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QEMU-BASED FAULT INJECTION FRAMEWORK 

Summary. This article presents the QEFI: a QEMU-based fault injection 

framework. It presents basic design principles behind the created framework, its 

implementation details and some results of experiments conducted to prove its utility. 

The novelty of the implemented software is outlined and compared with solutions 

presented in the literature. 
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SYSTEM WSTRZYKIWANIA BŁĘDÓW OPARTY NA QEMU 

Streszczenie. Artykuł ten prezentuje QEFI: system wstrzykiwania błędów oparty 

na QEMU. Przedstawia on podstawowe założenia projektowe stworzonego systemu, 

jego szczegóły implementacyjne oraz wyniki niektórych eksperymentów dowodzą-

cych jego użyteczności. Nowatorskie aspekty stworzonego oprogramowania zostały 

wyszczególnione i porównane z pracami znanymi z literatury. 

Słowa kluczowe: QEMU, wstrzykiwanie błędów, emulacja, systemy wbudowane, 

Linux, ARM 

1. Introduction 

Dependable computer systems are becoming more and more important branch of modern 

information technology industry. The use of such systems range from data centers where 

every service unavailability means money-measured loss to embedded systems, such as anti-

lock braking systems, where every failure may have cost in human live. Modern 

microprocessors, due to increased density of transistors, are getting more and more 

susceptible to external conditions like temperature or electromagnetic field – thus the number 

of faults (like bit flips, stuck at 0s or stuck at 1s) is increasing [8]. To increase the 
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dependability, many techniques are proposed and evaluated in following areas: testing, error 

detection, error prevention, recovery and fault injection. This paper will present a novel 

approach to model-based fault injection: a software fault injection (SWIFI) tool that is 

capable of injecting faults into an unmodified operating system while most of tools focus 

only on user-space applications. 

The presented solution is called QEMU Fault Injector (QEFI) and it is based on the 

QEMU computer system emulator. QEFI design goal was to provide a tool to automate fault 

injection campaigns. Utilizing a model instead of a real device introduces major 

improvements to the testing process: no real device is needed, the system under test (SUT) is 

easily manageable and the solution as a whole is scalable. However, these improvements 

come at a price of performance overhead and more complex environment setup, since 

evaluating software cooperating with hardware devices requires implementation of these 

devices’ simulators.  

The research in question has been focused on the ARM architecture. This decision was 

motivated by growing popularity of mobile devices and embedded systems that are more and 

more often assigned to mission critical activities like Firmware Over The Air (FOTA) or 

monitoring user’s health parameters. These devices are usually exposed to unfavorable 

conditions like sudden change of temperature or high humidity which increases the risk of 

errors. The market of embedded systems is also very diverse since hardware units are 

entering the market every few months. The ability to evaluate software in simulated 

environment is an advantage that allows to operate even if the hardware is still in the 

production phase or the number of real units is limited. 

The rest of the paper is organized as follows: overview of the presented solution, related 

work, detailed QEFI architecture and presentation of experiments’ results. 

2. QEFI Overview 

QEFI was designed as a tool for system-wide and kernel-based faults injection. The 

chosen approach allows for creating a fault injection framework focused on simulating 

hardware faults and testing software reactions to them. The project’s aim was to create a tool 

for developers and testers to possibly replace their hardware target devices, in at least a part 

of the software development process, with emulated environments. This would allow them to 

benefit from the controllability and observability of the proposed QEFI framework resulting 

in the possibility of testing software interactions with hardware operations hard to achieve 

while using a real target device. Most notably, the aim of QEFI framework is to allow for 

simulating different kinds of hardware failures and environmental issues, such as (among 
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others) limited connectivity, physical hardware modules failure, internal device connection 

errors, CPU errors etc. 

Utilizing QEMU is a way to evaluate reliability of kernel space code. This may be 

achieved by injecting faults into processor's registers, data in memory or the executed code. 

Usually, the test scenarios are targeted only at user space applications as most injection 

frameworks are implemented in kernel space (a disturbance of kernel code would also disturb 

the observer) or require a standalone observer [1, 4]. Allowing for kernel-level injections has 

a major research value because in case of QEMU we are able to test the kernel's robustness 

using an external injection framework. This utilization of QEFI is complementary to injectors 

that disturb user space processes since QEMU is aware only of working kernel image and 

doesn't have any ability to trace user space applications in generic manner. 

QEFI works are focused on creating an extensible and versatile framework for running 

fault injection test campaigns. Replacing a real device with a model introduces another 

benefit of easy replication of environment under test. This feature may be utilized to scale 

testing campaign and significantly improve testing coverage. 

The rest of this section outlines strong points and weaknesses of the implemented 

solution. The solution evaluation is divided into Model fault injection, QEMU and QEFI 

subjects to present a full picture at different abstraction levels. 

2.1. Model fault injection 

Utilizing models in the fault injection process is beneficial due to easy model replication 

and extended controllability. Models can be implemented as microarchitecture simulation, 

instruction level simulation or even virtualization. In all of these techniques preparing copies 

of a testing environment is cheap compared to manufacturing a real-device environment, thus 

it is possible to perform testing on a large scale in an automatic manner. This is a major 

advantage since testing campaign execution time may be reduced and its coverage may be 

extended. 

Testing with model-based fault injection techniques can be conducted at any abstraction 

level – it just depends on models’ level of detail – e.g. accelerometer application showing 

current acceleration to the user can be run on a model of OS, where syscalls are mocked to 

return current acceleration; alternatively, a model of hardware can be utilized in order to test 

the OS kernel module as well. This extends the developer’s or tester’s set of tools and 

simplifies the testing procedure – without such tool the tester, to test how application displays 

large acceleration values, would have to be really exposed to such acceleration, which could 

be inconvenient. 

Model approach has two major drawbacks: model environment preparation can be 

expensive and the test results may be inaccurate. These issues are related to the need of 
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preparing a model that mimics the target platform as accurately as possible. To reduce the 

cost of model environment setup, it is recommended to use some products already present on 

the market, like simulators or virtualization software, and adjust them to emulate the target 

platform. To address the second issue, it is recommended to run a series of tests in tandem on 

a real device and in model environment to ensure that model’s accuracy is satisfactory. 

However, it may be safely assumed that as a device becomes more popular on the market its 

simulators are more accurate. 

2.2. QEMU 

QEMU is a simulation platform which was chosen as a base of the presented model-based 

fault injection concept implementation. This decision was driven mostly by two factors: 

reasonable performance and availability under an open source license. With QEMU platform 

it was possible to implement the injection of various kinds of faults, e.g.: CPU registers 

modification, data in RAM modification, storage devices’ faults or network interfaces faults. 

The architecture of QEMU allows to easily extend the range of possible faults by modifying 

its Tiny Code Generator (TCG) which is responsible for executing emulated system code or 

introducing modifications in virtual devices’ state and behavior. 

QEMU is equipped with a shell user interface, which has been utilized as a point of 

control. This interface allowed both to implement user manual control over fault injection 

experiment and an automatized framework used to conduct experiments grouped in 

campaigns. Another QEMU’s advantage is out-of-the-box interaction with major developer’s 

tools – e.g. GDB integration, which is used by QEFI to provide an alternative user interface 

for fault injection configuration and triggering. 

2.3. QEFI 

QEFI framework has been designed as an environment for configuring and running fault 

injection experiments grouped in campaigns. An experiment is a single run of an emulated 

SUT with an injected fault. It can be described as a sequence of the following phases: booting 

the emulated device, setup of preconditions, injecting a fault, interaction with the system to 

see how/if the fault propagates and collection of post-experiment data. A campaign is a series 

of experiments conducted in an automatic fashion. Support for the campaign mode is crucial 

since conducting several experiments in a row manually by the operator would be very time 

consuming.  

To accomplish the aforementioned requirements, QEFI has been implemented as 

a Python module with QEMU as a backend. This decision has several advantages: 
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 clear components’ responsibility separation – components can be easily isolated and 

tested independently, 

 script-like definition of experiments, 

 great flexibility of interaction with the system – user can work with the system in an 

interactive mode, record issued commands and replay them in the script parameterized 

according to his/her needs, 

 configuration can be generated dynamically – it is even possible to setup next 

experiments based on previous experiments’ results (e.g. to stress test scenarios that were 

judged to be interesting according to some rules), 

 architecture is prepared for multiprocess execution – all experiments are conducted in 

separate working directories thus they follow data separation pattern and are ready to be 

run safely in parallel on machines that are capable of greater load. 

3. Related work 

Fault injection as a tool for evaluating software robustness is widely described in the 

literature. A vast variety of solutions have been implemented over the years [2]. Software 

fault injection techniques can be divided into categories according to different characteristics. 

SWIFI frameworks can be categorized by execution environment – a real device or a model. 

The former category includes injectors utilizing debugging/trap API to alter program’s 

execution [6, 10], modified kernel [1, 4, 11] or even modified BIOS program [16]. Injection 

tools in simulated environments, as stated in previous section, operate at different abstraction 

levels: from low-level hardware models [7, 15] to virtual instances of the operating system 

[3]. 

QEFI represents the simulation-based approach. As opposed to [3], it is based on an 

instruction-level simulator thus has the advantage of emulating different architectures and 

doesn’t require any modifications of the software under test. The quality of this approach is 

legitimized by the works presented in [12] where the very same real device fault injection 

framework was run on a real device and an emulated one with similar results. 

The importance of scalability of fault injection frameworks has been presented in [13] 

and [14]. These works influenced the design of QEFI – the adaptability to run in distributed 

environments was a major goal since it is a key to reasonable performance in evaluating 

complex software. 
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4. QEFI architecture 

 
Fig. 1. QEFI framework architecture diagram 

Rys. 1. Diagram architektury QEFI 

  
The architecture of the implemented QEFI system is presented in fig. 1. The most 

important architectural concepts of this design are its extensibility and versatility. That is why 

the architecture is a multi-layer, multi-module structure. Its three major parts are: the fault 

injection control framework, the QEMU emulator itself and a fault injection control library 

used as a proxy between the two other layers, responsible mainly for communication and 

QEMU execution management. The reason of separating the controlling layer from QEMU is 

the urge to modify QEMU as little as possible. Limited number of modifications inside 

QEMU code allows for higher compatibility with its future versions and easier management 
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of the created patches. QEMU main modifications are: the fault injection code in the 

emulated devices, management of so-called injection points. Injection points describe how a 

fault should be injected into SUT. Injection points consist of: 

 disturbed device (e.g. CPU, RAM, USB), 

 type of injection (e.g. bit flip in memory, lost token), 

 triggering conditions (e.g. specific program counter «PC» value, random injection with 

specific probability, specific device activity or external application triggering). 

The created framework allows for creating injection points of various types – described in 

details in a further section. 

5. Implementation Details 

5.1. QEFI Python interface 

The Python-based script API is the main user interface of QEFI – the one recommended 

to be used for most fault injection experiments. It provides the user with the ability to define 

different kinds of experiments, control their run, gather results and add custom modifications 

to any of the steps involved in the process. The experiments’ control is easy for the end user 

thanks to the object-oriented design of the QEFI interface: the user is given a Python object 

representing a QEMU instance and may freely interact with it. The user may control QEMU 

with monitor interface (e.g. to connect or disconnect USB mass storage device) and  interact 

with the emulated system using an API similar to the one provided by a popular UNIX tool 

called expect: it allows to read/write from/to emulated system’s serial output/input, create 

conditions on the output’s availability etc. 

5.2. Experiments and campaigns 

An experiment is the most basic form of an operation of QEFI. It’s defined as a simple 

series of steps to be executed which lead to the desired application run scenario, fault 

injection and post-fault logs collection. The following elements are to be expected to appear 

in most experiments: 

 QEMU run control commands, 

 application run control commands, 

 fault injection points management commands, 

 results gathering commands, 

 results processing commands. 
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An experiment is written in a form of Python script that may be prepared during 

interactive session with QEFI. The script may be parameterized in terms of changing 

executed application’s input data or moment/type of fault injection. Such script can be then 

run in a batch mode for different parameters’ values. The series of experiment runs is called a 

campaign and is designed as a way to gather more general statistics about SUT’s 

susceptibility to faults. 

5.3. Logging 

During the course of QEFI’s implementation, many different logging techniques have 

been considered. As implementing a common logging mechanism for such a heterogeneous 

environment (consisting of separate pieces of software implemented using completely 

different programming techniques and with different design principles in mind) would be 

very hard and could result in a very inefficient solution, it has been decided to adopt the 

“every man for himself” strategy. The responsibility for implementing logging has been 

passed as far down as possible – to the lowest layers of the software, i.e. to the point where 

the need for logging arises. This way every module may define its own way of logging which 

best suits it’s needs. The QEFI framework focuses on providing some logs management 

utilities. These are: 

 providing a directory to gather the logs in – the current working directory is always bound 

to be a safe place in which the application may store it’s logs, 

 ability to timestamp the logs with synchronization marks to ease their further processing 

and browsing. 

5.4. QEMU 

Although not directly visible to the user, the QEMU part of QEFI implementation is its 

most important module as it implements the logic allowing to perform fault injection in its 

fault injection execution framework. It serves several roles crucial for the fault injection 

process operation: 

 holds the lists of injection points to be executed and stop conditions to be triggered, 

 provides utility functions and C language macros to ease the implementation of device-

specific faults injection, 

 detects and handles stop conditions, 

 supports user-interface (used mostly to interface the upper layers of QEFI framework). 

This module may be interfaced in two manners: either using the QEMU monitor or using 

GDB. The QEMU monitor interface is used for several different purposes: 
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 command/response communication with the upper layers used for injection points 

management and direct fault injections (e.g. to the CPU registers and/or RAM memory), 

 asynchronous notifications of QEMU’s internal events – e.g. the occurrence of a stop 

condition, 

 watchdog-style monitoring of QEMU’s operation (in a challenge-response manner). 

The GDB, due to its nature, is used in a simpler manner – only for defining fault injection 

points related to the operating system kernel being run by QEMU. 

During development of the presented fault injection framework it has been also 

considered to integrate a QEMU’s snapshot feature to speedup campaigns execution by 

restoring an emulated device to a checkpoint state instead booting it from the scratch. 

However, snapshot feature is not fully supported on some of QEMU’s architectures 

(including ARM). Nevertheless, snapshot feature may be a potential source of optimisation to 

QEFI. 

5.5. Injection points 

Injection points are one of the most important terms introduced during QEFI design and 

development. An injection point is an entity which mimics the design of widely known break 

points and watch points. Four types of injection points may be distinguished: 

Probability-based triggers – type of injection points which are triggered with user-defined 

probability in random moments of the system's execution. 

 PC-based triggers – type of inject points most closely resembling watch points and break 

points. These are triggered when the execution reaches a specified PC value which 

enables the user to setup injections in some specified line of code (or a range of lines), 

e.g. in the operating system kernel. 

 Application-triggered injections – injection points defined during the tested application's 

runtime in a "injection start" – "injection stop" commands manner. The commands are 

issued directly to the QEMU layer of the system as an invalid processor instruction 

execution or unknown interrupt triggering. A proposed workflow using this kind of 

injection triggering is using GCC's functions instrumentation feature to enable/disable 

faults injection on a per-function basis. Note that such fine-grained fault triggering can 

only be achieved at the cost of modifying the tested software which may not always be 

acceptable. 

 Device-triggered injections – fault injection is triggered by devices' activity – e.g. when 

an interaction with USB mass storage device is observed faults are going to be injected 

(this assumes support from virtual devices modules). 
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5.6. Stop conditions 

Stop conditions are a natural evolution of injection points aiming at giving the user full 

control of what actions to perform when the defined code point has been reached. The 

novelty of this concept lies in the method used for triggering the stop conditions: their main 

source is the tested application itself. QEFI’s supplementary tools allow for instrumenting the 

tested application using opcodes not valid on the ARM architecture. These are being handled 

by the modified QEMU by stopping the virtual machine’s execution, passing details about the 

stop condition encountered to the upper layers and waiting for user’s actions. Such a case 

may be used for adding, removing, enabling or disabling injection points but may also be 

used to perform some more complicated actions, e.g. based on the current state of the 

application or on the results of previous experiments. 

5.7. Disturbed devices 

The implemented QEFI prototype supports disturbing the operation of the following 

virtual devices: 

 USB OHCI controller, 

 USB mass storage device, 

 Realtek 8139 Ethernet card, 

 PL181 MMCI controller. 

Different fault types are supported to be injected for different virtual devices – table 1 

summarizes the implemented possibilities. 

Table 1 

Supported injected fault types 

 Packet drop Buffer/packet 

modification 

Packets 

reordering 

Packets 

duplication 

USB OHCI ✔ ✔ ✖ ✔ 

USB MSD ✔ ✔ ✖ ✖ 

RTL8139 ✔ ✔ ✔ ✔ 

PL181 ✔ ✔ ✖ ✔ 

Apart from the above faults, the USB MSD supports also two additional types of faults: 

incoming token dropping and outgoing token dropping. These are specific errors valid only 

for USB devices and allowing to fine tune the fault injection scenarios tested. 

The implementation of these injection points has been done by patching the virtual 

device’s source code and adding fault injection instructions in appropriate places. Such 

a method, which may be considered not to be of clean design, is caused by the lack of any 
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hooks-like mechanism in QEMU. As a side effect, it allows for great controllability as the 

injection point’s location is chosen with line-based granularity. 

5.8. CPU/RAM injections 

Apart from the above possibilities to inject errors into specific devices composing 

a computer system, it’s also possible to disturb the operation of its core elements: the CPU 

and RAM. 

CPU operation disturbance is based on its registers values modification. The user is 

presented with a possibility to freely overwrite any of the 16 ARM processor registers to 

influence the system’s operation on the lowest level. The possible use cases include function 

arguments or return value altering, PC register modification to change the program flow, 

control over the operations being performed by changing computed values stored in registers 

and many others. 

A similar feature is available to disturb the RAM. It’s possible to freely modify any given 

memory area – specified either by its virtual or physical address to allow for process-based or 

kernel-based injections, respectively. This tool gives the user even more control over the 

program’s execution – e.g. a possibility to dynamically change its variables’ values, control 

the branches it executes, disturb the calculations it performs etc. 

These two injection methods, although very low-level and requiring special care to 

perform interesting actions, may be considered to be an example of QEFI’s extraordinary 

controllability capabilities. It’s an example of how useful simulation-based fault injection 

may be – achieving similar features on real hardware device would be very difficult (if 

possible at all). 

5.9. TCG modifications 

The most crucial modification made to QEMU’s source code is the modification of its 

Tiny Code Generator. Two features needed support from TCG-level patches: the stop 

conditions and PC-based injection points. Both of these are implemented as additional 

operations added to the code generated by TCG. Please note that these additions, although 

very useful in performing fault injection experiments, may break one of the core features of 

QEMU – its speed may be decreased. 

5.10. GDB integration 

GDB usage is one of the methods to define injection points. Its advantage over direct 

definition of the injection points in test scripts is the ability to define them on source code 
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line basis. This gives the developer the possibility to test a given part of Linux kernel’s code 

by injecting faults only when needed. 

To integrate QEMU fault injection execution framework and GDB, the support for GDB 

server protocol (already present in QEMU) has been used. The protocol has been enhanced to 

support not only break points and watch points but also injection points. The GDB has been 

modified to support additional commands to facilitate the fault injection possibilities when 

attached to a remote GDB server. The injection point created in QEMU’s fault injection 

execution framework using GDB differs slightly from other injection points – it’s being 

executed only when an appropriate PC register value (translated by GDB from the source 

code location provided by the user) is reached. Other parts of the injection points handling 

and the fault injection process is exactly the same. 

6. QEFI experiments 

During the course of QEFI’s implementation several different experiments have been 

performed to confirm its implementation correctness and its utility for the purpose it has been 

designed for. Note that extensive usage of QEFI for testing purposes has not yet been done so 

the presented results may be considered as preliminary. The performed experiments 

demonstrated some flaws – both of the Linux kernel (which is considered as the application 

under test) and of the QEMU. These results are briefly described in the following sections. 

6.1. Recovery scenarios 

QEFI approach is an adequate technique to evaluate recovery mechanisms present at the 

kernel level of operating systems. Conducting experiments with virtual devices gives the 

ability to observe not only direct effects of faults but also any attempts to restore original 

condition of the system. 

One of the experiments which has been conducted during QEFI development was 

targeted at injecting faults into USB OHCI (Open Host Controller Interface) emulated device. 

The faults were distortions in OHCI registers influencing its communication flow. It has been 

observed that in some scenarios the fault was detected and the Linux kernel attempted to reset 

the device. It was a basic recovery technique that was supposed only to restore 

communication via USB and was not aimed at restoring its state or the previous 

communication flow. 

More sophisticated recover techniques were observed when injecting faults into USB 

MSD (Mass Storage Device), which in our case was a virtual pendrive formatted using ext3 

filesystem. The faults were introduced into the payload of USB tokens, which means altering 



QEMU-based fault injection framework 37 

ext3 filesystem internal data and stored files contents. The ext3 filesystem is a journaled file 

system, thus after detecting an error a recovery procedure is triggered. Four different results 

of recovery mechanism’s application were observed: 

 successful recovery procedure, 

 filesystem was restored but files were altered, 

 filesystem was restored but it was re-mounted read-only, 

 operating system was unable to recover the filesystem (i.e. the pendrive rendered 

unusable). 

These results prove that QEFI can be successfully utilized as a tool for evaluating 

recovery procedures implemented at the kernel-level. Ease of use and no need to alter the 

evaluated code can support pointing out critical aspects of neutralizing effects of failures. 

6.2. Crash scenarios 

During the conducted experiments, crash scenarios were also observed. It has been 

spotted that after modifying the registers of the USB OHCI virtual device, Linux kernel 

sometimes didn’t validate the data read from these registers. This resulted in invoking “kernel 

oops” and “kernel panic” procedures, which are considered as irrecoverable errors – either for 

the given system module or for the system as a whole, respectively. 

Another example is writing an arbitrary value into the register #16 of the emulated ARM 

processor which is the PC register. When the register’s value was modified during user space 

process execution (injecting a fault in the user space process was possible thanks to the stop 

conditions), it lead to a segmentation fault if the value was out of the current process’ 

memory area. It was an irrecoverable error for the process but the operating system remained 

intact. On the other hand, when the PC value was modified during the system boot (without 

distinguishing if current processor's context is user-space or kernel-space), it happened that 

the kernel was trying to execute some random piece of code which resulted in a “kernel 

panic”. 

Described scenarios prove that QEFI is capable of introducing irrecoverable crash 

scenarios. Ability of injecting such faults is valuable since it makes possible to prepare 

procedures for such conditions and test theirs effectiveness. 

6.3. Application-oriented scenarios 

QEFI may be used not only to disturb kernel logic but also user-space applications’ logic. 

During the implementation of various injection mechanisms some simulated scenarios were 

conducted to test if these mechanisms are functional. This section describes such exemplary 

tests. 
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To test a scenario of a faulty random access memory (RAM) the program presented in 

Appendix 1 has been prepared. It is a sample program which was prepared on purpose but in 

a real testing campaign the modified memory area should be selected by an expert. This 

program presents the usage of the stop condition technique (embedded assembler code) to 

pause the execution at a given point. Thanks to this, we were able to overwrite the memory 

value using the QEMU monitor interface. The output of the program run in such a case is 

presented in Appendix 2. It shows that QEFI can be utilized to externally modify process’ 

environment.  

A similar experiment has been conducted with overwriting the PC value of a variant of 

the standard UNIX ls tool augmented with QEFI instrumentation. It was possible to set the 

value of the PC to point the beginning of the program thus executing it twice. The output of 

this experiment is presented in appendix 3. Errors visible at the end of the output are caused 

by abnormal stack state (overwriting the PC register disturbs the ordinary flow of pushing 

and popping values from the stack). 

7. Future work 

Creating the QEFI fault injection framework is the first step to evaluate operating 

systems’ susceptibility to faults. The plans of QEFI’s authors include conducting subsequent 

experiments where major focus will be put on working with real-world applications. Planned 

experiments range from stress-testing the Linux kernel in a search for yet unknown bugs 

which may influence its stability to end-to-end testing of software stacks which are 

commonly used in the real world – such as GUI applications, web servers, mail transfer agent 

servers etc. 

QEFI development will also be continued in the future. The most notable focus areas are: 

implementation of the support for x86 architecture and adjusting the created software to be 

run in environments optimized for massively parallel execution. To achieve this QEFI will be 

not only optimized for multi-thread and multi-process execution but also the ability to 

distribute the campaign to many separate systems will be introduced. Also, some 

performance tests are planned to show if such approach may influence the testing process in 

a noticeable manner. All the future developments and all gathered results will be presented in 

separate articles. 
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Appendices 

Appendix 1: Faulty RAM test program 

#include <stdlib.h>  

int main(int argc, const char ** argv)  {   

   int * val = malloc(sizeof(int));  

   printf("Address is %p\n", val);  

   *val = 99;  

   printf("Value is %d\n", *val);  

   printf("Pre involving swi\n");  

   __asm__ ( 

       "swi $0xad\n\t" 

   ); 

 

   printf("Post involving swi\n"); 

   printf("Value is %d\n", *val); 

 

   free(val); 

 

   return 0; 

} 

Appendix 2: Faulty RAM test result 

debian-armel:~# ./mem 

Address is 0x11008 

Value is 99 

Pre involving swi 

Post involving swi 

Value is 42 

Appendix 3: PC value altering experiment result 

debian-armel:~# ./badls.instr 

. 

.. 

badtee 

badls 

badls.instr 

.. 

badtee 

badls 

badls.instr 

Unknown cp14 read op1:7 crn:7 crm:4 op2:1 

Unknown cp14 read op1:7 crn:7 crm:12 op2:1 
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Unknown cp14 read op1:7 crn:7 crm:4 op2:1 

Unknown cp14 read op1:7 crn:7 crm:13 op2:7 

Unknown cp14 read op1:7 crn:7 crm:9 op2:7 

Illegal instruction 
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Omówienie 

QEFI jest implementacją jednej z technik analizy niezawodności za pomocą wstrzy-

kiwania błędów – wstrzykiwania opartego na modelach. Celem omawianego projektu było 

stworzenie systemu wspomagającego analizę niezawodności systemów wbudowanych 

i mobilnych wyżej wymienioną metodą, tzn. poprzez wykonywanie eksperymentów na 

modelach tychże urządzeń. 

Opracowane rozwiązanie zostało oparte na emulatorze QEMU. Emulator ten został 

wybrany ze względu na jego szybkość działania, a także rozszerzalność i możliwości 

adaptacji do specyficznych zastosowań. Architektura zaimplementowanego systemu jest 

wielowarstwowa i wielomodułowa – przedstawiono ją na rys. 1. Oprócz QEMU składają się 

na nią: system sterowania wstrzykiwaniem błędów opracowany jako zestaw skryptów i bi-

bliotek języka Python oraz biblioteka sterująca wykonywaniem eksperymentów, której 

zadaniem jest zarządzanie wykonaniem procesu emulatora i zapewnienie interfejsu między 
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pozostałymi warstwami. QEFI pozwala na wstrzykiwanie błędów wielu różnych rodzajów – 

symulujących uszkodzenia lub pojedyncze błędy niektórych urządzeń zewnętrznych systemu 

(patrz tabela 1), rejestrów procesora czy komórek pamięci RAM. Większość z nich może być 

wyzwalana na wiele sposobów: probabilistycznie, na podstawie zawartości rejestru licznika 

instrukcji czy też na podstawie specjalnych instrukcji zawartych w testowanej aplikacji. 

Artykuł przedstawia również wyniki eksperymentów wykonanych przy użyciu zaimple-

mentowanego systemu. Oprócz zaprezentowania poprawności zastosowanej metody, a także 

użyteczności QEFI jako platformy wstrzykiwania będów, pokazują one przykładowe błędy 

oraz niedoskonałości odkryte w implementacji jądra systemu Linux. Zostały omówione 

zarówno wyniki testów, w których po wstrzyknięciu błędu została odzyskana pełna 

sprawność testowanego systemu, jak i takie, w których testowany system nie był w stanie 

dalej pracować poprawnie. Przedstawione eksperymenty mają na celu przedstawienie w pełni 

funkcjonalności QEFI, natomiast analiza niezawodności określonego oprogramowania 

wykracza poza zakres niniejszego opracowania. 

Artykuł przedstawia również powiązane prace badawcze opisane w literaturze i w ich 

kontekście omawia właściwości systemu QEFI, a także przedstawia pobieżnie dalsze per-

spektywy rozwoju tego projektu. 
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