
STUDIA INFORMATICA 2011

Volume 32 Number 3B (99)

Marcin KARPIŃSKI, Jarosław KOSZELA

Military University of Technology, Informatics System Institute

OBJECT ORIENTED DISTRIBUTION IN MUTDOD

Summary. The paper contains overall description of distribution in object-

oriented database created at Military University of Technology. This paper describes

overall information about possible distribution’s architectures and the ones provided

in MUTDOD. The article contains information about distributed data storing, data

processing and architecture of synchronization and replication units. Details about so-

lutions provided in MUTDOD are also presented.

Keywords: distribution, query planner, replication, synchronization, MUTDOD

OBIEKTOWO ORIENTOWANE ROZPROSZENIE W MUTDOD

Streszczenie. Artykuł zawiera ogólny opis architektury rozproszenia w obiekto-

wej bazie danych MUTDOD, która jest tworzona w Wojskowej Akademii Technicz-

nej. Artykuł opisuje możliwe rozwiązania architektoniczne wraz z rozwiązaniami

przewidzianymi w MUTDOD. Artykuł zawiera informacje o modułach synchroniza-

cji i replikacji oraz rozwiązaniach zastosowanych przy rozproszonym przechowywa-

niu i przetwarzaniu danych.

Słowa kluczowe: rozproszenie, planowanie zapytań, replikacja, synchronizacja,

MUTDOD

1. Introduction

Military University of Technology Distributed Object Database (MUTDOD) is a new

look for storing and manipulating data. Nowadays systems usually need to process large

amount of data. Simple machines with standard database systems are slowly reaching their

limits. For the purpose of processing large amount of data people have created computing

clouds and clusters. Unfortunately both of them are not perfect solutions for processing bil-

lions of records. Clouds are usually beyond the control of organization. Their units are con-

66 M. Karpiński, J. Koszela

trolled by a third party company, what eliminates problems with scalability, but reduces

awareness of how crucial data are stored and processed. Usage of self controlled cluster is

also possible but it needs a lot of management. Even if easily manageable, cluster of relation-

al databases still does not solve one problem – the system is probably written using object

oriented paradigm whereas database is relational. It provides necessity for efficient ORM
1

[1, 3]. Database which can store data in a way that object oriented system understands (so

store data in object form) and is capable of processing data on multiple units when it is possi-

ble, would eliminate necessity for ORM solution and provide a tool for faster data processing.

MUTDOD is an example of such a database. Not only is it able to perform as a single unit,

but it can also operate like a cluster. It stores not only attributes or properties of objects but

also its methods, and in addition, MUTDOD is able to execute stored methods in a distributed

environment.

2. Central Server vs. P2P

Fig. 1. Central Server Architecture

Rys. 1. Architektura z serwerem centralnym

MUTDOD architecture is based on two different, but similar in some aspects, ideas.

MUTDOD was design as a single database unit which also has to be able to operate as an

element of a distributed environment [9, 10]. Natural way of meeting that requirement would

be central server architecture. This type of architecture has got some serious disadvantages

which rather eliminates it from using with crucial data. First and the most important disad-

vantage is the central unit. Its failure causes a fail of the whole database, and crucial data be-

comes unavailable. Moreover central unit is a gateway for all communication, so it has to

process all incoming requests, what causes slowdown of whole system or even fail of system

1
 ORM – object relational mapping is necessary because of impedance mismatch

Object oriented distribution in MUTDOD 67

when machine is no longer able to process such a big number of connections. P2P architec-

ture is more efficient in such systems, but it causes other significant problems. First of all,

there is no central point for all types of blockades, and controlling. Performing transaction in

such environment is very complicated because before anything will happen, blockades on all

machines have to be set up. There are also serious timing problems. There is no simple solu-

tion for situation where two equal in priority (because in P2P architecture we treat all ma-

chines equally) requests of data manipulation are received. Which one should be executed at

first place? P2P architecture has high risk of deadlocks and starvation. Finally all information

has to be populated among all devices to keep database in consistent state.

Fig. 2. P2P Architecture

Rys. 2. Architektura P2P

Fig. 3. Hybrid Architecture

Rys. 3. Architektura hybrydowa

68 M. Karpiński, J. Koszela

The third possible solution is a hybrid architecture. It is a unique mix of characteristics of

both already mentioned architectures. Hybrid architecture [5] is simply a central machine in

a standard peer-to-peer environment. Such add-on to P2P environment solves the problem of

timing and synchronization but unfortunately brings back another one – weak point of central

server. Besides all this advantages and disadvantages of each described architecture there is

one more important characteristic which we should consider – transparency [8]. Transparency

is a feature which we can apply on all levels of database structure. First of all, user should not

be aware of database structure. The fact that user is working with cluster rather than with

a single node should be invisible for him. When users are working with database they cannot

be aware of database structure changes. They cannot be forced to reconfigure the client soft-

ware, because some additional nodes joined the cluster, or because additional data replicas

are now available. Information about distributed data processing [10] (so that user request is

processed by more than one node) should not be visible to users
2
. User should not be aware

of data localization, fragmentation, data processing details so number of nodes, their localiza-

tion, used for query execution. MUTDOD system was designed to provide transparency on

all available levels [3, 7, 11].

3. Federation vs. Election

MUTDOD system is capable of working in two architectures: hybrid and P2P. The main

idea of MUTDOD architecture is distinguishing node types. Data nodes and management

nodes cooperate in environment, but they are not necessary on the same machines. Of course,

if a node does not have both data server and management server it is not capable of perform-

ing as a single unit or single database. Both hybrid and P2P has one single point of start –

metadata replication. Mode switching depends on configuration of a database. If all nodes

store replicas (up-to-date replicas) of metadata, mode can be switched in a real-time. If some

nodes do not have up-to-date metadata, replication has to be performed before mode switch-

ing. MUTDOD is even capable of working in semiP2P architecture, so where a number of

management servers is running but not all data servers have dedicated ones.

While working in P2P architecture MUTDOD database acts like a federation of single

units. They can exchange data on-the-fly or perform periodical updates. There is also a mode

in which when operations causing synchronization problem occur all of them are rolled back

and before they are executed once more the system decides the order of requests. All of pro-

2
 Only when it is not important for user – user is able to manipulate query execution by using new keywords

available in DDQL [6]

Object oriented distribution in MUTDOD 69

vided mechanism cause some additional network transfer and some delays caused by the syn-

chronization operations.

On the other hand we get simple hybrid architecture. MUTDOD hybrid architecture has

got significant advantage over standard version – central server is not appointed, system de-

cides which one should be at that moment the central one. During creating a cluster the ad-

ministrator decides which one is the chosen one, and also sets up which node is its deputy.

When one of these nodes is going down another performs reelection and finds its substitute.

In this case whole database is protected from single node failure.

Which mode is better? It is hard to say. Both modes have got advantages and disadvan-

tages, the cost of peer2peer mode is amount of data transfer required to set up blockade on

objects, transfer required to loop back from starvation or deadlocks. In election these prob-

lems do not occur but there is a weak point that all requests have to be passed through the

central unit. Database administrator or designer should choose which one is more suitable for

his needs.

4. Data replication

The core idea of distributed systems is processing data by more than one machine. This is

a natural way of improving system performance. However before distributed processing will

be possibly we have to take care of one more thing. Before query can be processed by more

than one node all nodes have to have the necessary data. The process of coping data from one

unit to other is called replication. There are three types of replication – snapshot replication,

merge replication and transactional replication. [14]

In the situation described above we have to use the first type of replication – snapshot

replication. This type of replication is, as name suggest, similar to taking a snapshot of data

available on one unit and transferring it to different machine. This is not only starting point

for parallel data processing but also a way of protecting data. If the first node fails we still

have access to data on the second one. But this is unfortunately also starting point for some

troubles. In relational databases possessing more than one version of data is called redundan-

cy and is usually something we should avoid, because it is potentially a perfect way to reach

database inconsistency. Having the same information saved in more than on record
3
 causes

the situation in which you have to modify all records when data needs to be changed. If only

one copy will not be updated on time the database will be in inconsistent state, and resolving

which records is up-to-date will be impossible. The process of keeping database in consistent

state by updating all copies of the same data is called transactional replication or data syn-

3
 In relational databases, and in more than one object in object-oriented

70 M. Karpiński, J. Koszela

chronization. Unfortunately there is one more problem – what if second unit already has

some data, and what if some of his data is a copy of data from first node?

To solve this problem, the database (or any distributed environment) has to be able to per-

form merge replication. Merge replication is a process of synchronizing data between two or

more nodes. Units exchange data to achieve state in which nodes are copied of each other so

any node has the data from all other nodes. This type of replication has to solve problem with

two versions of the same data. If first node posses the same data that the second node but in

different version, we have to find out which version is up-to-date.

Merge replication in MUTDOD system uses simple mechanism for solving such problem.

Administrator or database designer has to choose which version should be used. In

MUTDOD system we have built in some possible solution for this problem, so algorithms in

which the version problem is solved by using nodes priority. For example one algorithm al-

ways uses the version from node that is joining the system, whereas second algorithm always

uses the version that is already in the system. Moreover, MUTDOD system offers database

designer the possibility to design and implement own algorithm and use it to solve this prob-

lem. At this point administrator can implement his own comparing algorithm using C# lan-

guage and built in IComparer interface.

Fig. 4. IComparer Interface

Rys. 4. Interfejs IComparer

As was mentioned above, having more than one copy of the same data causes situation in

which nodes have to be synchronized when data is being updated. Transactional replication

algorithm has to use all advantages of system architecture because this replication runs con-

stantly and can produce large transfer between nodes.

Transactional replication algorithm available in MUTDOD system is simple and effective

considering both possibly architectures. Designed algorithm is based partially on previous

works on solving that problem [13]. In many present databases the transactional replication is

performed by choosing one node which will be a gateway for all modifications. Such node will

have to follow all modification and localization of all objects and perform all necessary opera-

tion to keep database in consistent state. This approach however has one security risk – node

failure
4
. MUTDOD system algorithm is based on this approach but it dismisses the risk. When

an update operation (so any operation which changes data) is being performed central server (or

4
 The same situation as with central-server architecture

Object oriented distribution in MUTDOD 71

management node to which client is connected) is choosing the node which will be the gateway

only for this particular operation. The node choosing algorithm may work in many different

ways, not only designer can implement his own one, but also load balanced one can be used.

This node is responsible for updating data on all nodes that have a copy of modified data. To

speed the process data distribution is divided. The whole process is shown in figure 5.

An important thing about the mechanisms of replication in MUTDOD is a fact that they

have to consider fragmentation [4] of data. Data can be fragmented both in vertical and hori-

zontal way [13]. In object-oriented environment this two types of fragmentations [12] are

very similar. To distinguish these types in MUTDOD vertical mode stores two objects on

different nodes. Horizontal division is based on distinguishing parts of object and setting in-

dividual OID number for these parts.

Fig. 5. Data population algorithm

Rys. 5. Algorytm populacji danych

Client sends a query to the management node.

1. Management server starts the query execution.

2. All necessary objects are being blocked.

3. Management server chooses the node which will perform the operation – in case of add

operation the server which should carry replicas are also chosen.

4. Server passes necessary data to the chosen node.

5. The node updates its own data.

6. Node starts the operation on other nodes.

7. Node sends back the information about successful update.

8. Other nodes update their data and send information to the management server and chosen

node.

72 M. Karpiński, J. Koszela

9. Information about successful replication of all nodes reaches the management server and

can be replicated to other management servers (if more than one exists).

5. Distributed processing

When all necessary operations of data replication are performed we can now start divid-

ing the work of executing the query. To divide the work for all nodes we have to use power-

ful distributed query planner module [2]. This module has to answer few questions. First of

all we have to find out if the query is worth dividing. Let us consider a simple query which

sums two values. We can easily say that this should be executed immediately on the node to

which client is connected, because the time and CPU power needed to perform planning op-

eration are much bigger than simple executing this operation.

The second question is – is it possible to divide query? We can think about situations

when one server has all data that query needs. In such situations there is no point dividing the

work because only one unit is able to execute the query. After answering this two main ques-

tions division can be perform.

Fig. 6. Token tree

Rys. 6. Drzewo Tokenów

START

Nonalgebraic operator
where

First subquery

Object name -
Person

Second subquery

Algebraic
operator '='

First subquery

Dereferance
operator

Name

Second subquery

Literal
'Nowak'

Object oriented distribution in MUTDOD 73

Process of dividing work for all nodes is based on a token tree [15]. This process has two

steps. First step is trying to divide work into number of nodes, based on load of nodes and

data they posses. The result of division is a plan of query in a form of number of queries and

information in what order the queries should be executed and how their results should be

mixed. Sometimes perfect division cannot be done and some queries need to be executed in

certain order. After this is completed the second step is performed. The token trees of subque-

ries are analyzed, and in case the machine has got more than one CPU unit
5
 the division for

CPUs is performed.

6. Other consequences of distribution

Distribution has far more consequences then these described in this article. As such con-

sequences we should take into account such things as query language modifications [6] ne-

cessary to manipulate distribution like data partitioning or localization or some performance

switches. Also, the metamodel [11] needs to be adapted to distribution requirements. The data

about localization and partition of each object has to be saved and kept somewhere – so me-

tamodel has to consider storing such things. The last thing is data fragmentation. Metamodel,

language like the distribution module itself has to be able to work with partitioned data both

vertically and horizontally.

7. Summary

As you can see MUTDOD system is something more than a simple cluster. MUTDOD

system is able to work both as single unit database and a cluster with both P2P and central

management architecture. MUTDOD system covers all problems connected to distribution –

user is not even aware that he is working with more than one unit. MUTDOD system is trying

to be as transparent as it is available on all levels – both architecture, structure, processing

etc.. MUTDOD conveys a new look at database systems, which perfectly fits present trends

of cloud computing and which can show directions of database evolution. Military University

of Technology will continue working on MUTDOD and on finding best FAR strategy for

data.

5
 Or more than one core

74 M. Karpiński, J. Koszela

BIBLIOGRAPHY

1. Brzozowska P., Góralczyk M., Jesionek Ł., Karpiński M., Kędzierski G., Kędzierski P.,

Koszela J., Wróbel E.: System obiektowy = obiektowa baza danych + obiektowa aplika-

cja. Studia Informatica, Vol. 31, No. 2B (90), Gliwice 2010.

2. Jesionek Ł.: Projekt generatora planów wykonywania zapytań dla obiektowej bazy da-

nych. Praca dyplomowa WAT, Warszawa 2010.

3. Góralczyk M.: Projekt oprogramowania zarządzającego obiektową bazą danych. Praca

dyplomowa WAT, Warszawa 2010.

4. Karpiński M.: Projekt mechanizmu replikacji i synchronizacji elementów obiektowej bazy

danych. Praca dyplomowa WAT, Warszawa 2010.

5. Coulouris G., Dollimore J., Kindberg T.: Distributed Systems: Concepts and Design. Ad-

dison Wesley Longman, 2005.

6. Brzozowska P.: Projekt analizatora syntaktycznego i semantycznego obiektowej języka

zapytań. Praca dyplomowa WAT, Warszawa 2010.

7. Wróbel E.: Projekt interfejsu programistycznego dostępu do obiektowej bazy danych.

Praca dyplomowa WAT, Warszawa 2010.

8. Tanenbaum A. S., Steen M.: Systemy rozproszone Zasady i paradygmaty. WNT, War-

szawa 2006.

9. Date C. J.: Twelve rules for a distributed database. Computer World 21(23), 1987.

10. Orfali R., Harkey D., Edwards J.: The Essential Distributed Objects Survival Guide. John

Wiley & Sons, 1996.

11. Koszela J., Góralczyk M.: Architecture of object database, in progress.

12. Malinowski E.: Fragmentation Techniques for Distributed Object-Oriented Databases.

University of Florida, 1996.

13. Sikorska M.: Praktyczne porównanie mechanizmów 2PC i 3PC. Wydział Inżynierii Me-

chanicznej i Informatyki Politechniki Częstochowskiej, 2006.

14. Garcia-Molina H., Ullman J. D., Widom J.: Systemy baz danych. WNT, Warszawa 2006.

15. Date C. J.: Wprowadzenie do systemów baz danych. WNT, Warszawa 2000.

Recenzenci: Dr inż. Ewa Płuciennik-Psota

Dr inż. Aleksandra Werner

Wpłynęło do Redakcji 16 stycznia 2011 r.

Object oriented distribution in MUTDOD 75

Omówienie

Projekt MUTDOD, czyli Military University of Technology Distributed Object Database,

to rozproszona, obiektowa baza danych, działająca w sfederowanym modelu rozproszenia.

Projekt ten, tworzony w Wojskowej Akademii Technicznej, ma przede wszystkim rozwiązać

problem impedancji, przez co ma stanowić idealną platformę dla systemów opartych na para-

dygmacie obiektowości.

We współczesnych systemach spotykamy się z sytuacją, kiedy obiekty systemu muszą

być transformowane na tabele relacyjnej bazy danych. Aby rozwiązać ten problem, należało-

by przechowywać obiekty bez zmiany ich formy, np. bez zbędnej konwersji do postaci tek-

stowej.

We współczesnym świecie istnieje także tendencja do przechodzenia na technologie

Cloud Computing, czyli rozproszonego przetwarzania danych. MUTDOD ma oferować po-

dobne możliwości, tj. umożliwiać zarówno prace z jednym węzłem, jak i z wieloma. O ile

baza będzie dysponować więcej niż jednym węzłem, system ma umożliwiać zarówno rozpra-

szanie danych, jak i obliczeń na wszystkie węzły. Jednym z założeń sytemu MUTDOD było

ograniczenie pracy administratora i projektanta do minimum przy rozpraszaniu przetwarza-

nia. Sam proces przetwarzania ma być jak najbardziej bezobsługowy, tak aby maksymalnie

odciążyć programistę.

Ważnym elementem systemu jest język zapytań. Obecnie wykorzystywane języki zarów-

no deklaratywne, jak i imperatywne nie do końca spełniają wymagania systemu MUTDOD.

Aby programista czy administrator miał możliwość manipulowania procesem rozpraszania,

niezbędne jest wprowadzenie do języka dedykowanych temu zadaniu form składniowych,

które umożliwiłyby użytkownikowi nie tylko oznaczenie instrukcji, które powinny być zrów-

noleglone, ale również kontroli nad automatyczną wersją tego procesu. Cały czas jednak na-

leży pamiętać, że rozmieszczenie obiektów znacząco wpływa na możliwość rozpraszania.

Oba te fakty powodują, że system MUTDOD wymaga języka posiadającego szczególne ce-

chy, co przekłada się na konieczność zaimplementowania własnego języka.

MUTDOD jest systemem bazodanowym nowej generacji. Może on pracować zarówno

w trybie prostej, jednomaszynowej bazy danych, jak również jako sfederowany system mul-

tiwęzłowy zdolny do przetwarzania i przetrzymywania rozproszonych danych. Tryby pracy

z serwerem centralnym bądź też w wersji pełnego P2P, a także możliwość definiowania wła-

snych algorytmów rozmieszczania obiektów, bądź ich porównywania daje administratorom i

programistom całkowitą kontrolę nad działaniem systemu.

76 M. Karpiński, J. Koszela

Addresses

Marcin KARPIŃSKI: Wojskowa Akademia Techniczna, Wydział Cybernetyki,

ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland, marcin@karpinski.waw.pl.

Jarosław KOSZELA: Wojskowa Akademia Techniczna, Wydział Cybernetyki,

ul. gen. Sylwestra Kaliskiego 2, 00-908 Warszawa, Poland, jkoszela@wat.edu.pl.

	1. Introduction
	2. Central Server vs. P2P
	3. Federation vs. Election
	4. Data replication
	5. Distributed processing
	6. Other consequences of distribution
	7. Summary

