitigated by averaging over many algorithm runs, but the results presented are only an 

estimate of feature importance for our neural network models [75]. 

7.2.2. Shapley Values 

Another way to evaluate the importance of features in a black-box model is to use 

Shapley values [77]. The idea behind Shapley values is that features interact to provide 

an outcome, and the contribution of a feature can be calculated by examining how the 

prediction changes on average when we predict the outcome with and without that 

feature contribution. A detailed mathematical description of how Shapley values are 

calculated can be found here [78]. 

In simple terms, the contribution of a feature is calculated for a given subset of 

features. The overall score is calculated with and without the feature to determine the 

contribution of that feature to the overall score. The Shapley value of a feature is the 

averaged contribution of the feature over all possible feature sets. To obtain 

a prediction using the black box model, all features must have a value, so a feature 

cannot simply be removed. A subset of features also cannot be used for prediction. 

Therefore, the absence of a feature is simulated by drawing random instances from the 

data set and averaging results. 

To calculate the exact Shapley value of a feature, all possible sets of features with 

and without that feature must be calculated. Since the number of all possible sets 

increases exponentially with the number of features, implementations of this algorithm 

compute estimates of Shapley values by limiting the maximum number of feature 

subsets. 

Shapley values the same as LIME give the interpretation of a single observation. 

For global feature importance the Shapley values were calculated for multiple 

observations. Dude to higher computation time the number of runs was an order of 

magnitude smaller then for LIME algorithm. The final score of a feature is calculated 

based on the position on the importance list in the same way as for previous methods. 
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7.2.3. Best features 

Figure 7.9 to Figure 7.12 show the spatial distribution of the top 5 features with the 

highest scores for the multinomial regression-based model and the neural network 

computed using both the LIME method and Shapley values. 

 

 

Figure 7.9: Spatial distribution of best features on the sample number 1. 
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Figure 7.10: Spatial distribution of best features on the sample number 2. 
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Figure 7.11: Spatial distribution of best features on the sample number 3. 
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Figure 7.12: Spatial distribution of best features on the sample number 4. 
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Figure 7.13: Venn diagram of  top 20 features. 

 

Figure 7.13 shows the Venn diagram of the top 20 features of the multinomial 

regression-based model and the neural network models computed using both LIME 

and Shapley values. As we can see, some of the best features are used by both 

methods. LIME and Shapley values computed for the same models have completely 

different features. The likely reason for this is that due to the computational 

complexity of Shapley values for large features and data sets, we only compute 

estimates of Shapley values for local interpretations. In addition, multiple runs of the 

algorithm must be performed to obtain the global feature values. Because of the long 

computation time, the Shapley values were computed for only a few hundred 
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observations and for a sample of the training set. It seems that the sample size and 

number of local interpretations is too small to provide meaningful results. The same 

conclusion can be drawn from visual inspection of Figure 7.9 through Figure 7.12. The 

spatial distribution of the top features obtained with the Shapley method appears to be 

much more uniform than with regression and LIME. 
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Processing of mass spectrometry imaging data is a complicated, multi-step process. 

As the apparatus for mass spectrometry and techniques for the data analysis evolve, 

the potential for the further research expands. It is certain, that the topic of MS and 

MSI data analysis will be further researched in years to come. During the creation of 

this paper, we have explored a number of different ideas and approaches to the task, 

and came up with a solution that in our opinion is superior to the most state-of-the art 

methods, and has a great potential for further improvement. 

The results show that extensive and well organized analysis based on a statistical 

approach can provide a concise and meaningful feature set and confirm the validity of 

the first hypothesis stated in the dissertation. Spectrum modeling presented in the 

chapter 5 and our approach to feature engineering described in the chapter 6 provided 

very good results. There were many challenges that we had to overcome to arrive at 

the final form of the data processing workflow and we learned a lot during the 

experiments. It is our belief that there is potential for further improvement of both 

steps.    

The number of peaks after noise filtering and redundancy removal is a few 

hundred. The number is at the level that was expected based on our knowledge about 

the number of distinct molecules in such complex biological samples as the one we 

examined. Not only the number of the features in the final set, or the very good 

performance of classifiers trained on the processed data, speaks for the quality of the 

workflow. Also the visual inspection of the spectrum model supports the thesis. Most 

of the remaining peaks are clearly correlated with a region of the spectrum where 

a human can reasonably assume that a true peak exists. This and other performed 

experiments, in our opinion, prove the superiority of peak detection methods that take 

into account the shape of the peak. 

Our classifiers achieved very good performance with over 90% overall accuracy 

and over 95% AUCROC. These results, especially with such extensive data processing 

workflow are very convincing. It is clear that the goal of reducing the dimensionality 

8. Conclusions 



97 
 

and redundancy was achieved and the second stated hypothesis is true, as the 

comparison of spatial distribution had a crucial role in the process. The removal of 

redundancy and dimensionality reduction by comparing the spatial distributions of 

components and by identifying the isotope envelopes retained the valuable information 

hidden in the data and didn’t hinder the data potential to discriminate between classes.  

Based on our investigation of peak detection method we conclude that using more 

complex peak detection methods like spectrum modeling, the full potential of mass 

spectrometry data can be explored, while simultaneously reducing the volume of the 

data to manageable size and retaining the valuable information about underlying 

biological features. Simple signal-to-noise ratio-based peak picking methods simply 

can not deal with mixtures of high complexity without substantial information loss. 

The experiments with splitting the mass spectrum into parts before modeling with 

Gaussian mixtures, convinced us that it is a crucial part of spectrum modeling. 

Although, proposed method proved very successful for our data, further analysis is 

necessary to examine the impact of other baseline-correction methods on this 

approach. The defined rules for successful division are simple and can be used to 

arrive at different solution. 

By trying different approaches, we learned that the most effective way to remove 

noise from the MSI data when using spectrum modeling, is to remove it after the 

model has been acquired. Filtering spectrum model elements based on their parameters 

rather than just peak intensity proved to be effective. Of course, denoising can be also 

performed before the spectrum modeling or not at all but we believe, based on our 

experiments, that the solution proposed in this work is the best approach.  

When it comes to feature engineering, other methods can be considered, such as 

classical feature selection by machine learning, e.g., based on the variance of the 

features or by removing highly correlated features. The decision to remove the excess 

of features, by examining the distribution of model parameters was dictated by the 

desire to preserve as much interpretability as possible. If we assume that there are 10 

features that are very highly correlated and very useful for classification, a classifier 

would normally use only one of them. To the classifier, the other features have no 

additional value, but from a medical research perspective, all 10 features are equally 

important. 

It is hard to predict the impact of various factors that influence the data acquisition 

process on the ability of our classifiers to predict the classes of new data. Using 

a different mass spectrometer, samples being prepared by a different person (even 

assuming the same procedures) and various other factors influence the mass spectra. It 
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is, however, important to remember that our data set already consists of four samples 

and considering the excellent results, we expect our classifiers to achieve at least good 

performance for samples taken from new patients. 

The statistical approach to classification using multinomial regression proved to be 

very effective. The excellent performance was at the cost of quite long computation 

time but the results are rewarding. Moreover, only the training of the model is time 

consuming, the classification of new records is instant. That means it could be used as 

a tool for diagnosis. Another great feature of this method is the interpretability. The 

feature importance can be assessed very fast. Images of best features clearly are 

correlated with molecules present or absent in the regions corresponding to a specific 

class. It is another argument in favour of both first and second hypothesis. 

On the other had, we have a completely different approach to classification. The 

neural networks were very fast, as we intentionally used a simple architecture of the 

network. The results again, prove that the workflow was successful, as the model 

performance is also very good. However, attempts to identify the most important 

features in a black box model that is neural network, show how important is the 

interpretability of prediction models. Using LIME and Shapley values we calculated 

the scores for features and ordered them by importance. The two methods applied for 

the same models gave completely different results for the top features. None of the top 

20 features were the same. However, after visual inspection of the images, it appears 

that the top features identified by calculating Shapley values are not that great. Shapley 

values had to be calculated for a very limited subset of training sets and the number of 

local experiments to reason about global trends was clearly too small. Maybe 

calculating exact Shapley values would provide a better results but for the reasons 

explained in the thesis it was impossible. LIME-based scoring, on the other hand, 

provided viable results, although from the top 20 features identified for both 

multinominal regression-based classifiers and neural networks, only 3 features are the 

same. Separately for both methods, with the exception of a few features that were 

always among the top performers, the remaining features changed greatly for each 

instance of a unit model. This is the result of the heterogeneous nature of the data. By 

aggregating the results of many models trained on different training sets, we were able 

to determine all the top features regardless of which subset in the data was most 

influential for a given training set. The final top features change only slightly after we 

repeat the entire process, of global feature importance calculation. This confirms the 

final hypothesis of the work. 



99 
 

In the future we would like to continue our work with MSI data analysis 

particularly by further improving the spectrum modeling and feature engineering 

process. We would also like to apply our method to other existing data sets and to new 

data. Further research will also involve comparing the method with other novel 

methods. Finally, we want to use the results of our data processing and feature scoring 

to identify biomarkers correlated with the squamous cell carcinoma of the head and 

neck. 
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The subject of the dissertation is the analysis of data acquired by mass spectrometry 

imaging of samples obtained from patients with head and neck cancer. The following 

hypotheses were made in the thesis. The first hypothesis states that peak identification 

in mass spectra can be successfully performed using a spectrum modeling approach by 

fragmenting the spectrum into parts and then modeling them with Gaussian mixture 

models. The second hypothesis states that the spatial distribution information obtained 

through imaging can be used to remove redundancy and reduce the dimensionality of 

the data, while maintaining the quality of the data. The final hypothesis states that 

evaluating the importance of features in heterogeneous data is possible and effective 

through the use of multiple unit models. The first chapters of the thesis address the 

basic issues related to proteomics and mass spectrometry. First, the general description 

of mass spectrometry and mass spectrometric imaging of biological samples is 

described. This is followed by a description of the main ionization methods and mass 

analyzers commonly used for the analysis of biological samples, especially samples 

from cancer patients. Then, there is a brief description of sample preparation, as well 

as data acquisition, its characteristics, and the initial steps taken to prepare the data for 

further analysis. These steps are baseline correction, normalization and alignment of 

the spectra. 

The next chapter deals with the aggregation of mass spectra and the state of the art 

in peak detection. Peak detection was performed on the aggregated data using the most 

commonly used for this purpose methods. First, peaks were identified using a simple 

method based on the signal-to-noise ratio of peak intensities. Then peaks were 

identified with a peak modeling method based on the continuous wavelet transform. 

In the following chapter, a more complicated method of peak identification was 

described in detail. With this method, peaks are identified by splitting the spectrum 

into smaller fragments and modeling them with Gaussian mixture models. First, a new 

Abstract 
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signal splitting method is described that differs from the method proposed in the 

original paper. A detailed operation scheme is described, and compared with the 

original method as well as the pseudocode for the algorithm implementation. The next 

section of the paper deals with the process of fitting the parts of the spectrum with 

Gaussian mixture models, with the general and mathematical description of the custom 

implementation of the expectation-maximization (EM) algorithm used for the fitting of 

Gaussian mixtures. The thesis also describes the selection of the optimal number of 

elements in the mixture and the influence of the stochastic nature of the EM algorithm 

on the results. All peak identification methods are compared to each other. The results 

of proposed peak identification method confirm the validity of the first hypothesis. 

The sixth chapter describes the entire process of feature engineering. The deals with 

the use of statistics and spatial distribution to remove redundancy in the data and 

reduce the dimensionality of the data. To this end, noise was filtered using the 

parameters of the normal distributions that make up the spectrum model. Feature 

engineering is then continued by using the information provided by the imaging. The 

spatial distributions of nearby elements of the spectrum model are compared. The 

comparison is made using Peacock's statistical test for similarity of distributions. This 

statistical test is an extension of the Kolmogorov-Smirnov test to two dimensions. The 

critical values are calculated experimentally, and then the nearby elements with 

statistically identical special distribution are merged. The dimensionality reduction 

process ends with the detection of isotopic envelopes, which are also reduced to 

a single feature. Isotopic envelopes are detected by examining the distance between 

successive peaks, their shape, and their spatial distribution. The results show 

a significant reduction in the dimensionality of the data, from 9454 elements of the 

spectrum model to 888 features in the final set. These results confirm the second 

hypothesis of the paper. 

The following sections describe the training of the classifiers on the processed data. 

Two groups of classifiers were trained. The first group was trained with an algorithm 

that uses multinomial logistic regression. The model is trained by iteratively 

performing logistic regression to find the best feature from the remaining set and 

adding it to the predictor list of the final model. The second set of classifiers are fully 

connected neural networks with two hidden layers, where the number of nodes is equal 

to the number of features. The performance of the classifiers was evaluated using 

metrics such as accuracy, precision, negative predictive value, sensitivity, specificity, 

f1 score, and ROC curves, precision-sensitivity curves, and their areas under the curve. 
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The process of feature importance evaluation was described next. Feature 

importance is assessed by assigning a score to each feature in unit models and 

averaging the results to determine the total feature importance score. For logistic 

regression models, scores are based on the feature's place in the predictor list. For 

neural networks, black-box model interpretation methods were used, LIME and 

Shapley values. 

The last chapter of the thesis is the discussion about the experiments, the results, the 

conclusions drawn, and the goals for the future. 
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Przedmiotem pracy doktorskiej jest analiza danych otrzymanych za pomocą 

obrazowania spektrometrią mas próbek pobranych od pacjentów z nowotworem głowy 

i szyi. W ramach pracy postawiono następujące hipotezy. Pierwsza hipoteza twierdzi, 

że identyfikacja pików w spektrach masowych może być skutecznie przeprowadzona 

za pomocą modelowania całego spektrum, poprzez podzielenie go na części oraz 

zamodelowaniu ich mieszaninami normalnymi. Druga hipoteza twierdzi, że informacja  

o przestrzennej dystrybucji danych pozyskana z obrazowania spektrometrią mass 

skutecznie usuwa redundancje i znacznie zmniejsza wymiarowość danych, przy 

jednoczesnym zachowaniu jakości danych. Ostatnia hipoteza twierdzi, że identyfikacja 

najważniejszych cech, dla danych heterogenicznych jest możliwa i skuteczna dzięki 

wnioskowaniu na podstawie wielu modeli jednostkowych.  

Pierwsze rozdziały skupiają się na podstawowych zagadnieniach związanych 

z proteomiką i spektrometrią mas. W pierwszej kolejności przedstawiono ogólny opis 

spektrometrii mas oraz obrazowania tkanek za pomocą tej techniki. Opisane są 

najważniejsze metody jonizacji oraz analizatory mas, które są powszechnie 

wykorzystywane do analizy próbek pochodzenia biologicznego, w szczególności 

próbek pochodzących od pacjentów z nowotworem. Następnie po krótce opisano 

proces przygotowania próbek oraz pozyskiwania danych, ich charakterystykę, a także 

pierwsze działania mające na celu przygotowanie danych do dalszej analizy, tj. 

zastosowane metody korekty linii bazowej oraz normalizacji. 

Następny rozdział porusza temat agregacji spektrów masowych oraz przedstawia 

aktualny wiedzy na temat detekcji pików. Na zagregowanych danych przeprowadzono 

detekcję pików przy pomocy najczęściej wykorzystywanych w tym celu algorytmów. 

W pierwszej kolejności piki zostały zidentyfikowane za pomocą najbardziej 

podstawowej i popularnej metody bazującej na określeniu współczynniku sygnału do 

szumu, wykorzystując intensywność pików jako sygnał. Następną wypróbowaną 

metodą jest, bazująca na transformacie falkowej, metoda modelowania pików.  

Streszczenie 
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W następnym rozdziale przedstawiona została metoda identyfikacji pików 

polegająca na modelowaniu całego spektrum masowego za pomocą modelu mieszanin 

rozkładów normalnych. Na początku opisana została metoda dzielenia spektrum 

masowego na mniejsze fragmenty w sposób odmienny od oryginalnie proponowanej. 

Przedstawiono szczegółowy schemat działania, wraz z pseudokodem oraz 

porównaniem wyników z oryginalną metodą.  

Kolejna część pracy porusza temat dopasowywania mieszanin rozkładów 

normalnych do podzielonego spektrum. Zawiera ona matematyczny opis 

dopasowywania mieszanin z wykorzystaniem własnej implementacji algorytmu 

expectation-maximization (EM). W szczególności opisano metodę wybierania 

optymalnej liczby elementów w mieszaninach oraz wpływu losowej natury algorytmu 

EM na wyniki modelowania spektrum. Na końcu rozdziału przedstawiono wyniki 

procesu identyfikacji pików. Wyniki potwierdzają prawdziwość pierwszej postawionej 

hipotezy.  

Następny rozdział skupia się na wykorzystywaniu metod statystycznych oraz 

przestrzennej dystrybucji cech w celu usunięcia redundancji i redukcji wymiarowości 

danych. W tym celu przeprowadzona została filtracja szumów wykorzystując 

parametry dystrybucji normalnych opisujących elementy modelu spektrum. Dalej 

inżynieria cech jest kontynuowana z wykorzystaniem informacji, których dostarcza 

obrazowanie. Przestrzenna dystrybucja pobliskich cech jest wykorzystana do 

zmniejszenia liczby cech. Porównanie jest wykonywane z pomocą testu statystycznego 

na podobieństwo dystrybucji Peacock’a. Jest to rozszerzenie testu Kołmogorov’a-

Smirnov’a do dwóch wymiarów. Po wyznaczeniu eksperymentalnie wartości 

krytycznych, pobliskie cechy o statystycznie identycznej dystrybucji przestrzennej są 

łączone. Proces redukcji wymiarowości kończy się na detekcji obwiedni izotopowych, 

które są redukowane do pojedynczej cechy. Obwiednie izotopowe są wykrywane na 

podstawie odległości między pikami, kształtu pików oraz dystrybucji przestrzennej. 

Wyniki pokazują znaczne zmniejszenie wymiarowości danych, potwierdzając drugą 

postawioną hipotezę.  

W kolejnych rozdziałach opisano proces uczenia klasyfikatorów na przetworzonych 

danych. Nauczono dwie grupy klasyfikatorów. Pierwsza grupa to klasyfikatory 

trenowane z wykorzystaniem wielomianowej regresji logistycznej, gdzie klasyfikator 

jest trenowany przez iteracyjne wykonywanie regresji logistycznej, wybierając za 

każdym razem najistotniejszą cechę ze zbioru i dodając ją do listy predyktorów 

końcowego modelu. Druga grupa klasyfikatorów to proste w pełni połączone sieci 

neuronowe z dwoma ukrytymi warstwami, każda z liczbą węzłów równą liczbie cech. 
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Klasyfikatory zostały ocenione między innymi za pomocą miar obliczanych na 

podstawie macierzy błędów takich jak dokładność, precyzja, czułość, swoistość, 

wartość predykcyjna ujemna, miara F1, a także krzywych ROC oraz krzywych 

dokładność-czułość. Ostatnia część eksperymentów bada słuszność trzeciej 

postawionej tezy. Jest ona poświęcona badaniom ogólnej ważności cech obu modeli, 

wykorzystując ważności cech w modeli jednostkowych. W szczególności, dla sieci 

neuronowych do określenia ważności cech wykorzystano takie metody jak LIME oraz 

wartości Shapley’a.  

Ostatni rozdział pracy to dyskusja na temat przeprowadzonych badań, wniosków 

jakie zostały wyciągnięte podczas ich przeprowadzania, ich wyników oraz planów na 

dalsze badania. 
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