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Preface

This work is about sampled data control systems, i.e. systems which consist of a
continuous-time plant to be controlled, a sampling device, and a digital controller driving
the plant through a hold device.

In spite of the continuous-time character of real physical processes, totally discrete-
time descriptions were traditionally chosen as a sole basis of operation. As a result, sam-
pled data control systems were treated as discrete-time systems in the literature, and only
modeled the phenomena at sampling instants.

Unfortunately, when implementing certain advanced discrete-time algorithms it ap-
peared that continuous-time output was plagued by unacceptable inter-sample ripple or
even non-stability, particularly at high sampling rates. These phenomena denied the intu-
itive feeling that the system behavior should approach that of a continuous-time system
when the sampling rate increased.

Due to the fast development of digital controllers, sampled data control systems have
become a much studied topic during the last decade, and many approaches have been
developed to overcome the limitations of the purely discrete time theory. Their common
disadvantage is that they are mathematically complicated.

The route taken here is to get more within the existing framework, and to assure a
proper intersample behavior. To do that the sources of problems within the discrete-time
methods have been identified, and methods and models immune against these problems
have been developed. A general rule was to keep in mind that systems work in continuous
time, and to require discrete-time models to keep track with the ultimate continuous-time
factors.

This work summarizes the authors experience gained during a long period. It is the
authors pleasure to deeply thank several people and institutions who, directly or indirectly,
contributed to this work.

A significant body of the results was obtained during the author’s stays at the In-
stitute for Advanced Studies, Vienna, with Prof. Manfred Deistler and the University
of Birmingham with Prof. Mieczystaw Brdys, holding grants from the Austrian Federal
Ministry of Science and Research and the European Community, respectively.



Most of the work summarized here was done within several projects conducted in the Contents
Institute of Automation, Silesian Technical University, Gliwice, headed by Prof. Ryszard
Gessing, under financial support from the Polish Ministry of Education and the Polish
Committee for Scientific Research (KBN). The final version was written within a project
supported by the KBN grant no. 8T11A 006 14.
Partial results were presented and discussed during the seminars chaired respectively
by Prof. Ryszard Gessing and Prof. Antoni Niederlinski, both at the Silesian Technical
University, Gliwice; Prof. Alexander Weinmann at Vienna University of Technology; Prof.
Manfred Deistler in the Institute for Advanced Studies, Vienna; Prof. Tadeusz Kaczorek
at Warsaw University of Technology; Prof. Peter Roberts at the City University, London;
and Prof. Jozef Korbicz at the Technical University of Zielona Gdra. The author thanks 1 Introduction
them for providing this opportunity.
It is the author’s great pleasure to express a very special thank to Prof. Bozenna
Pasik-Duncan, Vice President of the IEEE Control Systems Society, for persistent en- 1 Deterministic Systems
couragement to scientific activity within CSS, and the CSS Board of Governors for pro-
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1. Introduction

Due to the advent of high speed low cost computational tools virtually every advanced
control system depends upon sampling, modulation and digital signal processing.

Sampling and modulation, however, cause information loss and as a result the per-
formance of sampled-data control systems is usually poorer than that of continuous-time
ones, particularly at small sampling rates. It is therefore reasonable to expect that in-
creasing the sampling rate should result in the continuous-time performance recovery.
Unfortunately, this may not be the case for certain classical designs when ’ringing’ of the
control signal leading to an unacceptable intersample ripple of the output is observed.

The classical purely discrete-time approach to sampled-data systems requires the
continuous-time plant to be discretized prior to controller design. This approach gave
rise to the so called discrete-time control systems theory defining the control task and
performance at discrete-time sampling instants. Although most frequently met in text-
books it overlooks the intersample behavior and is vulnerable to fail at high sampling
rates.

Design methods yielding controllers which have good properties for a wide range of
sampling periods and recover the continuous-time performance at high sampling rates are
highly desirable. The present work aims at contributing towards achieving this target.

There are two main sources of problems when using the discrete-time approach to a
lumped parameters system: (1) whatever the value of the relative degree of the continuous-
time plant, the relative degree of the discretized system equals generically to 1, and (2)
excessive zeros produced by the discretization process are either unstable or badly damped.

Zeros belong to fundamental characteristics of linear time-invariant systems. However,
while the mapping between the discrete-time poles and their continuous-time counterparts
is very simple, this is not the case with zeros, for which no general closed form expressions
exist. Therefore an extensive study of zeros of pulse transfer functions is performed in two
next chapters.

In particular, in Chapter 2 the famous Astrom-Hagander-Sternby theorem on limiting
zeros of the pulse transfer function of a system with the zero-order hold (ZOH) is extended
by determining the accuracy of the asymptotic results for both the discretization and the
intrinsic zeros when the sampling interval is small. Closed form formulae are derived that
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express both the degree of the principal term of the Taylor expansion of the difference
between the true zeros and asymptotic ones as a function of the relative degree of the
underlying continuous-time system, as well as the value of the corresponding coefficient
itself. Certain known results on asymptotic zeros are shown to be particular cases of the
result presented.

Similar approach is used in Chapter 3 to the analysis of limiting zeros of systems
with the first-order hold (FOH). In particular, the Hagiwara-Yuasa-Araki theorems on
limiting zeros of the pulse transfer function of sampled-data system with first-order hold
are extended by stating that limiting intrinsic zeros can be expressed as exponential
functions of continuous-time zeros, and by determining the accuracy of the asymptotic
results for both the discretization and the intrinsic zeros when the sampling interval is
small.

Most of the designs depend upon the relative degree of the continuous-time system, ei-
ther explicitly or implicitly. Unfortunately, this most important design parameter becomes
hidden once discretization is done and is not taken into account by purely discrete-time
design procedures. An associated effect is that discretization zeros often appear in the
characteristic polynomial of the closed loop system, which leads to badly damped con-
trol producing intersample ripple. Another possible effect is an impulsive behavior of the
control signal when the sampling period becomes small.

Negative effects of unstable discretization zeros and of the reduction of the relative
degree can be circumvented by using approximate pulse transfer functions discussed in
Chapter 4, where a systematic approach to a class of approximations to the pulse transfer
function of a system consisting of a zero-order hold and a linear continuous-time plant is
presented. It is based on the asymptotic results on zeros developed in Chapter 2, and on the
bilinear transformation. Superiority of the approximations considered over a ~-operator
based truncated approximation of Goodwin, Leal, Mayne, & Middleton (1984) is shown.
Since the number of intrinsic parameters does not change in the discretization process,
model matching control, robust control and identification are suggested as possible areas
of application. The results are illustrated by an example.

It is interesting to note that although the theory of discrete-time modeling of sampled
systems seems to be well developed certain important issue remained to be revisited.
In Chapter 5 discrete-time modeling is addressed when both a continuous-time plant
and a discrete-time controller have a feedthrough. It is pointed out that in this case
discrete-time models which can be found in most references and program packages should
not be used in the closed-loop context. A new state-space model appropriate for the
closed-loop modeling, and formulae for calculating the related discrete-time pulse transfer
functions are derived. Intersample phenomena are studied and the feasibility of that model
to describe systems with parasiting dynamics is emphasized. Examples from the literature
illustrate the relevance of the issue.

19

The so called hybrid approach which performs direct design taking the intersample
behavior into account is another remedy against bad intersample behavior. It has been
receiving increasing recognition for the last years but its main disadvantage is a great
mathematical and numerical load. Two simple approaches to the synthesis of a discrete-
time model reference controller for a continuous-time system are presented and compared
in Chapter 6. A model reference control task is defined in such manner that the output
is required to fulfill a predefined differential or difference equation, or to be close to its
solution while the overall closed-loop system is stable. The first, purely discrete approach,
bases on the discrete-time model of a dynamic system and on a discrete quadratic infinite
horizon performance index while the second is based on the continuous-time integral per-
formance index. When the sampling time tends to zero the control variable in the former
problem does not converge to its continuous time prototype whereas in the latter does.
The relative order of the continuous-time plant itself and a proper relationship between
the model and plant relative orders are detected to be crucial to avoid the impulsive
control signal behavior at high sampling rates.

Control systems usually work in the presence of external disturbances best modeled
by stochastic continuous-time processes.

In Chapter 7, which starts the second part of this work, models of sampling continuous-
time processes are discussed. As a result of sampling, discrete second-order random pro-
cesses described by linear time-invariant state-space models with a random vector driving
input are obtained. Equivalent representations with the number of noise inputs reduced
to one are found. In contrast to the innovations approach these representations have
time-invariant parameters. The relationship with ARMA models is presented and the
Representations Theorem is generalized to a class of nonstationary processes. The issue
of identification of continuous-time models is discussed.

The reduced models obtained in Chapter 7 form a basis for definition of stochastic
discrete-time control problems usually handled by LQG or predictive control philosophy.
In Chapter 8 a unified approach to the MV, LQG and GPC control problems based on the
input-output and state-space representations of Box-Jenkins models is presented. Its two
main advantages are: an integral action of the controller attained with a realistic station-
ary model of the disturbance, and a reduction of the computational complexity. Moreover,
it will be shown that Chandrasekhar equations improve the computational efficiency for
receding-horizon control problems as compared to the use of Riccati equations. The ap-
proach is also shown to be an efficient design method for the optimal infinite horizon
control systems.

Bearing in mind that the output of the controlled system is continuous-time, inter-
sample output characteristics are of primary importance to asses the control performance.
Chapter 9 deals with discrete-time control of continuous-time systems driven by ZOH with
pulse amplitude modulation and disturbed by a stationary Gaussian process with a ratio-
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nal spectral density. The algorithms considered have the form of a linear feedback from
the Kalman filter. We concentrate on inter-sample mean and variance of the input and
output to characterize the performance of the continuous-time system with discrete feed-
back. A methodology of calculation of these functions is developed. Some results of the
related works in the area are generalized and extended.

Part |

Deterministic Systems



2. Zeros of Systems with Zero-Order Hold

Zeros, along with poles, are fundamental characteristics of linear time-invariant systems.
While the mapping between the discrete-time poles and their continuous-time counter-
parts is very simple, this is not the case with zeros, for which no general closed form
expressions exist. Therefore, it is desirable to have formulae that relate all discrete-time
zeros with the continuous-time ones, at least approximately.

The famous Astrom-Hagander-Sternby theorem on limiting zeros of the pulse transfer
function is extended by determining the accuracy of the asymptotic results for both the
discretization and the intrinsic zeros when the sampling interval is small. Closed form
formulae are derived that express the degree of the principal term of Taylor expansion of
the difference between the true zeros and asymptotic ones as a function of the relative
degree of the underlying continuous-time system, and the value of the corresponding
coefficient itself. Certain known results on asymptotic zeros are shown to be particular
cases of the result presented. 1

2.1 Introduction

As far as limiting zeros at high sampling rates are concerned only a limited set of particular
results has been known to date.

Perhaps the first attempt to study zeros was that by Lindorff (1965), who conjectured
that the continuous-time zeros map to discrete-time ones approximately exponentially.

This is also stated in the AHS theorem of Astrom, Hagander & Sternby (1984), which
describes the asymptotic behavior of the discrete-time zeros for small h as functions of
their continuous-time counterparts, and of the relative order of the system being dis-
cretized. Due to this theorem, a part of zeros called intrinsic (Hagiwara, 1996; Hagiwara,
Yuasa & Araki, 1993) go to 1 while the remaining discretization (Hagiwara et al., 1993)
zeros, which are due to sampling and modulation, go towards zeros of certain polynomial
called Euler (Frobenius, 1910; Sobolev, 1977), normal (Kowalczuk, 1983) or reciprocal

"The chapter is based on (Blachuta, 1997f) and (Btachuta, 1998d)
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(Hagiwara et al., 1993; Jury, 1964) polynomial completely determined by the value of the
relative order of the continuous-time system.

The correspondence between the intrinsic zeros and continuous-time zeros was clarified
in a more precise manner in the HYA theorem by Hagiwara et al. (1993).

A study on intrinsic zeros based on the state-space description introduced by
Hayakawa, Hosoe & Ito (1983) has been presented in the recent paper of Hagiwara (1996)
with the outcome that the Taylor expansion of the zero coincides with that predicted by
the AHS theorem at least up to the second order term, in general, and up to the third
order term if the relative degree of the continuous-time system is greater than or equal
to two. Although being the hitherto most advanced extension to the AHS theorem, the
above result of Hagiwara (1996) is limited to single intrinsic zeros and its extension to
higher order coefficients of the Taylor expansion in an explicit compact form does not
seem to be simple within that framework.

Due to the dead-beat and MV pole-zero canceling control algorithms, see (Astrom &
Wittenmark, 1997; Clarke, 1984) and references therein, a great deal of work has been
devoted to determine conditions for stable zeros, e.g. (Astrom et al., 1984; Fu & Dumont,
1989; Hagander, 1993; Hagiwara, 1996; Hara, Katori & Kondo, 1989; Ishitobi, 1992), and
(Ishitobi, 1993).

This problem has become much less important in the purely discrete-time LQR con-
text (Astrom & Wittenmark, 1997, Chen & Francis, 1995) where unstable zeros do not
influence the closed loop stability but, as shown in Chapter 6 2, discretization zeros can
still lead to intersample ripple caused by controller ‘ringing’ if there is no control costing
in the performance index. Finally, with the advent of hybrid methods, (Chen & Fran-
cis, 1995) and references therein, the stability problem of discretization zeros has become
completely irrelevant (Btachuta, 19976) for the contemporary H2-norm (Chen & Francis,
1995) and LQR (Btachuta, 19976) optimal sampled-data control systems.

The aim of the chapter is to find how close limiting zeros are to actual intrinsic and
discretization ones, irrespective of whether they are stable or not. The approach used
could be referred to as an extension of that of (Astrom et al., 1984). The results will be
applied in Chapter 4 3 to investigate the accuracy of certain approximate pulse transfer
functions that base on limiting zeros or their Pade approximation.

The chapter is organized as follows. The formulation of the problem, the fundamental
lemmas, and the AHS theorem along with its alternative proof are presented in the prelim-
inary section 2.2. The main result is presented in section 2.3 and then the rapprochement
of some results of (Hagiwara et al., 1993) and (Hagiwara, 1996) with our result is shown
in section 2.4. The proofs of lemmas and theorems are collected in Appendix A.l and
conclusion is drawn in section 2.5.

2presented first in (Btachuta, 19976)
Xee also (Btachuta, 1997d)

2.2 Preliminaries
2.2 Preliminaries

2.2.1 Pulse transfer functions

Rational strictly proper continuous-time transfer functions G(s) with the relative order
k =n —m > 0 are considered of the form:

m m
E Ne n(s-a)

G(s) =" = 9k~ . 21
EOOtiSI F:_{s - ATI)

Assume that an”™ 0, @ = 0, and G(s) isoftype 1 >0, i.e. a0= ... Q/_i = 0Oand at™ 0.
Moreover, a unity gain, i.e. @ = 1 and (0 = 1 will be assumed for simplicity. Then

n—
a Fl (—)
k= — = (22)
tgl(- )

is the fc-th Markov parameter of (2.1).
Let H{z)be thepulsetransfer function of a series connection of azero-order hold

and a continuous-timesystem with the transfer function G(s), and let h be the sampling
period. Then the general form of H(z) is

H(z)A(l-z~DZ {"-}. 2.3)

H(z) has n - 1 zeros for almost every h, so that

1. _» -1
Elpiz3 " (@ - Zi)
H(z) = A (2.4)
iEOaIZ* irll(z - Pi)
with
Pi= enih 2.5)

and an = 1 A link between a continuous-time transfer functionG(s) and its discrete-time
counterpart H(z) is defined, e.g. (Ackermann, 1993), by the Poisson formula:

H{esh) = £ G{s +jlul°\ Ws = 2.6
tesh) h CEHITY s h (26)

Let us divide equation (2.6) into two parts:
H(es”) = Gh(s) + Ah(s), 27)
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where

Gh(s) = 1~ 8h S G(s) (2.8)
is the I = 0 term. From (2.6)-(2.8) we have lima 0Ah(s) = 0, which means that the
steady-state properties of H(esh) are the same as those of Gh(s) and only transients are

affected by Ah(s). For sh small enough Ah(s) is supposed to be small. This is specified
in Lemma 2.2.1 of subsection 2.2.4, which plays a crucial role in further argument.

2.2.2 HYA Theorem

The following theorem due to Hagiwara et al. (1993) clarifies the correspondence between
the zeros of G(s) and the intrinsic zeros of H{z).

Theorem 2.2.1 (Hagiwara, Yuasa & Araki, 1993). Let at be a zero of G(s) with
multiplicity fi. Suppose that S is a simply-connected bounded domain which includes a,
inside and has no other zeros of G(s) inside nor on its boundary. Then, there exist some
hs such that for every h satisfying 0 < h < hs, H(z) has fi zeros inside the domain

eSh esh\a€s (2.9)
Corollary 2.2.1. Denote zit i = 1,2... m the intrinsic zeros of H{z), which due to the
HYA theorem are related to the zeros  ofG(s), while =zm+i, i=1,2,... k - 1 denote

the discretization zeros.As a result of Theorem 2.2.1, forhsmallenough, H(z) admits
the following factorization:

m
Ek(z) 1l (z - Z)
H(z) = b= *-1=leeeee (2.10)
H (z - Pi)
t=1
with a polynomial Ek(z):
fc-i
Ek(z)= 1l(z-Ci). (2.11)
>

2.2.3 Euler polynomials

The polynomials £k(z), called Euler (Frobenius, 1910; Sobolev, 1977), normal (Kowalczuk,
1983) or reciprocal (Hagiwara et al., 1993; Jury, 1964), defined as

£k(z) = ejz*-1 + eRzk~2... + ek, (2.12)

with
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j=l \* 3)
or recursively, (Frobenius, 1910; Weller, Moran, Ninness & Pollington, 19976),
£i(z) = 1,
£1+1(z)

@+ 12)E(2) + z(1- z )"~ -, 1=1,2,... (2.14)

play an important role in the study of limiting discretization zeros. Due to (Frobenius,
1910; Sobolev, 1977) their roots Q are real, simple and negative for any k. If (' is a root
of £k{z) then 1/C' is also a root. Thus £*(-1) = 0 for even k. The zeros of polynomials
having progressively higher degree are interlaced on the negative real axis. Moreover,
the coefficients e* are symmetric positive integers for all i = 1...k, i.e. ef = e i+l for
i=1...q(k), where q(k) = \{k - 1) for k odd and g{k) = f - 1 for k even, and

Sb(l) = £ *2= (2-15)

St(z) fori = 1... 5are listed below:

£i(z) =1
£2(z) = z+1
£3(z) = 22+ 4z+ 1 (2.16)

54(z) = z3+ l1z2+ 11z + 1
£5(z) = z4 + 2623+ 66z2+26z + 1.

The Euler polynomials characterize the pulse transfer function of an integrator of arbitrary
order. Their feasibility to approximate any pulse transfer function for small h is specified
in Lemma 2.2.3.

2.2.4 Fundamental lemmas
Lemma 2.2.1. For any finite s £ C
Mce(a) = *«(*, s)hk+a + o(hk+a), (2-17)

where a = 1for k odd, a = 2 for k even, and

«*.») (2 18)
R m n
$Ak,s) = -7ikr'_l"_T23\\9ks[(k+ )s + IjE:1°i~ Ei\]. (2-19)

where Bk are the Bernoulli numbers.
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Remark 2.2.1. Bernoulli numbers obey the following recursive formula:
BO=1, 1+ (fc-1)Sfc-1=0" fc= 2,3,... (2-20)

There is B2+1 = 0 for Z> 0, Bas > 0 for | odd and B2 < 0 for | even (Edwards,

1974; Titchmarsh, 1986). The first nonzero values of Bk are: Si = — Bo = - BA=
301 46 — 22 e me : e
Remark 2.2.2. From Lemma 2.2.1 it follows that for finite s
[ini Ah(s) = 0, (2.21)
which in accordance with (2.7) implies H(es —G(s) as h —0.
Lemma 2.2.2. For 0, G(s) can be presented as follows
1/\12 9k  9k+1 [ 1 e .
G(s)~Jk+ AT+ °("TID), (2-22)
where
Om-1 On-1 N
9k+1= "5fC (- — - y=9% E ni~12 . (2-23)
p™ “% \i=i i=i /

Remark 2.2.3.From (2.23) it is seen that gk+i = 0 can bethe case. Then a better
resolution 0f(2.22) canbe attainedby taking the first nonzerohigher orderMarkov
parameter into account.

Lemma 2.2.3. For anyfinite z € Q z~ 1, H(z) admits the following expansion:
H(z) = ck(z)hk + ck+1(z)hk+l + Aff(z), (2.24)
where
AN = f(T=Ilji* i =k’k+1" AH(Z2) = °(hk+1) (2-25)
and gi is the i-th Markov parameter of G(s).
2.25 The AHS Theorem

The following famous theorem of Astrom et al. (1984), adapted to the notation used here,
gives a limiting relationship between the continuous-time and discrete-time zeros.

2.3 The Main Result 2

Theorem 2.2.2 (Astrom, Hagander & Sternby, 1984). Let G(s) in (2.1) be a
continuous-time transfer function and H(z) in (2.10) be the corresponding pulse transfer
function of a series connection of a zero-order hold and a continuous-time system. Then,
as the sampling period h —0,

(i) m zeros zt of H(z) go to 1 as eai\ and

(ii) the remaining k- 1 zeros Q of Ek{z) go to the zeros (" of the Euler polynomial £k(z).

Proof. From (2.24)-(2.25) it results that:

which proves item (ii) of the theorem. Due to (2.8), Gh(&i) = 0 for any h, and H(eai®) =
Ah(ai). According to (2.21), Ah(e°'h) -> 0 as h -> 0. For any other s £ au H(esh) ->
G(s) 0. Hence z' = ea”1is an asymptotic value of the zero z* This, together with

(2.26), proves item (i). H

Remark 2.2.4. Note that since the assertion of Remark 2.2.2 lacks in (Astrom et al.,
1984), the second part of item (i) has not been proved there; also compare (Hagiwara et
al., 1993) for what is recognized as the AHS Theorem. Another proof of Theorem 2.2.2

can be found in (Gessing, 1993).

2.3 The Main Result

Both the AHSandHYA theorems lack any estimate of how close z[{h) isto Zi(h). Theorem
2.3.1 addressesthis issue giving more insight into the characterization of pulse transfer

functions at high sampling rates.

Theorem 2.3.1. Let Oj denotes a zero of G(s) with multiplicity n, and 7K i = 1.. .n,
denote poles. Then under assumptions of Theorem 2.2.2:

0

(if) the intrinsic zeros Zj+i(h) of H(z) obey:

= gl/i* + o(hk) (2.27)

N(*»+i - e<7jh) = (- M0 “/ifcMQ+ o(hk+»+a) (2.28)

2=0

with a = 1for k odd and a = 2 for k even, and
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(in) for the remaining k —1 discretization zeros Q{h) there is: (b)

Ci(h) = G + fljh + o(h), (2.29)

where £k(cj) = 0forj = 1,2... k- 1, and

EG ET -
qO_ i=l gfc+i(Cj)
J At (c+-ljﬂ;gj1é\ﬁfc“)\ (2:30)
gl . Mk+Hi— "2 /o 31"
J  (A4-1\ GM((T)) {2-31)
Bl o /- m n ©
°3= (k+2)\9kGM(aj)" k + + 72'32)
Remark 2.3.1. DenoteJ = {j,j+1, -j+”" - 1} aset of integers indicating /i multiple
zeros, <j = gj+i ... = IO+*_1 Then there is

m

£ n (ffj - <)

GM"V;)=(d/*rcwu, =gk = - . (2.33)
0 {0 - M (d)

Corollary 2.3.1. Single intrinsic zeros Zj(h) of H{z) obey:

Zj(h) = eaih + e°hk+atl + o(hk+a+l) (2.34)
forj =1,2 with a = 1for k odd and a = 2 for k even, and
S» " <2-35>
d ran
e2=(tfi)i9G #INe ++g* ~g rF <%

2.4 Correspondence with Known Results

(a) Theorem 1 of (Hagiwara, 1996) stating that for a single intrinsiczeroZzj(h):

Zj(h) = 1+ Wh+ + (a+ 9L12G'(0j)) h*+ 0{h4) @ 37)

follows directly from (2.34), which in the particular case of k = 1 reads:

Zj(h) = eaih +gi A 40 (2.38)
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Let k = 2. Then from (2.30) it results that

1 m n
CW = -1+;‘(£I*-!>«I>*+<(*)- (2-39)

1= t=
Theorem 5 of (Hagiwara et al., 1993), which asserts that H(z) has a limiting dis-
cretization zero ( = —1 for k = 2, where the direction of approach is from the
inside of the unit disc if E"=i < E™| results directly from (2.39). It is clear

that (2.39) provides more insight into the limiting behavior of zero than the above
stability criterion of (Hagiwara et al., 1993).

It is known (Hagiwara, 1996) that the pulse transfer function H(z) for
G(s)= (s- p)(s- q)s- @M 7=H21 (2'40)
has an intrinsic zero 2\ = e™ 1and a discretization zero £1 = —  so that it must

be J?° = —7 and Q\ = 0. From (2.30) or (2.39) and (2.32) it is easy to check that
this is indeed the case.

A sampled-data system with the following plant:

"M-MMY i)

having a triple pole {td= #2= #3= —1) and - depending on timeconstants a and

b - none, one (ax - 1/a) ortwo (i = - Ya, 02= - 1 6)finite zeros is considered.
We then have
_ b,* +jHZ+ b, = (2.42)
v (z-e~h)3 (z- e~h)3

Depending on the relative order of G(s), one gets 3 different cases studied in detail
in what follows.

The case a = 0, b = 0: The relative order of (2.41) equals to 3 and (2.42) takes
the form:

H{z) = bZ(ZZz C-:I)e(—ZrTY r (2.43)
where, according to Theorem 2.3.1:
a=0GCa+ + o1(h), Q= Q+ "2" + 2W (2.44)

with:
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G =-(2- -n3), 122=-|(2 - V3) (2.45)

Q= -(2 + \/3), [2° = —8(2 + V3). (2.46)

The case a = 0, b= 0: The relative order of (2.41) equals to 2 and (2.42) takes
the form:

JTHA —h (2~ £1)(2 _ ZI n
O3 °2( (2_)é-h)'3—)' 5247)
where, according to Theorem 2.3.1: ¢
C =—1mm1 h{o\(h), ZA=¢ 4+ 02{h") (2.48)
with:
0_1-3a 2_ 1(1- a)3(3a- 4
3a "W “ 720 a® ' (2 49)

The case a0, 670: The relative order of (2.41) equalsto 1.Two subcases are
to be considered.

(a) different continuous-time zeros (a ™ 6)

The system in (2.42) has the following zeros:

Zl = e~h/a + fi\h3+ 01(h3), z2= e~h/b+ f2\hz + 02{h3) (2.50)

with:

pi 1 K1~a)3 pi 1 a(l ~fe)3 ,2.,n
1 12a3(a—6)’ 2 1263 —6) ( }
double continuous-time zero (a = b)
We have:

(zi - zj)(z2- 2j) = Q\h4+ o(hd) (2.52)

with:
z[ = e~hl/a, = (2.53)

Analytic expression for H{z) has been found in (Blachuta, 1997f)giving the following
values for the numerator coefficients of H(z) in (2.42):

b2 — 1 —[1+4-et\h (- oi2zh?\e ~ (2.54)
b\ = [2 -+ ot\h + a2h?*e "2 +oc\h—at2h?]e 20 (2.55)
60 = [1—ot\h + a2h?]e~2h —e~3h (2.56)

with
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1+ ab—a—b
a\=1—ah, ap= 2072 . (2.57)

Both zeros, zi and z2, can be found analytically, and the derivatives, 7, = 67(0),
of b2{h) with respect to h at h =0 are: 71 = ab, y2=a+b—3ab, 73= 1—3a -
36 -I- 6ab, 74 = —3 + 6a + 66 —IQafe. This yields: b2 = h3/6 + o(h3) ifa = b= 0,
b2 = ah2/2 + o(h2) if b = 0, and b2 = abh + o(h) when both a and b are nonzero.
Formulae (2.29) and (2.34)-(2.36) were checked on this example for k = 1,2,3 based
on exact zeros, the rule of de I’Hospital and symbolic computations.

2.5 Conclusion

A theorem has been proved that, for small sampling periods, characterizes the accuracy
of all limiting zeros of the pulse transfer function of a system composed of a zero-order
hold followed by a continuous-time plant.

The main result has a form of a correction to the asymptotic result of Astrom et al.
(1984) in the form of a power term of h, whose degree depends on the relative order of
the continuous-time counterpart and its contribution is expressed in terms of Bernoulli
numbers and the poles and zeros of the continuous-time transfer function.

The discussion is based on two fundamental lemmas. The first lemma yields two terms
of the Taylor series expansion of the pulse transfer function around h = 0 and the second
characterizes the magnitude of the difference between the exact pulse transfer function
and the principal term of its Poisson representation as a function of h.

Similar methods can be applied to study limiting zeros for pulse transfer functions of
systems with a first-order hold. This will be done in chapter 3.

One of possible applications of the result is investigation of the accuracy of approxi-
mate pulse-transfer functions. This issue will be discussed in chapter 4.
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The Hagiwara-Yuasa-Araki theorems on limiting zeros of the pulse transfer function of
sampled-data systems with first-order holds are extended by stating that limiting intrinsic
zeros can be expressed as exponential functions of continuous-time zeros, and by deter-
mining the accuracy of the asymptotic results for both the discretization and the intrinsic
zeros when the sampling interval is small. Closed form formulae are derived that express
both the degree of the principal term of Taylor expansion of the difference between the
true zeros and the limiting ones as a function of the relative degree of the underlying
continuous-time system and the value of the corresponding coefficient itself.

3.1 Introduction

The chapter 1 is concerned with the zeros of sampled-data systems resulting from
continuous-time systems preceded by a first-order hold (FOH) and followed by a sam-
pler. The main motivation for FOH is reduction of intersample ripple, particularly in the
steady state for a ramp-wise reference when the continuous-time plant is of Type 0.

As far as limiting zeros of sampled-data systems with zero-order hold (ZOH) at high
sampling rates are concerned, quite a large number of results are known to date (Astrom
et al., 1984; Blachuta, 1997f, Hagiwara, 1996; Hagiwara et al., 1993; Lindorff, 1965).

The main reference in the area of interest is (Hagiwara et al., 1993), where stress is
put on stability of limiting discretization zeros and (Weller, Moran, Ninness & Pollington,
1997a; Weller et al., 19976), where some conjectures stated in (Hagiwara et al., 1993) are
proved.

The aim of this chapter isto extend the methodology of chapter 2 to systems with FOH
in order to show that intrinsic zeros are related to continuous-time zeros approximately
exponentially, and to determine the accuracy of the asymptotic formulae of both intrinsic
and discretization zeros at high sampling rates.

1The material of this chapter is based on (Blachuta, 1997f) and (Blachuta, 1998d)
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The results can be applied to investigate the accuracy of certain approximate pulse
transfer functions that base on limiting zeros or their Pade approximation as it will be
done in Chapter 4.

The chapter is organized as follows. Known results on zeros are briefly surveyed in
section 3.2. Lemmas necessary for proofs of new theorems are collected in section 3.3 while
the theorems themselves are formulated in section 3.4. Proofs of lemmas and the main
theorem are collected in Appendix A.2. Conclusions are drawn in section 3.5.

3.2 Survey of Known Results

Rational strictly proper continuous-time transfer functions G(s) with the relative order
k =n —m > 0 are considered of the form:

E)PjSj ff (S—0i)
G(s) =" .~y = gKif - (3.1

5@8" Sl
Assume that an ™ 0, pm ~ 0, and G(s) is of Type I, | > 0, i.e. ao = m..a; ! = 0 and
Q ™ 0. Moreover, a unity gain, i.e. a; = 1and 00= 1will be assumed for simplicity. Then

n—
6 nE9

K=A"AT =" —oeeme (3-2)

is the k-th Markov parameter of (3.1).

3.2.1 Pulse Transfer Functions

Let H(z) be the pulse transfer function of a series connection of a first-order hold and a
continuous-time system with the transfer function G(s), and let h be the sampling period.
Then, according to Jury (1958) the general form of H(z) is

H(z) = (l-z-irZ {1£"G (s)}. (3.3)
For almost every sampling period h the pulse transfer function H(z) has n zeros. As a
result
EM fl(z-Z1)
H(z) = » — = b s (3.4)
zEa 4 @-A)
with pi = e7*h.
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3.2.2 Relevant Polynomials

Polynomials

Tk{z) =z tfz "
i=0

defined in terms of Euler polynomials (2.12)-(2.14) as
Tk{z) = ek+1(z) + (k+ 1){z - 1)Ek(2) (3.5)

play an important role in the study of limiting discretization zeros. Equivalent nonrecur-
sive definitions of £k(z), which are called Euler (Frobenius, 1910), normal (Kowalczuk,
1983) or reciprocal (Hagiwara et al., 1993) polynomials, can be found in (Astrom et al.,
1984; Btachuta, 1997fi Hagiwara et al., 1993; Jury, 1964) and (Kowalczuk, 1983).

The following is known about £k(z) and T k(z)\

(a) All roots £~ of £k(z) are single and negative real for any k, i.e. £i < ... < £fc-i < 0.
Furthermore, the roots of £k(z) interlace the roots ro f £k+\{z) on the negative real
axis, i.e. Ni < £i < M2 < £2< eee< &-1 <Vk<O0.

(b) All roots Q of Tk{z) are single and real for any k, i.e. Cl < ees < (c* Furthermore,
the ith smallest root of Tk{z) lies between the ith smallest root of £k(z) and the ith
smallest root of £k+i{z), i.e.

Vi<Ci<b6 'ee <Vk-1<Cfti< &-i<WK<0<a <L
(c) The largest root of Tk{z) approaches z = 1/e as k — 00, where e is the base of
natural logarithm.
(d) £k(z) are symmetrical, i.e. e* = gjLi+lfori = 1,..., k and the roots & of are pair-wise
reciprocal, i.e. £i£k-i = 1fori = 1,..., t—1.
(e) Foreven k, z = —1is a root of £k{z).

(f) For k = 2, £k(z) has a root on the unit disk and for k > 3 outside the closed unit
disk.

(9) For k > 2, Tk{z) has a root outside the closed unit disk.
(h) £k(1) = fd, JFR(l) = (fc+I)L

(i) %=k + 2.
Items (a)-(c) were conjectured in (Hagiwara et al., 1993) based on numerical evidence for
k up to 50. However, item (a), which due to (Hagiwara et al., 1993) implies (b), appeared
to be already known (Frobenius, 1910). Item (c) was proved in (Weller et al., 1997b) based
on the theory of Sobolev (1977).
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3.2.3 Theorems on Zeros of Systems with FOH

The following two theorems of (Hagiwara et al., 1993), adapted to the notation used here,
characterize limiting zeros of H(z) and, for small h, the correspondence between finite
continuous-time and discrete-time zeros.

Theorem 3.2.1.
MhmmH(z) = TK()  z(z- 1) ] (3.6)

This theorem suggests that the m limiting zeros approaching z = 1 correspond to the
continuous-time zeros and that the remaining k zeros approaching the roots of J-k(z) are
newly generated by discretization. The former zeros are called intrinsic zeros while the
latter discretization zeros.

For h finite but small enough, the correspondence between the intrinsic zeros and
continuous-time zeros is characterized by Theorem 3.2.2.

Theorem 3.2.2. Let <j be a zero of G(s) with multiplicity ji. Suppose that S is a simply-
connected bounded domain which includes Oi inside and has no other zeros of G(s) inside
nor on its boundary. Then, there exist some hs such thatfor every h satisfying 0 < h < h$,
H(z) has /x zeros inside the domain

eSh ._esh”s 3.7)
As a result, if 01 is a stable (respectively unstable) zero of G(s), then the corresponding

limiting zero of H(z) is also stable (respectively unstable).

3.3 Fundamental Lemmas

A link between a continuous-time transfer function G(s) and its discrete-time counterpart
H(z) is defined (Jury, 1964) by the formula:

zrpeshy (- g2 2o 14 CHUS M s ts 45 1) (3.8)

where us = 2ir/h.
Let us divide equation (3.8) into two parts:

H(esh) = Gh(s) + Ah(s), (3.9)

3.4 New Results 39

where

Gk(s) = {1+ Sh)*~3e~—  G(s) (3.10)

is the I = 0 term. From (3.8)-(3.10) we have lim.-o 2\h(s) = 0, which means that the
steady-state properties of H(es ) are the same as those of Gh(s) andonly transients are
affected by Ah(s). For shsmall enough Ah(s) is supposed to besmall. This is specified
in Lemma 3.3.1, which plays a crucial role in further argument.

Proofs of lemmas to follow are collected in Appendix A.l.

Lemma 3.3.1. For any finite s € C
Ah(s) = M ~s) h k+2 + o(hk+2), (3.11)

where a = 1 for k odd, a = 2 for k even,

= ~W+Tj'g‘s2
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and Bk+1l, Bk+2 are the Bernoulli numbers.

Lemma 3.3.2. For any finite z € €, z £ 0 and z » |, H{z) admits the following
expansion:
H{z) = ck(z)hk + ck+1(z)hk+1 + o(hk+l), (3.13)

where o
N=m £ r-i=kkH {m
and gi is the i-th Markov parameter of G(s).

Remark 3.3.1. Lemma 3.3.2 provides an immediate proof of Theorem 3.2.1as an alter-
native to that in (Hagiwara et al., 1993).

3.4 New Results

Similarly to the ZOH case (Hagiwara, 1996), a direct consequenceof Theorem 3.2.2 is that
for h small enough z[(h) = ea” is an approximation of the zerozx(h) which corresponds
to the continuous-time zero ol. The following theorem expresses the fact that z*h) is also

a limiting zero.

Theorem 3.4.1. Let o denotes afinite zero of G(s). Then z'*h) = es” is alimiting
intrinsic zero of H(z), i.e. limh_jo H\z[(h)\ = 0, if and only if Si = <7
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Proof of Theorem 3.4.1 Prom (3.9)-(3.11) it results that
firgyH (eSih) = G(Si). (3.15)

[
Theorem 3.4.1 allows to say that intrinsic zeros approach 1 as eGi’» . However, both

Theorem 3.2.2 and Theorem 3.4.1 lack any estimate of how close z[(h) is to Zi(h) for

small h. Theorem 3.4.2 addresses this issue giving more insight into the characterization
of discrete-time zeros at high sampling rates.

Theorem 3.4.2. Let ¢} denotes a finite zero of G(s) with multiplicity \i, and ni, i =
1...n, denote poles. Then:

()
k+ 2
bn = {k+1)\9khk + (3-16)

(i) the intrinsic zeros Zj+i(h) of H(z) obey:

- (zj+i ~ eai )= (-iy~le«hkt»+2+ o(hk+"+2) (3.17)
with a = 1 for k odd and a = 2 for k even, and
(in) for the remaining k discretization zeros Q{h) there is:
= g + ftjh + °(h), (3.18)
where Tk{Cj) = O forj = 1,2... k, and

no_ & &M -W C) (3.19)

i KR «s-id«3co
G

(3-20)

=WAILIKM rr (320

Remark 3.4.1. DenoteJ = {j,j + 1, ++-j+fx—I} a set of integers indicating /z multiple
zeros, Oj = aj+1... = Then there is

m
n (- <)

9 ®(vi) = (4grG(s)U , = gk- jPA : (3.22)
) & T
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Corollary 3.4.1. Single intrinsic zeros Zj(h) of H(z) obey:
Zj(h) = e®ih + G*“hk+3 + o{hk+3) (3.23)
forj —1,2...,m, witha = 1for k odd and a = 2 for k even, and
/-1 Bk+l Oj 2 Sfc+2 O
j~ (k+iy.~rG'j)  j~ {k+2)\9kG'(ajy ( }

3.5 Conclusion

Two theorems concerning zeros of sampled data systems with a first order hold at high
sampling rates have been proved. The first shows that the limiting intrinsic discrete-
time zeros are determined by exponential mappings of continuous-time zeros. The second
characterizes the accuracy of all limiting zeros including the discretization ones.

The proofs are based on two fundamental lemmas. The first characterizes the magni-
tude of the difference between the exact pulse transfer function and the principal term of
its infinite series representation as a function of h and the second yields two terms of the
Taylor series expansion of the pulse transfer function around h = 0.

Similarly to the ZOH case, the main result has the form of a correcting power term
in h added to the asymptotic zero, whose degree depends on the relative order of the
continuous-time counterpart and its contribution is expressed in terms of Bernoulli num-
bers and parameters of the continuous-time transfer function.

One of possible areas of application is investigation of the accuracy of approximate
pulse-transfer functions, similarly as it will be done in Chapter 4 for systems with ZOH.
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In this chapter :a systematic approach to a class of approximations to the pulse transfer
function of a system consisting of a zero-order hold and a linear continuous-time plant
is presented. It is based on the asymptotic result of Astrom, Hagander k. Sternby (1984)
on zeros of sampled systems at high sampling rates, and on the bilinear transformation.
Since the number of intrinsic parameters does not change in the discretization process,
model matching control, robust control and identification are suggested as possible areas
of application. Superiority of the approximations considered over a (5-operator based trun-
cated approximation of Goodwin, Leal, Mayne & Middleton (1986) is shown. The results
are illustrated by an example.

4.1 Introduction

The exact pulse transfer function of a sampled-data system consisting of a zero-order
hold (ZOH) and a continuous-time plant is easily calculated numerically or symbolically.
However, an important feature is that discrete-time parameters are complicated functions
of continuous-time parameters. This particularly concerns the numerator of the pulse
transfer function which depends on all continuous-time parameters.

Approximate pulse transfer functions are proposed that base on the notion of limiting
zeros (Astrom et al.,, 1984; Blachuta, 1997/; Hagiwara et al., 1993). Using the bilinear
transformation into the w variable domain, three further approximations are also deter-
mined which not only require much less computations but also offer additional structural
advantages. Since they are related more directly to the continuous-time parameters than
the exact ones, they not only contribute to better understanding of discrete-time parame-
ters but are also useful for system identification and control. Moreover, our approximations
are shown to be superior to the truncated approximate transfer function of (Goodwin et
al., 1986) obtained using *-operator (Middleton & Goodwin, 1990).

Standard discrete-time identification methods assume that the parameters to be es-
timated are independent. As the number of discrete-time parameters is usually greater

IrThe chapter is based on (Btachuta, 1997d) and (Btachuta, 1998a)
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than that of the underlying continuous-time system, the discrete-time model is over-
parametrized and the result of identification can be incorrect. This problem is easily
solved by using approximate transfer functions. Complicated relationships between the
parameters of continuous-time and discretized system make it difficult (Ackermann & Hu,
1991) to map the uncertainty between both domains. For certain approximations, relation-
ships between the parameters are linear. This greatly simplifies the robustness analysis of
sampled-data systems with uncertain physical parameters. Discretization zeros lying close
or outside the unit circle lead to a ’ringing’ or diverging control signal in sampled-data
exact model matching control systems. Due to structural properties of approximate pulse
transfer functions the problem of approximate model matching with perfect intersample
behavior is successfully solved within our framework.

The chapter is organized as follows. Section 4.2 formalizes the problem. In section 4.3,
an asymptotic pulse transfer function that results from the Astrom-Hagander-Sternby
theorem is presented. Based on a bilinear transformation, further approximations are
derived in section 4.4. Accuracy of the approximations considered is studied in section 4.5.
Links with digital approximations methods are shown in section 4.6. Computational issues
of the approximations based on bilinear transformation are presented in section 4.7. The
application of approximate pulse transfer functions to the model matching control, robust
control and toidentificationof both discrete- and continuous-time models is proposed in
section 4.8. Remarkson the ~-operator approach are presented in section 4.9. Theoretical
considerations are supported by a numerical example in section 4.10, and conclusions are
drawn in section 4.11.

4.2 Problem Formalization

Let G(s) be a rational continuous-time transfer function of Type I, | > 0:

m
- £ Ne
G(s) = iy
sas) g E Qi @)
1=
with degq (s) = n —I, deg/?(s) = m, and the relative order
k=n-—m >0, 4.2)

where it is assumed for simplicity that /2o/<*o = 1.
G(s) can also be expressed in the time constant and pole-zero forms:

m m
n (sTi+1) n (s - <7
G(s) = L — , (4.3)

s' irzll(sTi +1) s' n1 (s- 1)

4.3 Approximation Based on the A-H-S Theorem

m n—
wheregk=n n/ Il T =-.+¢-, &K= -T~
i=1 i= . .. .
The pul'se trarlls%‘er function H(z) for a system consisting of a ZOH and a continuous-
time plant with a transfer function G(s) has the form:

R4)
where deg>1(z) = n —I, degB(z) = n —1 for almost every h, and B(l)/A(l) = hl.
The following class of functions is studied:
() (z-DIA@Z) (z-1)U(z)’ ("

where the coefficients of B a{z) only depend on the coefficients of P(s), V(z) is a matching
polynomial which only depends on k and does not depend either on h or on the parameters
of G(s), deg”™(z) —n —I, degS(z) = n —1, degS0(z) = m, deg'P(z) = k —1. H{z) can
also be presented in the factorized form:

V{z) n (z- Zi)

H{z) = - &L , (4.6)
(z- 1) n (z-Pi)
2=1
where
n(- ri
bn-1= 4 = , (4.7)
n(l-Zi)
1=1
Pi = <p(ni), Zj = <p(erj),i=1...n—,j=1...m, and both ip(z) and V(z) differ depending

on the particular approximation chosen.
It is easy to check that for n> m, H(z) and H(z) have the same steady-state gain:

lim(~)'W (z) = lim( ~ ) IH(z) = lims'G(s) (4.8)
irrespective of the value of h.
It should be stressed that the strength of Tt(z) consists in its structure, where the

appropriate choice of the matching polynomial V(z) admits H{z) to be characterized by
the same number of parameters as G(s) while retaining the vital properties of H(z).

4.3 Approximation Based on the A-H-S Theorem

Based on the asymptotic result of Astrom et al. (1984), an approximation HO(z) of the
pulse transfer function H(z) is proposed in the form of:
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£k(z) n (*-*?)
No(*) = 6E_1— (4.9)
2=1
where
0 = m r° - hli=l
! (4.10)
nl £k(iy m g(l_ )

(4.11)

The polynomial £k(z), called Euler (Frobenius, 1910) or reciprocal (Hagiwara et al., 1993)
polynomial, is defined as:

£k(z) = ekzk~l + ekzk~2+ ... + ek. (4.12)
with the coefficients e?:
4 =+ {-in kfk+1,i= (4.13)
j=i \*~J,
According to (Probenius, 1910), £k(z) can be expressed as follows
i(k{ )
Y[(z- Q(z - C X, k-odd

£k(z) = g;iv | (4.14)
2+ 1)541(* - Ci)(*~a ). k-even

where q(k) = (k —1)/2 for k odd and q(k) = k/2 —1 for k even, and Q are single, real
and negative.

4.4 Further Approximations

An important feature of the w-plane domain,

— Htt- <415
is that the intrinsic zeros map to the positions close to the original continuous-time ones

while the discretization zeros map to positions on the negative real axis far away from the
origin. This suggests further approximations of HO(z). Define

GO(w) = HQEZ) | 24 (4.16)

4.4 Further Approximations 4

Prom (4.14) and (4.9) one gets

m

nw +1)
lerz(tth? +1)
.. . h > dN
W) = PiWPe(w), <GIW- 1- W, $2w) = n [1- Wew) ] (4-18)
and LN Bd+g? 0 hixJdf Q_ M1+ Q (4-19)

* 21— 21-22° 1 21 &
where i changes in the limits specified in (4.17). §0(w) can be interpreted as a represen-
tation of the ZOH. The form of (4.18) results from the fact that the zeros of £k(z) occur
in reciprocal pairs, (t and Cf1, which implies that the time constants of §2(w) also occur
in symmetrical pairs, and —g". Prom (4.10), (4.11) and (4.19) it results that

Tf=Ti+ 0(h2), T2=Ti+0{h2), = 0(h). (4.20)

The poles and m zeros of GO(w) converge to their continuous time counterparts, i.e.
Tf —Tj, t° —» Ti, and the remaining zeros go to infinity, i.e. w* —40, as h —» 0. As a
result Gglw) —» G(w) for finite w. Prom equations (4.17)-(4.19) it is seen that the effect
of usingoriginal time constants instead of T? and rf, and thatof omitting discretization
timeconstants w* are relatively small. As a result,the following furtherapproximations

are proposed:

/A
n [wTi+ 1)
GiM = <£0M -"h—-mmmemme (4-21)
wln (WTi + 1)
722—1
n (we? + 1)
G2(«0 = (4.22)
w'n Ne + 1)
2=1
[/
n (wti+ 1)
G3(w) = 0iH ~ ~i . (4-23)

wi _nI(WTi + 1)
1=
Transforming Gi(w), G2(w) and G3(w) back to the z-plane yields:
m
£k{z) n (z- <)

Hi{z) = b\_x *=| (4.24)
(z- ' U (z- pY
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Mk(z) U (z- zf)
Ne ) =buU A (4.25)
(z - 1)'tEII(z- Pi)

Mk(z) \r(nl(z- 7%
Hz(z) = & _i—--" ; (4.26)
(z-iyn(z-pl)

where z°, p° and c¢m are defined in (4.10)-(4.11), and

tI-
_2rah o« 2 A&Rhs-a 11(1—P%) A
PO T S—th ™ " T —m (4.27)
t=i 1
hl—r%hZ—K%]h?—rrn (A
-1 £k(ly 6'-1 MW -1 Ad(D) ( 3}
Newton binomials Afk(z) = (z + 1)fc 1 can be expanded to
Afk(z) = iffz*-1 + i/Ezk~2+ ... + (4.29)
with
of"ajfer- <43

An important feature of i/i(z) and H3(z) is that they can be obtained directly from
(4.1) by using the bilinear transformation without the need of calculating poles and zeros.
This issue isfurther discussed in sections 4.6 and 4.7. The polynomials£k(z) and Afk(z)
differ for k> 3. As a result, the numerators of H2(z) and H3(z) donotconverge to the

numerator of H(z) as h —0 when k > 3. Nevertheless, limh_0Hi(es") = G(s) for finite
sandall *=0,1,2,3.

4.5 Accuracy of Approximations

The accuracy of poles, zeros and frequency plots is the ultimate factor to asses the ap-
plicability of approximate pulse transfer function for control purposes. It has been shown
in Chapter 2 that for single intrinsic zeros Zj(/i), i = 1,2.. .m and discretization zeros

zmH(h), j = 1,2... k —1 there is:
Zi(h) - z°ifh) = 0(h*), zm+j(h) - 0 = 0(h), (4.31)

where k = k + 2 for k odd , k = k + 3 for k even. Since k > 3 for k odd and k > 5 for k

even, the accuracy of the asymptotic approximations of intrinsic zeros is quite high. This
contrasts with the accuracy of limiting discretization zeros.
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Consider r0(z) = HO(z)/H(z). As a result of (4.31), for k > 2 and finite u there is:
rO(e*h) =1+ 0(h) +jO(h2). (4.32)

The relative accuracy of further approximations can be studied based on the relative

values:
H.(z2) H,(2) H,(z2) H,(2)

rw=7 “ INMD)' 433
If we take into account that —p* = 0(h3) and zf —z* = 0(h3) then for finite w
ri(ejuh) =1 +jO (h2). (4.34)
Prom (4.14) and (4.24)-(4.26) there is

(4.35)

1l [2cos(uih) + 71]

«=

where 7*= —C*+ C-1)- This leads to:
r2(eM ) = 1+ 0{uh). (4.36)

As a result, as long as w belongs to the range of frequencies that are important for control
design and h is chosen according to the standard guidelines, both the Nyquist and Bode
plots of approximate pulse transfer functions Hi(z), i = 0,1,2,3 are close to the exact
ones, and for k > 2 the accuracy of further approximations is of the same order as that
of HO(z). Replacing £k(z) by Afk(z) only affects the relative magnitude of frequency plots
for higher values of u=and thus initial values of time responses.

4.6 Links with Digital Approximation Methods

Our approximations refer to sampled-data systems with a ZOH. In contrast to this, Tustin
transformation (Tustin, 1947) defining HT(2):

HT(z) = G(s) (4.37)

and the so called matched pole-zero method (MPZ) (Franklin, Powell & Workman, 1990)
defining Hmpz(z) are established techniques for discrete approximation of continuous-
time systems (Kowalczuk, 1993) performed e.g. to compute the time response of a
continuous-time system to a continuous-time excitation digitally. Since Ht(z) does not
account for a hold and the Nyquist plots of HT(z) and G(s) overlap for any h, it should
be stressed that unlike (Isermann, 1989), (Janiszowski, 1993) and other references HT(z)
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must not be regarded as an approximation of the transfer function H(z), see also (Gessing,

1995) for further interpretations. This is illuminated by examples in section 4.10. Similar

remarks apply to HMPZ(z). The relationships:

HT{z) = » H 3(2), HmpZ(z) = H2(z2) (4.38)

along with the discussion on H2(z) and H3(z) provide an additional insight into the Tustin
and MPZ digitization methods.

Ht(z) was used in (Sinha, 1972; Wymer, 1972) for identification of G(s) based on
sampled input and output data from a purely continuous-time system. A natural extension

ofthis idea to a ZOH driven sampled system leads to the use of Hi(z). This issue is further
discussed in section 4.8.

4.7 Computation of H1(z) and H3(z)

Denote

with /3* = ,a*= ai(\h)n 11land
A= (z-1)/(z+]1).
Then upon (4.37)-(4.38) //i(z) and H3(z) become:

» » » hn~m £k(z)C*(2)

{z) Ek(l)(z-iyA*(z) (440)
Afk{z)C'{z)
A4 (1)(z-1)M *(z)’ (4.41)
where:

m m
C*(z) = ;EZ%-Z< :i\__(O.P:(z - D*(z+ Dmi (4.42)
Anmz) = Z<zi=£ Q*z- 1Y(z + l)n-1-* (4.43)

i=0 =0

Coefficients of £k(z) and Mk(z) are determined respectively by (4.13) and (4.30). Algo-

rithms to perform calculations in (4.42)-(4.43) can be summarized as follows. Assume
that

QW =

t=0
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and
P(z) = YjViz1
i=0

are n-th degree polynomials related by

A 1A= (444

H o (z+ D™

where

p(z) = £ wt*=E ft(z- 1Y(z+ 1)"-, (4.45)

2=0 i=0

and denotep = \pn,..., p0]'and g = [gn,..., q0]. The problem of interest is: given q find p.
Efficient algorithms for a slightly different transformation A' = (z+1)/(z—1) are presented
in (Bose, 1983; Bush & Fielder, 1973; Davies, 1974; Ismail & Vakilazadian, 1989; Jury &
Chan, 1973; Power, 1967; Power, 1968; Scott, 1994). Four main approaches were developed.
The first and perhaps the most illustrative one, started by Power (Power, 1967; Power,
1968) and continued in (Bose, 1983; Bush & Fielder, 1973; Jury & Chan, 1973) is devoted
to the so called Q n-matrix, such that p = Qng. The mechanization ofthe transformation
(4.44)-(4.45) is then as follows: a) fill the first row of the (n+ 1) x (n+ 1) matrix Qn with
I's and b) the last column with the binomial coefficients 7/"+1 of (4.30), and c) calculate
the remaining entries from the known upper row and right column elements by using a

recurrence relation:
Qi+ij —QiH,j+H  9vj+i N 1 (4.46)

The first .three Q n-matrices are:

L " \ 1 1 1m
N 8 - 13 par
Qi= ;| iQz~ 2 9213 3 -1 -1 3 (4.47)
1 1
-1 1 -1 1

The second approach (Malvar, 1985; Parthasarathy & Jayasimha, 1984) is based on the
subdivision of the bilinear transformation into a sequence of elementary transformations
on q(s). Since s = —2/(z + 1) + 1, the algorithm below performs the transformation
(4.44)-(4.45) in the order indicated by the arrow:

q(s) -*az+ 1) »q{VViz+ 1) ->q(-2/z + 1) -» q((-2/(z + )+ 1) ->p(z).  (4.49)

The operations in (4.48) involve only a) scaling the magnitude of zeros, b) replacing the
zeros by their reciprocals, and c) shifting the zeros by real constants. The first two opera-
tions are trivial and for the third the so called synthetic division is used, whose algorithm
is presented in Fig.4.1. Ismail & Vakilazadian (1989) presented another approach based
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r(h=aq(l)
for j=1 to n+l
k=n+2-j

for i=2 to K r(i)=q(i)-r(i-1)
for i=2 to Kk qg(i)=r(i)

Fig. 4.1. Calculation of r(z) = q(z + 1) by the synthetic division; high order coefficients first

on the theory of continued fractions. Perhaps the most efficient is the recent algorithm of
Scott (1994), which bases on a recurrent formula for calculating successive derivatives of

certain polynomial. The algorithms in (Davies, 1974; Scott, 1994; Ismail k Vakilazadian,
1989) can also be applied to the general bilinear transformation A= (az+b)/(cz+d). The

most general algorithm for arbitrary polynomial transformation is presented in (Heinen
& Siddique, 1988).

4.8 Areas of Application

Model matching control, robust control and identification are the areas where benefits are
gained when using certain Hi(z).

4.8.1 Model matching control

Given a plant having a minimum-phase transfer function G(s) with relative order k, a
stable proper 1 DOF continuous-time controller

KA = G(I)INT(s) M'49N
can be found such that the transfer function of a stable unity feedback closed-loop system

equals to T(s) whose relative order is equal to k (Wolovich, 1994). Suppose that a discrete-
time controller

(4°50)
of (Isermann, 1989) is applied with T(z) being a step invariant transform of T(s) so that
at sampling instants the output of the closed loop system matches that of the continuous-
time one assuming a step-wise set-point. Unfortunately, for k > 2 discretization zeros
may lead to controller ringing’, unacceptable output ripple or even to unstable control.

Then the problem of approximate model matching with excellent intersample behavior is
successfully solved within our framework by choosing
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where Hi(z) and Tj(z) are the discrete-time counterparts of G(s) and T(s) for any
i =0,1,2,3. The point is that Ht(z) and Tj(z) share the same matching polynomial,
Sk(z) or A4(z), which cancels out from the controller transfer function. Similar remarks
apply to 2 DOF controllers (Ichikawa, 1985; Wolovich, 1994).

4.8.2 System identification

Denote Qc = [oi,..., an-b Po, **+>Pm]' a g8Cc = n + m —I| + 1 parameter vector of the
continuous-time transfer function G(s) of eq. (4.1) and 9d = [ai,..., an_(,bQ..., 6,_i] a
dOd = 2n - | parameter vector of the pulse transfer function H(z) of eq. (4.4), where

ABa > paBc. These two vectors are related by a non-linear relationship 6d = f(0c). Given
sampled measurements of the output of a continuous-time system driven by a ZOH, there
are two ways to identify sc and Qd\

(a) Determine 6d by means of any standard, e.g. (Isermann, 1989), parameter estimation
procedure. Then Bc= argmin\\6d- /(0 Q||.

(b) Apply a nonlinear estimation procedure, e.g. (Maine & Iliff, 1981), to find Bcdirectly
from data. Then 0d is calculated from 0d= (0 c).

Unfortunately, ifm < n—21then usually Wod—/(0 Q|| ® 0in (a), e.g. (S6derstrém, 1991),
while the procedure in (b) is both complex and time-consuming. This issue is greatly
simplified by using the concept of approximate pulse transfer functions. Denote g a forward
shift operator, and filtered variables x(i) = (q —1)ly(i), and v(i) = V(q)u(i). Then the
following equation with a possible stochastic disturbance e(i) gives rise to estimation of
n +m —I+ 1 unknown parameters 6°d of the polynomials A(z) and Bq(z):

A{a)x(i) = BO(q)v(i) + e(i). (4.52)

The estimates A(z) and BQz) obtained this way can either be used as a final result or they
can be transformed to the continuous-time domain e.g. by the relationship Bc= Qn B,
or eventually Bc may serve as a starting point to a nonlinear estimation procedure in (b).
Statistical properties of estimators can be analyzed similarly as it was done in (Wymer,
1972). It should be stressed that the methods of continuous-time system identification that
base on orthogonal functions or Poisson moment functionals described in (Unbehauen &
Rao, 1987) and (Sinha & Rao, 1991) also identify the continuous-time parameters directly
but they require either continuous-time signals or their dense samples, and the identified
system is not driven by a hold.
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4.8.3 Robust control

For the relationships between 9Cand Ogare linear in the case of H\(z) and H3(z), they are
particularly suited to map the uncertainty of parameters, e.g. those obtained as estimated
confidence intervals, from the continuous-time domain to the discrete-time domain and
vice versa, compare (Janiszowski, 1993). This greatly simplifies the robustness analysis of
uncertain systems (Ackermann & Hu, 1991).

4.9 Remarks on the Truncated Approximation

The ~-operator, defined as
6x.= Xi+>-x"\ (4.53)

has been used in (Goodwin et al., 1986) to arrive at an approximate transfer function that
provides a rapprochement between continuous-time and discrete-time transfer functions
in such sense that they have the same relative orders and thus the same numbers of zeros.
These features were then used for identification and model reference control. Denote
7 = (z—I1)/h a complex variable related to the (5-operator. Then

G w) H\z) Iz=7/i+i 7<ay7) (4.54)
with

as(j) = 7"+ QN 17" 1+ eem+ (g (4-55)

#(7) = €,-i7n-1 + eee+ W i7 m+l (4.56)

#(7) = /& Tm+ -mm+ $e (4-57)

Since there is af —a*, e\ —0 and Pf —/3*as h —0, where a, and pt are the coefficients
of q(s) and P(s) of G(s) of equation (4.1), this gave rise in (Goodwin et al., 1986) to the
truncated approximation G>(7) of Gs(7):

(4-58)

with the polynomial /?*(7) simply ignored. Reference (Leon de la Barra, 1997) suggests
that this procedure leads to the undesired phase lag, which is explained as the effect
of neglecting the discretization zeros of G (7), whose direct analysis in the (5-operator
domaincan be found in (Tesfaye & Tomizuka, 1995; Weller, 1998).

Forit is difficult to study the accuracy of Gf(7), considerthe mapping Gq(7) =
Ho(z) R=7/k!e

4.10 Example %5

m
£6( h) n (t7/ + 1)
CS(7) = cTtti! Fee (4.59)
EE() yn (7™ + 1)
with ”
?r(1)(Wj7+ 1)(0<7+ 1)
S) (4.60)
£k(1) (Th+2) fl W7 + 1)(6i7 + 1),

where the first row is for odd k and the second for even k, and

ps _ A s h a Ko (a cil

N~1-P 4 1-z,0° 1-Ci” 1-6" ( 3
where i changes in the limits specified in (4.59). It is easy to check that
1?2 = Ti+0(h), r/ =n +0(h), we= 0(h), 9, = 0(h). (4.62)

Although the convergence of the time constants in (4.62) is slower than of those in (4.20),
a natural and tractable approximation G\(7) closely related to that of (4.58) and fulfilling
the aformentioned conditions of rapprochement is obtained for h small by neglecting the
discretization zeros, i.e. replacing £k(*h) by £%40). H[(z), the z-plane counterpart of G[(7)
and Kf(w), its w-plane counterpart, have then the forms:

n(z-z°)
Hi(z) = ¢n i=L— (4.63)
(z—I)ll.lel(z—Pi)
u fl (WT° + 1)

T-w-)k- N e (4.64)
wl irll (wT? + 1)

K((w)

with defined in (4.10). The matching polynomials £k(z) or Afk(z) disappear in Hf(z),
which results in an excessive phase lag for k > 1 and thus in poorer accuracy of H{(z).
This is easily seen in Kf(w) and illustrated in the next section.

4.10 Example
A sampled-data system is considered consisting of a ZOH and a continuous-time part
with the transfer function G(s),

«5
(s+ 1)3 (%)
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Nyquist plots depicted in Fig.4.2 - Fig.4.4 for the range of frequencies important for
control design show that for h = 0.4 there is little to choose between H(z) (heavy solid
line) and any of H”z), i = 0,1,2,3 (light lines) as opposite to the Nyquist plot of H((z)
(heavy dotted line), which except for k = 1 deviates strongly from that of H(z). The
same applies for any k to the Nyquist plots of G(s) and Ht (z) (heavy dash-dotted line).

Fig. 4.2. Nyquist plots for K = ,a=0,6 =0 (k = 3)

Fig. 4.3. Nyquist plots for K = 1,a=03,b=0 (k= 2)

For h < 0.2 the Nyquist plots of the true pulse transfer function and those of the
approximations Hi(z), i = 0,1,2,3 are hard to distinguish. In Fig.4.5 - Fig.4.6 output
and control signals from the exact (based on H(z)) and approximate (based on H3(z) =
H\(z)) sampled-data model matching control systems are displayed for h = 0.4 (heavy
lines) and compared with those of a continuous-time control system (light lines) with
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Fig. 4.4. Nyquist plots for K = 1,a=0.3,b=0.25 (k= 1)

K =5a=0.3,6 =0 and

T(8) =
®) $24-\/2s + 2

For a > 1/3 the exact model matching control system becomes stable, which is predicted
by discretization zero stability results of (Blachuta, 1997/, Hagiwara et al., 1993). The
results for H2{z) = HO(z) are similar to those of Fig.4.6. The truncated approximation
(4.58) leads to an unstable system when h = 0.4.

Fig. 4.5. Exact model matching: K = 5,a= 0.3,b= 0, H(2)
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Fig. 4.6. Approximate model matching: K = 5,a = 0.3,6 = 0,

411 Conclusion

The approximate pulse transfer functions derived here exhibit several important features.
Because of their structure, they appear to be useful for identification of sampled-data
systems and to deliver estimates of both discrete-time and continuous-time parameters.
They also offer advantages in the theory of model matching and robust control. The
accuracy of our approximations have been shown to be superior to those based on the
J-operator presented in (Goodwin et al., 1986).

5. Sampling Systems with Feedthrough

Discrete-time models of sampled-data control systems are addressed when both a
continuous-time plant and a discrete-time controller have a feedthrough. 1 It is pointed
out that in this case discrete-time models which can be found in most references should
not be used in the closed-loop context. A new state-space model appropriate for the
closed-loop modeling, and formulae for calculating the related discrete-time pulse trans-
fer functions are derived. Intersample phenomena are studied and the feasibility of that
model to describe systems with parasiting dynamics is emphasized. Examples from the
literature illustrate the relevance of the issue.

5.1 Introduction

A model of a classical sampled-data control system as presented in Fig. 5.1 is considered .
It consists of a single-input single-output linear continuous-time plant, a zero-order hold,
two switches and a discrete-time control algorithm. A sampling instant at which the
reading of the output is performed is denoted t\, and t’lis a modulation instant at which
the control signal changes its value.

The normal situation, depicted in Fig. 5.1, is when sampling takes place prior to
modulation t\ < t™

Synchronous sampling is considered here, where t™ — = ih. This means that
the processing time r (necessary for A/D conversion, computation of control and D/A
conversion), which can be modeled by a delayed action of the second switch, is assumed
to be negligible compared with the sampling period h.

The operation pattern of the digital closed-loop sampled-data control is then as fol-
lows. The value of the discrete-time control is calculated based on the present sample of
the output and possibly some previous values of discrete-time signals. The hold device
converts the discrete-time control signal into a discontinuous analog one, driving the plant
between the sampling instants. The output of the controlled plant, whether continuous
or not, is then sampled not earlier than at the next sampling instant.

1The chapter is based on (Btachuta, 1997¢; Btachuta, 1997¢g) and (Btachuta, 1999a)
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Fig. 5.1. Block diagram of a sampled-data control system, t\ = ih, ttM=ih +r

Practical instrumentation of this scheme involving elements of data conversion hard-
ware, and microprocessor implementation of digital control strategies can be found in
many text-books, e.g. (Forsythe k Goodall, 1991; Houpis k Lamont, 1985; Jacquot,
1994; Williamson, 1991).

In (Kucera, 1991; Kwakernaak k Sivan, 1972) models of sampled systems are intro-
duced which, in contrast to the situation depicted in Fig. 5.1, base on the reversed order
of events where updating of control precedes output reading. This is in discrepancy with
practical solutions and can lead to serious problems discussed further.

A general case when the model of a system to be controlled is allowed to have a direct
coupling between input and output is addressed. Such system can be seen as a model in
which some parasitic dynamics have been neglected for simplification. If there is a zero-
order hold and a feedthrough is present then the controlled variable is discontinuous at
the sampling instants. This can be referred to as a simplified mathematical model of a
physical system whose continuous-time output changes rapidly in response to a jump in
control.

A survey of both classical and modern literature shows that this particular but im-
portant point is usually missing or solved incorrectly.

In almost all references that admit discontinuous output, the actual samples are as-
signed to the right side limits of the output signal at sampling instants. This was recog-
nized as a convention in (Ackermann, 1985) and leads to open loop models called here
V+.

In (Ackermann, 1985; Dahleh k Diaz-Bobillo, 1995; Franklin et al., 1990; Jacquot,
1994; Saberi, Sannuti k Chen, 1995) the authors make an assumption that there is no
direct coupling between input and output of the plant. The results are therefore correct but
the problem considered here is not solved. In other references (Astrom et al., 1984; Astrom
k Wittenmark, 1997; Houpis k Lamont, 1985; Isermann, 1989; Jury, 1958; Kwakernaak
k Sivan, 1972; Ogata, 1987; Santina, Stubberud k Hostetter, 1994) a direct transmission
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in the continuous-time plant is admitted and their results will become incorrect when the
feedback loop is closed.

The aim of the chapter is: (a) to show that the closed loop models M.+ constructed
formally from a discrete-time controller with a feedthrough and T>+are not able to describe
any sampled-data feedback system, (b) to advocate discrete-time models V~ and M~
related to the left side sampling, claimed to be feasible for the closed-loop modeling of
sampled-data control systems with feedthrough, and (c) to compare the properties of V~
and V +.

It should be noted that in (Williamson, 1991) skewed sampling models can be found
which simplify to V~. A model having the same structure as V~ also emerged in (Es-
fandiari k Khalil, 1989) in the context of the robust stability of singularly perturbed
systems.

The chapter is organized as follows. The main result is presented in section 5.2. In
section 5.3 the discrete-time model derived in section 5.2 is shown to be a limit of a
commonly used discrete-time model of a continuous-time system without any feedthrough
whose parameters change so as to approach a system with a feedthrough. Then the input-
output models are derived in section 5.4 with emphasis put on modified pulse transfer
functions and their use for the closed-loop modeling. The approach in which a system with
the hold element absorbed in the continuous-time part is fed by Dirac impulses is presented
in section 5.5, where also some pioneering results in the area (Kuzin, 1962; Tsypkin,
1958; Wegrzyn, 1960; Wegrzyn, 1963, 1970, 1980) and recent paper (Gessing, 1996) are
briefly surveyed. Conclusions are drawn in section 5.6.

5.2 The Proposed Model

5.2.1 Preliminaries

The plant is described by the following set of state-space equations:

x(t) = Ax(t) + bu(t) (5.1)
y(t) = c!x(t) + du(t) (5.2)

or by the transfer function G(s):
G(s) = c\sl —A) Ib+ d= GO(s) + G(00). (5-3)

Here A is an n x n matrix, b and ¢ are vectors and d is a scalar. G(s) is a rational
function in the variable s and, assuming the system (5.1)-(5.2) to be both controllable
and observable, the degrees of the numerator and the denominator polynomials are to
and n, respectively, with m <n.
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The discrete-time control algorithm considered is of the form:

Xi+i = Fexe+ ge(ri - Vi) (5.4)
Ui = ccx1 + dc(ri - T), (5.5)
where i denotes the i-th sampling instant, i = 0,1,2. . the controller state x\ is a discrete-

time state vector of dimension nc, r{is a reference, yt is a sample of the output at £t = ih,
and matrix Fc and vectors gc,cc are of appropriate dimensions. The feedthrough term

dc is assumed to be nonzero. Equations (5.4)-(5.5) cover all classical digital controllers
including the proportional one.

5.2.2 Sampling and causality

Since the output u(t) from the zero-order hold is discontinuous at tit the output y(t) is
also discontinuous at ~ if d ~ 0. Both the left-side and the right-side limits: y(t~) =
limE 0y{ih —e) and y (tf) = lime_Oy(ih + €), e > 0 are well defined and, due to (5.2) and
continuity of the state vector x(f), there is:

y(t~)
y(tf)

where (5.6) expresses the response to the control signal Uj_i and (5.7) to u{.

For a normal chronology sampler, equation (5.6) is the sampling equation with y(t~)
being a cause and y (tf) an effect of the control Ui calculated from (5.5) based on y{= y(t~).

In reversed chronology, (Kucera, 1991; Kwakernaak k Sivan, 1972), equation (5.7) is
referred to as a sampling equation with u, being the cause and y* = y(t+) an effect.

Using (5.7) together with (5.4)-(5.5) requires that an algebraic loop is solved. This
is not possible in real time. Obviously, at least a one-step delay in the controller is then
required for causality, which implies that equation (5.7) can be tentatively used as a
possible sampling equation only if there is no feedthrough in the controller, i.e. when
dc = 0 in (5.5). This is not the case in (Houpis k Lamont, 1985; Kwakernaak k Sivan,
1972), where noncausal configurations of the closed-loop system can be found.

cIx(ti) + du(t~) (5.6)
dx(ti) + du{tf), (.7)

5.2.3 The classical model T>+

In the literature (Ackermann, 1985; Astrom k Wittenmark, 1997; Franklin et al., 1990;
Houpis k Lamont, 1985; Isermann, 1989; Ogata, 1987; Phillips k Nagle, 1990; Santina et
al.,, 1994; Williamson, 1991), the following set of equations:

Xj+i —F Xi + QM (5.8)
2i = dxi + duu (5.9)
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where
F=c¢e g = J e vbdv (5.10)
o

based on (5.7), is usually referred to as a discrete-time state-space model, say P +, of
(5.1)-(5.2). The associated formula

H+@) =@1- z-1)Z {*} (5.11)

is commonly used (Ackermann, 1985; Astrom et al., 1984; Astrom & Wittenmark, 1997;
Forsythe k Goodall, 1991; Franklin et al., 1990; Isermann, 1989; Jacquot, 1994; Jury,
1958; Kuo, 1970; Ogata, 1987; Phillips k Nagle, 1990; Santina et al., 1994; Williamson,
1991) for the calculation of the pulse transfer function H(z). Here Z{G (s)/s} denotes the
Z transform of the sequence gi(ih),i = 0,1,2..., where g\(t) = £ _1[G(s)/s] is the plant
step response.

The models V+ and H+(z) are also present in the popular CACSD packages (CC,
MATLAB, MATRIX*), where they appear as a result of the convert’, ’c2d’ or ’c2dm’
commands when an option of the step invariant transform is chosen.

5.2.4 The new model X>~

It is important to notice that because of violating the causality V + must not be used to
model the sampled-data system of Fig. 5.1. Moreover, it will be shown that due to its
high sensitivity to anyparasiting dynamics, the normalchronology ofsampling and the
resulting model V~are superiorto those with a reversedchronology even if a strictly

proper controller is applied.
Based on the sampling equation (5.6), the discrete-time model, say T> , of the system

(D-(2) with a zero-order hold has the form:

®i+l = Fxi + gui (5.12)
2i = c¢'xi + dui-i. (5.13)

The transfer function H~(z) that results from (5.12)-(5.13) is
H-(z) = (I-2~D)(Z{"}-G (00)). (5.14)

Formula (5.14) can also be written in an equivalent form in which G(oo0) is replaced by
the initial value, 51(0+), of the plant step response 31(f). The passage from (5.12)-(5.13)

to (5.14) is shown in section IV A.
The difference between the closed loop models M~ and M + that base on D and

V + respectively is shown in the following example.
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Example 5.2.1. The step response of two models M ~ and M +ofa sampled-data control

system with a proportional digital controller with A= 2, h = 0.5 that base on

G(s) iy 02 (5.15)
0.2

H-@) = 4 (5.16)

HH@) = - 02 (5.17)

is depicted in Fig. 5.2 and compared with-the actual solution. It is clear that the output
from _M+ differs greatly from the actual output.

_Jt 1 2 1 | | 1
0 0.5 1 15 2 25 3

Fig.5.2. M~ (circles), M + (asterisks), and analog simulation (line)

5.2.5 Remarks on discrete systems

Equations of type (5.8)-(5.9) are often met in the framework of a purely discrete argument
which does not necessarily represent time in the strict physical sense, so that the causal-
ity is not violated. Closed-loop discrete-time systems are mathematically well defined if
the well-posedness conditions (Dahleh h Diaz-Bobillo, 1995; Saberi et al., 1995) are ful-
filled. This is, however, a different issue and the requirement that the control action does
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not influence the measurement from which it was calculated is inherent to any realistic
sampled-data control system (Ackermann, 1985; Kucera, 1991).

One example of a purely discrete-time system is a discrete-time approximation (Kowal-
czuk, 1993) of a continuous-time system performed for the sake of digital computations
and/or simulations. Then equations of the form (5.8)-(5.9) together with (5.4)-(5.5) imply
that an algebraic loop is to be solved iteratively for ut at each i. where i denotes a step
of a recursive procedure rather than a sampling instant.

Algebraic loops can easily be eliminated by a simple transformation of the equations
involved. Then in the particular case of the so called step invariant transform (Williamson,
1991), from (5.8)-(5.9) the following discrete-time equation:

“ [i7- ifd -+ TTd°T- (us)

results for a continuous-time closed-loop system consisting of a plant (5.1)-(5.2) and a
unity feedback. The well-posedness condition in this case is d ~ —1. Although claimed
in (Houpis & Lamont, 1985) to be a model of a sampled-data system, M + in (5.18)
obviously does not describe any sampled system, and for a sampled-data system with a
unity feedback a correct model M r is:

®;+i = [F'-g'c"}x'i +g'ri (5.19)

with )i = c*'x*, x* =[x\, itj-i]*, F *= diag {F, 0}, g* = \g\ 1]", ¢* = [c',d]". Note that
the system in (5.19) is always well posed.

It is interesting to note that algebraic loop solving is performed in the simulation
package SIMULINK even for systems with a zero-order hold. This makes simulation of
sampled data systems with feedthrough incorrect.

5.3 State-Space Models and Intersample Phenomena

In this section, it will be shown that for V~ sampling commutes with limit operations
that convert a regular system into the one with a feedthrough. This property is essential
for modeling and discretizing systems with parasitic dynamics using simplified models
with a feedthrough.

5.3.1 Systems with negligible dynamics

Let the system of equations of type (5.1)-(5.2) with d = 0 be transformed to the following
Jordan form:
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X\(t) = J\Xi{t) --biu(t) (5.20)
x2(t) = J 2 2(t) + b2u(t) (5-21)
y(t) = c[xi(t) + c™x2(t), (5.22)

where dirnxj = m, dimx2 = n2; Ji and J2 are quasi-diagonal Jordan matrices with
the eigenvalues arranged with increasing moduli and n\ + n2 = n. Let the second sub-
system be fast compared with the first one, and the eigenvalues A2, obey Re\ X < 0 for
i =1,2,...n2 Define A= min, |ReA2i|, i = 1 ,2 .n2. Then for A large enough, when
neglecting the transients of x 2(t), the second subsystem can be considered to be algebraic
and the following approximation of (5.20)-(5.22) holds:

+i(t) = JiXi(t) + biu(t) (5.23)
y(t) « c[xi(t) + d2u(t) (5.24)

with d2= —d2J 21b2. It has been shown in (Esfandiari & Khalil, 1989) that the following
system:

XM+ = FiXij + gxu{ (5.25)
U« cixM+ d2Ui_i (5.26)

with
el '\ 9l l£neJIVb\dv (5.27)

approximates a discrete-time version of the model in (5.20)-(5.22). After dropping the
subscript 1, the above system is equivalent to the model V~ of (5.12)-(5.13). Model
(5.25)-(5.26) was identified in (Esfandiari & Khalil, 1989) as the one which assures robust
stability of a closed-loop system with negligible unmodeled dynamics. This result has a
very simple and natural input-output interpretation presented in section 5.4.2.

The effect of a proper choice between both transfer functions H+and H~ on a simple
closed loop system with negligible dynamics is studied in the following example.

Example 5.3.1. Consider a linear system with the transfer functions
Ga(s) = Ha(z) = — d= e~ah. 5.28
=, , H@=— (5.28)

For a control system comprising a proportional digital controller with gain k, a zero-

order hold and a plant as in (5.28), the characteristic polynomial p(z) and the range of
stabilizing k are:

p(z) =z —d+ fc(l —d), d<k< 71—% (5.29)

Any value 0 < d < 1 can be inserted into the relations in (5.29). For d = 0 one gets
H(z) = z~\ and:
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p (2)=z+k —1<k<l (5.30)

It is clear that for a large enough the expressions in (5.30) can be regarded as good

approximations of that in (5.29). When using H(z) = 1, which results from formula
(5.11), one gets

p+(z) = 1+ k. (5.31)

Now, from (5.31) one could infer that there are no transients in the control process and
that tracking could be performed arbitrary exactly by choosing k large enough. This
contradicts (5.30) from which it follows that for k > 1 the system becomes unstable. This
supports the claim that H~(z) should be used for the closed loop modeling instead of

H+(2).
Observe that letting a —00 in (5.28) results in
Gas) - C"S) =1
and
Ha(z) » H"Z) = Z~\
It is claimed in (Astrom & Wittenmark, 1997) that Hoc(z) is not the pulse transfer function
of Goo(s), which according to this reference should be Hx (z) = 1. This led Astrom &

Wittenmark (1997) to the conclusion that sampling and limit operations do not commute
for (5.28). This conclusion is not correct. Indeed, when using H~(z) sampling commutes

with limit operation.

5.3.2 Model with negligible delay

The influence of the processing time on the loop behavior can be modeled by a continuous
time-delay r in the control variable:

x(t)
y(t)

Assume that the time delay r is less than the sampling period h. Then (Astrom & Wit-
tenmark, 1997) the following set of equations:

Ax(t) + bu(t - t) (5.32)
¢'x(t) + du(t —r). (5.33)

Xi+l = Fxi + gOUi + giUi-i (5.34)
jli = ¢'xi + dui-1 (5.35)

is a discrete-time model of (5.32)-(5.33), where
F = eAh, g0= J[k~TeAvbdv, 9l = eA™h ~T) Jf eAvbdv. (5.36)
0 o

From equations (5.36) and (5.10) we have g0 —»g and gx—>0 as r —0. Hence equations
(5.34)-(5.35) take in limit the form of (5.12)-(5.13) defining V~.
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5.3.3 Values in between sampling

Intersample values, i.e. values for t = ih + ah, 0 < a < 1, of the output signal can

be obtained by the following modification (Astrom & Wittenmark, 1997) of the output
equation:

y{ih + ah) = c*(ct)®» + dn{a)uu (5.37)

where
c*(cr)' = c'eAah (5.38)
d*{a) = d+c'j* eAvhdv. (5.39)

When substituting a -> 0 into (5.37)-(5.39) model V + is obtained. However, when there
are any unmodeled dynamics in the system then the output of the original system is

continuous, y(ih+) = y(ih~), which means that for small a equation (5.37) may model
the output incorrectly. For a = 1 one gets:

2t+i = c'Fxi + (d+ c'g)ui = c¢'xi+l + duh (5.40)

which is consistent with (Williamson, 1991) and again leads to V~.

5.4 Input-Output Models
5.4.1 Transfer functions

Observe that from (5.12)-(5.13) the transfer function H(z) can be expressed as follows
H(z) = ¢'{zl - F)~lg + dz~l= HO(z) + G(o0)z~I. (5.41)
Denote Xi(t) the step response of the system(l) with the zeroinitial condition and

9°(t) = ¢'XI(t) = C~1[GO(s)/s]. Then

gnhih) = ¢! flkeAvbdv =cl£ Fjg=c'{l - i*")(J - F)~lg. (5.42)
Jo j=o0

Now, after performing some calculations, the following formula results:
HO(z) = (1 - (5:43)
On the other hand
(L-2z-"Z"AC-1"-}} = HO(z) + G(00). (5.44)

Finally, comparing (5.44) with (5.41) yields (5.14).

5.4 Input-Output Models 69

5.4.2 Approximations and unmodeled dynamics

Let the transfer functions: G{s) of (5.20)-(5.21) and H(z) of (5.12)-(5.13) be given in the
expanded form, i.e.:

ofs) = E1 - T4 (545)
HW -Er«— dre-n, (5.46)
i=i oz v

where, according toequations (5.20)-(5.22), rt\i = hiC and for thesimplicity of the
notation itisassumed that A~ A,i * j,i,j = 1,2...n. Suppose that dt« 0 for
i=nx+ 1,...n. Then H(z) can be approximated as follows:

ni 11l

H{z)KH{z)=YI.ri—" +dz~I'd= E (547)
=z

“» i=«y+i

and H(z) is the transfer function of the model in (5.25)-(5.26).

5.4.3 Links with modified pulse transfer functions

Taking (5.8) and (5.37) into account, a modified discrete-time transfer function Ha(z,a)
which relates intersample values of the output with the discrete-time input can be defined

as
Ha(z, a) = uL2) = (1~ z~-)z{gi(ih + ah)}
= c*(a)\zl - F)~Ig + d*(a), (5.48)
where >
Y(z,a) = Z{y(ih + ah)}, gi(t) = £ _1[— m (5.49)

The modified pulse transfer function defined in (5.48) can be found e.g. in(Ackermann,
1985; Kuzin,1962; Tsypkin, 1958). Another (Astrom & Wittenmark, 1997; Houpis &
Lamont, 1985; Jury, 1958; Phillips & Nagle, 1990; Williamson, 1991) definition of the
modified discrete-time transfer function H”~z,”) is based on a delayed output y(ih —r),
r=h—fxh, 0< @<L

HJz, fi) = uE2) = @ - z~1)Z{g{ih - h + /ih)} = z~IHa(z, /2). (5.50)

z

From (5.48) and (5.50) it is easily seen that the following links exist between the transfer
functions:



70 5. Sampling Systems with Feedthrough
H+(z) = H,,{z,0) = zH"z, 0) (5.51)
H~(z) = z-1H,,{z,1) = H"z, 1). (5.52)

It is interesting to note that although Jury (1958) had (5.52) at his disposal he chose
H+(z) given in (5.51) rather than H~(z) as the pulse transfer function of a system with
feedthrough.

5.4.4 Closed-loop models

Denote 1+ K~(z) the return difference with K~(z) = D(z)H~(z), where D(z) is the
controller transfer function. One is now able to write the following standard closed-loop
transfer function T~(z):

T-M n*o-)
Tw “ 1+K-(x) -~ i W (5 53)

where Y(z, 0~) = Z{y(ih~)}. One may however, wish to have a transfer function Ta(z, a)
relating Y(z, a) = Z{y(ih + ah)} with R(z). It can be expressed as follows:

From (5.51) and (5.54) it follows that in the closed loop context H+(z) can only be used
as a part of the following causal formula:

+ _ PM/r+M _ n*0+) « «,
1’ 1+ K-(2) R(z)

Unfortunately, due to high sensitivity of H +(z) to the unmodeled dynamics, (5.55) models
the system behavior in a rather unreliable way. The sensitivity of V + to the unmodeled
dynamics is illustrated in Example 5.4.1.

Example 5.4.1. Consider two closed-loop sampled-data control systems, <S and S2, with
plants having transfer functions Gi(s) and G2(s):

°-W -7TT -aoin $56)

W-jh-oih - ‘557>
Each of them is fitted with a proportional controller with the gain k = 3. The responses
of both systems to the unit step-wise set point change when the samplingperiod h equals

to 1 are presented inFig. 5.3. Both open-loop systems can beapproximatedby the same
model:

5.4 Input-Output Models n

G(s)= —, ,~ 02 (5.58)

Although the behaviors of systems <3 and S2 at sampling instants are almost the same,
the intersample behaviors of both systems are different, particularly shortly after control
updating. Note that the the discrete-time values of the output calculated from T~(z)
approximate actual values very exactly whereas those based on T +(z) are quite wrong.
This supports model V~ and invalidates T>+ also in this context.

Example 5.4.2. In (Isermann, 1989), an example is given of a differentiator:

(5-59)

whose discrete-time transfer functions H +(z) and H~(z) are

It is interesting to notice that unlike H+(z), lim”-x» H~(z) = 0, which is consistent
with a low-frequency approximation G(s) « 0, and lim" OH~(z) = (Td/T)z~I, which is
consistent with a high-frequency approximation G(s) « Td/T. Isermann (1989) defines
only H+(z) as a pulse transfer function of (5.59).
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5.5 Remarks on Other Approaches

In most references digital systems are modeled in such a way that inputs have the form of a
train of Dirac impulses, u(t) = 5(t—ti)ut, which enter certain linear system representing
a hold followed by the plant in series. The model of the hold can then be absorbed by
the plant model in the transfer function form. Within this framework, the problem of
closed-loop sampled-data systems with a discontinuous output was pioneered in (Kuzin,
1962; Tsypkin, 1958; Wegrzyn, 1960; Wegrzyn, 1963, 1970, 1980). In (Kuzin, 1962) an
equation similar to that in (5.54) was derived that gives a true characteristic polynomial
but for a = 0 it has the same disadvantages as (5.55). The existence of two different
types of the pulse transfer function was mentioned in (Tsypkin, 1958). Unfortunately, no
binding conclusions were drawn regarding their use. The continuity of the response at
the sampling instants was imposed in (Wegrzyn, 1960; Wegrzyn, 1963, 1970, 1980) as a
result of physical considerations concerning a sampled data controller with a falling bar
galvanometer, in which Dirac pseudo-functions were treated as models of narrow width-
modulated impulses with constant magnitude. As a result, formula (5.11) can be used
for calculation of the pulse transfer function instead of formula (5.14) if £i(0) = 0 is
assumed. This approach was summarized in (Gessing, 1996), where formulas for both
transfer functions H~(z) called there causal’ and H+(z) called 'non-causal’ were derived
for zero and first order holds.

5.6 Conclusion

A new discrete-time model, T>~, of a sampled-data system consisting of a zero-order hold
and a linear plant with a feedthrough, defined in (5.12)-(5.13), has been presented and
compared with the classical model V + given in (5.8)-(5.9).

It has been shown that because of violation of the closed-loop causality the classical
model T>+ related to the right-side limit of the output signal with the transfer function
H +(z) is not feasible for feedback modeling if there is a feedthrough in both the plant
and controller.

The new model, T>~ related to the left-side limit of a discontinuous output signal
has been shown to be appropriate for modeling of feedback systems. Its transfer function
H~(z) appears to be vital for both the return difference and the characteristic polynomial
of the closed-loop system.

V ~, whose sensitivity to the unmodeled dynamics is small is also better suited for

state estimation and observer-based controllers than V +, whose sensitivity is extremely
high.

6. Hybrid LQR Design

Two approaches to the synthesis of a discrete-time model reference controller for a
continuous-time system are presented and compared. 1

The first one, purely discrete, bases on the discrete-time model of a dynamic system
and on a discrete quadratic infinite horizon performance index while the second is based
on the continuous-time integral performance index. When the sampling time tends to
zero the control variable in the former problem does not converge to its continuous time
prototype whereas in the latter does. The relative order of the continuous-time plant itself
and the relationship between the model and plant relative orders are shown to be crucial
for the design and control system behavior at high sampling rates.

6.1 Introduction

There are three ways to design a digital control system. The first is a digital redesign of
an analog controller designed originally in continuous-time (Franklin, Powell & Emani-
Naeini, 1986; leko, Ochi, Kanai, Hori & Okamoto, 1996; Kuo & Peterson, 1973; Shieh,
Kasavaraju & Tsai, 1995; Yackell, Kuo & Singh, 1974). It is the simplest one but while
giving satisfactory results at high sampling rates it fails when the sampling rate is low.
The second, referred to as a purely discrete-time approach, requires the continuous-time
plant to be discretized prior to defining the control task with regard to the system be-
havior at sampling instants. Although most frequently met in text-books, e.g. (Astrom &
Wittenmark, 1997; Franklin et al., 1990), it overlooks intersample behavior and might fail
at high sampling rates. The third way, called hybrid approach, is to perform direct digi-
tal design taking the intersample behavior into account. It has been receiving increasing
recognition for the last years and there are several investigations along this line. Various
approaches to the optimal TL2 problem can be found in (Bamieh h Pearson, 1992; Chen
& Francis, 1991; Hagiwara & Araki, 1995; Hara, Fujioka & Kabamba, 1994; Kabamba
& Hara, 1993; Khargonekar & Sivashankar, 1991). Other interesting hybrid models and
approaches are presented in (Yamamoto, 1994) and (Lampe & Rosenwasser, 1993; Rosen-

XThe chapter is based on (Btachuta, 1992; Btachuta, 19976) and (Btachuta, 1997c)
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wasser k Lampe, 1997), and intersample behavior in the ripple-free deadbeat control
context is considered in (Sirisena, 1985; Urikura k Nagata, 1987). An overview of the
issue can be found in (Chen k Francis, 1995; Hara, Yamamoto k Fujioka, 1996) and a
related software package is presented in (Hara, Yamamoto k Fujioka, 1997).

Due to sampling and control signal modulation the performance of sampled-data con-
trol systems is usually poorer than that of continuous-time ones. Therefore it is reasonable
to expect that increasing the sampling rate should result in the continuous-time perfor-
mance recovery. It will be shown here that this is not the case if the controller is designed
in pure discrete-time, when ’ringing’ of the control signal is observed, which leads to an
unacceptable intersample ripple of the output, (Baron, 1989; Chen k Francis, 1995; Hara
et al., 1996). In contrast to this, a hybrid design method yielding controllers which con-
verge to continuous-time controllers at high sampling rates and have good properties for a
wide range of sampling periods is proposed. To this end, a simple LQR framework of (Do-
rato k Levis, 1971) based on a discretized continuous-time performance index (Blachuta,
1982) designed so as to approach the required output dynamics is employed.

A model reference control task will be defined in such manner that the output is
required to fulfill a predefined differential or difference equation, or to be close to its
solution while the overall closed-loop system is stable. Because of space limitations, only
a deterministic regulator problem will be considered. It can also be seen as a solution to
a problem with a step-wise changing reference or disturbance, and as a starting point to
a more general tracking problem under stochastic disturbances.

The chapter is organized as follows. In the next section a hybrid control problem with
a discrete-time controller and a continuous-time performance index will be stated. In
section 6.3 it will be shown that a solution can be found to the continuous-time problem
irrespectively of the system order and locations of the system zeros. Three different types
of problems are then distinguished depending on the relationship between the system
relative order and the order of the reference differential equation. In section 6.4 it is
shown that a discrete-time performance index which can be considered as a discrete-time
counterpart of the underlying continuous-time index produces a solution which does not
converge to the continuous-time one, and the source of controller ringing’ is revealed.
In section 6.5 a solution to the hybrid problem is found and shown to converge to the
continuous-time one when the sampling rate increases. The results are illustrated by an
example in section 6.6 and concluding remarks are presented in section 6.7.

6.2 Problem statement

The system to be controlled is defined by the following set of state-space equations:

x = Ax + bu, a(0) = x0 (6.1)
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y = d'x, (6-2)

where x is an n x 1 state vector, it is a scalar control variable and y is a scalar output.
Matrix A and vectors b and d are time invariant and have appropriate dimensions. Vector
x0 is an arbitrary initial condition. The system in (6.1)-(6.2) is assumed to be both

controllable and observable.
Markov parameters rrij of the continuous-time system, which are coefficients of the

infinite expansion of the transfer function G(s),

Ne3)

can also be expressed in the state-space terms as rrij = d!A3 1b, j > 0. Provided 60~ 0,
it is well known that mo = 0, m\ = 0, ... mk-1 = 0, nifc = bo, where k = m —n is the
relative order of the system.

Assume that a discrete-time sampled data control algorithm

U = -k'xi, Xi=x(U) (6.4)
with a zero order hold is to be applied, so that
u{t) = uu t£ (U, tiH), ti+i- U=h, i=0,1...

The output y(t) of the controlled system is required to be close to the solution yT(t)
of a reference differential equation:

tciy”it) =0, »»(0) = »«(0),*=0...r- 1, (6.5)

2=0

where r is an integer and the closed-loop system is required to be stable. Denoting

c(s)=E N r-i=ri(s-si)- (6-6)
t=0 t=I
then on assumption that s*~ Sj fori,j = 1,2...r, i " j, the solution of (6.5) is defined
by
= (0) = (6.7)
j=1

where ipi depend on initial conditions.
Function er(t) = C(p)y(t), where p is a differential operator can serve as a measure of

discrepancy between y(t) and yT{t)- It is therefore reasonable to require that the following
quadratic performance index is minimized:

lc= J[°°e2(t)dt. (6.8)
0
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6.3 Continuous-time control

The control problem (6.8) with (6.1)-(6.2) can be transformed to the classical continuous
time LQ formulation (Kwakernaak k Sivan, 1972). To this end, er(t) should be expressed
as a function of the state variable x. Depending on the relationship between r and the

relative order k = n —m three different problemscan be distinguished:
@ if r < kten er(t) = f'rx(t)
@)y ifr = khen er(t) = f rx(t) + bOu(t)
@) ifr > kten eT(t) =f'rx(t) + £ 0r_-uw (<),
j=o
where )
r i
fr = ~2/cr-jdj, &t = (6.9)
30 j=o
dj = A'dj_i, do=d, j =1,2... (6.10)

The character of the solution strongly depends on the relationship between the order r
of the reference differential equation and the relative order k of the system. For r = Kk,
a linear state-space feedback is a solution to the problem while for r > k a dynamic
controller, which can be viewed as a state-feedback from an augmented state, is needed.
When r < k then a highly impractical singular control algorithm is obtained, with the
control signal consisting of 6(t)... d(?_1)(i)-type impulses followed by a state feedback
(Blachuta, 1982; Clements k Anderson, 1978; Sirisena, 1968), where g = k - r is called
the order of singularity. It is worth noting that a performance index with r = k —1, i.e.
9 = 1,similar to that in (6.8), whose integrand is augmented with a weighted square of the
control signal term is considered in (Hashimoto, Yoneya k Togari, 1989) and (Yoneya,
Hashimoto k Togari, 1992) as a tool for the continuous-time model reference system
design. A disadvantage of that method is that to arrive at a desired dynamics the control
weighting is to be set small which results in an impulsive behavior of the control signal
for small t unless the initial condition is close to the singular hyperplane, (O’Malley k
Jameson, 1975; O’Malley k Jameson, 1977).

6.3.1 Regular problem

Assume r = k. Performance index (6.8) can now be expressed in the terms of the state
vector x and the control variable u as follows:

6.3 Continuous-time control 7

Matrix Qc, vector hc and scalar Ac are determined by the formulae:
=frin he=/A A& (62

A stable solutioncan be obtained applying the Kalman LQ regulator theory (Kwakernaak
k Sivan, 1972).The optimal control, u°, is then of the form:

ue) = -fc'ex(t), ke= I(fce + Pb) (6.13)

with P being a stabilizing solution of the following algebraic matrix Riccati equation:
A[P + PA* - Pbrrb'P = 0, (6.14)

where
Am= A - K lIbtic. (6.15)

A trivial solution P = 0is stabilizing if and only if the system to be controlled is minimum
phase. This results from the closed loop state equation matrix (equal to A«), whose
eigenvalues are the roots of the equation C(s)B(s) = 0. Otherwise, a stabilizing solution
can be constructed from the eigenvectors and left-hand half plane eigenvalues of the
Hamiltonian matrix H (Kwakernaak k Sivan, 1972):

A, -A-~Ibb'

H 0 -A"

(6.16)

From (6.16), the eigenvalues of H are related to the roots of C(s) and B(s) in a very
simple way:

det(s7 —H)

det(sJ —At)det(s/ -I-A,)
C(s)B(s)C(-s)B(-s). (6.17)

Denote B(s) = B~(s)B+(s) where all roots of B~(s) lie in the left-hand half plane and
all roots ofB+(s) lie inthe right-hand half plane. Then the optimal stabilizing solution
of theRiccatiequation is constructed from all roots of C(s),B~(s) and B+(-s). The
characteristic polynomial of the closed loop system:

x = (A, - -J-bb'P)x (6.18)

takes the form:
det(sJ- A, - -bb'P) = C(s)B-{s)B+(-s). (6.19)
Ac
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6.3.2 The shape of control

For the system in (6.1)-(6.2) is deterministic and we study the free response, which only
depends on the initial conditions, then the closed-loop solution and the open-loop solution
are equivalent. The shape of an optimal control variable u°(t) for a minimum-phase system
can now be found using the expression

y(t) = "*Tpieait + f g(t —ryu°(T)dT, (6.20)

i=i J°
where 9j, i — 1,2,... n are the roots of the denominator 4(s) of the transfer function

G(s), pi, i —1,2,... n, are constants depending on initial conditions and

SW = X ><e” (6.21)

1=1
is a weighting function, with Ki ~ 0, i = 1,2... n. Let the optimal control be of the form
«°(*) = (6-22)

i=l

and y(t) = yr(t). Parameters forj = 1,2...n and g fori = 1,2,...n are to
be determined. Upon calculating the Laplace transformation of both sides of (6.20) and
taking (6.7) into account we get

Eq7+Z T)j = IF=17bZ \éj + G(sH s)’ (6-23)
which can be rewritten as
Hs)C-\s) = [R(s) + S(s)u(s)]yl-1(5), (6.24)
and finally
A(sMs)~R(s)C(s)
u{s)- BM W ' ( 1}
To arrive at (6.5), r parameters ipi of the polynomial P(s) should be set so that the order

of the numerator of the expression in (6.25) is reduced from its generic value n +r —1to
n —1. The order of the denominator equals tom + r. Then forr < k (i.e. g > 0) we have:

9-1 m+r a
u(s) = £ N s<+ E -zV - (6.26)
i=0 i=ls A«
The above equation shows the appearance of J-like impulses in the singular control. For
r = k (q = 0) one gets a regular solution:

6.4 Purely discrete-time approach 79
" \-l
Uis) = 1>>(s-Ai)-\ (6.27)
i=I
where \j = Sj, j = 1,2...r, \ = wu i = 1,2...to and 7* are roots of the polynomial
B(s).

Further simplifications of the control signal occur when A(s) and C(s) contain com-
mon roots.

6.4 Purely discrete-time approach

The discrete-time model of the plant (6.1)-(6.2) is as follows:

Xi+i = Fxi + gui, x0= x(0) (6.28)
yi = d'xi, (6-29)

where h
F= g= [ eATbdr. (6.30)

o

The relative order of the discrete-time system (6.28)-(6.29) with the transfer function
H(z) =d'(zI-F)-lg= ~ (6.31)
is independent of the relative order k of the continuous-time counterpart and generically

equals to 1.
Denote Zj = esih, j = 1,2...r. Then the sampled version of (6.7) is

yrw = F_Y jfe-)*. (6-32)

As a result, the sampled reference output fulfills the following difference equation

c(g)yr(i) = 0, (6.33)

where r r
c(z)y=E7iZr-"=1l(z- 2. (6.34)

i=0 i=1

It is therefore reasonable to define the performance index for the purely discrete-time
problem in the form of:

[o]e]

Id = I_Eoer(*)> er(*) = C(2)yi- (6-35)
1=l

When expressing er(i) in the state-space terms, three different problems can be distin-
guished:
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(i) ifr = 0 then e0(i) = OOXi
(i) ifr = 1then ex(i) = O\xi + (0Ui

1=
(iii) ifr > 1then er(i) = 9rXi + j£:Of r-jui+j,

where .
r I

Or=J2trsj, =__ Hjii-j (6.36)
30 =0

8j = F'Sj-i, 60=d, j = 1,2... (6.37)

It is importantto notice that the above classification doesnotdependon the  relative
order kof the continuous-time plant. While the problems in(i) and(ii) lead to well
defined discrete LQ singular and nonsingular control problems, the problem in (iii) has

no causal solution because current values of X* depend on future values of control variable
Ui in that problem.

6.4.1 Zero order problem

For r = 0 we have:

00

Id =Y*xIQd.Xi, Qd= dd". (6.38)
i=0

The optimal control u® is given by uf=
solution of the discrete Riccati equation

wherekd = F'Pg/(g'Pg) and P is a
Paa'P
p=F'(p--"-)F+Qd (6.39)

A trivial solution which belongs to the set of positive symmetric solutions of (6.39) is
P —Qd = dd' for which kd = (3g1F'd and the closed loop system matrix takes the form

F,=F - gkd (6.40)
with the characteristic polynomial p(z):
p(z) = det(zl - Ft) = PQlzb(z). (6.41)

From (6.39) it is seen that P=dd"' is a stabilizing solution if and only if the roots of
b(z) are inside the unit circle. Otherwise, when b(z) = b~(z)b+(z) and b(z)+ has all roots
outside the unit circle, a stabilizing solution to (6.46) is to be found such that

P(z) = Polzb~(2)b+(z~1)zm+, (6.42)

where m + = deg b+(z2).
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6.4.2 First order problem

For r = 1 there is:

Id = YIX'iQdXi + 2hdXiUi + \ du]) (6.43)
i=0
with
Qd= Oi0[, hd= 000u Xd= Po- (6-44)

The optimal control is u® = —k'dx v where

K- mah“+ 2+ g'Pg $49)

and P is a solution of the discrete Riccati equation

p=F'Ap- (646)
with
Ft=F —Adlgh'd, Qd = Qd- K lhdh'd= 0. (6.47)
The solution to this problem depends on eigenvalues of the matrix F»ForP = 0, we
have
p{z) = det(zl - F.) =P 0o\liz + I)b(z)- (6-48)

Thus for a stable polynomial b(z),P = 0 is a stabilizing solution of the Riccati equation
(6.46), and then ut = -A2lh'dx is a stable optimal controller. Otherwise, astabilizing
solution to (6.46) is to be found such that

P@z) = Po\liz+ 1)b-(2)b+(z-")zm+. (6.49)

6.4.3 Higher order problems

To avoid non-causality an additional delay must be introduced into the control path so
that Vi is a new control variable and Ui = Vi-k- One is then able to write:

er(i) = erXi + E Vr-jVi+j-k- (6-50)
j=o

If k = r - 1then er{i) depends on current and previous values !/<... «i-r+i of the new
control signal only.
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6.4.4 High sampling rates phenomena

According to (Astrom et al., 1984) a peculiarity of H(z) is that m intrinsic zeros of b(z)
tend to 1, and k —: discretization zeros tend to the zeros of the so called reciprocal or
Euler polynomial £k(z) as the sampling period h —0. It has been shown in Chapter 2

that the zeros of £k(z), Q and are negative real so that:
fo1
n {z- Ci)(z- C'1, fc-odd
£k(z) = pi (6.51)

i.z+1) irll(z- Ci){z- crl), k-even.

As a result, £k(z) have zeros on or outside the unit circle for k > 2. Due to (Astrom et
al., 1984; Hagiwara et al., 1993; Blachuta, 1997f), from (6.51) it results that for k > 2
the polynomial b(z) becomes unstable if h < hcrit. Unstable zeros are replaced by their
reciprocals in the characteristic polynomial, (6.42) and (6.49), so that the resulting closed
loop system remains stable but as they tend to be negative real highly undesirable ’ringing
of the control signal appears. Moreover, since

p0 = bohk/k\ + o(hk), (6.52)

according to Theorem 2.3.1 the magnitudes of the control signal become large for small
values of h. This shows that the relative order of the system is responsible for the above
phenomena as supposed in (Hara et al., 1996). A remedy against unstable pole-zero can-
cellation, which could also be used in our problem, has been proposed in (Goodwin et
al., 1986; Tesfaye & Tomizuka, 1995). It consists in replacing the original pulse transfer
function by its approximation in the Euler operator domain, where the discretization ze-
ros, which lie far from the origin, are ommited. Unfortunately, as shown in Chapter 4 this
approximation is quite poor unless h is very small.

6.5 Hybrid design of a discrete-time controller

6.5.1 Problem solution

Let us assume that the control task is the same as in section 6.3, i.e. it is defined by the

integral roc

| = I x'Qcex --2x"heu + Acu2)dt, (6.53)

in which matrix Qc, vector hc and scalar Ac are determined by the formulae:

Qc = frf'n he = frmr, Ac= mZ (6.54)
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but the controller is discrete-time as defined in section 6.2. Now, taking into account that
the intersamplevalues of the state vector x(t) are given by the formula

x(t) = F(r)Xi + g{r)ui, fort = ih +«, « € (0, h) (6.55)

with
F(t)=eAr, g(r) = jf eAvhbdy, (6.56)

we are abletoreplace the integral performance index of (6.53) by a discrete summation
index (Dorato & Levis, 1971; Kwakernaak & Sivan, 1972; Kuo & Peterson, 1973):

J=nh + 2h'xiUi + Xu2) (6.57)
i=I
with
Q =1 [heA'TQceATdT (6.58)
a Jo
h =hc+\ ( eA TQo(r)dT (6.59)
a Jo
A= Ac+ ]ﬁJ(/) W{T)Qc9{r) -I- 2h'eg{r)\dT. (6.60)

The integrals in (6.58)-(6.60) can easily be calculated using algorithms from (van Loan,
1977). It is worth noting that vector h and scalar A are nonzero even if both hc and Ac
are zero, thus producing a nonsingular discrete-time problem even if the continuous-time
counterpart is singular. The optimal control u® is given by the formula:

u® = -k'xi, (6.61)
where
1 F'ng
k=-h+ - 6-62
AT A+ gdg? (6-62)

and S' isa solutionof the discrete Riccati equation

s= o+ (6'63)

where
F.=F - Algti, Q,=0Q - X~Ihh". (6.64)

The solution tothisproblem depends not only on theeigenvalues of the matrix F » but
also on the remaining parameters Aand Q,,
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6.5.2 Limiting behavior of the solution

Let us now study the limiting behavior of the optimally controlled system when h —0.
Prom (6.58) it follows:

Q = Qc+ (A'Qc+ QcA )™ + 0(h2). (6.65)

When calculating approximations to h and A we have different results depending on
g=k —r.
For g = 0 we get

h=hc+ Qcb” +0(h2 (6.66)
A= Ac+ h'cbh + *"b'Qcbh2+ 0(h3), (6.67)
and finally

Q, =[KQc+QA*)2 + 0(h2), (6.68)

where
A, = A - A-lbh'c. (6.69)

Using
F=1+Ah+0(h2, g=bh+0(h2 (6.70)

the Riccati equation can be transformed as follows:

(F't)~1S(F,)-1 = (FD-'Q .tF.)-1+S - + Q(h4). (6.71)
Taking P = Sh and (i®,)-1 =1 —A*h --0(h2) equation (6.71) becomes:
A[P +PA, - Pb\~Ib'P =0 (6.72)

when h —0, and the optimal gain will be
k =~(Pb + hc) = kc. (6.73)

Investigation of the limiting behavior of solutions to problems with g > 0 remains a still
open question. Based on numerical examples (Baron, 1989) and a continuity argument,
it is conjectured that the discrete-time solution tends to produce a singular control with
5-like impulses at the beginning followed by a quite regular control afterwards.
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6.6 Example

A continuous-time plant with the transfer function K(s):

~wo-(G+.)G M i +0,5) 6-74>
is considered for h = 1.0. The results obtained for k = 0 and
roc
h= 1 - y(b)adt, (6.75)

with a new design method and those for

(00]
h =E (- > (6-76)

produced by the purely discrete-time method are displayed in Fig.l. In the latter case
it is clearly seen that although the results at the sampling instants are excellent, the
intersample behavior is unacceptable, which is due to control signal ‘ringing’. The results
obtained by our method are in a great contrast with those of the digital one. Fig.2 displays
the results of the hybrid method when the reference model is of the first order (i.e by one
smaller than the actual relative order k = 2) with a zero at s = -0.4. It is important
to note that in the hybrid framework control signals which are quite impulsive at the
beginning become very soon ’smooth’ for problems with q > 0.

6.7 Conclusion

It has been shown that the purely discrete-time approach to the control systems design
suffers from severe disadvantages when the sampling rate becomes high. They demonstrate
as ’ringing’ and high magnitudes of the control signal. These phenomena are caused by
the properties of the sampling zeros of pulse transfer functions at high sampling rates.

The proposed method of a hybrid discrete-time controller design does not exhibit these
disadvantages. Provided that the order of the desired output model equals to the relative
order of the continuous-time system, the control signal tends to a smooth continuous-time
function when the sampling rate increases.
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6. Hybrid LQR Design

Fig.6.1. Output and control signals for hybrid (solid) and discrete (dotted) designs, q = 2

Fig. 6.2. Output and control signals for hybrid design, g = 1

Part 11

Stochastic Systems



7. Modeling Sampled Stochastic Processes

A class of second-order continuous-time stochastic processes, which can be thought as
models of disturbances,is characterized and the issue of theirsampling isdiscussed. 1
As a result of sampling, discrete second-order random processes described by linear time-
invariant state-space models are obtained. Equivalent representations with the number of
noise inputs reduced to one are presented. In contrast to the innovations approach these
representations have time-invariant parameters. The relationship with ARMA models is
discussed and the Representations Theorem is generalized to a class of nonstationary
processes. Finally, the identification issue of continuous-time processes is discussed.

7.1 Continuous-Time Stochastic Processes

7.1.1 Process models
A wide class of stochastic processes can be described by the following system of equations:
dx(t) = Ax(t)dt + cd£(t), *(0) = x0 (7.2)
z(t) = d'x(t). (7.2)

Here z(t) is a scalar process, x(t) is an n-dimensional state vector, A is a matrix with
constant entries, ¢ and d are vectors, and £(f) is a standard Wiener process (Gikhman &
Skorokhod, 1969; Gikhman & Skorokhod, 1972) with Gaussian increments

E[*®)] = 0, E[e()] = t2 (7.3)

The symbol d stands for Ito differential. The initial condition x0 is a normally distributed
random vector, Xo ~ Af(m0,Q0), i.e. mo = E (x0) and Q0 = E [(*0o —m 0)(x0 —mo)'].
It will be assumed that the system (7.1)-(7.2) is both controllable and observable, i.e.

rank [c, Ac, ... An_Ic] = n, (7.4)

IrThe chapter is based on (Btachuta, 1994; Btachuta, 1996c?; Btachuta, 1996e; Btachuta & Polanski,
19866; Btachuta & Polanski, 1987) and (Btachuta & Polanski, 1990)
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rank [d, A'd, ... A'n xd] = n. (7.5)

Equation (7.1), which is a stochastic differential equation, can be understood as a sym-
bolical notation of the following integral equation:

x(t) = Xo+  Ax(s)ds +J cd£(s), (7.6)

where thesecond integral in formula (7.6) is the Ito stochastic integral (Gikhman &
Skorokhod,1969; Gikhman & Skorokhod, 1972). The solution of equation (7.6) has the
following form:

x(t) = eAtXo + J eA(t_s)cd£(s). (7.7)
In thetechnical literature the system (7.1)-(7.2) is sometimes presented in a less strict

form asa systemof ordinary differential equations driven by acontinuous-time stationary
white noise £(f):

ix(t) = Ax(t) +ci(t) (7.8)
z(t) = d'x(1), (7.9)

where
E [f(*)E(F)] =6 (t-r). (7.10)

7.1.2 Characteristics of stochastic processes

The expected value m(t) and covariance Qt(r) are expressed by the formulae:
m(t) = E [a:(f)] = eAtm 0 (7.11)
QtiT) = E[*(*) - "i(Q)I(x(f+t) - m(t +r)]' = Q(t)eAT, (7.12)
where
Q) =EWX(t) -mOI(X(E) - m()]' = eAQOeAL+ [e(t-s)ocleid(ts)ds,  (7.13)
fulfills a differential matrix Lyapunov equation:
Q(t) = AQ(t) + Q(t)A'+ccl (7.14)

with the initialvalue QO.
According to (7.11)-(7.12) the expected value /i(£) and autocorrelation function p4(r)
of the process z(t) are defined by the following relationships:

=d'm(t) =deAtm 0 (7-15)

pt(j) = d'Qt(r)d = d'Q(t)eATd. (7.16)

7.1 Continuous-Time Stochastic Processes a1

7.1.3 Stationary processes

Since the process z(t) defined in equations (7.1)-(7.2) is completely characterized by two
first moments, the necessary and sufficient condition of stationarity is that the expected
value /i(f) and correlation function p((r) do not depend on current time t.

It is well known that process z(t) defined in (7.1)-(7.2) with (7.4)-(7.5) is stationary

if and only if:
- matrix A is stable, i.e. fori = 1,2... n there is Re Xi{A) <0,
- expected value of the initial condition mo = 0,

- covariance matrix QO is a solution of the following algebraic Lyapunov equation:

AQ + QA" = -cc'. (7.17)

Under the above conditions the expected value of the process equals to zero and the

correlation function is:
p(t) = d'QOeATd. (7.18)

As a result, the correlation function p(r) can be expressed in the following form:
p{r) = ‘<]<:2| aiPi(T)eXiT (7-19)

where Pi(r) are finite degree polynomials and the real parts of A are strictly negative.
Since the spectral density £{u>) and the autocorrelation function are related by:

| -foo A
p(t)e~jutdt, (7.20)
¥eo)
then, based on (7.17), (7.18) and (7.20),
E(g)=d\sl - A)~Icd(-sl - A'Y 'd". (7.21)

E(u) is a real rational function and can be expressed in the form of:

m = g%%))ca(ij\s>)| (7.22)
where:
a(s) = det(sl —A) (7.23)

c{s) = d'[adj(sl-A)}c (7.24)
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and
a(s) =sn+aisn 1+ + n (7.25)

c(s) = 7isnl+ ...+ 7, (7.26)

Due to (7.4)-(7.5) polynomials a(s) and c(s) are relatively prime.

From (7.22) it is seen that for a given spectral density function E(u>) of the process z(t)
and the fixed polynomial a(s), there exist polynomials c(s), and thus vectors ¢, for which
the system in (7.1)-(7.2) is a model of the process z(t). Among them such vector ¢ can be
found that all roots of the polynomial c(s) lie in the left half-plane. Such representation is
called invertible. Given a spectral density function S (uj), polynomials a(s) and c(s) can be
found from equations (7.1)-(7.2), (7.27) and (7.22) by a spectral factorization procedure
(Astrom, 1970). Given polynomials a(s) and c(s), the state space representation (7.1)-
(7.2) can be easily constructed by using canonical forms. The observer canonical form
(Soderstrom, 1991) serves as an example, where

-ocl T O 7i
~0lI2 0 1 -0 72
A= , C= d= (7.27)
Ap—y 0O . 1
o . . .0 7«

7.2 Sampling stochastic processes

A process z(t) is usually observed by a sensor, which introduces its own errors. Sensors
can be discrete- or continuous-time. In this section we are interested in getting a discrete-
time model of a sensed and sampled stochastic process. To avoid the loss of observability
a non-pathological sampling period is assumed.

7.2.1 Continuous-time sensor output
In (Kwakernaak & Sivan, 1972) one can find a model:

;tx(t) = Ax(t) -l-c£(f) (7.28)

y(t) = d'x(t) - C(t) (7.29)

based on model (7.9)-(7.10) with the output corrupted by a continuous-time white noise
((t) with

emnr)} =s(t-r), emar)} =~ - 1. (7.30)

Although the above model can be successfully used for filtration, prediction and smooth-
ing, it is criticized since it is not mathematically strict, and it is not clear how to sample it.
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To avoid mathematical incorrectness, in literature, e.g. (Kucera, 1972; Feuer & Goodwin,
1996), the following is proposed as the measurement equation:

dy(t) = z(t)dt + d((t) = d'x(t)dt + d((t). (7-31)
This can also be written in the version of an integral equation :
y(t) = y(0) + J]Z d'x(s)ds+ [ d({s), (7.32)

where ((t) is a Wiener process. Equations (7.1) and (7.31) are sometimes written in the
following less strict form

~x(t) = Ax(t) + cf(t) (7.33)
at

jty(t) = d'x(t) +m (7-34)

7.2.2 Sampling: continuous-time noise model

In contemporarytechnical applications, the continuous-time signal being arealization of
a continuous-time stochastic process is usually sampled, i.e. it ismeasured at discrete
equi-distant time instants U = hi, where h is the sampling period and i is an integer, and
then further processed digitally. Since, as follows from (7.30), the output of the model in
(7.9)-(7.10) has infinite variance, sampling makes no sense for this model.

This problem is overcome when using the output defined in (7.31). Indeed, sampling
equation (7.32) leads to:

y(U + h) = y(U) + Jltil d'x(s)ds+ 5t| d((s). (7.35)

According toFeuer & Goodwin (1996), this can be interpreted so that beforebeing sam-
pled theoutputsignal is passed through an anti-aliasing filter with thetransfer function

i h
F(s) = I SD ) (7.36)

Denote yt = y(ti) andx t=x(U). For the model in (7.1) and (7.31) or, equivalently,
(7.33)-(7.34),with theanti-aliasing filter (7.36) one gets:

Xj+i = FXi+ Wi (7.37)
2t+i = f'xi + di+U (7.38)

with
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F =eAh, /'= d'J%HeAsds, (7.39)

where wt and r, are zero mean Gaussian variables with

rwWiw'j WiTj Wi 7
- . fiij (7.40)
Lriwfj riTi 7" p2.
w7 I\ * o I A 0
7 P o o jCeATSds) 0. (7.41)

[

7.2.3 Sampling: discrete-time noise model

Although being mathematically well justified, the above model of section 7.2.2 has little
technical meaning. As a result, the filter of (7.36) is not used in practical solutions.
Therefore, a very simple measurement model will be used in this work where it is
assumed that samples of the process {z{t)\t > 0} of (7.2) are corrupted by a discrete-
time white noise which models the measurement error.
In this case the measurement equation takes the form:

Vi=d'xi + ru (7.42)

where rt is a discrete-time Gaussian white noise.

Process {yi, i = 1,2...} isdiscrete-time and can be described by the following discrete-
time system of stochastic equations (Kucera, 1972):

®»Hi
Vi

Fxi + Wi (7.43)
d'xi + rit (7.44)

where the initial state x0 € IR" is a random vector with zero mean and covariance matrix
E {(x0xQ = Q0. (7.45)

The inputs wit and rt are independent zero-mean white noises of appropriate dimensions
with

E [Wi, w'j] = WSijt E [rt,rj\ = p2Sijj, E [ro5r,] = 0 (7.46)
for all i,j > 0, Sij denotes the Kronecker delta, and wt is a vector-valued white Gaussian
noise with covariance matrix W :

W = Jfo eAacc'eAads. (7.47)

The random vectors x 0 and [rvr, <] are uncorrelated for all t > 0.
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7.2.4 Numerical issues

According to Chen & Francis (1995) the integral in (7.47) can be computed as
W =x'2x 12 (7.48)
where X X and X 2 result from the matrix exponential

xn XP -A cd 7.49
N o X -exp<h (7.49)

Another wayisas follows. Let Q denotes the covariancematrix ofa stationary discrete-
time process Xtfulfilling a discrete-time algebraic Lyapunovequation:

Q=FQF'+W. (7.50)

Since vectors x(ti) and x, are the same, then their covariance matrices are equal.
From this property a method for computing the integral in (7.39) results, where first the
Lyapunov equation (7.17) is solved for Q, and then (7.50) is employed to give:

W =Q- FQF" (7.51)

7.2.5 Nonpathological sampling

Although necessary for the pair (F, d) to be observable, the observability of (A, d) is
not sufficient. In other words, the observability of a continuous-time system does not
guaranties that the sampled system is observable.

Definition 7.2.1 (Nonpathological sampling). The values ofh which fulfill

h?qg-,9= 1,2.... (7.52)
Ui

where uii is the imaginary part of the i—th eigenvalue of matrix A, AAQA) = or + juit are
called non-pathological.

To avoid possible loss of observability caused by sampling it is assumed that the sampling
period h is nonpathological.

7.3 Kalman Filter and Innovations Representation

7.3.1 Kalman Filter

Denote Yt = {y0,l/i>«<e, Vi} a set of observations, Xili_i = E[x”-i] and x,|, = E [xXY
the predicted and filtered values of the state variable expressed as the expected values
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conditioned on available observations, and = E{[xi - - aifi_1/]
Myd = E{[xi —ajj|j][xi — the related error covariances. The above values are

produced by the Kalman filter which, for the model in (7.43)-(7.44), has the following
form:

*il< = + k{(M - d'xii_i) (7.53)
X i+{i = Fshty, (7.54)
where
K{ = p2+ d'Ei~d (7'55)
n o= 756)
27<tllj = FEAF'+ W. (7.57)

Equations (7.54)-(7.57) play an important role in prediction of stochastic processes and
are used for control and identification.

7.3.2 Innovations representations

Kalman filter can serve to design the so called innovations representation of a stochastic
process. Denote Xi = =WVi—d'xt, Ei = Then the innovations represen-
tation resulting from equations (7.54)-(7.57) has the form:

Xi+i = Fxi + kieu *o= 0 (7.58)
Vi d X, (7.59)
where
fe' - (760)
Xi+, =W + FEiF ‘- . So- Q,. (7.61)

Here e8is a white noise with zero mean and time variable variance E [¢7] = a?:
a2= p2-td’Eid. (7.62)

The advantage of the innovations representation of (7.58)-(7.59) as compared with the
general representation of (7.43)-(7.44) is that it is drivenby a scalar noise and the initial
condition is deterministic. The disadvantage is that both the gain vector fc, and variance
of e; are time variable.
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7.4 Simplified Representation

This section considers the problem of determining equivalent time invariant state-space
representations with one noise input for the class of discrete random processes defined
in (7.43)-(7.44) of section 7.2.3. For equivalence we require that models have the same
output covariance properties.

The problem belongs to the field of stochastic realization theory (Kailath, 1968;
Kailath k Frost, 1968) and (Akaike, 1975; Anderson k Moore, 1979; Astrom, 1970;
Badawi, Lindquist k Pavon, 1979; Doob, 1953; Lindquist k Picci, 1979; van der Shaft
k Willems, 1984), and is of considerable importance in many areas including prediction,
parameter estimation, and control. The proposed approach exploits the well-known prop-
erties of the matrix Riccati equations (Friedland, 1967; Willems, 1971; Kucera, 1973),
previously used in stochastic realization theory in the context of continuous-time smooth-
ing problems (Badawi et al., 1979).

7.4.1 Simplified model

Consider a time-invariant representation of a zero mean, second-order process {2,;i > 0}

X+l = Fxi + hvi (7.63)

Zi = dix* + Vi, (7-64)

where, at the initial instant, the state is an n-dimensional, zero mean random vector
with covariance matrix

e(«'] =q;. (7.65)

and the process \{ is a zero mean white noise with
E [vivj] = a28ij (7.66)
for all t,g> 0. The random vector x*Qand vt are uncorrelated for all i > 0, and the matrix

F and vector d are the same as in (7.43)-(7.44).
It is interesting to note that upon eliminating Vi from (7.63) one gets

X*1 = F*x* + hzi (7-67)
Zi = dIx* + Vi, (7.68)

with
F*=F - hdl (7.69)

From (7.68)-(7.69) it is seenthat x*0 is the only source of randomnessin that model.
We shallshow that undercertain conditions, the  representation in(7.63)-(7.64) is

equivalent with that of (7.43)-(7.44).
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7.4.2 Kalman Filter for Simplified Model

Kalman filter equations (Anderson & Moore, 1979) for system (7.63)-(7.64) or (7.67)-
(7.68) have the form:

®<. = + h{[yx- d'x\|i_1] (7.70)
<E*i+Ni = F  &*i\i “P hVii (7.71)
where
h{ = Si
i a2+ Icjj‘Sid (7.72)
and matrix Si satisfies
sO-ESET OFSYGYF 5ol 0o (7.73)

7.4.3 Innovations representation

The innovations representation for the model (7.63)-(7.64) reads

x*+l = Fx*i + (h + hi)eit x*0=0 (7.74)
Zi = d'x’i+ §j, (7.75)
where
- F'Sid 276
a2+ d'sid" (7.76)

7.4.4 Equivalence criteria

Theorem 7.4.1. For equivalence of the representations in (7-43)-(7.44) and (7.63)-
(1.61), the following is sufficient and necessary:

Qo — Qo —E (7.77)
- _FEd (7.78)
h = 02 :
a2= p2+ d'Ed, (7.79)

where E is an arbitrary symmetric solution of the algebraic Riccati equation

FEdd'EF'

U=W +FEF — -r— .
p2+drEd (7.:80)

7.4 Simplified Representation

Proof. Upon subtracting (7.80) from (7.61) it is easily seen that

s, +l-W + ° -(w +iffyw+i”r~r So. Q.
gi -I-d Sia

which is equivalent with (7.73). Hence under conditions (7.77)-(7.79) there is
Ei = E + Si.
Upon inserting (7.82)to (7.60) and taking (7.79) into accountone gets:

~ FEd +FSid
1= ek d8id

Finally,
, , FEd - ha“*+ F'S.d

and (7.79), (7.76) lead to

ki =h + hi, E(ei)2= E(ei)2
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(7.81)

(7.82)

/7 Qn\

(7-83)

(784)

(7.85)

As a result the innovations representations (7.58)-(7.59) and (7.74)-(7.75) are equivalent.

This proves sufficiency.

To prove necessity assume that the representations (7.43)-(7.44) and (7.63)-(7.64) are
equivalent. Then the matrix E = Qo —Qq fulfills equations (7.80), (7.78), and (7.79).

This is clear by comparison of the covariance matrices

EMV] = d'(FiQoFil+£ FKW FKk)d + p2
k=0
j~1
E [iyjl= d'F'-j(FjQoF3+Y, FKWFK)d + d'F1r 1,i> ]
f=0

E [zizi] = d'(F'Q*oFu+ <2£ Fkhh’FK)d + a2
k=0

E [ziz)\ = d'FI-j{F3Q0Fj' + a2 Fkhh'Fk)d + o2d'Fi-j~th, i >].

k=0

Comparison is performed in three steps.

() i=20j=0,
E [yoZo] —E [020 = d'Q0d + p2—d Q0d —o .

(ii) i

I
=
N
]

1
<)

E iyO\- E [zizo] = d'FiQ0d - d!F'Q'0d - ~d’F ~h.

(7.86)

(7.87)

(7.88)

(7.89)

(7.90)

(7.91)
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Gi) i=1,2,....j = 1,2...

Denote 6Yij = E[2/*2/j] —E
(7.86)-(7.89) it results that

and JZy = E [zizj]] —E [z]-iz".j]. Then from

= d'Fi~j(FQOF' -Q 0+ W) (FA)'d, i>] (7.92)
SZij = d'Fi~i (FQIF' - Q* + 02hh')(Fj-')'d, i >]j. (7.93)

From (7.90)-(7.93), taking the observability of (F, d) into account we get

(7.94)
fc, FW .-0;)d
a2 (7.95)
F{Qo - Qo)F' - (Qo -Q*0) + W - o2hh! = 0. (7.96)
O

7.5 Relationships between Reduced Models
7.5.1 Positive definite solutions of Riccati equation
Among all symmetric solutions of Riccati equation (7.80), the positive definite one, £ +,

plays a fundamental role and can found by a couple of numerical algorithms. For example
(Anderson & Moore, 1979), S + can be found from the following matrix

W(l(:F)'_)l-l F +(\|/:vzl-:|'d)({lldpd2'/p2 (797
using the factorization:
T A e A 0 ‘vnovp'
4>:|.v2| v2 _O - va v2 (7.98)
where A is a Jordan matrix with A(A) < 1,j = 1,2...n. Then
Z+= V2V, (7.99)

7.5.2 Symmetrical solutions of Riccati equation

The relationship between an arbitrary symmetric solution £ and S + is expressed in the
following lemma.
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Lemma 7.5.1. Two symmetric solutions, an arbitrary £ and S + > 0, of the Riccati

equation (7.80) are related by
S=S+ +§, (7.100)

where S fulfills the following equation:

. FISdd'SFX
— 4+ +~ o2+ d'Sd (7101)

with
P+ =F —h+d' (7.102)
h+= FE+d/al (7.103)
a\ = p2+ dIS+d. (7.104)

Proof. The proof is given in Appendix A.3.

Given £+, and F'+ related with £+ by equation (7.102), the following lemma gives an
analytic expression for matrix S in terms of eigenvalues of F*+.

Lemma 7.5.2. Assume that T is a transformation matrix such that

Pz T 1AT (7.105)
and Ai (7.106)
i o )
A= 0 a2

where A\ and A 2 are, respectively, m xm and (n —m) x (n —m) matrices in the Jordan
form with an arbitrary m < n and eigenvalues A fulfilling the condition:

0<|Aj <1 j=1,2..n. (7.107)

Then a matrix S of rank m, a solution of equation (7.101) related to this decomposition
has the form
S = T-1X{T~1y, (7.108)

where
X = (7.109)
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Matrix X i is given by the formula

00

%] = _ (7.110)
]=0

where an m vector Si results from the partition

(T-1)'d=6= 2'2 (7.112)

Proof. The proofis given in Appendix A.3.

Remark 7.5.1. S = 0 belongs to the solutions of equation (7.101).

7.5.3 Relationships between the representations

Theorem 7.5.1. The relationship between an arbitrary representation (F*,h,a2) and
(F*+, h+, a\) is expressed in terms of matrix S of equation (7.101) as follows

a2= ct2+ d'Sd (7.112)
* F1Sd
h=h*+~fas3 <7'113)
Sdd’
= 2+ d'Sd" (7.114)

Proof. The proofis given in Appendix A.3.

Theorem 7.5.2. Matrix F has m eigenvalues A, j = 1,2. ..m equal to reciprocals of
the eigenvalues of A x and n —m eigenvalues equal to eigenvalues of A2. Moreover

a2= (detA”V2. (7.115)

Proof. The proof is given in Appendix A.3.

7.5.4 Invertibility

The simplified representation that are based on the positive definite S + can be written
in an equivalent form

X*i+i = P4x\ + h+Zi (7.116)
el = zi-d'x*i (7.117)
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with
F\=F -h +d (7.118)

An important feature is that matrix F*+ is stable:
IAJ(F*+)| = [AJ(A)] < 1. (7.119)

Due to this property, given Zt = {zq,Z\,..., Zij a sequence e, = {eo, ei, m.., £} is generated
by the model in (7.116)-(7.117) such that et -> as i -* oo, where g, is an entry of =
{e0, £i, =+, £}, a representation of the driving noise. This property is called invertibility.

7.5.5 Limiting innovations representation of the general representation

As time i tends to infinity then the solution Si of the dynamic Riccati equation (7.61)
converges to S +:
limSi = £+, (7.120)

i—00
where S + is the positive definite symmetric solution of the algebraic Riccati equation
(7.80), and the innovations representation in (7.58)-(7.59) takes the limiting form:

XiH = Fxi + k+€i, x0=0 (7.121)

yi = d'Xi + ei (7.122)

Wth FRY g (2 123)
+ p2+ d'S+d y

and E(e2) = a2 = p2+ d'S+d. A comparison between(7.121)-(7.122) and (7.63)-(7.64)
with h calculated from (7.78) for S = S+ shows that k+ = h+ and the parameters of
the limitinginnovationsrepresentation of the general model are the same as those of the
invertible simplifiedmodel. The difference is that the simplified model in (7.63)-(7.64) is
valid for all i > 0 while the model in (7.121)-(7.66) is only valid for i —o00.

7.5.6 Limiting innovations representation for the simplified model

Prom (7.82) and (7.120) it follows that the limiting solution Si of the Riccati equation
(7.73) fulfills:

limSi =1limSt-S =£+-5S. (7.124)
1—00 1—00
As a result
lim (h 4-hi) = h+, (7.125)
i—0

so that the limiting innovations representation becomes invertible. If h in (7.63) already
equals to h + then lim*** S' = 0 and lim”~c» hi = 0.
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7.5.7 Discussion of the results

Variances a2 are positive for all real symmetric solutions of (7.80). This is readily seen
from equations (7.104) and (7.115). Moreover, Q9O fulfills the algebraic Lyapunov equation

Q0= FQg'+ hh'a2 (7.126)

for stationary processes and as a result Qq > 0. For nonstationary processes the matrix
Qo is not guaranteed to be positive definite. Two questions arise.

(i) Does at least one simplified representation (7.63)-(7.64) having positive semidefinite
matrix Q gand equivalent with a full representation (7.43)-(7.44) exist?

(ii) Does it make sense to admit models with a negative semidefinite matrix Qg?

As for the former, (i), the choice of the negative semidefinite solution £ to the Riccati
equation (7:80) assures positive semidefinitness of the matrix Qaq.

The assumption that the matrices Qq are positive semidefinite is crucial in the situa-
tion when using the model (7.63)-(7.64) for the simulation of an output process. However,
in the case of (ii), the models with not necessarily positive semidefinite matrices Qg are
also applicable. One example is the output process prediction, in which the physical in-
terpretation for the state vector is not important.

7.6 Time Series Models

The ARMA model is commonly employed as a representation of a stationary time series.
Similarly as in the continuous-time case the Representations Theorem (Astrom, 1970)
shows that there exists a class of covariance equivalent ARMA models having different
MA parts. The relationship between reduced representations and ARMA models allows
to characterize the set of all symmetric solutions to the Riccati equation (7.80) by roots
of MA polynomial.

We will also show that the ARMA model with an appropriate initial condition can also
describe a class of nonstationary processes. The Representation Theorem will be extended
to this class of processes.

7.6.1 Relationship between simplified representations and ARMA models

Theorem 7.6.1. The simplified representation

i+ = Fx* + hvi (7.127)
In= d'x* + Vi (7.128)

7.6 Time Series Models 105
with E {viVj} = 02Sij the initial condition &g~ A"(0, Qg implies an ARMA model
A(z)yi = C(z)vi (7.129)

with the initial condition

Uo — Evg, (7.130)

where the vectors y0 and vO0 contain first n values of output and input signals

Vo = [Wo, Vi m@/n-1]', vo= K vi...un]' (7.131)

and the matrices Cl and E have the following forms

" do "1 0 0. O0°
d[ ei 1 0. O
fl d2 E= ¢2 e 1. 0 (7.132)

1 en-2 ex 1

with
di = F'di-1, d0=d, et=d'~h, e0= 1. (7.133)
Denoting
R = E{yojlo} (7.134)
there is
R = f2Q*0f2' + ¥2EE" (7.135)
with
i
rij —djQodj + & (" + Cjj), i M (7.136)
i=i
i
rij = djQodi + g (£ el+j-iel ej-i), *—j- (7.137)

1=1

The polynomials A{z) and C{z) are associated with matrices F and F* by

A(z) = zn+aizn~l + ... + an = det(zl - F) (7.138)
C(z) = zn+clzn~1+ ... + O = det(zl - F*). (7.139)
Proof. The proof follows upon straightforward calculations. O
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Remark 7.6.1. Very often ARMA model is expressed in the backwards shift (lag) oper-
ator z~1:

= C(z~1)vi, (7.140)

and then
A(z~1) = 1+ a\z~1+ ... + anz~n = det(J - Fz~I) (7.141)
C{z~l) = 1+ az-1+ ... + cnz~n = det(J - F*z~X). (7.142)

Remark 7.6.2.Given an ARMA model of equations (7.129) and (7.138)-(7.139) or
(7.140)-(7.142)then the observer canonical state-space form can be constructed from
the coefficients of the polynomials in (7.138)-(7.139) or (7.141)-(7.142) as follows:

-ai 10 . . 0 'd - ai \Y/

.02 0 1 . .0 Q —a2 0
F = , h = , d=

M _j

on 0 . 0 M 0

7.6.2 Equivalent ARMA models

Assume that the model
A{z)vi = C+(z)v+, C+(z) = det(z7 - F+) (7.144)

with a stable polynomial C+(z) and initial covariance matrix R + driven by a white noise
v+ with the covariance a\ is given.

Theorem 7.6.2. Denote M a class of ARMA models equivalent with (7.144)- Then an
ARMA model

A(z)yi = C(z)vi (7.145)
belongs to M if and only if
m n

c =n - A"1) n - Xi 7.146
(2) j—l(z J):WH(z i) ( )

m
=40 (7-147)

J:
R = R+, (7.148)

where Xj,j =1,2,...n arethe roots of C+(z) and 0 < m < n.

Conditions(7.146)-(7.147) constitute the classical Representations Theorem (Astrom,
1970), which is known to be valid in the case of stationary processes. Condition (7.148)
extends the Representations Theorem to the case of arbitrary initial covariance matrix
R.
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7.7 Remarks on Continuous-Time Process ldentification

In point estimation theory, a function 9(y) of a random variable y, whose distribution
depends on an unknown parameter 0, is an unbiased estimator for 9 if its expected value
satisfies

Eg{9(y)} =9, (7.149)

where E 0 denotes expectation over the parametrized density function p(-; 9) for the data.
A natural measure of performance for a parameter estimator is the covariance of the
estimation error, which for any unbiased estimator fulfills the following Cramér-Rao In-
equality:

B.«» - w» - o» > {* (7.150)

A small covariance of the error is a desired property of the unbiased estimator, and it is
achieved by the so called Maximum Likelihood estimators. Therefore ML estimators will
be sought for our problem in the following.

7.7.1 Continuous-time model identification based on ARMA identification

Assuming that degc(s) = m < n —1 vector 9,
9 = Joil, 02 +mCN 7n-m, e 7n>P ] (7.151)

of the parameters to be estimated contains n + m + | entries consisting of thecoefficients
of the polynomials a(s), c(s) and variance p2 while vector 9%,

9 —[ax,a2.. mQriCi,Qe. «0>@ , (7*152)

contains 2n + 1 entries consisting of the coefficients of the polynomialsA(z), C(z) and
variance a2 of the discrete-time model (7.127)-(7.128). These two vectors are related by
a nonlinear vector function T(9). Calculation of T{9) consists of:

 construction of the canonical form (7.27) for the continuous-time system (7.1)-(7.2),
e computation of F given A based on (7.39),

e computation of W using (7.48)-(7.49) or (7.51),

» determination of the simplified representation (7.127)-(7.128) based on (7.77)-(7.79),

 transformation of (7.127)-(7.128) to the canonical form (7.143).
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Since methods for identification and parameter estimation of ARMA models are very
well developed e.g. (Gardner, Harvey & Phillips, 1980; Hannan, 1988; Hannan &

Kavalieris, 1983; Hannan & Rissanen, 1982)2 the following idea emerged (Soderstrom,
1984; Soderstrom, 1991):

e estimate the vector 9* of discrete-time parameters of an ARMA model,

« restore the vector 9 of the parameters of the continuous-time model.

7.7.1.1 ARMA model identification. In order to make the Kalman filter equations

for the model (7.127)-(7.128) independent of the variance a2 denote cov (a:*) = Q*cr2,
where Q* is a solution of the algebraic Lyapunov equation:

Q* = FQ'F' + hti. (7.153)

Then the one step predictor is determined by

xi+i\i  Fx”_i+ (h + fcjlej, ®0 1= 0 (7.154)
F*S*,i_1d
Ko o-
SJ+1B = - f+'ddy 'S™d )F" S2-1=0Q" J156)
where = cov(x*)/a2 and x* = x* - X'i"_1 and the variance a2 of the one step

output prediction ef= yt —d'x*" x is
<P=aZXa, fa=1+d'S"d. (7.157)

Denotey = {y{,i = 1... N} a sample of the proces. Since {e*,i = 1,2,... N} is a series of
independent normally distributed random numbers with zero mean and variance a,, the
likelihood function has the following form:

L*(y,09) = (2*)-*(Qexp (-5E 4} m (7-158)
i=1 I 1li=1ai)
In practical calculations instead of maximization of (7.158) a function I*(y,0*) =

-In Lnmy,0*) is minimized. Upon neglecting a constant the function to be minimized
is expressed as follows:

r(»f*) = 5Elna? + i £ ; (7.159)

e
z i=i i=i <i

An extensive survey can be found in Btachuta (1996e)
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Taking (7.157) into account this gives:
I-(y,e-)=] In +iE In*+i E </*. (7.160)

Calculating (d/da2)r(y,6’) and equating the result to zero yields:

o1- <7161)

Minimization of the function in (7.160) with respect to the remaining variables is equiv-
alent to the minimization of the function:

ay.n = A7f\/(ri:1)*xt:>|?M - (7-162)
where fa are determined by (7.157).

The function lo(y,0*) can be minimized using the gradient and hessian calculated
analytically or numerically. The estimated model need not necessarily be invertible, but
in the caseof invertible models fa -> 1, and as a result startingfrom certain value ofi for
which fa< 1+ e, wheree > 0 issmall enough, the innovations canbe calculated directly
from the polynomial ARMA model with fa = 1in (7.162). Switching to fast recursions
greatly accelerates computations.

A disadvantage of that approach when used to sampled continuous-time systems
is that due to the over-parametrization of 0* the covariance of the estimator errors
cov (6 - 0*) can be quite large.

7.7.1.2 Restoring continuous-time parameters. Restoring continuous-time param-
eters means calculating 9 = or its approximation if for given 9* the reciprocal
function does not exist.

The part of the reciprocal procedure which consist in calculation of

A =h~lInF (7.163)

is simple and relies on the relationship between the zeros #* of the polynomial a(s) and
the zeros z* of the polynomial A(z):

Ki = h~1\nzi, (t=1,2...n). (7.164)

If Zi is real and positive then there is no problem. If it is negative real then the problem
has no solution. If z©is complex the solution is not unique and then a solution with the
minimum imaginary part can be proposed. A survey of numerical algorithms to compute
(7.163) can be found in (Sinha k Rao, 1991).
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More severe problems are faced when estimating the coefficients of the polynomial
c(s) and the value of p2. The simplest way (S6derstrom, 1984; Soéderstrom, 1991) consists
in finding 9 from:

9 = argmin{[0* - f(9)]'W[9 - T{9)]} (7.165)
for certain W > 0. A survey of algorithms to calculate 0 = Jr~1(9"), valid for the case
p2= 0, is given in Sdderstrom (1984) and Sdderstrom (1991). Unfortunately, when

W9 -T{9)\WAQ, (7.166)

then no continuous-time counterpart exists. Since (7.165) isfulfilled withprobability 1, the
algorithm in (7.165)isthen the only choice. Moreover, due to badquality of 6 estimator,
cov (0 - 6%*) is greater than that predicted by the Cramer-Rao bound in (7.150). This
can be avoided by a direct continuous-time estimation.

7.7.2 Direct continuous-time model identification

Innovations process is described by the following set of recursive equations:

ei=vyi-d"'xif*! (7.167)
xithi= Fx~_1 T *g—21=0 (7.168)
= FE Y 7.169
hi = -——- o ]p-— ( . )
ZiH\i=W + F(17i|i_1- Si™ )F\ 270hl = q (7.170)
2=p2+d'S~d. (7.171)
Denote y = {yui =1...N} a realization of the process(7.43)-(7.44). Since
{e*,i = 1,2,... Arlis a series of independent normallydistributedrandom numbers with

zero mean and variance of, the likelihood function has the following form:

L(y,9) = Tn)-*(nv2)-texp (-1E 4 3o (7-172)

Simple computation of the variance p2 similarly as in (7.161) is not possible, and p2
should be treated the same way as the remaining parameters when minimizing the func-
tion I(y,9) = —InL(y,9). An idea that takes advantage of well developed algorithms
of ARMA identification and makes an effective alternative to direct numerical gradient
computation of L(y,9) is as follows. Observe that

9 = argmin L*[y,Jr(9)\. (7.173)
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Then the gradient of the function L*[y,~r(0)] can be calculated as

VOL*[y,m] =~ p V 0.L*[y,n (7.174)

The second factor can be foundanalytically using algorithms from (Kohn & Ansley,
1982;Burshtein, 1993). No analytic formulae areyet available to calculate thefirst factor
but it can be computed numerically. In the case of a large dimension of y the above
procedure is quite effective. However, it can face severe problems illustrated in an example.

Example 7.7.1. Consider a simple scalar system:

%+l = xu z0=10 (7.175)
yi=Xi +ri (7.176)
Er2=p2=A (7.177)

The function /(A) = I(y, A) to be minimized is:

/(A) = iiVI,A + =1 = Y |InA+ (7178)
where
r=~Y,yl (7.179)
There is
AM ="~ [A-r] (7.180)
92(A N_ | ~7181)
SA2 2A3 J

Prom equation (7.179) it is obvious that A= p2 = r. However, when applying Newton-
Raphson iterations

Nl okX L g2 W QF US (7182)
one gets:
Ack = 183>

Equation (7.183) has an equilibrium at Xk = r. Introduce a new variable 7&t= Xk - r so
that the equilibrium moves to “k = 0 and equation (7.183) becomes:

741 M - (7.184)

From (7.184), a sufficient convergence condition |7fcH| < |7fcl is equivalent to:
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foe <1 (7.185)
or

0<At<-r. (7.186)

From (7.183) it results thatforsmallvalues of & convergence is very slow unless & « r

when equation (7.184) becomes jk+i ~ 0, and that for A*only slightly excceeding r the
iterations become divergent.

To summarize, the above method can efficiently be applied in three situations:
e if the measurements are accurate, r* = 0 for all i,
- if the variance p2 of the measurement noise is known,

« ifthere are good preliminary estimates of p2.

Assuming that sampling is fast and large sample is available problems with estimation of
p2 can be circumvented by applying an approximate procedure proposed by Maine k Iliff
(1981). The procedure is based on an asymptotic Kalman predictor

Xi+iij = Fxi\i-i + heu £01-1=0 (7.187)
U = d®P (7.188)

where
=~ (7.189)

and S is a symmetric positive definite solution of

S=W +F(S- A"-~)F". (7.190)

Treating e, asinnovations with a time invariant variance a2, which isasymptotically
justified for the invertible system (7.187)-(7.188), the likelihoodfunction reduces to

(7.191)

and the negative logarithm reads

‘(y.0)= A E e2+ f Inff2- (7-192)

Since h depends on a2, e* = ej(cr2) and calculating the gradient with respect to cr2 yields:
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2tr4 d 1 N 9m2 (N
~Nd~I{y'e)=a2- NS &+ ~N eiid A d'Aiv- [}\ m (7193)

The last term is a zero mean random variable whose variance tends to zero as /V —* 00,
so that for N large one can use the asymptotic result:

= (7.194)
Ni=1
and then
p2=a2—d'Sd. (7.195)

To retain the parameters of A and c, S is now found from the continuous-time Riccati
equation:

AS + SA' - aSlddzs +cd =0 (7.196)
Equation (7.196) is arrived at upon inserting the approximations:

F~x&I-Ah, hee' (7.197)

into
F-'SF'-1 = F~IWF'~I+S - sggs, (7.198)

which is equivalent to (7.190). A great advantage of this formulation is the simplicity of
(7.194)-(7.196).

For the algorithm bases on approximations, the results can be used as initial estimates
for the exact ML algorithm based on (7.172) and/or (7.174).

7.8 Conclusions

A class of second-order continuous-time stochastic processes was investigated and the issue
of their sampling was discussed. As a result of sampling discrete second-order random
processes, described by linear time-invariant state-space models with a vector input were
obtained. Furthermore, a set of simple representations (7.63)-(7.64) covariance equivalent
with the model (7.43)-(7.44) was proposed. They rely on two sources of randomness. The
first is a scalar noise vit and the second is the n-dimensional initial random vector Xq.
These representations are distinct from the innovations representation of (7.43)-(7.44).
However, they are time invariant, which is an advantage when using them in simulation,
prediction, and parameter estimation.

As far as simulation is concerned, it surprisingly appears that the representation based
on the negative semidefinite solution, 27_, of the algebraic Riccati equation (7.80) is the
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most important one. On the other hand, the representation which is related to the positive
semidefinite solution, S +, is most convenient for the output process prediction. In this
case, as time i approaches infinity, the sequence Szin (7.73) converges to the zero matrix.
This leads to the simple structure of the formulas, where a separation into asymptotic
and transient terms is attained.

Relationships between the simplified representations and ARMA models were dis-
cussed and the Representations Theorem was extended to a class of nonstationary stochas-
tic processes.

The identification issue for continuous-time stochastic processes based on sampled
data was discussed, and several methods, with the stress put on Maximum Likelihood
estimators, were outlined.

The simplified representation was found useful also for parameter estimation of
continuous-time processes.

8. State-Space Approach to Predictive Control

A clear and unified approach to the MV, LQG and GPC control problems based on the
input-output and state-space representations of Box-Jenkins models will be presented. 1
Its two main advantages are: an integral action of the controller attained with a realistic
stationary model of the disturbance, and a reduction of the computational complexity.
Moreover, it will be shown that employing Chandrasekhar equations can improve the
computational efficiency for receding-horizon control problems as compared to the use of
Riccati equations. The above savings are particularly important for systems with a large
value of the delay/sampling period ratio, and for high-order step-response models. The
approach has also been shown to be an efficient design method for the optimal infinite
horizon control systems.

8.1 Introduction

A quarter of century has passed since Astrom (1970) started a direction of control theory
based on the input-output description of discrete-time systems working under stochas-
tic disturbances; the aim being design of controllers which optimize a receding horizon
quadratic performance index. One of the best known and widely used algorithms of this
class is the so called Generalized Predictive Control (GPC) (Clarke, Kanjilal & Mohtadi,
1985; Clarke, Mohtadi & Tuffs, 1987; Clarke & Mohtadi, 1989). In spite of its limitations
(Grimble, 1992),this approach attracted an immense attention of control practitioners
just from the beginning, which resulted in a large number of papers presenting further
theoretical development and applications.

The LQG state-space theory was being developed independently, e.g. (Kwakernaak
& Sivan, 1972), until Caines (1972) published a relevant paper investigating relation-
ships between the Astrom and the Kalman controllers for the ARMAX system. Then the
state-space approach to this class of systems was practically abandoned until Lam (1982)
published a paper dealing extensively with state-space design methods. This direction

1The chapter is based on (Btachuta, 1996/; Btachuta, 1996h; Btachuta, 1996i; Btachuta, 19986) and
(Btachuta, 19996).
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was then continued by Clarke et al. (1985). Both Lam and Clarke et al. claimed that
the optimal filter is not the one which is used in the optimal control algorithm. Warwick
(1987) resolved the dilemma by defining a state-space model of the process different than
the commonly used ’innovations representation’. This point of view was then reinforced in
(Warwick, 1990; Warwick, 1992) and (Warwick k Peterka, 1991). Btachuta (1987) identi-
fied the source of problems in Lam’s papers and showed that what Lam proposed was in
fact a non optimal filter followed by a non optimal feedback producing the asymptotically
optimal controller by cancellation of two successive errors. The point was that a control
law in the form of a linear feedback from the state estimate,

Ui = -k'xi\i, (8.1)

was assumed by Lam, Clarke et al. and Warwick to be optimal under a zero set-point,
which unfortunately is not the case when the system and measurement noises are corre-
lated, (Uchida k Shimemura, 1976). State-space solutions to the control problem can be
obtained by using either the one shot OLF (Open Loop Feedback) or Riccati equation
based CL (Closed Loop) approach. An excellent book of Bitmead, Gevers k Wertz (1990)
and a paper of Kwon k Byun (1989) treated the GPC and LQG problems in the state-
space framework using the CL approach. Unfortunately, although attempt was made to
force a coordinate-free theory, the system model used in (Bitmead et al., 1990) and (Kwon
k Byun, 1989) for observer and controller synthesis is different than any state-space rep-
resentation of the ARMAX model and the links between state-space and input-output
approaches remain not always clear. A state space approach to GPC control of a state-
space ARMA model similar to that used in this chapter was independently presented in
(Matko, 1990) and (Kwon, Lee k Noh, 19926) assuming a time-invariant filter. The above
links are explained in more detail in the paper of Krauss, Dall k Biinte (1994) with exten-
sions to multivariable processes in (Krauss, 1996; Krauss k Rake, 1994; Krauss k Rake,
1995), where relationships between the state-space model, the Kalman filter gain, the op-
timal predictor polynomial and the input-output model have been found after solving the
control problem, and in the paper of Gambier k Unbehauen (1993), which unfortunately
bases on a control algorithm of the form (8.1).

A common feature of (Clarke et al., 1985; Clarke et al., 1987; Clarke k Mobhtadi,
1989) and (Bitmead et al., 1990) is a generically one-step delay model of the system to be
controlled in which a delay k > 1 is accounted for by equating to zero several coefficients
of certain polynomial. A peculiarity of this model is that to arrive at a controller which
minimizes a single-stage cost, k iterations of the Riccati equation are necessary. There is,
however, another phenomenon (noticed e.g. in (Clarke et al., 1985)) which demonstrates
as a singularity of the associated Riccati equation if the control costing is zero and k > 1
It has been shown by Btachuta (1987) that the above is caused by assuming an implicit
delay model and can be avoided by a simple reformulation of the system model and
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performance index. A series of papers following and extending the lines of Caines published
by Btachuta k Ordys (1984), Btachuta k Ordys (1987), Btachuta k Ordys (1988) and
summarized in (Ordys, 1989), gave deeper insight into the relationships between optimal
and asymptotically optimal regulators for one-stage performance indices. This chapter
generalizes that approach to the LQG and GPC control problems. An extension of the
earlier works of Btachuta and Ordys to a state-space description of the GPC can also be
found in (Ordys k Clarke, 1993). Unfortunately, the above paper suffers from the implicit
delay singularities, which preclude the possibility of studying some of those aspects of
LQG and GPC that are discussed here. The chapter is organized as follows. First, a brief
summary of the GPC in the input-output framework is given. Then the optimal filtration
and prediction problems are discussed in connection with a state-space representation of
an ARMAX model and their links with input-output predictors are presented. Next two
types of solutions, the OLF solution and the CL one, to the control problem are presented
with the stress being put on the solution that bases on Riccati equation. Finally, links
between the state-space and polynomial approaches are highlighted and a comparison of
advantages and disadvantages of various solutions is given.

8.2 Summary of the Polynomial Approach to GPC

For the sake ofbrevity here only a regulator problem with a zero set point is addressed.
The problem considered is a slightly modified version of that of (Clarke etal., 1987), but
extensions to the full problem with a nonzero reference signal are then easy to obtain.

8.2.1 Classical problem statement

The problem is as follows. For each time instant i find a sequence of control increments
Aui... Aui+Nu, with Auj = 0 for j > Nu, minimizing the following receding-horizon
performance index:

i+Nz— 1
U=E{Ji)=E{ £ ylj+X £ (Au»j-1)2} (8.2)
j=Ni j=1
for the ARIMAX plant:
AAiz-"yi = B(z~DAui-i + C(z~21yvi, (8.3)

where Ni, N2and Nu are certain integers; z~I is a one step delay operator, A = 1—z~I,
and A(z~x), ~(z-1) and C(z") are polynomials. Only Aut is applied at instant i and
the whole procedure is then repeated as i increases. In this way, an integral action in
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the control loop is guaranteed but unfortunately, the implicit disturbance model becomes
nonstationary:

A{z~XVi = B{z~1)urk+ (8.4)

Note that realistic disturbances are usually modelled by stationary stochastic processes
characterized by their spectral density or correlation function. Therefore another methods
of offset rejection are considered further.

8.2.2 Basic problem
The system model is assumed to fulfil the following ARMAX equation:
A{z~l)yi = B{z~1)u*k+ C(z~x)vi, (8.5)

where A(z) = znA(z~1), C(z) = znC(z~1), and B(z) = zmB(z~1) are monic polynomials;
k =n—to > 0, and is a normally distributed independent stochastic variable with
E{"i} = 0, E‘{vivj} — &ijV2- The value of the discrete-time delay k belongs to the
model specification and, whether correct or not, is known at the design stage. The control
objective is to minimize a moving-horizon performance index

i+N—2 i--Nu—
li=E{Ji}, E yl+k+X £ u), (8.6)

= =

where Nu < N and additionally it is assumed that
Uj = Oforj > Nu. (8.7)

Here N is called a cost horizon, Nu a control horizon and the index k represents a delay
in the control path. The optimal control problem consists in finding an Nu vector it* of
current and future controls Ui = [«* Uj+i,..., UiNu-\\ which, given information contained
in the vector yi = [y0,..., yhu0,..., Uj_i], minimizes Ih i.e.;

uj= ¥i(yi) = argmin/ilyi. (8.8)

The above problem statement is flexible enough to cover both LQG, with finite receding,
one step (GMV) or infinite horizon, MPC problem (e.g. (Lee, Morari & Garcia, 1994)) as
well as GPC control problems, with the distinguishing attribute of GPC being Nu < N
in contrast to LQG where Nu = N.

Predictions Vi+\i of the output signal based on the information vector yt play the
crucial role in the solution to the GPC problem. They are calculated from the ARMAX
model as follows:
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StH>=cyz-w * + +fpr7*- |-9>

For the predictor (8.9) to be stable the ARMAX model in (8.5) must be invertible. The
polynomials Ej(z~1), Fj{z~x), Gj{z~I) and fj(z_1) fulfil the following Diophantine equa-
tions:

C = EjA +2-"Fj (8.10)
EjB = GjC 4 z~jtj. (8.11)

It is also well known that the coefficients eand  of the polynomials Ej{z~1) and Gj(z~X),

A'(z_ 1) = =Y,gktiz-1 (8.12)
(=0 i—0
are the Markov parameters of system (8.5). Denoting = [j/i+ili, 32« eee>&+Mi] then
from (8.9) we have
yi= Gui-k+i +fv (8.13)

where theN x Numatrix G and the N vector f i of thefreeresponse predictions result
from equation (8.9). Thesolution to the problem requiresthat thefollowingsystem of
linear algebraic equations is solved:

(G'G + XIUi = —G "fi+k_i. (8.14)

For numerical reasons,the value of the control horizon Nushouldnot be toolarge within
this approach. A recursive solution of a system of equations similarto(8.14) canbe found
in (Kwon, Choi, Byun & Noh, 1992a).

8.3 State-Space Models

8.3.1 ARMAX and ARIMAX models in state space

It isassumed that the ARMAX system (8.5) is described in state space by a model which is
an extension of the simplified representation (7.127)-(7.128) to contain the control input:

*i+i = Fxi + gui + hvi (8.15)
di=dixi+ W (8.16)
in which F is an n x n matrix; g, h and d are n-vectors, and the initial condition, x 0, is a

normal random vector with E {x0} = m 0, cov {(a;0 —m 0)} = ¢2Qo> being independent
from the disturbances, i.e. E (xoVi) = 0,i =0,1,...
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Introduce vectors
do=d, dj = F'dj-i, j = 1,2,... (8.17)

Then the Markov parameters gj, ej forj = 0,1,... can be expressed as:
=09 =d'j*g =d'F*'g, j >0 (8.18)

e0= 1, ej=d'jxh =d'Fj~lh, j >0 (8.19)

and for /c-step time delay in the control channel we have
9=09i=0 ... pfc!=0, gk=b0" 0. (8.20)

For the stochastic process to be stationary the subsystem controllable from  must be
stable and QO > 0 should fulfil the following discrete algebraic Lyapunov equation:

Q0= FQOF' + hti. (8.21)

Usually a different problem statement can be found in the literature, e.g. (Clarke et al.,
1985;Clarke et al.,1987; Clarke k Mohtadi, 1989; Ordys, 1993), where aproblem is
defined using increments of the control signal Aut = —Uj_irather than the actual
control input Ui.

xf+#l = FAxf + gAAui + hAVi (8.22)
Xi=d*'xf +M (8.23)

and the matrix F A necessarily has at least one eigenvalue X(FA) = 1. The above model
is a state-space model of the ARIMAX model in (8.4). It is not any more stationary, and
equation (8.21) does not make sense for this model.

8.3.2 Output prediction

The optimal j-step ahead predictor yt+j\i, which is based on informationcontained in y{
is defined as a conditional mean yi+j\i = E (j/i+jlyj), forj = 1,2,...and can be expressed
in terms of = Eix*y”, supplied by a Kalman filter, as follows:
j-k
ViHj\i =ViHli + y{+j\i = £ 9j-iui+ + d'j_1{F*xA + hyi). (8.24)
1=0
A variant of (8.24)for j = k can be found in (Blachuta & Ordys, 1984;Blachuta &
Ordys, 1987). From (8.24), the vector of predictions yi = [yi+i|i, Vi+2\i, e*e, 2i+Ari] can be
collected as:
Vi=Gui_k+1+ fi, (8.25)
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where the N x Nu matrix G is given as G (i,j) = 9i-3+k
From (8.24) it follows that the free predictions, y{ﬂ\y fulfil the difference equation

y{+H\i + aiy{+j-i\i + eee+ any{+j_nN= 0, (8.26)

for j > n, which after initialization by the first n free predictions from (8.24) can be used
e.g. for fast calculation of the entries of the vector  in (8.14).

8.3.3 State filtration and prediction

On substituting Vi from equation (8.16) to equation (8.15) one gets

Xi+H = F*Xi + gui + by, (8.27)

y{=d'xi + Vi (8.28)

with F* = F - hd!. It is readily seen that given measurements y,, an unknown initial
vector x 0 with the mean m 0 and the covariance matrix a2Q 0 is the only source of uncer-
tainty in equation (8.27). According to Anderson k Moore (1979) Kalman filter equations
for system (8.27)-(8.28) can be written in the form:

(i) (measurement update)

Xi\i = + k{[yt- d'xi-i], x0_i =m0 (8.29)

(ii) (prediction)
xi+ni = F*Xi\i + gut + hyi (8.30)

with the Kalman filter gain, k{, given in the formula

<831)
where
Si = cov(ii|i_i)/(T2 (8.32)
is a scaled covariance matrix of the one-step predictor error £Cjji-i = xt - Niois
determined by a recursive Riccati equation
z » ' - ™ S°- Q% (833)

Inserting Xi\i calculated from (8.29) to (8.30) yields the following equations of a one-step

state predictor:
xi+m = Fxqi-i + gui + hiti, *o[_i = mQ, (8.34)
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where
hi=h +kp (8.35)

and the innovations ti = Vi —d 'x *i constitute a zero mean white noise process with
var (e2) = of = (1 + d'Std)a2 (8.36)

Vector k\ results from the formula

k' = F k { - r f f i h <8 -3 7 >

Certain authors, e.g. Meditch, (1969), prefer writing equations (8.29)-(8.30) in the reversed
order, and/or the Riccati equation for Si = cov (x"), where x* = xt- x”, instead of
Si (Ordys, 1993). The main differences are complicated forms ofexpressions for initial
values xQoand S 0as opposed to initial values x0_i and £ 0-Thus, thereis no point in
using equations of Meditch and equations (8.29)-(8.33) should be preferred.

8.3.4 Time-invariant filter and state predictor

Provided that the ARMAX model is invertible, i.e. C(z) = det(zJ —F*) is a stable
polynomial, we have lim ~” 27* = 0 and lim*-,,*, k{ = 0. This means that asymptotically,
as time i tends to infinity, both the predicted, and the filtered, x*, values of the
state vector become equal. The same is true if only C2(z) is stable in the B-J model.
Denoting Xj|j = Xjli_i = Xj, from (8.29)-(8.30) the equation of the asymptotically optimal
state filter becomes:

Xiti = F*Xi -l-gui + hy{ (8.38)
Although this result is present in (Caines, 1972), some authors Lam (1982), Clarke et al.
(1985) do not accept it, trying to derive another filter, in the form of equations (8.29)-
(8.30)but withk{ replaced by kf, where kf is an arbitrary vector thatfulfills the equation

h = Fkf. (8.39)

In viewof uniqueness of the Kalman filter, the filter with kf ~ 0 obviously does not
constitute the optimal filter, even asymptotically.

8.3.5 Time-invariant output predictor

Definition 8.3.1. The time invariant predictor is defined as
j-k

Vitj\i = J2 9j-iui+i+ d'_1(F*xi+ hyX), (8.40)
i=0

where xt is the asymptotically optimal state estimate calculated from (8.38).
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Theorem 8.3.1. The time invariant predictor given in eq. (8.40) is input-output equiv-
alent with the predictor of (8.9)

Proof. It is clear that
YAgj-iUi+i = Gjiz-"Ui+j-k (8.41)

1=0
with Gj(z~I) determined in (8.12). This proves the first part of formula (8.40). To prove

the second part insert
xi={zIl-Ft)-\oui+ hyi) (8.42)

to (8.40). Observe that
F‘xi+hyi=z(zI-F*)-1-9yim (8-43)
The rest of the proof bases on the identities
ajz - F ot - o (8 -44>

4(z1- FT'9 = - G,(2), (8.45)

where Ej(z) =z 1Ej{z-1) and Gj{z) = z~ O ,~-1). To check the identities in (8.44)
and (8.45) observe that:

(zJ - F*)-1= (23 - F)-1[1 + hd!{zl - F)"1-1 (8-46)
[j + hd!{zl - F)-1]-1h =~ h (8.47)
[/+hd\zI - F)-1 g =g- ® h. (8-48)
Now, taking
Fj-\zI - F)*“1=zi_1(z7- F)1~"2Fj~Izl (8.49)
1=0
into account yields (8.44)-(8.45). n

8.4 State-Space Solutions to the Control Problem

The original problem statement is that of the Open Loop Feedback i.e. it isassumed that
the control lawW{ —fi(yi), based on information contained in yj should minimize the
performance index (8.6) under assumption that no measurements will be available at the
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future time instants belonging to the control horizon. This procedure is being repeated
at each instant i. A Closed Loop control algorithm is derived under assumption that new
measurements will be available at any time instant belonging to the control horizon N.
Although these two approaches use different algebra, it is well known that equivalence
exists between OLF and CL algorithms for receding-horizon LQG problems such that
both algorithms give the same control law at the current time instant i. This results
directly from the Certainty Equivalence, which states that to find the optimal solution to
an LQ stochastic control problem a deterministic control problem in which any stochastic
variables are treated as they were exactly known is to be solved and then any uncertain
variables should be replaced by their optimal estimates given y

8.4.1 OLF solution

When using the OLF solution then from (8.25) it results that
Ui =-(G'G + AJ)-1G'Z>(F*ii|li + hVi), (8.50)

where D is an A/x n matrix, D' = [dk~\ mmdk+"_i], and the control algorithm is of the
following form:
Ui = -k'c[F*Xi\i + hyi], (8.51)

where the vector KCcan beexpressed in terms of systemparameters as the first row of

the matrix (G'G+XI1)~1G'D. Apparently, the control law (8.51) isdifferent than that

of equation (8.1).For k = 1, a result similar to that of equation(8.51) can be found in
(Ordys & Clarke, 1993) and (Krauss et al., 1994).

8.4.2 Solution by Riccati equation

Minimization of the performance index of equation (8.6) with respect to equation (8.7) is
equivalent to minimization of

i+N—
h=E £ (ykk+ xtf) (8.52)

j=i
with A, see e.g. (Clarke et al., 1987), being defined as follows:
forj = i,...i + Nu— 1, A = A= const (8.53)

forj = i+ Nu,...i+ N —1, \j —»o0. (8.54)

At this point, the GPC control problem has been embedded into the framework of LQG
problems and its solution is given by the following theorem:
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Theorem 8.4.1. The optimal control law has the form:
m = -k'c[F*Xi\i + hy,] (8.55)

foe = (8-56)

P % ,

A+ g'oPog

where Po is calculated from the following set of recursive equations:
(i) (Lyapunov)

Pj — F'PjAF + dk-\d'k x, PN = dk-id'k_1

(8.57)
forj = N —1,..., Nu, and
(ii) (Riccati)
p>m F{p>+"'-W A)F+dt-A -
(8.58)
forj = Nu—1,... 0, where the vector dk-\ results from the recursion:
do=d, dj=F4dj.xj=12,.k- 1 (8.59)

Remark 8.4.1. Notice that due to the special form of systemequations (8.15)-(8.16),
the control law in eq. (8.55), which is a function not only of the state estimate but also
of a current reading yt is somewhat different than the usual linear state feedback.

Proof. From (8.15)-(8.16) and (8.59) it follows that

k-1
yj+k = 4-1 (F xj + hvi) + 9kUj + J2 e‘v3+k-i. (8€°)
1=0

where gt and el are the corresponding Markov parameters:

g=0g¢g=d_19=d'F*g, j>0 (8.61)
e0=0, ej =dj_ig =d'Fj~1g, j >0 (8.62)

and for a fc-steptime delay in the control channel there is:
0=0 9g\=0, .°¢, gk-1 = 0, gk=ho" O. (8.63)

The performance index J, in (8.6) with (8.7) is equivalent to the following:
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i+N-I
li=E{J) = E{ Y, y2k+ XjUr}, (8.64)
j=i
where
Al = Afori=20,1,... Nu- 1and (8.65)
Aj —oo0 fori = Nu,...N —I. (8.66)

On substituting (8.60)into the above performance index and averagingthe terms con-
taining noise which is in future with respect to any time instant j one gets

li=E{JI} + N<r2J2et (8.67)
i=i

i+N-I
J[= £ {[d"*"2Fxj + hvj) + bOUjI2 + XjUj}. (8.68)
j=i
A solution to the deterministic problem (8.15) with the performance index (8.68) can be
found based on the Hamiltonian:

Hj =[dk x{Fxj -Fhvj) + boujj2 + Xju2+ 2p'j+1(F xj + giij -I-hvj). (8.69)
Assume that the adjoint variable p3is of the form
Pj = dH/dXj = (Pj - dk \d'k_-y)xj + f]j (8.70)

with pi+N = 0. The optimal control minimizes the Hamiltonian, i.e. it can be calculated
from

= + (8.71)

k' = (872)

(8.73)

(8.74)

with fi+N = 0 and P 1+n = dk-idk x, forj =i+ N —1,... ,i. As a result, for current

time i we have
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JV-
U = -ki{Fxi + hvi) + £ Oitkvi+k, (8.75)

k=1
where 6i}k do not depend on state or noise. On applying the Certainty Equivalence Prin-
ciple (Uchida & Shimemura, 1976), i.e. replacing stochastic variables by their estimates
based on information available at time i, equations (8.55)-(8.58) are obtained. O

A solution to the problem with k = 1 can be found in (Ordys & Clarke, 1993).
However, when used for problems with k > 1, it may lead to serious problems if A= 0
(for details see (Btachuta, 1987)). Equivalence of the vectors kc calculated using different
approaches has been explicitly shown in (Kwon et al., 1992a).

8.4.3 Infinite horizon problems

Although GPC is stated as a finite receding horizon problem, its concerns are associated
with the stability and minimum variance performance properties of the infinite horizon
performance index. However, when presented as an LQG problem, it can also be stated
as an infinite horizon problem. Assuming that the matrix F is stable we are able to solve
a problem with a finite Nuand N -v oo. Then instead of solving the Dynamic Lyapunov
Equation (8.57) the following Algebraic Lyapunov equation is to be solved:

P =F'PF + dd! (8.76)

and its solution isto beused for the initialization of the Riccati equation (8.58).1f Nu= N

and N —>o00 then tofind the optimal controller the following Algebraic Riccati Equation
is to be solved:

P=F'(P- *y9=* )F + dk_ idk v 8.77

(P Zy85IF + diidk 8.77)

Remark 8.4.2. In (Grimble, 1990; Grimble, 1995; Ordys & Grimble, 1996) and (Taube
& Lampe, 1992) an idea of a Dynamic Performance Predictive controller is presented
which aims at combining the properties of GPC and LQG to retain the ‘tuning knobs’ of
GPC and to maintain the stability of LQG. The performance index llqgpc = E {Jlqcpc}
defining the so called LQGPC problem is believed to guarantee this task, where
iT i T i+N-l i+Nu-I
Jioepc = hm =Jim j, £ yj+k+ A E (8.78)
~ =0 1i=0

Upon rearranging the terms, (8.78) can, however, be written as follows:
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showing that the problem is equivalent to an ordinary LQG problem. Thus the GPC *tun-
ing knobs’, N and Nu, lose their original meaning and particular approaches of (Grimble,
1995; Ordys & Grimble, 1996; Hangstrup, Ordys & Grimble, 1997) and (Taube & Lampe,
1992) are not necessary to solve the problem with performance index (8.78).

8.5 Relations Between State-Space and Polynomial Solutions

8.5.1 Polynomial input-output form of the control algorithm

Theorem 8.5.1. Polynomials D(z) and F(z) of the input-output polynomial algorithm
D{z)ui = —F(2)yi (8.80)

are related to the state-space terms: F*,g, h and P q as follows

D(z) —\C(z) + zg'P0Oadj (zI - F*)g (8.81)
F(z) = zg’P Oadj (zI —F*)h. (8.82)

Proof. The proof follows by combining a control algorithm of the form (8.51) with the
asymptotic filter (8.38). O

Remark 8.5.1. From equations (8.81)-(8.82), simple formulae can be obtained for a one-
stage performance index:

Pg= dk_ id'k It kc- -jdk-\. :
q= dk_idk_It kc A+6éd\ (8.83)

Due to (Blachuta & Ordys, 1984), from (8.81)-(8.82), taking the identities (8.44)-(8.45)
and (8.20) into account one is able to write:
D(z) = z(‘SIiC(z) + zEk(2)B(2) (8.84)
F(z) = z[zk~xC(z) + Ek(z)A(2)\. (8.85)

The above formulae express the regulator of Clarke and Hastings-James (Clarke &
Hastings-James, 1971). It is interesting to note that if Nu = N and A = 0 then
Po = dk_id'k_x of equation (8.83) is also the solution of the Riccati equation (8.58).
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8.5.2 The characteristic polynomial

Theorem 8.5.2. The characteristic polynomial of the closed-loop system composed of the
plant (8.15), filter (8.38) and controller (8.51) has the form:

pW = TIJ}Ogl XAM + z9,poadj (zI- F)g}. (8.86)

A-|9g'

Proof. The state-space equation of a closed-loop system composed of the plant (8.15),
filter (8.38) and controller (8.51) can be written in the form:

Xw = dXr+abl, (8.87)
where
X[ = (x[x\) . g =(al.9'2), (8.88)
o= (I - gk'o)F ,®n = (I - gk'c)hd’
o2 =0 , 02 = F* (8.89)
gl= (I - gk'c)h ,02=10
Hence the characteristic polynomial of the system is:
p{z) = det(zJ - ®) = det(zIl - F*)det(zl - F + gk'cF)
= ,)6(\+Cg(fIAOg tAA(z) + 29'P oadj (z1 - F)g}. (8.90)
O

Remark 8.5.2. For one-stage performance indices, from (8.83), (8.44) and (8.90) it fol-
lows:

PW = A+ Gy + bozkB(z)]. (8.91)

If A= 0then the stability of the closed-loop system is determined by the stability of B(z).
Due to Remark 8.5.1, equation (8.91) is valid for any N = Nu if A= 0. This also clarifies
the observed stability problems of GPC for small values of A

Remark 8.5.3. On calculating p(z~1)p(z) with p(z) of (8.90) and P 0 of equation (8.77)
one gets that the characteristic polynomial of the infinite-horizon LQG problem fulfills

p(z-Dp(z) = C(z=)C(2)[XA(z~=DA(z) + B(z~1)B(2)}. (8.92)

Thus the stabilizing solution of the Riccati equation (8.77) produces a stable characteristic
polynomial p(z) in spite of the value of Awhich could have been found by spectral factor-
ization of (8.92). Another method to achieve stability with a finite horizon performance
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index is the so called GPC with terminal state constraint (Chisci, Lombardi, Mosca &
Rossiter, 1996; de Nicolao, Magni & Scattolini, 1996; de Nicolao & Strada, 1997). Solu-
tions to infinite cost horizon problems with control constraints can be found in (Scokaert,
1997) and (Scokaert & Rawlings, 1998)

8.6 Covariance Characteristics of the Control System

In this section formulae for variances of both the output and control variables will be
derived in two cases. The first, simpler, one is when optimal Kalman predictor is applied.
We have then the following theorem.

Theorem 8.6.1.

Gyi = varZi= d'Vid, + of (8.93)
al. = varUi = Kc[FViF'+ hihtf)kc (8.94)
Vi+i = (/ - gk'o)[FViF' + hihxal){l - gk'c)' (8.95)

with V0= 0.

Proof. Observe that from (8.55) and (8.34)-(8.35), when expressing the control law in
terms ofthe predicted state variable rather than in terms of the filtered state variable
Xi\i, the following system of equations can be written:

Vi=d'x"i +6§ (8.96)
= -kdF xtli_i + hiti] (8.97)
Xitili = (7 - gk'c)[Fxi\i* + hjCi]. (8.98)

Now, taking into account that the state predictions and innovations are independent, one
is able to write (8.93)-(8.95). O

Equations (8.93)-(8.95) are only valid when the optimal filter is applied. As a matter of
fact, the dimension of the state of a closed loop system containing a plant, a filter and a
controller is twice as great as the dimension of the state space of the plant alone. Hence,
in the second case, we have the following theorem.

Theorem 8.6.2. The variances agi and afli are expressed by:

a2. = d'[W\l4-W3}2+W f+W22]d+ a2 (8.99)
afi = Kc[FW\IF'+ FWAddi + hid'W2IF' + hid'W 2dc¢' + Kh'%2]kc, (8.100)
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where the covariance W, = cov(ea'|i_1,ii]j_i)' of the augmented state follows from a
recursive equation

wiHl=$iw&\ +~iay (8-101)

with the initial condition Wo being a block matrix with

Wjl=0, WR=0, WIl= O,W 2= QO. (8.102)

<H and -yl in(8.101) areblock matrices with

(7 - gk'o)F, & 2= (7 - gk'Jhid"

#2 =0, K2 =F —hid’ (8.103)
1) = (7 - gk'c)hi, ~2=h - ht.

Proof. The system of equations (8.96)-(8.98) is augmented by the prediction error Xj|i-i.
Then expressing €< as €= d'x”"-i + Vi yields

= (7 gk¢)(Fxi\i~i -n~d Xt2_i (-nivi) (8.104)

Ei+i\i = (F - nid9)xivi-i + {h- hiyvi (8.105)
y{= d'xi\i-\ + d'iiii-i + Vi (8.106)

Ui = -fcc(Feili_i + hid'xi\i-i + h”i). (8.107)

O

Equations (8.101)-(8.100) are valid whether optimal or asymptotically optimal filter is
applied. Derivation of equations that are valid when there is a mismatch between the
plant and model structure and/or parameters is also possible in a similar way. Due to
the use of predictor equations instead of filter equations, the formulae obtained are much

simpler than those presented in Ordys (1993).

8.7 Box-Jenkins Model and Offset Rejection

In this section some structured models will be studied as a basis of LQG and GPC.

8.7.1 Input-output approach

Perhaps the most general and versatile model of a linear plant with a stochastic distur-
bance has the following form in the input-output framework:
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where degA0 — n0, degA[ = n[, degB[ = m[ and degA2 = degC2 = n2. The two
channels: the control channel and the disturbance are partly separated and the polynomial
AO represents this part of the dynamics which are shared by both of them. Since the
model in (8.108) is presented in (Ljung and Sdderstréom, 1983) it will be called the Ljung-
Soderstrom model (L-S).

The Box-Jenkins (B-J) model is defined as follows:

Vi = A"Z'—h.) Ui~k + Ai(z:_[)Vi’ (8-109)

where deg”j = nj, degi?! = m\ and deg” —degC” = n2. The B-J model consists
of two parts, one being a model of the control channel whilethesecond is amodel of
a stochastic disturbance. Assuming that the B-J model is obtained from (8.108),then:
A] = AdA[, A2= AdA2. Finally, given an L-S model, an equivalent ARMAX model can
be found in which

A = AOAXA2, B = BXA'2, C = C2A[. (8.110)
The L-S model is defined by no --n[ 4 mi + 2n'2+ 1 coefficients of the polynomials in
(8.109), the B-J model by2n04 n[ +rrii+ 2n24 1 coefficients while the ARMAX model
(8.5) of order no + n\4 n2requires no + 2n[ +mi + 3n2-1-1i.e. n\ 4 nQparameters more

than the L-S model. The L-S model is thus preferred for its parsimony. The predictor
equation for the L-S model is of the form

r F
Vi+j\i —GjUi+j-k H - - Ui-k 4" (8.111)
AlL>2 c?

where the polynomials G”z-1), r,(z_1) and Fj{z~I) are the solutions of the following
Diophantine equations:

C2 = EjA0A24 7 iFj (8.112)
A2BiEj = GjA[C24 z 3Tj. (8.113)

A variation of the L-S model that leads to a controller with an integral action is as follows:

Mz~)' =~ B ) Au-k+W ~ v* o)

By setting certain polynomials equal to 1, equation (8.108) may represent any known
input-output models, including an integrated step-response. As a result, solutions to vari-
ous problems, e.g. different versions of MPC, are included in equations (8.111)-(8.113). It
is to be emphasized that, unlike the ARMAX based standard approach, introduction of
the A operator does not cause either nonstationarity or nonivertibility of the stochastic
part of the model in (8.114).
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8.7.2 State-space approach

For the system of equations in (8.15)-(8.16) to represent a B-J model it should be written
in the following decomposed form:

x]+i = F1x] 4 gluh cov(xE - mj) =0 (8.115)
x]+H = F2Xi 4 h2Vi, cov(xq- ml) = Q@ (8.116)
y{—dvx\ 4 d2x24 (8.117)

Given a polynomial B-J model (8.109), then the vectors and matrices defining (8.115)-
(8.117) can be constructed using e.g. canonical forms. Also the step-response model can
easily be incorporated in (8.115), leading to a state-space solution similar to that of (Lee
et al., 1994).

Assuming that the control channel is of type / > 1, B-J model allows for bias rejection
while retaining the stationarity of the stochastic part. This is attained either when the
plant itself is of type I, or by using the actuator of type | (e.g. electrical servomotor)
or finally by using a discrete-time integrator with the transfer functionl/(1- z~I) and
treating it as a part ofthe plant model. Moreover, as shown in (Blachuta, 1996f),B-J model
is more parsimonious than its ARMAX equivalent, and provides better computational
efficiency, for details see (Blachuta, 1996f).

In the B-J model of (8.115)-(8.117) vector x] is deterministic and only x\ requires

Kalman filtering.

8.7.2.1 State filter for B-J-type model. Assuming that the model of a system is in
the form of (8.115)-(8.117), then the filter equations for the control channel are trivial,

*ilt — *0]-1 —m 0 (8.118)
= FI*\i +9lUi (8-119)
and a nontrivial filter is only necessary for the disturbance channel:
No=4-1 4+ -d®% . (8.120)
*i2¢)i = F 2% Ri + (8'121)
with Xgi ! = m | and the Kalman filter gain, fe{2,
j2
fc/2 (8.122)
ki "14 d2z2d2' 1 A

where S 2 is defined by a set of recursive equations
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i 2j2yi2 .
S$'2—J2 i L W2 — IP292p*2/
. A TTFd2E 2d2’ i+1~
Here F*2=F2—h2d2, = QI and Qg is a solution of

Ql = F2QQF 2 + h2h?2.

8.7.2.2 Controller for B-J-type model. Assuming that the model of the system is in
the form of (8.115)-(8.117), the controller equation is of the following form:

Ui= -kI'F'x" - kM"N[Ft2x% + h 2Vi]

with
= Q J2— w__
c A+gi'piy c~ A+ffi'lPSV’
where P j1lis a solution of the following recursive equations:

pH =FvprHiFi +d_ici/ i

forj = V- 1,... Nuwith P)J = and
v pron PERIIVPYa N i
o~ ( ,+"“ A+ >F +

forj =Nu- 1,...,0
Matrix P 21 can be found from

Pf=F2P*“1F1+d2 14'_1

forj = AT- 1,..., Nu, with P~ = d~jdj~lj and
P2l= F2P 21Bj+ d jd~j

forj = AU—1,..., 0 with

R

(8.124)

(8.125)

/q 4oc\
( }

(&127)

(8.128)

(8-129)

(8.130)

<8i3i)

8.7.2.3 Infinite horizon problems. Assuming that matrix F 1is stable and denotes

Then to solve the infinité-horizon, N —00, GPC problem, the following ALEs:

<8'132>
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Pll= FIPnF1+d~jdnj (8.133)
p21 = F 2'p21B | + d2_idI/_i 134)

are to besolved andthen recursions of equations (8.128) and (8.130) are to be per-
formed. Inthe case of LQG problem with Nu= N and N —»o0, only a system of algebraic
equations:
(i) Riccati
pn =pi,(pii _ +dtid”i (8-135)

(ii) Lyapunov of (8.134)

is to be solved.

8.8 Fast Algorithms

As it is well known (Morf, Sidhu & Kailath, 1973), for some special filtration problems
matrix Riccati equations can be replaced by so called Chandrasekhar-type equations.
Based on this theory, it will be shown that instead of updating n2 entries of a Riccati
matrix only 2n entries of two vectors plus one scalar variable are to be updated. For n > 3,
this reduces the number of calculations.

8.8.1 Chandrasekhar-type equations for the controller

If ones aim is only to find a series of gain vectors instead of matrices P iti= 0,...,N —1,
it can be found from a set of vector Chandrasekhar equations. Unfortunately, this is only
valid for finite horizon LQG problems, i.e. when Nu = N.

Theorem 8.8.1. The controller gain, kit reads

(8.136)
where:
A = A+1(l + P2H), "XN = X+ bl (8.137)
gi = gi+1+ Pi+\F'pi+i, gqN = bodk (8.138)
Pi = F'Pi+i ~ A+i9i+i> Pn = VAdfc (8.139)
and

Ri = id'Pi)/AL. (8.140)
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The Riccati matrix Pi can then be calculated from

Pi=Pi+l + PN = dkrdlk v (8.141)
Proof. Let us introduce differences 6P 1 = P i+1-P i of the Riccati matrix P xand denote

F*+i = F - gkt+l. Then Aj, and 6P {can be expressed by the differences SPt+] as
follows

A< = Aj+l - ¢'6Pi+lg (8.142)
kc= feeti _ Fi+itPi+i9 (8 143)
6Pi = F?+I[6Pt+l + 6Pi+I9f 6Pi+I}F'i+l (8.144)

fori =N —1,... 0 with the terminal condition for equation (8.144):

&Pn-i=Pn —Pn-i = dk("E\T Zg)d'k— (8.145)
From (8.145) it follows that foralli=N —1,...0
SPi=w"-*w'i, (8.146)
and
wifaw'i = PiHw i+l - (Wbitlg) SHM +iJ7 +i. (8.147)

Thematrix equation in (8.147) is then factorized yielding the following system of equa-
tions:

Wi = (F - gkf+l)'wi+i (8.148)
* (8.149)
Al = A+ + {wi+lgi<tsi+I. (8.150)

A transformation of equation (8.143) gives

K=kU+{ 9 &. . (8.151)
Introducing new variables, and pt, where
Qi = Akl Pi = Wi(faXi)® (8.152)

with the terminalconditionsqN = b0dk, and pN = \f\d k. Prom (8.151), when expressing
ki by ki = qi/Xi we have
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Qi = Qi+i + 4>iH\(Wi+lg)F wi+l. (8.153)
Finally, expressing wi+\ as
wit\ = Pi+iifa+tiXi+i) 2 (8.154)
gives
Qi = Qi+1+ 9’§+F\ "p oI+l (8.155)
Ri — Aivi th 9 P+ (8.156)
\+1

Proceeding the same way, two first equations in (8.150) become

- s g'PJ-H ” <q>§ 8 157

Pi = (F'Pi+l - ~ oo pis AL (8.157)
2

S (g'Pi+i) 8.158

$Hi = <it[l KA ( )

From (8.158) and (8.156) it follows, however, that faX, = fa+iXi+l and

Pi= FPi+tl- (8.159)
\+1

Finally, from (8.147) it results that 6Pi = -PjPi/Aj. U
8.8.2 Chandrasekhar-type equations for the filter

It is now assumed that the process defined by (8.15)-(8.16) is a stationary one, i.e. that
the covariance matrix a2Q0 is based on a solution of

Q0= FQOF"' + hti. (8.160)
For such Q0 > 0 to exist, the subsystem controllable from u, must be stable.

Theorem 8.8.2. The vector k{ is defined as

kf ~ — (8.161)
1~ Wi’
where
ri+l = Ti{l1- Qj), r0= 1+ d'Q0d (8.162)
hi+i —hi  &ilii h0 Qo* (8.163)
li+l = F*{li - ctihi), 10= rO(F*QO0d + h) (8.164)
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with
Oi = (d'li)/ri. (8.165)
Matrix S t is given by
. . (1)
22+l —£i — S q= Q0. (8.166)
Proof. When defining
6Si =S i+l~ Si (8.167)
and
<=1+ d'Sid (8.168)
then the following equations hold:
ri+i = n +d'SSid (8.169)
Pu(f+1_ U Al-Md")6Sid 8.170
I IEmmmmees T (8.170)
6Si+l = F*(J - k{d")[SSi - dd'SS']{l _ k{dy F-" (8.171)
ri+l
We also have
SSQ= -rO(FkO+h)(Fko+h)". (8.172)

The above formula can be rewritten in the form 550 = wO0<Pow0 with wO= Fk® + h,

Vo = ~r0 which leads to the factorization 5Si = w ~ w Now, equation (8.171) takes
the form

wisigistwinn = F(1 - OWIIPi - — 2 d)V i3 - k{d)F" (8.173)
ri+

which implies

witl = F*(l - k{d")wi (8.174)
ipiw'jd)2

Ipti = - (_p__ id) (8.175)

ri+l

The remaining equations are

Ei+l = -S» + ViWiwi (8.176)
ri+i =+ ipi(d'wi)2 (8.177)

ri+l

In the next step we introduce vectors /i* and It as follows
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hi = rik{, li= Wi(-ipiri)i (8.179)

We are now able to eliminate variable <7 and to transform equations (8.177)-(8.178) to
the form defined in equations (8.162)-(8.164). Inserting w %= lii-piTi)'* to (8.177) gives

riti =Ti- (8.180)

From (8.178) we have
hi+i = hi + ipiWiwid. (8.181)

Finally, from (8.181) equation (8.163) is obtained. Similarly, from (8.175) and (8.177), we

have
q+ir<tl = ipiTi (8.182)

while from(8.175) and (8.179)it follows
+1= F* - - 0, i+ir*171i
li+l= F*(7 nM % [ylwri 1]i (8.183)

As a result,combining (8.183)and (8.182) gives (8.164). O

8.9 Conclusion

In this chapter, a class of predictive control problems has been solved based on an explicit-
delay ’innovations-type’ state-space process model and a receding-horizon quadratic per-
formance index. The solution consists of two parts.

The first part, which consists in finding the optimal controller gain is connected either
with inverting a Nux N u matrix in (8.14) or with calculating the controller gain vector kc
from a combination of Lyapunov and Riccati equations. The computational complexity
of the solution that bases on a Riccati equation depends both on the cost horizon N and
the system order n and not on the control horizon Nu, and even infinite horizon problems
can be solved within this approach.

The second part consists in finding the filtered state variable, which can be accom-
plished either optimally by using a full Kalman filter (8.29)-(8.33) or only asymptotically
optimally by using the time invariant filter in (8.38). The above methods can be combined
so that the predictions for n steps ahead are provided by the optimal Kalman filter or
the asymptotically optimal filter and further predictions are calculated from the recursive
equation (8.26).

It has been shown that Chandrasekhar equations can improve the computational
efficiency as compared to Riccati equations because instead of updating n2 entries of a
Riccati matrix only 2n entries of two vectors plus one scalar variable are to be updated.
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For n > 3, this reduces the number of calculations. The above savings are particularly
important for systems with a large value of the delay/sampling period ratio, and for
high-order step-response models.

Vector Chandrasekhar-type equations have been derived for both the controller and
filter gain vectors.

9. Intersample Behavior of Controlled Systems

The chapter deals with discrete-time control of continuous-time systems driven by ZOH
with pulse amplitude modulation and disturbed by a stationary Gaussian process with a
rational spectral density. 1 The algorithms considered have the form of a linear feedback
from the Kalman filter. We concentrate on some time functions that characterize the
performance of the continuous-time system with discrete feedback. A methodology of their
calculation is developed. Some results of the related works in the area are generalized and
extended.

9.1 Introduction

The majority of the contemporary digital control algorithms are those designed in discrete-
time. Usually the methods of the controller synthesis take the behaviour of a continuous-
time system into account only at discrete-time instants, assuming that when the sampling
period is small information about the system at sampling instants is sufficient to determine
the inter-sample properties of the controlled system.

This assumption results in the controller synthesis based on the discrete model, usu-
ally in the form of ARIMAX model. Here the direction started by Astrom should be men-
tioned that includes: minimum-variance controllers (MV), generalized minimum-variance
controllers (GMV) (Astrom k Wittenmark, 1997), and controllers that minimize one-step
and multistep performance indices. LQG (Clarke et al., 1985) and GPC (Clarke et al.,
1987; Clarke k Mohtadi, 1989) algorithms are typical members of that group.

Many methods of the controller synthesis (especially when the sampling frequency is
high) lead to high-energy, sign changing controls. This results in a discrepancy between the
system output behaviour at discrete time instants and its real, i.e. inter-sample behaviour.
Also when the sampling period is long, inter-sample values of the continuous time system
output can differ significantly from the values measured at sampling instants. As the
algorithms are designed for stochastic models, variances of both the system output and
the control signal are of great interest.

1The chapter is based on (Btachuta, 1996a) and (Btachuta & Polanska, 1995).
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In (Btachuta & Ordys, 1987; Btachuta & Ordys, 1988; Biachuta & Polanski, 1987) it
was shown that transients in both GMV and GPC controlled systems can significantly
differ, depending on the type of filter used.

The problem of intersample variances in sampled-data systems was addressed in
(de Souza & Goodwin, 1984; Lennartson, Sdderstrom & Sun, 1989; Lennartson &
Soderstrém, 1989) and (Williamson, 1991). de Souza & Goodwin (1984) consider only
cyclo-stationary output variances when single-stage minimum variance controllers are ap-
plied and do not generalize to transients and more advanced controllers. (Lennartson et
al., 1989; Lennartson & Sdderstrom, 1989) contain somewhat more general theory ap-
plicable to systems with arbitrary controllers based on from time-invariant state state
estimator with emphasis put on the steady state. A methodology of the discrete systems
design which takes into account the inter-sample phenomena was developed by Williamson
(1991). He gave formulae in his book for the output variance of a continuous time system
with a discrete-time controller. However, they are also valid in the steady state only.

The chapter extends the results obtained in (Btachuta & Ordys, 1987; Biachuta &
Ordys, 1988; Blachuta & Polanski, 1987; Ordys, 1993) for discrete-time ARMAX models
to the continuous time. It also generalizes the formulae obtained in (Williamson, 1991)
to the case of transient states in systems with optimal and asymptotically optimal filters
when the state-space representations of GMV, LQG and GPC control laws are used.

The chapter is organized as follows. First, models of continuous time systems with
stochastic disturbances are presented. Then a model of discrete-time observations and
control as well as a resulting discrete model are discussed. Next a discrete-time controller
is introduced as a linear function of the state estimate. Finally, a system of equation is
derived which allows calculation of expected values and covariances of the state, control
and output variables at arbitrary time instants.

The results are illustrated with examples calculated using algorithms implemented in
MATLAB.

9.2 Continuous stochastic processes

A wide class of stochastic processes with a control input can be described by the following
system of equations

dxt =(A xt+ but)dt + cdft 9.1)
zt =d'xt. 9.2)

Here zt isascalar process,x t is an n-dimensional state vector, A is a matrix with constant
coefficients, ¢, b and d are vectors, Utis a control input and  isa standard Wiener process
(Gikhman & Skorokhod, 1969; Gikhman & Skorokhod, 1972; Kucera, 1972). The symbol
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d stands for the differential. The initial condition Xqis a normally distributed random
vector, x0~ Qo).
Equations (9.1)-(9.2) can be treated as a compact notation of

dx\ — [Alx\ + bxut)dt 9.3
dxl = A2x2dt + c2dEt 9.4)
zt = d[x\ + d'2x (9.5)

Then the first equation is interpreted as a model of the control path while the second as
a model of a disturbance.
The solution of equation (9.1) has the form

xt:eMx0+JoneA"buads+J/0“eA"cd"s. (9.6)

The process ztgiven by equations (9.1)-(9.2) is completely characterizedby its first two
moments. Theexpected valuesare independent of vector ¢, and covariances are indepen-
dent of mean values of both the initial state, , and control, ut. This enables us to
analyze equations for the first and second moments separately.

In the sequel we will assume that the following Lyapunov equation:

AQO+ QOA = —¢c. 9-7)

has a symmetric solution Q0 > 0, which ensures the stationarity of the stochastic com-
ponent. The spectral density E (uj) of the stochastic component can then be determined

by
E{u) =d\sl - A)~lcc'(—sl - Al)~ld\asju. (9.8)

E(ui) is a real rational function and can be represented as:

C(*)C(-j) _,CCM 2 (99)
r(w) " A(SA(-S)IsswW™ 1A(jto) 1’ (
where:
ja(s) = det(sl - A) (9.10)
C(s) = d'[adj (si - A)]c. (9-11)

From (9.8) and (9.11) it is seen that for a given spectral density function E(u) of the
process zt (with ut = 0) and the fixed polynomial A(s) there exist polynomials C(s), and
thus vectors c, forwhich the system (9.1)-(9.2) is a model of theprocess ZtAmong them
we always can find such a vector c, that all roots of thepolynomial C(s) lie in the left
half-plane (Astrom, 1970).
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9.3 Sampling and discrete-time control

In this chapter we consider systems with constant inter-sample controls. Assuming that
fort <s < t+« there is us = ut —const we can write

X t+T = eArxt + utj eAvbdv + eA(T~s)cdEs. (9-12)

The continuous-time signal which is a realization of the continuous-time process is sam-
pled, that means it is measured at discrete, equally spaced time instants <= hi, where h
is a sampling interval and i is an integer. Denote 7, = y(tt) and xt = x(tt). The equation
of a sampled process takes the form

= d'xt + rit (9.13)

where rt is a discrete, white Gaussian noise, i.e. E [r"j] = 0 fori ® j and E [r2 = p2. The
process r, is a model of a measurement error. As the process vy, is discrete-time it can be
described by a system of discrete-time stochastic equations

Xi+i= Fxi + gui + Wi (9-14)
yi= d'xi + ru (9.15)

where to, is a vector-valued white Gaussian noise with covariance matrix W . Matrices
F, W and vector g are determined as follows

F =eAh,g=£ eAsbds, W = £ eAscdeA'sds. (9.16)

Let QOdenote acovariance matrix of a stationary discrete processx, with it, = 0,
1=0,1,....Thenthe  matrix QO fulfills the discrete Lyapunov equation

Q0=FQOF' +W. (9.17)

Since the vectors xt and cc, are the same at t = ih, their covariance matrices are equal at
t = 0. Prom this property a method of computing the matrix W results in which we first
calculate QO from the continuous-time Lyapunov equation in (9.7) and then from (9.17)
we have

W = QO0—FQOF". (9.18)

9.4 Control algorithms

In this section we discuss a basic control problem that leads to the state-space LQG or
GPC algorithm in the form of a linear feedback from the state estimate:
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ui = -kix ilj. (9.19)

Let li be a performance index with the receding horizon N

i+N-I i+Nu-1
i =E £ y2l+X £ u), (9.20)
j=i j=i

where Nu < N, with the additional assumption that:
Uj =0 forj > Nu. (9.21)

The horizon N is called a cost horizon while Nu - a control horizon. Depending on the
values N, Nu and the relations between them various control laws can be obtained. For
JV = Nu we get a general LQ problem with either one-step (Anderson & Moore, 1979;
Astrom, 1970; Bfachuta,1987; Btachuta & Ordys, 1987; Btachuta &Ordys, 1988), or
multistepfinite (Clarke et al., 1985) and infinite (Astrom, 1970;Kuéera,1972) horizon.
In the case of Nu < N the GPC algorithm (Clarke et al., 1987; Clarke k Mohtadi, 1989)
is obtained. We have the following theorem.

Theorem 9.4.1. The optimal control Ui is determined by a linear relation
Ui = -(fc, + }d\)'xi\i, (9.22)

where ,

fc. = (923)

' g'EiQ
and Po is obtained from the following recursive equations:
(i) Lyapunovforj = N —1,... Nu:

Pj = F'Pj+iF + dd!,PN = 0, (9.24)
(i) Riccatiforj = Nu—1,...,0:
p, = . R+ % ~ )F-+ 9 25>
Matrices F,, Q, and scalarr are determined as follows
Fm=F —rggdl,Q.=r-djdi, r=g2+ A (9.26)

where dr = F'd and g0 = d'g. For an infinite horizon problem matrix P is the positive
definite solution of the algebraic Riccati equation

YF. + Q, (9-27)
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Remark 9.4.1. If A 0 a solution of equation (9.27) can be found using classical meth-
ods. In the case of A= 0we have Q,, = 0 and then the solution P = 0 is only stabilizing for
minimum phase plants, i.e. plants with stable matrix F*. For discrete-time, nonminimum-
phase plants specialized algorithms should be used (Kucera, 1972) to find the stabilizing
P >0

In the case of stable matrix F infinite cost horizon N —»00 can be assumed in the
GPC algorithm with a finite value of Nu. Then, instead of recursive Lyapunov equation
(9.24) the algebraic equation

P=F'PF +dd! (9.28)

is to be solved and the solution is to be used for initialization of the recursive Riccati
equation (9.25). It should be stressed that usually the GPC algorithm is derived in different
way, where the ARIMAX model and a nonzero set-point are assumed.

9.4.1 Non-zero set-point

The above algorithms can also be used as a solution to a control problem with the reference
signal changing in the step-wise manner when the moments of change are not known
a’priori.

In the steady state the expected values fulfill the following system of equations:

Axom = buQ (9.29)
d'xo = w (9.30)
d'Axm = 0 (9.31)
d'’Amxm = 0. (9.32)

Since for the systems with m poles at the origin the rank of matrix A isn - m, then to
obtain the solution x” when the system is of Type m, m —1 equations of type (9.31)
should be added and «oo = 0 should be set. For systems of Type 0, and ux can be
found by solving the system of only two equations (9.29), (9.30).

Consider the following control problem:

Xi+Hi = Fxi +gui+wu x0~ A0, Q0) (9.33)

Zi = dxi+ (9.34)
i+N- i+Nu—L

A=E E {j+l- w2+ A E (Y- Ug)2 (9.35)

j=i j=t
Instead of solving this problem we can solve a problem in increments
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6xi+i =FSxi +gSu{ + Wi, Sx0~ M{-Xo00, Q0) (9.36)
Szi =d'Sxi + Ti (9.37)
i+N— i+Nu-I
A= E E <NM+1+ A E (9-38)

j=i j=i
It has exactly the same form as (9.14)-(9.15) and (9.20). The optimal control for the
problem (9.33)-(9.35) can be obtained from the solution of the problem (9.36)-(9.38) as

Ui = ux + Sui (9.39)
Zi = w + Szi. (9.40)

The optimal control of a system having at least one pole at the origin does not require
any calculation of Uoo- Therefore it is more convenient and less sensitive.

In the case of Type 0 plants, the same effect can be obtained by introducing a discrete
integral element to the controller. This corresponds to the approach to the LQG and GPC
problems which is presented in (Clarke et al., 1985), (Clarke et al., 1987) and (Clarke &
Mohtadi, 1989). The increments 6ui

6v,i = Ui~ Ui-1- (9-41)

should then be interpreted as a control variable for system (9.14)-(9.15) augmented, for
the sake of the controller synthesis, by (9.41) with w,_i regarded as an additional state

variable.

9.5 State estimation

Denote by and xt|, linear state estimates that minimize mean square error of the
state vector Xi, given measurements up to the instants i—1 and i, respectively. They are
produced by the Kalman filter defined by a set of equations, (Anderson & Moore, 1979)

xti = Xi\i-i + hi{yi - d'xi\i-\), Xo|-i = Mo (9.42)
xi+ii = FXi\i + gu? (9-43)
Vector hi is determined by covariances and | °f the state estimate errors as
follows
h _ s Hi-id (9.44)
p+d'S~d

Y »lxn-1 , =0 (9 45)

o il p2+d!Ei\i-\d 1 0
Si+\i = W + FSi\iF". (9-46)
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9.5.1 Time-independent estimator

In applications (Kwakernaak k Sivan, 1972) recursive equations (9.44)-(9.46) are often
replaced by the following algebraic Riccati equation

Filter parameters are then time-independent and are given by
h=FSd/o2 a2=p2+d'Ed, (9.48)

where S is the non-negative definite symmetric solution of the equation in (9.47). The
filter is only asymptotically optimal. It is, however, of a great practical importance be-
cause, when used for control, it gives controllers with time-independent parameters. On
the basis of (9.42)-(9.43), the predictor equations take the following form

~ FIEjlj,,1'¢ T X0 1= IXg (9.49)
yi = d'xi + ei. (9.50)

9.6 Characteristics at sampling instants

In this section we will give the formulae that enable us to calculate the evolution of
the mean value and covariance matrix of the state vector of the closed loop system at
sampling instants. It is also a starting point to the calculation of the inter-sample mean
and variance of the output and control signals.

Denote

Xi = E (Xi), Zi = E(z<), Ui = -k""Xi (9.51)
Oi = E(Xi - xi)(xi - Xi)*, v2= Efa - Zi)2, (i2= E(Ui- v-i)2. (9.52)

Theorem 9.6.1. Assuming that a control system contains the true Kalman filter (9.42)-
(9.46), then the state covariance 6t, output variances v2 and control variances fi2 can be
written as follows

ei+l = (F - gk'i)Ox(F - gk'i) + + W (9.53)
v2 = d'Oid (9.54)
n2=Ki(dl + £i\i)ki. (9.55)
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A variant of the above formula of Theorem 9.6.1, valid for the steady state, is given in
(Williamson, 1991). The formulae in (9.53)-(9.55) are true under the assumption that
E [XiXi\ij = 0. Unfortunately, this assumption is not satisfied in transient process when
the time-independent state estimator (9.49)-(9.50) is used. Now we will derive slightly
more complicated formulae which do not require that E (xjx,|j) = 0 and do not use the
matrices £ t\i- Proceeding this way we will obtain correct results also in the case when the
steady-state filter (9.49)-(9.50) is used.

Theorem 9.6.2. For the expected values there is:
E{xi\i-i) =0 (9.56)

xi+i = (F - gki')xi, x0= M- (9.57)

Covariance matrix Qt results from the recursive Lyapunov equation
0 i+l = (2i&if2'i+ -W F'. (9.58)

The corresponding relations for the output Zi and control Ui are:

Zi=d'xi, U= -k'iXi (9.59)
v2=d'&"d (9.60)
=k'rki + &2l + 2fc@12)j + a2p2, (9.61)
where
li— w; Qd Gi kihi (9.62)

Matrices fi,, Ft and Vi are block matrices with the following pattern

F -gk'i gk'i{l-hid")

= . (9.63)
0 F(J - hid!)
Vi -gk'i - W0 9.64
ERCEIRA LS TN (.64
Matrix QO is also a block matrix with
=02=&I2=02 = QO (9.65)
where QO is the solution to the Lyapunov equation (9.7).
Proof. Denote
X —[Xi, Xjjt_x] (9.66)

8X —\{Xi  Xi)j *ili-] (9.67)
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and
0i= E(SXiSX"J. (9.68)

Then the equations of the system (9.14)-(9.15) controlled using algorithm (9.19) and the
filter (9.42)-(9.43) or (9.49)-(9.50) can be written in the compact form

= © %kl ng(llll- ::3')) xtr 190 hvi\gi (9.69)
or
X i+l —f2iXi + 1 tVi (9.70)
and
Ui = -k'iXi + Ki(1 - hid")xin_i - kihiri. (9.7)

Now taking into account that = 0, E{rj} = 0and E{x0-i} = 0, we get (9.57)-
(9.58) and

6 X i+l = fliSXi + /><. 9.72)

In this way equations (9.58) and (9.60)-(9.64) are obtained. Analogously, for variances we
have

i2=d’0\Id (9.73)
M = K[G}L + (7 - hzd")0?2{I - dh') + 2&12(1 - dh'i) +hih'iPZ~. (9.74)
O

Formula (9.74) can be transformed into the numerically more efficient form of (9.61).

9.7 Inter-sample characteristics

From the relation (9.51) it is seen that the mean values and covariances at inter-sample
time instants can be determined by the appropriatevalues at sampling instants. As a
conclusion we get the following result.

Theorem 9.7.1. The mean value and covariance of the output Zi(r) are given by the
formulae:

Mt) = f\(j)'xi (9.75)
4(t) = fIXT)O]IH](T) + f2(T)e?2fUT) + 2f1'(r) & t2f B(T)
+ d'W(r)d + P2[7.12(1)]2, (9.76)

where x{ and 0, are given by the equations (9.57)-(9.58). The remaining values are de-
termined as follows
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fl(r) = f(r) - 7(r)ki, /2(r) = 7(nNZi, 7*2(t) = 7(r)» 9.77)
W(t)= Jo eAscc'eAsds (9.78)

and
f(r) =d'F(r), 7(r) = d'g(r), o= fc'ii, U= - atd. (9.79)

9.8 Remarks on Simulation

Simulation of the continuous-time system (9.1)-(9.2) with sampled measurements (9.13)
and a discrete-time controller in (9.19) which uses the state estimator (9.43)-(9.47) or
(9.50)-(9.51) can be performed in two different ways.

The first method uses the intersample solution of the equation of the controlled pro-
cess. Assume that the discrete time instants i are assigned the time instants tt = ih. In
that case (9.12) can be written for 0 < r < h as follows:

Xi(r) = F(r)xi + g{r)ui + w (v), (9.80)
where T T
F (t) = eAT, g(r) = JOTeAvbdv, w(t) = J/o eAMfcd”s). (9.81)

From (9.80) it follows that for 0 < r < h there is
Zi{r) = I'(r)x< + 7(r)ui 4 "(r), (9.82)
where
[(r) = d'F(r), 7(r) = d'g{r), (9.83)
and ip(T) is a white noise with zero mean and variance
o%t) = d!W(r)d. (9.84)

Then having the values of the state vector x, and control ut = —k'xi\i at sampling instants
U = ih we can find the values of the output z”r) at an arbitrary time instant t = ih +r.

The second method can be applied when we are only interested in the output values at
Nd equally spaced time instant within the sampling period. It bases directly on equations
(9.14)-(9.15). Assuming that the discretization was performed with the period hN = h/Nd
then the closed loop system is simulated with the assumption that during Nd steps the
control U does not change:

U = —kjXj\j, j = id\vNd. (9.85)

In both methods the initial condition Xqand the vector to, are defined as follows:
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x0=f}0+Ln, Wi= Mrrii
QO0=LL', W =MM", (9.86)

Matrices L and M can be calculated using the Cholesky decomposition. Vectors and
n are independent zero mean Gaussian variables with unit variances, i.e.

E{m¥m} =1, i —0,1,..., E{titi'} = I, E {77777} = 0. (9.87)

9.9 Example

A control system was investigated in which the control path is given by the following
transfer function:

°-9s+1

m(7+1)3’ (9-88)
while the disturbance channel is represented by

driven by white noise with unit variance. The variance of the measurement error was
p2 = 0.2. A hybrid LQG control algorithm was used minimizing

I = _Ijl_%)E
The sampling period was h = 0.3. Both the expected values of output and control signals
and variances of these signals were calculated when the reference value w(t) changed at
t = 0 from 0 to 0.1. Two types of filters were examined: the optimal Kalman filter and its
asymptotic, time invariant version. In figures 9.1-9.4 transients obtained with a controller
based on optimal filter are presented whereas in figures 9.5-9.6 results obtained with the
time invariant filter are displayed.

9.10 Conclusions

Studying the inter-sample behaviour of the continuous-time stochastic systems with
discrete-time controllers gives much more insight into the properties of a control process
than only restricting attention to the sampling instants. In the chapter tools are derived,
which are independent of the type of the filter used, for calculating important character-
istics of control systems valid for arbitrary time instants in both transient and stationary
states. State-space representations of continuous-time stochastic processes proved to be
efficient for controller synthesis, giving unified approach to the commonly used control
algorithms, and for calculation of important characteristics.
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Fig. 9.1. output mean

Fig. 9.2. Control mean
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Fig. 9.3. Output variance
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Fig. 9.4. control variance
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10. Conclusions

In this work, several problems related to the discrete-time control of continuous-time
systems were analysed, and the following detailed results were attained:

1. A theorem has been proved that, for small sampling periods, characterizes the ac-
curacy of all limiting zeros of the pulse transfer function of a system composed of
a zero-order hold followed by a continuous-time plant. The theorem gives a correct-
ing power term in the sampling period h to the asymptotic result of Astrom et al.
(1984), whose degree depends on the relative order of the continuous-time counter-
part and its contribution is expressed in terms of Bernoulli numbers and the poles
and zeros of the continuous-time transfer function. The result allows the accuracy
of approximate pulse-transfer functions to be determined.

2. Two theorems concerning zeros of sampled data systems with a first order hold
at high sampling rates have been proved. The first shows that the limiting intrin-
sic discrete-time zeros are determined by exponential mappings of continuous-time
zeros. The second characterizes the accuracy of all limiting zeros including the dis-
cretization ones. Similarly to the ZOH case, the main result has the form of a cor-
recting power term in h added to the asymptotic zero, whose degree depends on the
relative order of the continuous-time counterpart and its contribution is expressed in
terms of Bernoulli numbers and parameters of the continuous-time transfer function.

3. Because of their structure, the approximate pulse transfer functions are useful for
identification of sampled-data systems and to deliver estimates of both discrete-time
and continuous-time parameters. They also offer advantages in the theory of model
matching and robust control. The accuracy of our approximations are superior to
those based on the ~-operator presented in (Goodwin et al., 1986).

4. A new discrete-time model, V ~, of a sampled-data system consisting of a zero-order
hold and a linear plant with a feedthrough has been presented and compared with
the classical model V +. It has been shown that because of violation of the closed-
loop causality the classical model T>+ related to the right-side limit of the output
signal with the transfer function H+(z) is not feasible for feedback modeling if there
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10. Conclusions

is a feedthrough in both the plant and controller. The new model, T>, related to the
left-side limit of a discontinuous output signal has been shown to be appropriate for
modeling feedback systems. Its transfer function H~(z) appears to be vital for both
the return difference and the characteristic polynomial of the closed-loop system.
T>~, whose sensitivity to the unmodeled dynamics is small is also better suited
for state estimation and observer-based controllers than T>+, whose sensitivity is
extremely high.

It has been shown that the purely discrete-time approach to the LQR based control
systems design suffers from severe disadvantages when the sampling rate becomes
high. They demonstrate as ringing’and high magnitudes ofthe control signal. These
phenomena are caused by the properties of the sampling zeros of pulse transfer
functions at high sampling rates. The proposed method of a hybrid discrete-time
controller design does not exhibit these disadvantages. Provided that the order of
the desired output model equals to the relative order of the continuous-time system,
the control signal tends to a smooth continuous-time function when the sampling
rate increases.

A class of second-order continuous-time stochastic processes was investigated and
the issue of their sampling was discussed. As a result of sampling discrete second-
order random processes, described by linear time-invariant state-space models with a
vector input were obtained. Furthermore, a set of simple representations covariance
equivalent with a vector driven model was proposed. They rely on two sources of
randomness. The first is a scalar driving noise vt, and the second is the n-dimensional
initial random vector x*y These representations are distinct from the innovations
representation. Moreover, they are time invariant, which is an advantage when using
them in simulation, prediction, and parameter estimation.

. A class of predictive control problems has been solved based on an explicit-delay

‘innovations-type’ state-space process model and a receding-horizon quadratic per-
formance index. The solution consists of two parts. The first part, which consists
in finding the optimal controller gain is connected either with inverting a Nu x Nu
matrix or with calculating the controller gain vector kc from a combination of Lya-
punov and Riccati equations. The computational complexity of the solution that
bases on a Riccati equation depends both on the cost horizon N and the system
order n and not on the control horizon Nu, and even infinite horizon problems can
be solved within this approach. The second part consists in finding the filtered state
variable, which can be accomplished either optimally by using a full Kalman filter
or only asymptotically optimally by using a time invariant filter. It has been shown
that for n > 3 Chandrasekhar equations improve the computational efficiency as
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compared to Riccati equations because instead of updating n2 entries of a Riccati
matrix only 2n entries of two vectors plus one scalar variable are to be updated.
Vector Chandrasekhar-type equations have been derived for both the controller and

filter gain vectors.

. A study of the inter-sample behavior of the continuous-time stochastic systems

with discrete-time controllers gives much more insight into the properties of a con-
trol process than only restricting attention to the sampling instants. Tools are de-
rived, which are independent of the type of the filter used, for calculating important
characteristics of control systems valid for arbitrary time instants in both transient
and stationary states. State-space representations of continuous-time stochastic pro-
cesses proved to be efficient for controller synthesis, giving unified approach to the
commonly used control algorithms, and for calculation of important characteristics.
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A .l Proofs for Chapter 2

For small h and any finite s, si, s2 E C the following obvious identities hold:
esih —es® =(sj - s2)h + o(h) (A.D

1—e~s™ =sh +o(h), (A.2)

which will beused in what follows.
Proof of Lemma 2.2.1 From (2.6)-(2.8) we have

i =51 ®
Ah{s) = Y, li{s,h), (A.3)
where .
1l(s>) = + Gfc+jU). (A4)

s + j lujs

Inserting (2.22) into (A.4) yields:

M 7 hk+i(sh + j2nl)k+l + (sh - j2nl)k+l

- < eeF S Kk — [W .+ (2ri)2].+.—
hk+2(sh + j2nl)k+*+ {sh-j2nl)k+2 k+2
+ 9k+lh [(«/») + (2ttZ)2]fct2 ( (G

On expanding the binomials in (A.5), reducing common terms due to (j)g = (-j)q —
(-1)i for geven and (j)g= —{~])qfor g odd, and taking only the smallest powers of h

one gets:
f( - N2 fif(A)*+i -I_O(/I*+i)> w
7;(s, h) = 2rri , (A.6)
(-Dt2[(fc 4 L)sgk - gk+i](~y)fcr2+ o (M+2> k even-

Calculating the sum of the infinite series in (A.3) and employing (A.2) yields:
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<MM) = (-DAi2sgld® A +o(hk+l) (A7)
fa(k,s) = (—)*2s[(fc + 1)sgk - gficHlr t) A+ °(ffcs2)> (A-8)

where C,(x) = X"10\/nx isthe Riemann zeta function (Edwards, 1974; Titchmarsh,1986).
For even x, i.e. x = 2i, there is:

The proof is completed by taking (2.23) and properties of B2i collected inRemark 2.2.1
into account. O

Proof of Lemma 2.2.2 Equation (2.22) can be seen as a result of the expansion

@ n
G(*)=£ § (A.10)
i=k 6
of G(s) about s = 0o, where Q are the Markov parameters of G(s), which can be calculated
for any i recursively from:

Pm 1 ’
9k ! 9i+k = (Pm—  ~ ,®n—9i+k—); (A-H)
J—
or, fori > n, from:
&n9i+k + @—fi+k—2*e¢'4' QQ—m = 0. (A.12)

Since the characteristic polynomial of the difference equation (A.12) is the same as that
of the continuous-time system G(s), the Markov parameters are related to the poles nl
by the formula

n
ok+i = (A-13)
J=
where Garechoosen  so asto match the first n —1 valuesof the Markov parameters
defined in(A.ll). For |s; > max|Re 11],j = 1,2,...n the series in (A.10) is convergent
and the rest of the proof is immediate. O
Proof of Lemma 2.2.3 Equation (2.24) follows directly from (2.22) with

AH(z) = (1 - z~1)Zh( " ;_r ). (A.19)
On the other hand, from (A.10) it follows that
AH (z) = hk+15{z,h), (A.15)

where
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(ai6>
As a result, lim”~o Hz,h) = 0, which proves (2.25). O

Proof of Theorem 2.3.1  To prove item (i) assume that G(s) is of Type | > 0. From
the fact that the steady-state properties are preserved in the sampled-data system, i.e.:

lim*

lip(* | -IHE) = limsIG(s) (A17)

it results that the coefficient 6,,_i in eqn. (2.4) has the form

m(l-Pi)
) T (A.18)
no —*)
1=1
or, taking (2.11) into account:
U "n(l ~Pi)
By = germ g e . (A.19)

Applying (A.1)-(A.2), equations (2.2), (2.15) and the relationship limt" 0Ek{z) = Sk(z)
yields eqn. (2.27) proving item (i).

Assume that the continuous-time transfer function has a multiple zero with multiplic-
ity n. Denote J = {j,j -1-1,« ¢j + fi - 1} a setof integersindicatingthose zeros. Insert
the asymptoticzero z' = e°ihinto H{z). Then,according to eqn. (2.7), one gets:

m
Wi-Zi)
HZJ) = bnAEAY - A el = Anh{oj), (A-20)
n.(4 - Pi)
t=1
from which 1
Pt H( ~ P
20(}' *) = ¥n (Z'j - zi)on-Ibkizj) e

Applying eq. A.2to Z- - ptand z' - z, gives

n
1 Fl iPj —~ Aufcr )
AL f_mtl(ch-(n) n I (A22)

i=l
1<tJ
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Finally, employing (2.33) and inserting 6,,_j from (2.27) yields (2.28). This proves item
(if) of Theorem 2.3.1.
Inserting ('j into (2.4) yields:

UiCj-Zi)
H(Cj) = , (A.23)
n(Cj-Pi)

while inserting £' into (2.24) of Lemma 2.2.3 returns:

HED = P Eda —ipke o A0k (A.24)

For small h, equation (A.23) can be written in the form:

9k, k . EK(C])
= {g/i* + o(")} +°(M)]- (A-25)
A comparison of (A.24) and (A.25) leads to
£i((,) _ ", £E«(S)_L_k+o¢() (A26)

Finally, taking (2.11), (2.23) and Q —Q —J~ d 0 f°r *7J into account yields (2.29)
with (2.30) which proves item (Hi) of the Theorem 2.3.1. O

A .2 Proofs for Chapter 3

Proof of Lemma 3.3.1 From (3.8)-(3.10) we have

(i _p—sh\2 o
Ms) =i — LjX,.*) (A.27)
=l
with
7i(s,/i) = <5;(s,/i) 4- hei{s,h), (A.28)
where
n_G(s-]lug) , G(s+j/wy IA
- 7(s-jlu>a§12 (s +jﬂ1 a3(2 (A.29)
L G (s-jlua G(s+jlu=a) , Aon?
ei(si ] — . (A.30)
s- jlua s + jlu>a

Using expansion (2.22) and performing some calculations yields:
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hk+2
(- Dr29*pS HKT + “(**+2). *odd

7i(s,h) = (A.31)

hkt2 O{H(-'-Zs, 'k even.

‘{2-KIk+2
Calculating the sum of the infinite series in (A.27) and employing (A.2) yields:
Uk+2

(-)MC(fc + )220 (AT T+ °(/ifct2)

Ah(s) k2 (A.32)
-)*
{-)*& C(k + Z)ZSZQK(ZTDBLZ + o(hk+2)

with the first row for k odd and the second for k even, where £(2) = £ELOV 7I* is

Riemann zeta function (Edwards, 1974; Titchmarsh, 1986).
For even x, i.e. x —2i, there is:

7r)2i[jB2|

2(2i)! (A.33)

cei) = @

upon which

Ah(s) = (A.34)

is arrived at. The proof is completed by taking (2.23) and properties of B2 collected in
Remark 2.2.1 into account. O
Proof of Lemma 3.3.2 From (2.22) it follows that

H(z) = ck(z)hk + ck+i(z)hk+l + AH (2), (A.35)
with

TSN G (A.36)

1
AH{z) = (1- z~lyz{ <oh

On the other hand, from (A.10) it follows that

AH (2) = hk+1S(z,h), (A.37)
where
© 9k+i 3~k+i{z) foi-1 (A.38)
5 JW I) *(*-1)**
As a result of (A.38), lim”o 6(z, h) = 0, which proves (3.13). O

Proofof Theorem 3.4.2 Denote Zj, i = 1,2... m the intrinsic zeros of H(z), which due
to Theorem 3.4.2 are related to the zeros a» of G(s), while Q = zm+», i = 1,2,... Adenote
the discretization zeros. Then for h small enough H(z) admits the following factorization:
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Fk(z) n (z - Zi)

H(z) = bn A (A.39)
z IT(z - Pi)
1=1
with a polynomial
Fk(z) = _{[I(z -Q . (A.40)
1=
To prove item (i) assume that G(s) is of Type I, I > 0. From the fact that the

steady-state properties are preserved in the sampled-data system, i.e.:

= 13 S,G(S) (A-41)

it results that the coefficient bn in egn. (3.4) has the form

n—
111 -p©

bn = h1~ (A.42)
n (1- Zi)
2=1

or, taking (A.39) into account:
n—
u n @ Pi)
= A .
bn Ek-l[/l Ti’l|( 1-21) (A-43)

Applying equations (3.2), (A.l) - (A.2) and the relationship limh_o Fk(z) = Jz(z)/(k-1-2)
yields eqgn. (3.16) proving item (i).

Assume that the continuous-time transfer function has a multiple zero with the mul-
tiplicity fi. Denote J = {j,j + 1, + fi — 1} a set of integers indicating those zeros.
Insert the asymptotic zero z' = ea® into H(z). Then, according to egn. (3.9), one gets:

H(z') = bnFk(z} ) - » --—-—-— = Ah(a)), (A.44)
37Zjn [Zj- Pi)
i=1
from which
A Uiz'j-Pi) z'AJa )
n-z~)=~n ( A . 4 5 )
1=0 n (z'j - zi) bnFk(Zj)
=1
i)

Applying (A.l) - (A.2) to Zj —pt and Z- —z, gives
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lig-s9-r5" [ +Najiph- 4

i£]
Finally, employing (3.22) and inserting bn from (3.16) yields (3.17). This proves item (ii)
of Theorem 3.4.2.
Inserting (] into (3.4) yields:
n(Cj-zi)
H(Q = bnFk(C')-» (A.47)
civici-pi

while inserting Q into (3.13) of Lemma 3.3.2 returns:

(A '48)
For small h, equation (A.47) can be written in the form:
>>>>>> } P r 2 11+ ( A 49)
A comparison of (A.48) and (A.49) leads to
V (r'\ — 9k+l ~k+1jcj) 1 » (A.50)

» (fc+2)h ;- i + ('m

Finally, taking(A.40), (2.23) and Q ~ £ -* - C % 0 for * + 3into account yields (3.18)
with (3.19)whichproves item (in) of the Theorem 3.4.2. O

A.3 Proofs for Chapter 7

Proof of Lemma 7.5.1 Observe that

FEd = F(E+ + S)d = FSd + azh+ (A.51)
and
p2+d'Sd = a2+ d'Sd. (A.52)
Subtracting
, FE+dd'E+F'
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from (7.80) and employing (7.102)-(A.52) yields:

S=FSF'+ +
<+3d Sd (A.54)

It is now easy to check that equations (A.54) and (7.101) are equivalent. O
Proof of Lemma 7.5.2 Inserting (7.105) into (7.101) leads to

\ AVA, AXB85XA! ks
al + S'XS* (A55)

Equation (A.55) is fulfilled by X of (7.109) if X i fulfills
Xi1= A gy AFISHIXII (A.56)

Now, consider the following Lyapunov equation:
ANXNMA] = X fl+ (A.57)

Matrix X x| which fulfills (A.57) is unique and nonsingular, which follows from the ob-
servability of (F,d). Xj-1 also fulfills (A.56) which follows from a matrix identity

(F~1+BC IB)~I=F - FB(B'FB + C)~IB'F. (A.58)

From (A.57) and (7.107) follows (7.110). O
Proof of Theorem 7.5.1

a2=p2+d'Ed =p2+d'E+d + d'Sd = a2 + d'Sd, (A.59)
which proves (7.112). Observe that
F+Sd = FSd - h+d'Sd = F(S - S+)d - h+(a2- a2)= a(h - h+), (A.60)

which proves (7.113).
Observe that

F* = P+ —(h —h+)d". (A.61)
On inserting (A.60) to (A.61) equation (7.114) is arrived at. O
Proof of Theorem 7.5.2 Inserting matrix S determined by equation (7.108) and

matrix F*+ determined by (7.105) to (7.114) one gets:

F*= T~I[A(I- ™ )]T. (A.62)

Prom (7.106) and (7.109) it follows:
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x=pel HOO A.63
F*=T 0 A2 (A.63)

where
H=A1-AIX 1" . (A.64)

Observe that (A.56) can be rewritten in the form of
X X= h x ja; (A.65)

so that
H =X x{Air'X rl (A.66)

Finally, upon inserting (A.65) into (A.62) one gets

_1m(a;)-1 o ¢ ' X~1 o

* — = T A.67
F M 0 o2 M, M (A.67)

This proves the first part of the theorem. To prove the second part observe that (A.56)
can be rewritten using

a2= (rl + SIX 1s1 (A.68)
as follows: AIX 1S1SIX 1A[
Xx = AIX 1A (A.69)
Now, applying the identity:
det(F - BCD) = detF detB det(IT1- CF IB) (A.70)
with
F = AMXxA"™, B = AIX IS[, C =S'.X ", D =1/a2 (A.71)
results in
2
detXx= -~detr X A)A2- AX Aj) = As(det Al)2detX L (A.72)
O
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Contributions to the Theory of Discrete-Time
Control for Continuous-Time Systems

Abstract

Astrom-Hagander-Sternby and Hagiwara-Yuasa-Araki theorems on limiting zeros of
pulse transfer functions of sampled-data systems with respectively zero-order and first-
order holds are extended by determining the accuracy of the asymptotic results for both
the discretization and the intrinsic zeros when the sampling interval is small. Closed form
formulae are derived that express the degree of the principal term of Taylor expansion of
the difference between the true zeros and asymptotic ones as a function of the relative
degree of the underlying continuous-time system, and the value of the corresponding
coefficient itself.

A systematic approach to a class of approximations to the pulse transfer function of
a system consisting of a zero-order hold and a linear continuous-time plant is presented.
It is based on the asymptotic result of Astrom, Hagander & Sternby (1984) on zeros
of sampled systems at high sampling rates, and on the bilinear transformation. Model
matching control, robust control and identification are suggested as possible areas of ap-
plication. Superiority of the approximations considered over a *-operator based truncated
approximation of Goodwin et al. (1986) is shown.

Discrete-time models of sampled-data control systems are addressed when both a
continuous-time plant and a discrete-time controller have a feedthrough. A new state-
space model appropriate for the closed-loop modeling, and formulae for calculating the
related discrete-time pulse transfer functions are derived. Intersample phenomena are
studied and the feasibility of that model to describe systems with parasiting dynamics is
emphasized.

Two approaches to the synthesis of a discrete-time model reference controller for a
continuous-time system are presented and compared. The first one, purely discrete, bases
on the discrete-time model of a dynamic system and on a discrete quadratic infinite horizon
performance index while the second is based on the continuous-time integral performance
index. When the sampling time tends to zero the control variable in the former problem
does not converge to its continuous time prototype whereas in the latter does. The relative
order of the continuous-time plant itself and the relationship between the model and plant
relative orders are shown to be crucial for the design and control system behavior at high
sampling rates.

A class of second-order continuous-time stochastic processes, which can be thought
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as models of disturbances, is characterized and the issue of their sampling is discussed.
As a result of sampling, discrete second-order random processes described by linear time-
invariant state-space models are obtained. Equivalent representations with the number of
noise inputs reduced to one are presented. In contrast to the innovations approach these
representations have time-invariant parameters. The relationship with ARMA models
is discussed and the Representations Theorem is generalized to a class of nonstationary
processes. The identification issue of continuous-time processes is discussed.

A unified approach to the MV, LQG and GPC control problems based on the input-
output and state-space representations of Box-Jenkins models will be presented. Its two
main advantages are: an integral action of the controller attained with a realistic station-
ary model of the disturbance, and a reduction of the computational complexity. Moreover,
it has been shown that employing Chandrasekhar equations can improve the computa-
tional efficiency for receding-horizon control problems as compared to the use of Riccati
equations. The approach has also been shown to be an efficient design method for the
optimal infinite horizon control systems.

Discrete-time control of continuous-time systems driven by ZOH with pulse ampli-
tude modulation and disturbed by a stationary Gaussian process with a rational spectral
density is dealt with. The algorithms considered have the form of a linear feedback
from the Kalman filter. Certain time functions that characterize the performance of the
continuous-time system with discrete feedback are considered. A methodology of their

calculation is developed. Some results of the related works in the area are generalized and
extended.

Przyczynki do teorii sterowania dyskretnego procesow
ciggtych

Streszczenie

W pracy rozszerza sie twierdzenia Astroma-Hagandera-Sternbyego oraz Hagiwary-Yu-
asy-Arakiego o zerach granicznych transmitancji impulsowych uktad6w z ekstrapolatorami
rzedu zerowego i pierwszego poprzez okreslenie doktadnosci wynikéw asymptotycznych dla
zer wewnetrznych oraz zer dyskretyzacji dla matych okreséw prébkowania. Wyprowadza
sie formuly wyrazajace stopien cztonu gtéwnego rozwiniecia Taylora rdznicy pomiedzy
zerami doktadnymi a asymptotycznymi jako funkcje wzglednego rzedu wyjsciowego uktadu
ciggtego oraz warto$¢ wspotczynnika cztonu gtéwnego.

Prezentuje sie systematyczne podejscie do klasy aproksymacji transmitancji impul-
sowej dla uktadu z ekstrapolatorem pierwszego rzedu bazujgce na wyniku Astroma, Ha-
gandera i Sternbyego (1984) dotyczgcego zer asymptotycznych przy wysokich czestotliwo-
$ciach prébkowania oraz na transformacji biliniowej. Pokazuje sie wyzszo$¢ rozwazanych
aproksymacji nad tak zwang aproksymacjg obcieta Goodwina i inn. (1986), bazujaca na
operatorze 6. Jako mozliwe obszary zastosowan sugeruje sie sterowanie wedtug zadanego
modelu, sterowanie odporne oraz identyfikacje.

Wprowadza sie nowy model w przestrzeni stanu przydatny do modelowania ukfadow
regulacji dyskretnej oraz odpowiadajgce mu transmitancje impulsowe w przypadku gdy
zardwno obiekt ciaggty jak i regulator dyskretny posiadajg zerowy rzad wzgledny. Bada
sie zjawiska pomiedzy chwilami prébkowania oraz podkres$la sie przydatnos$¢ tego modelu
do opisu systemow z pasozytniczg dynamika.

Przedstawia sie i poréwnuje dwa podejscia do syntezy regulatorow dyskretnych z
modelem odniesienia dla systemu ciggtego. Pierwsze, czysto dyskretne, bazuje na modelu
dyskretnym systemu dynamicznego oraz na dyskretnym kwadratowym wskazniku jakosci
podczas gdy drugie bazuje na wskazniku ciggtym. Gdy okres probkowania zmierza do
zera zmienna sterujgca w pierwszym problemie nie zmierza do swego prototypu ciggtego,
podczas gdy w drugim zmierza. Pokazano, ze kluczowe znaczenie dla projektowania oraz
zachowania sie uktadu regulacji ma wzgledny rzad obiektu ciggtego oraz relacja pomiedzy
wzglednymi rzedami modelu i obiektu.

Charakteryzuje sie pewng klase gaussowskich stochastycznych proceséw ciagtych oraz
dyskutuje sie zagadnienie ich dyskretyzacji. W wyniku prébkowania otrzymuje sie procesy
dyskretne opisane przez niezalezne od czasu reprezentacje w przestrzeni stanu. Przedsta-
wia sie reprezentacje rownowazne z liczbg wejs¢ losowych zredukowang do 1. W przeci-
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wienstwie do reprezentacji innowacyjnych reprezentacje te majg parametry niezalezne od
czasu. Dyskutuje sie réwniez zagadnienie identyfikacji proceséw ciggtych.

Prezentuje sie ujednolicone podejscie do probleméw MV, LQG oraz GPC bazujace na
reprezentacjach modelu Boxa-Jenkinsa w przestrzeni stanu oraz wejsciowo-wyjsciowych.
Jego zaletami sg: osiggniecie dziatania catkujacego regulatora przy realistycznym stacjo-
narnym modelu zaktdcen oraz zmniejszenie ztozonosci obliczeniowej. Ponadto pokazuje
sig, ze wykorzystanie réwnan Chandrasekhara poprawia skutecznos¢ obliczeniowg dla pro-
bleméw ze skoriczonym horyzontem. Pokazuje sie réwniez, ze podejscie to jest efektywna
metodg projektowania uktadéw optymalnych o nieskonczonych wskaznikach jakosci.

Wyznacza sie charakterystyki uktadéw ciggtych z zaktdéceniem w postaci stacjonar-
nych proceséw gaussowskich o wymiernej gestosci spektralnej regulowanych za pomocg
dyskretnych w czasie algorytmow generujacych sygnat staty pomiedzy chwilami probkowa-
nia. Algorytmy te maja postac liniowych sprzezen zwrotnych od wyjscia filtru Kalmana.






