
STUDIA INFORMATICA 2011

Volume 32 Number 3B (99)

Mirosław BŁOCHO, Zbigniew J. CZECH

Silesian University of Technology, Institute of Informatics

AN IMPROVED ROUTE MINIMIZATION ALGORITHM FOR THE

VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

Summary. A route minimization algorithm for the vehicle routing problem with

time windows is presented. It was elaborated as an improvement of the algorithm

proposed by Nagata and Bräysy (A powerful route minimization heuristic for the

vehicle routing problem with time windows, Operations Research Letters 27, 2009,

333-338). By making use of the improved algorithm the two new-best solutions for

Gehring and Homberger’s (GH) benchmarks were found. The experiments showed

that the algorithm constructs the world-best solutions with the minimum route

numbers for the GH tests in a short time.

Keywords: vehicle routing problem with time windows, guided local search,

heuristics, approximation algorithms

ULEPSZONY ALGORYTM MINIMALIZACJI LICZBY TRAS DLA

PROBLEMU TRASOWANIA POJAZDÓW Z OKNAMI CZASOWYMI

Streszczenie. W pracy zaprezentowano algorytm minimalizacji liczby tras dla

problemu trasowania pojazdów z oknami czasowymi. Został on opracowany przez

ulepszenie algorytmu zaproponowanego przez Nagatę and Bräysy’ego (A powerful

route minimization heuristic for the vehicle routing problem with time windows,

Operations Research Letters 27, 2009, 333-338). Przy użyciu ulepszonego algorytmu

znaleziono dwa nowe najlepsze rozwiązania dla testów wzorcowych Gehringa

i Hombergera (GH). W eksperymentach wykazano, że za pomocą ulepszonego

algorytmu są konstruowane w krótkim czasie najlepsze światowe rozwiązania testów

GH o minimalnej liczbie tras.

Słowa kluczowe: trasowanie pojazdów z przedziałami czasowymi, lokalne

poszukiwanie z przewodnikiem, heurystyki, algorytmy aproksymacyjne

6 M. Błocho, Z. J. Czech

1. Introduction

Reducing transportation costs has always been important in all transit companies.

Nowadays, not only overestimating the number of required vehicles causes a lot of problems,

but also underestimating them. Revaluing routes number brings about ineffective allocation

of funds, which is especially essential due to expensive maintenance costs. In turn

underestimating them might entail inadequate covering all scheduled services and the

prospective loss of the reputation and the customers. Therefore, the proper prediction of the

minimum number of vehicles needed to carry out the transportation tasks becomes

increasingly indispensable. This problem occurs not only in distribution products from depot

to the customers but also in the school bus routing, newspapers and mail delivery, armoured

car routing, rail distribution, airline fleet routing, repairmen scheduling and many others.

The vehicle routing problem with time windows (VRPTW) is an extension to the

capacitated vehicle routing problem (CVRP) which is formulated in the following

manner [1]. There is a central depot of goods and n customers geographically scattered

around the depot. The locations of the customers (i = 1, 2, …, n) and the depot (i = 0), as well

as the shortest distances dij and the corresponding travel times tij between any two customers

i and j (including the depot) are known. Each customer asks for a quantity qi of goods which

has to be delivered by a vehicle of capacity Q. Each vehicle after serving a subset of

customers must return to the depot for reloading. Each route starts and terminates at the

depot. A solution to the CVRP is a set of routes of minimum travel distance (or travel time)

which visits each customer i exactly once. The total demand for each route cannot exceed Q.

The CVRP is extended into the VRPTW by introducing for each customer and the depot

a service time window [ei, fi] and a service time si (s0 = 0). The values ei and fi determine the

earliest and the latest start time of service, respectively. Each customer i has to be served

within the time window [ei, fi] and the service of all customers must be accomplished within

the time window of the depot [e0, f0]. The vehicle can arrive to the customer i before the

earliest start time of service ei, but then it has to wait until time, when the service can begin.

If the vehicle arrives to the customer i after the latest start time of service fi, then the solution

is not feasible. The routes are travelled simultaneously by a fleet of K homogenous vehicles

(i.e. of equal capacity) with each vehicle assigned to a single route. A feasible solution to the

VRPTW is the set of routes which guarantees the delivery of goods to all customers and

satisfies the time window and the vehicle capacity constraints. The primary objective is to

minimize the number of needed vehicles and the secondary objective is to minimize the total

travel distance.

Formally, there are three types of decision variables in this two-objective optimization

problem. The first decision variable xi, j, k, i, j {0,1,…,n}, k {1,2,…,K}, i ≠ j, is 1 if

An improved route minimization algorithm for the VRPTW 7

vehicle k travels from customer i to j, and 0 otherwise. The second decision variable, ti,

indicates the time when a vehicle arrives at the customer i, and the third decision variable, bi,

denotes the waiting time at this customer. The objective is to:

minimize K, and then (1)

minimize kji

n

i

n

j

K

k ji xd ,,0 0 1 ,
 (2)

subject to the following constraints:

K

k

n

j

kji Kx
1 1

,, , for i = 0, (3)

n

j

n

j

kijkji xx
1 1

,,,, 1 , for i = 0 and Kk ,...,2,1 , (4)

1
1 ,0

,,

1 ,0

,,

K

k

n

jii

kji

K

k

n

ijj

kji xx , for nji ,...,2,1, , (5)

Qxq
n

ijj

kji

n

i

i
 ,0

,,

1

, for Kk ,...,2,1 , (6)

,)(
1 ,0

,,,

K

k

j

n

jii

jiiiikjii tthbtxq for },...,2,1{ nj and ,0000 hbt (7)

iiii fbte)(, for .,...,2,1 ni (8)

Formulas (1) and (2) identify the minimized functions. Eq. (3) specifies that there are

K routes starting at the depot. Eq. (4) denotes that every route starts and terminates at the

depot. Eq. (5) assures that every customer is visited only once by a single vehicle. Eq. (6)

denotes the capacity constraints. Eqs. (7)-(8) identify the time windows constraints. Eqs. (3)-

(8) define the feasible solutions to the VRPTW.

In this paper the improvements of the route minimization algorithm for the VRPTW by

Nagata and Bräysy [7] are presented. Similarly to this heuristic the improved algorithm is

based on the idea of the ejection pool, originated from the heuristic by Lim and Zhang [5],

combined with the guided local searches and the diversification strategy [12]. The powerful

insertion procedure which temporarily accepts an infeasible solution supplemented with

further attempts to restore the feasibility have been also included in the improved algorithm.

Moreover, the additional algorithm modifications which allowed for speeding up the local

search strategies have been introduced. The experimental tests provided helpful hints on the

algorithm steps needed strong modifications in order to achieve better results. The remainder

of this paper is arranged as follows. In Section 2 the algorithm modifications are described.

Section 3 contains the discussion of the experimental test results. Section 4 concludes the

paper.

8 M. Błocho, Z. J. Czech

2. Route minimization algorithm

2.1. Algorithm description

The first version of the algorithm was implemented based upon the route minimization

heuristic for the vehicle routing problem with time windows [7]. The main framework of the

heuristic consists of the consecutive route elimination steps performed until the total

computation time reaches a specified time. These route elimination steps are included in the

RemoveRoute function [7], which is repeatedly called during the algorithm execution.

function RemoveRoute(φ)

begin

1: choose a random route and remove it from the solution φ

2: initialize Ejection Pool (EP) with the customers from the removed

route

3: initiate the penalty counters for all customers p[j]:= 1

(j = 1,…,n)

4: while EP ≠ Ø and currTime < maxTime do

5: select and eject the customer vins from EP using LIFO stack

6: if Ninsert(vins, φ) ≠ Ø then
7: φ:= the new solution φ’ selected randomly from Ninsert(vins, φ)

8: else

9: φ:= Squeeze(vins, φ)

10: end if

11: if vins is not inserted into φ then

12: p[vins] := p[vins] + 1 (increase a penalty counter for the

 customer vins)

13: select φ’ from Nej(vins, φ) with minimized

Psum = p[
)1(

outv]+p[
)2(

outv]+…+p[
)(k

outv]

14: update φ:= φ’

15: add the ejected customers:
)1(

outv ,
)2(

outv , … ,
)(k

outv

to EP

16: φ:= Perturb(φ)

17: end if

18: end while

19: if EP ≠ Ø then

20: restore φ to the beginning solution

21: end if

22: return φ

End

The Ejection Pool (EP) is used to hold the unserved customers coming from the removed

route (line 2) or from the ejected customers list (line 15) during finding solution with the

minimum penalty sum. According to Nagata proposition [7] the ejection pool should be

constructed using the LIFO (Last In First Out) queue in order to prevent the customers which

are hard to reinsert from those remaining in the ejection pool. The penalty counters for all

customers are initialized each time the function RemoveRoute is called. These counters

indicate how many times the attempts to insert given customers failed. The bigger value of

the penalty counter for a specified customer, the more difficult is to reinsert it into the

An improved route minimization algorithm for the VRPTW 9

solution. After the random route is removed from the current solution, continuous attempts to

include the ejected customers in the rest of the routes are performed. These attempts are

carried out until all customers from the Ejection Pool are inserted or the execution time of the

algorithm reaches a specified time limit maxTime.

Ninsert(vins, φ) is constructed as a set of the feasible partial solutions, that are obtained by

inserting the customer vins into all insertion positions in the solution φ. In this set only the

insertions between two consecutive nodes are considered. If the constructed Ninsert(vins, φ) set

is empty (line 6) then the function Squeeze is called in order to help the insertion of the

selected customer into the solution φ.

function Squeeze(vins ,φ)

begin

1: φ:= the selected solution φ’ from Ninsert(vins , φ) with min Fp(φ’)

2: while Fp(φ’) ≠ 0 do

3: randomly choose an infeasible route r

4: select a solution φ’ from Nr(φ), such that Fp(φ’) is minimum

5: if Fp(φ’) < Fp(φ) then

6: φ:= φ’

7: else

8: break

9: end if

10: end while

11: if Fp(φ) ≠ 0 then

12: restore φ to the beginning solution

13: end if

14: return φ

 End

The idea of this method is to choose the temporally infeasible insertion with the minimal

penalty function value Fp(φ) defined as follows:

)()()(twcp PPF , (9)

where

Fp(φ) – the solution penalty function,

Pc(φ) – the capacity penalty (the sum of total excess of the demands in all routes [7]),

α – the penalty coefficient, which value is adapted iteratively according to the Pc(φ)

and Ptw(φ) comparisons,

Ptw(φ) – the sum of the total time window penalties Ptw(i,φ), (i = 0,1,..,n) of all customers

and the depot in the solution φ [6]; Ptw(i,φ) is defined by:

where

iv
a – the earliest possible start time of service at customer vi and is defined recursively

by the following equations:

0v
a = 0e

(11)

iv
a = max {

1iv
a +

1iv
s +

ii vvc 1
,

iv
e }, i = 1, 2,…, n+1. (12)

10 M. Błocho, Z. J. Czech

After that the local search moves are performed in order to restore the feasibility of the

solution. In the Squeeze function no customer ejections are allowed.

If the Squeeze function fails then it informs that the selected customer vins was not inserted

into the solution φ. The value of the penalty counter for a chosen customer must be then

increased and after that the ejections of the customers are tested. In these ejections the limit

km for the number of removed customers was introduced [7]. Before searching there is need

to construct the Nej(vins, φ) set which contains the possible solutions with the combinations of

inserted customers at different route positions and various ejected customers. Only the

solutions with the minimum penalty sum value (line 13) are taken into account during the

local searches in the Perturb function. Choosing the solution with the minimized penalty

counters sum value gives the largest probability [7] of finding the feasible solution after the

local search moves.

2.2. Algorithm improvements

In the RemoveRoute function the Ejection Pool is initialized with the customers from the

randomly removed route (line 2). It was observed that if this function fails to insert the

customers from the removed route and fails to insert other customers from the removed

routes in the next RemoveRoute calls, then after some steps it generates again the same

solution which was previously considered. In such a case the customers are inserted into the

ejection pool exactly in the same order which may lead to a similar execution of the

algorithm as in the previous phase. For that reason it was proposed to insert the customers

from the removed route into the ejection pool always in a random order to obtain the

diversification of the search. This situation may happen very frequently while checking the

ejections for the solutions with the route number close to the minimum number of routes for

a given test case.

In the original algorithm [7] the attempts to insert the ejected customers into the solution

are carried out until all customers are inserted or the execution time of the algorithm reaches

a specified time limit maxTime. While analyzing the algorithm we observed that in some

cases always the same customers were ejected and the algorithm got stuck inside the while

loop (lines 4 to 18 in RemoveRoute) no matter how large were the values of the penalty

counters for those customers. Obviously in the original algorithm it is forbidden to eject just

inserted customer vins , what is especially important in the case of ejecting more than two

customers. Based on these observations we suggest the following improvements in the

algorithm:

 the ejecting customers which have been inserted into the solutions during the last lc loop

executions should be forbidden (recommended, experimentally established value of

lc = 4, 5)

An improved route minimization algorithm for the VRPTW 11

 the attempts of inserting the customers from the ejection pool should be given up

(together with the original break conditions), if the loop count exceeds the specified limit

pmaxTrials (recommended pmaxTrials = 1000).

These algorithm improvements are vital while removing the routes from the solutions with

the routes count very close to the number of routes of the best known solutions.

During the process of continuous insertions and ejections of the customers in the

RemoveRoute function, the ejection pool size is usually alternatingly increased and decreased.

During experimental tests we observed that in many cases, if the ejection pool size exceeds

the certain limit, then it is quite difficult to insert the customers from this pool again into the

solution. Therefore we propose the additional limit for the maximum ejection pool size

EPsmax. This size should be calculated each time the random route is removed from the

solution. The recommended formula for the EPsmax is defined as follows:

EPsmax = rrs + rrx (13)

where

rrs – the removed route size,

rrx – the coefficient which denotes the number of customers which may reside in the ejection

pool together with the customers from the removed route.

If the Squeeze function fails to insert the selected customer into the solution, then the

customers’ ejections in order to find the feasible solution are tested. It was observed that

ejecting more than one customer is useful only if the routes count of the current solution is

very close to the minimum number of routes for a given solution. If k (RemoveRoute

function, line 13) is set to 3, 4 or more, then testing the ejections of routes takes too much

time. In many cases setting k = 1 is sufficient and allows for finding the feasible solutions in

much shorter time. Therefore we suggest an improvement to test first the ejections with k = 1,

if they fail then test the ejections with k = 2 and so on, up to a specified maximum limit kmax.

The experiments indicated that constructing Ninsert(vins, φ) in the RemoveRoute function

takes much more time than expected. The set Ninsert(vins, φ) has to contain only the feasible

partial solutions. Therefore there is no need to construct a new solution object for each test

case while checking whether the partial solution is feasible or not. We suggest that it can be

checked in advance whether the potential solution (after inserting a new customer) will

remain feasible or not. For all tested customer insertions, the positions which give the feasible

solutions are recorded on a list. Then a random item from this list is chosen and a new

solution object is created together with all customers’ updates of the earliest arrival times, the

latest start times of service, etc. In order to check whether the solution will be feasible after

the customer insertion the forward and backward time window penalty slacks described in

[8] was implemented. Introducing this feature allowed for calculation the change in a time

12 M. Błocho, Z. J. Czech

window penalty (in case of the feasible solutions this change is equal to zero) in constant time

what decreases the time for constructing the Ninsert(vins, φ) set.

In a similar manner the implementation of finding the solution with the minimum penalty

value Fp(φ’) in the Squeeze function (line 1) was modified. Only one solution is required and

since the change in the time window penalty may be calculated in a constant time, the best

solution may be found very fast. This feature was implemented using the 2Opt*, OutRelocate

and Exchange local search moves [8] for the Squeeze as well as in the Perturb function for

the same operators but with accepting only the feasible solutions. If more than one solution

with a minimum penalty is found, it is suggested to record all solutions with the current

minimum penalty (during the consecutive customer insertions while constructing

Ninsert(vins , φ) set) and then to choose randomly one of them.

The experimental tests of finding the solution from Nej(vins, φ) with the minimized penalty

sum value of ejected customers indicated that there is need to implement the changes similar

to the changes in construction of Ninsert(vins, φ) also in this case. The solutions constructed

after inserting the customer vins and ejecting the particular customers must be partially

feasible. It is proposed to test first the backward and forward time window penalty slacks as

well as the changes in the route demands. This helps to check very quickly whether the

changed solution is feasible or not.

3. Analysis of the experimental result

The improved algorithm was implemented in C++ and tested with the following settings:

maxTime = 240 – the maximum time (in seconds) for a single test,

α = 1 – the initial penalty coefficient,

lc = 5 – the number of customers inserted during the last klc loop executions in

which the customers are not allowed to be ejected,

pmaxTrials = 1000 – the loops count limit in the RemoveRoute function,

x = 7 – the coefficient for the maximum ejection pool size,

kmax = 4 – the maximum ejected customers count,

Irand = 400 – the Perturb function execution count,

npSq = 60 – the percent of close customers for the Squeeze function.

The algorithm was executed on an Intel Core 2 Duo 2.4 GHz (2 GB RAM) processor.

The Figures 1-5 show the Gehring and Homberger’s test results for 200, 400, 600, 800 and

1000 customers for all problem instances. The achieved test results are compared with the

world results based on the cumulative number of the vehicles (CVN).

An improved route minimization algorithm for the VRPTW 13

1
8
8

6
0

1
8
1

4
0

1
8
0

4
3

1
8
8

6
0

1
8
2

4
0

1
8
0

4
3

0

40

80

120

160

200

C1 C2 R1 R2 RC1 RC2

C
V

N

Group

200 Customers - Test Results

World Result

Achieved Result
Fig. 1. Test Results – 200 Customers

Rys. 1. Wyniki – 200 Klientów

3
7
6

1
1
7

3
6
2

8
0

3
6
0

8
5

3
7

7

1
2
0

3
6
4

8
0

3
6
0

8
5

0

100

200

300

400

C1 C2 R1 R2 RC1 RC2

C
V

N

Group

400 Customers - Test Results

World Result

Achieved Result

Fig. 2. Test Results – 400 Customers

Rys. 2. Wyniki – 400 Klientów

In Table 1 the results obtained with the improved algorithm (MBL) are compared with

the results known from the literature:

 GH (Gehring and Homberger [2])

 IBA (Ibaraki et al. [3])

 LZ (Lim and Zhang [5])

 GD (Gagnon and Desaulniers [10])

 PR (Pisinger and Ropke [9])

The results are compared based on the number of routes only. The route minimization

step is carried out independently in all those algorithms, so the comparison is well-founded.

14 M. Błocho, Z. J. Czech

The CVNs, computer specifications and average CPU time together with the number of runs

are listed.

5
7
4

1
7
5

5
4
5

1
1

0

5
5
0

1
1

6

5
7
6

1
7
5

5
4
5

1
1

0

5
5
0

1
1

6

0

200

400

600

800

C1 C2 R1 R2 RC1 RC2

C
V

N

Group

600 Customers - Test Results

World Result

Achieved Result

Fig. 3. Test Results – 600 Customers

Rys. 3. Wyniki – 600 Klientów

7
5
3

2
3
4

7
2
7

1
5

0

7
2
0

1
5

7

7
5
5

2
3
5

7
2
8

1
5

0

7
2
0

1
5
7

0

200

400

600

800

C1 C2 R1 R2 RC1 RC2

C
V

N

Group

800 Customers - Test Results

World Result

Achieved Result

Fig. 4. Test Results – 800 Customers

Rys. 4. Wyniki – 800 Klientów

An improved route minimization algorithm for the VRPTW 15

9
4
2

2
9
4

9
1
9

1
9
0

9
0
0

1
8
3

9
4
4

2
9
5

9
1
9

1
9
0

9
0
0

1
8
4

0

200

400

600

800

1000

C1 C2 R1 R2 RC1 RC2

C
V

N

Group

1000 Customers - Test Results

World Result

Achieved Result

Fig. 5. Test Results – 1000 Customers

Rys. 5. Wyniki – 1000 Klientów

The obtained results prove the efficiency and powerfulness of the improved algorithm.

The maximum execution time of the algorithm was set to 4 minutes and within this limit the

algorithm found the world results of the minimum route number in 96% test cases (Table 3).

The results in Table 1 compared to results of other well-known algorithms show the similar,

competitive cumulative number of the vehicles with a much smaller amount of time needed

to obtain those results, especially for 400, 600 and 1000 customers. Moreover the real

average times needed to obtain those results are gathered in Table 2 and show that in most

cases the 4 minutes limit was not necessary. The real average time for all 300 Gehring and

Homberger’s tests was only 25 seconds.

Furthermore, during the experiments the two new world best results were found – for test

RC2_10_1 (1000 customers) the solution with 20 routes and for test C1_8_2 (800 customers)

the solution with 73 routes. These results have been published on the Sintef website:

http://www.sintef.no/Projectweb/TOP/Problems/VRPTW/Homberger-benchmark/.

http://www.sintef.no/Projectweb/TOP/Problems/VRPTW/Homberger-benchmark/

16 M. Błocho, Z. J. Czech

Table 1

The results for all problem sizes – compared to other algorithms GH, IBA, LZ, GD, PR
200 customers GH IBA LZ GD PR MBL

C1 189 189 189 189 189 188

C2 60 60 60 60 60 60

R1 182 182 182 182 182 182

R2 40 40 40 40 40 40

RC1 181 180 180 180 180 180

RC2 44 43 43 43 43 43

Total CVN 696 694 694 694 694 693

CPU P 400M P 2.8G P 2.8G O 2.3G P 3.0G P 2.4G

(min.) x runs 8.4 x 3 N/A 10 x 2 53 x 5 7.7 x 10 4 x 1

400 customers GH IBA LZ GD PR MBL

C1 380 377 376 376 376 377

C2 120 120 117 119 120 120

R1 364 364 364 364 364 364

R2 80 80 80 80 80 80

RC1 361 360 360 360 360 360

RC2 88 86 85 86 85 85

Total CVN 1392 1387 1382 1385 1385 1386

CPU P 400M P 2.8G P 2.8G O 2.3G P 3.0G P 2.4G

(min.) x runs 28.4 x 3 N/A 20 x4 89 x 5 15.8 x 5 4 x 1

600 customers GH IBA LZ GD PR MBL

C1 577 575 574 574 575 576

C2 178 174 174 175 175 175

R1 545 545 545 545 545 545

R2 110 110 110 110 110 110

RC1 550 550 550 550 550 550

RC2 119 116 115 117 116 116

Total CVN 2079 2070 2068 2071 2071 2072

CPU P 400M P 2.8G P 2.8G O 2.3G P 3.0G P 2.4G

(min.) x runs 51.6 x 3 N/A 30 x 6 105 x 5 18.3 x 5 4 x 1

800 customers GH IBA LZ GD PR MBL

C1 761 757 754 754 756 755

C2 237 234 234 235 237 235

R1 728 728 728 728 728 728

R2 150 150 150 150 150 150

RC1 723 724 720 720 730 720

RC2 161 157 156 158 157 157

Total CVN 2760 2750 2742 2745 2758 2745

CPU P 400M P 2.8G P 2.8G O 2.3G P 3.0G P 2.4G

(min.) x runs 92.8 x 3 N/A 40 x 8 129 x 5 22.7 x 5 4 x 1

1000 customers GH IBA LZ GD PR MBL

C1 954 945 944 943 946 944

C2 297 294 293 295 297 295

R1 919 919 919 919 922 919

R2 190 190 190 190 190 190

RC1 901 900 900 900 900 900

RC2 185 183 183 185 183 184

Total CVN 3446 3431 3429 3432 3438 3432

CPU P 400M P 2.8G P 2.8G O 2.3G P 3.0G P 2.4G

(min.) x runs 120.4 x 3 N/A 50 x 10 162 x 5 26.2 x 5 4 x 1

An improved route minimization algorithm for the VRPTW 17

Table 2

Comparison of average times needed to find test solutions

 200 400 600 800 1000 Avg

C1 < 1 s 11 s 16 s 56 s 95 s 36 s

C2 < 1 s 2 s 37 s 115 s 130 s 57 s

R1 < 1 s < 1 s 2 s < 1 s 1 s 1 s

R2 1 s 1 s 1 s 2 s 2 s 1 s

RC1 < 1 s 1 s 1 s 29 s 1 s 6 s

RC2 1 s 38 s 66 s 73 s 73 s 50 s

Avg 1 s 9 s 21 s 46 s 50 s 25 s

Table 3

Compared percentage of found solutions with minimal world-best number of routes

 200 400 600 800 1000 Avg

C1 100 % 90 %

(9/10)

80 %

(8/10)

80 %

(8/10)

80 %

(8/10)

86 % (43/50)

C2 100 % 70 %

(7/10)

100 % 90 %

(9/10)

90 %

(9/10)

90 % (45/50)

R1 90 %

(9/10)

90 %

(9/10)

100 % 90 %

(9/10)

100 % 94 % (47/50)

R2 100 % 100 % 100 % 100 % 100 % 100 %

RC1 100 % 100 % 100 % 100 % 100 % 100 %

RC2 100 % 100 % 100 % 100 % 90 %

(9/10)

98 % (49/50)

Avg 98 %

(59/60)

92 %

(55/60)

97 %

(58/60)

93 %

(56/60)

93 %

(56/60)
96 %

(288/300)

4. Conclusions

The improved algorithm proved very competitive with respect to other well-known

heuristics solving the VRPTW. The main advantage of the proposed algorithm is a short time

of obtaining the solutions which contain the number of routes which are equal to or are

slightly worse than the best known solutions. Therefore the improved algorithm can be used

as the first stage in other heuristic algorithms for minimization of the routes count.

It would be interesting to examine if the parallelization of the improved route

minimization algorithm could give the better results while solving the VRPTW. Our further

research concentrates on this topic and the results are very promising as the parallel heuristic

has been able to discover new best solutions to Gehring and Homberger’s benchmarks.

18 M. Błocho, Z. J. Czech

BIBLIOGRAPHY

1. Czech Z. J.: A Parallel Simulated Annealing Algorithm as a Tool for Fitness landscapes

Exploration. Parallel and Distributed Computing, InTech, 2010, chapter 13, p. 247÷271.

2. Gehring H., Homberger J.: Parallelization of a two-phase metaheuristic for routing

problems with time windows. Asia-Pacific Journal of Operational Research 18, 2001,

p. 35÷47.

3. Ibaraki T., Imahori S., Nonobe K., Sobue K., Uno T., Yagiura M.: An iterated local search

algorithm for the vehicle routing problem with convex time penalty functions. Discrete

Applied Mathematics 156, 2008, p. 2050÷2069.

4. Lenstra, J., and Rinnooy Kan, A.: Complexity of vehicle routing and scheduling problems.

Networks 11, 1981, p. 221÷227.

5. Lim A., Zhang X.: A two-stage heuristic with ejection pools and generalized ejection

chains for the vehicle routing problem with time windows. Informs Journal on Computing

19, 2007, p. 443÷457.

6. Nagata Y.: Efficient evolutionary algorithm for the vehicle routing problem with time

windows: Edge assembly crossover for the VRPTW. Proc. of the 2007 Congress on

Evolutionary Computation, 2007, p. 1175÷1182.

7. Nagata Y, Bräysy O.: A Powerful Route Minimization Heuristic for the Vehicle Routing

Problem with Time Windows. Operations Research Letters 37, 2009, p. 333÷338.

8. Nagata Y, Bräysy O., Dullaert W. (2010) A Penalty-based edge assembly memetic

algorithm for the vehicle routing problem with time windows. Computers & Operations

Research 37, 2010, p. 724÷737.

9. Pisinger D., Ropke S.: A general heuristic for vehicle routing problems. Computers &

Operations Research 34, 2007, p. 2403÷2435.

10. Prescott-Gagnon E., Desaulniers G., Rousseau L.-M.: A branch-and-price-based large

neighborhood search algorithm for the vehicle routing problem with time windows.

Working Paper, University of Montreal, Canada, 2007.

11. Toth, P., and Vigo, D., (Eds.): The vehicle routing problem. SIAM Monographs on

Discrete Mathematics and Applications, Philadelphia, PA, 2002.

12. Voudouris C., Tsang E.: Guided local search. Handbook of Metaheuristics, Kluwer, 2003,

p. 185÷218.

 Recenzent: Dr hab. Urszula Boryczka

Wpłynęło do Redakcji 16 grudnia 2010 r.

An improved route minimization algorithm for the VRPTW 19

Omówienie

W pracy został przedstawiony ulepszony algorytm minimalizacji liczby tras dla problemu

trasowania pojazdów z oknami czasowymi. Algorytm ten jest oparty na zmodyfikowanej

heurystyce zaproponowanej przez Nagatę i Bräysy’ego [7]. Idea algorytmu polega w pierw-

szej fazie na usuwaniu klientów z losowo wybranej trasy w celu zminimalizowania liczby

tras w rozwiązaniu oraz na wieloetapowych próbach wstawiania usuniętych klientów do two-

rzonego rozwiązania w drugiej fazie. Próby wstawiania usuniętych klientów są przeprowa-

dzane z zastosowaniem puli usuniętych klientów (ang. ejection pool) wraz z kierowanymi

lokalnymi poszukiwaniami (ang. guided local searches) oraz dywersyfikacją uzyskanych

rozwiązań (ang. solution diversification). W algorytmie jest istotna tymczasowa akceptacja

rozwiązań z naruszonym ograniczeniem maksymalnej ładowności pojazdu lub z naruszonym

ograniczeniem okien czasowych poszczególnych klientów.

Ulepszony algorytm powstał na podstawie testów eksperymentalnych zaimplementowa-

nej heurystyki podanej w pracy [7]. Do najważniejszych modyfikacji algorytmu należą:

 wstawianie klientów w kolejności losowej do puli klientów usuniętych,

 zabronione usuwanie klientów wstawionych do aktualnego rozwiązania podczas

określonej liczby ostatnich wykonań głównej iteracji algorytmu,

 dodatkowy limit na maksymalną pojemność puli usuniętych klientów,

 ulepszona funkcja sprawdzania z wyprzedzeniem, czy potencjalne zmiany w rozwiązaniu

pozwolą na uzyskanie żądanego rezultatu.

Przeprowadzone testy ulepszonego algorytmu dla testów wzorcowych Gehringa i Hom-

bergera dowiodły jego wysokiej konkurencyjności w stosunku do innych dobrze znanych

algorytmów rozwiązywania problemu VRPTW [2, 3, 5, 9, 10]. Zdecydowaną przewagą

ulepszonego algorytmu jest krótki czas znajdowania rozwiązań z liczbą tras równą lub

niewiele większą od światowych wyników dla testów wzorcowych. W 96% przypadków

testowych udało się uzyskać liczbę tras równą znanym światowym wynikom przy rzeczy-

wistym średnim czasie działania 25 sekund na jeden test. Dla dwóch przypadków testowych

(RC2_10_1 oraz C1_8_2) udało się uzyskać rozwiązania z liczbą tras mniejszą od świato-

wych wyników.

Adresses

Mirosław BŁOCHO: Politechnika Śląska, Instytut Informatyki, ul. Akademicka 16,

44-100 Gliwice, Polska, blochom@gmail.com

Zbigniew J. CZECH: Politechnika Śląska, Instytut Informatyki, ul. Akademicka 16,

44-100 Gliwice, Polska, zbigniew.czech@polsl.pl

	1. Introduction
	2. Route minimization algorithm
	2.1. Algorithm description
	2.2. Algorithm improvements

	3. Analysis of the experimental result
	4. Conclusions

