
Faculty of Automatic Control, Electronics and Computer Science

ENSEMBLES OF SUPPORT VECTOR
MACHINES WITH EVOLUTIONARILY

OPTIMIZED HYPERPARAMETERS AND
TRAINING SETS

This thesis has been submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

mgr inż. Wojciech Dudzik

Supervisor: dr hab. inż. Michał Kawulok, prof. PŚ

Assistant supervisor: dr hab. inż. Jakub Nalepa, prof. PŚ

Gliwice, March 2023

Contents

1 Introduction 1
1.1 The research hypotheses . 4
1.2 Published papers . 5
1.3 Structure of this dissertation . 6

2 Theory and literature review 9
2.1 Support vector machines . 9

2.1.1 Hard margin SVMs . 10
2.1.2 Non-linear SVMs . 14
2.1.3 Kernel selection . 16
2.1.4 Performance evaluation . 19

2.2 Evolutionary algorithms . 22
2.3 Literature review . 25

2.3.1 Optimization of SVM hyperparameters 26
2.3.2 Selection of SVM training set 35
2.3.3 Feature selection . 42
2.3.4 Multi-aspect SVM optimization 44
2.3.5 Building classification ensembles 45
2.3.6 Summary . 47

3 Proposed methods 49
3.1 A genetic algorithm for optimizing SVM hyperparameters 50
3.2 Evolutionary algorithm for feature selection 55
3.3 Alternating algorithm for optimization of SVM hyperparameters

and training set selection . 58

I

II

3.4 Simultaneous optimization of training and feature set and SVM
hyperparameters . 60

3.5 Adaptive RBF kernel . 64
3.6 Building ensembles . 76
3.7 Summary . 84

4 Experimental validation 87
4.1 Datasets . 87
4.2 Results . 92

4.2.1 Qualitative analysis . 93
4.2.2 Quantitative analysis of 2D datasets for proposed algorithms 104
4.2.3 Comparison with other methods 111

4.3 Summary . 118

5 Conclusions 121
5.1 Future work . 123

Appendices XIX
A Recursive features elimination . XXI
B Statistical tests results . XXII

Chapter 1

Introduction

Nowadays, the field of machine learning and artificial intelligence (AI) is experi-
encing significant growth and is considered to be one of the most rapidly evolving
fields in computer science. The advent of large-scale data collection and storage,
coupled with advancements in computational power, has made it possible to develop
machine learning models that are capable of extracting meaningful insights from
complex data. As a result, machine learning is now widely used across a range of
domains, from healthcare [108] and finance [36] to transportation [140] and enter-
tainment [55]. Despite the significant progress that has been made in the field, the
use of these models can still pose challenges to both experienced and inexperienced
users. One of the major issues emerges from the large-scale datasets that are often
used nowadays. Such datasets can be extremely complex and can be hard to utilize
due to high computational costs. As a result, methods for optimizing machine
learning models need to be designed to scale to large datasets while maintaining
their accuracy and efficiency. Moreover, with a large number of different methods
available for performing those tasks, it can be difficult for users to select the most
appropriate method for their specific needs.

Classification is one of the fundamental problems in the field of machine learning.
It involves the task of predicting the class labels of new data points (samples)
based on a model learned on the training dataset of labeled examples. It is a
crucial problem in many domains, such as healthcare [132, 103], finance [21], and
security [3], where the ability to accurately and efficiently classify samples can

1

2 Chapter 1. Introduction

provide significant benefits. The classification can be divided into three categories
based on the number of classes. There is the one-class classification that tries to
identify objects of a specific class among all others. If there are only two classes, the
problem is called binary classification while for any larger number, it is described
as multiclass classification. Through the years multiple methods were developed to
tackle these problems. It leads to the situation where there is a significant number
of available optimization techniques and methods to use, including, but not limited
to random forest, k-nearest neighbors (k-NN), artificial neural networks (ANNs),
and support vector machines (SVMs), can make it difficult for users to determine
which approach is best suited for their particular data set. Furthermore, joining
multiple models into an ensemble is a widely used technique, which can help to
improve the accuracy and robustness of the classifier. The rationale behind ensemble
methods is that by combining the predictions of multiple models, we can reduce
the variance and bias of the resulting classifier, and thus improve its generalization
performance. It, however, brings even more difficulties as there are many different
ways of building those ensembles, spanning across bagging [84], stacking [134], and
boosting [46] to name the most popular ones. While the problem of appropriate
hyperparameters’ selection and training of individual models in ensembles still
remains to be solved.

SVMs are one of the popular methods for performing binary classification. They
work by finding the hyperplane that separates the two classes of data points while
maximizing the margin between the hyperplane and closest data points. Those
closest points are often selected as support vectors that determine the decision
boundary (hyperplane) of the SVM classifier and are crucial for the classification
process of new data points. This approach leads to a robust and well-generalizing
classifier, which can handle high-dimensional and noisy data [69]. Because of
that, they are widely used for binary classification, with a proven track record of
high accuracy and robustness in various domains, including bioinformatics [64],
finance [79], and engineering [35]. Thanks to that, they are still relevant today in
spite of the popularity of deep neural networks (DNNs) and continue to play a critical
role in the field of machine learning. While DNNs have revolutionized several fields,
including image recognition [27], speech recognition [130], and natural language
processing [20], they also have certain limitations. There are new works that propose

3

to join DNNs capabilities in automatic feature extraction with the robustness of
SVMs [8] which can provide state-of-the-art results in various domains. However,
the major drawback of such solutions is that the SVMs can be computationally
expensive to train. This process is known to have time and memory complexities
of O(t3) and O(t2), respectively, where t is the size of the training set [105]. What
is more, the choice of a kernel function can have a significant impact on the
performance of the classifier. Hence combining SVMs with DNNs is difficult as
DNNs require vast amounts of data for training which tends to produce enormous
datasets that could not be handled by regular SVM classifiers. There are indeed
numerous approaches toward improving the scaling properties of SVM. These
are among other methods that accelerate the training process by better utilizing
hardware or providing an implementation that uses the power of graphics processing
unit (GPU) [133]. Other works focus on limiting the size of the training set [98]
by selecting the most promising vectors hence accelerating the training process
and lowering memory requirements. Although the great successes shown in many
papers, the majority of these methods ignore the problem of hyperparameters
optimization which is crucial in order to get a good classifier. What is more, many
of these methods require technical knowledge and proper expertise before use.

Despite the growing popularity of SVMs in machine learning, the optimization of
these models remains a complex and challenging task. The large size of datasets often
necessitates lengthy computations and requires a vast amount of memory, which
can impede the effective training of SVMs in practical applications. In addition,
the problem of hyperparameter optimization and the selection of relevant features
are often omitted or addressed independently of each other which may negatively
affect the performance of the SVM classifier. This dissertation aims to propose
effective solutions for optimizing SVM models in the context of binary classification.
These solutions have been designed to overcome the challenges posed by large
datasets and provide efficient approaches for hyperparameter optimization training
set and feature selection problems simultaneously. Furthermore, the dissertation
introduces new methods for constructing ensembles of SVM models to enhance their
performance and extend their capabilities with special attention put on keeping the
training process fast. In order to achieve all of the goals evolutionary computations
are used which already proved to be a robust solution to many problems while some

4 Chapter 1. Introduction

examples of such techniques were already effectively utilized to optimize SVMs. This
work is built upon the success of those methods and improves them. By developing
these new techniques, this dissertation seeks to advance the state-of-the-art SVM
optimization.

In the next part of this chapter, the research hypotheses are stated. Then,
Section 1.2 provides a summary of papers that are published which contain the
methods described in this dissertation. These methods have already been published
by the author in proceedings of international conferences and one in a peer-reviewed
journal. Finally, the last section provides a roadmap to the remaining part of this
dissertation.

1.1 The research hypotheses

There are two research hypotheses formulated for this work:

1. Simultaneous optimization of the training set and the SVM hyperparameters
improve training and classification time compared to other state-of-the-art
methods proposed for this purpose without affecting the classification quality.

2. SVM ensembles created using evolutionary algorithms provide improved clas-
sification performance compared to other well-established methods, including
existing algorithms for building SVM ensembles.

To clarify what is meant by “other state-of-the-art methods proposed for
this purpose” in the first hypothesis—these methods comprise grid search and
optimization algorithms for SVM hyperparameters, and training set selection
methods described in the existing literature. It is understood that these methods
yield comparable classification metric values to the proposed algorithm while
providing faster training and classification time. This final effect on the classification
performance is determined by statistical tests comparing multiple classification
metrics. The second hypothesis aims to measure the improvement in classification
performance using classification accuracy, F1, and Matthews correlation coefficient
(MCC) score (as described in Section 2.1.4). Other aspects such as training and
classification time will also be analyzed for all of the approaches as they are

1.2. Published papers 5

important for practical applications. This work also includes the algorithms for
feature selection but they are not studied in detail and should be treated as an
extension to the training set selection and hyperparameters optimization.

1.2 Published papers

Parts of the work presented in this dissertation have already been published in
international conferences and in peer-reviewed journals. Table 1.1 shows all of the
published papers.

Table 1.1: The list of proposed algorithms that are already published in international
conferences and peer-reviewed journals.

Algorithm Acronym Reference
ALternating Genetic Algorithm
for selecting SVM training sets and models ALGA [76]

ALternating Memetic Algorithm
for selecting SVM training sets and models
with Feature Selection

FSALMA [39]

Evolutionarily-tuned SVMs ESVM [37]

Simultaneously-Evolved SVMs SE-SVM [38]

SVMs with Adaptive RBF kernels ARBF-SVM [94]

Data-Adaptive SVM DA-SVM [40]

Cascades of Evolutionarily optimized SVMs CE-SVM [41]

It is important to note that the publications listed in Table 1.1 are not the only
papers co-authored by the author of this dissertation. Rather, these works represent
key contributions that led to the development of algorithms for optimizing SVMs.
Any figures that have already been published in one of these works will be clearly
indicated in the figure’s caption, e.g., “This figure comes from our paper [37]”.

6 Chapter 1. Introduction

1.3 Structure of this dissertation

This work is organized as follows. Chapter 2 provides the background concerning
the theory behind SVMs. Here, the importance of hyperparameters in SVM is
discussed and presented using visual examples of 2D datasets. Additionally, a
sub-section of the chapter addresses the challenge of evaluating the performance
of binary classifiers. The second part of the chapter undertakes a comprehensive
review of the existing literature on SVMs. The review is presented in subsections
based on the optimization aspects of SVM, including the SVM model, training
set, and feature set. In addition, the process of building ensembles, a technique
that involves combining several classifiers to enhance performance, is analyzed.
Toward the end of the chapter, a summary of all the methods discussed is presented,
and their relevance in the current research context is highlighted. This summary
consolidates the various approaches to SVM and helps better contextualize the
presented work within the broader context of the current research.

Chapter 3 is dedicated to the presentation and analysis of newly proposed
solutions. The chapter provides a detailed description of each of the algorithms,
outlining their individual features and functionalities. The objective of this chapter
is to offer a comprehensive understanding of the solutions, including the rationale
behind their design and implementation. Finally, a short summary is presented,
which compares the algorithms. This comparison provides readers with a better
overview of the provided solutions and offers a basis for understanding the relevance
of each of the solutions in addressing the research problem.

Chapter 4 presents an experimental study aimed at assessing the performance
of the methods discussed in Chapter 3. The chapter offers a detailed description
of the datasets used in the experiments and outlines the configurations used for
the algorithms. The objective of this chapter is to provide a thorough analysis of
the proposed algorithms and to evaluate their performance. These new algorithms
are subjected to a quantitative analysis using 2D artificially created datasets. This
analysis is aimed at examining the behavior of the algorithms and enables to compare
them visually. Furthermore, the performance comparison of the proposed methods
against other state-of-the-art optimization techniques and popular classifiers, using
benchmark datasets is presented. This comparison is critical in evaluating the

1.3. Structure of this dissertation 7

effectiveness of the new methods and in determining their contributions to the
field. The statistical significance of the results is also discussed, ensuring that the
conclusions drawn from the study are based on reliable evidence.

Chapter 5 of this dissertation summarizes the finding and provides the conclu-
sions drawn from the presented data. This chapter encapsulates the key takeaways
from the study, highlighting the significance of the findings and how they contribute
to the existing knowledge in the field. Furthermore, the chapter explores potential
avenues for future research, sheds light on the limitations of the study, and identifies
areas that require further exploration.

8 Chapter 1. Introduction

Chapter 2

Theory and literature review

In this chapter, the theory behind SVMs is introduced. Hard margin and soft
margin SVMs are discussed (in Section 2.1.1), which focus on linear SVMs. The
non-linear SVMs (using kernel functions) are presented separately in Section 2.1.2.
The significance of using the appropriate kernel along with its hyperparameters is
discussed in Section 2.1.3. The examples showing the impact of those kernels will
be presented with 2D datasets and visualized. Later in the chapter, the metrics
used to evaluate the performance of SVMs are presented (in Section 2.1.4). This
is followed by a brief introduction to the evolutionary computations which are
used in all of the proposed methods. This concludes the first part of this chapter.
The second part of this chapter is dedicated to the literature review (Section 2.3).
This review is divided into multiple sections, concerning the methods for SVM
hyperparameters optimization (Section 2.3.1) followed by methods for training set
selection (Section 2.3.2) and feature selection (Section 2.3.3). Afterwards, methods
that couple any of those optimizations together are discussed in Section 2.3.4. The
chapter is concluded with the review of the approaches toward buildings ensembles
with the SVMs in Section 2.3.5.

2.1 Support vector machines

SVM is a binary supervised classification algorithm. It was introduced by
V. Vapnik et al. in 1992 [19] and later extended for regression tasks. The fundamental

9

10 Chapter 2. Theory and literature review

idea of SVM is to find the optimal separating hyperplane between the two classes
that maximizes the margin between the closest data points from each class.

Assuming a set T that consists of t training vectors xi ∈ RD, i = 1, ..., t, where
each vector belongs to one of two classes yi ∈ {−1, +1} (binary classification
problem). A function f(x) separates those vectors into two classes. This function
can be defined as:

f(xi) > 0,∀yi = 1,

f(xi) < 0, ∀yi = −1.
(2.1)

First, the problem of determining f(x) on linearly separable data is considered.

2.1.1 Hard margin SVMs

Linear SVM classifier aims to separate the data in the D-dimensional input
space using a hyperplane decision boundary defined as:

f(x) : wT x + b = 0, (2.2)

where w is a hyperplane normal vector w ∈ RD, and b is an offset, b ∈ R.
This hyperplane Equation needs to satisfy the conditions defined in Equation 2.1.
There might be many hyperplanes equations that will satisfy those conditions. To
determine an unambiguous solution, this decision hyperplane is positioned such that
the distance between two vectors from opposite classes is maximal (with respect to
the hyperplane). Considering data that are linearly separable and contain only two
classes (yi ∈ {−1, +1}), training data need to satisfy the following conditions:

wT xi + b ≥ 1, yi = +1,

wT xi + b ≤ −1, yi = −1,
(2.3)

which can also be written in a single Equation as:

yi(wT xi + b)− 1 ≥ 0, yi ∈ −1, +1. (2.4)

The inequalities shown in Equation 2.3 and Equation 2.4 present two parallel
hyperplanes (i.e., hyperplanes with the same normal vector) which are based on

2.1. Support vector machines 11

vectors that satisfy following equation:

wT xi + b = 1,

wT xi + b = −1.
(2.5)

These vectors are called support vectors (SVs). The distance to the origin is
expressed as |1−b|

||w|| and |−1−b|
||w|| respectively, where ∥w∥ is the second norm of a vector

(called also Euclidean norm). Those planes are presented with dotted lines in
Figure 2.1. Please note that with the above definition, there are no vectors in space
between those hyperplanes. What is more, the shortest distance to any data vector
(from either class) is 1

∥w∥ , hence the maximal margin (m) is equal to:

m = 2
∥w∥

. (2.6)

The example of such linear SVM is presented in Figure 2.1b. Moreover, if any of
the selected SVs in Figure 2.1b is changed to another vector from the training set,
the calculated solution (hyperplane) will be different.
As the goal is to maximize the separating margin, the value of ||w|| needs to be
minimized:

min
w,b
∥w∥. (2.7)

To simplify the calculation, we can rewrite Equation 2.7 as the quadratic term:

min
w,b

∥w∥2

2 . (2.8)

While solving the optimization problem, we need to respect the constraints from
Equation 2.3. Therefore, this becomes a quadratic programming problem (QP).
The solution obtained by solving such formulation (called also primal form) is
a hyperplane defined by the normal vector which is retrieved from QP. This
hyperplane is then used to classify incoming data based on the following decision
function:

f(a) = sgn(wT a + b), (2.9)

12 Chapter 2. Theory and literature review

y

x

(a)

y

x

w
· x

+
b =

0
w
· x

+
b =

1

w
· x

+
b =
−1

2∥w∥

b∥w∥

w

(b)

Figure 2.1: (a) An illustrative example of simple 2D datasets with two classes (black
and white dots) where multiple separating hyperplanes are denoted with dotted
lines. (b) An example of a linear SVM trained on the presented data. The support
vectors are denoted with red color, while the decision boundary is presented with a
solid line.

where a is a data vector.
Equation 2.3 can be re-written to obtain the Lagrangian in its primal form:

L(w, b, α) = ∥w∥
2

2 −
t∑

i=1
αiyi(wT xi + b) +

t∑
i=1

αi, (2.10)

where αi are the Lagrange multipliers. The advantage of such formulation is the
fact that all of the training and test data will appear in the form of a dot product
between vectors. This is a vital feature that will allow the expansion of the above
formulation for non-linear cases. Finding the hyperplane for SVMs is equivalent to
finding the solution to the Karuch-Kuhn-Tucker (KKT) conditions. The Lagrangian
in the dual form, also known as Wolfe dual, can be written by employing those
conditions to obtain the following form:

LD(α) =
t∑

i=1
αi −

1
2

t∑
i=1

t∑
j=1

αiαjyiyjxT
i xj, (2.11)

2.1. Support vector machines 13

under the following constraints:

t∑
i=1

αiyixi = 0, αi ≥ 0. (2.12)

The weight vector of the original problem is expressed as:

w =
t∑

i=1
αiyixi. (2.13)

The decision function from Equation 2.9 can be obtained by applying Equation 2.13:

f(a) = sgn(
t∑

i=1
αiyixi

T a + b). (2.14)

Soft margin SVMs

In 1995, a method for learning SVMs with a soft margin was published [32]. It
is a modification of the SVM classifier that allows the determination of a decision
function for non-linearly separable data (see Figure 2.2). Such data often occur in
real-world problems due to, among other things, noisy readings or incorrect labeling
of training data. Otherwise trying to train hard-margin SVM on noisy data will
complicate the boundary decision boundary function, as well as degrade the quality
of the classification itself. In order to be able to apply inequalities 2.3, an additional
variable must be introduced, which is the cost of the vector misclassification
operation:

wTxi + b ≥ 1− ξi, yi = +1,

wTxi + b ≤ −1 + ξi, yi = −1,

ξi ≥ 0,

(2.15)

where ξi is a slack variable. By taking the slack variable into consideration in the
objective function, it can be updated as follow:

min
w,b,ξ

∥w∥2

2 + C
t∑

i=1
ξi, (2.16)

under the following constraints:

14 Chapter 2. Theory and literature review

yi(wTxi + b) ≥ 1− ξi, i = 1, ..., t,

ξi ≥ 0, i = 1, ..., t,
(2.17)

where C is the parameter that controls compromise between the margin and the
slack penalty. The larger values of C increase the penalty for errors. This new
parameter allows for presenting the concept of soft margin SVMs. Similarly, as in
the previous case, the Equation 2.11 can be re-written for soft margin SVM:

LD(α) =
t∑

i=1
αi −

1
2

t∑
i=1

t∑
j=1

αiαjyiyjxT
i xj (2.18)

is to be maximized subject to

t∑
i=1

αiyi = 0,

0 ≤ αi ≤ C.

(2.19)

The weight vector w is the same as in Equation 2.13. In comparison to the previous
problem statement, the αi parameters are additionally bounded by the C value.
For very large values of C, this formulation is close to the hard margin SVM in
practice. To better illustrate the concept situation of misclassification of a single
vector is presented in Figure 2.2. One of the white vectors is on the “wrong” side
of the decision hyperplane, therefore, there is a penalty to be accounted for. For
every i-th vector, this penalty is equal to d = ξi

|w| .

2.1.2 Non-linear SVMs

While the above description of linear SVMs can be used for classification, there
are still many real-life problems where a non-linear decision function is required.
For this reason, the kernel trick was introduced to provide a non-linear separating
hyperplane in SVMs [32]. It includes defining a kernel function which is computed
as a dot product of two vectors:

K(ai, aj) = ϕ(ai)T ϕ(aj), (2.20)

where a denotes the sample (vector) from the input space, and ϕ : R → F is a

2.1. Support vector machines 15

y

x

margin

w

d

Figure 2.2: An example of the soft-margin linear SVM. The misclassified example
is denoted with a yellow circle.

function that maps the data from the original D-dimensional space into a higher-
dimensional space F and K : RD × RD → R. The kernel function needs to satisfy
the Mercer Theorem [62]. This allows for writing Equation 2.11 as:

LD(α) =
t∑

i=1
αi −

1
2

t∑
i=1

t∑
j=1

αiαjyiyjK(xT
i , xj), (2.21)

thus the decision function used for classification can be written as:

f(a) = sgn(
t∑

i=1
αiyiK(xT

i , a) + b). (2.22)

When the kernel function satisfies Mercer conditions, it can be proven after [32]
that the dot product is defined in a feature space. Because of that, there is no
need to calculate ϕ mapping explicitly. Therefore, kernel trick allows the SVM to
operate in the original, lower-dimensional space while still taking advantage of the
separation of the data in the higher-dimensional space. It is worth mentioning that
in order to classify new vectors there is only a need to calculate the values of a
kernel function between support vectors (SVs) and new data sample.

There are several types of kernel functions, including linear, polynomial, and

16 Chapter 2. Theory and literature review

radial basis function (RBF) kernels. The choice of a kernel function will depend on
the characteristics of the data and the specific requirements of the task at hand.
While this work focuses on RBF and linear kernels (being the most popular ones),
there are many more kernels of which a few examples are shown in Table 2.1:

Table 2.1: Popular kernel functions.

Name Function
Linear K(xi, xj) = xi

T xj
Polynomial K(xi, xj) = (xi

T xj + g)d

Radial basis function (RBF) K(xi, xj) = e−γ||xi−xj||2 , γ > 0
Sigmoid K(xi, xj) = tanh(xi

T xj + g)

The example of the mentioned mapping and learned hyperplane is presented
in Figure 2.3 and 2.4. The image in Figure 2.3 presents the data that cannot be
separated linearly. Hence, a proper kernel trick must be used to effectively apply
an SVM to this problem. After learning a hyperplane, which is presented with
the solid blue line, between classes can be obtained. Figure 2.4 is an example of
possible mapping the 2D data into 3D space by using the following formula to
obtain the third dimension of the data z = x2 + y2. After applying that mapping, a
linear SVM could be trained which will result in the presented hyperplane (a blue
plane). Thanks to the kernel trick this explicit mapping is not necessary and by
applying the proper kernel function the same result could be obtained.

2.1.3 Kernel selection

In the context of SVMs, the kernel function plays a crucial role in the perform-
ance of the model. As mentioned previously, the kernel function is used to map
the input data into a higher-dimensional feature space, where it becomes possible
to find a hyperplane that can linearly separate the data. The choice of the kernel
function can significantly impact the model’s accuracy, as well as the computational
efficiency of the training process [54]. One problem with selecting the kernel function
for an SVM is that there is no general way to determine the “best” kernel function
for a given dataset. Different kernel functions may perform better on different
types of data, and it is often necessary to try out a number of different kernel

2.1. Support vector machines 17

−2 −1 0 1 2
−2

−1

0

1

2

Figure 2.3: An example of data that is non-linearly separable. Green triangles
present a positive class while red squares present a negative class. The hyperplane
is rendered with a blue solid line.

−2
0

2 −2
0

2

1

2

3

4

Figure 2.4: One of possible mapping of data from Figure 2.3 into 3D space. Here
the decision boundary is seen as a blue 3D plane.

18 Chapter 2. Theory and literature review

functions in order to find the one that works best for a particular dataset. This
can be time-consuming and may require significant experimentation [9]. Another
issue with kernel function selection is that it can be difficult to determine the
appropriate kernel function for a given dataset without a strong understanding of
the characteristics of the data and the underlying relationships between the data
points. Moreover, many kernels come with a set of hyperparameters which need to
be tuned. This often requires performing cross-validation which also requires time
and computing power. This can make it challenging for researchers to effectively
use SVMs, particularly if they work with large or complex datasets.

C = 0.001 C = 0.01 C = 0.1

C = 1 C = 10 C = 100

Figure 2.5: Comparison of different C hyperparameter setting for the linear kernel.
Yellow crosses denote SVs, whereas dark and light gray denote values of decision
function – the boundary between them is the decision hyperplane.

In the following examples, there is the presentation of how selecting a proper
kernel function as well as its hyperparameters can affect the final decision hyperplane.
For the purpose of better understanding, all of the results of SVMs and their decision
boundaries are visualized on artificially created 2D datasets. First, the importance of

2.1. Support vector machines 19

the C hyperparameter with a linear SVM is presented in Figure 2.5. Large values of
C result in a smaller-margin hyperplane to avoid any misclassifications. Conversely,
a very small value of C cause a larger margin separating the hyperplane, even if
that hyperplane misclassifies more points. This effect can be seen in Figure 2.5,
where increasing of the C width of the margin is getting smaller which results
in a smaller number of support vectors as they are not lying within this margin
and effectively do not influence decision function. In this example, the value of C

does not affect the generalization performance of an SVM but it is visible that
the selection of the proper value can greatly affect the resulting SVM model. In
this case, it impacts the number of SVs hence the classification speed will differ
significantly between tested values.

The second example presented in Figure 2.6 compares different SVM kernels
and their hyperparameters. The first row presents the example of a 2D dataset
(please note that dots were enlarged in the visualization of the dataset) and two
very similar solutions obtained by the polynomial and RBF kernel. What can be
noticed is that in both of those examples, there are very few SVs present. On the
other hand, the second row provides examples of poor classification (in comparison
to the best solutions obtained). Starting from the left side, the linear kernel is
inappropriate for this kind of data as it requires a non-linear decision boundary.
The RBF kernel with wrongly optimized γ and C values drastically increases
the number of SVs while achieving an accuracy of 0.94. As the last example, the
polynomial kernel with d = 2 and C = 0.001 provides even worse classification
than the linear kernel. These are only a few examples taken from optimizing those
sets of hyperparameters for a given kernel using the grid search algorithm. Even
in the case of a fairly simple 2D dataset (where perfect classification is easy to
achieve), the values of hyperparameters and kernel selection are crucial in order to
achieve good classification performance.

2.1.4 Performance evaluation

A typical way to assess the performance of SVMs (as well as other binary
classifiers) is to calculate the confusion matrix, presented in Table 2.2 and derive
various metrics from it. There are four numbers that create such a matrix: (1) the

20 Chapter 2. Theory and literature review

Dataset RBF γ = 10, C = 100, Acc = 1.0 Poly d = 7, C = 1000, Acc = 0.99

Linear C = 0.1, Acc = 0.79 RBF γ = 1, C = 0.01, Acc = 0.94 Poly d = 2, C = 0.001, Acc = 0.76

Figure 2.6: Comparison of different SVM kernels (linear, RBF, and polynomial)
and their hyperparameters. Yellow crosses denote SVs, whereas dark and light gray
denote values of decision function – the boundary between them is the decision
hyperplane. Above each example, the kernel with a set of hyperparameters is given
together with the accuracy of the model.

Table 2.2: Visualization of confusion matrix, where green cells represent correct
classification and red cells represent different types of errors.

Predicted → Positive Negative
Actual ↓
Positive True positive False negative
Negative False Positive True negative

number of correctly classified vectors from the positive class called true positive
(TP), (2) the number of correctly classified vectors from the negative class called
true negative (TN), (3) the number of incorrectly classified vectors from the positive
class called false negatives (FN) also known as type II error and finally (4) the
number of the incorrectly classified vectors from the negative class called false

2.1. Support vector machines 21

positive (FP) also known as type I error. Multiple metrics can be derived using
those four numbers, such as:

Accuracy = TP + TN

TP + TN + FP + FN
, (2.23)

Precision = TP

TP + FP
, (2.24)

Recall = TP

TP + FN
, (2.25)

F1 = 2 · Precision ·Recall

Precision + Recall
= 2 · TP

2 · TP + FN + FP
, (2.26)

MCC = TP · TN − FP · FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

. (2.27)

In this dissertation, all of those values will be presented to compare the perform-
ance of SVMs. While all of the above metrics can describe performance, not all of
them can be a good choice, e.g., for imbalanced data, it can be easy to achieve very
high accuracy by always predicting the same (majority) class. For such cases F1 is
a better choice for imbalanced data. Although in the case of the F1 score selecting
a minority class as a positive one is still important. Despite the crucial importance
of selecting proper performance metrics in machine learning, there is no widespread
consensus on unified measures. Lately, MCC was proposed as being more reliable
than accuracy or F1 [29, 30]. One more important aspect to consider is the decision
threshold. Naturally, SVMs decide to which class an example belongs based on the
sign of the decision function. This value could be adjusted based on the receiver
operating characteristic (ROC) curve [44]. This process of threshold adjustment
is important when SVM is trained using the training set selection procedure. It
may seem counterintuitive at first, as there is a free term b (see Equation 2.22)
which is found during the optimization process. However, when only a subset of
the training data is used to derive a model of an SVM a part of the information
about data characteristics is lost. Due to that adjusting threshold based on the
full training set or validation set can boost the SVM performance. The training set

22 Chapter 2. Theory and literature review

selection makes SVM training feasible for large datasets but can negatively affect
its final performance. Therefore, the selection of an additional threshold based
on ROC can impact performance positively as the learned term b cannot know
the full characteristic of underlying data. An argument to use the area under the
ROC curve (AUC) as the performance metric can be made as it does not require
setting certain thresholds but it becomes harder to use in an ensemble setting
which is also studied in this work. These difficulties include selecting micro or
macro averages of AUC of models that are included in the ensemble which have a
different interpretation and their selection depends on the dataset. What is more,
the presented method (in Section 3.6) builds a cascade of SVMs where it is not
trivial to define the AUC metric and its interpretation. That is why for building
ensembles MCC is used as a primary metric (although as presented in Section 3.6,
the fitness function for evolutionary computation does not use MCC at all).

Moreover, as a time performance measure for SVM the number of SVs can be
retrieved, as the classification time depends linearly on the number of SVs. Also,
the training time of the classifier could be monitored. Although measuring the
training time depends heavily on the implementation of the training algorithm and
its usage of advanced CPU features as well as usage of GPU or memory layout
of data used during the training. The observed timing differences could be on
the order of hundreds of times [133]. That is why training times are compared
mainly among proposed algorithms and not directly compared to others methods
as there is a great possibility for non-informative or misleading results. To sum up,
non-functional aspects of SVMs that can be measured include:

1. number of SVs,

2. classification time,

3. training time.

2.2 Evolutionary algorithms

Evolutionary algorithms (EAs) are a class of optimization techniques that are
inspired by the process of natural selection. These algorithms are used to solve

2.2. Evolutionary algorithms 23

a wide range of problems from different fields such as economics, management
and engineering [74]. They are particularly well suited for complex problems or
ones with large search spaces that are too difficult to solve using traditional
optimization methods, or for which there is no known algorithm [89]. There are
multiple branches of EA such as genetic algorithms (GAs), evolution strategies,
evolutionary programming, differential evolution, or neuroevolution.

GAs work by iteratively improving a population of candidate solutions to a
problem, through the application of a set of rules that mimic the process of natural
selection. Each element in such a population is called a chromosome which is
the encoded representation of a solution. Those chromosomes are evolved using
specific genetic operators. In the basic GA, those operators include crossover and
mutation. The crossover is the process of combining two solutions to create a new
solution. It may also involve additional checks if the new solution is feasible. The
mutation consists of randomly altering a solution to diversify the search. After
such alteration, the fitness value of each individual is assessed and it can be either
minimized or maximized depending on the GA design and problem at hand. Later
fitness values are used to select individuals for the next generation and creation of
new population. Most often selection process keeps the best solution while the rest
of the population can be selected in different ways. One of the popular choices is
to use a strategy that keeps the N best individuals to maintain the constant size
of the population. This process is continued until the stop condition is met. The
termination condition is an important step in designing the algorithm and it may
include:

• checking the fitness of the best individual in the population (whether the
individual fitness is satisfying threshold set before running GA),

• checking the number of generations evolved or time of execution,

• checking the population characteristic (e.g., diversity, if average fitness of
population has changed compared to the last generation),

• or checking combinations of the above conditions.

The pseudocode of a general GA is presented in Algorithm 1.

24 Chapter 2. Theory and literature review

Algorithm 1 A general scheme of a genetic algorithm (GA).
1: Initialize population Pa

2: Calculate the fitness of each chromosome in Pa

3: while stop condition not met do
4: Select pairs of chromosomes (pa, pb) from Pa

5: for all pairs (pa, pb) do
6: pc = crossover(pa,pb)
7: pc = mutation(pc)
8: Calculate fitness of pc

9: Insert pc into Pb

10: Pa = Selection(Pa,Pb)
11: return fittest chromosome in Pa

When designing the genetic algorithm the choice of a proper chromosome
structure (encoding) and fitness metric is crucial. These are often problem dependent
parts of GAs. Representations of an individual are chosen so that its set of genes
reflects the solution to the problem. For example, in the travelling salesman problem
(TSP), a good representation would be an ordered list of towns to visit [131]. Since
the GAs operate on a population of solutions, the search starts from many points
scattered across the solution space. This makes GA less likely to get the solution
stuck in local minima. It is one of the significant advantages of GAs compared to
other methods that operate on a single solution. The fitness function has the task
of calculating how close a particular individual is to the optimal (sought) solution.
Again referring to the TSP, the evaluation function can be defined as the sum of
the distances between the cities on the list.

Despite their successes in solving a wide range of various optimization prob-
lems [90], evolutionary algorithms do have some limitations. One of the main
challenges with these algorithms is their computational complexity. Evolutionary
algorithms typically require a large number of function evaluations in order to find
good solutions. In addition, evolutionary algorithms may not always find the global
optimum solution to a problem and may be sensitive to the initialization of the
population [115].

Another problem often encountered in literature is proving the effectiveness
of GAs in an analytical way. The main reason for this difficulty is the “No free

2.3. Literature review 25

lunch” theorem [135], stating that there is no optimization algorithm that will be
general and simultaneously optimal for solving any problem. For this reason, if no
assumptions are made about the objective function f , it is difficult to prove the
superiority of evolutionary methods over other methods, e.g., random search. A
schema theorem was proposed [63] which says that short, low-order schemata (a
set of few genes) with above-average fitness increase exponentially in frequency
in successive generations. This means that if there are some genes that present
better solutions they should be quickly replicated to other chromosomes in the
population. The problem is that this theorem holds under the assumption of
GA maintaining an infinitely large population and does not always carry over to
populations of the defined (and limited) size used in practice. Due to sampling
errors GAs may converge on schemata that have no selective advantage. In practice,
empirical evidence is accepted as proof of genetic algorithms’ advantage over other
methods [89].

One more important addition (and improvement) to GAs is the use of local
search or other refinement procedures. Such an algorithm is called a memetic
algorithm (MA) or a hybrid GA [92]. This improvement over the presented general
GA structure provides a better balance between generality and problem specificity.
It also addresses the “No free lunch” theorem since MA is tailored for the problem
with additional refinement procedures. It can be applied to all of the individuals in
the population, as well as try to select the most promising chromosomes. As it tries
to improve the search result, it also balances the exploration versus exploitation of
promising regions of the solution space and helps to avoid premature convergence
and getting stuck in local minima. Due to their advantages, MAs have been proposed
for a wide range of applications such as machine learning [93], bioinformatics and
medicine [12], engineering [47, 85] and combinatorial optimization [91, 123].

2.3 Literature review

In the following section, the state-of-the-art methods for SVM hyperparameters
optimization and the training set, and feature set selection are reviewed. Afterwards,
the literature regarding the optimization of multiple aspects is analyzed.

26 Chapter 2. Theory and literature review

2.3.1 Optimization of SVM hyperparameters

Optimization of SVM hyperparameters is an active research topic. In more
general terms, it is a part of various automatic hyperparameter optimizations
(HPOs) These include simple techniques such as grid and random search as well as
more advanced ones like Bayesian optimization or evolution strategies. Running
HPO is not a simple task as it is often viewed as a black-box optimization problem
and often requires proper configuration which may affect both performance of
the HPO algorithm and the quality of results [17]. It is worth noting that such
black-box approaches often do not have closed-form mathematical representation,
hence there is no analytic gradient information available. What is more, the
machine learning models include continuous, categorical, discrete, and conditional
hyperparameters which make traditional numerical optimization methods unsuitable
for HPO. Another basic and crucial difficulty in such optimization is that in the
case of SVMs and other supervised learning methods, the training procedure needs
to be run (meaning running optimization process for finding ∥w∥ in case of SVMs,
see Equation 2.21) before measuring the objective function. This process is known
to be problematic for SVM in particular due to time and memory complexities [105].
Taking those properties together they define a considerably difficult optimization
problem.

There are several main categories into which the hyperparameter optimization
algorithms can be divided:

1. general methods for hyperparameter optimization—these methods do not
impose any prior knowledge of the SVM structure,

2. methods focused on kernel function selection and determination of its hyperparameters—
often focused on several predefined kernels,

3. specialized methods that create new hand-crafted kernel functions.

As already discussed, the general methods should perform on average worse than the
specialized ones (due to the “No free lunch” theorem), but they have the advantage
of much easier setup and application which may favor their choice in practice. The
presented categories are not exhaustive, as there are far more attributes that can be

2.3. Literature review 27

taken into consideration, such as the exploration vs. exploitation trade-off (global
vs. local behavior), parallelizability, noise handling or multi-fidelity (e.g., using
subsets of data for quicker evaluation) [138]. Although sub-sampling the training
set is used in some of the techniques [142] (sometimes used in conjunction with
surrogate models) in general these are just random samples to lower the cost of
optimization like in the case of the Hyperband algorithm [82]. The methods of
sub-sampling training data will be revised in more detail in Section 2.3.2.

Grid search and random search

Grid search (GS) and random search (RS) are two popular methods for hyper-
parameter tuning [15]. Their main advantage is the simplicity of implementation
(which makes them easily available in many software packages e.g., Scikit-learn [104])
and easy parallelization as each evaluation is independent of the others. GS works
by evaluating the Cartesian product of a user-specified finite set of values. As-
suming there are k parameters and each of them has n distinct values, it creates
nk configurations and trains a model for each of them. The best combination of
hyperparameters values is then chosen based on the performance of the model on
a validation set. It is easy to see that GS has an exponential time complexity of
O(nk). In consequence, it is not well-suited for problems with large numbers of
hyperparameters. What is more, even though it is considered an exhaustive search
method, it is often not able to find global optimum in the case of continuous hyper-
parameters [15]. This has two main reasons: GS cannot exploit the well-performing
regions by itself and requires a predefined finite set of values to test. Therefore GS
should be considered only for relatively small configuration spaces (low dimensional
spaces e.g., 2D) in order to be effective. There are many improvements already
proposed to GS including:

• Automatic narrowing of search space, sometimes called hierarchical GS [128].

• Using subsamples of data for initial approximation of promising regions.

• Early stopping.

Due to its availability and simplicity it is still widely used for hyperparameter
search in low-dimensional spaces.

28 Chapter 2. Theory and literature review

RS is similar to GS in the manner of evaluating all of the candidates’ configura-
tions. The main difference comes in how these candidates are sampled in a random
manner. The number of such samples is predefined and each hyperparameter is
sampled based on specified distribution with lower and upper bounds. As the
number of samples is fixed, there are only n unique configurations to be tested
making its time complexity O(n). In theory, if the configuration space is large
enough, then the global optimum or its approximation can be detected. Another
advantage over GS is that hyperparameters combinations coming from the specified
distributions improves system efficiency by reducing the probability of wasting
much time on a small poor performing region.

Random Search

Important Hyperparameter

U
ni

m
po

rt
an

t
H

yp
er

pa
ra

m
et

er

Grid Search

Important Hyperparameter

U
ni

m
po

rt
an

t
H

yp
er

pa
ra

m
et

er

Figure 2.7: Example of RS and GS of nine trials for optimizing function f(x, y) =
g(x) + h(x). The importance of the hyperparameters is illustrative and can be
obtained a posteriori. This figure is inspired by [15].

This situation is illustrated in Figure 2.7 where nine trials of different hyperpara-
meters are presented. There are two different hyperparameters that differently
affect end results, denoted as important and unimportant. In the case of GS points
evenly cover the original 2D space while their projections over either of the hyper-

2.3. Literature review 29

parameters produce an inefficient coverage of just three points. In contrast to that
uniformly sampled points are less regular in the original space but far better cover
each hyperparameter subspace. In that case, the advantage of RS is exploring nine
different values of an important hyperparameter whereas GS checks only three.
Although as discussed by Bergstra [15] this is a rule rather than an exception, GS
could still be useful in selecting SVM hyperparameters as considering RBF kernel
for example, there are just two hyperparameters to select and we limit the number
of trials needed for grid search by sampling on a logarithmic scale between lower
and upper bounds (as recommended by the LibSVM creators [24]). In both cases
(RS and GS) their usage is much better than manually tuning as it saves time and
increases the reproducibility of results (for RS it is important to get the same seeds
for the random number generator).

There is still ongoing research in improving RS algorithms. The work by Florea
et al. [45] focused on reducing the computational complexity of the RS method by
limiting the number of trials needed to find a good solution. They achieved it by
introducing a dynamically computed stopping criterion. That algorithm is divided
into two parts. In the first one, a small number of predefined trials are evaluated
and the best solution is remembered. In the second part, they try to find a new
solution better than the one found before. If such a solution is found the algorithm
is terminated. As presented by the authors, this led to a decrease in the number of
RS evaluations (SVM trainings) needed without significantly lowering accuracy.

Other interesting works on improving RS are successive halving [72] and Hy-
perband [82]. The idea behind successive halving is to allocate budgets (B) for
each of configuration (n). During the first iteration of the algorithm, all of the
configurations are evaluated but within a limited budget (b = B/n). Then according
to the evaluation results, half of the poor-performing hyperparameter configurations
are eliminated and the rest is passed to the next iteration with doubled budgets.
This process repeats until there is a final (the best) configuration found. The main
difficulty in running such an algorithm is determining the trade-off between running
a few configurations with a high budget or testing more configurations but with
lower budgets.

Hyperband algorithm tends to solve this problem. It is a wrapper method of
successive halving. It is considering multiple different values for the number of

30 Chapter 2. Theory and literature review

configurations (ni) where each such number is allocated with its own budget. The
larger the ni is, the smaller budget is being assigned to it. Then for each such ni the
successive halving procedure is performed. Hyperband needs two parameters to be
set: the maximum amount of resources R that can be assigned to one configuration,
and the fraction η of configurations that are eliminated each time successive halving
is run. The method starts with the most populous group for maximum exploration.
Every following iteration reduces the number of configurations by a factor of η, until
the final iteration where each configuration is given R resources, which is similar to
a traditional random search. This approach allows Hyperband to take advantage
of situations where adaptive assignments perform well, while still maintaining
satisfactory results when conservative allocations are necessary.

Bayesian optimization

Bayesian optimization (BO) [116] is a powerful optimization technique that is
particularly well-suited to problems where the number of function evaluations is
limited. It determines the next hyperparameter value based on the previous results
of tested hyperparameter values, which avoids many unnecessary evaluations. Thus,
it can be considered a sample-efficient method. This approach is particularly useful
when the objective function is expensive to evaluate, or when the function is a
black box with no gradient information available. However, due to the fact that
Bayesian optimization models operate based on the values that were previously
tested, they are considered sequential methods and are challenging to parallelize.

In order to select the next values to test, BO builds a probabilistic model of the
objective function (called a surrogate model) and then uses this model to guide the
search for the optimal solution. The surrogate model aims to fit all the currently
observed points into the objective function. Another important part of BO is an
acquisition function which determines how new points will be sampled. It needs
to balance the trade-off between exploration and exploitation. In exploration, the
sample is used to gain knowledge about the areas that have not been sampled
yet, while exploitations try to sample the currently most promising regions. Those
promising regions are based on the posterior distribution. The general pseudocode
for the Bayesian optimization algorithm is presented in Algorithm 2. This particular

2.3. Literature review 31

example uses the Gaussian process for a surrogate model.

Algorithm 2 Bayesian optimization algorithm with Gaussian process as a surrogate
model. Kernel function refers to the covariance structure of a GP model.

1: Initialize an empty set of samples S
2: Select a kernel function and a prior distribution for the GP
3: for i = 1 to n do
4: Select the next point xi to evaluate by maximizing the acquisition function

(e.g., expected improvement)
5: Evaluate the objective function f(xi)
6: Add (xi, f(xi)) to the set of samples S
7: Update the GP model using S

8: return x that maximizes f(x)

In general, Bayesian optimization methods are formalized as Sequential model-
based optimization. Common surrogate models for BO include Gaussian Process
(GP), Random Forest Regressions, and tree Parzen estimators [14]. This kind of
optimization might seem like a perfect fit for any machine learning algorithm, as
each evaluation of objective function is very expensive.

One of the recent examples of using Bayesian optimization with the GP is
presented in predicting household vehicle ownership [137]. The authors used de-
scribed above algorithm for BOGP. They were able to improve the results of the
SVM model performance by several percentage points on the test set thanks to
BO. What is more, the optimized SVMBO (as named by the authors) performed
better than other tested machine learning models including k-nearest neighbors
and decision trees.

A combination of selecting random subsets of data for initial evaluation and
combining this process with BOGP was proposed by Klein et al. [77]. The au-
thors propose a method called FAst Bayesian Optimization on LArge dataSets
(FABOLAS) which, during sampling for the next solution, selects additional para-
meter s which is the fraction of data that will be used for evaluation (s ∈ (0, 1])).
While the goal is to optimize performance for s = 1, it is usually much cheaper
to use smaller parts of the dataset while obtained values should still correlate
across s domain. Based on some initial experimentation, the authors proposed to
use a logarithmic scale for s as tested on MNIST dataset (a collection of 70,000

32 Chapter 2. Theory and literature review

handwritten digits that is commonly used as a benchmark) for s = 1/128 already
yielded representative results. This observation is also used in one of the algorithms
presented in this work (see Section 3.5). FABOLAS is often able to discover efficient
configurations at a much faster rate, typically 10 to 100 times faster, when com-
pared to related techniques such as Multi-Task Bayesian optimization, Hyperband,
and regular Bayesian optimization. The mentioned BOGP has its limitations as
it is best suited for working with continuous variables. In the SVM case, this
means that BOGP is used for optimizing hyperparameters of the kernel and C

value (most often RBF with single γ hyperparameter is selected). Not being able
to handle efficiently discrete, categorical, and conditional hyperparameters, other
surrogate models were introduced. This includes Random Forest Regression [70]
and Tree-structured Parzen estimator [14, 16].

Bayesian Optimization HyperBand (BOHB) [42] is another cutting-edge
method for tuning hyperparameters that combines the strengths of Bayesian op-
timization and Hyperband while avoiding their weaknesses. Traditional Hyperband
relies on random search to explore the hyperparameter configuration space, which
can be inefficient. BOHB addresses this issue by utilizing Bayesian optimization,
which is more efficient and allows for parallel resources to be used to optimize all
types of hyperparameters. BOHB uses TPE as its standard surrogate model for
Bayesian optimization and employs multidimensional kernel density estimators. It
has been demonstrated that BOHB surpasses many other optimization techniques
when tuning SVMs and deep learning models. The only limitation of BOHB is that
it requires that evaluations on subsets with small budgets are representative of
evaluations on the entire training set (which is often true for SVMs [77]), if not it
may have a slower convergence speed than standard Bayesian optimization models.

Building specialized kernels

Another approach to optimizing the SVM model is to build a new (custom)
kernel function. This can include a combination of different kernel functions e.g.,
polynomial, linear, and RBF [26, 68]. Different valid kernel functions can be joined
using their properties, so if a given function satisfies Mercer conditions and is
considered a valid kernel the same is true about the sum or multiplication of two

2.3. Literature review 33

kernel functions. One more important thing is how some of the kernel functions
e.g., RBF are considered local functions as they affect only some regions around SV
(if the samples lay further from the SV the kernel function value is 0), while on the
other hand linear and polynomial kernels are regarded as global functions as each
support vector contributes to the final decision boundary. Most of the time joining
those local and global functions tends to provide improvement in classification
performance. While this approach can seem tempting, it often results in creating
additional hyperparameters that need to be tuned.

Another possible approach could be the selection of the kernel from a set of
predefined functions [4]. The so-called weak kernels can be used to find the best linear
combination of those in order to apply it to SVM training. The experimentation
shows promising results on the used datasets and robustness to problems where
feature selection is important.

The technique of genetic programming has also been used for developing and
refining kernels, including those specifically designed for natural language processing
known as string kernels [120]. Additionally, kernel functions can be tailored and
enhanced through the use of reinforcement learning [10]. The selection of the
model can also extend beyond commonly-used kernels to include options such as
Mahalanobis kernels [73] or kernels that are specifically suited for datasets with
varying class densities, known as isolation kernels [127].

Metaheuristics

Last but not least metaheuristic methods were also used to tune SVM hyper-
parameters, these include, GA and particle swarm optimization as the two most
prevalent metaheuristic algorithms. The GAs were already described in Section 2.2.
Particle swarm optimization (PSO) is inspired by the behavior of a swarm of birds
or a school of fish, by mimicking the behavior of a swarm of particles that move
through the search space, where each particle represents a potential solution to the
problem. The movement of particles is affected but the current best solution found
(by any particle) and their own inertia and momentum parameters.

An example of applying such metaheuristics to optimize SVM can be found
in work by Zhou et al. [145]. They employed three different algorithms: whale

34 Chapter 2. Theory and literature review

optimization algorithm, gray wolf optimization, and moth flame optimization for
optimization of SVM hyperparameters (namely C and γ). The presented results
were used to predict the advance rate of a tunnel boring machine which is a
key parameter for tunneling projects. As presented the moth flame optimization
provided the best results although the size of the population of 150 could be used
only for small datasets.

Another example of a slightly modified version of PSO called switching-delayed-
PSO is presented by Zeng et al. [141]. This modification delays the information of
local and global best particles during the velocity update. It allows for improvement
in the results by finding the current state of evolutionary computation (convergence
state, exploitation state, exploration state and jumping-out state) and adjusting
the parameters used by the heuristic. This allowed to provide state-of-art results
for the diagnosis of Alzheimer’s disease.

GAs were also successfully applied to the problem of SVM model selection [81].
The authors propose to combine multiple popular kernel functions and optimize
their hyperparameters at the same time. They also used prior knowledge where the
hyperparameters are sampled using a logarithmic scale. This early work presents
interesting improvements over regular SVMs.

Another interesting extension to classical GAs is incorporating feature weighting
into the evolutionary process [124]. It can serve a feature selection (when weight
is equal to zero) purpose and further improve the quality of classification. This
solution is then applied to intrusion detection problem on which it provides faster
training time of SVM and decreased error rate.

Summary

As this problem is still very relevant not only for SVMs but also for other
machine learning methods, there is a lot of research in this area. There are great
review articles which can provide a good overlook of the field and current research
problems as well as available methods [138]. However, it is hard to properly compare
many of the presented techniques as they are often used in different sub-fields,
where either datasets or implementations are not freely available or some specific
knowledge during the processing could be used.

2.3. Literature review 35

An interesting summary of currently available methods was made by Wainer et
al. [128]. The authors focus purely on optimizing SVM hyperparameters with 18
different methods using over 100 datasets from the UCI repository. Their finding is
that none of the presented algorithms shows significant improvement in terms of
SVM accuracy in comparison to grid search algorithms. It is worth noticing that the
authors took on a practical approach to using many advanced algorithms like PSO
based on their default parameters available in the software packages, while e.g.,
population initialization could play a crucial role in many metaheuristic techniques.
Although the performance of SVM is heavily dependent on hyperparameter selection
all of the available methods perform equally well when comparing classification
performance. It is important to mention that not all of the HPO algorithms take
the same amount of time/evaluations (which is the main differentiation between
those tested algorithms). Time performance could be a good selection criterion for
which algorithm to choose. On the other hand, an argument to use methods that
are easier available, easier to implement or tend to present other advantages (such
as easy parallelization) could be made. Whichever method is selected, HPO will
virtually always guarantee improvement of performance over some default values
provided in software packages.

2.3.2 Selection of SVM training set

Generally, training models with enough information is essential to achieve good
performance. However, it is common that a training dataset T contains samples
that may be similar to each other (that is, redundant) or noisy. This increases
the computation time and can be detrimental to generalization performance. The
process of instance selection (also called training set selection) aims to select
such subset T ′ ∈ T , which will represent the whole training and achieve similar
performance while reducing necessary computation. The problem of the training
set selection is similar to feature selection (described in 2.3.3). In the same way,
these methods can be categorized in different manners:

1. Incremental method (T ′ = ∅ at the start) or decremental method (T ′ =
T), Batch (mark all instances that should be removed and remove them at

36 Chapter 2. Theory and literature review

once), Mixed (preselect a subset, and repeatedly, add or remove instances
from this subset), and Fixed (size of T ′ is predetermined) [48],

2. Wrapper, where the selection criterion is based on the accuracy obtained by
a classifier or Filter, where the selection criterion uses a selection function
which is not based on a classifier,

3. Dependent or independent of T cardinality in terms of computational
complexity.

For this dissertation the categories presented in Figure 2.8 will be used to provide
an analysis of the field.

Selecting SVM training sets

Data
geometry
analysis

Neighborhood
analysis

Evolutionary
methods

Active
learning

Random
sampling

Figure 2.8: General categories of approaches for selecting SVM training sets. This
figure is inspired by [98].

Commonly, SVMs can be successfully trained using just a subset of all the data that
are available for training. There are RS approaches proposed. Similarly to HPO
problems such methods are simple to implement and often sufficient for finding
a reduced training set (at least if the size of the reduced set can be estimated a
priori). Another of their advantage is not depending on the cardinality of T . One
of such approaches was proposed by Balcazar [11]. It works by starting with a
random subset of T sampled according to the weights assigned to training vectors.
Initially, an SVM classifier is trained using this random subset. Afterwards, the
whole training set is analyzed to check which vectors are classified correctly. Then
the weights for misclassified vectors are increased so they are more likely to be
sampled in next iterations. If the number of iterations is large enough, the important
vectors, including SVs, will have a higher weight than other vectors thus the refined
set should be composed of those vectors. The main drawback of this algorithm is

2.3. Literature review 37

the need to set the desired size of T ′ beforehand. This might require many trials
and could become time-consuming (especially for large datasets). Another problem
is that random sampling may ignore any relations which occur in a dataset.

Data geometry analysis, on the other hand, is focused on exploiting such
relations. These methods often select vectors from the regions lying close to the
separating hyperplane. Of course, this would need to determine the approximate
location of the hyperplane in order to find the most important vectors. A subgroup
of data geometry analysis employs various clustering techniques to identify the
clusters formed by the vectors from the same class [129, 33]. This approach makes
it possible to eliminate vectors that are situated within these clusters, as they have
a lower probability of being chosen as SVs during SVM training.

Shen et al. [114] proposed a method for eliminating unnecessary training set
vectors by analyzing cluster boundaries and examining other inter-cluster rela-
tionships. The k-means clustering is used to obtain clusters, and for each cluster,
a distance density set is calculated. Vectors that are close to the centroid are
considered “dense”, and those that are far from being considered “sparse”. The
authors use Fisher’s discriminant analysis to find the boundary between the dense
and sparse parts of each cluster and include only the sparse vectors for the selection
of a refined set. Additionally, the authors consider removing redundant (one-class)
clusters as there is a low probability of selecting SVs in such regions.

The main disadvantages of using clustering techniques are their time complexity
and the need to analyze the entire training set. Additionally, there are different
crucial hyperparameters of clustering methods which can further affect their results.
Geometric information can also be obtained without using clustering. Methods
like these include applying β-skeleton algorithms [144] or utilizing other basic
classifiers [2] to get this information. Another example of such work includes the
usage of the fast nearest neighbor condensation classification rule (FCNN) [7].
SVMs are combined with FCNN, where the vector selection criteria are based on
the decision boundary. The FCNN process starts with an initial refined training set
that is composed of the centroids generated for each class independently. For each
vector, a ∈ T ′, a point belonging to the Voronoi cell (i.e., a set of T vectors that
are positioned closer to a than any other vector in the current T ′) of a, but labeled
with the opposite class, is included in the refined set. The algorithm continues until

38 Chapter 2. Theory and literature review

there are no more vectors from T to be added to T ′.
Another group of algorithms uses neighborhood analysis. It is assumed that

the SVs are more likely to lie in heterogeneous regions of the dataset. This is likely
to occur, as the decision boundary is often located close to such areas [58]. These
algorithms include the usage of ensemble classifiers as done by Guo et al. [59]. They
exploit a custom margin definition which is calculated for each vector based on the
number of votes of the base classifiers for a given class. These margins lie in the
range of [0, 1] where smaller values indicate vectors closer to the hyperplane (as
learned by the ensemble). The refined set for SVM is selected by sorting all of the
vectors according to their margin values and selecting the smallest ones. As the
base classifiers, the authors used decision trees and applied bagging to build an
ensemble.

Another work proposes to exploit an induction tree to predict if the vector is
likely to become a SV after SVM training [22]. To construct the tree, an SVM
is initially trained using a small randomly selected subset of T to identify which
vectors are selected as SVs. The selection process in this method employs a simple
heuristic to balance the T ′ for SVM training. Afterwards, vectors are passed to the
tree to indicate the potential best candidates for SVs. These are included in T ′.
In summary, in order to effectively use methods that analyze the data geometry
or local neighborhood, it is still necessary to examine the entire T to choose the
valuable subset.

Evolutionary algorithms, such as genetic algorithms, have been shown to be
effective in finding a reduced training set for SVMs. They typically use a wrapper
approach, where the fitness of a reduced set is determined by training an SVM
with that set. The population of reduced sets is then evolved to find the best
one [75]. Similarly as in the case of random selection [11] it can be difficult to
select the optimal size of a reduced set. This led to the development of more
advanced adaptive strategies which can tune the size of T ′ during the optimization
process [95]. The adaptation is based on observing the performance of the whole
population and looking for certain signals (e.g., number of SVs in relation to the size
of T ′). Depending on their occurrence, the size of the reduced set can be increased.
It is important to note that such a method usually starts with a very small refined
set. More advanced methods incorporating additional information collected during

2.3. Literature review 39

the evolution were also proposed [97, 96]. These specialized evolutionary methods
(memetic algorithms) incorporate additional local search procedures in order to
better balance exploration and exploitation of the search space.

Another interesting work proposes to incorporate multi-objective optimization
techniques as the goal of the training set selection is the reduction of the size of
the original T while maximizing the classification performance (e.g., accuracy).
Cheng et al. proposed a method called SDMOEA-TSS [28], which uses multi-
objective optimization techniques to reduce the size of the training set while
maximizing classification accuracy. The method divides the objective space into
several subregions to create a diverse population. The algorithm can be adjusted to
prioritize either reducing the size of the training set (SDMOEA-TSS(A)), increasing
accuracy (SDMOEA-TSS(C)) or finding a balance between the two (SDMOEA-
TSS(B)).

One of the key advantages of the evolutionary methods is that they are inde-
pendent of T cardinality when selecting reduced sets. Although these methods
provide state-of-the-art results, they often require the initial optimization of the
SVM model, such as determining the appropriate kernel function and its hyper-
parameters, which is usually done through a time-consuming grid search [28, 96].
In the next section, the Memetic Algorithm to Select Training Data for SVM
(MASVM) [96] will be presented. This is one of the evolutionary approaches for the
training set selection designed specifically for SVM and employing the knowledge
about SVM classifier. This section is important as it provides insights into the
implementation of MASVM and describes this algorithm in detail.

Memetic Algorithm to Select Training Data for Support Vector Machines
(MASVM) [96]

In this subsection, the MASVM algorithm will be discussed in more detail as
it is utilized for the training set optimization among proposed algorithms. The
overview of this algorithm is presented in Figure 2.9.
It starts by creating a population of N individuals by randomly sampling the
training set. Each chromosome is built of Kt vectors from each class (only binary
problems are considered so the final size of the chromosome is 2 ·Kt). Thus each

40 Chapter 2. Theory and literature review

Figure 2.9: Overview of MASVM algorithm. Source: [98].

chromosome represents a refined training set T ′. Once the population is created,
the fitness of all individuals is calculated. The fitness calculation includes training
N distinct SVMs using the T ′ from chromosomes and evaluating their performance
on the validation set.

After this initialization phase, N pairs (pa, pb) of individuals are selected using
the local-global adaptation scheme (LGA), where pa ̸= pb. In this approach, the
population is arranged in descending order based on their fitness values and divided
into two groups. The first group includes the top (ϵ ·N) individuals with the best
fitness, while the other group includes the remaining (N − ϵ ·N) individuals. In
the local selection mode, ϵ ·N pairs are created from the well-fitted (first) group
while the rest are randomly drawn from the less-fitted part (N pairs are determined
to create new population with the same size as initial one). In the global mode,
pairs are created by selecting one individual from each group to promote balance
and exploration of the solution space. The selection method is adaptively changed
during the algorithm’s execution.

After creating N pairs, a single child is generated for each pair. This new
individual inherits all of the vectors from both of the parents (pc ← pa ∪ pb) while
maintaining their uniqueness. The size of the resulting reduced training set |pc|
is randomized, and equals max(|pa| , |pb|) ≤ |pc| ≤ 2Kt. If the number of distinct

2.3. Literature review 41

vectors inherited from pa and pb is smaller than selected |pc|, additional vector are
randomly drawn from T (compensation operation),

In the next step, the education process is employed. There is a chance (de-
termined by the Pe) that training vectors in the offspring solutions that were not
selected as SVs (in previous SVM training) will be replaced with random vectors
selected from the pool of support vectors. This pool contains all vectors that were
chosen as support vectors during the evolution process. Afterwards, the newly
created population (P ′) undergoes mutation with a probability mm. In this step, a
certain percentage (ft) of vectors in each individual are selected and replaced with
random vectors from the T .

To further take advantage of the vectors that were determined to be important
during the evolution process (as they were selected as SVs), the so-called super
individuals (SIs) are created and evaluated. The number of SIs is equal to α ·N ,
where 1 ≥ α ≥ 0. These super individuals consist of up to 2Kt randomly chosen
and distinct support vectors from the support vector pool. Up to Kt vectors are
picked for each class. Note that in case there are not enough vectors in the support
vector pool (Spool) this number could be lower.

In the selection of individuals for the next generation the size of the population
is kept constant and the best N individuals are chosen from the previous population
(P), current (intermediate) population (P ′), and the set of SIs (P SI).

In the end, the hyperparameters of the algorithm are adapted and set Kt =
ρK · Kt, where ρK = 1 + (ϱsv − TSV)/(1 − TSV), TSV is the SV threshold and
ϱsv = SV(P ′

best)/(|P ′
best|), SV(P ′

best) denotes the number of SVs in the best individual
from the current population, and |P ′

best| the size of P ′
best, alongside. The Kt value

can be increased only once in Ts generations. This help to fully exploit the current
value of Kt. Additionally, Kt will remain constant if the average fitness in the
population did not increase since the last generation (∆η = 0), or the improvement
was greater than 0.5 ·∆η. If in the last Ts generations Kt was not updated and
the current LGA selection scheme is in the local mode it is switched to the global
mode. This provides a better exploration of the solution space. Once Kt is updated,
the LGA is set to local mode again.

The evolution continues until the termination condition has been met. The
original proposed stop condition included multiple possible conditions: fitness not

42 Chapter 2. Theory and literature review

growing in a given number of consecutive generations, Kt is not further increased or
the desired fitness is reached. During the mentioning of MASVM in this dissertation
the average population’s fitness is monitored—if its improvement is smaller than
ηmin in two consecutive generations the algorithm is stopped. This condition is
based on the observation that the population’s diversity is likely very low (as
average fitness did not change), thus the probability of improving the fitness of the
best individual drastically decreases [119].

One important difference in the above description compared to the original
MASVM [96] is omitting of the regeneration process as suggested by Nalepa and
Kawulok in subsequent work [97]. This should decrease the running time of the
algorithm while it should not affect the end results in terms of the quality of
selected T ′.

2.3.3 Feature selection

Feature selection is the process of identifying a subset of the most relevant
features from a larger set of features for a given prediction task. The goal of this
process is to improve the performance of the model by reducing the dimensionality
of the input space, and by eliminating irrelevant, redundant, or noisy features that
can negatively impact the performance of the model. There was a tremendous effort
to develop different methods to address this problem. Feature selection methods
can be broadly classified into three categories [13]:

1. Filter methods—these methods evaluate the relevance of features based
on statistical measures or domain knowledge, and select a subset of features
independently of the classification model. Examples of filter methods in-
clude correlation-based feature selection, mutual information, and chi-squared
test [122, 117].

2. Wrapper methods—these methods evaluate the relevance of features by
training and testing different models with different subsets of features, and
selecting the subset that optimizes the performance of the model. Examples
of wrapper methods include recursive feature elimination [6], GAs [86], and
simulated annealing [1].

2.3. Literature review 43

3. Embedded methods—these methods incorporate feature selection into
the model training process, by adding a penalty term or a constraint to
the optimization function that encourages sparse solutions. Examples of
embedded methods include Lasso regression, Ridge regression, and Elastic
Net [23, 102].

In practice, the choice of feature selection algorithm depends on the nature of
the data, the size of the feature space, computational resources, and the desired
performance metrics. For example, filter methods are often used for high-dimensional
datasets, while wrapper and embedded methods are better suited for smaller feature
spaces [18].

One interesting example of the filter method is proposed by Yao et al. [139]. A
new ensemble feature selection method called FS-MRI, which integrates multiple
ranking information, has been introduced. The FS-MRI method can automatically
determine the threshold function based on the model performance, resulting in the
selection of an optimal and stable subset of features. The approach incorporates
nine different feature selection methods into its framework.

The SVM Recursive Feature Elimination (SVM-RFE) [60] is a wrapper-based
feature selection approach that utilizes the SVM as the base classifier. The method
uses the objective function (1/2)w2 (see Equation 2.8) to rank the features by their
discriminatory ability. At each step, the feature with the smallest ranking score
is eliminated, based on the corresponding component of the weight vector. This
process is recursively repeated until all features are ranked in order of importance,
using a backward feature-elimination scheme that excludes insignificant features.

A more recent work propose to couple SVM RFE with Binary Biogeography
Optimization (BBO) [6]. In order to improve the quality of solutions obtained
through the mutation operator and strike a balance between exploitation and
exploration, SVM-RFE is embedded into BBO. The resulting approach, BBO-
SVM-RFE, shows promising potential in effectively searching the feature space
to obtain the optimal combination of features. The obtained results indicate that
BBO-SVM-RFE is a reliable method for feature selection.

Besides that, other works in this area include the wrapper method of feature
selection with a lot of work put into using evolutionary algorithms [52, 53]. In

44 Chapter 2. Theory and literature review

general, each individual in EA is coding a separate set of features. After applying
an appropriate method to produce new solutions the SVM is trained using those
feature sets and evaluated using the selected metric. Neumann et al. [101] proposed
the modification in the SVM training process to gain information about features
that should be used. In order to simultaneously select features and construct a
model, the authors have introduced an additional term to the standard cost function
of SVM. This added term penalizes the cardinality of the selected feature subset,
allowing for the optimization of a modified cost function.

The choice of feature selection algorithm depends on the data, the size of the
feature space, computational resources, and the desired performance metrics. With
the increasing availability of large datasets, efficient and effective feature selection
methods are becoming more important for building accurate and efficient machine
learning models.

2.3.4 Multi-aspect SVM optimization

The issues of selecting the appropriate training samples and features, as well
as optimizing the hyperparameters of SVMs are closely related, thus there are
many methods to address these problems together. The problem where multiple
optimization techniques are involved will be referred to as multi-aspect optimization.

Raman et al. proposed a new method for optimizing the hyperparameters
and features in SVMs by introducing a hypergraph GA [109]. They included the
features selection in the chromosome encoding, along with γ and C values of
binary classifiers, which were used to solve multiclass classification. Another similar
approach was used in another work, which utilized a nature-inspired multi-verse
optimizer [43]. Several studies have shown the effectiveness of combining model
selection with feature selection [125, 71, 5]. PSO was used to achieve this integration
in the work by Huang et al. [66]. These methods demonstrate the usefulness of
simultaneously selecting the most valuable features and optimizing the model’s
parameters.

SVM kernel evolution may also be combined with training set selection. In
research by Nalepa et al. [99] a scheme in which the kernels are elaborated using a
neuro-fuzzy system and the training set is selected afterward using an evolutional

2.3. Literature review 45

algorithm.
There were also several attempts for simultaneous selection of training sets

and features. Garcia-Pedrajas et al. proposed a memetic technique [50] with four
different local search procedures and a new fitness function which provides a proper
balance between selecting the training samples and removing the features. Such
combined selection can also be performed in a static manner, to identify the inactive
features and samples before the SVM optimization [143]. The article [83] proposes
a hybrid memetic algorithm that combines variable neighborhood search and a
memetic algorithm to simultaneously select instances and features. The proposed
method for feature and instance selection is utilized to reduce the size of data
and train a predictive model for later performance evaluation. Compared to other
metaheuristics, the proposed approach strikes a balance between exploration and
exploitation, and the results demonstrate its superior robustness over other feature
selection techniques.

In the context of SVM model optimization, simultaneous optimization of the
three interconnected elements—features, training samples and model—has been
shown to lead to improved performance and classification scores. Previous works
have focused on optimizing two out of the three elements. However, integrating
feature selection into the evolutionary process and optimizing all three elements
together in an alternating or simultaneous manner, as demonstrated in the works
co-authored by the author of this dissertation [39, 37, 38], has resulted in models
with a lower number of SVs and features while maintaining high classification
accuracy.

2.3.5 Building classification ensembles

Ensemble learning is a technique used in machine learning to improve the
performance of a model by combining the predictions of multiple base models.
The idea behind ensemble learning is that multiple models, each trained on the
same dataset (not necessarily on the same subset of data), can provide different
perspectives on the problem, and by combining their predictions, the final model
can be more robust and accurate than any of the individual models. There are
several popular methods for building ensembles in machine learning, including:

46 Chapter 2. Theory and literature review

1. Bagging: This method involves training multiple models on different subsets
of the training data, and averaging their predictions. This can be used to
reduce the variance of the model and can be applied to both regression and
classification problems.

2. Boosting: This method involves training multiple models in sequence, where
each model is trained to correct the mistakes of the previous model. This
can be used to reduce the bias of the model and is most commonly used for
classification problems.

3. Stacking: This method involves training multiple models on the same data,
and using their predictions as input to a meta-model that makes the final
prediction. This can be used to improve the performance of the model by
combining the strengths of different models.

Ensemble methods generally require more computational resources than separate
models, but they can provide significant improvements in model performance. They
are especially useful when working with complex problems or large datasets.

There are multiple works that tried to build ensembles of SVMs. Early work
proposed a cascade of SVM [57] that can efficiently parallelize and handle very
large problems with hundreds of thousands of training vectors. The training data
are divided into subsets and on each part, a separate SVM model is trained. The
partial results are combined and filtered in a cascade of SVMs until the global
optimum is reached. This approach is memory-efficient and faster than a regular
SVM, even with a single pass.

A similar strategy was used by Claesen et al. [31] where multiple SVMs are
trained separately on different subsamples of the T , ultimately leading to faster
training. To further increase the efficiency, the SVs are analyzed and shared among
models so if the same vector is selected as a SV in multiple models it needs only
one calculation of the kernel function. This, however, requires the base model to
share a single kernel function with the same hyperparameters. One more problem
with that approach is that the size of subsamples used for training needs to be set
beforehand so it becomes another hyperparameter that has to be tuned.

The GenBoost-SVM method [110] uses an adaptive boosting algorithm. The
authors examined different pre-selections of a training set using GAs to reduce

2.3. Literature review 47

training times and tackle imbalanced data. Additionally, diversity and early stopping
were considered to reduce the generalization error. Using different SVM kernels
was shown to improve the performance of such a classifier. It can be already
noticed that all of the presented works used some methods to reduce the size of
the training set. Pławiak et al. [107] presented a deep genetic cascade ensemble of
classifiers. This work presented a stacking classifier with 16 layers of SVMs that
are optimized using a GA. Although the presented results show great promises in
credit risk scoring achieving state-of-the-art performance, the study focused on
small datasets. It might be difficult to scale this solution to big datasets due to the
high computational cost.

The already mentioned systems use SVMs only as the base models which makes
them a homogeneous ensemble. Joining multiple different classifiers could also boost
the performance, as the learning algorithms tend to produce different decision
boundaries. That heterogeneity is crucial in an ensemble setting. One such example
is joining SVM prediction with k-nearest neighbors algorithm [136]. Using stacking
for building ensembles with three different base models [100] was tested by Nanglia
et al. It was proved to provide increased performance in comparison to homogenous
ensembles as well as other machine learning models.

2.3.6 Summary

The field of machine learning is constantly growing, with a vast number of
solutions available for each problem, such as hyperparameter optimization, training
set selection, and feature selection. While various techniques have been used in a
joint setting, there is still a lack of a single method that can cover all these areas.

The solution proposed in this dissertation is introducing a new method that can
efficiently cover hyperparameter optimization, training set selection, and feature
selection simultaneously. Moreover, this method could be extended to build a
new kind of ensemble that will utilize both SVM base models and random forest
models to provide a heterogeneous ensemble. Such an ensemble could improve the
performance of SVMs, and leverage the advantages of simultaneous optimizations.
By combining these different techniques into one cohesive framework, one can
leverage their strengths to build more robust and efficient machine learning models.

48 Chapter 2. Theory and literature review

Chapter 3

Proposed methods

In this chapter, all of the newly introduced methods are presented. The chapter
is structured around describing the building blocks of the methods and putting them
into the context of how they were designed and used. Those techniques focus more
on combining different aspects (such as training set selection and hyperparameter
optimization) rather than on improving a single one of them individually. To make
it easier for the reader to clearly see which algorithms were used in a given method,
they are summarized in Table 3.1. Methods that are seen in the left part of the
table are presented in a chronological order (the same as described in the sections).
Some of those methods (e.g., ALMA, SE-SVM, or CE-SVM) can be treated as a
general framework for the optimization of SVM so they re-use the same algorithms
for hyperparameter optimization or training set selection. In the early work, it
was presented that these solutions could be easily replaced, where GASVM [75]
in ALGA [76] method was changed to MASVM [96] creating ALMA method
while the alternating optimization schema remained unchanged. To not double the
information the common building blocks of the methods are described separately.
The chapter starts with a description of the genetic algorithm for hyperparameter
optimization (GAHP) in Section 3.1 followed by the evolutionary algorithm for
feature selection (EFS) in Section 3.2. Moreover, these algorithms (GAHP and
EFS) are never used separately (as methods of their own), meaning that neither
of them is tested later in experimental validation (Section 4.2). One more of the
important building blocks of those algorithms is the training set selection. This is

49

50 Chapter 3. Proposed methods

done by MASVM, proposed by Nalepa and Kawulok [96], and discussed in detail
in Section 2.3.2. As this is an algorithm proposed in literature it is briefly tested to
compare it with the proposed methods.

Table 3.1: A summary of algorithms used in the proposed methods.

Algorithm used

Method Section GAHP
(Section 3.1)

MASVM
(Section 2.3.2)

EFS
(Section 3.2)

RFE
(Section A)

Simultaneous
optimization

ALMA [39] 3.3 ✓ ✓ ✗ ✗ ✗

SE-SVM [38] 3.4 ✓ ✓ ✓ ✗ ✓
ARBF-SVM [94] 3.5 ✗* ✓* ✗ ✓ ✓

DA-SVM [40] 3.5 ✗* ✓* ✗ ✓ ✓
CE-SVM [41] 3.6 ✓ ✓ ✗ ✗ ✓

ECE-SVM 3.6 ✓ ✓ ✗ ✗ ✓
* ARBF-SVM and DASVM are not using GAHP but they still optimize SVM hyperparameters.
The MASVM algorithm is modified in those methods as described in Section 3.5

The rest of this chapter is structured as follows. First, the method for alternating
optimizations is presented in Section 3.3. Afterwards, the simultaneous optimization
is described (Section 3.4) followed by a specialized algorithm that creates an adaptive
kernel in Section 3.5. Finally, the algorithms for building an ensemble classifier
in form of the cascade are presented (Section 3.6). The chapter is finished with
a summary of the methods in Section 3.7 that also briefly discusses works not
described here in detail.

During this chapter there is a lot of symbols are introduced for the description
of the algorithms, all of those are gathered in Table 3.2 where first the general
symbols applicable in multiple methods are presented and later section of the table
presents symbols used only in specified algorithms.

3.1 A genetic algorithm for optimizing SVM hy-
perparameters

As discussed in Section 2.3.1 and presented in Section 2.1.3, the performance of
SVM classifier is heavily dependent on its hyperparameters. One of the popular
techniques to perform this optimization is GS algorithm [96, 75]. However, GS
requires multiple training of SVM classifier which is difficult for large datasets.
Whereas, the methods for training set selection were already introduced to tackle this

3.1. A genetic algorithm for optimizing SVM hyperparameters 51

Table 3.2: Summary of symbols used for algorithms description.

Symbol Description

General

C Hyperparameter of SVM, penalty for misclassifying training examples
γ RBF kernel hyperparameter
T Training set
V Validation set
Ψ Test set
η Fitness value
M Set of SVM hyperparameters
T ′ Reduced training set, T ′ ∈ T
N Size of the population
P ′ New population created after crossover operator

P ′
SI Population of super individuals
pa Chromosome/individual in the population
F Features set
F ′ Reduced set of features, F ′ ∈ F
|T | Size of the training set

c Number of classes/lables
Kt The number of class examples selected for T ′

GAHP

α Parameter of crossover operator
mm Probability of mutation

u Mutation scale
β Upper range for mutation scale
l Epsilon for fitness improvement in stop condition

EFS

Kf Size of the selected feature set
Fa Feature set of individual
σ Threshold for selecting features based on variance
τ Threshold for number of features after preprocessing
λ Threshold for how many individuals are considered during feature pool update

Ep Education probability
Er Education replacement parameter
mf Mutation probability
mr Mutation replacement parameter
Fpool Pool of features used for education

ALMA
Q Population of M
M The size of M population

qinit, qi Individual/chromosome from M population

SE-SVM

Kt Hyperparameter for size training set
P m Part of population with encoded M
P t Part of population with encoded training set
P f Part of population with encoded feature set
Spool Pool of support vectors build during evolution
Pbest Population of best solution of saved before each regeneration

R Number of regenerations

DA-SVM/ARBF-SVM

|Tmin| The number of training vectors in the least numerous class
γ⃗ Vector of γ values

Sbest Set of previously selected SVs with their γ’s values
γ⃗η Vector with fitness of best-fitted individual for each γ
G Set of all populations in co-evolution scheme

P γ, P i Indication of certain population from G

CE-SVM

Tu Uncertain part of training set
Vu Uncertain part of validation set

Hmargin Certainty threshold hyperparameter
rT Indication if the size of training set is reduced
rV Indication if the size of validation set is reduced

ECE-SVM
ζ Hyperparameter for sampling rate of validation set
ϑ Hyperparameter of maximal size of validation set
Υ Hyperparameter of decreased of uncertain size
εi New cascade built in ECE-SVM
ςi Node-wise MCC scores for new cascade

52 Chapter 3. Proposed methods

issue, in a majority of cases they used GS for SVM hyperparameters optimization.
The goal of introducing the GA for SVM hyperparameter optimization is to
improve on the existing training set selection method which uses evolutionary
computation. The motivation to go for a GA is that it should be better than GS or
RS techniques while it can still be partially parallelized (during the evaluation of
individuals). Moreover, it will be natural to join it later with training set selection
into simultaneous optimization process (using EAs). On the other hand as presented
in [128] even quite simple method should be sufficient to improve upon currently
available solution.

In the initial work, the focus was put on the usage of RBF kernel as it is the most
popular one. There are multiple reasons why this type of kernel is a popular choice
nowadays. Some of those came from its mathematical properties. It is a stationary
kernel, which means that it is invariant to translation. A stationary kernel will yield
the same value K(x, y) for K(x + c, y + c), where c is a translation vector whose
dimension matches the inputs (the linear kernel does not have such a property). The
single-parameter version of the RBF kernel has the property that it is isotropic, i.e.,
the scaling by γ occurs the same amount in all directions. Moreover, it maps vectors
into infinitely-dimensional feature space [62]. On the other hand, it was already
tested and found to yield the best results in multiple different applications such as
text classification [56], hyperspectral image analysis [78], cancer genomics [67] or
medical imaging [106]. What is more, throughout the years some intuition behind
the γ hyperparameter grew where it can be thought of as a range of influence of
SVs. All of that contributed to first selecting RBF kernel and trying to further
improve the SVM performance with it.

The coding of chromosomes is one of the most important steps in designing a
GA. For the optimization of hyperparameters that are represented as real numbers,
it is natural to use them for representation of the problem (real-coded GA)[61]. In
the presented solution considering the RBF kernel, there are two hyperparameters
C and γ, however, this algorithm can be used to optimize any kernel (as it is later
shown in Section 3.6 when multiple populations are evolved independently).

The outline of the algorithm is presented in Figure 3.1. On the right-hand
side of this diagram, the process of fitness (η) evaluation is presented. In order to
calculate the fitness of an individual (pi), first the SVM is trained using the T .

3.1. A genetic algorithm for optimizing SVM hyperparameters 53

Afterwards, the whole validation set (V) is classified and the confusion matrix is
calculated. Based on the chosen metric, the final fitness value for the chromosome
is assigned.

Compute fitness η(pi)

Train SVM Classify V
Calculate

performance
metric

Initialize
Population

Fitness evaluation

Stop? Return pBest

Parents Selection

Crossover

Mutation

Fitness evaluation

Selection

pi = (γi, Ci)

Validation set (V)Training set (T)

no

Figure 3.1: A flow diagram of the GA used for hyperparameter optimization.

The algorithm starts by creating the initial population. It is created to cover the
initial setup range of values for hyperparameters in a logarithmic way. It calculates
the combinations of hyperparameters based on the population size to create a grid.
When the size of the population cannot be divided into grid, one individual gets
γ = 1/|F | · var(T), where var(·) is variance of the dataset, and |F | is number of
features, C = 1 (this heuristic is based on Scikit-learn library [104]). The rest of
individuals is sampled in a random manner in range specified in the algorithm
configuration. This initial population is then evaluated and N parent pairs are
selected for the crossover process (where pa ̸= pb, pa and pb are chromosomes). It
uses global-local selection described in Section 2.3.2 using always the global mode
in order to provide a better exploration of search space and eliminate preliminary

54 Chapter 3. Proposed methods

convergence. This means that the population is always divided into two parts of
equal size and from each part one chromosome is selected in a random manner.

The crossover operator creates a new chromosome (pc). In total, N chromosomes
are created and a new population (P ′) is created (that has the same size the initial
one). A new individual is created by using a heuristic crossover [61]. For each
hyperparameter, the following equation is applied:

pc = pb + α · (pa − pb), (3.1)

where α is a random value drawn from [0.5, 1.5], pa is a parent with higher fitness
value compared to parent pb. Although α was also proposed to be a constant value,
the random one should bring more diverse children, hence enhancing the diversity of
the population (even if the same pair is selected twice it can still produce different
offspring). For α = 1 the offspring will become the same as the parent pa while
for a value equal to zero it will become a copy of the parent pb. Since GAs should
pass on better genes to the next generation the range of random values should be
symmetric with respect to 1. In this way, new individuals will be allowed to be in
the space around the better of the selected parents.

Afterwards, each individual goes through the mutation process with a probability
of mm. This operator performs a form of a local search. If the individual is selected
for mutation for each of its values the following equation is applied:

pc = pc + (pc · u · ρ), (3.2)

where ρ is a random sign with equal probability and u is a random percentage
value drawn from range of 0 to β. The value of β needs to be relatively low and
express the maximal percentage value of change. After applying all of the genetic
operator’s population of size 2 ·N goes through the selection process. This process
selects the N fittest individuals to keep the population size constant. The stop
condition is based on the growth of the average fitness of the population in two
subsequent generations. If this growth is smaller than the set threshold (l), there is
a little chance that the solution could be further improved and the algorithm ends.

3.2. Evolutionary algorithm for feature selection 55

3.2 Evolutionary algorithm for feature selection

As argued in Lessmann et al. [81], this process could be viewed as a preprocessing
step where possibly expert knowledge about the problem at hand could be used.
On the other hand, feature selection is a complicated problem and is mutually
dependent with both model optimization as well as the training set selection.
Both of those approaches were tested, where preprocessing is done by known in
literature recursive feature elimination with cross-validation (RFECV) [6] (described
in Appendix A). In the following section, an evolutionary algorithm for feature
selection will be presented. This algorithm is used in the SE-SVM method 3.4.

Algorithm 3 Pseudocode for evolutionary algorithm for feature selection.
1: Fpool ← ∅
2: FeatureProbability ← Preprocessing(T)
3: P ← RoulletteWheelInitialization(N , FeatureProbability)
4: for all pi ∈ P do
5: ηi ← CalculateFitness(pi)
6: repeat
7: Fpool ← UpdatePool(P)
8: Parents ← SelectParents(P)
9: P ′ ← Crossover(Parents)

10: Education(P ′, Fpool)
11: Mutation(P ′)
12: P ′

SI ← SuperIndividualsCreation(Fpool)
13: for all pi ∈ (P ′ ∪ P ′

SI) do
14: ηi ← CalculateFitness(pi)
15: P ← Selection(P ∪ P ′

SI ∪ P ′)
16: Adaptation(P)
17: until StopCondition
18: return Best(Population)

This algorithm was inspired by the MASVM (Section 2.3.2). Feature selection
could be seen as a problem that is similar to instance selection in some manner.
It aims to find the reduced set of features to improve the performance of the
classifier and get rid of noisy features. The instance selection (training set selection)
has similar aims, the main difference comes from the reduction of computational
complexity, where often it could become more important, for instance selection,

56 Chapter 3. Proposed methods

to reduce training set size drastically in order to apply computationally complex
methods. In the case of feature selection, it might not always be true (please note
that this work considers datasets with |T | ≫ |F |). Based on this observation, the
same coding of chromosomes as in MASVM (see Section 2.3.2) will be used for the
feature selection process.

The outline of the method is presented in Algorithm 3. In order to initialize
the population, the algorithm starts with preprocessing of datasets and ranks
F . The preprocessing set (line 2) consists of running four distinctive algorithms:
mutual information, variance thresholding, RFECV, and stability selection. The
RFECV utilizes ExtraTree (ET) [51] as a base model and returns a set of selected
features which is converted into equal probabilities. So the whole vector of features’
importance sums to 1. RFECV is presented in detail in appendix A. Variance
thresholding computes the ANOVA F-value providing scores for each feature. The
σ is then selected which means that only the top σ of features are selected and the
rest gets a score equal to zero. Those scores are then rescaled to sum 1 (so they
can be treated as probabilities). Mutual information is calculated for each feature
and target variable (the class to which the vector belongs). These scores always
have positive values, and similar to previous methods, are normalized to sum to 1.
Finally, the stability selection algorithm [87] uses logistic regression with L1 penalty
to estimate feature importance. The values obtained by each of the algorithms are
then averaged. These scores are used as probabilities in roulette wheel initialization
of feature sets, where Kf features are selected (in line 3). On initialization, only
the top τ of features are considered for getting into the chromosome. This should
help to provide better individuals at the beginning which is crucial for running
simultaneous evolution of training and feature set, and SVM hyperparameters (M)
(see Section 3.4)

Afterwards, the fitness of all chromosomes in the population is assessed (line 5)
by training SVM classifiers and calculating the confusion matrix on V . The N

pairs are selected for crossover using the local-global adaptation scheme (the same
as in MASVM algorithm). The population is divided with ϵ into two parts (based
on fitness values). The algorithm starts in global mode meaning that parents in
each pair come from different parts of population.

Then, for each pair, a crossover operator is applied. It works by summing up

3.2. Evolutionary algorithm for feature selection 57

feature sets (Fc ← Fa∪Fb). As a summation of sets may lead to uncontrolled growth
in the size of features selected up to Kf are drawn randomly. Although initially
all of the chromosomes have the same size of Kf in later stages of algorithms this
changes. As Kf is adapted dynamically, there could be individuals that differ in
the size of the feature set. All of those newly created chromosomes create a new
population (P ′). After P ′ is created a memetic operation of education is performed.
It provides better exploitation of information about the previous individual to
enhance the current solution. This information comes from a pool of features that
are associated with high-ranked individuals. The pool of features is created and
updated (in line 7) by taking λ of the best individual in the population and creating
a histogram of features (counting how many times a given feature is present in the
population). Only features that occur more than once in the histogram are left in
Fpool. Once the pool is created, education is performed with a probability of Ep

and replaces Er of features to the ones that are in Fpool.

Next, each individual is mutated with a probability of mf . Mutation works by
replacing mr features with ones that are above mean in ranking used for initialization.
The initial ranking is used to introduce new features into the population but tries
to not add any noise or irrelevant features. Another memetic operation is super
individual creation. These individuals are created from pools of features. Up to, Kf

features are selected for those individuals in a random manner and create α ·W
new chromosomes. In the next step, all newly created individuals are evaluated.
Evaluation calculates fitness of individuals using the validation set and returns
value based on a configured metric based on the confusion matrix.

The N fittest individuals are eventually selected to maintain a steady size of
the population (line 15). In the end, Kf is adaptively grown based on current
fitness improvement. When fitness growth stops and the average number of features
selected in chromosome is close to Kf , it is increased. The mode of parent selection
is also adjusted between local and global. The algorithm starts in global mode.
The mode is switched to local after the growth of Kf . If no improvements to
fitness are made in the three last generations it is switched back to global. The
evolution process continues until there is no improvement in the average fitness of
the population greater than the ηmin.

58 Chapter 3. Proposed methods

3.3 Alternating algorithm for optimization of
SVM hyperparameters and training set selec-
tion

Tuning the SVM model is tricky when the training set is to be reduced, because
of the mutual dependence—the SVM hyperparameters are usually required to
select T ′, while depending on the subset used for training, a different SVM model
(set of hyperparameters) might be optimal. Previously the main problem of either
GASVM or MASVM was the need to setup the hyperparameters of the SVM model.
In previous works, the hyperparameters were determined through a GS, which is a
computationally intensive process. Consequently, the practicality of the training set
selection algorithm was limited, despite its primary objective of enhancing SVM’s
usability on large datasets. The algorithm presented in this section was introduced
to test the hypothesis that M optimization can yield good results in combination
with training set selection when compared to running the training set selection
algorithm with parameters found by GS

The first solution to test this hypothesis was ALGA—ALternating Genetic
Algorithm for selecting the SVM model and refining the training set [76] (refining
means selecting T ′). The main concept of this algorithm is to run one optimization
at a time but use the results propagated from the other optimization phase. When
the current best solution could not be improved further, the algorithm changes its
mode. This consists of saving the current best solution and switching to optimize
either M or T ′. For the model optimization phase, GAHP described in Section 3.1
is used while training set optimization is based on GASVM algorithm [75]. Although
the algorithm provides a modular approach to the problem, the training set selection
process was afterward changed to improved MASVM (see Section 2.3.2), which does
not need to specify the desired size of the training set beforehand. This improved
algorithm is designated as ALMA from ALternating Memetic Algorithm.

The pseudocode of ALGA/ALMA is given in Algorithm 4. In the beginning
(line 1) the population for T ′ (designated as P) is generated by randomly drawing
vectors from the training set. This population is evaluated with predefined kernel
hyperparameters in lines 3-5. Simultaneously, population representing SVM hyper-

3.3. Alternating algorithm for optimization of SVM hyperparameters and training
set selection 59
Algorithm 4 Alternating genetic algorithm for optimization of SVM hyperpara-
meters and training set selection

1: Initialize population of T ′ (P) of size N
2: Initialize population of M (Q) of size M
3: qinit ← GetDefault(Q)
4: for all pi ∈ P do
5: ηi ← CalculateFitness(pi, qinit)
6: pBest ← SelectBest(P) ▷ individual with the highest fitness
7: repeat
8: repeat ▷ M optimization phase
9: for all qi ∈ Q do

10: ηi ← CalculateFitness(pBest, qi)
11: qBest ← SelectBest(Q)
12: Q← IterateModelOptimization(Q)
13: until LocalStopCondition
14: if ¬ GlobalStopCondition then
15: repeat ▷ T ′ optimization phase
16: for all pi ∈ P do
17: ηi ← CalculateFitness(pi, qBest)
18: pBest ← SelectBest(P)
19: P ← IterateTrainingSetOptimization(P)
20: until LocalStopCondition
21: until GlobalStopCondition
22: return (pBest, qBest)

parameters (Q) is created (line 2). After fitness values are obtained for those initial
hyperparameters, the best individual in P is selected (pBest). Starting in line 8, the
algorithm switches to model optimization phase. First of all the whole population Q

is evaluated. What is important, evaluation is performed on T ′ (pBest). This helps
to save a lot of computation time. In each iteration, the best-performing hyperpara-
meters set is saved (line 11). In line 12, all of the genetic operators are applied, a
new population is created, evaluated and the selection process is performed (all of
those operations are from GAHP algorithm). The model optimization phase iterates
until the algorithm used for model optimization stops. In the case of GAHP, the
stop condition is based on the growth of the average fitness of all individuals in the
population by more than ηmin. So local stop condition is based on the optimization

60 Chapter 3. Proposed methods

method selected. It is used to decide when to switch the optimization phases.
Afterwards algorithm switches its mode to optimize T ′ (lines 15-20). The same

logic is applied here, first, the whole population is evaluated using the best set of
hyperparameters from the previous phase (qBest). Currently best T ′ is saved in pBest

after which one iteration of applying genetic operators of GASVM (or MASVM
in case of ALMA) is performed. The local stop condition is the same as with the
M optimization phase (so both phases use the same local stop condition). This
alternating process is repeated as long as at least one of two subsequent phases
manages to improve the average fitness. This means that the algorithm needs
to run at least the model optimization phase and the instance selection process
(phases goes: M→ T ′). Otherwise, if any of the phases cannot further improve
the solution, the global stop condition is reached and the SVM trained with the
best individuals (pBest, qBest) is returned.

This algorithm was first presented in [76] and was later extended to include
the feature selection process. In the beginning, the feature selection was done in
a preprocessing step which filtered the feature set. Afterwards, the alternating
process was extended to add the third phase with the evolutionary feature selec-
tion algorithm presented in Section 3.2. This extended alternating algorithm was
published in [37]. All of that development led to the creation of the simultaneous
optimization algorithm (presented in the next section).

3.4 Simultaneous optimization of training and
feature set and SVM hyperparameters

The problems of optimizing training data (T ′ and F ′) and M are mutually
dependent on each other. Hence, the previously presented alternating approach
might not be an optimal solution to that problem. It could be easily imagined
that performing feature set optimization under suboptimal T ′ or M could lead
to obtaining results that are stuck in local optima for F ′ (as the search space
is very large) or could in extreme cases deteriorate optimization and lead to
poor performance of such model (where first bad M is selected which impacts
subsequent phases of the algorithm). Therefore, an algorithm to simultaneously

3.4. Simultaneous optimization of training and feature set and SVM
hyperparameters 61

optimize all three components (the T ′ and F ′ and M) is proposed and denoted as
SE-SVM—Simultaneous Evolutionary optimization of SVM. This algorithm allows
for verifying the first research hypothesis that such simultaneous optimization could
provide improved training and classification time without affecting classification
quality. This means that during the tests this algorithm should provide a Pareto-
optimal solution regarding the training and classification times coupled with proper
classification metrics. By improving upon the previously shown alternating scheme
it is also hypothesized that it should improve classification quality in relation to
ALMA method. One of the advantages of this algorithm is starting with relatively
small training sets (thanks to training set selection) and coupling them with
hyperparameters. This should help to quickly evaluate initial solutions and explore
more prominent regions of the search space. Moreover, the ability to adapt (grow)
the size of selected T ′ and F ′ should keep the good quality of classification. However,
adding feature selection could increase the computation time compared to ALMA
or MASVM methods, so it is not expected to outperform these methods in absolute
computation time but rather provide a Pareto-optimal solution. This algorithm
will also be studied on 2D dataset where feature selection is turned-off (as it does
not make sense to test it there).

Model Hyperparameters Training set Feature set

Figure 3.2: The design of chromosome for SE-SVM method. Source: [38].

The design of the chromosome for SE-SVM is shown in Figure 3.2. There are
three distinct parts. The hyperparameters and kernel type make up the first part,
which has a constant size and can hold any number of arbitrary selections for the
kernel type. The latter two parts consist of sets for training vectors and features.
The IDs are representing numbers of selected rows (samples) and columns (features),
and are maintained unique throughout the evolution process. IDs are being used
instead of binary encoding due to the impracticality for large datasets. Furthermore,
those sets are expected to grow during the evolution process starting from some
small values of Kf for F and Kt for T . Hence the size of each chromosome is

62 Chapter 3. Proposed methods

dynamic and can differ as Kf and Kt can grow independently. Note that not even
all parts of T ′ or F ′ in a given population need to have the same size.

The pseudocode of this algorithm is presented in Algorithm 5. Although there
is only a single population, the parts of chromosomes population regarding M will
be referred to with P m, for T ′ as P t and for F ′ as P f .

Algorithm 5 Pseudocode for simultaneous evolutionary optimization of SVM
algorithm

1: Pbest ← ∅, Spool ← ∅, Fpool ← ∅
2: Initialize population P of size N
3: for i = 0 to 5 do
4: for all pi ∈ P do
5: ηi ← CalculateFitness(pi)
6: repeat
7: Spool,Fpool ← UpdatePools(P)
8: Parents ← SelectParents(P)
9: P ′ ← Crossover(Parents)

10: Education(P ′t, P ′f , Spool, Fpool)
11: Mutation(P ′)
12: P ′

SI ← SuperIndividualsCreation(Spool,Fpool)
13: for all pi ∈ (P ∪ P ′

SI) do
14: ηi ← CalculateFitness(pi)
15: P ← Selection(P ∪ P ′

SI ∪ P ′)
16: Adaptation(P)
17: until StopCondition
18: Pbest ← Pbest∪ GetBest(P)
19: P ← RegeneratePopulation
20: return Best(Pbest)

The algorithm starts by creating a new population (line 2) using different
initialization methods for each part of the chromosome. As this algorithm is built
over previous solutions the details of each operator could be found in proper
sections: for kernel evolution, GAHP is utilized (see Section 3.1), for training set
selection the MASVM is used (see Section 2.3.2) and for feature selection the EFS
method is used (see Section 2.3.3). Afterwards, the population is evaluated and
each individual has their fitness value calculated. In line 7, the pools of features
and SVs are being updated based on the current population. These pools hold

3.4. Simultaneous optimization of training and feature set and SVM
hyperparameters 63

information about the features (Fpool) and vectors (Spool) that are discovered to be
valuable during evolutionary process, and later, help to exploit knowledge learned
while running computations. During the first iteration, this is done based on the
fitness and SVs of the initial population. In the next step, parents are selected
using a local-global adaptation scheme (Section 2.3.2). This works similarly to EFS
and MASVM, the algorithm starts in global mode. The population is divided into
two parts, by sorting individuals based on their fitness and ϵ threshold. In global
mode, parents are selected from different parts of the population while in the local
mode, both are selected within the same group. The crossover operator (line 9),
creates N new individuals which are joined into a new population (P ′) of the same
size as the original one. Here proper operators are applied over each part of the
chromosome. The kernel type is kept constant during the evolution process where
the hyperparameters are crossed over using Equation 3.1 and sets of T ′ and F ′

from two individuals are summed separately. The size of these sets is limited by the
current values of Kt for T ′ and Kf for F ′. If either of those sets grows bigger, then
a random selection process is employed to maintain proper size. In the next line,
the parts of the population representing T ′ and F ′ (P t and P f respectively) are
going through the operation of education. This operation involves using previous
information learned during the evolution to improve the solution. For each type
of set a pool of promising vectors (built-up from SVs—Spool) and features (built
by creating a histogram of features used in best-fitted individuals—Fpool) is used
to replace vectors and features present in the chromosome. Afterwards, in line 11
whole new population goes through the process of mutation. When a chromosome
is chosen for mutation, all three parts undergo this process, and each segment
(part of a chromosome) employs a uniquely designed operator for M (GAHP),
T ′ (MASVM), and F ′ (EFS). Before the evaluation and selection process, super
individuals are created. This process selects up to Kf and Kt from the Fpool and
Spool for F ′ and T ′ respectively. For the model hyperparameters, the current best
solution is selected and added to all new super individuals, so they share common
M. In the next step, all of the newly created individuals are trained and their
fitness is calculated (based on V). Training of SVM models involves selecting
proper training vectors based on T ′ of the chromosome, as well as filtering the
set of features based on F ′. Each SVM should have a unique training set. The

64 Chapter 3. Proposed methods

selection process keeps the constant size of the population by selecting N fittest
individuals. At the end of each loop, the Kf and Kt can be grown adaptively and
the mode for parent selection could be adjusted. The process of evolution lasts till
there is no improvement in the average fitness of the population. Here the process
of regeneration is introduced once again and always R regeneration are performed.
Before each regeneration, the current best solution is saved and stored in Pbest.
The result of the algorithm is the best model from the entire evolutionary process
selected from Pbest.

3.5 Adaptive RBF kernel

Although the previous solutions already optimized training data and SVM
hyperparameters, it may be hypothesized that a custom kernel function can further
improve the SVM capabilities—this observation is built upon visualization of
multiple SVM models using 2D datasets, where different values of γ (used in RBF
kernel) provided insights into how far a given SV is affecting the decision hyperplane.
Especially at the start of EAs, like ALMA or SE-SVM, where there were only
Kt vectors selected most of those SVs provided classification information only in
their neighborhood. Thus, this observation led to the hypothesis that selecting
different kernel hyperparameters for different training vectors may help better
reflect the subtle characteristics of the space while determining the hyperplane.
This of course brings quite a big optimization problem where the number of
hyperparameters is equal to |T |. In this approach, the T ′ optimization is joined
with M in a form of a single algorithm, as each training vector is coupled with its
own γ value for the RBF kernel. This algorithm focuses on RBF kernels with a
single hyperparameter γ (see Table 2.1), because of their satisfactory performance
demonstrated in many cases [88]. This algorithm partly relates to the first hypothesis
that simultaneous optimization should improve classification and training time
without affecting the classification quality. However, compared to SE-SVM it is
expected to improve classification performance while training time is expected to
grow (as the optimization problem of selecting T ′ is bigger). So it is expected to
provide a Pareto-optimal solution with the shift toward classification quality.

It can be observed that the value of the RBF function is dependent on the

3.5. Adaptive RBF kernel 65

Euclidean distance between xi and xj, where the closer the vectors are in the
input space, the larger the value of the kernel becomes. The hyperparameter γ is
used to control the “range” of influence of SVs. By attaching γ to training vectors,
a much more detailed decision boundary could be produced. This situation is
presented in Figure 3.3 where an example of using different γ values coupled to the
T vectors that are selected as SVs is rendered. As presented with the orange SVs
in Figure 3.3b (those vectors have γ = 105) the larger value of this hyperparmeter
results in a small radius of influence on decision hyperplane. What is more, those
SVs are located near the decision boundary in regions that could be considered
“difficult” to classify. These regions could also be characterized as ones where vectors
from T lay close to one another. The SVs with relatively large γ values provide fine
details about this “local” part of the dataset. Contrary to them SVs with small γ’s
(blue and red ones) tend to lay further from the decision boundary and appear in
more homogeneous regions of the dataset which can be considered as “easier” for
correct classification.

Please note that the number of SVs is just a small subset of the training data
(in Figure 3.3 each pixel is a vector in the dataset, so presented white and black
dots actually includes tens of unique data vectors while SVs are just single pixels).
This sample proved that SVMs could be further improved by not only evolving T ′

and its M but also joining it with an adaptive kernel. This new method is called
SVMs with Adaptive RBF kernels—ARBF-SVM.

As discussed in Section 2.1.2 the kernel function needs to fulfill Mercer’s con-
ditions [62]. This could also be stated that the kernel matrix (or Gram matrix)
must always be positive semi-definite (also the kernel function needs to be sym-
metric). The work presented here provides an experimental approach, where those
requirements might not always be satisfied. However, it does not mean that such
SVM model would not work or SVM training could not be done. By allowing
relaxation of the conditions we lose the guarantee that provided decision boundary
will have the maximal possible margin. This is due to the fact that the optimization
problem might no longer be a convex problem, hence local minimum could be
different from the global minimum. The fulfilment of those conditions was tested
by checking during the evaluation process in the mentioned algorithm if all of the
kernel matrices were PSD. Although it was not true in all of the cases, the Gram

66 Chapter 3. Proposed methods

(a) (b)

(c) (d)

Figure 3.3: Assigning different γ’s in the RBF kernel to different T vectors can
help better “model” the peculiarities of the SVM hyperplane: (a) our example set
(we consider binary classification, white and black pixels present examples from
two different classes), (b) the crosses in different colours render SVs with different
γ’s: γ = 102 (blue), γ = 103 (red), γ = 104 (green), and γ = 105 (orange), together
with (c) the different shades of gray show the decision boundary, (d) the “range of
influence” of all SVs (the brighter/darker the pixel is, the distance to the hyperplane
is larger). The SVM regularization parameter was grid-searched and was C = 10.
This figure comes from our paper [94].

matrix was positive semi-definite in the majority of cases. As shown in practice (see
Section 4.2.2) this relaxation of conditions for kernel function does not deteriorate
the performance of the final classifier.

One more important step in the problem of capturing fine-grained characteristics
of the training set using different γ values assigned to the T vectors is how to

3.5. Adaptive RBF kernel 67

aggregate those γ’s during the calculation of the kernel matrix. Therefore, it is
important to determine a suitable aggregation function to calculate the kernel
value between xi and xj, since they may have different values of γi and γj. The
following aggregation functions are examined, resulting in various versions of the
evolutionary algorithm being proposed (they will be discussed later in this section):

K(xi, xj)=e−γi||xi−xj ||2 γ-One (3.3)
K(xi, xj)=e−[(γi+γj)/2]||xi−xj ||2 γ-Avg (3.4)
K(xi, xj)=e−max(γi,γj)||xi−xj ||2 γ-Max (3.5)
K(xi, xj)=e−min(γi,γj)||xi−xj ||2 γ-Min (3.6)
K(xi, xj)=e−γi||xi−xj ||2 + e−γj ||xi−xj ||2 γ-Sum (3.7)

It should be noted that in the γ-One variant, a single γ is selected and therefore,
aggregation of these hyperparameters is not carried out, as demonstrated in our
previous work regarding adaptive kernels [94]. It is worth mentioning that γ could
be interpreted as the range of influence of a given SV. Finally, once the training of
an SVM is completed, the calculation of the kernel for the new test sample (xtest)
is performed in the following manner:

K(xSV, xtest) = e−γSV||xSV−xtest||2 , (3.8)

where xSV is an SV and γSV is γ value associated with this SV.
The algorithm starts with an initial preprocessing step performed over a random

balanced subset (of size c · Kt) of the entire training set T , where c represents
the number of classes in the input dataset, Kt is a hyperparameter of the method
(Kt ≤ |Tmin|), and |Tmin| is the number of training vectors in the least numerous
class. The goal is to obtain a single C value (that will remain unchanged throughout
the optimization process), together with γ that will be used to generate a set of
γ’s which are used in the evolutionary process (Algorithm 6 line 4).

For each γi ∈ γ⃗, an initial population P of N individuals is generated (pj,
j = 1, 2, . . . , N) which is evolved (line 20). Each chromosome pj encompasses a

68 Chapter 3. Proposed methods

Algorithm 6 Evolving reduced training sets with adaptive γ values using DA-
SVM.

1: function FindGammaAndC
2: (C, γ)← Grid search over a random T ′ of size c ·K
3: γ⃗ ← {γ/10, γ, 10 · γ, 100 · γ, 1000 · γ}
4: return γ⃗, C

5: function EvolveT(P , Sbest)
6: Spool ← ∅
7: while termination condition not met do
8: P ′ ← Crossover(P)
9: P ′ ← Educate(P ′)

10: P ′ ← Mutate(P ′)
11: P ′ ← Calculate fitness(P ′, Sbest)
12: Spool ← Update SV pool(P ′)
13: P SI ← Create super individuals(Spool)
14: P ← Post select(P , P ′, P SI)
15: P ′

best ← Find best individual(P)
16: Adapt(P)
17: return P , P ′

best

18: function Optimize(γ⃗, C, P ′
best, Pbest,Sbest)

19: for all γi in γ⃗ do ▶ γ’s sorted ascendingly
20: P ← Generate(N , C, γi, T)
21: P ′

best ← Find best individual(P)
22: if η(P ′

best) > η(Pbest) then
23: P , P ′

best ← EvolveT(P , Sbest)
24: if η(P ′

best) > η(Pbest) then
25: Add SV(P ′

best) to Sbest
26: T ← Shrink(T , P)
27: Pbest ← P ′

best

28: Reset LGA, Spool ← ∅
29: return Pbest

30: function main
31: P ′

best ← ∅, Pbest ← ∅, Sbest ← ∅
32: γ⃗, C ← FindGammaAndC
33: Optimize(γ⃗, C, P ′

best, Pbest, Sbest)

3.5. Adaptive RBF kernel 69

(potentially imbalanced) subset of min{K, |Tc|} training vectors, alongside their
gamma values set to γi, randomly sampled from T for each class c. Once the
population is created, the fitness of all individuals is calculated. For each pj, an
SVM is trained using a combined set of T ′

j and Sbest vectors, where T ′
j is the

encoded reduced set of pj , and Sbest is a set of all vectors that have been selected as
SVs for the best individuals in the previous generations (for the first γi, Sbest = ∅).

The fitness ηj of the j-th chromosome is calculated as AUC obtained using the
corresponding SVM over V . If η of the best individual P ′

best (line 21) is greater than
η of the best individual Pbest evolved so far (line 22), appending more T vectors
with larger γ’s will help enhance the abilities of the SVM through more fine-grained
modeling of the hyperplane. In that case, the refined sets are optimized using a
memetic algorithm [96] (line 23). Otherwise, γi is skipped, and the algorithm jumps
to the next γ.

Note that calculating the fitness value requires training an SVM using the
corresponding T ′, therefore this algorithm is a wrapper approach. Since the training
process is the most time-consuming part of the entire algorithm, it may be considered
as an important drawback of the technique (although the reduced training sets are
kept small). To further tackle this issue, the No-T variant is proposed in which
training of an SVM is not performed for calculating the fitness of an individual.
Instead, all training vectors are selected as SVs, hence build upon observation that
the evolved training sets should encompass only important training vectors that are
likely to be SVs. This approach may, however, slow down the classification proccess
of an underlying SVM which is in a linear relation with the number of SVs.

Once the evolution over the i-th gamma is finished, it is verified if the fitness of
the best individual from the final population is greater than the fitness of the best
solution already found (line 22). If so, the SVs (together with the corresponding
γ’s) of the fittest individual are added to Sbest, being the pool of SVs of the
best individuals (line 25). These vectors are removed from T which becomes
T ← T − SV(P ′

best), and—additionally—the training set is shrunk and the T

vectors that have been correctly classified by all individuals in the population are
removed (line 26), as they are often positioned far from the decision hyperplane.
This reduction process can considerably decrease the size of T , hence enhance the
convergence abilities of the evolutionary optimization, because discarded examples

70 Chapter 3. Proposed methods

are unlikely to be picked as SVs. It, however, may lead to extremely imbalanced
T ’s (even containing single-class vectors). To tackle this issue, the Sbest vectors are
incorporated in the final reduced training sets. Finally, the best individual Pbest is
returned (line 29).

Kt = 2 Kt = 8 Kt = 32

(a)

(b)

(c)

Figure 3.4: The impact of the Kt value on the quality of hyperparameter config-
urations extracted for example datasets: (a) 2D-Blobs, (b) german, (c) spambase.
For the details of these sets (their sizes and characteristics), see Section 4.1. This
figure comes from our paper [40]

This preliminary grid search (with a logarithmic step)1 is based upon the
1Note that the grid search may be easily replaced with other algorithms, e.g., a selected

3.5. Adaptive RBF kernel 71

observation that the small subsets of the entire training set are often representative
enough to locate high-quality hyperparameter configurations [77]. In Figure 3.4, the
impact of the Kt values is visualized on the estimated quality of the hyperparameter
configuration. For the performance measure AUC is calculated for the validation
set (V) using an SVM trained with a selected refined set. The three example
datasets are selected for this investigation (the details of these sets are reported in
Section 4.1). What can be appreciated is that Kt = 8, being the value of Kt used in
as default value in the algorithm, is enough to observe the dependency between the
(γ, C) pairs and the corresponding AUC obtained using an SVM trained over such
reduced sets (note that Kt = 2 may be too small for some datasets, e.g., 2D-Blobs in
this example). On the other hand, larger Kt’s, here Kt = 32, do not bring significant
improvements in the estimation quality of the underlying hyperparameter pairs
(the shape of the solution space in Figure 3.4 remains similar to Kt = 8), but
adversely affect the SVM training time.

This initial method was refined and improved by DA-SVM method, where
different kernel functions are combined in a single SVM. Figure 3.5 renders an
example dataset (2D-Linear pool) which could benefit from exploiting a linear
kernel in combination with the RBF one. Although an SVM with an adaptive RBF
kernel (our ARBF-SVM method [94]) is able to effectively elaborate a high-quality
decision hyperplane, the number of SVs is significantly larger than for a classifier
which initially determines a linear hyperplane, and then fine-tunes it with RBF
kernels. Also, since the hyperplane seems less “overfitted” to the training set, it
could potentially deliver better generalization.

Joining of the kernels is based on the observation that the kernels can be divided
into the global and local ones [126]. In the former case, data points that are far away
from the test point may have a significant effect on the kernel value (e.g., as in the
linear kernel), whereas in the latter kernels, only those vectors which lay close to
the test example impact the kernel value (e.g., as in the RBF kernel). Hence, the
best way to proceed is to elaborate an “approximate” decision hyperplane using
the linear kernel, and locally improve its shape with the use of adaptive RBF.

The extension of the previous approach to incorporate this design of joining

metaheuristics. It was investigated in our publication [40] but replacing this algorithm did not
change the performance of the algorithm.

72 Chapter 3. Proposed methods

(a) Training set (b) SVM with a linear kernel

(c) ARBF-SVM [94] (d) DA-SVM(Mix)

Figure 3.5: Example hyperplanes extracted using various methods show that mixing
the linear and RBF kernels may help obtain “less complicated” hyperplanes (hence
possibly not overfitted to T). We visualize (a) an example training set (with white
and black dots presenting two-class vectors), (b) a linear-kernel SVM (with yellow
crosses showing the SVs), (c) a hyperplane obtained by ARBF-SVM [94] and
(d) DA-SVM(Mix). In (d), the purple crosses render the SVs obtained for the linear
kernel while the others visualize the SVs for various γ’s for the RBF kernel. This
figure comes from our paper [40]

kernels is presented in Algorithm 7. For the linear kernel, the fitness of the indi-
viduals is quantified by using the balanced accuracy (instead of AUC), in which
both sensitivity and specificity equally contributes to η, and can be safely used for
imbalanced classification [49] (line 13).

The initial pre-processing is performed using grid search to optimize C, and

3.5. Adaptive RBF kernel 73

Algorithm 7 Combining the linear and RBF kernels in a single SVM using DA-
SVM(Mix).

1: function FindGamma(Sbest, C)
2: γ⃗ ← {0.001, 0.01, 0.1, 1, 10, 100, 1000}
3: γ⃗η ← ∅
4: for all γi in γ⃗ do
5: P ← Generate (N , C, γi, T , Sbest)
6: P ′

best ← Find best individual(P)
7: γ⃗η ← γ⃗η ∪ η(P ′

best)
8: γ ← γ⃗[indexmax(γ⃗η)]
9: γ⃗ ← {γ/5, γ, 10 · γ, 50 · γ}

10: return γ⃗

11: function Main
12: P ′

best ← ∅, Pbest ← ∅, Spool ← ∅, Sbest ← ∅
13: Metric = Balanced Acc
14: C ← Grid search over a random T ′ of size c ·K
15: P ← Generate(N , C, T)
16: P, P ′

best ← EvolveT(P , Sbest) ▶ as in Algorithm 6
17: Add SV(P ′

best) to Sbest
18: T ← Shrink(T , P ′

best)
19: Pbest ← P ′

best
20: Metric = AUC, Kt = 2 ·Kt

21: γ⃗ ← FindGamma(Sbest, C)
22: return Optimize(γ⃗, C, P ′

best, Pbest,Sbest) ▶ as in Algorithm 6

evolve a population of refined training sets with linear kernels only. When the
evolution ends, all SVs with the linear kernel is stored in Sbest and utilized later in
the optimization process (line 17). Afterwards, the shrink process is applied, but
with a modification that all the training vectors correctly classified by the best
individual are removed. This approach may be considered as ”more aggressive”,
as the size of T will decrease much faster in such a setting. Once the process of
optimizing the linear SVM has been finalized, the fitness is switched back to AUC
(line 20), and Kt is doubled to make capturing the more “difficult” parts of the
space using an RBF kernel easier. Then a process of finding γ⃗ for adaptive RBF
kernel is performed. The random populations for each γ value (line 2) are created
and evaluated. The best-fitted individual (line 6) is extracted and its fitness is

74 Chapter 3. Proposed methods

stored in γ⃗η (line 7). At this point, SVMs may already contain vectors with both
linear and RBF kernels as Sbest is utilized. Afterwards, the γ value with the largest
corresponding fitness is found (line 8) and γ⃗ is build upon it (line 9). Finally, the
T ′ sets are evolved in the same way as presented in Algorithm 6.

The one disadvantage of such an approach is that it is hard to know if a given
dataset could be “coarsely” modeled, by linear SVM, and forcing this kind of
solution may be harmful to the end result. It was proven in initial experimentation
that this is true for some of the benchmark datasets where this algorithm worsens
the performance of the model. That is why a co-evolution scheme is proposed in
Algorithm 8 to combine these two approaches and benefit from the concurrent op-
timization of different kernel combinations. In order to tackle the computational cost
a competitive-like approach [118, 121] is used in which the better (sub-)populations
trigger the process of pruning the worse populations that are “outperformed”.

First, a separate linear-kernel population P i of size N is generated for each
Ci ∈ C⃗L (lines 1–4). Each population P i undergoes the evolution presented in
Algorithm 6—each P i has its own SV pool S i

best, and for each population a separate
γ⃗i is determined (see Algorithm 7, line 1 for more details). Note the γ values may
be dependent on the selected C, hence they are likely to be different across the
populations. For each P i, T is shrunk (Algorithm 8, line 6) using the procedure
introduced in Algorithm 7 (based on the best individual performance). Afterwards,
all populations are added to the pool G (Algorithm 8, line 7).

At this point, all of the linear-kernel SVMs are evolved, together with the
corresponding γ⃗i, S i

best, and T i
P for each of P i ∈ G. In the next step a separate

population P γ is generated (lines 8–9) that will optimize the RBF kernels, as in
Algorithm 6. For P γ , its training set becomes T . Additionally, all of the current best
individuals P̃ ibest for each population are stored (line 11)—it will allow checking if
those should be optimized at a later stage of the algorithm.

In the co-evolutionary part of the algorithm, G populations are evolved which
exploit their unique training sets T i

P . To prune the entire set of all populations, the
most promising ones are selected for evolution. To equally capture the quality of
the entire population, alongside the quality of the best individual, the populations
are sorted according to the sum of their average η(P i) and best η(P i

best) fitness
scores (lines 16–18).

3.5. Adaptive RBF kernel 75

Algorithm 8 Combining Algorithms 6 and 7 into a competitive co-evolutionary
scheme.

1: C⃗L = {0.01, 0.1, 1, 10, 100}, G← ∅
2: for all Ci in C⃗L do
3: P i ← Generate(N , Ci, Linear Kernel, T)
4: P i ← EvolveT(P , S i

best)
5: γ⃗ ← FindGamma(S i

best, Ci)
6: T i

P ← Shrink(T , P i
best)

7: Add P i to G
8: P γ ← Generate(N , T , FindGammaAndC)
9: Add P γ to G

10: for all P i in G do
11: P i

best ← P̃ ibest

12: while all P i in G not finished do
13: for all P i in G do
14: P i ← Generate (N , T i

P , P i)
15: P i ← Calculate fitness(P i, S i

best)
16: if |G| > 3 then
17: Sort G by η(P i) + η(P i

best)
18: G← Select three best P i in G
19: if η(P̃ ibest) > η(P i

best) then
20: EvolveT(P i, S i

best)
21: Sort G by η(P i) ▶ descendingly
22: for all i in range(1, |G|) do
23: |P i| ← |P i| − 2
24: if P i size ≤ 2 then
25: G← G− P i

26: if η(P̃ ibest) > η(P i
best) then

27: Add SV(P̃ ibest) to S i
best

28: T i
P ← Shrink(T , P i)

29: P i
best ← P̃ ibest

30: return Best individual from all P i ∈ G

Afterwards, the training sets for each population are optimized using the
memetic algorithm (line 20). Once the evolutions are finished, the populations are
sorted descendingly (line 21) and gradually decrease the size |P i| of the “weaker”
populations through removing random individuals, excluding the best-fitted one
(line 23). The pruning of the populations that are less promising helps to reduce

76 Chapter 3. Proposed methods

the computational cost of the optimization. If the population is smaller than two
chromosomes, then the population is excluded from further processing (line 25).
For each population, it is verified if the best fitness P i

best has improved—in this case,
S i

best is updated with its SVs, and T shrunk for this population (line 28). Otherwise,
if there is no fitness improvement, those vectors selected for γi are discarded and
progress to the next γ. Ultimately, the best individual among all populations is
returned (line 30). Only alive populations are considered.

In [40], many different variants of the algorithm were proposed and tested.
Using this knowledge in this work the most successful ones are presented later in
experimental validation. Those variants will be denoted using following naming
convention DA-SVM ([FS], [CE], Kernel aggregation, [No-T]), where [·] is
an optional parameter. These possible variants are:

• FS—if this optional parameter is present, then the feature selection (i.e., the
recursive feature elimination [39]) is switched on, and it is performed before
the evolutionary optimization (as a pre-processing step).

• CE—if this optional parameter is present, then the co-evolutionary optimiza-
tion is performed.

• Kernel aggregation—this mandatory parameter indicates which aggrega-
tion function was used for handling multiple γ values in the RBF kernel.

• No-T—if this optional parameter is present, then all training vectors are
selected as SVs, hence no SVM training is performed while calculating the
fitness of individuals in a population.

The most successful variants included ones that use co-evolutionary optimization
joined with feature selection (based on result in our paper [40]). The No-T variant
is interesting and also was present among top configuration to consider. Because of
that other variants will not be presented in experiments.

3.6 Building ensembles

Building an ensemble of multiple classifiers is often considered the last step
toward a possible improvement of classifier performance. This popular paradigm

3.6. Building ensembles 77

is based on the assumption of leveraging the strength of individual classifiers and
mitigating their weaknesses [112]. This opens an interesting direction that could
help further improve the performance and help to deal with large datasets (as one
can be using multiple lightweight SVM in the ensemble).

Based on the previous experience of designing SE-SVM and DA-SVM and
experimenting with the 2D datasets, it was hypothesized that datasets often
consist of homogeneous and heterogeneous regions. These regions provide different
“difficulty” levels for classification, whereas homogeneous regions are easy and
straightforward to classify correctly. Based on that observation, building ensemble
should reassemble these different regions, so the SVM classifier should split the
dataset accordingly. This initial idea resulted in the introduction of competence
regions for each base model in the ensemble. The trained SVM classifier is used to
split the input space into certain and uncertain parts, where certain regions are
expected to provide better classification quality. A certain region is understood
as a region with the error-free classification of training samples. What is more,
if a given SVM is “certain” about a given input vector, the rest of the models
in the ensemble should not be involved in the classification process (to increase
classification speed). This led to combining multiple SVMs into a cascade structure,
where each node of a such cascade is treated as an expert in its certain regions, that
can predict the class of the input vector. One more design goal should be handling
the homogeneous regions by early nodes in cascade to further increase classification
speed. As building ensembles involves training of multiple base classifiers many
of such techniques [31, 57] proposed to use a subset of T in order to train those
base models. Compared to those ensemble techniques developed for SVMs the
major difference is that the presented solution will optimize T ′ using the memetic
algorithm. This addresses two problems, first, it mitigates the importance of
selecting the proper size of the reduced T for each base classifier (as the size is
adapted during the computation) secondly, the optimized T ′ should improve the
classification performance compared to the randomly selected subset of T .

The high-level flowchart of this new method called CE-SVM—Cascades of
Evolutionarily optimized SVMs is present in Figure 3.6. Each SVM node within
the cascade is designed to specialize in a specific part of the input space whereas,
the final SVM node is used to classify examples that do not fit within these certain

78 Chapter 3. Proposed methods

regions of the space.

Training set SVM evolution

SVM model Thresholds

Classification
and data split

Data in
certain region

Data in
uncertain region

1st node

SVM evolution

SVM model Thresholds

Classification
and data split

Data in
certain region

Data in
uncertain region

2nd node

Training set
SE-SVM
training SVM model

Final node

Figure 3.6: Cascade consists of multiple levels, each with a newly evolved node
(represented by blue boxes). These nodes are made up of a lightweight SVM model
and thresholds that divide the input space into two regions: certain (indicated by
yellow shades) and uncertain (indicated by red shade). Any training data that falls
into the uncertain region is then passed to the next level, with the final node being
based on SE-SVM. The classification process (indicated by waved arrows) is carried
out using the evolved cascade. This figure comes from [41].

To divide the dataset into certain and uncertain parts all decisions elaborated by
a trained SVM are analyzed (being the distances from the decision hyperplane) and
mapped onto the axis after sorting, as presented in Figure 3.7 (these are exemplary
values). Individual vectors are represented by vertical black lines (evenly spread for
clarity), whereas the green line indicates the SVM decision boundary with zero bias.
Certain regions should hold all of the training vectors that are correctly classified.
To confront these distances across different SVMs, they are normalized according
to the minimal and maximal responses of each model.

3.6. Building ensembles 79

Negative certainty
threshold

Positive certainty
threshold

−2.8 1.6

−1.8

0

0.9

Uncertain regionNegative certain
region

Positive certain
region

Figure 3.7: Visualization of certainty thresholds. The values presented are only
exemplary. This figure comes from [41].

In order to find such thresholds all of the decision values for the data available
for training and validation (Tu

⋃
V) are calculated. The Tu represents part of the

training set that lay in the uncertain region (at start T = Tu). All of those values
are sorted in ascending order. Then, starting from the smallest value (the left
part of the X-axis in Figure 3.7) the first instance x+ for which the ground-truth
class label is positive is found. Next, the average of the decision value obtained for
x+ and the decision value obtained for the last correctly-classified instance with
the negative ground-truth label becomes the negative certainty threshold. If the
threshold is increased beyond Hmargin, it is cropped to Hmargin to incorporate an
additional regularization term that assists in avoiding the memorization of training
and validation data by overfitting the threshold value to these sets. The positive
threshold for the positive certain regions is extracted in a similar fashion.

Building the cascade of SVMs

To construct the cascade of specialized SVMs, it is assumed that all input data
(T and V) belong to the uncertain region. At each node of the cascade, the training
set and hyperparameters of the SVM kernel are evolutionarily optimized using
SE-SVM (described previously in Section 3.4). This method was selected based
on its time performance of training and classification during initial evaluation and
based on the results of our previous papers [38]. As multiple SVMs will be joined
here, the speed of training was more important than classification performance
(which will be addressed by ensembling the results). When comparing SE-SVM with

80 Chapter 3. Proposed methods

previous method of DA-SVM it provided much faster training times, and against
ALMA it was hypothethised that simultaneous optimization should be better in
this case. However, there is one important modification to SE-SVM method, the
feature set is not optimized at all and always all of the features are used (the EFS
component is disabled). That is due to the fact that each node is modeling part
of the input space, but gets SVs from all of the previous nodes. Those SVs are
passed down the cascade along with their corresponding γ values and an adaptive
RBF kernel is utilized (as in DA-SVM, Section 3.5). This adaptive kernel is used to
guarantee the smoothness and continuity of the decision boundary and to provide
knowledge to the current node about the previous results in the cascade. The
current uncertain region of the input space is reduced using this evolved SVM
by classifying all vectors from the previous uncertain region and extracting the
thresholds that define the certain region in which the new node specializes. The
cascade is iteratively extended with nodes until either the training set is exhausted
or it is impossible to enlarge certain regions further by introducing more training
and validation vectors using additional SVM nodes. The final node in the cascade
is responsible for classifying the uncertain region of the input space.

For the fitness of node evolution, the number of correctly classified samples
within a certain region in relation to all of the available samples is used. This fitness
encourages selecting the largest possible certain regions. This encourages to select
homogeneous regions of input space at early nodes of cascade. One important detail
here is that during the calculation of threshold bias term of SVM should not be
taken into a certain region. Otherwise, SVM can become “certain” for vectors laying
far from all of the SVs where all of the kernel function evaluations are zero (or very
close) and the bias term is used to make the decision about the classification result.

As demonstrated in our conference paper [41], the method provides great
classification performance. What is more, selected certain regions showed increased
accuracy of classification. However, there are several shortcomings with this method
after initial tests were conducted. First of all, for some of the sets, the cascade
generation was stopped early, thus the coverage of the test set by certain regions
was small. This was especially visible in the case of imbalanced sets when the
minority class was entirely included into the certain region. Another problem was
occurring in the datasets with the high number of features in which certain regions

3.6. Building ensembles 81

are limited due to data sparsity. Yet another problem was that the “inheritance” of
SVs from previous nodes has caused a long training time, especially if the cascade
keeps growing (it may also happen when the first few nodes are not covering a
large part of the dataset). This led to the development of an improved method
presented in the next subsection.

Building ensembles of evolutionary cascades

Firstly, to address the issue of long training times, the adaptive RBF kernel
was removed from the design. This modification helped to streamline the overall
computational complexity of the architecture, reducing both the training time
and computational requirements for each individual node. Additionally, to further
enhance the speed and efficiency of the cascade, a random validation set was
selected for each cascade (as fitness evaluation can be longer than SVM training).
In all previous methods, the V was based on the dataset split done before running
the algorithm. It often happened that, for large datasets, the evaluation of V

took more time than training the SVM classifier (especially at the beginning of
evolution where Kt was relatively small). So selection of random and small V

should increase the speed of building a cascade, and help to focus training on
specific regions of the input space. What is more, these random V ′s should increase
the diversity among the cascades as they would fit to different distributions of data
(which should result in better classification) [113]. As previously mentioned, joining
different kernels could be beneficial. In this case, two separate populations were
evolved simultaneously, one with a linear SVM and the other with an RBF kernel.
It means that nodes in a single cascade could have different kernels used. This
approach allowed for greater flexibility in the design of the cascade, enabling it to
adapt to a wider range of input data. Finally, to further improve the classification
performance of the system, the uncertain region of the input space was handled
by an extra tree (ET) classifier (a type of a random forest). Combining multiple
different base models can further improve the classification performance and is
often more successful than homogeneous ensembles (the ones built with base models
of the same type of classifier—SVMs) [111]. Please note that ET is utilized only
for handling uncertain regions and is not used otherwise. All of those modifications

82 Chapter 3. Proposed methods

should improve the shortcomings of CE-SVM method and prove the second research
hypothesis that building ensembles of SVM using evolutionary algorithms provides
improved classification performance.

Constructing multiple cascades allowed for the trade-off between classification
performance and computational efficiency of a single cascade, wherein the optim-
ization of the latter was prioritized. Compared to the CE-SVM method, a single
cascade might provide worse classification quality. However, even when one of the
cascades fails to cover a large part of the input space and/or provides poor results,
it can be improved and mitigated by other ones.

Algorithm 9 Code for building ensembles of evolutionary SVM cascades.
1: E ← ∅, ϵ← 0.001
2: repeat
3: T , V ← Resample(T ∪ V)
4: εi ← BuildCascade(T , V)
5: ςi ← ScoreLevelWise(εi, T ∪ V)
6: MCC∆, Tu, Vu ← Evaluate(E, εi,ςi, T ∪ V)
7: Unceratin∆ = |Tu|/|T |+ |Vu|/|V |
8: E ← E + (εi, ςi)
9: until MCC∆ > ϵ or Unceratin∆ > 1%

10: return E

11: function BuildCascade(T , V)
12: ε← ∅, Tu Vu ← T V
13: repeat
14: SV MLine ← Evolve(Tu, Vu, Linear)
15: SV MRBF ← Evolve(Tu, Vu, RBF)
16: SV M ← max(η(SV MLine), η(SV MRBF))
17: ε← ε + SV M
18: Tu, rT ← GetUncertain(SV M , Tu)
19: Vu, rV ← GetUncertain(SV M , Vu)
20: until rT or rV or |Tu| > Kt

21: return ε

The process of building such ensemble is presented in Algorithm 9. The first line
begins, with initialization of an empty ensemble and ϵ value for improvement in
MCC score required by new cascade. The MCC score was used as AUC is difficult
to calculate and interpret for a cascade classifier. After that, the process of building

3.6. Building ensembles 83

ensemble begins. At the beginning (line 3), the training and validation sets are
joined and resampled, where up to ϑ vectors are selected for V and no more than ζ

of all data. This division is done in a random manner (keeping the class stratification
of the dataset) and passed to process of building cascade (line 4). During this
process, all of the training and validation data is considered as uncertain region at
first (line 12). Then the nodes are trained using a SE-SVM algorithm, but without
feature selection process, the same as in the CE-SVM method (based on the same
observations). The fitness function for evolving single node within cascade is also
taken from CE-SVM and is based on the certain region coverage in relation to
available data. Two populations are trained independently using different kernels,
namely linear and RBF (lines 14-15). After the training, the model with a higher
fitness score is selected (line 16) and appended to the cascade. Then this model
is used to find new uncertain regions of the space (shrinking current Tu and Vu).
During that process, there is an additional check whether the size of the given
uncertain set was reduced (rT for Tu and rV for Vu). The cascade is being built
until there are no new vectors added to certain region or the training data have
sufficient size allowing to build new nodes. Otherwise, the evolution of the cascade
is finished and it is returned to the main algorithm that builds ensemble (line 21).
Later in line 5, this cascade is scored where each node receives MCC score in its
certain region. Those scores are used during the classification process which uses
voting scheme and these MCC scores act as weights. Thanks to that if just a single
node has poor performance it is known and its answer could be easily discarded
(or outvoted). Then the new cascade is evaluated with the whole ensemble on
the joined training and validation set. Here the improvement of MCC score over
the whole ensemble (MCC∆) is calculated and uncertain sets are selected (line 6).
During the evaluation, at least half of the cascades present in the ensemble need to
provide an answer within the certain regions to consider this answer as a certain
one. Otherwise, such a vector is classified as lying in the uncertain region. In next
line 7, the size of the uncertain set with this new cascade is calculated and the
cascade is added to the ensemble (line 8). The stop condition, when new cascades
should not be added into the ensemble is when MCC score of the whole ensemble
did not improve (by at least ϵ) when adding a new cascade, or the uncertain region
did not decrease in size by more than Υ of the T ∪V . When one of that conditions

84 Chapter 3. Proposed methods

is fulfilled the process ends and the ensemble is ready.

3.7 Summary

All of the presented methods are summarized by their main features in Table 3.3.
Please note that the first two techniques (GASVM [75] and MASVM [96]) are
earlier works by Nalepa and Kawulok. While the presented work uses both of those
methods, it extends them significantly by combining them with hyperparameter
optimization and feature selection. Compared to Table 3.1, this summary provides
a timeline of the publications and highlights the difference between them. The
GASVM and MASVM focused only on providing training set selection for SVM.
Their results showed that training SVM with T ′ is viable for resulting classification
performance and decreasing computational costs. However, the main disadvantage
of those methods was the need of specifying the SVM hyperparameters beforehand.
As presented earlier this task is not trivial and SVM performance depends on it.
That was the initial motivation for proposing the ALGA and ALMA methods, where
hyperparameter optimization is coupled with training set selection. This method
formed a framework where two separate optimization processes are run. These
processes are joined in an alternating scheme, where the result obtained by one of
those processes is used during other optimization (the result of hyperparameters
optimization is used in the training set selecting and vice-versa).
This alternating scheme was later extended by incorporating a feature selection
process. The FSALMA used a preselection technique, the RFECV algorithm to
optimize the features set before running optimization whereas, the E-SVM method
incorporated the presented EFS for feature selection. However, it was hypothesized
that the alternating scheme might be suboptimal, hence the simultaneous evolution
of hyperparameters, training set, and feature set was introduced with SE-SVM
method. It should provide a better classification quality compared to previous
methods, while training and classification times should be improved compared
to algorithms not performing training set selection. However, SE-SVM is not
expected to be faster than GASVM or MASVM as it is a more complex method for
optimizing also hyperparameters and feature sets. These additional optimization
processes are expected to negatively impact the run-time of the method. Although

3.7. Summary 85

Table 3.3: The most important aspects of SVMs optimized by evolutionary tech-
niques.

Model

Method Year F
Single
kernel

Var. γ
in RBF Mixture T Uncertainty Ensemble

GASVM [75] 2012 ✗ ✗ ✗ ✗ ✓ ✗ ✗

MASVM [96] 2014 ✗ ✗ ✗ ✗ ✓ ✗ ✗

ALGA [76] 2017 ✗ ✓ ✗ ✗ ✓ ✗ ✗

ALMA [39] 2018 ✗ ✓ ✗ ✗ ✓ ✗ ✗

FSALMA [39] 2018 ✓ ✓ ✗ ✗ ✓ ✗ ✗

E-SVM [37] 2019 ✓ ✓ ✗ ✗ ✓ ✗ ✗

SE-SVM [38] 2019 ✓ ✓ ✗ ✗ ✓ ✗ ✗

ARBF-SVM [94] 2020 ✗ ✗ ✓ ✗ ✓ ✗ ✗

DA-SVM [40] 2021 ✓ ✗ ✓ ✓ ✓ ✗ ✗

CE-SVM [41] 2022 ✗ ✗ ✓ ✗ ✓ ✓ ✓
ECE-SVM - ✗ ✗ ✗ ✓* ✓ ✓ ✓

GASVM—Genetic Algorithm for selecting SVM training sets.
MASVM—Memetic Algorithm for selecting SVM training sets.
ALGA—ALternating Genetic Algorithm for selecting SVM training sets and models.
ALMA—ALternating Memetic Algorithm for selecting SVM training sets and models.
FSALMA—ALternating Memetic Algorithm for selecting SVM training sets and models with Feature Selection.
SE-SVM—Simultaneously-Evolved SVMs.
E-SVM—Evolutionarily-tuned SVMs.
ARBF-SVM—SVMs with Adaptive RBF kernels.
DA-SVM— Data-Adaptive Support Vector Machines.
CE-SVM—Cascades of Evolutionarily optimized SVMs.
ECE-SVM—Ensembles of Cascades of Evolutionarily optimized SVMs.
* the mixture of kernels in ECE-SVM is not using the same mixing as in DA-SVM algorithm.
In ECE-SVM different kernels are present in separate nodes not in single SVM.

compared with the fact that GASVM and MASVM required GS to provide the
proper hyperparameters for SVM, the total run-time should be reduced (which is
directly related to the first research hypothesis stated in Section 1.1). During the
experimentation with those methods, it was observed how the γ hyperparameter
(of RBF kernel) affects the classification performance. Thus, two new algorithms
using adaptive RBF kernel were introduced. They offer a Pareto-optimal solution
compared to SE-SVM, where those methods should provide better classification
performance by trading off the training and classification time. To further extend
the performance of SVMs models, an ensemble scheme was proposed. It focused on
finding so-called certain regions where classification quality should be increased (as
opposed to uncertain regions). This division of the input space allowed the building

86 Chapter 3. Proposed methods

of a cascade structure of SVMs, where each node is an expert in its region. This
technique was introduced with CE-SVM method. The experiments in [41] unveiled
a few shortcomings of this method, where building such an ensemble was stopped
too early. Moreover, the training times were quite long in the case of building a
cascade with many nodes, where the process was getting slower with each new
node. This led to the development of the final method ECE-SVM which addresses
these issues. It should provide the best results in terms of classification quality
while training and classification times should be on par with CE-SVM method. The
last of the presented algorithms ECE-SVM is not yet published but it is planned
to be submitted to a journal.

Chapter 4

Experimental validation

This chapter shows the results of experimental validation where the most
important algorithms introduced in this dissertation are tested. Their performance
is investigated using two types of datasets: (1) artificially generated 2D datasets
and (2) multiple benchmark datasets taken from popular repositories.

The chapter is organized as follows: first, the datasets are briefly described and
presented (Section 4.1) with reasoning why they were selected for this study. Next
in Section 4.1 the experimental setup and implementation details are presented.
Following that, in Section 4.2.1 each algorithm is validated independently using 2D
datasets and all of them are compared using those artificially generated datasets. In
Section 4.2.3 those proposed approaches are compared to each other and compared
to other popular classifiers and state-of-the-art methods using benchmark datasets.

4.1 Datasets

The effectiveness of the proposed algorithms will be tested using two kinds of
datasets:

• Artificially generated datasets—they include vectors that are either
manually created or produced to adhere to a predetermined distribution,
such as the Gaussian distribution. As a result, the underlying characteristics
of the data are known, which is not always the case with benchmark and
real-world datasets. Additionally, artificially generated datasets are often

87

88 Chapter 4. Experimental validation

simple to visualize. These datasets are used to study the behavior of new
algorithms. This study includes several artificially generated datasets (see
examples in Figure 4.1, where white and black pixels represent vectors from
the positive and negative classes, respectively).

• Benchmark datasets—datasets of this type have various characteristics and
are used to evaluate the effectiveness of algorithms. They ease comparison
among the methods and provide points of reference as well as prove the
usefulness of the methods as these types of datasets are often based on
real-life data. There are three popular repositories from which datasets were
gathered for this study:

1. UC Irvine (UCI) machine learning repository: https://archive.ics.
uci.edu/ml/index.php5

2. Knowledge Extraction based on Evolutionary Learning (KEEL) reposit-
ory: http://www.keel.es/

3. LibSVM repository:
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

In Table 4.2, benchmark datasets used are denoted with the name of the
repository where they came from. Although the sizes of most of these bench-
mark datasets are not very large, they are widely used in the literature to
compare different algorithms that optimize various aspects of SVMs.

All of the presented datasets concern binary problems. Even though SVMs
could be extended to multiclass classification problems by employing the one-vs-one
or one-vs-all scheme, this kind of solution might be suboptimal as presented in [40].
The algorithms discussed in the previous section could be used with specialized
methods that handle multiclass classification as there is no inherent limitation to
the number of classes. However, this is beyond the scope of this dissertation.

All of the artificially generated datasets are presented in Table 4.1. The im-
balance ratio (IR) is reported for each dataset, it is calculated as a ratio of the
more numerous class to the less numerous class (so IR ≥ 1). The datasets were
created by “painting” a 2D canvas with black and white vectors as presented in

https://archive.ics.uci.edu/ml/index.php5
https://archive.ics.uci.edu/ml/index.php5
http://www.keel.es/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

4.1. Datasets 89

Table 4.1: The artificial created 2D datasets use in the analysis. IR stands for
imbalance ratio, ∑ is the number of vectors in the dataset before any divisions
where T stands for the number of vectors in the training set and Ψ is the number
of vectors in the test set.

IR ∑
T Ψ IR Sum T Ψ

2D-Shapes 1.61 6458 1160 5298 2D-Dense 1.10 102301 61381 20460
2D-Blobs 1.26 34957 6371 16767 2D-Linear pool 1.11 18666 4943 6767
2D-Dots 1.42 2842 242 1552 2D-Linear pool flip 1.11 18666 4943 6767
2D-Chessboard 1.29 69971 19949 22169 2D-Many pools 1.24 37110 22266 7422
2D-Circles noise 1.51 60462 36278 12092 2D-Mixed 1.18 34434 20662 6886
2D-Grain blobs 1.95 46555 27933 9311 2D-Mixed heavy 4.07 19084 11452 3816
2D-Imbalanced line 2.00 26500 15900 5300 2D-Stripes 1.60 40237 24143 8047
2D Line 1.25 13228 3600 5606 2D-X 1.45 80506 48304 16101
2D-Line wit Dot 1.64 55165 33099 11033

Figure 4.1, where all test folds (Ψ) are visualized. Each dataset contains a single
division into training, validation, and test data. These datasets were created in
order to better understand the behavior and performance of the algorithm during
the design phase. Thus, each of such datasets has its own unique character, which
will be briefly described.

The 2D-Shapes dataset present a wiggled line with a small margin between
them where the test set is much bigger than the training set (Figure 4.1a). The
2D-Blobs dataset (Figure 4.1b) was created to test patterns of different densities
with large empty spaces, contrary to that 2D-Dots show four sparse patterns in
each corner of the image which have wide margins between them. The chessboard
pattern seen in Figure 4.1d introduced a high number of samples and difficult-to-
model decision boundary with varying densities (see bottom right corner). The
circles with noise (Figure 4.1e) are an interesting pattern of concentric circles that
belongs to different classes. Its purpose was to test if the selected SVs will also
create such a pattern and be evenly distributed. The 2D-Grain blobs (Figure 4.1f)
test the behavior of non-linear data that has a sparse representation but covers
most of the input space without much of the “empty” space without any vectors.
Next datasets in Figures 4.1g - 4.1l present different variants of data that have a
clear linear division (Figure 4.1g) with the intrusion of non-linearly separable data
(the rest of examples). Those datasets were intended to test the selection process
of the training set as well as help to test adaptive kernel and ensemble building
schemes—whether the “pools” of non-linear data will be handled first or it does

90 Chapter 4. Experimental validation

not matter. As it can be seen, most datasets provide quite a clear margin between
classes, so algorithms were expected to get results close to perfect classification
even on the test set. Nonetheless, a lot of those datasets helped to catch problems
at the early stages of development and were a good benchmark for the tested
solution. The last two datasets (Figure 4.1n and 4.1o) were introduced to test how
well the algorithm would work if there was no clear and sharp boundary between
data points and if the resulting model did not overfit. Here the expected scores
should be far from perfect (meaning no mistakes on Ψ). Please note that these
datasets were added during the development of subsequent algorithms so not all
of them were created at the beginning for the ALMA method (the first algorithm
chronologically). What is more with the ability to control the size of the sets they
ranged from quite small (as in the case of 2D-points) to what could already be
considered as a large dataset for SVM with over 100 000 samples. Furthermore,
most of the datasets were kept balanced.

The benchmark datasets were selected to account for many different scenarios
with diverse imbalance ratios as well as the dataset sizes and number of features.
As training set selection is one of the vital points in the presented algorithms, very
small datasets were excluded from the study. In the case where the number of
samples is small, it would be better to train a classifier on all of the available data
or even use a dedicated method to generate new samples (e.g., Synthetic Minority
Oversampling Technique (SMOTE) algorithm [25]). In the case of UCI sets, a
five-fold cross-validation approach is employed with stratification to ensure that
each fold contains an equal ratio of vectors from both classes. Furthermore the
T was divided into four non-overlapping parts and one of them is used as the V .
Hence there are five stratified folds divided into T , V and Ψ with a 3:1:1 proportion.
On the other hand, in KEEL, the sets are initially divided into five non-overlapping
folds with distinct training (T) and test (Ψ) sets and are kept without any changes.
The datasets taken from LibSVM repository were also divided into the distinct
training (T) and test (Ψ) sets in all cases. Hence, there is no separate V for both
the KEEL and LibSVM datasets—T = V was used in that case, as the validation
set is needed during the evolution process of presented algorithms. There is no
risk in overfitting the SVM classifier, as thanks to training set selection the final
training set used for SVM classifier is different from the validation set T ′ ̸= V .

4.1. Datasets 91

a b c

d e f

g h i

j k l

m n o

Figure 4.1: Visualization of tests sets for 2D datasets.

92 Chapter 4. Experimental validation

Table 4.2: The benchmark datasets used in the analysis.

Dataset IR ∑
T Ψ F Dataset IR ∑

T Ψ F
a1a 3.15 32561 1605 30956 123 german 2.33 1000 800 200 24
a2a 3.15 32561 2265 30296 123 magic 1.84 19020 15215 3805 10
a3a 3.15 32561 3185 29376 123 mnist 1.03 70000 60000 10000 784
a4a 3.15 32561 4781 27780 123 page-blocks 8.79 5472 4377 1095 10
a5a 3.15 32561 6414 26147 123 phoneme 2.41 5404 4322 1082 5
a6a 3.15 32561 11220 21341 123 pima 1.87 768 614 154 8
a7a 3.15 32561 16100 16461 123 ring 1.02 7400 5919 1481 20
a8a 3.15 32561 22696 9865 123 segment 6.02 2308 1846 462 19
a9a 3.18 48842 32561 16281 123 skin 3.82 245057 196045 49012 3
australian 1.25 690 551 139 14 spambase 1.54 4597 3662 935 57
banana 1.23 5300 4239 1061 2 twonorm 1.00 7400 5919 1481 20
banknote 1.25 1372 1097 275 4 vowel 9.98 988 790 198 13
cod 2.00 488565 331152 157413 8 wdbc 1.68 569 454 115 30
coil2000 15.76 9822 7856 1966 85 winequality 1.73 6497 5197 1300 11
covtype 1.05 581012 464809 116203 54 wisconsin breast 1.86 683 546 137 9
credit card clients 3.52 30000 23999 6001 23

All datasets were normalized by rescaling the features to [0, 1] [65]. The rescaling
was done on the training set so the actual values in the test set might be out of
[0, 1] range. This is important as no information from the test set should be leaked
in the process of learning the classifier.

Experimental setup

The algorithms were implemented in C++ (Visual Studio Community 2017)
with the LibSVM library [24], and the experiments ran on the machine equipped
with the Intel i9-7900X CPU and 64 GB of RAM under Windows 10 operating
system. For other classifiers described, we exploited the Scikit-learn (version 0.20.2)
implementation in Python 3.6 if not stated otherwise. Hyperparameters of presented
methods follow settings proposed in previous publications.

4.2 Results

This section presents all of the results and analysis of the proposed methods.
First, it will start with 2D visualizations of algorithms, their main principles and a
qualitative comparison over selected examples of the 2D datasets. Furthermore, the
quantitative analysis will be performed over artificial datasets to select the best
methods for final comparison among other algorithms and state-of-the-art methods
for SVM optimization.

4.2. Results 93

Not all algorithms will be tested in the following sections. First of all, ALGA
method had a major drawback in the need to select proper Kt value in order to
achieve good performance which requires checking multiple values (this is time costly
process). However, this drawback was removed in the later work with MASVM [96]
and ALMA methods, which will be used as the baseline techniques. Moreover,
FSALMA and E-SVM introduced a feature selection mechanism that is not useful
in the case of 2D artificial datasets as always all of the features are selected. Besides
that, both FSALMA and E-SVM are surpassed by the SE-SVM algorithm which
presented superior results to both of those methods in our paper [38]. Furthermore,
feature selection is an interesting extension of the presented methods but needs to
be studied in more detail. Regarding the DA-SVM method, only the best variants
presented in [40] have been investigated here (in order to save computation time).
For the building of ensembles, both CE-SVM and ECE-SVM methods have been
tested.

4.2.1 Qualitative analysis

First, the process of evolution of the algorithms is visualized and discussed
based on 2D datasets. The algorithms are presented in the same order as they
were introduced in Section 3. The visualizations in question do not aim to present
every single generation that occurs during evolutionary computation. Rather, their
purpose is to highlight specific instances where the current best solution has
changed, indicating an interesting development that can help to understand how
the algorithm works. By identifying these key points in evolution process, we can
gain a deeper understanding of the underlying dynamics of proposed methods.
What is more, the best solution found by EAs does not need to change in each
generation (based on how the proposed methods work).

The evolution process of ALMA is presented in Figure 4.2. First, in Figure 4.2a, a
random subset of vectors is selected for the training set alongside default parameters.
This pair is used to train the presented SVM classifier. This initial solution offers
a quite poor solution to the problem. In Figure 4.2b, the optimization process
of hyperparameters starts. The training set remains unchanged throughout this
phase which can be seen, as the same SVs are present in Figure 4.2a and 4.2b. In

94 Chapter 4. Experimental validation

(a) (b) (c)

(d) (e) (f)

Figure 4.2: Visualization of the ALMA algorithm run. Results are visualized on
2D-Blobs test set. The yellow ticks and crosses mark the positions of support
vectors: (a) presents a solution after initialization, (b) presents the end solution
after kernel evolution phase, (c)—(e) shows progress of T ′ evolution and growing
of its size (f) presents final solution where hyperparameters were adjusted.

later stages of evolution, this might not be so obvious as when T ′ grows not all of
the training vectors might become SVs. The process of changing hyperparameters
values (during optimization) affects which vectors become SVs. When no more
improvements could be made optimization switches to the training set selection
in Figure 4.2c. What is crucial in this algorithm (and this phase) is the fact that
the size of T ′ can grow as seen in Figure 4.2d and Figure 4.2e. At the beginning
of the optimization process phases may change more rapidly, where each phase
lasts just for a few generations. Often a pivotal point of the algorithm is when
the training set size grows multiple times in a single phase, as this means that
the values of the current hyperparameters are well selected. In the last stages the
overall improvements are rather minor as seen in Figure 4.2e and 4.2f, where an
adjustment to hyperparameters is made (the γ value gets larger between those

4.2. Results 95

two). Finally when no more improvements could be made the process stops and
the best solution is returned (as seen in Figure 4.2f).

(a) (b) (c)

(d) (e) (f)

Figure 4.3: Visualization of the SE-SVM algorithm run. Results are visualized on
2D-Blobs test set. The yellow ticks and crosses mark the positions of support vectors:
(a) presents a solution after initialization, (b) presents the improved solution where
T ′ did not grow yet, (c)—(e) shows the progress of T ′ growing and hyperparameter
adjustments (f) presents the final solution.

Contrary to the ALMA process, SE-SVM can change both the T ′ and hyper-
parameters at the same time. The first advantage of this approach is visible by
comparing Figure 4.2a and Figure 4.3a, where in the case of SE-SVM initialization
provides better modeling of input space. Here initially the γ values tend to be lower
(have a larger range of influence), as the training set size is small, and can adapt
more dynamically when it grows. This is visible comparing Figure 4.3a to Figure
4.3d. This algorithm proves to provide better results as the mutual dependence
between the training set and its “optimal” hyperparameters is visible and used as
an advantage. In this particular case, SE-SVM also shows the ability to change
the dynamics of adjustment for γ. Between Figures 4.3e to Figure 4.3f γ value is

96 Chapter 4. Experimental validation

lowered while in all other examples (a-d), it was getting bigger (lowering the range
of influence).

(a) (b) (c)

(d) (e) (f)

Figure 4.4: Visualization of the ARBF-SVM algorithm: (a) presents the best
solution from the initial population, (b) The best solution after finishing evolution
with first γ from γ⃗, (c) Shrank training set that will be used in next iteration
with subsequent γ. The shrinking procedure is based on the whole population, (d)
Solution after second evolution has ended. Added new support vectors marked
with red color crosses, (e) Adding next γ value marked with green vectors provided
worse classification performance, these support vectors will be removed, (f) final
solution for a given dataset containing three different γ values.

The DA-SVM (and ARBF-SVM) works in a different manner than previously
shown examples. First of all, it uses an adaptive kernel so vectors with different
γ’s are denoted with colors, where each color presents a unique value of γ. In
Figure 4.4a, the best solution from the initial population is shown which is then
evolved. This evolution process ends, and yields the solution visible in Figure 4.4b.
Now according to this solution, the original T is being shrunk so only vectors visible
in Figure 4.4c will be used in subsequent optimization that will use larger γ value.

4.2. Results 97

The result of the next round of iteration is presented in Figure 4.4d. In Figure4.4e
the next solution with new green vectors is present. However, it provides worse
classification performance so these results are discarded (SVs with those γ values
are not added to the trained SVM model). This means that the selected γ had a
too-low value and added too much fluctuation into the decision hyperplane. Please
note that when results are discarded, the shrunk T used for the next iteration is
the same as the one obtained after the solution presented in Figure 4.4d. Finally,
the resulting solution is presented in Figure 4.4f, where three distinctive γ values
are present. This process was presented on a different dataset than ALMA and
SE-SVM as in previous examples the process of discarding certain γ did not occur.
This process was not present, because 2D-Blobs datasets present more variability
in the terms of heterogeneous and homogeneous regions as well as their sparsity
so each time adding new γ helped to improve the classification performance and
better model the data.

The evolution process of CE-SVM uses SE-SVM algorithm as its base for
building the nodes of the cascades, although the process of feature selection is
disabled (only M and T ′ are being optimized). First of all, feature selection does
not make sense on the 2D datasets. Moreover, the structure of the cascade made
it difficult to apply the feature selection process on each node, as the next node
in the cascade depends on the previous one by using the adaptive RBF kernel.
In Figure 4.5a, the beginning of the process of building cascade is presented. For
clarity, SVs are not visualized. The dark and light gray areas present certain regions
of previous nodes, the yellow colors newly added (by the next node in the cascade)
certain regions, and red regions represent uncertain regions that are not yet covered
by the cascade. As presented in the first row (Figure 4.5a-c), the evolution of such a
cascade adds new certain regions, which could have different coverage of each class
and could be imbalanced. Note that in this solution previously selected SVs are
passed into the lower levels of the cascade to make the next node aware of previously
obtained classification. This provides a much “smoother” decision hyperplane and
enables the extension of some regions by a small extent as seen in Figure 4.5b.
Moreover, all vectors from the certain region are removed for the building process
of a new node in the cascade (from both the training and validation set). The
final cascade is visualized in Figure 4.5d. What could be appreciated is that the

98 Chapter 4. Experimental validation

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Visualization of the CE-SVM algorithm run: (a)-(c) show the evolution
process and adding new nodes. Red color denotes uncertain region, dark and light
grey presents certain regions of previous nodes while yellow colors are used to
depict new certain regions added by the current node. (d) shows final classification
with uncertain regions (e) presents how SE-SVM node to resolve those regions
works and (f) shows the final classification result of joining cascade with SE-SVM.

majority of the uncertain regions (red color) do not have any vectors in them. For
this region, the answer of such a cascade would tell that the sample could not be
classified (the “unknown” class). In order to compare this algorithm with other
solutions, an SE-SVM is run to cover all of the uncertain parts of the dataset. The
behavior of this final node is presented in Figure 4.5e, where previously uncertain
regions are shown to belong to positive (light yellow) or negative class (gold). The
resulting classification of such a combination of cascade with the SE-SVM to solve
uncertainty is presented in Figure 4.5f.

The last algorithm of ECE-SVM is presented in Figure 4.6. It works by building
a list of cascades, giving them weights based on their performance on V (each
node in cascade has its separate score), and employing a weighted voting strategy

4.2. Results 99

(a) (b) (c)

(d) (e) (f)

Figure 4.6: Visualization of the ECE-SVM algorithm run: (a) and (d) present a
single cascade result, while (b) and (e) show the same cascades but with uncertain
regions depicted in red, (c) presents another example of a different cascade. (f)
presents the final combination of all of the cascades.

to combine the results of individual cascades. What is more, only cascades which
respond within a certain region are considered and at least half of the cascades in
the ensemble need to provide a valid response. Otherwise, the region is considered as
uncertain. In Figure 4.6a and 4.6d, the example of cascades with denoted all of their
SVs are presented. In Figure 4.6b-c and 4.6e, there are examples of the cascades with
uncertain regions present. Compared to CE-SVM, the process of building a single
cascade is changed. The SVs are not inherited and there is a much smaller validation
set selected among other changes (more details are provided in Section 3.6). The
main reason behind those changes is to speed up the building process of the single
cascade, while its classification performance could be worse. This is covered by
the usage of multiple cascades that form the final ensemble which is presented in
Figure 4.6f. Although the uncertain region is smaller than the one of CE-SVM
(Figure 4.5f) it does not contain any vectors. This is a trade-off between those two

100 Chapter 4. Experimental validation

algorithms where generally ECE-SVM provides much smaller uncertain regions,
although as will be presented later this does not affect classification performance
negatively (so ECE-SVM is not being overoptimistic what is considered as a certain
region).

The comparison of uncertain regions of 2D datasets for those two algorithms
(CE-SVM vs ECE-SVM) is presented in Figure 4.7. Comparing those images,
much smaller uncertain regions, in the case of 2D-Shapes and 2D-Blobs, are
provided by the ECE-SVM method. Although in the majority of the cases, those
uncertain regions remain empty (no vectors from the whole dataset are present
there). Another difference in those decision hyperplanes is their “smoothness”. As
ECE-SVM uses multiple cascades which are built without the knowledge of the
previous level’s (nodes) performance, the decision boundaries tend to be much more
ragged. This is also present in those visualizations however this does not affect the
final classification performance. What can be appreciated is that in the case of
2D-Dots, both methods provide similar uncertain regions and in both cases, they
cover empty regions of input space. This means that although ECE-SVM tends to
provide much smaller uncertain regions, it did not lose the ability to select them.
This is an important difference between those two algorithms, because CE-SVM
(as shown in [41]) proved to have problems in some of the benchmark datasets, and
failed to cover the test set.

Another advantage of building ensembles in the form of the cascade is their
ability to adapt to new data. They also make it easier to discover new samples
that come from other distributions (cover new regions of input space), with their
ability to decide whether they are certain about the answer. An example of such
a situation is shown in Figure 4.8. On the left-hand side (4.8a) the dataset is
shown (inspired by 2D-Dots) on which the CE-SVM method is applied. The result
of training the new classifier on these data is shown in Figure 4.8b. After the
CE-SVM method finishes and provides a classification model, new samples are
gathered for this dataset (as often happens in real life, where data are gathered
through the system lifetime). These new samples are denoted with the red circle
in Figure 4.8c. Most classifiers (including SVM) would be able to classify those
samples in some way, but would perform poorly in terms of the quality of such
classification (probably all samples would be annotated with the positive label

4.2. Results 101

CE-SVM ECE-SVM
2D

-S
ha

pe
s

2D
-B

lo
bs

2D
-D

ot
s

Figure 4.7: Qualitative comparisons of uncertain regions of CE-SVM and ECE-SVM
ensembles.

102 Chapter 4. Experimental validation

belonging to white vectors). In the case of CE-SVM all of those samples fall into
the uncertain region of the classifier. This makes them easy to detect as the model
itself is able to provide a proper answer. In such a case, a procedure to update the
current cascade could be made. In this particular example this results in adding a
new node, that will handle this region correctly. Moreover, in Figure 4.8d, those
newly added regions cover just the new data and still leave the rest of the empty
space as an uncertain region. This update procedure does not require retraining
the whole model. As such the update procedure could be extended in the future to
cover the case of retraining single nodes that perform poorly. This could also be
later extended to the ECE-SVM method although using multiple cascades would
make this procedure more difficult and time-consuming. The reason is the voting
scheme of ECE-SVM, where at least half of the cascades present there need to be
certain, so at least half of them would need to go through an update process. On
the other hand, ECE-SVM cascades are much faster to build, so it might still be
viable to select just a few (best) cascades and build the rest from scratch. These
update procedures might be an interesting direction for future work as they can
improve practical usage of proposed methods.

Lastly, we can compare the results of those methods on a single (2D-Blobs)
dataset presented in Figure 4.9. In the first row, there are baseline methods to
compare to, the SVM(RBF) refers to a solution provided by using a grid-search
algorithm to find the optimal set of hyperparameters to SVM using RBF kernel.
The grid-searched solution provides great performance although it took almost 300
seconds to compute that. All other algorithms required less than 100 seconds to
obtain the final result. The fastest MASVM required only 4 seconds (however it
required a set of hyperparameters on input which were provided by SVM(RBF)
solution). The 2D example shown here cannot be considered a difficult classification
problem which is why all of the methods return high MCC values over 0.95 (except
MASVM). The number of SVs remains comparable to the grid search solution
(among non-ensemble solutions), where only MASVM was able to greatly reduce
that number. The SE-SVM increased this number over twofold but this also resulted
in an increased MCC score, compared to all other methods using a single SVM.
When comparing SE-SVM to previous methods of MASVM and ALMA we can
observe increased classification quality, where the decision hyperplane is more

4.2. Results 103

(a) (b)

(c) (d)

Figure 4.8: Updating the ensemble classifier: (a) shows the original dataset, (b)
presents the trained CE-SVM classifier, (c) shows new data that arrived after the
training, (d) shows an update to the current classifier.

detailed in the case of SE-SVM. What is interesting is that DA-SVM(CE, No-T)
provided results that are on par with other methods while no SVM training was
performed in this method. This proves that the training set selection can provide
the T ′ that contains important samples which ultimately become SVs. For clarity
reasons, the SVs are not visualized in the last two methods (CE-SVM and ECE-
SVM). As expected, those methods using an ensemble of classifiers provided the
best scores among all of the presented ones, although the number of SVs is much
higher. However, this number is the sum of all vectors in the cascade or ensemble

104 Chapter 4. Experimental validation

of cascades, while during the classification process, not all of them are used for a
given vector. The final number of SVs used for classification depends directly on
the sample and which level of cascade provides the answer.

These results are related to the first research hypothesis as qualitative analysis
shows that SE-SVM classification quality is comparable with SVM(RBF) and even
better than MASVM and ALMA methods. It is also shown during the analysis of
behavior, that SE-SVM presents certain advantages over ALMA method, these
include better initial solutions and the ability to adapt more dynamically to the
problem (as both the training set and SVM hyperparameters can be tuned at
the same time). The CE-SVM and ECE-SVM present interesting and unique
capabilities compared to other presented algorithms such as providing an answer
that they cannot decide how to classify a given sample. However, it is difficult to
unambiguously show that those results provide increased classification performance
in comparison to other methods (the second research hypothesis). Due to that in
the next section, the quantitative analysis of 2D datasets is presented.

4.2.2 Quantitative analysis of 2D datasets for proposed
algorithms

The results of experiments on 2D datasets are presented in Table 4.3 while
corresponding average ranks are shown in Table 4.4. At first, it can be appreciated
that all of the methods worked well and provided high-quality classification. It is the
expected result, as 2D datasets are fairly simple to model and except a few datasets
are fully separable (meaning that there are no examples from different classes mixed
in the same area). There is a visible clear progression of results from the earliest
methods (ALMA) to later ones, where presented ensembles (the latest method)
provide the best scores among all of the methods. This is natural as each new
method tried to improve on the drawbacks of previous ones. It is pretty interesting
that DA-SVM(CE, No-T) scored the best from DA-SVM variants considering
that no SVM training is performed. All of those approaches are compared with a
standard grid search algorithm (SVM(RBF)). The grid search algorithm provided
scores that are better than most of the evolutionary methods, except ensembles.
Comparing the average results of different metrics with the average ranks of the

4.2. Results 105
SV

M
(R

BF
)

M
C

C
=

0.
98

7,
#

SV
=

19
9

M
A

SV
M

M
C

C
=

87
3,

#
SV

=
43

A
LM

A
M

C
C

=
0.

96
8,

#
SV

=
21

9

SE
-S

V
M

M
C

C
=

0.
99

2,
#

SV
=

46
2

A
R

BF
-S

V
M

M
C

C
=

0.
98

0,
#

SV
=

13
5

D
A

SV
M

(C
E,

N
o-

T
)

M
C

C
=

0.
98

4,
#

SV
=

17
4

C
E-

SV
M

M
C

C
=

0.
99

6,
#

SV
=

23
84

EC
E-

SV
M

M
C

C
=

0.
99

5,
#

SV
=

28
08

Figure 4.9: Qualititative comparions on a selected 2D dataset.

106 Chapter 4. Experimental validation

methods similar conclusion could be made. That means that there are no outliers
in the performance among the datasets. The MASVM(GS) presents the results of
MASVM optimization which used hyperparameters learned during the grid search
algorithm (SVM(RBF)). Although it scored the lowest it was the quickest method.
A more detailed analysis of the results demonstrates that in certain cases, the
training set failed to grow, leading to the premature termination of the evolutionary
process. This might happen as hyperparameters discovered during grid search
might not be appropriate for training when Kt was low at the start. In order to
better understand the performance of each method, a box plot containing the
MCC score over all 2D datasets is presented in Figure 4.10. In the box plot, the
differences between algorithms are easier to spot, where both proposed ensembles
provided the best results outperforming all other methods. It can be observed that
the methods for simultaneous optimization (SE-SVM, ARBF-SVM and DA-SVM
variants), create a group, where each method gives scores similar to each other but
show improvement when compared to ALMA and MASVM. On the other hand, it
is also visible that comparing those methods to SVM(RBF) is not straightforward
and ARBF-SVM, as well as DA-SVM(CE, MAX), are worse.

Table 4.3: Test metrics on 2D datasets. The best ones are written in bold.

Accuracy F1 Precision Recall MCC
SVM(RBF) 0.979 0.967 0.978 0.958 0.949

MASVM(GS) 0.932 0.886 0.917 0.878 0.837
ALMA 0.946 0.919 0.925 0.925 0.874

SE-SVM 0.973 0.959 0.959 0.961 0.937
ARBF-SVM 0.963 0.921 0.933 0.923 0.896

DA-SVM(CE,MAX) 0.960 0.926 0.935 0.926 0.897
DA-SVM(CE,No-T) 0.971 0.954 0.955 0.954 0.929
DA-SVM(CE,ONE) 0.965 0.939 0.948 0.939 0.911

CE-SVM 0.981 0.964 0.974 0.958 0.950
ECE-SVM 0.984 0.971 0.973 0.970 0.958

This result means also that the proposed DA-SVM and ARBF-SVM which intro-
duced the adaptive kernel design might not necessarily improve the classification
performance comparing them to SE-SVM which was initially hypothesized when
introducing those methods. However, those results need to be confirmed on bench-

4.2. Results 107

Table 4.4: Test rankings on 2D datasets. The best ones are written in bold.

Accuracy F1 Precision Recall MCC
SVM(RBF) 3.06 3.06 1.59 3.53 3.06

MASVM(GS) 9.24 9.24 8.53 9.18 9.24
ALMA 8.06 8.00 8.82 7.47 8.00

SE-SVM 5.12 5.24 5.12 4.71 5.18
ARBF-SVM 6.29 6.29 6.29 6.59 6.35

DA-SVM(CE, Max) 6.94 6.94 6.76 7.35 7.00
DA-SVM(CE, No-T) 5.12 5.18 4.59 5.71 5.06
DA-SVM(CE, One) 6.82 6.71 6.82 6.65 6.94

CE-SVM 2.71 2.71 2.35 2.88 2.59
ECE-SVM 2.18 2.12 2.35 2.00 2.12

Figure 4.10: Box plot of MCC scores obtained on 2D datasets.

108 Chapter 4. Experimental validation

mark datasets to draw final conclusion. The dots on the left side indicates the
results on each dataset. The ARBF-SVM, DA-SVM(CE, MAX), and MASVM(GS)
show very poor performance on one dataset, which is the 2D-Mixed heavy. That is
the most imbalanced dataset among the 2D ones and hardest to classify due to the
“mixing” of vectors from opposite classes in the same input space/neighborhood
(see Figure 4.1). This might indicate that those methods are not well suited for such
problems. Looking at the average rankings of methods (Table 4.4), they present
similar results on each of the tested metric. To draw final conclusions from the data,
statistical tests were performed. The Friedman test was performed and indicated
statistically significant results meaning that we can reject the null hypothesis that
there are no differences between the measured results of the algorithms. In order to
find out detailed information the Conover post-hoc test was performed to determine
which groups are significantly different from each other. The detailed results for
Accuracy, F1 and MCC p-values are reported in Appendix B with Figures 1, 2,
and 3. These tests are performed for those three metrics but results are almost
the same in all of them (where the single exception is between DA-SVM(CE, One)
and MASVM(GS) for MCC which is not statistically significant). Please note
that this test only tells that there is a difference in results, but does not indicate
which solution is better. This can be observed with SE-SVM on Accuracy, F1, and
MCC metrics, it provides statistically different results than MASVM(GS), ALMA,
CE-SVM and ECE-SVM. However, looking at results in Table 4.3 and Table 4.4,
it can be observed that SE-SVM is better than MASVM(GS) and ALMA, and
worse than CE-SVM and ECE-SVM. Moreover, the results of SE-SVM compared
to SVM(RBF) do not provide statistical differences (the null hypothesis cannot
be rejected), meaning that we did not discover differences in the results of those
two algorithms (although it does not conclude that there is no difference). This
directly shows that simultaneous optimization could be done without affecting the
classification quality (part of the first research hypothesis). It should be noted that
ensemble methods are excluded from this comparison as they use multiple base
models (which use SE-SVM) to correct for mistakes among them. Nevertheless,
by analyzing the results of ensembles compared to all other presented techniques,
classification performance improvement can be observed. It is confirmed by the
statistical tests where only non-significant result is present against SVM(RBF).

4.2. Results 109

Although this lack of statistically significant improvement might also be accounted
for reaching upper bound scores on the 2D datasets. On the other hand, looking at
rankings (Table 4.4) it can be seen that ensembles are outperforming SVM(RBF).

Figure 4.11: Pareto plot of MCC scores against training time. The grey line presents
the Pareto front.

Figure 4.12: Pareto plot of MCC scores against classification time. The grey line
presents the Pareto front.

110 Chapter 4. Experimental validation

However, there are two more important aspects of SVM—its training and
classification time. The average values obtained by each algorithm are visualized
in Figure 4.11 and Figure 4.12. These two Pareto plots show classification time
and training time against the MCC metric on the test set. It is easy to spot that
although SVM(GS) provides high scores with regard to classification performance
in both cases it is the slowest method, often orders of magnitude slower. Please
note that in this case all of the algorithms used the same implementation for
training SVM classifier (LibSVM implemented in C version 3.19). This is important
as depending on the implementation the training time could be much different
(e.g. when using GPU [133]). The result in Figure 4.12 presents that the SE-SVM
method is a competitive approach for classification tasks that prioritize both
efficiency (i.e., low classification and training time) and effectiveness (i.e., high
MCC scores). This Pareto front extends to the ECE-SVM method which provides
better classification quality than SE-SVM in terms of MCC scores, but at the
cost of increased classification time. This means that ECE-SVM is more suitable
for applications where high classification accuracy is a priority and the cost of
increased time is acceptable. Similar findings could be extracted from Figure 4.11,
where the ECE-SVM is the best method, providing both the fastest training time
among evolutionary methods and the highest MCC scores. Here, the SE-SVM is the
second-best method in those terms, while being Pareto-optimal among techniques
that consider the usage of a single SVM model. It is important to notice that most
of the proposed methods provide greatly reduced training time compared to the
SVM(RBF), while there is clear differences in the provided quality of classification.
Considering those results it can be stated that simultaneous optimization of the
training set and the hyperparameters of the SVM improve training and
classification time compared to other state-of-the-art methods proposed
for this purpose without affecting the classification quality, as shown on 2D
datasets by analyzing the results of SE-SVM method. For further experiments, the
MASVM(GS), ARBF-SVM, and DA-SVM(CE, MAX) methods are not analyzed,
as ARBF-SVM and DA-SVM(CE, MAX) do not provide important differences
compared to other DA-SVM variants, and SE-SVM, while MASVM(GS) was
outperformed by all methods in quality of classification.

4.2. Results 111

4.2.3 Comparison with other methods

This section will compare the performance of the best and most promising
algorithms (based on 2D results analysis) to other popular classifiers and state-of-
the-art algorithms for SVM optimization. At the start, a brief description will be
provided for the methods used in comparison:

• The k-NN classifier [104] is a classification algorithm that makes predictions
based on the closest data points in the feature space. Given a new data point,
the k-NN classifier searches for the K closest data points in the training set
and assigns the class label that is most common among those K neighbors. The
choice of K is a hyperparameter that determines the number of neighbors to
consider. In the presented results, three distinct values are tested K={3,5,7}.

• The random forest (RF) [104] classifier is an ensemble method that combines
multiple decision trees to make predictions. Each decision tree is trained on
a bootstrap sample of the training set and a random subset of the features.
During prediction, the RF classifier aggregates the predictions of all the
decision trees to make a final prediction. The following hyperparameters were
set: Number of trees=100, criterion=Gini, Minimum samples split=2.

• The extra tree [104] classifier is another ensemble method that builds a forest
of decision trees. However, unlike the RF, the ET constructs decision trees
using random splits instead of the best splits. During training, the ET selects
random thresholds for each feature and chooses the split that maximizes
the information gain. The following hyperparameters were set: Number of
trees=100, criterion=Gini, Minimum samples split=2.

• The logistic regression (LR) [104] classifier is a parametric classification
algorithm that models the probability of each class using a logistic function.
Given a set of input features, the LR estimates the probability of belonging to
each class and assigns the class with the highest probability as the prediction.
During training, the Logistic Regression classifier optimizes the parameters
of the logistic function using a likelihood-based objective function.

112 Chapter 4. Experimental validation

• The gaussian naive bayes (GNB) [104] classifier is a probabilistic classification
algorithm that models the class-conditional probability distribution of each
feature as a Gaussian distribution. Given a set of input features, the GNB
estimates the probability of belonging to each class using Bayes’ theorem and
assigns the class with the highest probability as the prediction. This method
does not have any hyperparameters to be tuned.

• CascadeSVM [57]—The approach involves dividing the data into subsets
and optimizing them separately using multiple SVMs, then combining and
filtering the results through a cascade of SVMs until the global optimum
is reached. However, this cascade is different then one that was presented,
as SVMs are being joined throughout the process into a single SVM at the
end and no expert regions are selected (the name collision is coincidental).
The following hyperparameters were set: Fold size=1000, RBF kernel, SVM
hyperparameters based on grid search result obtained from SVM(RBF).

• EnsembleSVM [31] is a method of building multiple SVMs trained of different
subsamples of the training set. All of the base models share the same kernel
and its hyperparameters. The main drawback of this method is searching for
proper hyperparameters values for the size of subsamples and the number of
base models that are used. The number of base models used was 100 (the
same as in ET and RF methods), while for kernel the RBF was selected with
γ = 1/|F | · var(T) where var(·) is variance of the dataset. For size of the
subsample Kt = {64, 128, 256} were used and the best model was selected
based on cross-validation score.

• Particle Swarm Optimization (PSO) [138] is a metaheuristic optimization
algorithm inspired by the behavior of social organisms, such as bird flocks.
In PSO, a population of particles moves through the search space seeking to
optimize an objective function by updating their position and velocity based
on their personal and social best solutions. In this case the PSO algorithm
is used to optimize hyperparameters of SVM and select one of four kernel
functions (linear, polynomial, RBF, sigmoid). The hyperparameters settings
follow values presented in paper [138].

4.2. Results 113

• Hyperband (HB) [138] is a randomized search strategy algorithm. The key idea
behind Hyperband is to allocate more computational resources to promising
configurations early in the optimization process, while quickly discarding
poorly performing ones. The hyperparameters settings follow values presented
in paper [138].

• Genetic algorithm [138, 80] is based on TPOT library which is an advanced
tool that conducts an automated exploration of machine learning pipelines.
These pipelines may include supervised classification models, preprocessors,
feature selection approaches, and other estimators or transformers that comply
with the Scikit-learn API. In addition, the TPOTClassifier conducts a search
for the optimal hyperparameters for each pipeline component. For this study
classifier was limited to SVM where C and kernel type were optimized. The
hyperparameters settings follow values presented in paper [138].

Table 4.5 displays the averaged results of all presented algorithms across 31
benchmark datasets (see Section 4.1), while Table 4.6 shows their corresponding
average ranks. The results reveal that SE-SVM outperforms ALMA when analyzing
all metrics, which is further supported by comparing the ranking of the two methods.
This demonstrates that simultaneous optimization provides better performance
than the alternating approach, where different aspects are optimized independently.
The statistical test (Friedman with post-hoc Conover analysis, detailed results
with all p-values reported are in Appendix B) show that there is a statistically
significant (p < 0.05) difference in MCC scores between those algorithms (it is not
present for accuracy and F1 metric). When comparing SE-SVM to other methods
including, literature methods designed for optimization of SVM hyperparameters
like SVM(RBF), HB, PSO, or GA, and our own methods designed for the same
task we can see that the average metrics stay at comparable levels. It is confirmed
by analyzing the results of statistical tests, where in all of the cases for MCC
metric there is no statistically significant difference between the results (excluding
algorithm using ensemble techniques). This could be interpreted as classification
quality is not negatively affected by using simultaneous optimization of the training
set and hyperparameters of SVM which is stated by the first hypothesis. The same
argument cannot be made for ALMA method which when compared to those other

114 Chapter 4. Experimental validation

Table 4.5: Results of test performed on benchmark datasets. The results are averaged
scores over all of the datasets, the best ones are written in bold.

Accuracy F1 Precision Recall MCC
k-NN(3) 0.858 0.723 0.761 0.705 0.625
k-NN(5) 0.861 0.724 0.774 0.702 0.631
k-NN(7) 0.861 0.719 0.777 0.693 0.628

GNB 0.680 0.586 0.596 0.769 0.450
LR 0.854 0.694 0.787 0.661 0.610

SVM(Linear) 0.853 0.680 0.751 0.649 0.597
SVM(RBF) 0.878 0.734 0.812 0.692 0.663

HB 0.876 0.722 0.779 0.684 0.641
PSO 0.876 0.723 0.777 0.688 0.642
GA 0.843 0.689 0.740 0.655 0.606
RF 0.873 0.732 0.803 0.691 0.654
ET 0.873 0.735 0.802 0.696 0.656

EnsembleSVM 0.840 0.749 0.705 0.851 0.657
CascadeSVM 0.874 0.739 0.787 0.716 0.660

ALMA 0.874 0.722 0.780 0.691 0.639
SE-SVM 0.872 0.732 0.789 0.703 0.649

DA-SVM(CE, No-T) 0.863 0.711 0.777 0.677 0.623
DA-SVM(CE, One) 0.866 0.723 0.777 0.700 0.633

DA-SVM(FS, CE, No-T) 0.866 0.703 0.781 0.663 0.619
DA-SVM(FS, CE, One) 0.865 0.704 0.777 0.663 0.618

CE-SVM 0.849 0.611 0.802 0.578 0.553
ECE-SVM 0.878 0.762 0.794 0.749 0.681

algorithms displays worse performance. DA-SVM, on the other hand, provides
average results comparable to ALMA and SE-SVM. Its variants that employ addi-
tional feature selection preprocessing perform even worse, indicating that feature
selection might not be useful for the selected datasets, as it ultimately decreases
the classifier’s performance. Another reason could be that the feature selection
algorithm (RFECV in this case) could not select better feature sets. This would
need to be studied in more detail, as RFECV provides its own hyperparameters
that might need more fine-tuning. Besides that, the DA-SVM (with all its variants)
did not improve classification performance when compared to SE-SVM as was

4.2. Results 115

Table 4.6: Ranking of methods for classification performance on benchmark datasets.
The best ones are written in bold.

Accuracy F1 Precision Recall MCC
k-NN(3) 14.29 13.06 14.61 10.19 14.06
k-NN(5) 13.10 11.77 13.68 10.45 12.71
k-NN(7) 11.94 11.35 12.06 11.29 11.94

GNB 19.42 17.45 18.13 9.26 18.23
LR 8.90 9.81 9.58 11.06 9.00

SVM(Linear) 9.00 10.26 9.84 11.13 9.68
SVM(RBF) 7.87 9.32 6.06 11.45 8.23

HB 7.55 8.74 9.10 9.97 9.06
PSO 7.68 8.48 9.90 9.84 9.00
GA 8.84 9.39 10.55 10.48 10.06
RF 11.19 12.10 9.58 13.48 11.42
ET 12.00 11.84 10.13 12.45 11.32

EnsembleSVM 15.52 7.39 17.00 4.26 8.32
CascadeSVM 6.84 7.48 7.87 7.81 6.97

ALMA 13.37 14.60 12.67 14.87 14.20
SE-SVM 11.16 11.74 11.61 12.35 11.06

DA-SVM(CE, No-T) 11.48 13.52 11.90 13.90 13.23
DA-SVM(CE, One) 11.68 11.65 13.26 11.84 12.39

DA-SVM(FS, CE, No-T) 12.45 14.19 11.52 14.87 13.77
DA-SVM(FS, CE, One) 13.32 15.03 11.74 15.48 14.84

CE-SVM 15.74 16.03 9.39 16.55 16.13
ECE-SVM 8.03 5.81 10.13 5.55 5.87

hypothesized in Section 3.5. These results are confirmed with both numerical values
for metrics as well as statistical tests.

Interestingly, CE-SVM performs poorly on some of the a1a-a9a series of data-
sets, resulting in significantly lower average scores compared to any of the presented
methods on those datasets. This is also the reason for the much lower average
scores of this method. On the rest of the benchmark datasets, the results were not
alarming and on par with other tested methods. However, the reasons for such
behavior are still unclear, as CE-SVM did not fail in all of the a1a-a9a datasets.
This is strange as the general characteristics of those datasets should be similar

116 Chapter 4. Experimental validation

as they represent different variants (samplings) of the same data. However, as the
ECE-SVM did not show such problems, it was not studied in detail. Moreover, the
ECE-SVM is designed to improve on the shortcomings of CE-SVM observed also
in [41] so a more detailed analysis was not conducted. ECE-SVM, on the other
hand, performs the best in F1 and MCC metrics, while considering accuracy, it
is on par with SVM(RBF) which uses the grid search algorithm and full training
set. As the presented benchmark sets comprise datasets with different imbalance
ratio levels analyzing the results on the accuracy metric might not give the always
conclusive. Comparing this method with others using statistical tests yields that
ECE-SVM is the best among proposed evolutionary methods (all of the p-values
for MCC and F1 scores are below 0.05). Comparing it with other methods from the
literature, it can be seen that this improvement is present when analyzing F1 results
(Figure 5) although, in the case of MCC metrics, the results are not statistically
significant. However, this does not disapprove that there is no difference, as when
comparing both the average ranking and numerical values of metric a trend of
increased classification quality could be seen, where there is a clear gap between the
best (ECE-SVM) and second best method. What is more, the second best method
selection depends on a given metric, where for accuracy that would be SVM(RBF),
for the F1 it is EnsembleSVM and for MCC score it is SVM(RBF) followed closely
by CascadeSVM. SVM(Linear) and LR provide worse results as not all the data is
linearly separable, so results could not be as good as other methods data can deal
with non-linearly separable data (which can be regarded as more difficult to classify
correctly in general). Various state-of-the-art methods for optimizing hyperparamet-
ers like PSO, HB, and GA provide good results, which are very close in relation to
each other. Two methods for constructing ensembles of SVMs, EnsembleSVM and
CascadeSVM, offer interesting results. EnsembleSVM faces difficulty in selecting
its hyperparameters correctly as the method itself does not address the issue of
hyperparameter selection. Furthermore, it adds two important hyperparameters,
the subset size and the number of base models that need to be trained, thereby
increasing the computational budget for checking different hyperparameter settings,
which may not be practical. In contrast, CascadeSVM demonstrates to provide
much better results, which are among the best in various metrics, and these results
are obtained in a shorter training time compared to methods utilizing a full training

4.2. Results 117

set. Finally, RF and ET also offer high metrics, indicating their effectiveness in
classification tasks. However, as shown in the results and statistical tests, the
ECE-SVM was able to outperform them. It is important to notice that ECE-SVM
also uses ET for resolving uncertain regions. Looking at the ranking, it is crucial
to note that there is no single algorithm that performs best across all datasets. For
instance, ECE-SVM provides the best results in F1 and MCC, but its average rank
is worse than CascadeSVM and a few others when analyzing accuracy. However,
the differences are noticeable when comparing the training and classification times
among the SVM methods as presented in Figure 4.13 and Figure 4.14. It can
be appreciated that in both cases the Pareto-optimal solutions are provided by
methods proposed in this work. For classification time, the Pareto-optimal solution
is created by ALMA, SE-SVM, and ECE-SVM while for training time those are
ALMA and ECE-SVM. In the case of training time, the time performance of
SE-SVM might be impacted by the feature selection method which was additionally
tested here. These insights highlight the importance of selecting a method that is
tailored to the specific characteristics and requirements of the given dataset.

Figure 4.13: Pareto plot of MCC scores against training time for SVM methods.

118 Chapter 4. Experimental validation

Figure 4.14: Pareto plot of MCC scores against classification time for SVM methods.

4.3 Summary

In summary, based on the presented results it has been confirmed that SE-SVM
which performs simultaneous optimization of the training set and the hyperpara-
meters of the SVM could provide improved training and classification times without
affecting the classification performance. This research hypothesis is supported by
qualitative analysis and comparison of SE-SVM with ALMA and DA-SVM methods.
Furthermore, in the quantitative analysis performed on 2D datasets the SE-SVM
proved to be significantly better than ALMA and MASVM methods, at the same
time its performance is comparable with the models obtained by running grid
search optimization over a full training set. Analyzing classification times on both
benchmark and 2D datasets SE-SVM displays a Pareto-optimal solution (compared
using MCC metric). For training times in both cases, it needs more time compared
to ALMA, although increased classification performance can justify prolonged
times, where SE-SVM lies close to the Pareto front. The quantitative analysis of 31
benchmark datasets shows that SE-SVM does not trade-off classification quality
when compared to other methods using a single SVM model and is outperformed
mainly by ensemble methods, both from literature and proposed ones. Regarding the
second hypothesis that building ensembles of SVM using evolutionary algorithms

4.3. Summary 119

provide improved classification performance, it is shown in quantitative analysis
in both 2D and benchmark datasets. On qualitative analysis, there are highlights
of other interesting advantages such as the possibility to update existing classifier
systems upon arrival of new data, where it might not be needed to train a new
model from the ground up, and providing post-hoc analysis of the characteristics of
the datasets. The latter could be done by analyzing data in certain and uncertain
regions of such a model. The results presented on 2D benchmark sets show that
both CE-SVM and ECE-SVM provide increased classification performance when
compared to other evolutionary methods which are supported by statistical tests.
The lack of statistical significance between those methods and SVM(RBF) is due to
hitting the upper bound of classification performance, where all metrics are close to
perfect classification scores on the test sets so further improvement is not possible.
However, there are visible trends in both numerical results and average rankings
when comparing those methods, where ECE-SVM presents the best results in all
of the metrics. A similar situation (with elevated numerical and rank scores) is
presented in 31 benchmark datasets where ECE-SVM provided the best scores
among all presented methods in F1 and MCC (for average results and rankings)
as well as the best average accuracy (on par with SVM(RBF)). The statistical
tests confirmed that in multiple cases this difference is significant. What is more,
ECE-SVM provided the Pareto-optimal solution in all of the tests regarding classi-
fication and training times coupled to MCC metric. All of these results positively
verify the second research hypothesis.

120 Chapter 4. Experimental validation

Chapter 5

Conclusions

The focus of this dissertation was on the optimization of the training set, and
hyperparameters for SVMs by using evolutionary computation and building different
forms of classification ensembles. In the beginning, the SVM and the theory behind
it were introduced and the literature was reviewed. Based on that, it could be
spotted that optimizing multiple aspects of SVM simultaneously could be researched
further to improve existing methods. The optimization of these parameters is a
challenging task, and different approaches have been proposed to address this
problem, while there was no method available to tackle all of them. This research
proposes novel solutions that combine the optimization of these aspects (M, T)
using alternating and simultaneous optimization approaches. Those algorithms
were introduced in detail in Chapter 3. All of them are based on evolutionary
computations as they demonstrated to be efficient in finding reduced training sets
as seen in MASVM [96]. This method serves as a baseline for finding and optimizing
T ′, while the new algorithms for optimizing hyperparameters and feature sets are
proposed. These methods are then combined into alternating optimization and
finally, simultaneous optimization is proposed. One of the advantages of developing
such approaches is that each of those components (optimizing only one ofM, T , F)
could be easily replaced as demonstrated with ALGA and ALMA algorithms. The
latter uses an improved MASVM method (over the original GASVM), where the
whole scheme of alternating optimization is unchanged. With some additional work,
the same approach could be used in SE-SVM algorithm which brings interesting

121

122 Chapter 5. Conclusions

direction to future research, where feature selection could be studied in more detail
and other components of the algorithm could be exchanged. Then the algorithms
are analyzed experimentally in Section 4.2, where the results of these approaches are
discussed and visualized using artificial datasets. The methods are also compared
to other popular classifiers and state-of-the-art SVM optimization techniques using
benchmark datasets.

The first thesis stating that simultaneous optimization of the training set
and the SVM hyperparameters improve training and classification time
compared to other state-of-the-art methods proposed for this purpose
without affecting the classification quality is demonstrated by the SE-SVM
method compared to ALMA and MASVM methods. Analyzing both the qualitative
and quantitative results clearly show the SE-SVM approach can better utilize
the mutual dependence of optimizing M, T and improve classifier performance
compared to the alternating optimization techniques. What is more, the training
and classification time were also analyzed. First of all those times are greatly
reduced compared to the regular grid search algorithm in both cases of ALMA and
SE-SVM. Although ALMA algorithm had faster training and classification time
it has worse classification performance when compared to SE-SVM. This means
that SE-SVM is a Pareto-optimal method that positively verifies this hypothesis.
Moreover, the DASVM provided promising results on 2D datasets but ultimately
this method did not perform so well in benchmark settings, where its quality is
between ALMA and SE-SVM methods but training and classification times are
longer.

The second thesis stating that SVM ensembles created using evolutionary
algorithms provide improved classification performance compared to
other well-established methods, including existing algorithms for building
SVM ensembles is addressed with CE-SVM and ECE-SVM algorithms. These
algorithms divide the dataset into different regions, and by building these regions
into the cascade structure of classifiers, the SVMs performance and applicability
are improved. One of the improvements is the introduction the concept of certain
regions. The idea behind this approach is to identify regions within the dataset
where the SVM can make accurate predictions with high confidence. Studies have
shown that such expert regions can indeed be identified and that they can be

5.1. Future work 123

classified with higher accuracy than the entire dataset. While this approach may
require a longer classification time, the results have been shown to be superior
to other methods. It is important to note that although the training time for
SVMs with expert regions may be increased compared to other methods such
as ALMA and SE-SVM, the increased training time is a natural consequence
of building multiple models to identify and focus on expert regions. What is
more, those results are also Pareto-optimal meaning that the longer training and
classification time is associated with improved classification performance. Overall,
incorporating the concept of expert regions into SVMs is a promising approach
for improving their performance, particularly in scenarios where classification
performance and confidence in predictions are crucial. While the approach may
require more computational resources, the potential gains in classification quality
and confidence make it a valuable technique for further usage.

5.1 Future work

The presented results and methods could be used as a great starting point for
further research. There are numerous things that were introduced and tested while
some of those seem (in the author’s opinion) to be too briefly touched on.

The optimization of hyperparameters is a critical aspect of SVMs, as the
performance of the model is highly dependent on the choice of hyperparameters.
The hyperparameter optimization method proposed in this research is fairly simple,
and coupling proposed algorithms with more advanced techniques could potentially
lead to further improvements. For instance, the use of Bayesian optimization or
gradient-based optimization techniques could lead to more efficient and accurate
hyperparameter tuning. Additionally, incorporating prior knowledge or domain
expertise into the optimization process could also be explored as a way to guide
the search towards more promising hyperparameter configurations. Yet another
interesting direction is finding promising hyperparametrs by the greatly reducing
size of the training set as shown with initial experimentation in Section 3.5 where
grid search was used.

This research has been focused on binary classification problems, and extending
it into multiclassification problems using specialized SVMs is another interesting

124 Chapter 5. Conclusions

direction. As shown in earlier work [94], using one-vs-one strategy to tackle those
is not efficient and state-of-the-art methods are better. Multi-class classification
problems are commonly encountered in many applications, and developing efficient
and accurate methods for solving these problems is an important research area. The
extension of the proposed algorithms to handle Multi-class classification problems
could lead to new insights and improvements in performance. This should not be
specifically hard to follow as there is no inherent limitation to the number of classes
handled by the evolutionary method proposed.

Coupling ensemble methods with feature selection is another interesting direc-
tion for future research. Ensemble methods are known to improve the accuracy and
robustness of machine learning models by combining multiple models’ predictions.
Feature selection, on the other hand, is a technique that selects the most relevant
features from the dataset to improve the model’s performance and reduce over-
fitting. Combining ensemble methods with feature selection could lead to further
improvements in performance by selecting the most relevant features and increasing
the diversity of included models. What is more, this could make CE-SVM and
ECE-SVM easier to use for non-expert users.

Lastly, the DA-SVM algorithm with the No-T variant presented in this research
is an interesting approach that could be extended to other algorithms presented
here. The selection of a small yet representative validation set is crucial for this
algorithm to be effective, as it is used to estimate the fitness of the classifier and
could be considered as a replacement for the training process. Further research
could explore the use of the No-T variant in other algorithms and investigate the
impact of the validation set size on performance.

Bibliography

[1] Abdel-Basset, M., Ding, W., and El-Shahat, D. A hybrid Harris
Hawks optimization algorithm with simulated annealing for feature selection.
Artificial Intelligence Review 54 (2021), 593–637.

[2] Abe, S., and Inoue, T. Fast training of support vector machines by
extracting boundary data. In Proceedings of International Conference on
Artificial Neural Networks (2001), Springer, pp. 308–313.

[3] Abusitta, A., Li, M. Q., and Fung, B. C. Malware classification and
composition analysis: A survey of recent developments. Journal of Information
Security and Applications 59 (2021), 102828.

[4] Aiolli, F., and Donini, M. EasyMKL: a scalable multiple kernel learning
algorithm. Neurocomputing 169 (2015), 215–224.

[5] Aladeemy, M., Tutun, S., and Khasawneh, M. T. A new hybrid
approach for feature selection and support vector machine model selection
based on self-adaptive cohort intelligence. Expert Systems with Applications
88 (2017), 118–131.

[6] Albashish, D., Hammouri, A. I., Braik, M., Atwan, J., and Sahran,
S. Binary biogeography-based optimization based SVM-RFE for feature
selection. Applied Soft Computing 101 (2021), 107026.

[7] Angiulli, F., and Astorino, A. Scaling up support vector machines
using nearest neighbor condensation. IEEE Transactions on Neural Networks
21, 2 (2010), 351–357.

III

IV

[8] Aslan, M. F., Sabanci, K., Durdu, A., and Unlersen, M. F. Covid-
19 diagnosis using state-of-the-art CNN architecture features and Bayesian
Optimization. Computers in Biology and Medicine 142 (2022), 105244.

[9] Ayat, N., Cheriet, M., and Suen, C. Automatic model selection for the
optimization of SVM kernels. Pattern Recognition 38, 10 (2005), 1733–1745.

[10] Ayush, K., and Sinha, A. Improving classification performance of support
vector machines via guided custom kernel search. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion (New York,
NY, USA, 2019), pp. 159—-160.

[11] Balcázar, J., Dai, Y., and Watanabe, O. A random sampling technique
for training support vector machines. In Proceedings of Algorithmic Learning
Theory (Berlin, Heidelberg, 2001), Springer, pp. 119–134.

[12] Baliarsingh, S. K., Ding, W., Vipsita, S., and Bakshi, S. A memetic
algorithm using emperor penguin and social engineering optimization for
medical data classification. Applied Soft Computing 85 (2019), 105773.

[13] Benkessirat, A., and Benblidia, N. Fundamentals of feature selection:
An overview and comparison. In Proceedings of International Conference on
Computer Systems and Applications (2019), pp. 1–6.

[14] Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. Algorithms
for hyper-parameter optimization. Advances in neural information processing
systems 24 (2011).

[15] Bergstra, J., and Bengio, Y. Random search for hyper-parameter
optimization. Journal of Machine Learning Research 13, 10 (2012), 281–305.

[16] Bergstra, J., Yamins, D., and Cox, D. D. Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for vision
architectures. In Proceedings of the 30th International Conference on Machine
Learning (2013), ICML’13, pp. 115—-123.

V

[17] Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors,
S., Thomas, J., Ullmann, T., Becker, M., Boulesteix, A.-L., et al.
Hyperparameter optimization: Foundations, algorithms, best practices, and
open challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery (2021), e1484.

[18] Bommert, A., Sun, X., Bischl, B., Rahnenführer, J., and Lang,
M. Benchmark for filter methods for feature selection in high-dimensional
classification data. Computational Statistics & Data Analysis 143 (2020),
106839.

[19] Boser, B. E., Guyon, I. M., and Vapnik, V. N. A training algorithm for
optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on
Computational Learning Theory (New York, NY, USA, 1992), pp. 144—-152.

[20] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell,
A., et al. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[21] Carcillo, F., Le Borgne, Y.-A., Caelen, O., Kessaci, Y., Oblé,
F., and Bontempi, G. Combining unsupervised and supervised learning
in credit card fraud detection. Information sciences 557 (2021), 317–331.

[22] Cervantes, J., Lamont, F. G., López-Chau, A., Mazahua, L. R.,
and Ruíz, J. S. Data selection based on decision tree for SVM classification
on large data sets. Applied Soft Computing 37 (2015), 787–798.

[23] Chandrashekar, G., and Sahin, F. A survey on feature selection
methods. Computers & Electrical Engineering 40, 1 (2014), 16–28.

[24] Chang, C.-C., and Lin, C.-J. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology 2, 3
(2011), 1–27.

VI

[25] Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. SMOTE: synthetic minority over-sampling technique. Journal of
artificial intelligence research 16 (2002), 321–357.

[26] Chen, C., Li, X., Belkacem, A. N., Qiao, Z., Dong, E., Tan, W., and
Shin, D. The mixed kernel function SVM-based point cloud classification.
International Journal of Precision Engineering and Manufacturing 20, 5
(2019), 737–747.

[27] Chen, L., Li, S., Bai, Q., Yang, J., Jiang, S., and Miao, Y. Review
of image classification algorithms based on convolutional neural networks.
Remote Sensing 13, 22 (2021), 4712.

[28] Cheng, F., Chen, J., Qiu, J., and Zhang, L. A subregion division
based multi-objective evolutionary algorithm for SVM training set selection.
Neurocomputing 394 (2020), 70–83.

[29] Chicco, D., and Jurman, G. The advantages of the matthews correla-
tion coefficient (MCC) over F1 score and accuracy in binary classification
evaluation. BMC Genomics 21, 1 (Jan 2020), 6.

[30] Chicco, D., Tötsch, N., and Jurman, G. The Matthews correlation
coefficient (MCC) is more reliable than balanced accuracy, bookmaker in-
formedness, and markedness in two-class confusion matrix evaluation. BioData
Mining 14, 1 (Feb 2021), 13.

[31] Claesen, M., De Smet, F., Suykens, J. A. K., and De Moor, B.
Ensemblesvm: A library for ensemble learning using support vector machines.
Journal of Machine Learning Research 15, 1 (jan 2014), 141–145.

[32] Cortes, C., and Vapnik, V. Support vector networks. Machine Learning
20 (1995), 273–297.

[33] Czarnowski, I. Cluster-based instance selection for machine classification.
Knowledge and Information Systems 30, 1 (2012), 113–133.

[34] Demšar, J. Statistical comparisons of classifiers over multiple data sets.
Journal of Machine Learning Research 7 (2006), 1–30.

VII

[35] Dhiman, H. S., Deb, D., Muyeen, S., and Kamwa, I. Wind turbine
gearbox anomaly detection based on adaptive threshold and twin support
vector machines. IEEE Transactions on Energy Conversion 36, 4 (2021),
3462–3469.

[36] Dixon, M. F., Halperin, I., and Bilokon, P. Machine learning in
Finance, vol. 1170. Springer, 2020.

[37] Dudzik, W., Kawulok, M., and Nalepa, J. Evolutionarily-tuned support
vector machines. In Proceedings of Genetic and Evolutionary Computation
Conference Companion (New York, NY, USA, 2019), pp. 165–166.

[38] Dudzik, W., Kawulok, M., and Nalepa, J. Optimizing training data
and hyperparameters of support vector machines using a memetic algorithm.
In Proceedings of International Conference on Man-Machine Interactions
(2019), pp. 229–238.

[39] Dudzik, W., Nalepa, J., and Kawulok, M. Automated optimization of
non-linear support vector machines for binary classification. In Proceedings of
Advances in Intelligent Networking and Collaborative Systems (Cham, 2019),
pp. 504–513.

[40] Dudzik, W., Nalepa, J., and Kawulok, M. Evolving data-adaptive
support vector machines for binary classification. Knowledge-Based Systems
227 (2021), 107221.

[41] Dudzik, W., Nalepa, J., and Kawulok, M. Cascades of evolution-
ary support vector machines. In Proceedings of Genetic and Evolutionary
Computation Conference Companion (2022), pp. 240–243.

[42] Falkner, S., Klein, A., and Hutter, F. BOHB: Robust and efficient
hyperparameter optimization at scale. In Proceedings of the 35th International
Conference on Machine Learning (Jul 2018), vol. 80, pp. 1437–1446.

[43] Faris, H., Hassonah, M. A., Al-Zoubi, A. M., Mirjalili, S., and
Aljarah, I. A multi-verse optimizer approach for feature selection and

VIII

optimizing SVM parameters based on a robust system architecture. Neural
Computing and Applications 30, 8 (Oct 2018), 2355–2369.

[44] Fawcett, T. An introduction to ROC analysis. Pattern Recognition Letters
27, 8 (2006), 861–874.

[45] Florea, A. C., and Andonie, R. A dynamic early stopping criterion for
random search in SVM hyperparameter optimization. In Proceedings of In-
ternational Conference on Artificial Intelligence Applications and Innovations
(2018), Springer, pp. 168–180.

[46] Friedman, J. H. Greedy function approximation: A gradient boosting
machine. The Annals of Statistics 29, 5 (2001), 1189 – 1232.

[47] Gao, L., Qian, W., Li, X., and Wang, J. Application of memetic
algorithm in assembly sequence planning. The International Journal of
Advanced Manufacturing Technology 49, 9 (Aug 2010), 1175–1184.

[48] Garcia, S., Derrac, J., Cano, J., and Herrera, F. Prototype selection
for nearest neighbor classification: Taxonomy and empirical study. IEEE
transactions on pattern analysis and machine intelligence 34, 3 (2012), 417–
435.

[49] García, V., Mollineda, R. A., and Sánchez, J. S. Index of balanced
accuracy: A performance measure for skewed class distributions. In Pattern
Recognition and Image Analysis (Berlin, Heidelberg, 2009), Springer, pp. 441–
448.

[50] García-Pedrajas, N., de Haro-García, A., and Pérez-Rodríguez,
J. A scalable memetic algorithm for simultaneous instance and feature
selection. Evolutionary Computation 22, 1 (2014), 1–45.

[51] Geurts, P., Ernst, D., and Wehenkel, L. Extremely randomized trees.
Machine Learning 63, 1 (Apr 2006), 3–42.

[52] Ghamisi, P., and Benediktsson, J. A. Feature selection based on
hybridization of genetic algorithm and particle swarm optimization. IEEE
Geoscience and Remote Sensing Letters 12, 2 (Feb 2015), 309–313.

IX

[53] Ghamisi, P., Couceiro, M. S., and Benediktsson, J. A. A novel
feature selection approach based on FODPSO and SVM. IEEE Transactions
on Geoscience and Remote Sensing 53, 5 (May 2015), 2935–2947.

[54] Goel, A., and Srivastava, S. K. Role of kernel parameters in perform-
ance evaluation of SVM. In Proceedings of Computational Intelligence &
Communication Technology (2016), IEEE, pp. 166–169.

[55] Gomez-Uribe, C. A., and Hunt, N. The netflix recommender system: Al-
gorithms, business value, and innovation. ACM Transactions on Management
Information Systems 6, 4 (2015), 1–19.

[56] Gopi, A. P., Jyothi, R. N. S., Narayana, V. L., and Sandeep, K. S.
Classification of tweets data based on polarity using improved RBF kernel of
SVM. International Journal of Information Technology (Jan 2020).

[57] Graf, H., Cosatto, E., Bottou, L., Dourdanovic, I., and Vapnik,
V. Parallel support vector machines: The Cascade SVM. In Advances in
Neural Information Processing Systems (2004), vol. 17.

[58] Guo, L., and Boukir, S. Fast data selection for SVM training using
ensemble margin. Pattern Recognition Letters 51 (2015), 112–119.

[59] Guo, L., Boukir, S., and Chehata, N. Support vectors selection for
supervised learning using an ensemble approach. In Proceedings of 20th
International Conference on Pattern Recognition (2010), pp. 37–40.

[60] Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. Gene selection
for cancer classification using support vector machines. Machine Learning
46, 1 (Jan 2002), 389–422.

[61] Herrera, F., Lozano, M., and Verdegay, J. L. Tackling real-coded
genetic algorithms: Operators and tools for behavioural analysis. Artificial
Intelligence Review 12, 4 (Aug 1998), 265–319.

[62] Hofmann, T., Schölkopf, B., and Smola, A. J. Kernel methods in
machine learning. The Annals of Statistics 36, 3 (2008), 1171 – 1220.

X

[63] Holland, J. H. Adaptation in Natural and Artificial Systems: An Introduct-
ory Analysis with Applications to Biology, Control, and Artificial Intelligence.
MIT Press, 1992.

[64] Houssein, E. H., Hosney, M. E., Oliva, D., Mohamed, W. M., and
Hassaballah, M. A novel hybrid harris hawks optimization and support
vector machines for drug design and discovery. Computers & Chemical
Engineering 133 (2020), 106656.

[65] Hsu, C.-W., Chang, C.-C., and Lin, C.-J. A practical guide to support
vector classification. Tech. rep., Department of Computer Science, National
Taiwan University, 2003.

[66] Huang, C.-L., and Dun, J.-F. A distributed PSO–SVM hybrid system
with feature selection and parameter optimization. Applied Soft Computing
8, 4 (2008), 1381–1391.

[67] Huang, S., Cai, N., Pacheco, P. P., Narrandes, S., Wang, Y., and
Xu, W. Applications of support vector machine (SVM) learning in cancer
genomics. Cancer Genomics Proteomics 15, 1 (Jan. 2018), 41–51.

[68] Huanrui, H. New mixed kernel functions of SVM used in pattern recognition.
Cybernetics and Information Technologies 16, 5 (2016), 5–14.

[69] Hussain, S. F. A novel robust kernel for classifying high-dimensional data
using support vector machines. Expert Systems with Applications 131 (2019),
116–131.

[70] Hutter, F., Hoos, H. H., and Leyton-Brown, K. Sequential model-
based optimization for general algorithm configuration. In Proceedings of
the 5th International Conference on Learning and Intelligent Optimization
(Berlin, Heidelberg, 2011), p. 507–523.

[71] Ibrahim, H. T., Mazher, W. J., Ucan, O. N., and Bayat, O. A
grasshopper optimizer approach for feature selection and optimizing SVM
parameters utilizing real biomedical data sets. Neural Computing and Ap-
plications 31 (2019), 5965–5974.

XI

[72] Jamieson, K., and Talwalkar, A. Non-stochastic best arm identification
and hyperparameter optimization. In Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics (May 2016), vol. 51, PMLR,
pp. 240–248.

[73] Jiang, H., Ching, W.-K., Yiu, K. F. C., and Qiu, Y. Stationary
mahalanobis kernel SVM for credit risk evaluation. Applied Soft Computing
71 (2018), 407–417.

[74] Katoch, S., Chauhan, S. S., and Kumar, V. A review on genetic
algorithm: Past, present, and future. Multimedia Tools and Applications 80,
5 (Feb 2021), 8091–8126.

[75] Kawulok, M., and Nalepa, J. Support vector machines training data
selection using a genetic algorithm. In Structural, Syntactic, and Statistical
Pattern Recognition (Berlin, Heidelberg, 2012), pp. 557–565.

[76] Kawulok, M., Nalepa, J., and Dudzik, W. An alternating genetic
algorithm for selecting SVM model and training set. In Proceedings of Mexican
Conference on Pattern Recognition (2017), Springer, pp. 94–104.

[77] Klein, A., Falkner, S., Bartels, S., Hennig, P., and Hutter, F.
Fast Bayesian Optimization of machine learning hyperparameters on large
datasets. In Artificial intelligence and statistics (2017), PMLR, pp. 528–536.

[78] Kuo, B.-C., Ho, H.-H., Li, C.-H., Hung, C.-C., and Taur, J.-S. A
kernel-based feature selection method for SVM with RBF kernel for hyper-
spectral image classification. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing 7, 1 (2013), 317–326.

[79] Kurani, A., Doshi, P., Vakharia, A., and Shah, M. A comprehensive
comparative study of artificial neural network (ANN) and support vector
machines (SVM) on stock forecasting. Annals of Data Science 10, 1 (Feb
2023), 183–208.

XII

[80] Le, T. T., Fu, W., and Moore, J. H. Scaling tree-based automated
machine learning to biomedical big data with a feature set selector. Bioin-
formatics 36, 1 (2020), 250–256.

[81] Lessmann, S., Stahlbock, R., and Crone, S. F. Genetic algorithms for
support vector machine model selection. In Proceedings of IEEE International
Joint Conference on Neural Network (2006), IEEE, pp. 3063–3069.

[82] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Tal-
walkar, A. Hyperband: A novel bandit-based approach to hyperparameter
optimization. Journal of Machine Learning Research 18, 1 (2017), 6765–6816.

[83] Lin, C.-C., Kang, J.-R., Liang, Y.-L., and Kuo, C.-C. Simultaneous
feature and instance selection in big noisy data using memetic variable
neighborhood search. Applied Soft Computing 112 (2021), 107855.

[84] Louppe, G., and Geurts, P. Ensembles on random patches. In Machine
Learning and Knowledge Discovery in Databases (Berlin, Heidelberg, 2012),
Springer, pp. 346–361.

[85] Lu, C., Zhang, B., Gao, L., Yi, J., and Mou, J. A knowledge-based
multiobjective memetic algorithm for green job shop scheduling with variable
machining speeds. IEEE Systems Journal 16, 1 (2021), 844–855.

[86] Maleki, N., Zeinali, Y., and Niaki, S. T. A. A k-NN method for lung
cancer prognosis with the use of a genetic algorithm for feature selection.
Expert Systems with Applications 164 (2021), 113981.

[87] Meinshausen, N., and Bühlmann, P. Stability selection. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 72, 4 (2010),
417–473.

[88] Menezes, M. V., Torres, L. C., and Braga, A. P. Width optimization
of RBF kernels for binary classification of support vector machines: A density
estimation-based approach. Pattern Recognition Letters 128 (2019), 1–7.

[89] Michalewicz, Z. Genetic algorithms + data structures = evolution programs
(3nd, extended ed.). Springer-Verlag, New York, NY, USA, 1996.

XIII

[90] Mitchell, M. Genetic algorithms: An overview. In Complex. (1995), vol. 1,
Citeseer, pp. 31–39.

[91] Molina, J. C., Salmeron, J. L., and Eguia, I. An ACS-based memetic
algorithm for the heterogeneous vehicle routing problem with time windows.
Expert Systems with Applications 157 (2020), 113379.

[92] Moscato, P. On evolution, search, optimization, genetic algorithms and
martial arts: Towards memetic algorithms. Tech. Rep. C3P Report 826,
California Institute of Technology, 1989.

[93] Moscato, P., and Mathieson, L. Memetic Algorithms for Business
Analytics and Data Science: A Brief Survey. Springer International Publishing,
Cham, 2019, pp. 545–608.

[94] Nalepa, J., Dudzik, W., and Kawulok, M. Memetic evolution of
training sets with adaptive radial basis kernels for support vector machines.
In Proceedings of International Conference on Pattern Recognition (2020),
pp. 1–8.

[95] Nalepa, J., and Kawulok, M. Adaptive genetic algorithm to select
training data for support vector machines. In Applications of Evolutionary
Computation (Berlin, Heidelberg, 2014), Springer, pp. 514–525.

[96] Nalepa, J., and Kawulok, M. A memetic algorithm to select training
data for support vector machines. In Proceedings of Genetic and Evolutionary
Computation Conference (New York, NY, USA, 2014), pp. 573–580.

[97] Nalepa, J., and Kawulok, M. Adaptive memetic algorithm enhanced
with data geometry analysis to select training data for SVMs. Neurocomputing
185 (2016), 113–132.

[98] Nalepa, J., and Kawulok, M. Selecting training sets for support vector
machines: A review. Artificial Intelligence Review 52, 2 (2019), 857–900.

[99] Nalepa, J., Siminski, K., and Kawulok, M. Towards parameter-less
support vector machines. In Proceedings of Asian Conference on Pattern
Recognition (2015), pp. 211–215.

XIV

[100] Nanglia, S., Ahmad, M., Ali Khan, F., and Jhanjhi, N. An en-
hanced predictive heterogeneous ensemble model for breast cancer prediction.
Biomedical Signal Processing and Control 72 (2022), 103279.

[101] Neumann, J., Schnörr, C., and Steidl, G. Combined SVM-based
feature selection and classification. Machine Learning 61, 1 (Nov 2005),
129–150.

[102] Ogutu, J. O., Schulz-Streeck, T., and Piepho, H.-P. Genomic
selection using regularized linear regression models: Ridge regression, LASSO,
elastic net and their extensions. BMC Proceedings 6, 2 (May 2012), S10.

[103] Panch, T., Szolovits, P., and Atun, R. Artificial intelligence, machine
learning and health systems. Journal of Global Health 8, 2 (Dec. 2018),
020303.

[104] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Du-
bourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., and Duchesnay, E. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[105] Platt, J. Sequential minimal optimization: A fast algorithm for training
support vector machines. Tech. Rep. MSR-TR-98-14, Microsoft, April 1998.

[106] Pugalenthi, R., Rajakumar, M., Ramya, J., and Rajinikanth, V.
Evaluation and classification of the brain tumor MRI using machine learning
technique. Journal of Control Engineering and Applied Informatics 21, 4
(2019), 12–21.

[107] Pławiak, P., Abdar, M., and Rajendra Acharya, U. Application of
new deep genetic cascade ensemble of SVM classifiers to predict the Australian
credit scoring. Applied Soft Computing 84 (2019), 105740.

[108] Qayyum, A., Qadir, J., Bilal, M., and Al-Fuqaha, A. Secure and
robust machine learning for healthcare: A survey. IEEE Reviews in Biomedical
Engineering 14 (2020), 156–180.

XV

[109] Raman, M. G., Somu, N., Kirthivasan, K., Liscano, R., and Sriram,
V. S. An efficient intrusion detection system based on hypergraph-genetic
algorithm for parameter optimization and feature selection in support vector
machine. Knowledge-Based Systems 134 (2017), 1–12.

[110] Ramirez-Morales, A., Salmon-Gamboa, J. U., Li, J., Sanchez-
Reyna, A. G., and Palli-Valappil, A. Boosted support vector machines
with genetic selection. Applied Intelligence 53, 5 (Mar 2023), 4996–5012.

[111] Sabzevari, M., Martínez-Muñoz, G., and Suárez, A. Building hetero-
geneous ensembles by pooling homogeneous ensembles. International Journal
of Machine Learning and Cybernetics 13, 2 (Feb 2022), 551–558.

[112] Seni, G., and Elder, J. Ensemble methods in data mining: improving
accuracy through combining predictions. Morgan & Claypool Publishers, 2010.

[113] Sesmero, M. P., Iglesias, J. A., Magán, E., Ledezma, A., and
Sanchis, A. Impact of the learners diversity and combination method on
the generation of heterogeneous classifier ensembles. Applied Soft Computing
111 (2021), 107689.

[114] Shen, X.-J., Mu, L., Li, Z., Wu, H.-X., Gou, J.-P., and Chen,
X. Large-scale support vector machine classification with redundant data
reduction. Neurocomputing 172 (2016), 189–197.

[115] Sivanandam, S., Deepa, S., Sivanandam, S., and Deepa, S. Genetic
algorithms. Springer, 2008.

[116] Snoek, J., Larochelle, H., and Adams, R. P. Practical bayesian
optimization of machine learning algorithms. Advances in neural information
processing systems 25 (2012).

[117] Spencer, R., Thabtah, F., Abdelhamid, N., and Thompson, M.
Exploring feature selection and classification methods for predicting heart
disease. Digital health 6 (2020).

XVI

[118] Stanley, K. O., and Miikkulainen, R. Competitive coevolution through
evolutionary complexification. Journal of Artificial Intelligence Research 21,
1 (Feb. 2004), 63–100.

[119] Sudholt, D. The Benefits of Population Diversity in Evolutionary Al-
gorithms: A Survey of Rigorous Runtime Analyses. Springer International
Publishing, Cham, 2020, pp. 359–404.

[120] Sultan, R., Tamimi, H., and Ashhab, Y. Improving classification perform-
ance using genetic programming to evolve string kernels. The International
Arab Journal of Information Technology 16, 3 (2019), 454–459.

[121] Tan, T. G., Lau, H. K., and Teo, J. Cooperative versus competitive
coevolution for pareto multiobjective optimization. In Bio-Inspired Compu-
tational Intelligence and Applications (Berlin, Heidelberg, 2007), Springer,
pp. 63–72.

[122] Tang, J., Alelyani, S., and Liu, H. Feature selection for classification:
A review. Data classification: Algorithms and applications (2014), 37.

[123] Tang, J., Lim, M. H., and Ong, Y. S. Diversity-adaptive parallel memetic
algorithm for solving large scale combinatorial optimization problems. Soft
Computing 11, 9 (2007), 873–888.

[124] Tao, P., Sun, Z., and Sun, Z. An improved intrusion detection algorithm
based on GA and SVM. IEEE Access 6 (2018), 13624–13631.

[125] Tao, Z., Huiling, L., Wenwen, W., and Xia, Y. GA-SVM based feature
selection and parameter optimization in hospitalization expense modeling.
Applied Soft Computing 75 (2019), 323–332.

[126] Tian, D., Zhao, X., and Shi, Z. Support vector machine with mixture of
kernels for image classification. In Proceedings of International Conference
on Intelligent Information Processing (2012), Springer, pp. 68–76.

[127] Ting, K. M., Zhu, Y., and Zhou, Z.-H. Isolation kernel and its effect
on SVM. In Proceedings of The International Conference on Knowledge
Discovery & Data Mining (New York, NY, USA, 2018), pp. 2329–2337.

XVII

[128] Wainer, J., and Fonseca, P. How to tune the RBF SVM hyperparamet-
ers? An empirical evaluation of 18 search algorithms. Artificial Intelligence
Review 54, 6 (Aug 2021), 4771–4797.

[129] Wang, D., Qiao, H., Zhang, B., and Wang, M. Online support vector
machine based on convex hull vertices selection. IEEE Transactions on Neural
Networks and Learning Systems 24, 4 (2013), 593–609.

[130] Wang, D., Wang, X., and Lv, S. An overview of end-to-end automatic
speech recognition. Symmetry 11, 8 (2019), 1018.

[131] Wang, L.-Y., Zhang, J., and Li, H. An improved genetic algorithm for
TSP. In Proceedings of International Conference on Machine Learning and
Cybernetics (2007), vol. 2, IEEE, pp. 925–928.

[132] Waring, J., Lindvall, C., and Umeton, R. Automated machine learning:
Review of the state-of-the-art and opportunities for healthcare. Artificial
Intelligence in Medicine 104 (2020), 101822.

[133] Wen, Z., Shi, J., Li, Q., He, B., and Chen, J. ThunderSVM: A fast
SVM library on GPUs and CPUs. Journal of Machine Learning Research 19
(2018), 797–801.

[134] Wolpert, D. H. Stacked generalization. Neural Networks 5, 2 (1992),
241–259.

[135] Wolpert, D. H. The Supervised Learning No-Free-Lunch Theorems.
Springer London, London, 2002, pp. 25–42.

[136] Xiao, J. SVM and k-NN ensemble learning for traffic incident detection.
Physica A: Statistical Mechanics and its Applications 517 (2019), 29–35.

[137] Xu, Z., Aghaabbasi, M., Ali, M., and Macioszek, E. Targeting
sustainable transportation development: The support vector machine and the
Bayesian Optimization algorithm for classifying household vehicle ownership.
Sustainability 14, 17 (Sep 2022), 11094.

XVIII

[138] Yang, L., and Shami, A. On hyperparameter optimization of machine
learning algorithms: Theory and practice. Neurocomputing 415 (2020), 295–
316.

[139] Yao, G., Hu, X., and Wang, G. A novel ensemble feature selection
method by integrating multiple ranking information combined with an svm
ensemble model for enterprise credit risk prediction in the supply chain.
Expert Systems with Applications 200 (2022), 117002.

[140] Zantalis, F., Koulouras, G., Karabetsos, S., and Kandris, D. A
review of machine learning and IoT in smart transportation. Future Internet
11, 4 (2019), 94.

[141] Zeng, N., Qiu, H., Wang, Z., Liu, W., Zhang, H., and Li, Y. A
new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of
Alzheimer’s disease. Neurocomputing 320 (2018), 195–202.

[142] Zhang, S., Xu, J., Huang, E., and Chen, C.-H. A new optimal
sampling rule for multi-fidelity optimization via ordinal transformation. In
Proceedings of 2016 IEEE International Conference on Automation Science
and Engineering (2016), p. 670–674.

[143] Zhang, W., Hong, B., Liu, W., Ye, J., Cai, D., He, X., and Wang,
J. Scaling up sparse support vector machines by simultaneous feature and
sample reduction. In Proceedings of International Conference on Machine
Learning (2017), pp. 4016–4025.

[144] Zhang, W., and King, I. Locating support vectors via β-skeleton technique.
In Proceedings of International Conference on Neural Information Processing
(2002), pp. 1423–1427.

[145] Zhou, J., Qiu, Y., Zhu, S., Armaghani, D. J., Li, C., Nguyen, H.,
and Yagiz, S. Optimization of support vector machine through the use
of metaheuristic algorithms in forecasting TBM advance rate. Engineering
Applications of Artificial Intelligence 97 (2021), 104015.

Acknowledgements

Firstly, I would like to thank my supervisor, Michał Kawulok, for his excep-
tional guidance and patience throughout this journey. His invaluable insights and
continuous support have been instrumental in shaping my research, and I have
learned a great deal from all of our discussions. I would also like to extend my
sincere thanks to my co-supervisor, Jakub Nalepa, for his countless comments, all
of the grammar corrections, and guidance in the scientific community. His support
and feedback have been indispensable in helping me achieve my goals.

I cannot thank my wife enough for her unwavering support, encouragement, and
belief in me. She has been my pillar of strength, reminding me to take much-needed
breaks and providing me with the support I needed to push through the difficult
times. Thank you for all the laughs along the way. My heartfelt thanks also go
out to my entire family for their support throughout my academic journey. I am
grateful for all the help they have provided over the years.

This work has been financially supported by the European Union through the
European Social Fund (grant POWR.03.02.00-00-I029) and the National Science
Centre (grant 2017/25/B/ST6/00474).

XIX

XX

Appendices

A Recursive features elimination

For initial testing, whether optimizingM and T together with F could further
improve the results the recursive feature elimination with cross-validation (RFECV)
was exploited. It is a simple yet effective way of finding a refined feature set that
can be used with a variety of models.

It works by recursively removing the least important features until the desired
number of features is reached. Hence it could be computationally expensive for a
large number of features as for each iteration RFE requires training of the machine
learning algorithm. In order to decrease the number of training’s required, more
than one feature could be removed in each iteration. A variant of RFE is presented
in Algorithm 10.

At the beginning, a range of steps to test is created, where a step of 10% of
features (line 1) is utilized. For each of these steps (starting from full feature set),
a 5-fold cross-validation (lines 3-7) is performed. A classifier (ETT ′) is trained and
scored in each fold (lines 5-6). The score from CV is averaged before getting to the
next smaller set of features (line 8). The training process (line 10) results in the
selection of Zbest that yields the best score. The ET is trained one more time for
the entire T (line 11) and the least important features are pruned from ETbest to
obtain Zbest number of features, and returned as final F ′ (line 12).

An extremely randomized tree classifier [51] is used here. The motivation for
using this method is its short training time, its non-linearity and the discarding of
features based on importance that is natural for this classifier. It may happen that
this process discards no features.

XXI

XXII

Algorithm 10 Recursive Feature Elimination with Cross-Validation (RFECV).
1: {Zi} = {1.0, 0.9, 0.8, ..., 0.1}; ▷ Set of steps
2: for all {Zi} do
3: T ′, Ψ← Split T with F ′ = F × Zi for 5-fold CV .
4: for all T ′ do ▷ cross-validation for T
5: ETT ′ ← Train classifier on T ′

6: {ScoreT ′} ← EVALUATE(ETT ′ , Ψ)
7: {ScoreT ′} ← AVERAGE({ScoreT ′})
8: Zbest ← Take Step for MAX({ScoreT ′})
9: ETbest ← Train classifier for T

10: return Take F ′ from ETbest with Zbest

B Statistical tests results

The Friedman test is a non-parametric statistical test used to determine if
there are differences between three or more related groups. It is often used as an
alternative to the one-way ANOVA when the data is not normally distributed, or
the assumption of equal variances is not met [34]. The test involves ranking the
observations in each group and calculating a test statistic based on the differences
between the ranks. The null hypothesis of the Friedman test is that there are
no differences between the populations or treatments being compared. In other
words, the null hypothesis is that the medians of the populations or treatments
are equal. The alternative hypothesis is that at least one population or treatment
median is different from the others. A significant result indicates that there are
differences between the groups, but it does not indicate which groups are different
from each other. That is why post-hoc analysis needs to be used. The Conover
test is a non-parametric pairwise comparison test that is used after a significant
Friedman test to determine which groups are significantly different from each other.
The test compares all possible pairs of groups using a test statistic that is based on
the ranks of the observations. Both tests are non-parametric and based on ranks,
making them robust to violations of assumptions about the distribution of the data.
The null hypothesis of the Conover post hoc test is that there is no significant
difference between the two groups being compared after controlling for multiple
comparisons. The alternative hypothesis is that there is a significant difference

XXIII

between the two groups being compared.

Figure 1: Results of post-hoc Conover analysis performed after Friedman test for
2D datasets on Accuracy metric.

XXIV

Figure 2: Results of post-hoc Conover analysis performed after Friedman test for
2D datasets on F1 metric.

XXV

Figure 3: Results of post-hoc Conover analysis performed after Friedman test for
2D datasets on MCC metric.

XXVI

Figure 4: Results of post-hoc Conover analysis performed after Friedman test for
benchmark datasets on Accuracy metric.

XXVII

Figure 5: Results of post-hoc Conover analysis performed after Friedman test for
benchmark datasets on F1 metric.

XXVIII

Figure 6: Results of post-hoc Conover analysis performed after Friedman test for
benchmark datasets on MCC metric.

List of acronyms

Table 1: List of acronyms in alphabetical order.

Acronym Description
AI Artificial intelligence

ANN Artificial neural networks
AUC Area under the ROC curve

BO Bayesian optimization
DNN Deep neural networks

EA Evolutionary algorithm
EFS Evolutionary algorithm for feature selection
ET Extra tree
FN False negatives
FP False positive
GA Genetic algorithm

GAHP Genetic algorithm for hyperparameter optimization
GPU Graphics processing unit

GS Grid search
HPOs Hyperparameter optimizations
k-NN k-nearest neighbors
LGA Local-global adaptation scheme
MCC Matthews correlation coefficient
PSO Particle swarm optimization
RBF Radial basis function
ROC Receiver operating characteristic

RS Random search
SVM Support vector machine
SV(s) Support vector(s)

TP True positive
TN True negative

XXIX

XXX

List of Figures

2.1 (a) An illustrative example of simple 2D datasets with two classes
(black and white dots) where multiple separating hyperplanes are
denoted with dotted lines. (b) An example of a linear SVM trained
on the presented data. The support vectors are denoted with red
color, while the decision boundary is presented with a solid line. . . 12

2.2 An example of the soft-margin linear SVM. The misclassified example
is denoted with a yellow circle. 15

2.3 An example of data that is non-linearly separable. Green triangles
present a positive class while red squares present a negative class.
The hyperplane is rendered with a blue solid line. 17

2.4 One of possible mapping of data from Figure 2.3 into 3D space. Here
the decision boundary is seen as a blue 3D plane. 17

2.5 Comparison of different C hyperparameter setting for the linear
kernel. Yellow crosses denote SVs, whereas dark and light gray
denote values of decision function – the boundary between them is
the decision hyperplane. 18

2.6 Comparison of different SVM kernels (linear, RBF, and polynomial)
and their hyperparameters. Yellow crosses denote SVs, whereas dark
and light gray denote values of decision function – the boundary
between them is the decision hyperplane. Above each example, the
kernel with a set of hyperparameters is given together with the
accuracy of the model. 20

XXXI

XXXII

2.7 Example of RS and GS of nine trials for optimizing function f(x, y) =
g(x) + h(x). The importance of the hyperparameters is illustrative
and can be obtained a posteriori. This figure is inspired by [15]. . . 28

2.8 General categories of approaches for selecting SVM training sets.
This figure is inspired by [98]. 36

2.9 Overview of MASVM algorithm. Source: [98]. 40

3.1 A flow diagram of the GA used for hyperparameter optimization. . 53

3.2 The design of chromosome for SE-SVM method. Source: [38]. 61

3.3 Assigning different γ’s in the RBF kernel to different T vectors
can help better “model” the peculiarities of the SVM hyperplane:
(a) our example set (we consider binary classification, white and
black pixels present examples from two different classes), (b) the
crosses in different colours render SVs with different γ’s: γ = 102

(blue), γ = 103 (red), γ = 104 (green), and γ = 105 (orange), together
with (c) the different shades of gray show the decision boundary,
(d) the “range of influence” of all SVs (the brighter/darker the pixel
is, the distance to the hyperplane is larger). The SVM regularization
parameter was grid-searched and was C = 10. This figure comes
from our paper [94]. 66

3.4 The impact of the Kt value on the quality of hyperparameter config-
urations extracted for example datasets: (a) 2D-Blobs, (b) german,
(c) spambase. For the details of these sets (their sizes and charac-
teristics), see Section 4.1. This figure comes from our paper [40]
. 70

XXXIII

3.5 Example hyperplanes extracted using various methods show that
mixing the linear and RBF kernels may help obtain “less complicated”
hyperplanes (hence possibly not overfitted to T). We visualize (a) an
example training set (with white and black dots presenting two-class
vectors), (b) a linear-kernel SVM (with yellow crosses showing the
SVs), (c) a hyperplane obtained by ARBF-SVM [94] and (d) DA-
SVM(Mix). In (d), the purple crosses render the SVs obtained for
the linear kernel while the others visualize the SVs for various γ’s
for the RBF kernel. This figure comes from our paper [40] 72

3.6 Cascade consists of multiple levels, each with a newly evolved node
(represented by blue boxes). These nodes are made up of a lightweight
SVM model and thresholds that divide the input space into two
regions: certain (indicated by yellow shades) and uncertain (indicated
by red shade). Any training data that falls into the uncertain region
is then passed to the next level, with the final node being based on
SE-SVM. The classification process (indicated by waved arrows) is
carried out using the evolved cascade. This figure comes from [41]. 78

3.7 Visualization of certainty thresholds. The values presented are only
exemplary. This figure comes from [41]. 79

4.1 Visualization of tests sets for 2D datasets. 91
4.2 Visualization of the ALMA algorithm run. Results are visualized on

2D-Blobs test set. The yellow ticks and crosses mark the positions
of support vectors: (a) presents a solution after initialization, (b)
presents the end solution after kernel evolution phase, (c)—(e) shows
progress of T ′ evolution and growing of its size (f) presents final
solution where hyperparameters were adjusted. 94

4.3 Visualization of the SE-SVM algorithm run. Results are visualized
on 2D-Blobs test set. The yellow ticks and crosses mark the positions
of support vectors: (a) presents a solution after initialization, (b)
presents the improved solution where T ′ did not grow yet, (c)—(e)
shows the progress of T ′ growing and hyperparameter adjustments
(f) presents the final solution. 95

XXXIV

4.4 Visualization of the ARBF-SVM algorithm: (a) presents the best
solution from the initial population, (b) The best solution after
finishing evolution with first γ from γ⃗, (c) Shrank training set that
will be used in next iteration with subsequent γ. The shrinking
procedure is based on the whole population, (d) Solution after second
evolution has ended. Added new support vectors marked with red
color crosses, (e) Adding next γ value marked with green vectors
provided worse classification performance, these support vectors will
be removed, (f) final solution for a given dataset containing three
different γ values. 96

4.5 Visualization of the CE-SVM algorithm run: (a)-(c) show the evol-
ution process and adding new nodes. Red color denotes uncertain
region, dark and light grey presents certain regions of previous nodes
while yellow colors are used to depict new certain regions added by
the current node. (d) shows final classification with uncertain regions
(e) presents how SE-SVM node to resolve those regions works and (f)
shows the final classification result of joining cascade with SE-SVM. 98

4.6 Visualization of the ECE-SVM algorithm run: (a) and (d) present a
single cascade result, while (b) and (e) show the same cascades but
with uncertain regions depicted in red, (c) presents another example
of a different cascade. (f) presents the final combination of all of the
cascades. 99

4.7 Qualitative comparisons of uncertain regions of CE-SVM and ECE-
SVM ensembles. 101

4.8 Updating the ensemble classifier: (a) shows the original dataset, (b)
presents the trained CE-SVM classifier, (c) shows new data that
arrived after the training, (d) shows an update to the current classifier.103

4.9 Qualititative comparions on a selected 2D dataset. 105
4.10 Box plot of MCC scores obtained on 2D datasets. 107
4.11 Pareto plot of MCC scores against training time. The grey line

presents the Pareto front. 109
4.12 Pareto plot of MCC scores against classification time. The grey line

presents the Pareto front. 109

XXXV

4.13 Pareto plot of MCC scores against training time for SVM methods. 117
4.14 Pareto plot of MCC scores against classification time for SVM methods.118

1 Results of post-hoc Conover analysis performed after Friedman test
for 2D datasets on Accuracy metric. XXIII

2 Results of post-hoc Conover analysis performed after Friedman test
for 2D datasets on F1 metric. XXIV

3 Results of post-hoc Conover analysis performed after Friedman test
for 2D datasets on MCC metric. XXV

4 Results of post-hoc Conover analysis performed after Friedman test
for benchmark datasets on Accuracy metric. XXVI

5 Results of post-hoc Conover analysis performed after Friedman test
for benchmark datasets on F1 metric. XXVII

6 Results of post-hoc Conover analysis performed after Friedman test
for benchmark datasets on MCC metric. XXVIII

XXXVI

List of Tables

1.1 The list of proposed algorithms that are already published in inter-
national conferences and peer-reviewed journals. 5

2.1 Popular kernel functions. 16
2.2 Visualization of confusion matrix, where green cells represent correct

classification and red cells represent different types of errors. 20

3.1 A summary of algorithms used in the proposed methods. 50
3.2 Summary of symbols used for algorithms description. 51
3.3 The most important aspects of SVMs optimized by evolutionary

techniques. 85

4.1 The artificial created 2D datasets use in the analysis. IR stands for
imbalance ratio, ∑ is the number of vectors in the dataset before any
divisions where T stands for the number of vectors in the training
set and Ψ is the number of vectors in the test set. 89

4.2 The benchmark datasets used in the analysis. 92
4.3 Test metrics on 2D datasets. The best ones are written in bold. . . 106
4.4 Test rankings on 2D datasets. The best ones are written in bold. . . 107
4.5 Results of test performed on benchmark datasets. The results are

averaged scores over all of the datasets, the best ones are written in
bold. 114

4.6 Ranking of methods for classification performance on benchmark
datasets. The best ones are written in bold. 115

1 List of acronyms in alphabetical order. XXIX

XXXVII

	Introduction
	The research hypotheses
	Published papers
	Structure of this dissertation

	Theory and literature review
	Support vector machines
	Hard margin SVMs
	Non-linear SVMs
	Kernel selection
	Performance evaluation

	Evolutionary algorithms
	Literature review
	Optimization of SVM hyperparameters
	Selection of SVM training set
	Feature selection
	Multi-aspect SVM optimization
	Building classification ensembles
	Summary

	Proposed methods
	A genetic algorithm for optimizing SVM hyperparameters
	Evolutionary algorithm for feature selection
	Alternating algorithm for optimization of SVM hyperparameters and training set selection
	Simultaneous optimization of training and feature set and SVM hyperparameters
	Adaptive RBF kernel
	Building ensembles
	Summary

	Experimental validation
	Datasets
	Results
	Qualitative analysis
	Quantitative analysis of 2D datasets for proposed algorithms
	Comparison with other methods

	Summary

	Conclusions
	Future work

	Appendices
	Recursive features elimination
	Statistical tests results

