
STUDIA INFORMATICA 2011 

Volume 32 Number 4A (100) 

Katarzyna STĄPOR 

Silesian University of Technology, Institute of Computer Science 

USING MACHINE LEARNING APPROACH FOR PROTEIN FOLD 

RECOGNITION 

Summary. Protein fold recognition using machine learning-based methods is 

crucial in the protein structure discovery, especially when the traditional sequence 

comparison methods fail because the structurally-similar proteins share little in the 

way of sequence homology. Based on the selected machine learning classification 

methods, we explain the methodology for building classifiers which can be used in the 

protein fold recognition problem.  
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UCZENIE MASZYNOWE W ROZPOZNAWANIU KLASY 

UFAŁDOWANIA BIAŁKA  

Streszczenie. Rozpoznawanie typu ufałdowania białka z wykorzystaniem metod 

uczenia maszynowego ma kluczowe znaczenie w przewidywaniu struktury białka, 

szczególnie w przypadkach kiedy tradycyjne podejście oparte na podobieństwie łań-

cuchów nie znajduje zastosowania ze względu na jego znikomą wartość. Na podsta-

wie wybranych algorytmów uczenia maszynowego klasyfikacji w artykule przedsta-

wiono metodykę automatycznego rozpoznawania typu ufałdowania białka.  

Słowa kluczowe: uczenie nadzorowane, klasyfikator, cechy, przewidywanie typu 

ufałdowania białka 

1. Introduction 

Proteins are indispensable for the existence and proper functioning of biological organ-

isms [27]. Proteins are biochemical compounds consisting of one or more polypeptides 

which are single linear polymer chain of amino acids bonded together by peptide bonds 

http://en.wikipedia.org/wiki/Chemical_compound
http://en.wikipedia.org/wiki/Polypeptide
http://en.wikipedia.org/wiki/Polymer
http://en.wikipedia.org/wiki/Amino_acid
http://en.wikipedia.org/wiki/Peptide_bond
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between the carboxyl and amino groups of adjacent amino acid residues. The sequence of 

amino acids in a protein known as primary structure is defined by the sequence of genes, 

which is encoded in the genetic code which, in general, specifies 20 standard amino acids. 

One of the most distinguishing features of polypeptides is their ability to fold typically into a 

globular or fibrous state, or "structure", that means 3D (three-dimensional) or tertiary 

structure. According to Anfinsen [1], the proteins can fold to their native structures 

spontaneously, therefore he stated that protein fold is coded in the amino acid sequence itself, 

but it is still not clear as to how structure is encoded in a sequence and, therefore, it is an open 

problem of much scientific interest in computational biology. The secondary structure of 

proteins is the characterization of a protein with respect to certain local structural conform-

ations like  -helices,  -sheets and other such as loops, turns and coils. Fold can be defined 

as a three-dimensional pattern characterised by a set of major secondary structure elements 

(e.g.,  -helices and  -sheets) with certain arrangement and topological connections.  

The structure of a protein serves as a medium through which to regulate either the 

function of a protein or activity of an enzyme. Understanding of how proteins fold in three-

dimensional space can reveal significant information of how they function in biological 

reactions. Protein‟s function is strongly influenced by its structure [6, 25, 26, 27].  

Currently, sequencing projects rapidly produce protein sequences, but the number of 3D 

protein structures increases slowly due to the expensive and time-consuming conventional 

laboratory methods, namely X-ray crystallography and nuclear magnetic resonance (NMR). 

Moreover, not all proteins are amenable to experimental structure determination. The protein 

sequence data banks such as Universal Protein Resource (UniProt) [2] contains over 

5.000.000 protein sequence entries, while the number of stored protein structures in Protein 

Data Bank (PDB) [4] is less than 50.000.  

This leads to the necessary alternative to experimental determination of 3D protein 

structures, the computational methods like ab initio and homology modeling ones. Ab initio 

methods seek to build 3D protein models "from scratch", i.e., based on physical principles 

[12],[32]. There are many possible procedures that either attempt to mimic protein folding or 

apply some stochastic method to search the space of possible solutions. The two major 

problems here are calculation of protein free energy and finding the global minimum of this 

energy which require vast computational resources, and have thus only been carried out for 

tiny proteins. These problems can be partially bypassed in the homology-based methods [12], 

[32], when the search space is pruned by the assumption that the protein in question adopts 

a structure that is close to the experimentally determined structure of another homologous 

protein. Because a protein's fold is more evolutionarily conserved than its amino acid 

sequence, a target sequence can be modeled with reasonable accuracy on a very distantly 

http://en.wikipedia.org/wiki/Carboxyl
http://en.wikipedia.org/wiki/Amino
http://en.wikipedia.org/wiki/Residue_(chemistry)
http://en.wikipedia.org/wiki/Peptide_sequence
http://en.wikipedia.org/wiki/DNA_sequence
http://en.wikipedia.org/wiki/Gene
http://en.wikipedia.org/wiki/Genetic_code
http://en.wikipedia.org/wiki/Protein_folding
http://en.wikipedia.org/wiki/Stochastic
http://en.wikipedia.org/wiki/Gibbs_free_energy
http://en.wikipedia.org/wiki/Energy_minimization
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related template, provided that the relationship between target and template can be discerned 

through sequence alignment.  

Among the computational approaches, protein fold recognition methods have taken 

central stage. Many methods have been developed, which are used to assigning folds to 

protein sequences. They can be broadly classified into three groups: 1) sequence-structure 

homology recogntion methods (for example [29]), 2) threading methods (for example 

Threader [18]), 3) machine-learning-based methods (for example [13, 28], see the review in 

the next section) 

Sequence-structure homology and threading methods align target sequence onto known 

structural templates and calculate their sequence-structure compatibilities (scores) using for 

example environment-specific substitution tables or pseudo-energy-based functions, and the 

template with the best score is assumed to be the fold of the target sequence. While these 

methods each are effective in certain cases, there are drawbacks of both approaches. The first 

will fail when two proteins are structurally-similar but share little in the way of sequence 

homology. Threading methods rely on data derived from solved structures, but as we 

mentioned, the number of proteins whose structure has been solved is much smaller then the 

number of proteins that have been sequenced. These methods have not been able to achieve 

accuracies greater than 30%.  

Machine learning-based methods for protein fold recognittion assume (according to [10] 

that the number of protein folds in the universe is limited, and therefore the protein fold 

recognition can be viewed as a fold classification problem: using sequence-derived features 

(properties) of proteins whose structure (fold) is known, so called the learning or training set 

for the construction of a classifier that can then be used to assign a structure-based label 

(class of fold) to an unknown protein (i.e. a protein whose structure has yet not been solved). 

The procedure for construction of a classifier is called supervised learning or classifier 

training. Its role in the fold classification task is to induce a mappings from primary 

sequences to folding classes.  

Supervised learning methods have gained great interest since the work described in 

(Craven et al. [11] ). Craven et al extracted several sequence-derived attributes, i.e., average 

residue volume, charge and polarity composition, predicted secondary structure composition, 

isoelectric point, Fourier transform of hydrophobicity function, from a set of 211 proteins 

belonging to 16 folds and used the sequence attributes to train and test the following popular 

classifiers: decision trees, k nearest neighbor and neural network classifiers in the 16-class 

fold assignment problem.  

The main purpose of this article is to explain the main ideas and principles of machine 

learning-based methods for protein fold recognition. We illustrate these ideas by re-

examining the selected, most popular four classification methods: gaussian classifier, nearest 
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neighbors classifier, support vector machines and multi-layered perceptron. We show how 

these classifiers work as protein fold predictors using widely known protein dataset and using 

the calculated set of features, devised previously by other researchers.  

To realize the main aim of the article, the second section contains the basic machine 

learning terminology and the short description of the mentioned four classifiers, which is 

necessary to understand machine learning paradigm. Then, at the beginning of the third 

section is a short review of the existing approaches to fold prediction based on the machine 

learning paradigm. The other subsections of the third section describe the process of building 

a classifier for protein fold prediction: how we extract features of the amino acid sequence 

and the dataset used in our experiments, and at last – the results of the conducted 

experiments. In the last, the forth section there are the conclusions drawn from the current 

study as well as the directions for future research in the field of machine learning-based fold 

prediction. 

2. Supervised machine learning classification techniques  

Machine learning is a branch of artificial intelligence which is concerned with the 

development of learning algorithms that allow computers to evolve their behavior based on 

the empirical data (examples). Based on the examples a learning algorithm captures 

characteristics of interest, for example the underlying probability distribution to automatically 

learn to recognize complex patterns and make intelligent decisions based on data. Because 

examples compose only a small subset of a whole population, the learning algorithm must 

generalize from the given examples, so as to be able to produce a useful output in future, new 

cases.  

The objective of statistical classification is to assign a new observation ix  to one of the 

pre-specified c  classes. The supervised machine learning of classification problem [5, 31], 

[30] can be formally stated as follows. Suppose we have a dataset of n  examples (training 

dataset): 

1 1{( , ),..., ( , )}n n nU x y x y  

where each 1( ,..., )i i idx x x  represents an observation, {1,..., }iy c  is a categorical variable, a class 

label. We seek for a function ( )d x  such that the value of ( )d x  can be evaluated for any new 

observation x  (i.e. not included in a training dataset) and such that label ˆ ( )y d x  predicted for that 

new observation x  is as close as possible to the true class label y  of x . The function ( )d x  known 

as classifier is an element of some space of possible functions, usually called the hypothesis space.  

http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Computer
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In the Bayesian decision framework, in order to measure how well a function fits the training data, a 

loss function ( , ( ))L y d x  for penalizing errors in prediction is defined. By far, the most common is 

0-1 loss function, where all misclassifications are charged a single unit. This leads to a criterion for 

choosing ( )d x  as the expected prediction error ( ( , ( )))E L y d x , where the expectation is taken with 

respect to the joint probability distribution ( , )f x y . Conditioning on x  and using 0-1 loss function 

we obtain a solution, a function ( )d x  of the form: 

( ) argmax ( | )id x P i x    1,...,i c   

or equivalently, using the Bayes rule: 

( ) argmax ( | ) ( )id x f x i P i    

where ( | )f x i  is a class-conditional density, ( )P i  is a priori probability of class i . The obtained 

classifier ( )d x , known as Bayes classifier, says that we classify to the most probable class using the 

conditional distribution.  

Classifiers come in a great diversity of techniques and algorithms. Each classifier can be 

uniformly defined by the set of c discriminant functions. Each class i has its own discriminant 

function ( )id x  designed in such a way that for each object from class i the value of the 

corresponding discriminant function is (should be) the largest among the all c values: 

1,...,
( ) ( )i j

j c
j i

d x d x



    

Discriminant functions are determined based on the training set using different 

algorithms, depending on the particular classifier. This procedure is known as the classifier 

training or learning. The procedure of building a classifier for a particular application 

typically comprises the following steps [30]: 1) data collection (on appropriate features), 2) 

data preprocessing (for example normalization, outlier detection), 3) feature selection-

/extraction (to avoid curse of dimensionality [5, 30]), 4) classifier training and validation of 

its internal parameters, 5) classifier testing to estimate its performance. The built classifier 

can then be used for making predictions on new, unknown observations. The unknown 

observation x is usually assigned to a class whose discriminant function ( )id x  has the largest 

value [30].  

2.1. Gaussian classifiers 

The discriminant functions of the above described Bayes classifier are of the form: 

( ) ( | ) ( )id x f x i P i      1,...,i c   

Many classification methods are based on the Bayes classifier including parametric and 

nonparametric ones according to the estimation method used. The most popular are 

parametric gaussian classifiers which use the gaussian (normal) density: 
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where   and   are the parameters: mean vector and covariance matrix of a distribution and 

d is a space dimensionality.  

In the real situations, the parameters   and   as well as a priori class probabilities ( )P i  

are replaced by their maximum likelihood (ML) estimates: 
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based on a training set. Plugging the above expressions into discriminant function of a Bayes 

classifier results in the quadratic discriminant function of a gaussian classifier: 

11 1 ˆˆ ˆˆ ˆ( ) ( ) ( ) ln | | ln ( )
2 2

T

i i i i id x x x P i          

In the simplest, special case where covariance matrices in all c classes are identical 

( , 1,...,i i c    ), the discriminant function of a gaussian classifier is linear: 

1 11 ˆˆ ˆˆ ˆ ˆ( ) ln ( )
2

T T

i i i id x x P i         

However, when the number of training examples is small compared to the number of 

dimensions d there may be a problem in obtaining good ML estimates of class covariance 

matrices. One solution is to use regularized estimators proposed in [15]:  

ˆ ˆ ˆ( ) (1 ) 0 1i i            

where the parameter   determines the amount of „shrinkage” of individual matrices towards 

the pooled one, and ̂ , is the pooled (average) covariance matrix: 
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Such a classifier is called regularized gaussian classifier.  

2.2. Nearest neighbors classifiers  

Another possibility is to use nonparametric density estimators, for example kernel or 

nearest neighbors ones [30], which leads to the different nonparametric Bayes classifiers. 

Based on the nearest neighbor density estimator and using the discriminant function of the 

Bayes classifier we can obtain very popular the k nearest neighbor (knn) classifier. This 
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classifier is based on a distance function for pairs of observations such as Euclidean distance, 

and proceeds as follows to classify test set observations on the basis of the training set. For 

each element in the test set: 1) find the k closest observations in the training set, and 2) 

predict the class label by majority vote, i.e., choose the class that is most common among the 

k neighbors. The number of neighbors k is usually chosen in a validation step using n-fold 

cross-validation (n-CV) procedure (described in the experimental results section).  

2.3. Support Vector Machine 

Linear support vector machine (SVM) binary classifier is defined by the optimal 

separating hyperplane (OSH), i.e., the one which maximizes the separation margin which is 

the distance between the hyperplane and the closest training observations (called support 

vectors). In the case when the data are not linearly separable, a non linear transformation is 

used to map the input data vectors into a higher dimensional space using a kernel function 

( , )iK x x . The discriminant function of a binary SVM classifier can be written as: 

| |

1

( ) sgn ( , )
SV

i i i

i

d x y K x x b


 
  

 
  

where 0 i C   (i = 1,…,n) are Lagrange multipliers, C is a regularization parameter, b is 

a constant, both obtained through a numerical optimization during learning, |SV| is the 

number of support vectors. The originally defined SVM is a binary classifier and one way for 

using it in a multi-class classification problem is to adopt standard techniques for combining 

the results of binary classifiers. The most popular are one versus all (1-all) and one versus 

one (1-1l) [5]. With 1-all approach, a binary classifier is constructed to decide between two 

classes: the class in question and the rest. Given c classes, c different classifiers are 

constructed and an unknown observation is assigned the label of whatever classifier returns 

a yes vote. In the case of multiple „yes‟ votes, a number of different tie-breaking solutions 

have been proposed. Using 1-1 strategy and a dataset with c classes, a classifier is constructed 

for every possible pair of classes, resulting in c(c-1)/2 different binary classifiers. Given an 

input observation, it is tested with each classifier, and the class returning the largest number 

of „yes‟ votes is assigned to the observation.  

2.4. Multi-layer perceptron  

The multi-layer perceptron (MLP) [5, 30] also termed feedforward neural network is 

a generalization of the single-layer perceptron. In fact, just three layers (including the input 

layer) are enough to approximate any continuous function. The input nodes form the input 

layer of the network. The outputs are taken from the output nodes, forming the output layer. 

The middle layer of nodes visible to neither the inputs nor the outputs, is termed the hidden 



34 K. Stąpor 

layer. The discriminant functions of 3-layered perceptron with M neurons in a hidden layer 

are of the following form: 

2 1 0

2 1

0 0

( )
M d

i ij jr r

j r

d x f w f w x
 

  
   

  
       1,...,i c  

where 0

rx  are inputs, 1

ijw , 2

jrw  are components of two layers of network weights, d is the 

dimensionality of the input pattern, the univariate functions 1f
 
and 2f  are typically each set 

to: 

xe
xf



1

1
)(  

The parameters of the network (i.e. weights ) are modified during learning to optimize the 

match between outputs and targets, typically by minimizing the total square error using 

a variant of gradient descent which is conveniently organized as a backpropagation of errors 

[5].  

3. Protein fold classification using machine learning methodology 

3.1. Review of the existing methods 

The protein fold recognition performance using machine learning paradigm critically 

depends on two main criteria: features used and employed classifiers. To address the first 

issue, a variety of features extracted and employed to this task such as: global 

physicochemical-based features [13, 14] order-based on bi-gram [17], tri-gram [24], and 

pseudo amino acids composition concepts [7], secondary structure-based features [24], 

substitution matrices-based [33], and hydrophobicity-based features [28].  

However, employing an appropriate classifier has also critical effect to the problem. 

Researchers used different classification methods for the problem of fold classification. 

Except the mentioned work by Craven (Craven et al. [11]) good examples are Dubchak et al. 

[14] and Ding and Dubchak [13] who experimented with one-versus-others unique, one-

versus-others and all-versus-all methods using neural networks or support vector machines 

(SVMs) as classifiers in multiple binary classification tasks  on a set of proteins taken from 

27 most populated SCOP folds. They were able to recognize the correct fold with the 

accuracy of approximately 56% using a number of sequence based properties as feature 

vectors for their classifier. A modified nearest neighbor algorithm called K-local hyperplane 

(HKNN) was used by Okun [23]. An effective example of methods based on Hidden Markov 

Model (HMM) is the one using reduced state-space HMM described by Lampros Ch. et al. 

[19]. Classifying the same dataset as in Dubchak [14] and input features, employing 
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a Bayesian Network-based approach, Chinnasamy et al. improve to 60% on the average fold 

recognition results reported by Dubchak. The fusion of the different classifiers is widely used 

to improve the performance (to 63% on the average). For example Nanni [21] proposed 

ensemble of classifiers: Fisher linear classifier and HKNN, as well as series of SVM 

classifiers combined with the max rule [22], Shen and Chou [28] proposed ensemble model 

based on nearest neighbors, Chmielnicki and Stąpor [9] proposed a hybrid regularized 

gaussian-SVM classifier.  

3.2. Re-examination of the selected methods 

3.2.1. The datasets 

The investigations described in this paper were performed on the dataset developed by 

Ding and Dubchak [14] (D-B dataset). The D-B dataset contains 311 and 383 proteins for 

training and testing, respectively.  

Table1 

The protein folds used in experiments 

Fold name Structural 

class

Nr of proteins 

in the training set 

Globin-like  13 

Cytochrome c  7 

DNA-binding 3-helical bundle   12 

4-helical up-and-down bundle  7 

4-helical cytokines  9 

Alpha; EF-hand  6 

Immunoglobulin-like -sandwich  30 

Cupredoxins  9 

Viral coat and capsid proteins  16 

ConA-like lectins/glucanases  7 

SH-3 like barrel  8 

OB-fold  13 

Trefoil  8 

Trypsin-like serine proteases  9 

Lipocalins  9 

(TIM)-barrel  /  29 

FAD (also NAD)-binding motif  /  11 

Flavodoxin like  /  11 

NAD(P)-binding Rossman fold  /  13 

P-loop containing nucleotide  /  10 

Thioredoxin-like  /  9 

Ribonuclease H-like motif  /  10 

Hydrolases  /  11 

Periplasmic binding protein-like  /  11 

-grasp  +  7 

Ferredoxin-like  +  13 

Small inhibitors, toxins, lectins  +  13 
 

This dataset has been formed such that, in the training set, no two proteins have more 

than 35% sequence identity to each other and each fold have seven or more proteins. In the 
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test dataset, proteins have no more than 40% sequence identity to each other and have no 

more than 35% identity to proteins of the training set. The proteins from training and testing 

datasets belong to 27 different folds (according to SCOP (Structural Classification of 

Proteins) classification [20]), representing all major structural classes ,  ,    and 

/  . The distribution of protein sequences of the training dataset in the 27 folds and four 

structural classes is presented in Table 1.  

3.2.2. Features of protein sequence 

A protein sequence is represented by a set of 126 element vectors based on various 

physico-chemical and structural properties of amino acids along the sequence: 1) amino acid 

composition (20 features collectively denoted by a letter „C‟ plus sequence length), 2) 

predicted secondary structure (21 features denoted by „S‟), 3) hydrophobicity (21 features 

denoted as „H‟), 4) normalized van der Waals volume (21 features denoted as „V‟), 5) 

polarity (21 features denoted by „P‟) and 6) polarisability (21 features denoted by „Z‟).  

We have used predicted secondary structural information based on three-state model: 

helix, strand and coil as the basis for all the calculations. The predictions were made by the 

method mentioned in Dubchak et al. [14] using artificial neural networks. 

Apart from amino acid composition characteristics („C‟ set of features), which is the 

feature vector that contains the percentage occurrences of amino acids in the primary 

sequence, all other features were extracted based on the classification of all amino acids into 

three classes  for each of the five mentioned above attributes in the way describe below (for 

example polar, neutral, and hydrophobic for hydrophobicity attribute, see Table 2). The 

detailed description can be found in Dubchak et al. [14].  

The descriptors a-composition, transition and distribution were calculated for each 

attribute to describe the global percent composition of each of the three groups in a protein, 

the percent frequencies with which the attribute changes its index along the entire length of 

the protein, and the distribution pattern of the attribute along the sequence, respectively.  

In the case of hydrophobicity for example, the a-composition descriptor „aC‟ consists of 

the three numbers – the global percent compositions of polar, neutral and hydrophobic 

residues in the protein (because regarding to hydrophobicity attribute, all amino acids are 

divided into three groups: polar, neutral and hydrophobic). The transition descriptor „T‟ of 

the following three numbers – the percent frequency with which: a polar residue is followed 

by a neutral one or a neutral by a polar residue and similarly with the other two types of 

residues. The distribution descriptor „D‟ consists of the five numbers for each of the three 

groups: the fractions of the entire sequence, where the first residue of a given group is 

located, and where 25, 50, 75, and 100 percent of those are contained. The complete 

parameter vector contains 3‟aC‟+3‟T‟+5x3‟D‟=21 components. 
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Therefore the full feature vector (C, S, H, V, P, Z) counts 6 x 21 = 126 features.  

Table 2 

Amino acid attributes and corresponding groups  
Attribute Group 1 Group 2 Group 3 

Secondary structure Helix Strand Coil 

Hydrophobicity Polar 

R,K,E,D,Q,N 

Neutral 

G,A,S,T,P,H,Y 

Hydrophobic 

C,V,L,I,M,F,W 

Polarizability (0-2.78) 

G,A,S,C,T,P,D 

(2.95-4.0) 

N,V,E,Q,I,L 

(4.43-8.08) 

M,H,K,F,R,Y,W 

Polarity (4.9-6.2) 

L,I,F,W,C,M,V,Y 

(8.0-9.2) 

P,A,T,G,S 

(10.4-13.0) 

H,Q,R,K,N,E,D 

Van der Waals  

volume 

(0-0.108) 

G,A,S,D,T 

(0.128-0.186) 

C,P,N,V,E,Q,I,L 

(0.219-0.409) 

K,M,H,F,R,Y,W 
 

3.2.3. Experimental results 

Each of the selected for re-evaluation classifiers: regularized gaussian, nearest neighbors, 

support vector machine, multi-layer perceptron was trained and then tested using the 

available datasets of 311 and 386 protein sequences respectively, and their sequence-derived 

feature vectors. As a measure of classifier accuracy we used the percentage accuracy 

(percentage of the examples incorrectly classified) on the test set.  

When the number of the training samples is small compared to the number of dimensions 

of the feature vector, the problem of estimation of classifier parameters may be ill-posed. In 

our experiment we decided to use the simple selection algorithm to reduce the dimensionality 

of the feature space. The idea for “simplified” feature selection is based on the fact, that 

features used in our experiments are based on parameters C, S, H, V, P, Z that create six 

feature sets containing 21 values each, so all combinations of these sets can be considered. 

The total number of them is 63, so the brute force algorithm can be used. The best 

combination obtained using 10-fold cross-validation procedure on a training dataset was 63 

feature set based on C, S, P sets of features. 

The selected classifiers were built for various parameters that define their internal 

architecture and the best combination in terms of classifier accuracy measured by 10-fold 

cross-validation procedure on a training dataset for each one was remembered. Testing was 

performed on a test set. 

N-fold cross-validation (N-CV) is the resampling technique that is often used for 

evaluation of classifier performance. The N-CV method consists of the following steps: 1) 

divide randomly all the training examples into N equal-sized subsets (usually N=10 but in 

general depends on the size of a training dataset), 2) use all but one subset of examples to 

train the classifier, 3) measure the classification error on the remaining one by means of the 

percentage accuracy, 4) repeat steps 2 and 3 for each subset, 5) average the results to get an 

estimate of the classification error of the classifier 
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The regularized gaussian classifier achieved the maximum accuracy 56% for parameter 

7,0 . The use of  gaussian kernel: 

2

2

1
( , ) exp || ||

2
i j i jK x x x x



 
   

 
 

with parameters  =0.5 , C = 100  and 1-1 method of combining binary classifiers leads to 

the best performing of SVM classifier – enabling to achieve the maximum performance equal 

to 58%. Regarding the 2-layered perceptron the maximum average accuracy was obtained for 

200 neurons and equals to 49%. The knn classifier was trained and tested for several values 

of k, the optimal k value was found equal to 1 giving the performance 50%.  

4. Conclusions and future work 

In this study we have explained the principles of using machine learning-based 

methodology in the complex classification task, namely the protein fold classification. We 

have investigated the following classifiers: regularized gaussian, nearest neighbors, support 

vector machine, multi-layer perceptron in the 27-class (fold) classification problem. It is clear 

from the experiments that none of the described classifiers alone give the accuracy better than 

60%. But, the obtained result is very well acceptable accuracy for the 27-class classification 

problem !. A random classifier would have a 3.7% (1/27x100) only. Moreover, the described 

and re-evaluated machine learning-based methods can be used to predict structure of proteins 

that have no well-understood homologes.  

There are several open issues that one can plan to explore in future research. These 

include: investigating alternative input representations. We believe that the described 

representation is insufficient and can be improved by incorporating additional features 

describing amino acid chain. An alternative class structure should also be developed, for 

example by re-evaluation our current class structure to determine classes which should be 

aggregated or discarded, or by incorporating larger set of folding classes. At last, better 

generalization of classifiers can be achieved by developing more accurate learning 

algorithms. One such possible improvement relies on using better hybrid classification 

methods (from those describe in the review) which allow to achieve higher accuracy. 
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Omówienie 

Rozpoznawanie typu ufałdowania białka z wykorzystaniem metod uczenia maszynowego 

ma kluczowe znaczenie w przewidywaniu struktury białka, szczególnie w przypadkach kiedy 

tradycyjne podejście oparte na podobieństwie łańcuchów nie znajduje zastosowania ze 

względu na jego znikomą wartość. Na podstawie wybranych algorytmów uczenia maszyno-

wego klasyfikacji w artykule przedstawiono metodykę automatycznego rozpoznawania typu 

ufałdowania białka. W pierwszej części zostały przedstawione ogólne zasady uczenia 

maszynowego klasyfikacji wraz z przykładowymi takimi algorytmami dla klasyfikatora 

empirycznego Bayesa, wielowarstwowego perceptronu, maszyny wektorów podpierających 

oraz metody najbliższych sąsiadów. W dalszej części po krótkim przeglądzie istniejących 

podejść do rozpoznawania typu ufałdowania białka za pomocą automatycznej klasyfikacji 

dokonano opisu sposobu reprezentowania łańcucha aminokwasów, czyli przestrzeń cech, 

a także przedstawiono opis 27 klas ufałdowań białek, które standardowo wybiera się dla 

testowania algorytmów automatycznej klasyfikacji. Ostatnie dwa punkty opisują ekspery-

ment oraz uzyskane wyniki i wnioski. Jak wynika z przeprowadzonych badań, podejście 

wykorzystujące uczenie maszynowe klasyfikacji stanowi bardzo obiecujący kierunek w bada-

niach nad przewidywaniem struktury trzeciorzędowej białka. 
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