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I. INTRODUCTION 

I.1 Motivation 

Analysis of data from single-cell RNA sequencing experiments (scRNAseq) is a 

challenging task due to several reasons. The major problems involve high dimensionality 

of the data and measurement noise of various origins. A typical scRNAseq dataset 

consists of tens of thousands dimensions (the dimension corresponds to the number of 

genes) measured across hundreds of thousands of cells. Each dimension carries a 

substantial level of technical noise resulting from variations introduced during data 

generation, and biological noise resulting from natural differences between cells and cell 

types. As a result, scRNA-seq data exhibits a high fraction of zero measurements, often 

referred to as sparsity. 

 

ScRNAseq experiments are often conducted on a large scale, involving multiple 

laboratories or measurements taken at different times. Perfectly balanced experimental 

designs for such large projects may be infeasible, resulting in the need to conduct 

experiments in batches. Consequently, batch effects inevitably arise. Batch effects 

introduce variation that is unrelated to the biological variability under investigation, 

thereby obscuring it. If left unaddressed, batch effects can result in misleading 

conclusions drawn from the analysis. Although batch effects can be easily detected in 

high-dimensional data, confounding factors leading to them may not be recorded during 

the course of an experiment. Therefore, batch effects have to be computationally 

corrected or removed. 

 

Numerous approaches based on different ideas and assumptions have been proposed in 

the literature, but gold standards have yet to be established. The main challenge lies in 

distinguishing biological from technical variability which often results in overcorrection, 

meaning the removal of biological differences between batches. This is mainly because 

researchers often lack prior knowledge of the underlying cell types before conducting an 

experiment. Furthermore, downstream gene-level analyses are not safe to be performed 

on corrected data because in most cases correction distorts the original data distribution, 



INTRODUCTION   

6 

 

and there is lack of a measure to quantify the uncertainty associated with the correction 

process. Therefore, there is a strong need to develop research in the field of batch effect 

removal, correction or mitigation employing new approaches and bioinformatic tools. 

This task is currently of high priority and considered one of the grand challenges in 

scRNAseq data analysis. It serves as the primary motivation for this thesis. 

 

 

I.2 Aim and theses of this work 

This work aims to provide a pipeline that utilizes iterative subspace clustering, 

combined with functional analysis of gene sets, to mitigate the negative impact of the 

batch effect on scRNAseq data. The crucial aspect of the functional analysis involves 

identifying cluster-specific pathways and establishing their linkage between batches. 

Therefore, the proposed workflow eliminates the need for applying batch-effect 

correction and enables consolidated analysis of batches that were generated separately. 

In contrast to existing complex and computationally demanding algorithms, this approach 

prioritizes simplicity, low computational cost, and ease of interpretation. The utilization 

of subspace clustering combined with functional analysis of gene pathways for mitigating 

batch effects has not been explored before, making this thesis a novel contribution to the 

field. 

 

The underlying assumption is that iterative subspace clustering may diminish batch 

effects by removing more noise from the data with each subsequent iteration. As a result, 

cells should tend to form groups based on their true biology. Furthermore, the cluster-

specific pathways identified are expected to exhibit robust manifestations and 

demonstrate resilience to the negative impact of batch effects, which is typically less 

pronounced compared to individual genes. 
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The theses of this dissertation are formulated as follows: 

 

1. Existing algorithms for batch effect correction in scRNAseq often distort the 

original distribution of gene expression data. Consequently, gene-level analyses 

such as differential expression or marker identification cannot be safely applied 

to the corrected dataset. 

2. A simple feature selection strategy based on variance decomposition yields 

similar results to more sophisticated and computationally expensive methods. 

3. In confounded scRNA-seq data, batch effect correction can be skipped. Instead, a 

reliable analysis can be performed by independently identifying subclusters of 

cells within each batch and then linking them between batches based on the 

similarity of their functional profiles to track similar cells from different batches. 

 

I.3 Thesis structure 

The thesis is structured in the following way: 

• Chapter I provides an overview of how a single-cell RNA-seq experiment 

is conducted, with an emphasis on the sources of noise in scRNA-seq data. 

It also discusses current approaches to noise reduction in scRNA-seq data. 

• Chapter II describes experimental design, datasets, and the methods used 

for data generation and analysis. 

• Chapter III presents the results of evaluation of various batch correction 

algorithms. 

• Chapter IV showcases the results obtained with the proposed workflow. 

• Chapter V provides a discussion and summary of this work. 
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II. BACKGROUND 

II.1 scRNAseq - technology and its applications 

Molecular analyses of a cell can be conducted using various approaches, 

encompassing different levels known as omics layers [1]. Each omics layer focuses on 

measuring distinct biomolecules, such as DNA molecules at the genome level, mRNA 

sequences at the transcriptome level, or proteins at the proteome level (Figure 1) [2]. 

There exists a continuous process of information transmission among these omics layers: 

from DNA to RNA, from RNA to protein, and from protein to biological pathways. The 

culmination of these multi-omics molecular interactions manifests as the cellular 

phenotype [3]. 

While multicellular organisms have the same set of genes (genomes) across most cells, 

the expression of these genes varies between cells, even among those of the same type. 

This indicates that different cells exhibit distinct patterns of gene expression [4, 5]. The 

Figure 1. Molecular layers of cell identity [2]. 
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transcriptional activity of a cell change as it ages or progresses through different 

developmental stages [6, 7]. Additionally, many genes are expressed in response to 

various environmental factors  [8]. Therefore, the transcriptome serves as a reliable 

representative of the cellular state, offering a direct read-out of the dynamic decision-

making processes within a cell [9-11]. 

 

One strategy for quantifying the RNA content in a sample is through RNA sequencing 

(RNAseq). Initially, transcriptomes were analyzed in populations of cells derived from a 

specific tissue. This approach, often referred to as 'bulk RNAseq,' was motivated by the 

assumption that cells from the same tissue type are homogeneous. As a result, the 

obtained results encompass a mixture of different gene expression profiles from the 

population of cells under investigation. In other words, the expression signal is averaged 

across all cells. While the bulk approach is sufficient for characterizing the overall state 

of a tissue, it completely masks the signal originating from individual cells and overlooks 

tissue heterogeneity (Figure 2 – bottom panel).  

The barrier of single-cell was breached in 2009 with the emergence of the first publication 

on single-cell RNA sequencing (scRNAseq) [12]. Since then, it has become possible to 

study the cell type-specific contribution to the expression profile of a sample (Figure 2 - 

upper panel).[13] 

Nowadays, scRNAseq allows for the parallel processing of millions of individual cells 

simultaneously, enabling the assessment of transcriptional differences between any pair 

of them [14]. This technique has revolutionized the field of life sciences leading to 

ground-breaking discoveries in developmental biology [15], immunology [5], 

Figure 2. Difference between scRNAseq and bulk RNAseq [13]. 
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neuroscience [16] and oncology [17, 18]. The significant impact of scRNAseq in 

unraveling cell functions led to its recognition as the "Method of the Year" by the journal 

Nature Methods in 2013 [19]. In 2019, the same distinction was awarded to the 

combination of scRNAseq with protein profiling [20]. 

 

The investigation of heterogeneity is a fundamental focus of the scRNAseq research [21]. 

Its primary objective is to identify subpopulations of cells within healthy tissues or cancer 

cells [22, 23]. One of the ground-breaking discoveries in this field was the identification 

of a new and rare type of cell in the human airway known as the pulmonary ionocytes 

[24]. It is believed that these cells are responsible for the development of cystic fibrosis 

(Figure 3). 

 

Heterogeneity studies using scRNAseq technology also focus on the identification of 

tumour biomarkers [25, 26] as well as therapeutic targets and resistance pathways [27, 

28]. The ability to study cellular heterogeneity enabled by scRNAseq technology has led 

to the development of large-scale projects intending to construct cell atlases for tissues, 

organs, and even entire organisms. Examples include the Human Cell Atlas (H. sapiens)  

[29],  Tabula Muris (M. musculus) [30], and Fly Cell Atlas (D. melanogaster) [31]. 

 

ScRNAseq can provide insights into a common question in biology: how cells transition 

from one state to another during various biological processes, such as development, 

Figure 3. Discovery of pulmonary ionocytes with scRNAseq [25]. The 

plot presents t-distributed stochastic neighbor embedding (t-SNE) 

colored by cell type. The novel ionocyte cluster is circled. 
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differentiation, or in response to external stimuli [10, 18]. This is the focus of trajectory 

inference or pseudotime analysis, which aims to reconstruct a path (trajectory) that 

describes the transitions of a cell between different developmental states or its 

differentiation into increasingly specialized cell subtypes (Figure 4) [15]. 

Once cells have been ordered along a developmental trajectory, it becomes possible to 

investigate the gene expression patterns along the trajectory. This analysis allows us to 

identify key regulators and genes that are responsible for specific branches, exhibiting 

"switch-like" behavior. 

 

ScRNAseq has made it possible to study coordinated changes in gene expression during 

dynamic biological processes, such as transcriptional kinetics [32]. The standard model 

for gene expression kinetics is a two-state model, where the transcription of a gene 

stochastically switches between "on" and "off" states. In other words, genes are not 

transcribed continuously but instead produce transcripts in intermittent bursts [33-36]. 

This phenomenon, known as “transcriptional bursting” can be investigated using allele-

sensitive scRNAseq (Figure 5) [37]. 

 

Figure 4. The developmental tree of early zebrafish embryogenesis [15]. Transcriptomes were obtained 

from zebrafish embryos at 12 different developmental stages. The trajectories show a reconstruction of 

cell fates of 25 cell types. Each cell is represented by a point and colored by the developmental stage. 
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Another area of research that can be explored through scRNAseq technology is gene 

regulatory network (GRN) analysis [38]. GRN analysis captures relationships between 

regulators of gene expression and their target genes. The concept is straightforward: if the 

product of gene A inhibits the expression of gene B, then their expression levels would 

be inversely correlated. Consequently, cells with high levels of gene A would exhibit low 

levels of gene B [39]. GRN analysis aims to identify functional gene modules that interact 

with each other under specific conditions, making it context-dependent. Jackson et al. 

[38], through GRN analysis, discovered novel regulatory connections and relationships 

related to nitrogen metabolism in Saccharomyces cerevisiae (Figure 6). 

Figure 5. scRNAseq for transcriptional kinetics studies [37]. (A) Schematic diagram of gene expression 

with stochastic switching between ON and OFF states. (B) Schematic representations of the dynamics of 

transcript levels of a gene with or without transcriptional bursting. (C) Transcriptional bursting induces 

inter-allelic and intercellular heterogeneity in gene expression (left). Scatter plots of the individual allele-

derived transcript numbers (right)  

Figure 6. Gene regulatory network created by [38]. A GRN shows target genes that are regulated by at 

least one nitrogen TF (blue) and at least one cell cycle TF (green). Target gene nodes are colored by GO 

slim term. Newly inferred regulatory edges are red and known regulatory edges from the prior are in 

gray. 
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II.2 scRNAseq - experimental workflow 

Single-cell RNA sequencing is a combination of high-yield cell separation 

techniques and next-generation sequencing (NGS). The experimental workflow typically 

includes the following steps:  

1) single-cell isolation and mRNA extraction, 

1) reverse transcription of mRNA to cDNA 

2) cDNA pre-amplification,  

3) library construction (cDNA fragmentation, barcoding, adaptor ligation) 

4) sequencing 

Capturing single cells from the whole tissue or cell sample is a crucial and most 

challenging step in the experiment. The main challenges associated with this step include 

throughput (the number of cells that can be isolated within a certain time), purity (the 

proportion of desired cells in the final isolated cell fraction), and recovery (the percentage 

of captured target cells from the starting sample) [40].  

Several different cell isolation methods are available, which are applied based on the 

scientific objective. These methods utilize various cellular properties, such as size, 

density, or fluorescence [41]. Two general categories can be distinguished: plate-based 

methods (Figure 7) and microfluidics (Figure 8). Plate-based methods are considered 

low-throughput compared to microfluidics and are not suitable for the identification of 

rare cell types.  
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Microfluidic cell sorters utilize small channels with sizes ranging from approximately 

100 nanometers to 500 micrometers to achieve precise control over fluid flow. These 

systems offer higher throughput compared to plate-based methods and enable the 

execution of all the necessary reactions for library preparation in nanoliter volumes. 

However, microfluidic-based methods are more prone to producing doublets, which 

means capturing two or more cells. The proportion of doublets can be minimized by 

loading cells at low concentrations, but this significantly increases the cost per cell. 

Commercially available microfluidic platforms typically operate based on three main 

principles to isolate individual cells (Figure 8) [40]. 

Figure 7. Single-cell plate-based isolation methods [40]. (i) Limiting dilution method: the cell suspension 

is diluted to a point where only one cell is present in each microwell. It is a simple and cost-effective 

approach but lacks control and requires additional verification to confirm the presence of cells. (ii) 

Fluorescent activated cell sorting (FACS): target cells are labeled with fluorophore-conjugated 

monoclonal antibodies that recognize specific markers on the cells. When the cells pass through a laser 

beam, the fluorophore is excited, and the cells are selectively detected and sorted. FACS allows selection 

based on size and granularity but requires a large input of cells (more than 10,000 cells). Additionally, the 

viability of the sorted cells may be reduced due to the rapid flow in the machine. (iii) Laser capture 

microdissection (LCM): this method is suitable for solid tissue samples. A desired section of the sample is 

cut off using a laser beam, followed by the extraction of the isolated cell or compartment. LCM enables the 

selection of cells based on morphology and preserves spatial location information. However, it is time-

consuming, expensive, and requires highly skilled personnel. (iv) Micromanipulator: this technique 

involves an inverted microscope combined with micro-pipettes for the manual isolation of cells, particularly 

embryo cells or live culture cells. It allows for processing only a small number of cells and requires a high 

level of skill. 
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Due to their cost-effectiveness and high throughput (with capture rates ranging from 60% 

to 90%), droplet-based platforms are currently the most widely used. Each droplet 

contains a resin bead and serves as an individual reaction chamber. The surface of each 

bead is coated with numerous oligonucleotide sequences that are important for 

sequencing and subsequent analysis (Figure 9) [42].  

 

 

The choice of cell isolation method strongly depends on the origin of the input sample, 

which can be solid tissue, cell suspensions, or cell culture. Sample requirements also play 

a substantial role. In some cases, the enzymatic dissociation process can induce the 

expression of stress genes, resulting in artificial changes in cell transcription patterns [43, 

44]. Compatibility with downstream applications is also an important consideration. For 

Figure 8. Main groups of microfluidic-based platforms [40]. (a) Droplet-in-oil: the cells are dispersed into 

individual droplets enclosed by oil in a random distribution, (b) Pneumatic membrane valves: work by 

using air pressure to deform a flexible membrane that separates the fluid channels, (c) Hydrodynamic cell 

traps: passive elements that permit the entry of only a single cell into the trap. This group of platforms is 

not suitable for cases where the number of cells is very limited, as only approximately 10% of cells can be 

captured (for example system C1 from Standard BioTools Inc). 

Figure 9. Droplet structure [42]. Each strand at the surface of a bead consists of four parts: (i) PCR 

handle: this part is a constant sequence that is identical for all beads. It functions as a priming site for 

downstream PCR and sequencing, (ii) Bead-specific barcode (cell barcode): this barcode is identical 

across all the primers on the surface of any given bead but differs from the cell barcodes on other beads. 

The cell bar-codes allow for the pooling of droplets and subsequent sequencing of them together, (iii) 

Unique molecular identifier (UMI): each oligo on the bead has a distinct UMI, (iv) Poly(T) tail at the 3' 

end: this tail is used to capture cellular mRNAs. 
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instance, the choice of a specific cell isolation method may impose limitations on the 

sequencing platform and the type of sequencing library that can be prepared [45].  

 

Once the cells have been collected, they are lysed to allow the capture of as many RNA 

molecules (transcripts) as possible. The transcript-capturing rate varies depending on the 

protocol and chemistry used, ranging from 10% to 35%. It is important to note that the 

detection of a transcript is a random occurrence, and sequencing multiple single cells 

from the same population is necessary to capture the majority of the transcriptome. 

 

RNA molecules are highly unstable and cannot be directly measured in the experiment. 

They need to be converted into a stable structure called complementary DNA (cDNA) 

through the process of reverse transcription (RT) or cDNA synthesis. The efficiency of 

this step is another crucial factor that affects the sensitivity of the scRNAseq experiment. 

It varies depending on experimental conditions and even transcripts of different genes 

[46][39]. A wide range of results has been reported in this regard [40] but on average, 

only 10-40% of transcripts are successfully reverse transcribed. 

 

To be detected by the sequencer, cDNA needs to be duplicated (amplified) millions of 

times. The most commonly used method for amplification is the polymerase chain 

reaction (PCR), which utilizes exponential amplification. However, PCR is an imprecise 

process, and some transcripts are preferentially amplified (such as cDNA fragments of 

shorter length or lower GC content), while others may be amplified below their true 

expression level [47]. This leads to non-linear bias of some reads over others and the 

accumulation of nonspecific byproducts. An alternative method less prone to such bias is 

in vitro transcription (IVT) based on linear amplification. However, it requires more input 

cDNAs compared to PCR. Pre-amplified cDNAs undergo several steps of library 

preparation, including fragmentation, barcoding and adaptor ligation. 

 

To overcome amplification bias, unique molecular identifiers (UMIs) are attached to each 

individual transcript within a cell during the reverse transcription step [48]. These short 

random sequences serve as molecular barcodes that enable the identification of individual 

RNA molecules [49]. Without UMIs, it would be impossible to differentiate PCR clones 

generated from identical fragments of the original transcript (Figure 10). 
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The prepared libraries from each cell are subsequently pooled together (multiplexed) and 

loaded onto a flow cell for sequencing in a single run. The widely used next-generation 

sequencing (NGS) platform is Illumina, which employs the sequencing by synthesis 

(SBS) approach. In SBS, chemically modified nucleotides bind to the cDNA template 

strand through natural complementarity. Each nucleotide is tagged with a fluorescent 

marker and a reversible terminator, preventing the incorporation of the next base. The 

fluorescent signal indicates the added nucleotide, and upon removing the terminator, the 

Figure 10. The principle of UMIs [48]. In this simplified hypothetical scenario, we have two transcripts, 

X and Y, which are expressed with four and six copies, respectively. To account for each individual copy, 

four different UMIs (represented by filled rectangles) are attached to the copies of transcript X, while six 

different UMIs are attached to the copies of transcript Y. Both transcripts undergo amplification, although 

with varying efficiency, with gene Y having a higher amplification efficiency. This may lead to the 

erroneous conclusion that transcript Y has higher expression compared to X. The number of true copies 

can be restored by considering UMIs which ensures that amplicons of the same read are only counted 

once. Subsequently, in downstream bio-informatic analysis, PCR clones are removed from the dataset. 
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next base can be bound. This process is repeated for both the forward and reverse DNA 

strands, known as paired-end sequencing. 

 

During sequencing, cDNA fragments are randomly captured or "sampled," resulting in a 

vast number of short reads (Figure 11). These reads are subsequently computationally 

aligned to a reference genome to annotate each transcript with its corresponding gene 

name and cell of origin. 

There are two methods used for measuring expressed transcripts in cells: tag-based and 

full-length protocols. In tag-based protocols, only a short fragment (tag) of the transcript 

located at one end (3' or 5') is sequenced. However, due to this restriction, the ability to 

align reads unambiguously to a reference is diminished. Additionally, the complete 

information about transcript structure is lost, making it challenging to differentiate 

between various transcript isoforms (splice variants) [50]. On the other hand, sequencing 

transcripts in their entirety (full-length protocols) allows for a more comprehensive 

characterization of the internal transcriptional state of cells and enables the detection of 

alternative splice variants of genes. However, full-length methodologies often introduce 

a bias towards long genes, as long transcripts tend to have a higher number of reads 

mapped to them compared to short genes with similar expression levels [51, 52].  

 

Many different scRNAseq protocols have been developed (Figure 12) [53]. for example 

MARS-seq [54], Smart-seq2 [55] or Chromium [56]. These protocols incorporate 

different optimizations to enhance cell yield and viability, improve the efficiency of 

reverse transcription (RT), and enhance transcript quantification . Detailed comparisons 

among various protocols are available in publications such as [53, 57-59]. Summarizing 

these evaluations, significant differences are observed between protocols in terms of their 

Figure 11. Schematic of a read fragment from Chromium™ Single Cell 3’ v2 library. Each read consists of 

the following elements: (i) sample index: determines which sample the read originated from, (ii) 10x 

Barcode (cellular barcode): determines which cell the read originated from, (iii) UMI barcode: determines 

which gene transcript the read originated from, (iv) Read1: cellular + UMI barcode, (v) Read2: transcript 

sequence. 
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sensitivity in capturing RNA molecules (i.e., the number of detected genes) and accuracy, 

as measured by Pearson's correlation with bulk RNAseq data. Furthermore, variable 

performance has been reported in their ability to distinguish between different cell types. 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Comparison of common scRNA-seq protocols [53]. Abbreviations: cDNA - complementary 

DNA; DNA pol I - DNA polymerase I; FACS - fluorescence-activated cell sorting; PCR - polymerase chain 

reaction; RNase H - ribonuclease H; RT - reverse transcription; TSO - template-switching oligonucleotide 



20 

 

II.3 Noise in scRNAseq data 

Single-cell RNA sequencing data exhibits a high level of measurement noise, which 

arises from both technical and biological sources of variation (Figure 13) [60] 

 

Technical factors are associated with variations during library preparation, particularly in 

sample handling and processing. Some cells may be missed or lost during the isolation or 

sorting step. Storage, or processing conditions can impact the quality and integrity of the 

RNA. However, the main source of noise is related to imperfect measurement process of 

minute amounts of input mRNA obtained from individual cells, typically on the scale of 

picograms. Variations in cell lysis efficiency and cDNA conversion as well as PCR 

amplification bias lead to differences in total number of reads (sequencing depth) across 

cells. Additionally, different sequencing platforms have their own limitations in terms of 

read capacity or throughput. Some platforms may generate a higher number of reads per 

run or have longer read lengths, allowing for higher sequencing depth, while others may 

have lower capacities. A large group of technical factors that make substantial 

contributions to the overall noise in scRNAseq data is collectively termed batch effects. 

This group will be discussed in the next section.   

Figure 13. Sources of variation in scRNAseq data [60]. Biological and technical factors contribute to the 

observed gene expression profiles of single cells. Biological factors are divided into allele-intrinsic group 

reflecting stochastic fluctuations that do not correlate between two alleles of the same gene, and allele-

extrinsic factors that are related with different cell types and states. 



BACKGROUND   Noise in scRNAseq data 

21 

 

Many of the aforementioned factors, are addressed through normalization procedures, but 

others, such as batch effects, require dedicated approaches [61-63]. It is important to note 

that UMI barcodes are specifically designed to capture amplification bias and are unable 

to account for differences in capture efficiency before the reverse transcription [64]. 

Examples of the variables that contribute to cellular heterogeneity and shape the 

biological context of a cell involve transcriptional bursting, the cell cycle, developmental 

stage, and tissue landscape (Figure 14). 

 

Depending on the biological question at hand, certain biological sources of variation, such 

as transcriptional bursting, may either be a focal point of the experiment or considered a 

nuisance factor. 

Figure 14. Biological contexts of a cell [60]. A particular cell (highlighted in blue) experiences multiple 

concurrent contexts that shape its identity simultaneously. These are: (i) environmental stimuli like nutrient 

availability or signaling molecule binding, (ii) developmental stage, (iii) cell cycle, and (iv) spatial context 

(tissue landscape) that determines oxygen availability, cellular neighbors, and developmental cues, such 

as morphogen gradients. 
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II.3.1 Zero measurements in scRNAseq data  

High proportions of genes with zero expression measurements are commonly observed 

in scRNAseq data (Figure 15). 

Different terms such as "dropouts," "excess zeros," or "zero inflation" are used in the literature 

to describe the prevalence of zeros in scRNAseq data [65]. This inconsistency in terminology 

has significant implications for researchers, particularly in the development and application of 

analysis methods [65, 66]. 

 

The frequency of zeros, also known as the dropout rate, indicates the level of data sparsity and 

often exceeds 50% of all entries in the expression matrix [67, 68]. Dropouts can have an impact 

on clustering analyses by increasing cell-to-cell dissimilarity, potentially leading to 

misclassification of cell types [69]. In other words, they distort the relative positions of cells in 

the low-dimensional subspace (Figure 16) [70]. 

 

Figure 15. An example of scRNAseq expression matrix 

Figure 16. The effect of dropouts on clustering scRNAseq data (toy example) [70]. a – eight cells are 

divided into two clusters (the red and blue). b - dropouts cause a significant increase in the within-cluster 

distances among the single cells in the red cluster, as well as an increase in between-cluster distances 

between single cells in the two clusters 
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Empirical observations regarding dropouts indicate that sequencing depth (total number of 

UMIs per cell) is the primary factor influencing dropout rates [71]. The relationship between 

sequencing depth and dropout rate is inverse, meaning that higher sequencing depth results in 

lower dropout rates (Figure 17a). When the sequencing depth is low, fewer reads are obtained 

from each individual cell, making genes with lower expression levels more vulnerable to 

stochastic fluctuations and measurement noise. Consequently, such genes are more likely to be 

affected by dropouts compared to genes with higher expression magnitudes (Figure 17b) [69]. 

Furthermore, shorter genes are more susceptible to dropout events due to their limited number 

of regions available for RNA transcription and detection during the sequencing process [51]. 

Zero measurements in scRNAseq data can stem from both technical and biological factors, as 

illustrated in Figure 18 [65]. A biological zero occurs when a gene transcript is genuinely 

absent in a cell, providing valuable information about the cell's transcriptional state. These 

biological zeros primarily arise due to the aforementioned transcriptional bursting phenomenon. 

Technical zeros are artificially introduced during the data generation process. This involves 

situations when  a transcript of a gene may be present in a cell but not captured (missed) during 

the conversion to cDNA. As a result, it would not be detected during sequencing. Such zeros 

are often termed as purely technical, instead of sampling zeros arising from limited efficiency 

of amplification, cDNA conversion and sequencing depth [65]. 

Figure 17. Factors influencing dropout rates [69]. (a) – higher the sequencing depth, the higher dropout 

rate. Color cod-ing indicates cell types, (b) – relationship between average gene expression and the number 

of zeros per gene. Genes identified as zero-inflated (ZI) are indicated in dark blue. 
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Figure 18. Sources of zeros in scRNA-seq data [65]. Red crosses indicate occurrences of zeros, 

while green checkmarks indicate otherwise. Biological zeros arise from two scenarios: no 

transcription (gene 1) or no mRNA due to faster mRNA degradation than transcription (gene 2). If 

a gene has mRNAs in a cell, but its mRNAs are not captured by cDNA synthesis, the gene’s zero 

expression measurement is called a technical zero (gene 3). If a gene has cDNAs in the sequencing 

library, but its cDNAs are too few to be captured by sequencing, the gene’s zero expression 

measurement is called a sampling zero. Sampling zeros occur for two rea-sons: a gene’s cDNAs 

have few copies because they are not amplified by PCR or IVT (gene 4), or a gene’s mRNA copy 

number is too small so that its cDNAs still have few copies after amplification (gene 5). If the factors 

and procedures above do not result in few cDNAs of a gene in the sequencing library, the gene 

would have a non-zero measurement (gene 6). 
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Zeros in scRNAseq data are perceived differently by researchers. Some studies attribute them 

to artifacts, either technical [68, 72] or biological [71] in nature. These studies suggest utilizing 

statistical models that incorporate covariates accounting for sparsity, sampling variation, and 

other types of noise [71, 73].  Zero-inflated models are commonly used for this purpose, 

although research conducted by Svensson [74] suggests that they may not be suitable for UMI-

based scRNAseq data, as he demonstrates that such data is not actually zero-inflated. 

 

On the other hand, proponents of treating zero measurements as missing data aim to develop 

tools for the data imputation [75-78]. Some tools, such as SAVER [77] or scImpute [79] are 

based on probabilistic models that identify technical zeros and impute expression values only 

for these ‘false’ zeros, while leaving ‘true’ ones unaltered. However, these methods assume 

homogeneous cell populations, raising concerns about their suitability for identifying novel rare 

cell types Other methods, like DrImpute [76] or MAGIC [75], are data smoothing-based 

approaches that correct the entire expression matrix, including both technical and biological 

zeros, as well as non-zero values. However, this approach may eliminate meaningful biological 

variation. 

 

Although imputation algorithms may improve certain analyses such as dimensionality 

reduction, visualization, or clustering, their performance depends on various factors, including 

the experimental protocol, data sparsity, the number of cells in the dataset, and the effect size 

between differentially expressed genes [80]. Most methods rely solely on the data to be 

imputed, leading to a circularity problem where biases present in the dataset, including random 

noise or confounding signals, can be amplified. This can introduce false positives in 

downstream analyses, such as differential gene expression and gene network inference [81]. 

Moreover, the majority of dropout imputation methods do not provide uncertainty 

quantification. 

 

In between these two opposing camps, there are authors who recognize the potential for 

leveraging dropouts to identify cell types [82, 83] or for feature selection [67].  The former 

indicates that cellular heterogeneity can drive excessive zeros. Consequently, these studies 

conclude that zero proportions can serve as a metric for distinguishing between various cell 

types. However, further research is required to validate these approaches across diverse 

scRNAseq datasets and experimental settings. 
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II.3.2 Batch effects in scRNAseq data 

One of the most challenging sources of unwanted variations in scRNAseq data is known 

as "batch effect." Broadly speaking, this term refers to variability caused by factors unrelated 

to the specific biological variables being investigated, such as disease severity, cancer type, 

gender, and so on. Batch effects arise from the experimental design and handling procedures 

when different biological groups of interest are processed separately or differently, in what we 

refer to as batches [84]. These variations can stem from differences in technology platforms, 

reagent lots, experiment execution times, and handling personnel, all of which introduce 

variability that confounds the biological variations of interest. It is worth noting that 

confounding factors may not even be documented during the course of the experiment. In 

extreme cases (completely confounded design), batch effects may be the major drivers of 

heterogeneity, which means that batch explains more variability than the biological group. In 

such scenario, it is impossible to attribute the observed variation in the data to biology or batch 

effects (Figure 19) [84]. Batch effects obscure the biological variation of interest in a manner 

that is not fully understood, resulting in false discoveries and misleading interpretations of the 

data. These effects pose a particular challenge for the analysis of scRNAseq data, as it is 

commonly based on unsupervised learning methods. While an appropriate experimental design 

incorporating blocking, randomization, and the use of replicates can help minimize the negative 

impact of batch effects, achieving a perfectly balanced experimental design is not always 

feasible, especially in large projects where data generation must be carried out separately due 

to logistical constraints. In such cases, it becomes necessary to employ computational 

approaches for batch effect correction or removal. Additionally, batch effects can be accounted 

for by including batch variables (if recorded) as covariates (additional predictors) in the 

statistical model [85, 86]. The underlying assumption of these methods is that composition of 

cell populations across batches is the same across batches. However, in scRNAseq data analysis 

such a priori knowledge is usually unavailable.  
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The goal of batch effects correction in scRNAseq is to 'force' cells of similar types to 

cluster/group together. These cells should be intermingled and indistinguishable even if they 

originate from different batches. In other words, datasets should be integrated to be jointly 

analysed. Batch correction is essential for facilitating data integration across multiple omics 

modalities in single cells or for cross-species comparisons. 

 However, accomplishing this task is not straightforward due to several challenges: 

• Complex data structure: scRNA-seq data is high-dimensional, consisting of expression 

measurements from tens of thousands of genes across hundreds of thousands of 

individual cells. Additionally, scRNA-seq data is highly sparse, which makes it 

difficult to differentiate true biological variability from technical variability and often 

leads to overcorrection. 

• Nonlinear and nonadditive nature of batch effects: batch effects can be highly 

nonlinear and context specific as well as they can exhibit high complexity (nested 

layers of unwanted variation) making them difficult to model. 

Figure 19. Source of batch effect in data [84]. Completely confounded study design is shown in top section 

where cells from three biological groups (represented by shapes) are processed as three different batches 

(rep-resented by colors). In this scenario, we cannot identify if biology or batch effects drive the observed 

variation (cells from each batch cluster together). A balanced study design corresponds to such scenario 

where cells from a biological group are split and processed in multiple replicates (rep) across different 

batches. Such design allows observed variation to be attributed to biology (cells cluster by shape) or batch 

effects (cells cluster by color) 
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• Unbalanced batch sizes: some methods may prioritize larger batches, leading to biased 

results. 

• Different composition of cell populations across batches. 

• High heterogeneity of cells within the same cell type: even cells of the same type can 

have different gene expression profiles. 

• Necessity of optimization: many current algorithms utilize intricate models involving 

several parameters that require tuning for individual datasets. For instance, parameters 

such as the number of nodes in each hidden layer of a neural network or the learning 

rate during training may lack clear biological or statistical interpretations. Moreover, 

improper parameter tuning can lead to significant performance degradation. 

 

It is important to note that batch effect correction is distinct from data normalization procedure. 

Both concepts aim to correct for unwanted technical variation. However, normalization focuses 

on addressing systematic biases generated within each sequencing experiment, whereas batch 

correction targets the bias generated across batches. In other words, batch effects cannot be 

fully addressed by normalization, as they may affect different genes in different ways [87]. 

 

Data integration represents a highly active area of development in the analysis of single-cell 

genomics data, with over 200 tools currently available for this purpose (Figure 20). 

 

 

 

Figure 20. Percentage of tools for different areas of analysis of scRNAseq data (as of May 2023) 
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Different algorithms have been developed to address batch effects in scRNAseq data, 

employing various approaches (Table 1) [88]. 

 

Table 1. Examples of batch correction methods [88]. 

Tool 
Programming 

language 
Output type Concept 

Seurat 2 R Embeddings Canonical correlation analysis 

Harmony R Embeddings 
Iterative clustering in dimensionally reduced 

space 

fastMNN R Embeddings 
Mutual nearest neighbors in dimensionally 

reduced space 

MND-ResNet Python Embeddings Machine learning 

LIGER R Embeddings Matrix factorization 

BBKNN Python/R Embeddings k-nearest neighbors 

Seurat 3 R 
Normalized gene 
expression matrix 

Canonical correlation analysis and mutual 
nearest neighbors 

MNN Correct R 
Normalized gene 
expression matrix 

Mutual nearest neighbors in gene expression 
space 

ComBat R 
Normalized gene 
expression matrix 

Linear models 

limma R 
Normalized gene 
expression matrix 

Linear models 

scGen Python 
Normalized gene 
expression matrix 

Machine learning 

scMerge R 
Normalized gene 
expression matrix 

Mutual nearest clusters 

ZINB-WaVE R 
Normalized gene 
expression matrix 

Embeddings 
Model-based 

Scanorama Python/R 
Normalized gene 

expression matrix/ 
Embeddings 

Mutual nearest neighbors in gene expression 
space 

 

Many of these methods utilize the concept of mutual nearest neighbor (MNN), for instance 

MNN Correct [89], Scanorama [90] or scMerge [91]. They were designed to overcome the 

limitations of previous generation methods that relied on linear models and assumed identical 

compositions of cell population across batches. MNN-based methods require the presence of at 

least one shared cell population across batches. Mutual nearest neighbors, also known as 

"anchors," are pairs of cells that exhibit similar expression patterns across different batches. 

The process of identifying MNN pairs is illustrated in Figure 21. However, to align these pairs 

accurately, MNN methods make a rather strong assumption that true biological differences are 

nearly orthogonal or uncorrelated to those attributed to batch effects. It is important to note that 

this orthogonality assumption may not always hold in real-world datasets. 
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When deciding on the appropriate algorithm, several factors need to be considered, including 

the output generated by the method and whether it operates in a supervised or unsupervised 

manner. Certain methods, like Harmony [92] do not produce corrected data in the original space 

(normalized gene expression matrix). Instead, they generate dimension-reduced outputs, often 

referred to as canonical components or feature reduction vectors. However, such outputs are 

not compatible with downstream feature-level analyses such as differential expression or 

trajectory inference, limiting their applicability. The second crucial factor to consider is whether 

we have cell type labels or information about the cell types being analysed. If this information 

is not available, it becomes necessary to opt for unsupervised tools that do not rely on predefined 

cell type labels for correction. Deciding on the appropriate choice for a "batch" variable is not 

as straightforward as it may appear. The most common approach is to designate each sample as 

a separate batch, which typically results in a strong correction. However, in scRNAseq samples 

are usually confounded with biological factors of interest that should be preserved. To illustrate, 

let's consider an experiment where samples are collected at two different time points after drug 

administration. If these samples are treated as separate batches, the correction process will aim 

to remove the differences between the batches, inadvertently removing the underlying 

biological differences between the time points themselves. 

 

Batch effects correction and clustering are interrelated tasks, hence all cell-level analyses, such 

as trajectory inference, are generally safe to perform on corrected data since correction 

algorithms aim to place cells in the same coordinate space. However, the same cannot be said 

for feature-level analyses, as correction algorithms are not obliged to preserve relative 

differences between individual genes. Moreover, our own research has demonstrated that many 

algorithms distort the original count-based nature and distribution of the data [93]. Additionally, 

Figure 21. Idea behind anchor-based methods (mutual nearest neighbors). k - the number of nearest 

neighbors to consider when identifying MNNs 
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certain methods like MNN or Scanorama introduce negative values in the corrected matrix, 

which can be challenging to interpret from a biological standpoint. This may result in artificial 

differential expression between cell types or experimental conditions. Furthermore, due to the 

loss of several properties of the original data after correction, downstream analysis tools based 

on models may not perform optimally with the corrected data. 
 

Two comprehensive evaluations of the algorithms for batch effect correction in scRNAseq data 

were recently published [88, 94]. These studies examined numerous state-of-the-art methods 

based on their ability to remove batch effects while preserving biological variation, 

computational runtime, and scalability to large datasets. Different scenarios, including diverse 

cell types, multiple batches, nested batch effects, and simulated data, were investigated. Tran 

et.al demonstrated improved recovery of differentially expressed genes (DEGs) using ComBat, 

limma, and MNN, however in simulation scenario. Luecken et al. showed that integration 

methods may inadvertently remove biological variation along with the batch effect. Both 

studies provide recommendations for method selection, but no clearly superior method has 

emerged (Figure 22) [94]. The performance of batch correction algorithms depends 

significantly on the specific characteristics and complexity of the datasets and batch effects 

involved as well as the batch order in which the correction is applied. 

 

Figure 22. Guidelines to choose batch correction algorithm [94]. The methods that do not fulfill a criterion 

are highlight-ed with a cross (only when a criterion is fulfilled by more than half of the methods The 

evaluation is con-ducted within the framework of scIB, which stands for single cell Integration Benchmark. 
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II.4 General workflow of scRNAseq data analysis  

The general workflow of scRNAseq data analysis is depicted on Figure 23 [48]. This 

workflow is applicable to all scRNAseq datasets, although there are subtle differences in the 

analysis between scRNAseq protocols. However, presenting a detailed explanation of these 

differences is beyond the scope of this thesis.  The typical workflow consists of two main 

successive stages: 

• Data preprocessing: crucial for transforming raw sequencing data into a format 

suitable for downstream analyses which is an expression matrix. 

• Data cleaning: in this stage, general analyses are applied to reduce improve signal-to-

noise ratio and address common issues that arise in scRNAseq datasets. 

• Biological exploratory analysis: this stage is highly dependent on the specific 

research scenario or experimental design. 

 

It is worth mentioning that while the workflow outlined above is widely used, it is not 

considered a gold-standard analysis pipeline. The field of scRNAseq data analysis is continually 

evolving, and researchers often tailor their approaches to match the unique characteristics of 

Figure 23. General pipeline for scRNAseq data analysis [48]. Three main steps can be distinguished: data 

preprocessing (blue panel), general analyses (green panel) and exploratory analyses (yellow panel). The 

plot below each box gives a schematic of the visualized results in each analysis step. HVG - highly variable 

gene; DEG - differentially expressed gene; GO – Gene Ontology; KEGG - Kyoto Encyclopedia of Genes 

and Genomes; GSVA - gene set variation analysis; TF - transcription factor. 
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their datasets and research goals. Therefore, it is crucial to adapt the analysis pipeline 

accordingly to ensure accurate and meaningful interpretation of scRNAseq data. 

 

Data preprocessing 

Preprocessing aims to generate the expression matrix, which can take the form of a count matrix 

or a read matrix depending on whether unique molecular identifiers (UMIs) were utilized [95]. 

The raw sequencing data obtained from the sequencing facility undergoes a series of steps, 

including quality control, read formatting, sample demultiplexing, genome alignment, and 

transcript quantification. There are two approaches to perform preprocessing: 

• Combining individual methods: researchers can choose to combine specific methods 

tailored for each step [96-99]. This approach provides more control over each 

preprocessing step, allowing for customization based on specific requirements. 

• Using available pipelines: such as CellRanger [56] or scPipe [100], which provide 

comprehensive preprocessing capabilities and streamline the entire process, however 

at the cost of control. 

 

Low quality cell filtration 

The expression matrix contains a significant amount of measurement noise, making it necessary 

to undergo several steps of data cleaning. The first crucial step is quality control at the cell level, 

which aims to identify and filter out cells that are dead, broken, or affected by technical issues 

during library preparation, such as doublets or empty droplets. This is achieved by analysing 

various metrics, such as the library size, the number of detected genes per cell, and the 

proportion of reads mapped to the mitochondrial genome. Dependent on the specific metric 

considered, either low or high values serve as indicators of poor-quality cells. For instance, low 

values of library size may suggest poor sequencing or the presence of dead cells, while an 

abnormally high may come from doublets. When concerning the fraction of mitochondrial 

genes, only high values are problematic as they may indicate apoptotic cells or cells with broken 

membranes during sequencing. Since if cells are broken, cytoplasmic mRNAs leak out, and 

only larger mitochondrial mRNAs are sequenced which are less likely to escape through tears 

in the cell membrane. Low quality cells are filtered out by thresholding either fixed or adaptive 

(data-driven) (Figure 24) [95]. 



BACKGROUND  General workflow of scRNAseq data analysis 

34 

 

 

Normalization 

Following quality control, the expression matrix still not accurately reflect the true 

biological gene expression levels due to technical noise. To address this issue and make the raw 

read counts informative and comparable across cells, a normalization strategy must be applied. 

The primary objective of normalization is to remove systematic technical biases from the data. 

Usually, between-sample normalization is performed, to account for variations in sequencing 

depth between cells [64]. Different assumptions are taken to produce normalized values, such 

as the total amount of mRNA per cell or the level of ‘symmetry’ in differential expression [101]. 

Computational normalization strategies are broadly categorized into two groups:  

• Global scaling approach: this approach, inherited from bulk RNAseq, includes 

methods like Reads per Million mapped reads (RPM), Transcripts Per Kilobase 

Million (TPM) [102],  DESeq [103] and Trimmed Mean of M-values (TMM) [104]. 

The idea behind this approach is to calculate a single scaling factor (size factor) for 

each cell, representing the estimated relative technical bias in that cell. The counts for 

each cell are then divided by its corresponding scaling factor to obtain normalized 

Figure 24. Examples of QC plots with fixed thresholds [93]. Thresholds (red lines) are determined based on 

prior knowledge about the biological system under investigation. (A) Histograms of total number of counts 

per cell. The smaller histogram is zoomed-in on values below 4,000. (B) Histogram of the number of genes 

detected per cell. Cells are filtered out at 700 genes. (C) Count depth distribution from high to low count 

depths. It shows an “elbow” where count depths start to decrease rapidly around 1,500 counts. (D) Number 

of genes versus the count depth colored by the fraction of mitochondrial reads. Mitochondrial read fractions 

are only high in particularly low count cells with few detected genes. These cells are filtered out. 
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values. However, directly applying this strategy to scRNAseq data poses challenges 

due to the dominance of low and zero counts, making the estimation of scaling factors 

less stable [64]. 

• Tailored approaches for scRNAseq data: these methods incorporate various ideas to 

address scRNAseq-specific biases. Examples include sctransform [61], SCnorm [62] 

and scran [63]. 

 

To overcome the impact of problematic zero counts, a deconvolution strategy has been 

proposed (implemented in the scran method). This involves summing counts from multiple cells 

(pooling) and normalizing them against an average reference (Figure 25) [63]. 

 

Bacher et al [62] and Hafemeister et Satija [61] have emphasized that treating all genes equally 

is unjustified due to the relationship between a gene expression (count) and cellular sequencing 

depth. This phenomenon is known as the count-depth relationship. A single global scaling 

factor is unable to accommodate this relationship adequately. As a result, they propose different 

solutions to address this issue. The SCnorm method developed by Bacher et al. adopts a scaling 

approach. It groups genes with similar count-depth relationships and applies separate scaling 

factors to each group. Such approach is known as gene group-specific normalization. However, 

SCnorm does not account for zero values in the data. 

 

Figure 25. Deconvolution strategy to normalize scRNAseq data [63]. All cells in the data set are averaged 

to make a reference pseudo-cell. Expression values for cells in pool A are summed together and normalized 

against the reference to yield a pool-based size factor θ A. This is equal to the sum of the cell-based factors 

θ j for cells j=1–4 and can be used to formulate a linear equation. (For simplicity, the t j term is assumed 

to be unity here.) Repeating this for multiple pools (e.g., pool B) leads to the construction of a linear system 

that can be solved to esti-mate θ j for each cell j 
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In contrast, the sctransform method introduced by Hafemeister et Satija transforms the data 

using Pearson residuals derived from a regularized negative binomial regression. Nevertheless, 

there have been concerns raised about the performance of sctransform, with some studies 

suggesting that it may lead to a high proportion of false discoveries in differential gene 

expression analysis [105] [106].  

Normalized values are often log-transformed to reduce skewness in their distribution, and a 

pseudo-count of 1 is added to each normalized value to avoid undefined values at zero.  

 

Feature selection 

A typical scRNAseq dataset consists of tens of thousands of genes, also referred to as 

features. However, only a small fraction of these genes is associated with the cell's response to 

the biological factor of interest, while the majority contain random noise. The presence of noisy 

features can hinder downstream biological analysis such as clustering. Therefore, it is essential 

to remove these noise-driven genes while preserving biologically relevant information. This 

process is referred to as a feature selection or highly variable genes (HVGs) selection. The 

underlying assumption is that genuine biological differences will be manifested by higher levels 

of variation in the genes of interest, in contrast to other genes that are primarily affected by 

technical noise. However, because of heteroscedasticity (a positive relationship between the 

mean expression of a gene and the variance), variance cannot be used as a direct indicator of 

HVGs. Therefore, different methods for HVG selection employ various measures of variability. 

basic approach is based on modelling of the mean-variance relationship. To address 

heteroscedasticity, the variance of log-normalized expression values is modelled. By fitting a 

mean-variance trend, the variance is decomposed into technical components captured by the 

trend and biological components represented by the residuals from the trend (Figure 26) [107]. 

However, large biological components can also be attributed to “housekeeping” genes, which 

are considered not relevant for characterizing cellular heterogeneity. 

 

Various flavors of the above strategy are utilized. For instance,  Brennecke [108] uses the 

squared coefficient of variation (CV2) instead of variance, while M3Drop [67] identifies HVGs 

based on genes with a dropout rate exceeding that of other genes with the same mean 

expression. However, M3Drop may not detect highly expressed genes since these may have no 

dropouts, even when they are differentially expressed across cell populations. 
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A different approach to feature selection is based on gene correlations [109]. Instead of testing 

genes individually, the method called DUBStepR examines relationships between gene 

expression in a stepwise manner. The underlying assumption is that differentially expressed 

genes specific to the same cell types should exhibit high correlations, while those specific to 

distinct cell types should have low correlations. For non-differentially expressed genes, the 

correlations should be weak. Following this assumption, an initial set of features is selected, 

and stepwise regression is performed by iteratively removing the gene that explains the most 

variance in the residual from the previous step. One limitation of this method is that it assumes 

technical noise to be random and independent for each cell, thereby not leading to gene 

correlations. However, this assumption is violated in the presence of batch effects. 

 

Dimensionality reduction 

Depending on the specific downstream biological analysis, the dimensionality of the single-cell 

expression matrix can be further reduced through a process known as feature extraction or 

‘dimensionality reduction’ The main distinction between feature selection and feature 

extraction lies in their approach: while feature selection preserves the original biologically 

relevant features unchanged (Figure 27B), feature extraction combines the original feature 

space into a new, smaller set (Figure 27A). This transformed representation, intended to capture 

the underlying structure, is referred to as a manifold or low-dimensional representation. (Figure 

27C). 

Figure 26. Mean-variance modelling for feature selection in scRNAseq [107]. Each point represents a gene 

while the blue line represents the trend (technical noise) fitted to all genes. Red points represent HVGs. 



BACKGROUND  General workflow of scRNAseq data analysis 

38 

 

Some dimensionality reduction methods,  such as principal component analysis (PCA) [110], 

are generic, while others, like ZIFA [69] and ZINB-WaVE [111] are specifically tailored for 

scRNAseq data. The most general division of dimensionality reduction algorithms is based on 

whether they perform manifold learning through linear or nonlinear combinations of features. 

A commonly used linear method is PCA, which identifies principal components (PCs) that 

explain the maximum variability in the data through orthogonal transformation. However, the 

first few components often correlate with the number of detected genes rather than the 

biological signal of interest [68, 111].  Although PCA is highly interpretable and widely used 

as a preprocessing step for clustering, it assumes approximately normally distributed data (an 

unrealistic assumption for scRNAseq data) and performs poorly on sparse matrices where 

distant points can become nearest neighbors. 

Generally non-linear algorithms are better suited for scRNAseq data. Two leading methods are 

t-distributed stochastic neighbor embedding (t-SNE) [112] and Uniform Manifold 

Approximation and Projection (UMAP) [113]. t-SNE focuses on capturing local neighborhoods 

by grouping neighboring data points together, often at the cost of preserving global data 

structure. UMAP, on the other hand, attempts to strike a balance between local and global 

structure. t-SNE is computationally expensive (quadratic time and space complexity with 

respect to the number of data points), has a stochastic nature due to random initialization, and 

can only embed data points into a maximum of three dimensions. As a result, it is recommended 

by the authors for visualization purposes rather than general dimensionality reduction. 

t-SNE focus on capturing local similarity that is to group neighboring data points together but 

at the cost of global structure whereas UMAP tries to achieve a trade-off between local and 

global structure. t-SNE is computationally expensive (quadratic time and space complexity in 

Figure 27. The idea of dimensionality reduction. A – in feature extraction, each dimension is a complex 

combination of many genes, whereas in feature selection, original features considered relevant are chosen from 

the original set, B – schematic of manifold learning. This process utilizes principles of data compression and 

facilitates data visualization. 

A B C 
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the number of data points), has stochastic nature (random initialization) and embeds data points 

onto maximum 3 dimensions, hence it is recommended by the authors to use only for 

visualization purposes (not for general dimensionality reduction).  

UMAP overcomes some of the limitations of t-SNE. It is less changing between runs, as it does 

not rely on fully random initialization. Additionally, UMAP is faster and less computationally 

expensive due to the application of stochastic gradient descent. Unlike t-SNE, UMAP can 

embed data points onto more than three dimensions. However, both algorithms share a lack of 

strong interpretability, as distances between clusters may not hold specific meaning. Moreover, 

tuning the hyperparameters of t-SNE and UMAP is necessary for optimal performance [114].  

 

Clustering 

The final step in the general analysis stage is clustering, which is an unsupervised learning 

technique used to group cells with similar expression profiles into clusters. Clustering plays a 

crucial role as many subsequent biological analyses rely on its results. Once cells are grouped 

into clusters, they can be further annotated. However cell annotation will not be discussed here. 

The concept of similarity forms the foundation of any clustering method. However, in the 

original high-dimensional space of scRNAseq data, the distances between cells become similar, 

which is known as the 'curse of dimensionality'. Therefore, similarity is usually measured in 

dimensionality-reduced representations of the data. 

Two broad classes of similarity metrics can be distinguished: 

• Distance-based: these metrics consider objects with the lowest values as the most 

similar, such as Euclidean, Manhattan, or Hamming distance. It should be noted that 

distance-based metrics for continuous data are sensitive to scaling. 

• Correlation-based: these metrics consider objects with the highest values as the most 

similar, such as Pearson's correlation, Spearman's correlation, or cosine similarity. 

Importantly, correlation-based metrics are invariant to scaling. 

 

The choice of a specific similarity metric can significantly impact the outcomes of clustering 

analysis, with Pearson's correlation often demonstrating the highest overall performance [115]. 
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Clustering approaches to scRNAseq are categorized into the following groups: 

• partition-based 

• hierarchical-based, 

• graph-based 

 

Often, a particular algorithm for dimensionality reduction, combines two or more approaches, 

for example pcaReduce which is the combination of PCA, k-means and hierarchical-based 

clustering [116]. 

K-means clustering is an iterative procedure that aims to partition a dataset into k distinct, non-

overlapping clusters, where each data point is assigned to only one group (Figure 28) [117].  

The k-means concept is employed in several tools designed for scRNAseq data clustering. For 

instance, the SC3 method [118] combines results from multiple runs of k-means clustering with 

different parameter combinations to create a consensus matrix, which enhances the accuracy of 

cell type identification but at the cost of increased computational requirements. 

Figure 28. A schematic illustration of the k-means algorithm for two-dimensional data clustering [117]. (a) The 

data points (solid blue circles) to be clustered in a 2D feature space. (b) The algorithm is initialized by finding k 

(pre-defined) random representatives of clusters called centroids (aqua, green, and red hollow circles) (c) Each 

cell is assigned to the cluster with the closest centroid based on Euclidean distance, which is done by minimizing 

the within-cluster sum of squares (d) based on the assignments the mean of each cluster is calculated and based 

on which the position of centroid is updated (movements shown by the black arrows), (e) Each cell is assigned to 

the cluster with the new closest centroid (f) final assignments 
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One drawback of k-means clustering is its preference for spherical clusters with equal radii, 

which can lead to rare cell types being merged with larger groups. To address this issue, RaceID 

[119] combines outlier detection methods with k-means to improve clustering accuracy. 

Another limitation of k-means clustering is its equal weighting of both biologically relevant 

and irrelevant (noisy) features, which can blur the cluster structure [120]. Although applying a 

dedicated dimensionality reduction algorithm can mitigate this problem, it may also result in 

the loss of valuable biological information and pose challenges for interpretation [121]. To 

overcome this, an enhanced version of k-means called sparse k-means was proposed, which 

adaptively selects and reweighs a subset of features during the clustering process [122-124].  

 

Hierarchical clustering is another generic clustering procedure, commonly used for aggregating 

data. This method constructs a hierarchy of clusters using either an agglomerative or divisive 

approach. In addition to the similarity measure between objects, a linkage measure between 

clusters (e.g., single, complete, average, or Ward linkage) must be specified. The results of 

hierarchical clustering are typically visualized in the form of a tree called dendrogram, and 

clusters are obtained by cutting the tree at a desired level. While hierarchical clustering 

produces reproducible results, it is not suitable for large datasets due to its quadratic time 

complexity. It is adapted in methods such as CIDR [70] or pcaReduce [116]. 

 

To address the scalability issues graph-based methods have been employed for scRNAseq 

clustering. A graph is a structure where each node represents a cell and edges represent 

similarities between cells. Following graph construction, community detection is performed to 

identify groups of nodes that are more connected within the same community than to nodes in 

different communities. Graph-based clustering does not assume specific cluster shapes or cell 

distributions within each cluster. The resolution of clustering can be controlled by specifying 

the minimum number of nearest neighbors each cell should be connected to. Additional 

parameters include the weighting criteria for edges and the choice of community detection 

algorithm (e.g., walktrap, Louvain, fast_greedy). PhenoGraph [125] and SNN-Cliq [126] are 

examples of graph-based clustering methods. Figure 35 illustrates the differences in clustering 

results obtained by different approaches. 

 

Published evaluations of different clustering methods reveal the subjective nature of clustering 

as a task. The performance of clustering tools varies in terms of stability, agreement with true 

partitions, running times, and overall effectiveness, which can be influenced by preprocessing 
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steps and dataset complexity [127-129]. Estimating the appropriate number of clusters is also a 

challenging aspect, as there is always the possibility of performing more splits. One useful 

approach to address this challenge is to examine the number of significant differentially 

expressed (DE) genes obtained from each subsequent split. Certain tools, such as SNN-Cliq, 

provide automated estimations for the number of clusters, but these estimations may not always 

have biological relevance. At the core of each clustering procedure lies the assumption that 

discrete clusters exist within the data [130]. As a result, any algorithm will identify some form 

of grouping, whether it is biologically meaningful or not. 
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III. METHODS 

III.1 Experimental design 

The datasets used in this PhD project were derived from two related scRNAseq 

experiments conducted to explore the impact of navitoclax treatment on the transcriptome of a 

triple-negative breast cancer cell line. The objective was to gain a deeper understanding of the 

mechanisms underlying the development of drug resistance [28, 131]. Both experiments 

utilized the MDA-MB-231 cancer cell line, and two biological replicates, labelled as A and B, 

were included. The cells were subjected to a 10 µM concentration of navitoclax and harvested 

at three specific time points: 

1) before the treatment (baseline; T1), 

2) after treatment (T2),  

3) after recovery from the treatment (T3) 

In both experiments, the initial step involved trypsinizing the cells and preparing a single-cell 

suspension with a concentration of 1,000 cells/µl and viability above 90%. The single-cell 

libraries were prepared using the droplet-based platform from 10X Genomics. The following 

reagents were used: Chromium Single Cell 3′ Library and Gel Bead Kit V2 (PN-120237), 

Chromium Single Cell A Chip Kit (PN-120236), and Chromium i7 Multiplex Kit (PN-120262). 

For sequencing, the same Illumina HiSeq 4,000 sequencer was utilized. 

 

In the study conducted by [28], a total of 6,000 cells per sample were used, with two samples 

multiplexed on one lane. This generated 25,000 reads per cell. The second study sequenced 

1,500 cells per sample in a single lane, resulting in 200,000 reads per cell. 

 

Both experiments shared the same biological properties, including the cell line, drug treatment, 

and harvesting time. The only difference between them was in the technical study design, as 

illustrated in Figure 29. 
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The first experiment [28] was part of a larger study. However, upon analysis, it was discovered 

that the experiment exhibited strong batch effects resulting from variations in the experimental 

processing of the biological groups corresponding to the time of harvesting. In this study, cells 

collected at different time points were processed on separate chips and on various days. For this 

PhD study, only the repetition A from this experiment was considered. 

 

The second experiment, referred to as a balanced study [131], was designed to minimize 

technical variation. In this design, cells collected at different time points were split and 

processed on the same chip, all on the same day. This approach aimed to ensure that any 

observed differences were primarily due to the effects of the drug treatment and not influenced 

by technical factors. This study serves as a reference. 

 

Figure 29. Experimental design. 
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III.2 Preprocessing and data cleaning  

The quality of raw reads in the form of FASTQ files was evaluated using FastQC software 

from Babraham Institute, UK. Alignment and transcript quantification were performed by 

executing ‘cellranger count’ function from Cell Ranger software (v.6.1.1 from 10x 

Genomics). The obtained expression matrix was imported into the R environment and then 

subsetted to include only the protein coding genes. 

A second round of quality control (QC) was conducted to filter out dead or broken cells, as well 

as any "cells" that may have resulted from technical issues during library preparation, such as 

doublets or empty droplets. The following metrics were evaluated for each timepoint separately: 

library size, number of detected genes per cell, and the proportion of reads mapped to the 

mitochondrial genome.  Adaptive thresholds were applied to these QC metrics based on the 

median absolute deviation (MAD) from the median value of each metric. If a metric value 

deviated more than 3 MADs from the median in the problematic direction, it was considered an 

outlier. 

Following QC and discarding poor-quality cells, UMI counts across cells were normalized 

using a deconvolution approach implemented in the scran R package. The normalized counts 

were log-transformed, and a pseudo-count of 1 was added to each item. 

 

Feature selection for batch effect correction was performed using the ‘vst’ method from Seurat 

[61], which is a variance stabilization technique. This method fits a line to the relationship 

between log (variance) and log (mean) using local polynomial regression. The feature values 

are then standardized using the observed mean and expected variance obtained from the fitted 

line. This process resulted in the identification of 3,620 highly variable genes. This set of highly 

variable genes (HVGs) was exclusively used as input for the batch correction algorithms.

 

III.3 Batch-effect correction methods 

Six algorithms that met the criteria of producing a corrected expression matrix and working in 

an unsupervised manner were benchmarked. For simplicity, the evaluation of batch effect 

correction methods focused on two time points (T1 and T2) from both datasets, 

balanced/confounded. 
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ComBat-seq 

ComBat-seq [85] requires two input parameters: an untransformed count matrix and a vector 

that describes the cell annotation into batches. It also allows for the specification of biological 

covariates, which will be preserved in the corrected data. In our study, the batch separation 

vector was associated with the repetition, while the time point was associated with the 

biological variable. ComBat-seq uses a negative binomial regression model to estimate batch 

effects. The computed batch-effect estimators are then used to calculate “batch-freeˮ 

distributions, representing the expected distributions if there were no batch effects in the data 

based on the model. ComBat-seq applies quantile normalization to ensure that the empirical 

and batch-free distributions have identical statistical properties. 

 

Limma 

Limma [86] takes normalized and log-transformed counts as an input and works by 

incorporating the batch information into the linear model to account for the batch effects. This 

model is aimed at capturing the variation attributed to both the biological factors and the batch 

effects. Then empirical Bayes methods are applied to shrink the estimated coefficients towards 

the overall mean. The batch effects are subsequently subtracted from the original data, resulting 

in the batch-corrected expression matrix.  

 

Mutual nearest neighbor (MNN) 

MNN method [89] requires that a subset of the population is shared between batches. The 

minimum size of this shared subpopulation, denoted as 'k', is defined by the user. MNN pairs 

are formed by identifying the most similar cells of the same type/state across batches. These 

pairs consist of cells with mutually similar expression profiles, making any differences between 

them likely to be driven by batch effects. In the MNN correction method, two batches are 

considered at a time. Based on this pair of batches, a correction vector is estimated as the 

difference in expression values between cells in an MNN pair. This means that one of the 

batches always serves as a reference batch, which subsequent batch is merged to. This 

integrated dataset serves as a new reference to iteratively integrate more datasets. 

 

MNN correction was performed with using ‘mnnCorrect’ function from ‘batchelor’ R package. 

The function was run with two setups: one with all genes and another with highly variable genes 

(HVGs). For both cases, normalized and log-transformed expression values were used as input. 
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The ‘merge.order’ argument was specified to ensure that both repetitions from a given time 

point were merged first and then combined. The merging order followed this sequence: first 

T1A + T1B and T2A + T2B. The results of these summations were then added together. 

To obtain corrected values on the log scale, similar to the input data, the 'cos.norm.out' 

parameter was set to FALSE. The remaining parameters were kept at their default values. 

 

scMerge 

The framework of scMerge involves the following steps: (i) identification of stably expressed 

genes (SEGs) that act as "negative control genes" across batches, (ii) k-means clustering across 

batches based on the highly variable genes (HVGs), (iii) identification of pairs of mutual nearest 

clusters (MNCs) across batches using Pearson correlation as the dissimilarity metric; cells 

belonging to a pair of MNCs are considered to be of the same type and serve as pseudo 

replicates, (iv) factor analysis using the SEGs and pseudo replicates as inputs to generate a 

single merged dataset. 

scMerge correction was performed using the 'scMerge' function from the R package of the same 

name. Three setups of the 'kmeansK' parameter were used: (5, 5, 5, 5), (4, 4, 4, 4), and (4, 4, 3, 

3). 

 

Seurat v4 

Seurat v4 [132] includes two approaches for MNN or anchors matching across batches: 

Canonical Correlation Analysis (CCA) and reciprocal Principal Component Analysis (rPCA).  

In both approaches, the search for anchors is conducted in a shared and reduced subspace 

obtained through CCA (linear combinations of genes with the highest correlation between 

batches) or rPCA (maximizing the variation between batches). The correction vector is 

computed by comparing the expression profiles of cells within each anchor. The order of batch 

integration is determined using hierarchical clustering based on the distance between the 

datasets.  

 

Scanorama 

The idea of Scanorama [90] draws inspiration from the image stitching technique used in 

computer vision, where overlapping images are merged into a larger panorama. Scanorama 

extends the concept of MNN matching to identify similar cells across multiple batches [88]. 

Scanorama performs the search in a low-dimensional subspace obtained through randomized 

singular value decomposition (SVD), encompassing all batches simultaneously. The priority of 
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batch merging is determined by the percentage of matching cells within each batch. Two setups 

were evaluated: one using all genes as input and another using the top 2,000 highly variable 

genes identified based on data dispersion. 

 

III.4 Visualizations 

Clustering visualizations were performed using the Uniform Manifold Approximation 

and Projection (UMAP) [133]. An R implementation of the UMAP through ‘uwot’ package 

was used. Crucial hyperparameters affecting the visualization were set as follows; the number 

of neighbors: n_neighbors = 15, the minimum distance between embedded points: min_dist 

= 0.01. The input for UMAP consisted of a normalized and log(x+1)-transformed gene 

expression matrix. Expression values for each gene were scaled to the range of [0,1] across 

cells. The similarity between cells was calculated using the Euclidean distance. 

Sankey diagrams were generated using a tool called SankeyMATIC (https://sankeymatic.com/). 

 

 

https://sankeymatic.com/
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III.5 Proposed pipeline 

The framework utilizes the concept called Divisive Intelligent K-Means (DiviK) [134], 

which is based on iterative clustering with a 2-step feature space optimization. However, this 

framework was adjusted and originally enhanced to address scRNAseq data. The original 

improvement involved combining DiviK with functional analysis of gene pathways and a 

cluster linkage procedure (Figure 30). This approach enables the analysis of completely 

confounded scRNAseq datasets without the need for potentially harmful batch correction. 

Figure 30. The proposed framework for analysis of confounded datasets. The first step involves a filtering procedure 

that addresses the prevalent issue of zero measurements in scRNAseq data. This filtering is performed only once 

and globally, meaning it is applied to the entire feature space. The goal of global filtering is to remove significant 

noise from the data. In the second step of feature selection, a filtering strategy is applied locally to each cluster 

obtained at every clustering iteration. Clusters discovered within batches are subsequently subjected to independent 

functional analysis of gene sets. Following functional analysis, clusters from corresponding timepoints in the 

reference and confounded datasets are linked based on the similarity of their functional profiles. 
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III.5.1 Global noise filtering  

Genes with high frequencies of zero measurements are the main source of global noise in 

scRNAseq data. To avoid applying fixed thresholds on dropout rates, data-driven filtration was 

utilized using hierarchical clustering (HC). The HC was performed on binarized gene 

expression. Binarization (non-zero counts were changed to ones) was performed on the raw 

UMI counts after discarding poor-quality cells. Subsequently, a Hamming distance matrix was 

computed between every pair of genes, which were now represented as binary strings, using 

the formula below: 

 

The R function 'parallelDist' was utilized to compute the Hamming distance. This function 

performs calculations in parallel using multiple threads. Complete linkage was chosen as an 

agglomeration method which is based on maximum distance that is, merging is performed 

between clusters with the smallest maximum distance between their elements (farthest 

neighbors). Function ‘hclust’ from fastcluster R package was utilized for HC. Global filtration 

was performed only once and applied dataset wide (to the entire feature space). The resulting 

feature space, after global filtration, is referred to as the 'reduced domain.' In contrast, the term 

'full domain' is used to describe the original feature space before any filtration occurred. 

 

III.5.2 Local noise filtering 

Local noise filtering, also referred to as local space optimization or feature space 

engineering was performed by decomposing gene variances into a mixture of Gaussian 

components using Gaussian Mixture Models (GMM) [4]. The optimal number of components 

was determined using the Bayesian Information Criterion (BIC) within a range from 1 to 10. 

xi, yi – a pair of binary strings, k – strings length (must be the same), DH – Hamming distance 

The distance between two binary strings (a pair of genes) is the number of positions at which the 

corresponding bits are different. In the above example: DH (xi, yi) = 3 

 

xi

yi
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Each gene was assigned to a specific Gaussian component using the maximum a posteriori 

(MAP) rule. The components were then ordered based on their location parameter, which 

represents the mean of the Gaussian component. Genes corresponding to components located 

at the rightmost side of the signal scale were considered highly variable genes. The threshold 

was determined by the intersection between the two right most components. Conversely, the 

components located at the left-hand side were deemed non-informative for further analysis.  

Each subsequent GMM filtering started from the reduced domain, ensuring that the original 

information was still available regardless of the current depth of the analysis. This step was 

performed by executing ‘normalmixEM’ function from mixtools R package.  

 

III.5.3 Unsupervised splitting 

Unsupervised split was performed by employing two variants of k-means clustering: 

classic k-means and the more modern sparse k-means. The use of sparse k-means aimed to 

validate the GMM filtering approach, as this variant incorporates a feature selection procedure. 

In other words, it internally assesses the importance of each gene in the clustering process by 

assigning higher weights to more significant genes. 

The ‘KMeansSparseCluster’ function from sparcl R package [122] was utilized for sparse 

clustering and ‘kmeans’ function from base R package for classic kmeans. In both cases, the 

maximum number of iterations was set to 10. To mitigate the impact of highly expressed genes 

on the clustering results, the log-normalize gene expression values were scaled to the interval 

[0,1] prior to clustering. 

 

III.5.4 Determining the optimal number of clusters  

The optimal number of clusters was determined using the Calinski-Harabasz index, also 

known as the variance ratio criterion (VRC) [56]. Clustering was performed with various values 

of k, ranging from 2 to 10 clusters. The optimal number of clusters was determined by selecting 

the clustering with the highest value of the Calinski-Harabasz index. This metric was calculated 

using the following formula: 



METHODS  Proposed pipeline 

 

52 

 

 

 

III.5.5 Functional analysis and cluster linkage 

Functional analysis on discovered clusters was conducted through gene set variation 

analysis (GSVA) [135]. GSVA is an unsupervised technique that takes a log-normalized gene 

expression data matrix as input. It calculates the pathway enrichment score for each cell by 

comparing the empirical cumulative distribution functions (CDFs) of gene expression ranks 

within and outside the gene set. Enriched pathways, indicating up-regulation, are assigned 

positive values for the enrichment score, while down-regulated pathways receive negative 

values. Pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) were utilized. 

This collection consists of 186 pathways. The GSVA R package was employed, specifically 

using the 'gsva' function. 

Prior to the analysis, a filtration step was applied, involving the removal of the following: 

• Genes from the input expression data matrix with constant expression. 

• Genes from the input gene sets that do not have a corresponding gene in the input gene 

expression data matrix. 

• Gene sets that do not meet the user-specified minimum and maximum size requirements. 

The minimum and maximum gene set size was set to 15 and 500, respectively. 

 

where: 

SSB is the overall between-cluster variance, SSW - the overall within-cluster variance, k - 

the number of clusters,  N - the number of observations, ni - the number of observations in 

cluster i, mi - the centroid of cluster i, m - the overall mean of the sample data, and ‖mi−m‖ 

is the L2 norm (Euclidean distance) between the two vectors. 
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To find cluster specific pathways, Cliff's delta effect size statistics was proposed. This metric 

quantifies the extent to which values in one group are larger (dominate) than the values in a 

second group. However, these groups were determined according to one-versus-others scenario. 

This means that one group consisted of vector of enrichment scores for a specific cluster, while 

the second group consisted of a vector of enrichment scores for all the other clusters. 

Calculations were performed across all discovered clusters. Cliff's delta effect size statistics is 

defined through delta function (δ), as follows: 

 

Cliff's delta ranges from -1 to 1 and does not rely on assumptions regarding the shape or spread 

of the two groups being compared. The interpretation of this metric does not follow strict rules 

and should each time be adapted to the given experimental setup. 

 

Then scoring function was constructed with using previously calculated metrics to enable 

cluster linkage. Two variants of scoring function were utilized: 

 

• based on similarity score and calculated as follows: 

 

 

 

 

 

where: 

Two groups are defined: X = (x1, …, xm) and Y = (y1, …, yn), 

m,n – size of group X and Y respectively 

𝜹𝑪𝟏, 𝜹𝑪𝟐 - values of Cliff's delta effect size statistics for each pathway in cluster C1 and C2 

respectively 
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• based on Pearson correlation coefficient: 

 

where: 

• n: numer of pathways 

• xi, yi: values of Cliff's de 

• lta effect size statistics for each pathway in cluster C1 and C2 respectively 
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IV. RESULTS 

IV.1 Evaluation of batch effect correction methods  

Both datasets (balanced and confounded) were visualized at the cell level through UMAP 

plots (Figure 31). In the balanced dataset, cells from both repetitions group according to the 

biological variable of interest (timepoint). However, in the confounded dataset, each technical 

replicate forms its own cluster. This indicates that the dataset is completely confounded, with 

batch effects overpowering the biological variable of interest.  

Since reliable analysis of such a completely confounded dataset is not possible, six batch-effect 

correction tools were applied to address this issue (Figure 32). ComBat-seq resulted in two 

distinct clusters corresponding to different timepoints, with the cells from technical repetitions 

well intermingled. Limma also showed strong segregation based on the biological variable, but 

the repetitions appeared to cluster separately rather than intermingling. The MNN algorithm 

improved the separation by timepoint in both scenarios, considering all genes and only the top 

3,620 highly variable genes (HVGs). However, cells within T1 were likely to form subgroups. 

scMerge also improved the separation by timepoint compared to no correction across all tested 

setups of kmeansK parameter. However, the best performance was achieved at kmeansK = 

(4,4,3,3) where cells grouped by timepoint as well were well intermingled within technical 

replicates. For other setups of kmeansK, the technical replicates from T2 (A and B) clustered 

separately. Seurat achieved the worst result by mixing all cells together in both tested scenarios, 

Figure 31. UMAP plots of balanced and confounded study. 
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thus it was discarded from further analysis. Scanorama achieved little improvement, regardless 

of whether all genes or only HVGs were used. 

 

 

 

Figure 32. UMAP plots after batch correction. 
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To evaluate the impact of batch-effect correction on feature-level layer of the original data, the 

distribution of feature-level statistics (mean, variance, detection rate) was determined before 

(Figure 33) and after the correction (Figure 34 - 35). 

Figure 32. continued 
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The range of corrected mean expression values is lower compared to the original data, and 

genes with originally high mean expression are no longer ‘visible’ on the histograms from the 

corrected matrix (Figure 34). This effect is particularly evident in Scanorama. However, 

ComBat-seq is an exception to this rule where the original range was preserved.  It was the only 

method that preserved both the count nature and the original distribution of the data. Moreover, 

for MNN and Scanorama negative values started to occur in the corrected matrix, which makes 

biological interpretation difficult.  

 

The correction also distorts the mean-variance relationship that is characteristic of the 

scRNAseq data. There is a sharp collapse of the log variance in the upper range of the mean 

expression, indicating that genes with higher average expression no longer follow the 

distribution of the raw data (Figure 35 – left column). 

 

The relationship between average expression and detection rate is conserved only for ComBat-

seq and MNN (Figure 35 – right column). Limma introduces small expression values to all 

cells for many low expression genes (dropout rate equal 1), while scMerge and Scanorama 

consistently increase the dropout rate with increased expression of the gene.

Figure 33. Feature characteristics of confounded study before batch effect correction (for sample T1A). From the left: 

(i) histogram of average gene expression, (ii) scatter plot of variance vs mean expression (red line with intercept = 0 

and slope = 1) and (iii) detection rate vs average expression (red line indicates the expected distribution under a 

Poisson model. Individual points are colored by the number of neighboring points).  
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Figure 34. Histograms of average gene expression after batch effect correction (for sample T1A). 
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Figure 35. Feature level characteristics of confounded study after batch effect correction (for sample T1A). 

LEFT column: scatter plot of variance vs mean expression (red line with intercept = 0 and slope = 1); 

RIGHT column: detection rate vs average expression (red line indicates the expected distribution under a 

Poisson model. Individual points are colored by the number of neighboring points). 
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Figure 35. continued 
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IV.2 Global noise filtering 

All datasets exhibit a significant level of global noise, which is manifested in high dropout 

rates exceeding 90%. Many genes are rarely detected in any cell, with a dropout rate close to 1 

(Figure 36). 

To filter out these noisy genes in a data-driven manner, a method based on hierarchical 

clustering (HC) was proposed. Typically, the output of HC is in the form of a dendrogram. 

However, a dendrogram of several thousand genes would not provide informative results. 

Therefore, the results are presented in the form of a reader-friendly ‘clustering tree’ [136]. The 

clustering tree shows the relationships between clusters at multiple resolutions (K) (Figure 37). 

It allows the reader to examine how samples change their groupings as the number of clusters 

increases. As expected, genes with high dropout rates form a large cluster labeled as 1. 

Furthermore, their assignment to this cluster remains stable across different clustering 

resolutions. However, smaller subgroups of genes with lower dropout rates stand out from 

cluster 1 at different resolutions, which is desirable as we aim to discard only clearly redundant 

genes. 

Figure 36. Histograms of dropout rates before filtration. For clarity, only T1 timepoint from each dataset is 

shown, but the same level of dropouts was observed for all timepoints and datasets. 
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Figure 37. Visualization of hierarchical clustering at different resolution (for T1 sample from repetition A). K – number of clusters (resolution). Nodes are colored 

according to the average dropout rate of the members and sized according to the number of features they represent (exact number is shown in label). Edges (arrows) are 

also colored according to the number of features. The transparency is adjusted according to the in-proportion, with stronger lines showing edges are more important to 

the higher-resolution cluster. 
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Since the cluster assignments remained stable below K = 25, this value was established as a 

threshold for evaluating the distribution of dropout rates across all 25 clusters. It was observed 

that genes belonging to cluster 1 have noticeably higher dropout rates compared to genes in 

other clusters (Figure 38). Therefore, it is reasonable to discard genes in cluster 1 from further 

analysis. This process results in obtaining a reduced feature space for each sample/batch, which 

will be referred to as the 'reduced domain.' The number of genes before discarding noisy genes 

will be referred to as the 'full domain.'  

 

 

Although there are still genes with zero expression after filtration, their proportion is 

substantially lower compared, and the distribution of dropout rates is more uniform compared 

to the full domain (Figure 39).  

 

 

 

 

 

Figure 38. Distribution of dropout rates across clusters identified by hierarchical clustering at K = 25. For clarity 

only T1 sample from each dataset is shown. 
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A summary of the number of features before and after filtration is presented in Table 2. 

 

 

 

 

 

 

 

 

 

    reduced domain 

timepoint 
full 

domain 
repA repB confounded 

T1 

18 866 

6 346 5 401 3 094 

T2 6 253 6 713 3 226 

T3 6 613 6 723 2 661 

Figure 39. Histograms of dropout rates after global noise filtration. There is a number of genes remaining after 

the global filtration indicated on the plot. T1 sample for each dataset is shown. 

Table 2. The number of features left after global noise filtration. 
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IV.3 Local noise filtering 

The feature space obtained after global filtration, although significantly reduced, still 

contained genes that do not contribute much to the clustering process except for noise. Further 

optimization was performed locally (for each cluster discovered) based on variance 

decomposition into gaussian mixture components. Examples of the results from variance 

decomposition are presented on Figure 40. There were highly overlapping components 

observed, particularly for confounded dataset. Additionally, components covering almost the 

entire range of variance were observed for all datasets. However, they are not informative. 

Figure 40. Variance decomposition with GMM. Black dots indicate the threshold of variance above which genes 

are labeled as highly variable (HVG). The optimal number of components (K) were defined by BIC. 
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IV.4 K-means clustering 

To evaluate the impact of feature space filtration on the quality of clustering, k-means 

clustering (classic and sparse) was performed with three scenarios, with full, reduced and GMM 

filtered feature space (see Methods). The optimal number of clusters was determined by 

Calinski-Harabasz index, and it was equal to 2 for all samples and depth of analysis.  

 

When the full domain is considered, the clusters are blurred due to the presence of many noise 

features that do not contribute to the clustering process (Figure 41). After global filtration 

(reduced domain), the quality of clustering substantially improved. The clusters became more 

distinct, except in T3 where no improvement was observed. With GMM filtered domain 

(HVGs), the quality of clustering did not improve compared to the reduced domain; instead, it 

remained at the same level. However, it must be noted that HVGs represent only a small portion 

of the genes in the reduced domain. 

 

Figure 41. K-means clustering with different scenarios. UMAP plots for repetition A of balanced study. Two 

variants of k-means clustering were involved: classic k-means, referred to as kmeans, and sparse k-means, referred 

to as sparse km. 
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Figure 41. continued 
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The next step was to evaluate whether the weights assigned by sparse k-means were 

higher for the highly variable genes (HVGs) compared to the non-HVG group. This 

evaluation aimed to verify the proposed GMM-based feature selection method. The 

distribution of weights was assessed in both groups for repetitions A and B of the balanced 

study. In both cases, the weights in the HVG group were substantially higher, despite 

comprising only a small number of genes, constituting 2-3% of the full domain (Figure 

42).  
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T1 T2 T3 
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Figure 42. Distribution of feature weights assigned by sparse k-means. The evaluation was performed for 

both repetitions of balanced study. Two groups were considered: involving only HVGs obtained by GMM 

filtering (green), and non-HVG group (red). Weights were assigned automatically by the algorithm. There 

is a number of features depicted inside of each violin plot. 
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To delve deeper into the mechanism of weight assignment, quadrant analysis was 

conducted. This analysis examined the relationship between gene variances and assigned 

weights in each quadrant using Pearson and Spearman correlation. Similar to previous 

step, both repetitions of the balanced dataset were analyzed. The threshold limit for the X 

and Y-axes was determined based on the median value in the respective axis parameter. 

This division resulted in the formation of four quadrants. 

Particular attention was given to quadrants arranged diagonally: Q1/Q3 and Q2/Q4. The 

former corresponds to a scenario where high weights are assigned to genes with high 

variance (Q1) and conversely low weights are assigned to genes with low variance (Q3). 

This is the most desired scenario in terms of evaluation of the feature selection strategy. 

Q2/Q4 reflects the opposite situation, where low weights are assigned to genes with high 

variances (Q2) or high weights are assigned to genes with low variances (Q4).  

In repetition A, a majority of highly variable genes were present in Q1 and only a portion 

in Q2 (Figure 43) At least three times higher values of both correlation coefficients were 

observed for each timepoint in Q1 compared to Q2. High correlations were observed also 

for Q4 quadrant (high weight – low variance). However, the number of genes in Q4 was 

almost 5 times smaller compared to Q1 which result of obtaining a spuriously large 

correlation coefficient. 

In repetition B, the median value of assigned weights was equal to 0, hence only two 

quadrants were obtained. In both of them the correlations are similar (Figure 44). 
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Figure 43. Analysis of weights assigned by sparse k-means algorithm (repetition A). Rsp – Spearman’s correlation coefficient, Rpe – Pearson’s correlation coefficient, HVG – 

highly variable gene identified by GMM variance decomposition. The dashed line represents the median value of the weight on the x-axis and variance on the y-axis. When not 

plotted, the median value of the respective parameter is equal zero. 



 

72 

 

 

Figure 44. Analysis of weights assigned by sparse k-means algorithm (repletion B). Rsp – Spearman’s correlation coefficient, Rpe – Pearson’s correlation coefficient, HVG – 

highly variable gene identified by GMM variance decomposition. The dashed line represents the median value of the weight on the x-axis and variance on the y-axis. When not 

plotted, the median value of the respective parameter is equal zero. 
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IV.5 Functional analysis and cluster linkage 

IV.5.1 Evaluation of cluster-specific pathways 

This section involves comparisons between the repetition A of the balanced study, 

considered as a reference dataset, and the confounded dataset. After performing the GSVA 

analysis, the enrichment score was obtained for 111 pathways in repetition A and 106 for 

repetition B while the confounded dataset only included 50 pathways.  

The first step was to identify cluster-specific pathways for each dataset. To achieve this, the 

Cliff's delta effect size metric was utilized. Since the clusters were evaluated in a one-to-others 

scenario, the pathways with the highest value of this metric for a particular cluster would 

dominate over the other pathways and should be considered cluster-specific.  

The Cliff's delta ranging from -0.2 to 0.3, were observed across all clusters discovered in 

repetition A of the balanced study. Most values clustered around 0, and the histograms tend to 

be left-skewed. However, only small differences were observed between the distributions of 

Cliff's delta statistics (Figure 45). Conversely, in confounded dataset stronger differences 

between histograms were observed (Figure 46). 

The top three cluster-specific pathways with the highest (head) and lowest (tail) effect sizes are 

listed in Table 3 for the reference dataset and Table 4 for the confounded dataset. For 

convenience, pathways with the highest value of the effect size metric will be referred to as 

'top3_high', while those with the lowest value of Cliff’s delta statistics will be referred to as 

'top3_low'. 

The most frequently occurring pathways in both reference and confounded dataset were the 

‘progesterone-mediated oocyte maturation’ and ‘cell cycle’. These pathways often appeared 

together and were observed within ‘top3_high’ group. However, in cluster T1_II_1 (reference) 

these pathways were present in the ‘top3_low’ group as well as for T1_I_1, T2_II_1 and 

T3_II_1 cluster in the confounded study. 

The ‘progesterone-mediated oocyte maturation’ pathway is involved in the maturation of 

oocytes in females and is regulated by the hormone progesterone. Additionally, several 
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identified pathways were related to cell cycle regulation, which is crucial for cell growth, 

division, and replication. These pathways included: 

• The pathway involved in the metabolism of purine nucleotides which are necessary for 

DNA replication and cell growth during the cell cycle. This pathway was identified in 

clusters T2_II_1 and T3_I_1.  

• The ‘Base excision repair pathway’, which is involved in DNA repair mechanism that 

corrects damaged or modified bases in the DNA molecule to maintain genomic 

integrity. 

• The ‘Mismatch repair’, which corrects errors that occur during DNA replication, such 

as mismatches and small insertions or deletions. 

• The ‘Notch signalling’ pathway, which interacts with key cell cycle regulators such as 

cyclins, cyclin-dependent kinases (CDKs), and inhibitors of CDKs (CDKIs) to control 

cell cycle transitions and ensure proper cell proliferation. 

• The ‘p53 signaling pathway’: its main member is p53 protein which regulates cell 

cycle arrest, cellular senescence, or apoptosis. 

• The ‘TGF-Beta signaling’, which can enhance proliferation and promote tumor 

progression. 
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Figure 45. Distribution of Cliff’s delta effect size statistics across pathways in repetition A of balanced 

study. 
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Figure 45. continued 
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Figure 46. Distribution of Cliff’s delta effect size statistics across pathways in confounded study. 
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Figure 46. continued 
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cluster pathway ES 

T1_I_1 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION 0.236 

CELL_CYCLE 0.211 

OOCYTE_MEIOSIS 0.183 

PARKINSONS_DISEASE -0.081 

SPLICEOSOME -0.127 

SNARE_INTERACTIONS_IN_VESICULAR_TRANSPORT -0.153 
   

T1_I_2 

CELL_CYCLE 0.188 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION 0.162 

DNA_REPLICATION 0.156 

FATTY_ACID_METABOLISM -0.153 

CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION -0.186 

ECM_RECEPTOR_INTERACTION -0.202 
   

T1_II_1 

GLYCEROLIPID_METABOLISM 0.104 

SNARE_INTERACTIONS_IN_VESICULAR_TRANSPORT 0.103 

BASE_EXCISION_REPAIR 0.092 

OOCYTE_MEIOSIS -0.117 

CELL_CYCLE -0.145 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION -0.198 
   

T1_II_2 

ECM_RECEPTOR_INTERACTION 0.161 

NOTCH_SIGNALING_PATHWAY 0.118 

CELL_ADHESION_MOLECULES_CAMS 0.114 

DNA_REPLICATION -0.136 

BASE_EXCISION_REPAIR -0.158 

CELL_CYCLE -0.171 
   

T2_I_1 

CELL_CYCLE 0.250 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION 0.222 

SMALL_CELL_LUNG_CANCER 0.205 

CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION -0.140 

FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS -0.146 

DRUG_METABOLISM_OTHER_ENZYMES -0.162 
   

T2_I_2 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION 0.144 

CELL_CYCLE 0.140 

SMALL_CELL_LUNG_CANCER 0.115 

OXIDATIVE_PHOSPHORYLATION -0.108 

HUNTINGTONS_DISEASE -0.110 

PARKINSONS_DISEASE -0.122 

 

 

Table 3. continued 

pathways with the highest ES are marked in red 

Table 3.Top three pathways with the highest/lowest effect size (ES) for each cluster in 

balanced study 
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cluster pathway ES 

T2_II_1 

PURINE_METABOLISM 0.103 

PEROXISOME 0.062 

RENAL_CELL_CARCINOMA 0.056 

MELANOGENESIS -0.067 

WNT_SIGNALING_PATHWAY -0.093 

JAK_STAT_SIGNALING_PATHWAY -0.114 
   

T2_II_2 

CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 0.075 

SNARE_INTERACTIONS_IN_VESICULAR_TRANSPORT 0.072 

LYSOSOME 0.064 

CELL_CYCLE -0.132 

PURINE_METABOLISM -0.140 

SMALL_CELL_LUNG_CANCER -0.156 
   

T3_I_1 

N_GLYCAN_BIOSYNTHESIS 0.092 

PURINE_METABOLISM 0.077 

GLYCEROPHOSPHOLIPID_METABOLISM 0.065 

BLADDER_CANCER -0.074 

CHRONIC_MYELOID_LEUKEMIA -0.084 

P53_SIGNALING_PATHWAY -0.102 
   

T3_I_2 

LEUKOCYTE_TRANSENDOTHELIAL_MIGRATION 0.136 

HYPERTROPHIC_CARDIOMYOPATHY_HCM 0.122 

DILATED_CARDIOMYOPATHY 0.111 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION -0.120 

SPHINGOLIPID_METABOLISM -0.125 

CELL_CYCLE -0.136 
   

T3_II_1 

CYTOSOLIC_DNA_SENSING_PATHWAY 0.106 

AMINO_SUGAR_AND_NUCLEOTIDE_SUGAR_METABOLISM 0.093 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION 0.090 

GLUTATHIONE_METABOLISM -0.101 

PURINE_METABOLISM -0.105 

GLYCEROLIPID_METABOLISM -0.137 
   

T3_II_2 

CELL_CYCLE 0.289 

MISMATCH_REPAIR 0.223 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION 0.207 

LYSOSOME -0.183 

HYPERTROPHIC_CARDIOMYOPATHY_HCM -0.191 

SNARE_INTERACTIONS_IN_VESICULAR_TRANSPORT -0.198 
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cluster pathway ES 

T1_I_1 

SMALL_CELL_LUNG_CANCER 0.122 

MAPK_SIGNALING_PATHWAY 0.092 

CHRONIC_MYELOID_LEUKEMIA 0.074 

OOCYTE_MEIOSIS -0.114 

CELL_CYCLE -0.117 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION -0.159 
   

T1_I_2 

HUNTINGTONS_DISEASE 0.113 

OXIDATIVE_PHOSPHORYLATION 0.109 

ALZHEIMERS_DISEASE 0.103 

UBIQUITIN_MEDIATED_PROTEOLYSIS -0.093 

CHRONIC_MYELOID_LEUKEMIA -0.109 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION -0.115 
   

T1_II_1 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION 0.249 

OOCYTE_MEIOSIS 0.158 

CELL_CYCLE 0.154 

PARKINSONS_DISEASE -0.114 

OXIDATIVE_PHOSPHORYLATION -0.121 

HUNTINGTONS_DISEASE -0.122 
   

T1_II_2 

TGF_BETA_SIGNALING_PATHWAY 0.239 

CELL_CYCLE 0.231 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION 0.182 

VIBRIO_CHOLERAE_INFECTION -0.119 

SPLICEOSOME -0.125 

PROTEASOME -0.155 
   

T2_I_1 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION 0.214 

CELL_CYCLE 0.190 

TGF_BETA_SIGNALING_PATHWAY 0.149 

ANTIGEN_PROCESSING_AND_PRESENTATION -0.106 

ENDOCYTOSIS -0.111 

PROTEIN_EXPORT -0.117 
   

T2_I_2 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION 0.188 

OOCYTE_MEIOSIS 0.097 

CELL_CYCLE 0.080 

HUNTINGTONS_DISEASE -0.068 

TGF_BETA_SIGNALING_PATHWAY -0.076 

DNA_REPLICATION -0.168 

 

 

pathways with the highest ES are marked in red 

Table 4. Top three pathways with the highest/lowest effect size (ES) for each cluster 

in confounded study 
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cluster pathway ES 

T2_II_1 

ADHERENS_JUNCTION 0.080 

REGULATION_OF_ACTIN_CYTOSKELETON 0.079 

FOCAL_ADHESION 0.072 

OOCYTE_MEIOSIS -0.093 

CELL_CYCLE -0.122 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION -0.205 
   

T2_II_2 

DNA_REPLICATION 0.153 

NUCLEOTIDE_EXCISION_REPAIR 0.138 

LYSOSOME 0.105 

PATHWAYS_IN_CANCER -0.112 

OOCYTE_MEIOSIS -0.118 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION -0.151 
   

T3_I_1 

CELL_CYCLE 0.205 

P53_SIGNALING_PATHWAY 0.178 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION 0.170 

HUNTINGTONS_DISEASE -0.074 

OXIDATIVE_PHOSPHORYLATION -0.075 

PARKINSONS_DISEASE -0.078 
   

T3_I_2 

CELL_CYCLE 0.284 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION 0.256 

PROTEASOME 0.210 

VIBRIO_CHOLERAE_INFECTION -0.206 

CALCIUM_SIGNALING_PATHWAY -0.326 

APOPTOSIS -0.366 
   

T3_II_1 

REGULATION_OF_ACTIN_CYTOSKELETON 0.161 

CALCIUM_SIGNALING_PATHWAY 0.157 

APOPTOSIS 0.148 

GAP_JUNCTION -0.095 

CELL_CYCLE -0.213 

PROGESTERONE_MEDIATED_OOCYTE_MATURATION -0.213 
   

T3_II_2 

GLUTATHIONE_METABOLISM 0.040 

PROTEASOME 0.030 

TGF_BETA_SIGNALING_PATHWAY 0.028 

CELL_CYCLE -0.243 

CALCIUM_SIGNALING_PATHWAY -0.244 

OOCYTE_MEIOSIS -0.253 

 

 

Table 4. continued 
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IV.5.2 Within dataset cluster linkage 

Pairwise comparisons of Cliff’s delta effect size statistics across clusters were performed 

to link clusters between batches (timepoints) within the dataset. In the first approach, 

similarities between clusters were evaluated through Pearson correlation coefficient.  

Repetition A of the reference study: 7 pairs exhibited large correlations (|r| ≥ 0.7). Within the 

same timepoint, a negative correlation was observed for pairs, while a positive correlation was 

observed mainly between clusters from different timepoints (Figure 47).  The strongest positive 

relationship was observed for the following pairs: T1_II_2 – T3_I_2 (r = 0.748) and for T1_I_1 

– T3_II_2 (r = 0.732).  

Repetition B of the reference study: 2 pairs of highly correlated clusters were observed 

involving one positive relationship between clusters T2_I_2 and T3_I_2 (r = 0.720). From the 

medium correlation range, the highest positive was observed for T2_II_1 - T2_II_2 (Figure 

48). 

Confounded study: 11 highly correlated pairs were observed, including 4 positives, but these 

pairs differed from the reference. Nonetheless, negative correlations occurred mainly between 

clusters within the same timepoint (Figure 49).  

In the second approach, similarities between clusters were evaluated using a metric called the 

"similarity score," which is simply the dot product of two vectors. Both the similarity score and 

Pearson correlation are related; however, the former focuses on representing the alignment 

between vectors, while the latter represents the strength and direction of the linear relationship 

between the variables. A larger dot product indicates a stronger alignment. 

To visually track clusters across timepoints, the clusters were compared in the following 

manner: clusters from T1 were compared with clusters from T2, and clusters from T2 were 

compared with clusters from T3. Sankey diagrams were then generated for each dataset based 

on the two similarity metrics under consideration. The Sankey plot effectively illustrates the 

flow of clusters from T1 to T3 (Figure 50). 

Pearson correlation: 

In repetition A of the balanced study, one of the most active flow paths was observed from 

T1_I_1, passing through T2_I_2, and reaching T3_II_2 (Figure 50 – top panel). Similarly, in 
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repetition B of the balanced study, the same target (T3_II_2) and intermediate cluster (T2_I_2) 

were observed, although the path started from T1_I_2 in this dataset. On the other hand, in the 

confounded dataset, the flow distribution was more uniform, with T2_I_1 and T3_I_1 receiving 

the highest flow amounts. 

Similarity score: 

When considering the similarity score measure, the overall flow structure is generally similar 

to that of the correlation-based metric. However, there is an improvement in resolution. For 

example, in repetition A, the most active path still begins at T1_I_1, but now the intermediate 

cluster has changed to T2_I_1, resulting in a more pronounced flow. (Figure 50 – bottom panel) 

The target cluster, however, remains the same as in the correlation metric. 

The Sankey diagrams reveal that a particular cluster can exhibit similarities with more than one 

other cluster. Based on maximization approach, only clusters with the highest positive similarity 

metric (separately for correlation and similarity score) were paired, allowing each cluster to 

form only one pair. (Table 5 and Table 6). These pairs of clusters can be considered the most 

similar between timepoints (batches). 

In the next section, comparisons will be made between corresponding timepoints of the 

reference and confounded datasets. To avoid unnecessary confusion, the results presented 

below will only focus on the similarity score.
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Figure 47. Pairwise plots for balanced study (repetition A). Scatterplots of each pair are visualized on the left side of the plot (points represent value of 

Cliff’s delta for each pathway), while the corresponding Pearson correlation value and significance are displayed on the right side. The diagonal represents 

the distribution of Cliff’s delta values across pathways for each cluster. The significance of correlation is indicated by: “***” - if the p-value is < 0.001; 

“**” - if the p-value is < 0.01; “*” - if the p-value is < 0.05; “.” - if the p-value is < 0.10 and “” – otherwise. 
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Figure 48. Pairwise plots for balanced study (repetition B). Scatterplots of each pair are visualized on the left side of the plot (points represent value of 

Cliff’s delta for each pathway), while the corresponding Pearson correlation value and significance are displayed on the right side. The diagonal represents 

the distribution of Cliff’s delta values across pathways for each cluster. The significance of correlation is indicated by: “***” - if the p-value is < 0.001; 

“**” - if the p-value is < 0.01; “*” - if the p-value is < 0.05; “.” - if the p-value is < 0.10 and “” – otherwise. 
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Figure 49. Pairwise plots for confounded study. Scatterplots of each pair are visualized on the left side of the plot (points represent value of Cliff’s delta for 

each pathway), while the corresponding Pearson correlation value and significance are displayed on the right side. The diagonal represents the distribution 

of Cliff’s delta values across pathways for each cluster. The significance of correlation is indicated by: “***” - if the p-value is < 0.001; “**” - if the p-

value is < 0.01; “*” - if the p-value is < 0.05; “.” - if the p-value is < 0.10 and “” – otherwise. 
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 Table 5. Pairs of clusters with the maximum values of correlation similarity. 

 

 

 

 

cluster_T1 cluster_T2 max_corr cluster_T1 cluster_T2 max_corr cluster_T1 cluster_T2 max_corr

T1_II_2 T2_II_2 0.666 T1_I_2 T2_I_2 0.408 T1_II_2 T2_I_1 0.777

T1_I_1 T2_I_2 0.660 T1_II_1 T2_II_1 0.339 T1_I_2 T2_II_2 0.722

T1_I_2 T2_I_1 0.496 T1_II_2 T2_I_1 0.221 T1_II_1 T2_I_2 0.684

T1_II_1 T2_II_1 0.462 T1_I_1 T2_II_2 0.085 T1_I_1 T2_II_1 0.640

cluster_T2 cluster_T3 max_corr cluster_T2 cluster_T3 max_corr cluster_T2 cluster_T3 max_corr

T2_I_1 T3_II_2 0.692 T2_I_2 T3_II_2 0.720 T2_II_1 T3_II_1 0.755

T2_II_2 T3_I_2 0.605 T2_II_1 T3_II_1 0.599 T2_I_2 T3_I_1 0.643

T2_II_1 T3_I_1 0.430 T2_I_1 T3_I_1 0.546 T2_II_2 T3_II_2 0.560

T2_I_2 T3_II_1 0.228 T2_I_1 T3_I_2 0.468

repA balanced repB balanced confounded

repA balanced repB balanced confounded

Table 6. Pairs of clusters with the maximum values of similarity score. 

cluster_T1 cluster_T2 max_sim_score cluster_T1 cluster_T2 max_sim_score cluster_T1 cluster_T2 max_sim_score

T1_I_1 T2_I_1 0.398 T1_I_2 T2_I_2 0.140 T1_II_2 T2_I_1 0.262

T1_II_2 T2_II_2 0.216 T1_II_1 T2_II_2 0.124 T1_II_1 T2_I_2 0.140

T1_I_2 T2_I_2 0.179 T1_II_2 T2_I_1 0.062 T1_I_2 T2_II_2 0.133

T1_II_1 T2_II_1 0.087 T1_I_1 T2_II_1 0.018 T1_I_1 T2_II_1 0.092

cluster_T2 cluster_T3 max_sim_score cluster_T2 cluster_T3 max_sim_score cluster_T2 cluster_T3 max_sim_score

T2_I_1 T3_II_2 0.533 T2_II_2 T3_II_1 0.302 T2_I_1 T3_I_2 0.206

T2_II_2 T3_I_2 0.149 T2_I_2 T3_II_2 0.152 T2_II_1 T3_II_1 0.195

T2_I_2 T3_II_1 0.066 T2_I_1 T3_I_1 0.088 T2_II_2 T3_II_2 0.193

T2_II_1 T3_I_1 0.063 T2_I_2 T3_I_1 0.109

repA balanced repB balanced confounded

repA balanced repB balanced confounded
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Figure 50. Sankey diagrams for each dataset. Left – repA_balanced, middle – repB_balanced, and right – confounded dataset. Sankey plot presents how clusters 

flow from T1 to T3. The thickness of flows is proportional to the value of the metric considered (Pearson correlation – top row or similarity score – bottom row). 

The label on the right of the cluster name represents the sum of the values coming out of the given cluster (for source nodes) or the sum of the values coming in the 

given cluster (for target nodes). 
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IV.5.3 Cluster linkage between reference and confounded 

dataset 

In order to conduct a joint analysis, it was necessary to standardize the number of 

pathways for comparison between datasets, resulting in a final count of 50 pathways. The initial 

step involved identifying flow patterns between the two technical repetitions of the balanced 

study, followed by comparing repetition A with the confounded study. The results were 

summarized in the form of heatmaps (Figure 51). 

 

There is a very similar flow layout observed between the comparisons of repA_vs_repB and 

repA_vs_confounded (Figure 52). When considering the T1 timepoint, a specific cluster from 

repetition A exhibits similarities to two clusters from either repetition B or the confounded 

study. However, in most cases, one of the flows is usually stronger, particularly in the 

repA_vs_repB comparison. 

 

In the T2 and T3 timepoints, one-to-one flows occur. For instance, T2_II_2 from repA only 

flows to T2_I_2 of repB. However, when compared to the confounded study, it demonstrates 

similarity to theoretically different clusters: T2_II_1 and T2_II_2. 

 

In the comparison between repA and repB (repA_vs_repB), the cluster with the highest 

similarity score is T1_II_2, which closely corresponds to the cluster T1_I_2 from the 

confounded study (Table 7). Following that, the subsequent cluster in the repA_vs_repB 

comparison, T1_I_2, displays the greatest similarity to T1_II_1 of the confounded study. 

In repA, T1_I_1 can be associated with T1_II_2 from the confounded study. The last pair in 

the repA_vs_repB comparison is identical to the last pair in the repA_vs_confounded 

comparison. For timepoints T2 and T3, the order of clusters from repA in the repA_vs_repB 

comparison remains the same as the order in the repA_vs_confounded comparison. 
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Figure 51. Heatmaps of the similarity scores between clusters of corresponding timepoints across datasets. The left 

column represents the comparisons between technical replicates of the balanced study (repA_vs_repB), while the 

right column corresponds to the comparison of repetition A of the balanced study with the confounded study 

(repA_vs_confounded). The row names indicate the clusters from repetition A. NA – indicates negative value of the 

similarity score. 
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Figure 52. Sankey diagrams for between datasets comparisons. Left column corresponds to the comparison 

between repetition A and B of balanced study. Right column corresponds to the comparison between repetition 

A of balanced study and confounded study. Rows reflect the corresponding timepoints: top – T1; middle – T2 

and bottom – T3. The thickness of flows is proportional to the value of similarity score.  The label on the right 

of the cluster name represents the sum of the values coming out of the given cluster (for source nodes) or the 

sum of the values coming in the given cluster (for target nodes). 
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Table 7. Pairs of clusters with the maximum values of similarity score between datasets 

repA_vs_repB  repA_vs_confounded 

cluster_repA cluster_repB max_sim_score   cluster_repA cluster_confounded max_sim_score 

T1_II_2 T1_I_2 0.146   T1_I_2 T1_II_1 0.201 

T1_I_2 T1_II_2 0.141   T1_I_1 T1_II_2 0.189 

T1_I_1 T1_II_1 0.104   T1_II_2 T1_I_2 0.101 

T1_II_1 T1_I_1 0.002   T1_II_1 T1_I_1 0.053 
              

T2_I_1 T2_II_2 0.326   T2_I_1 T2_I_1 0.164 

T2_I_2 T2_II_1 0.136   T2_I_2 T2_I_2 0.075 

T2_II_2 T2_I_2 0.131   T2_II_2 T2_II_2 0.055 

T2_II_1 T2_I_1 0.045   T2_II_1 T2_II_1 0.033 
              

T3_II_2 T3_II_1 0.334   T3_II_2 T3_I_1 0.23 

T3_I_2 T3_I_2 0.076   T3_I_2 T3_II_1 0.148 

T3_I_1 T3_I_1 0.058   T3_I_1 T3_II_2 0.103 

T3_II_1 T3_II_2 0.024   T3_II_1 T3_I_2 0.031 
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V. DISCUSSION 

Batch effects pose an inevitable challenge in large-scale experiments and those 

involving multiple omics layers. They introduce an additional layer of technical noise to 

an already noisy scRNAseq data. However, this noise is not uniformly distributed across 

genomic data features [87], making it unsuitable to address during the normalization step. 

Consequently, computational correction or removal becomes necessary, which is the 

objective of existing algorithms. Nevertheless, distinguishing batch effects from 

biological heterogeneity is a challenging task due to their differential origins. 

Although batch effects have a detrimental impact on the data, the process of correction 

for them can also be harmful, particularly at the gene-level. There are several downsides 

to batch correction, including the lack of a measure to quantify the uncertainty associated 

with the correction process, requiring caution in the application of correction tools. 

Existing algorithms often prioritize achieving complete mixing of cells between batches 

rather than preserving the underlying population structure. Furthermore, it was shown in 

this work that batch correction distorts the original data distribution, making gene-level 

analyses infeasible. Additionally, there is no single best method that can be applied to all 

datasets and experimental setups.  

The advancement of this field of data analysis primarily focuses on developing new tools 

that overcome the limitations of previous approaches. However, it is important to note 

that computationally correcting completely confounded experiments is infeasible. In this 

PhD project, an attempt was made to tackle the challenge of analyzing completely 

confounded datasets without the need for batch correction. 

 

To facilitate the consolidated analysis of separately generated data, a pipeline utilizing 

iterative subspace clustering was proposed. Several publications have demonstrated the 

usefulness of subspace clustering in mitigating noise in scRNA-seq data [137-139]. 

However, an approach to utilize this technique specifically for mitigating batch effects 

has not been explored yet. Furthermore, subspace clustering framework was combined 

with functional analysis of gene pathways. The novel and central idea was to employ 

effect size measure to determine cluster-specific pathways, followed by a linkage 

procedure that enables cluster tracking across different batches. To address specific 
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challenges encountered in scRNA-seq data, original adjustments were introduced, such 

as global noise filtration based on binarized gene expression matrix to handle dropouts. 

This project stands out due to its unique experimental setup, which involves a pair of 

experimentally derived datasets. These datasets shared identical biological properties but 

differed only in technical aspects. This setup is distinct from existing evaluations of batch 

effect correction, which often rely on simulation scenarios or include true cell identity 

labels. Simulation studies are appealing because they allow for the definition of a ground 

truth, which is often challenging to establish in experimental data. However, simulations 

cannot fully replicate real-life experimental data and may introduce artificial effects [140, 

141]. Therefore, the utilization of a real-life evaluation setup provided ideal conditions 

for exploration. 

 

The balanced dataset, consisting of technical repetitions labeled as A and B, served as a 

two-level validation set. In the initial step, this dataset was used to validate the feature 

selection strategy based on decomposing gene variances into mixtures of Gaussian 

components. The results demonstrated that the sparse k-means algorithm, coupled with a 

more sophisticated feature selection strategy, assigned higher importance to highly 

variable genes identified by the Gaussian Mixture Model (GMM) strategy. Furthermore, 

the performance of clustering, based on only a small fraction of highly informative genes, 

showed significant improvement. However, even after discarding the majority of noisy 

genes during the global filtration step, the signal-to-noise ratio remained insufficient. This 

might have resulted in some highly variable genes being given low importance. The low 

signal-to-noise ratio also contributed to the high overlap of Gaussian components. 

Additionally, near-zero counts observed in the expression matrix had a significant impact 

on the accuracy of variance calculation, as the squared differences from the mean became 

even smaller, leading to numerical instability. 

 

The Cliff’s delta effect size statistics is widely recognized. However, its application for 

determining cluster-specific pathways has not been previously investigated. The 

evaluation scenario, known as "one-to-others," was designed to identify pathways with a 

robust manifestation. These pathways were assumed to demonstrate resilience to the 

negative impact of batch effects, which is generally lower compared to individual genes. 

In the functional analysis step, a collection of 186 KEGG pathways was utilized. 
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Although, not all of the KEGG pathways were relevant for the analysis of cancer cells, 

the linkage between clusters was feasible. 

 

In the initial step, cluster tracking was conducted between batches corresponding to 

different timepoints. This approach was motivated by the understanding that not all cells 

respond equally to drug administration, and there may be unaffected cell clusters in 

subsequent timepoints. In other words, certain cancer cells may develop resistance to the 

drug, while others may not. The analysis revealed intricate flow patterns between the 

technical repetitions of the balanced study. It was observed that a specific cluster could 

exhibit similarities with multiple other clusters, which is expected due to the inherent 

cellular heterogeneity even within a homogenous cell culture. 

 

It is important to note that k-means clustering employs a random initialization procedure, 

which means that the initial cluster centers are selected stochastically. Consequently, 

different cluster assignments may result in the final outcome. Therefore, the cluster 

labelled as T2_II_1 in one dataset may not differ significantly from the cluster labeled as 

T2_II_2 in the second dataset, as the final labels were assigned within the same splitting 

depth. 

 

The second scenario involved establishing a linkage between corresponding timepoints 

of a reference and a confounded study. In this scenario, the flow patterns discovered in 

the reference dataset were transferred to the confounded dataset, revealing more uniform 

flow structures. The values of similarity scores may appear low or insignificant. However, 

it should be emphasized that the interpretation of similarity scores does not follow strict 

rules like a correlation coefficient, and should be adjusted to specific experimental 

conditions. It is crucial to keep in mind that the analysis focused on a completely 

confounded dataset, representing the most extreme case. The obtained results suggest that 

the proposed approach may be a promising avenue of investigation. The presented 

approach may serve as a last resort protocol for analyzing confounded from scRNAseq 

experiments.  

 

The proposed workflow prioritizes simplicity, low computational cost, and ease of 

interpretation. All the methods employed in this pipeline are well-established and widely 

recognized in the field. However, it is worth noting that the goal, which was not initially 
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introduced in this dissertation, was to provide an approach that is easily understandable 

not only for statisticians or data analysts but also for biologists responsible for designing 

such experiments.  

The use of hierarchical clustering in the global filtering step was the most computationally 

demanding step of our proposed pipeline, and one may question its utility. However, this 

type of clustering is easy for interpretation and allows for the implementation of various 

similarity metrics. Dropouts could also be addressed through imputation. However, it's 

important to note that this strategy can only propagate biases that are already present in 

the batch effect-affected dataset. 

 

There is potential for improvement in terms of unsupervised splitting as well. K-means 

clustering is based on Euclidean distance which may not be ideal metric for highly or 

even moderately sparse data. However, k-means is straightforward to analyze and 

interpret the clustering results, as it assigns data points to clusters based on their proximity 

to the cluster centers, making it intuitive and simple to implement. In contrast, other 

algorithms like graph-based methods may generate more abstract cluster representations, 

which can make result interpretation less straightforward. In this study, two rounds of 

clustering were conducted, which proved sufficient for enabling cluster linkage. 

However, further explorations involving greater depth should be undertaken. 

Additionally, it is important to explore alternative pathway collections or consider 

creating a customized collection that is specifically relevant to the biological system 

under investigation. 

 

To fully validate the proposed approach, further research is necessary, addressing the 

aforementioned issues. Nonetheless, it is important to note that this work aimed not to 

provide a ready-to-use method but rather to pave the way for new directions in research. 

 

SUMMARY 

 

The results presented in this dissertation justify the theses presented in Section I.2, 

particularly: 

• Section IV.1 proves that batch correction have a detrimental effect on the 

original distribution of scRNAseq data, making gene-level analysis infeasible. 
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• Section IV.4 proves that utilizing 2-level filtration strategy improves the 

performance of clustering. Furthermore, simple feature selection method based 

on variance decomposition can substitute more sophisticated and black-box 

algorithms. 

• Section IV.5 proves that combining functional analysis and cluster linkage 

procedure allows to skip batch correction step.  
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ABSTRACT 

 

Single-cell RNAseq experiments are often conducted on a large scale, involving multiple 

laboratories or measurements taken at different times. Perfectly balanced experimental 

designs for such large projects may be infeasible, resulting in the need to conduct 

experiments in batches. Consequently, batch effects inevitably arise. Batch effects 

introduce variation that is unrelated to the biological variability under investigation, 

thereby obscuring it. If left unaddressed, batch effects can result in misleading 

conclusions drawn from the analysis. Therefore, batch effects have to be computationally 

corrected or removed. 

 

Although batch effects have a detrimental impact on the data, the process of correction 

for them can also be harmful, particularly at the gene-level. There are several downsides 

to batch correction, including the lack of a measure to quantify the uncertainty associated 

with the correction process, requiring caution in the application of correction tools. 

Existing algorithms often prioritize achieving complete mixing of cells between batches 

rather than preserving the underlying population structure. 

 

This work aims to provide a pipeline that utilizes iterative subspace clustering, combined 

with functional analysis of gene sets, to mitigate the negative impact of the batch effect 

on scRNAseq data. The crucial aspect of the functional analysis involves identifying 

cluster-specific pathways and establishing their linkage between batches. Therefore, the 

proposed workflow eliminates the need for applying batch-effect correction and enables 

consolidated analysis of batches that were generated separately. 
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STRESZCZENIE 

 

Efekt paczki jest nieuniknionym zjawiskiem w przypadku wysokoprzepustowych i 

wielkoskalowych eksperymentów, gdzie ograniczenia logistyczne wymagają 

generowania danych w różnym czasie i przy zaangażowaniu wielu laboratoriów, często 

wyposażonych w odmienne platformy sprzętowe, wykorzystujących różne partie 

odczynników i przy udziale zróżnicowanego personelu badawczego.  

 

Wspólna analiza takich danych jest niewykonalna, ponieważ efekty paczki przesłaniają 

badaną zmienność biologiczną. Takie dane należy skorygować, aby konkluzje 

wyciągnięte z ich analizy były wiarygodne. Niestety sam proces korekty wiąże się z 

kilkoma negatywnymi konsekwencjami. Korekta zniekształca bowiem pierwotną naturę 

oraz dystrybucję danych. Ponadto brakuje miary do ilościowego szacowania niepewności 

tego procesu. Co więcej, korekta z wykorzystaniem narzędzi bioinformatycznych jest 

praktycznie niemożliwa w przypadkach, gdzie badana zmienna biologiczna jest 

całkowicie skorelowana ze zmienną techniczną. 

 

W niniejszej pracy zaproponowano podejście umożliwiające skonsolidowaną analizę 

zestawów danych pochodzących z eksperymentów scRNAseq i prezentujących. silny 

efekt paczki. Proponowane rozwiązanie opiera się na iteracyjnej metodzie grupowania z 

selekcją cech połączonej z analizą funkcjonalną zestawów genów. Po analizie 

funkcjonalnej otrzymane klastry są łączone między paczkami na podstawie ich 

funkcjonalnego podobieństwa. Celem takiego podejścia jest złagodzenie negatywnego 

wpływu efektu paczki bez konieczności jego korekty i związanymi z tym 

konsekwencjami.  
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