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MACHINE LEARNING FOR THE IDENTIFICATION OF THE DNA 

VARIATIONS FOR DISEASES DIAGNOSIS  

Summary. In this paper we give an overview of a basic computational haplotype 

analysis, including the pairwaise association with the use of clustering, and tagged 

prediction (using Bayesian networks). Moreover, we present several machine learning 

methods in order to explore the association between human genetic variations and 

diseases. These methods include the clustering of SNPs based on some similarity 

measures and selecting of one SNP per cluster, the support vector machines, etc. The 

presented machine learning methods can help to generate a plausible hypothesis for 

some classification systems.  
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UCZENIE MASZYNOWE DLA IDENTYFIKACJI ZMIAN DNA 

DO DIAGNOZOWANIA CHOROBY 

Streszczenie. W pracy przedstawiono podstawowe metody uczenia maszynowego 

dla wyboru haplotypów, m.in. asocjacji par z użyciem klastrowania i przewidywania, 

znaczonego SNP (Single Nucleotide Polimorhisms), maszyny wektorów wspierają-

cych (ang. Support Vector Machines, SVM) itp. Metody te znajdują zastosowanie 

w przewidywaniu chorób. Mogą być także pomocne do generowania prawdopodob-

nych hipotez dla systemów klasyfikacji chorób.  

Słowa kluczowe: obliczeniowa analiza haplotypów, wybór SNP 

1. Introduction 

The human genome can be viewed as a sequence of three billion letters from the nucleo-

tide alphabet },,,{ TCGA . More than 99% of the positions of the genome possesse the same 

nucleotide. However, in the 1% of the genome  numerous genetic variations occur, such as 
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the diletion/insertion of a nucleotide, multiple repetitions of the nucleotide, etc. It is obvious 

that many diseases are caused by variations in the human DNA. 

More than one million of the common DNA variations have been identified and published 

in the public database [29]. These identified common variations are called single nucleotide 

polymorphisms (SNPs). The nucleotides which occur often  most in the population are referred 

to as the major alleles. Analogously, the nucleotides which  occur seldom are defined as the 

minor alleles. For instance, nucleotide A (a major allele) occurs in a certain position of the ge-

nome, whereas nucleotide T (a minor allele) can be found in the some position of the genome.  

Several diseases are identified by means of one of the SNP  variations. The identification 

of the mutation of the SNP variations at a statistically significant level allows one to postulate 

a disease diagnosis. It is more often implemented by means of the use of the machine learn-

ing method. 

Currently, a haplotype analysis for the identification of the DNA variations relevant for 

the diagnosis of several diseases is used. We recall that the haplotype is a set of SNPs present 

in one chromosome. Thus, the machine learning methods for an effective haplotype analysis 

in order to identify several complex diseases are used. 

Currently, a haplotype analysis for the identification of the DNA variations relevant for 

the diagnosis of several diseases is used. We recall that the haplotype is a set of SNPs present 

in one chromosome. Thus, the machine learning methods for an effective haplotype analysis 

in order to identify several complex diseases are used. 

The main goal of this paper is to present  some computational machine learning methods 

which are used in the haplotype analysis. This analysis includes the haplotype phasing, the 

tag SNP selection and identifying the association between the haplotype or a set of haplo-

types and the target disease.  

2. Basic Concepts in the Computational Analysis  

Let us assume that all the species of chromosomes reproduced sexually have two sets: 

one inherited from the father and the other inherited from the mother. Every individual in this 

sample also has two alleles for each SNP, one of them in the paternal chromosome and the 

other in the maternal chromosome. Thus, for each SNP two alleles can be either the same or 

different. When they are identical, we refer to them as homozygous. Otherwise, when the 

alleles are different, the SNP is called heterozygous.  



Machine learning for the identification of the DNA variations for diseases diagnosis 105 

 

Fig. 1. Difference between haplotype, genotypes and phenotypes 

Rys. 1. Różnica pomiędzy haplotypami, genotypami i fenotypami 

 
Let our major allele of the SNP be colored gray and the minor colored black. Let us as-

sume that the individual haplotype is composed of six SNPs constructed from his/her two 

chromosomes. Thus, a haplotype is a set of the SNPs present in one chromosome. Each of the 

haplotypes stems from the pair of the chromosomal samples and each pair is associated with 

one individual.  

Genotypes are represented by two major alleles. When the combined allele is composed 

of the two major alleles, it is colored gray (see Fig. 1). In turn, when the SNPs have one mi-

nor allele and one minor allele, they are  colored gray. In turn, when the SNPs have one 

minor allele and the other SNPs one major, then they are colored as white.  

A phenotype is a typical observable manifestation of a genetic trait. In other words, 

a phenotype of an individual indicates a disease or lack of diseases (see Fig. 1c).  

The haplotype analysis has more advantages than the single SNP analysis. The single 

SNP analysis cannot identify a combination of SNPs in one chromosome. For example, hap-
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lotype CTTCTA marked with arrow in Fig. 1a indicates the lung cancer phenotype, whereas 

the other individuals do not have lung cancer. 

The haplotype analysis can be made in a traditional and a computational way. In the tradi-

tional analysis [22], [26] chromosome are separated, DNA clons, the hybrid constructed, and 

as a result haplotype – the disease indicated.  

The traditional haplotype analysis is carried out biomolecular methods. However, this 

method is more costly than the computational analysis. 

The computational haplotype analysis (which includes the haplotype phasing, the tag 

SNP selection) has been successfully applied to the study of diseases associated with haplo-

types. This analysis can be considered by means of use the data mining methods.  

3. Selected Methods of the Haplotype Phasing  

3.1. The Pairwise Associated with the Use Clustering 

The goal of the haplotype phasing is to find a set of haplotype pairs that can resolve all 

the genotypes from the genotype data. Formally, let the haplotype phasing problem be formu-

lated as follows: 

For a given },...,,{ 21 ngggG   set of n  genotypes, where each genotype ig  consists of 

the allele information of m SNPs, msss ,...,, 21 , namely  



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





2

1

0

ijg            when the two allele of SNP are minor homozygous. 

where ni ,...,2,1 , and mj ,...,2,1 . 

The allele information of an SNP of a genotype is either major, minor or heterozygous. 

Each genotype represents the allele information of SNPs in two chromosomes. Like the geno-

type, each haplotype Hhi  consists of the same m  SNPs msss ,...,, 21 . Each haplotype 

represents the allele information of SNPs in  one chromosome. We  define haplotype ih

mji m ,...,2,1,2,...,2,1(   as follows:  
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when the two allele of SNP are major homozygous, 

when the two allele of SNP are heterozygous. 

when the allele of SNP  is major, 

when the allele of SNP  is minor. 
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Fig. 2. Finding a set of haplotype pairs and ambiguous genotypes 

Rys. 2. Znajdowanie par haplotypów i niejednoznaczne genotypy 

 
Now we can formulate the haplotype phasing problem as follows:  

Problem : Haplotype phasing 

Input  : A set of genotypes },...,,{ 21 ngggG 
 

Output  : A set of n haplotype pairs  

},...,2,1,,,|,{ 212121 niHhhghhhhO iiiiiii 
 

The haplotype phasing is shown in Fig. 2. Three genotype data are given on the left side. 

When the two alleles of SNPs are homozygous, the SNPs are  with the same color. When the 

two alleles in the genotype are of an SNP, have one heterozygous the haplotype pairs are 

identified unequivocally. When the two alleles in the genotype have two heterozygous, the 

haplotype pairs cannot be identified unequivocally. Thus, the genotype is identified by means 

of an additional biological analysis method.  

We can use following methods in the haplotype phasing:  

1) parsimony, 

2) phylogeny, 

3) the maximum likelihood (ML), 
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4) the Bayesian inference. 

The first two methods are treated as a combinatorial problem [14]. The last two methods 

are based on the data mining approach and therefore are  presented here.  

3.2. The maximum likelihood (ML) method for the haplotype phasing 

The maximum likelihood method can be based on the expectation-maximization (EM) 

method. This method, among others described in [14], works as follows:  

Let D  be the genotype data of n  individuals. Each of their genotypes consists of SNPs. 

Let n  be the number of distinct genotypes. We denote the i th distinct genotype by ig , the 

frequency of ig  in the data set D  by if , the number of the haplotype pairs resolving

)1)...,,2,1(  nigi  by ic . When H  is a set of all haplotypes consisting of the same m  

SNPs, the number of haplotypes in H is equal to m2 . Although the haplotype population fre-

quencies },...,,{
221 mppp are unknown, we can estimate them by the probability of the 

genotypes comprising the genotype data D , namely  
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where ijh1 , ijh2  are the haplotype pairs resolving the genotype ig . 

The EM method depends on the initial assignment of values and does not guarantee 

a global optimum of the likelihood function. Therefore, this method should be run multiple 

times with several initial values.  

3.3. The Bayesian Inference Markov Chain Monte Carlo with the Use  

of the Haplotype Phasing Problem  

The Bayesian inference methods are based on the computational statistical approach. In 

comparison with the EM method, the Bayesian inference method aims to find the posterior 

distribution of the model parameters given in the genotype. In other words, with the use of 

the EM method the haplotype population frequencies,  , give a set of unknown frequencies 

in a population, and the  Bayesian inference method provides the a posteriori probability 

)|Pr( DH . The Markov Chain Monte Carlo metod approximates samples from )|Pr( DH . 

Some of the basic MCMC algorithms are: 

a) the Metropolis-Hastings algorithm, 

b) the Gibbs sampling. 

Ad a) The Metropolis-Hastings algorithm was introduced in the papers [15], [25]. The me-

thod starts at 0t  with the selection of 
)0()0( xX   drawn at random from some starting dis-
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tribution g , with the requirement that 0)( )0( xf . Given 
)()( tt xX  , the algorithm generates 

)1( tX  as follows:  

1) Sample a candidate value X  from the proposed distribution )|( )(txg   

2) Compute the Metropolis-Hastings ratio ),( )( XxR t , where  

)|()(

)|()(
),(

uvguf

vugvf
vuR   (2) 

),( )( XxR t  is always defined, because the proposal 
  xX  can only occur if 

0)( )( txf   

and 0)|( )(  tgxg .  

3) Sample a value for )1( tX according to the following  
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4) Increment t  and return to step 1. 

 

A chain constructed by the Metropolis-Hastings algorithm is Markov, since )1( tX  is only 

dependent on )(tX . Note that depending on the choice of the proposed distribution we obtain 

an irreducible and aperiodic chain. If this check confirms irreducibility and aperiodicity, then 

the chain generated by the Metropolois-Hastings algorithm has a unique limiting stationary 

distribution.  

Ad b) The Gibbs sampling method is specifically adapted for a multidimensional target 

distribution. The goal is to construct a Markov chain whose stationary distribution equals the 

target distribution f . 

Let T

pxxX ),...,( 1  and  T

piii XXXXX ),...,,,...,( 111   . We assume that the univariate 

conditional density of iii xXX  | denoted by )|( ii xxf   is sampled for pi ,...,2,1 . Then 

from a starting value 
)0(x , the Gibbs sampling mthod  can be described as follows:  

1) Choose an ordering of the components of 
)(tx  

2) For i  sample )|(| )()( t

ii

t

ii xxfxX 

    

3) Once step 2 has been completed for each component of X  in the selected order, set

  XX t )1( . 

The chain produced by the Gibbs sampler is a Markov chain. As with the Metropolis-

Hastings algorithm, we can use the realization from the chain to estimate the expectation of 

any function of X . 

with probability  min }1),,({ )( XxR t
 

otherwise 
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Finally, the Bayesian inference method using the MCMC can be applied to samples con-

sisting of a large number of SNPs or to samples in which a substantial portion of haplotypes 

occur only once. Furthermore, the Gibbs sampler is a popular genetic model that denotes 

a tree describing the evolutionary history of a set of DNA sequences [16].  

4. Machine Learning Methods for Selecting Tagging SNPs  

4.1. The Problem Formulation 

The tag SNP selection problem can be formulated as follows: Let },...,{ 1 nssS  be a set of 

n  SNPs in a studied region, },...,{ 1 mhhD   be a data set of m haplotypes that consist of the 

n  SNPs. According to definition 1, we assume that Dhi  is a vector of size n  whose vector 

is a vector of size n  whose vector element is 0 when the allele of a SNP is major and 1 when 

it is minor. Let the maximum number of the haplotypes consisting SNPs (htSNPs) be k . 

We assume that function ),( DTf   provides a measure as to how well subset ST 

represents the original data D . Thus, the tag SNP selection is given by  

problem  the tag SNP selection  

input   1) a set of SNPs,  

2) a set of haplotypes D,  

3) a maximum number of htSNPs,  

output a set of htSNPs T  which is ),(maxarg || DTfT kTandST
  . 

In other words, the tag SNP selection consists on finding an optimal subset of SNPs of 

size k  at most based on the given evaluation function f  among all possibile subsets of the 

original SNPs.  

Among the tag SNP selection methods based on the machine learning methods  most of-

ten included are [22]:  

1) the pairwise association with the use of clustering  

2) the tagged SNP prediction with the use of Bayesian networks. 

Now, we present these machine learning methods used for the tag SNP selection.  

4.2. The Pairwise Association with the Use of Clustering 

The cluster analysis for the paiwise association for the tag SNP  selection was at first used 

by Byng et al. [4]. This method works as follows: The original set of SNPs is divided into 

hierarchical clusters. Within the cluster all SNPs are with a predefined level   (typically 
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6.0 ) [4]. In other works, a.o. [1, 5] within each cluster the pairwise linkage equilibrium 

(LD). 

In the papers [1, 5] is used so-called  the pairwise linkage equilibrium (LD), given the 

joint probability of two alleles is1  and js2  equal to the product of the allele individual proba-

bilities. Thus, under the assumption that these probabilities are independent, we have the LD 

[19], [12] given by  

)Pr()Pr(),Pr( 2121 jijiij ssss 
 (3) 

For the two SNPs within the discrete region called a block here the LD is high, while for 

the two SNPs belonging to different regions it is small. Unfortunately, there is no agreement 

on the definition of the region [28, 13]. 

According to the clustering methods based on the LD pairwise, the LD parameter be-

tween htSNP and all the other SNPs is greater than the threshold level. These methods inclu-

de:  

1) the minimax clustering,  

2) the greedy binning algorithm.  

Ad 1) The former, the minimax clustering [1] is defined as 

))((min),( max)(maxmin sDCCD
ji CCsji  , where )(max sD  is the maximum distance between 

the SNPs and all other SNPs in the two clusters. According to this method every SNP formu-

lates its own cluster. Further, the two closest clusters are merged. The SNP defining the mi-

nimax distance is treated as a representative SNP for the cluster. The algorithm stops when 

the smallest distance between the two clusters is larger than level 1 . Thus, the representa-

tive SNPs are selected as a set of htSNPs.  

Ad 2) The latter, the greedy binning algorithm, initially examines all the pairwise LD be-

tween SNPs, and for each SNP counts the number of other SNPs whose pairwise LD with the 

SNP is greater than the prespecified level,  . The SNP with the largest count is then clus-

tered with its associated SNPs. Thus, this SNP becomes the htSNP for this cluster. This pro-

cedure is iterated until all the SNPs are clustered.  

The pairwise association-based method for the tag SNP selection can be used for a dis-

ease diagnosis. The complexity of this method lies between )log( 2 nmnO  and )( 2cmnO  

[32, 5], where the number of clusters is equal to c , the number of haplotypes is equal to $m$, 

the number of SNPs is equal to n . 
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4.3. The Tag SNP Selection Based on Bayesian Networks (BN) 

The tagged SNP prediction with the use of on Bayesian networks was first used by Bafna 

[2]. Recently, Lee at al. [23] proposed a new prediction-based tag SNP selection method, 

called the BNTagger, which improves the accuracy of the study.  

The BNTagger method of the tag SNP selection uses the formalism of BN. The BN is a 

graphical model of joint probability distributions that comprises conditional independence 

and dependence relations between its variables [18]. There are two components of the BN: a 

directed acyclic graph, G and a set of conditional probability distributions, },...,{ 1 p  . 

With each node in graph G  a random variable jX  is associated. An edge between the two 

nodes gives the dependence between the two random variables. The lack of an edge 

represents their conditional independence. This graph can be automatically learned from the 

data. With the use of the learned BN it is easy to compute the posterior probability of any 

random variable.  

5. Machine Learning Methods for the Tag SNP Selection  

for the Sake of Disease Diagnosis 

5.1. The Feature Selection with the Use of the Similarity Method  

The feature selection with the use of the feature similarity (FSFS) method was introduced 

by Phuong [27]. This method works as follows: 

We assume that N  haploid sequences considering m  SNPs are given. Each of them is 

represented by mN   matrix M  with the sequences as rows and SNPs as columns. Each 

element of this matrix which represents the j -th alleles of the i -th sequence is equal to 

0, 1, 2. 0 representing the missing data, 1 and 2 represent two alleles. The SNPs represents 

the attributes that are used to identify the class to which the sequence belongs.  

The machine learning problem is formulated as follows: how to select a subset of SNPs 

chich can classify all haplotypes with the required accuracy. A measure of similarity between 

pairs of features in the  FSFS method is given by  

10,
)( 2

2 



 r

pppp

pppp
r

aBAbabAB

aBAbabAB

 (4) 

where A  and a  are the two alleles at a particular locus, xyp  is the frequency of observing 

alleles x  and y  in the same haplotype, xp  is the frequency of allele x  alone.  

The details of the algorithm used in the FSFS method [27] are given in the procedure pre-

sented in Fig. 3. As the input parameters are used S  – the original set of SNP and K  – the 
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number of nearest neighbors of an SNP to consider. The algorithm initializes R  to S . In 

each iteration the distance 
K

id  between each SNP  iF  in R  and its K -th nearest neighbour-

ing SNP is computed. Further, the FSFS algorithm removes its K  nearest SNPs from R . In 

the next step is comparing the cardinality of R  with K  and adjustingK . Thus, the condition 

00 Kd  is gradually decreased until 
Kd0  is less or equal to an error threshold  .  

The parameter K  is chosen for as long as the desired prediction accuracy is achieved. In 

the experimental results given by Daly et al. [8] that the FSFS method can give a prediction 

accuracy of 88% with only 100 tag SNPs.  

Input data:  S  – set of SNP, parameter K of the algorithm, 

Output data: R  – selected Tag SNPs, 

1. select R  from S ; 

2. for RFi   do 

),(: K

ii

K

i FFDd       /* 
K

iF is the K -th nearest SNP of iF in R 

endfor; 

3. find 0F  such that );(minarg:0

K

iRi

K dFd   

Let 
KFFF 0

2

0

1

0 ,...,, be the nearest SNPs of 0F  and },...,{: 0

1

0

KFFRR   

Initially 0d  

4. if 1||  RK  then 1:  RK ; 

5. if 1K  then goto 1; 

6. while Kd0  do 

begin 

1:  KK ; 

if 1K  then goto 1; 

compute 
Kd0 ; 

end; 

7. goto 2; 

8. if all R are selected from S then stop; 

 Fig. 3. FSFS algorithm for TAG SNP selection 

Rys. 3. Algorytm FSFS dla wyboru znaczonego SNP 

5.2. An Application of the SVM for the Tag SNP Selection for Disease Diagnosis 

In this section, we describe an application the SVM method for the tag SNP selection 

with a simultaneous disease diagnosis.  
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The support vector machine (SVM) [30] is a machine learning method which was used to 

outperform other technologies, such as neural networks or k -nearest neighbor classifier. 

Moreover, the SVM has been succesfully applied for a binary prediction multiple of cancer 

types with excellent forecasting results [33, 20]. We recall that the SVM method finds an 

optimal maximal margin hyperplane separating two or more classes of data and at the same 

time minimizes classification error. The mentioned margin is the distance between the hyper-

plane and the closest data points from  all the classes of data.  

The solution of an optimization problem with the use of the SVM method requires a solution 

of a number  of quadratic programming (QP) problems. It involves two parameters: the pe-

nalty parameter C  and the kernel width  . If 2 C  is not fit for the problem un-

der consideration because it has noise. If 
2 and 2

1CC   where 1C  is fixed then the SVM 

converges with the linear SVM classifier with the penalty parameter 1C . A well selected 

),( 2C  is crucial for unknown data prediction. In the paper [3] the procedure for finding 

good C and 
2  was given.  

Table 1 

The prediction accuracy of existing metods 

No. Author(s) Method ALL/AML Breast 

cancer 

Colon Multiple 

myeloma 

SRBCT 

1 Cho [6] genetic algori-

thm 

73.53% (1) 77.3% (3)    

2 Cho [7] genetic algori-

thm 

94.12% 

(17) 

100% (21)    

3 Deb et al. 

[21] 

evolutionary 

algorithm 

  97% (7)   

4 Deutsch 

[11] 

evolutionary 

algorithms 

    100% (21) 

5 Huang 

[17] 

genetic algori-

thm and SVM 

    98.75% 

(6.2) 

6 Lee [21] Bayesian in-

terference 

 100% (10)    

7 Lee [24] SVM     100% (20) 

8 Waddell 

[31] 

SVM    71%  

Note: ALL/AML – acute lymphoblastic leukemia/acute myeloid leukemia, 

  SRBCT – small round blue cell tumor, 

  numbers in parentheses denote the number of selected genes. 
 

According to the output results given by Waddell et al. [31 concerning the case of the 

multiple myeloma (about 0.035% people over 70 and 0.002% people between the age of 30 -

 54 in the USA) it was possible to detect differences in the SNP patterns between the good 

human genome and the people diagnosed with this disease.  
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The obtained accuracy achieved 71% of the overall classification accuracy. Although the 

accuracy was not high, it was significant that only relatively sparse SNP data are used for this 

classification. The comparison of the SVM method with other existing methods is given in 

Table 1. It is noticeable that these methods are complementary. From Table 1 we see that the 

existing methods tend to select many genes with poor prediction accuracy. However, the 

SVM metod selects genes with relatively high prediction accuracy. 

6. Conclusion 

We have presented some machine learning methods concerning the tag SNP selection, 

additionally, some of which are used to diagnose diseases. These methods are applied to data 

sets with hundreds of SNPs. In general, they are inexpensive and with varying accuracy for 

the haplotype phasing, the tagged SNP prediction and, furthermore, diesease diagnosing. The 

missing alleles, genotyping errors, a low LD among SNPs, a small size of sample, lack of 

scalability with the increase of the number of markers are among basic weaknesses of the 

currently used machine learning methods used for computational haplotype analysis.  

Nevertheless, the machine learning methods are more and more often used in the tag SNP 

selection and disease diagnosis.  
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Omówienie 

W pracy dokonano przeglądu podstawowych metod obliczeniowych stosowanych w eks-

ploracji danych przy wyborze minimalnego podzbioru pojedynczego polimorfizmu nukleoty-

dów (ang. Single Nucleotide Polimorphisms, SNP). Wybór ten jest oparty na haplotypach 

i pozwala on na znalezienie wszystkich SNP związanych z daną chorobą. W rezultacie, takie 

metody, jak asocjacja par z użyciem klastrowania, metoda maksymalnej wiarygodności 

(ang. maximum likelihood metod), algorytm Metropolis-Hastings, maszyna wektorów wspie-

rających (ang. suport vector machine, SVM) itp., mają duże znaczenie w diagnozowaniu cho-

rób onkologicznych. Metody te różnią się zarówno uzyskiwaną dokładnością, jak i liczbą 

genów branych pod uwagę.  
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