
STUDIA INFORMATICA 2013

Volume 34 Number 1 (110)

Łukasz ROGUSKI

Polish-Japanese Institute of Information Technology

Sebastian DEOROWICZ

Silesian University of Technology, Institute of Informatics

FLUID MOTION MODELLING USING VORTEX PARTICLE

METHOD ON GPU

Summary. In this paper we present the vortex-in-cell method aimed at graphic

processor units. Inviscid fluid model is examined in domain with periodic boundary

conditions. The leap-frogging vortex rings simulation results are presented with

sample vortex rings collision visualization. At the end the GPU solver performance

advantage over CPU solver is presented.

Keywords: 3D fluid motion modeling, vortex particle method, vortex-in-cell

method, GPU, CUDA

MODELOWANIE RUCHU PŁYNÓW NA PODSTAWIE METODY

CZĄSTEK WIROWYCH NA GPU

Strzeszczenie. W pracy prezentujemy metodę obliczeniową wir-w-komórce zaim-

plementowaną na układach graficznych. Za model ośrodka został przyjęty płyn

nielepki wraz z periodycznymi warunkami brzegowymi. W pracy przedstawiono

wyniki symulacji dla gry wirów oraz przykładowe wizualizacje z wykorzystaniem

cząsteczek markerów. Pod koniec została przedstawiona analiza uzyskanego

przyspieszenia algorytmu na GPU względem wersji na CPU.

Słowa kluczowe: modelowanie ruchu płynów w 3D, metoda cząstek wirowych,

metoda wir-w-komórce, GPU, CUDA

1. Introduction

The computational fluid dynamics is one of the most intensive developing branches of

physics in recent years, where fluid motion modeling problems can be solved virtually in

computer simulations, reducing the costs of experiments. The main problem, however,

32 Ł. Roguski, S. Deorowicz

remains a construction of accurate flow and fluid model descriptions, where especially for

turbulent cases obtaining the exact solution is almost impossible. To better understand the

turbulence phenomenon the vortex methods were developed, which focuses on the vortical

characteristics of the flow.

In vortex methods we can distinguish two main branches – the direct and hybrid methods.

The first, direct methods, relies on Biot-Savart law, where to compute the velocity at a given

point in space one needs to sum up all the particles contributions in domain, which ends up to

the n-body problem [1, 2, 3]. The second, hybrid methods, use the computational grid to

solve Poisson equation and then obtain a velocity field of the computational domain [1, 4].

As both methods are computationally expensive, the usage of high-throughput computational

devices is highly desirable.

In recent years we can see an increasing trend in using graphic cards processing power to

scientific computations. The GPUs used to be seen as devices for processing and displaying

the graphics on monitor. Nowadays, we can treat GPUs as high-throughput parallel arithmetic

coprocessors, capable of handling thousands of lightweight threads. GPUs have been widely

used in computational fluid dynamics field, simulating fluid flow using grid-based methods

[5, 6] and smoothed particle hydrodynamics methods, thus proving to be a highly-efficient

tools. However application of GPUs for solving fluid flow problems using vortex methods is

a rather young practice. In [7] researchers used GPUs to speedup three-dimensional flow

problems using direct methods and fast treecode or fast multipole modifications, which

proved to be handled efficiently by graphics processors. The hybrid method solver was

successfully implemented for GPU [8] and then improved in [9], which gave ability to

simulate two-dimensional bluff body flows in inviscid fluid with very good speedup. Quite

recently also the researchers [10] successfully implemented the multigrid hybrid solver on

GPU obtaining interesting results.

In the current work, we present a hybrid solver designed for solving the three-

dimensional incompressible and inviscid flows using Fast Fourier Transform solver on GPU.

We also present the sample simulation visualizations accompanied with GPU speedup results

analysis.

2. Physical background

The common basis of most fluid motion modeling problems are the Navier-Stokes

equations, describing the conservation of mass, momentum and kinetic energy. As a starting

point we use the conservation of momentum equation, which for incompressible and inviscid

fluid model with no external forces is determined as:

Fluid motion modelling using vortex particle method on GPU 33

,=u

p,
ρ

=u)u(+
t

u

0

1

 (1)

with velocity)(zy,x,=u

, pressure p, and density q.

Applying the differential rotation operator for two sides of the first equation, we obtain

the Navier-Stokes equation in vorticity form and after closing it with the condition of fluid

incompressibility 0=u

 we obtain the full system of equations describing the evolution of

vorticity field in time. For three-dimensional flow with selected incompressible and inviscid

fluid model the system of equations follows:

,=u

,uω=uu+
t

ω

0

)()(

 (2)

where vorticity)(zyx ω,ω,ω=ω

 is described as:

.u=ω

 (3)

The most difficult problem lies in obtaining the velocity field. By applying the Helmholtz

theorem about decomposition in relation to fluid flow and taking into account the condition

of incompressibility, the velocity equation can be described:

,A=u

 (4)

Where A

 is the vector potential.

The vorticity field is rotation of velocity field, so assuming additionally the non divergent

potential field (0=A

) [4], we obtain the vector potential A

, which simplifies the solution

to solving:

,ω=A

2 (5)

from which the obtaining the velocity field is simple.

3. Vortex-in-cell method

The vortex-in-cell method is a branch of vortex particle methods, where in order to

compute the velocity field effectively, a computational grid is used. In this method, the three

dimensional domain of flow is covered by a mesh of zyx NNN size, with equal spacing

h between grid nodes. The continuous vorticity field is discretized into vortex particles (or

point vortices) [4]:

),()(p

p

p xxδα=xω

 (6)

34 Ł. Roguski, S. Deorowicz

where δδ is the delta Dirac function, pα

 is the vortex particle strength and is described as:

,vxωxdω=α pp

V

pp)(

 (7)

where pv is the particle volume.

Evolution of vorticity field is thus defined by evolution of vortex particles carrying the

vorticity. As the vortex particle motion is passive (particles are advected in the velocity field),

the rate of change in their position is described as

.p

p
u=

dt

xd

 (8)

Unlike in modeling two-dimensional flow problems – where vorticity is a constant – in three-

dimensional flows the rate of change in particle vorticity is described as stretching term

,)],([pp

p
αtxu=

dt

αd

 (9)

where t),x(u p

 states velocity field gradient at px

 position and in t moment.

The procedure for incompressible and inviscid fluid motion modeling using the vortex-in-

cell method can be basally divided into 5 steps:

1. Distribution of particle strengths onto the mesh nodes

),(
1

)(p

p

p

p

n xα
v

=xω

 (10)

where nxω

 is the vorticity in the specified grid node and is the interpolation (or

filter) function. In the current work, the trilinear filter function is selected.

2. Solution of the second order differential Poisson equation on grid in order to obtain the

vector potential A

(5). In the paper we use the finite differences method with periodic

boundary conditions similar in [2, 4, 9].

3. Computation of velocity field based on previously obtained vector potential A

(5) and

computation of velocity field gradients.

4. Interpolation of velocity values from the velocity field mesh nodes to the particles

),()(p

n

np xu=xu

 (11)

where)x(u n

is the calculated velocity in grid node and)(x

 is the interpolation filter.

Particle positions (8) and strengths (9) are updated using second order Adams-Bashfoth

multi-step scheme:

),,(
2

1
),(

2

3
1112 nn+n+n+n+n athfathf+a=a (12)

where h is the size of time step.

Fluid motion modelling using vortex particle method on GPU 35

5. Update of the free markers positions, which are advected in velocity field just as vortex

particles (8).

4. GPU implementation details

To aid the computations by using GPU the NVIDIA, CUDA interface was chosen, which

enables programmer to treat the GPU as an high-throughput parallel arithmetic coprocessor.

Although on the market there are other available programming interfaces for parallel

computing using GPUs including the open standard OpenCL and Microsoft DirectCompute

(as part of DirectX API), the NVIDIA CUDA toolkit offers the largest number of additional

libraries and code base for parallel computing at the cost of being limited only to NVIDIA

GPU cards.

The CUDA interface describes GPU as a computational device, consisting of multiple

independent processor groups called streaming multiprocessors, which can operate in parallel

and handle thousands of lightweight hardware threads. Each streaming multiprocessor

consists of multiple smaller arithmetic operation units – stream processors, which operating

in thread groups called warps execute the same instruction.

NVIDIA CUDA interface describes also the 3-level device memory hierarchy - global

memory, shared memory, and registers. The first, usually can be seen as the RAM of the

GPU and can be accessed by all computational units. The global memory has the largest

memory address space but also the largest memory latency access time, so it's important to

design algorithms to make use of it as less as possible. The shared memory, on the other hand

is per streaming multiprocessor exclusive space with size is less than 50 kB, but has access

times usually an order of magnitude smaller than in the global memory case, being the best

solution for e.g. swap storage between execution units. The last – registers – are exclusive per

streaming processor with negligible access time latency.

Having in mind the CUDA device model, below we present the implementation details of

the selected vortex-in-cell method steps.

4.1. Particle strengths distribution on mesh nodes

In the particle strength distribution step, we selected the trilinear interpolation function,

where the strength of single particle is distributed between 8 grid nodes of the cell in which

the particle resides. Fig. 1 presents the GPU kernel pseudocode of this step.

At the beginning, particle index in particle buffer is computed, basing on available

information for worker threads that is threadId, groupId and blockId. Next, the particle

index offset ioff is determined, which depends on total number of particles, threads number

36 Ł. Roguski, S. Deorowicz

and processing slice size. During this stage, each multiprocessor operates on a consistent

blocks of particles data, enabling coalesced memory reads. Each worker thread in a warp

processes a slice of n particles – this process is divided into n iterations, giving n memory

block read transactions initiated by multiprocessor and a minimum of 8n memory write

transactions (they cannot unfortunately be coalesced). The aim of processing particle slices

by a worker thread is mainly to reduce number of active threads, when the overall number of

particles is too large to be efficiently handled in 1:1 thread to particle ratio. The total number

of launched threads is thus
sizeslice

untparticleco
=ttotal .

Input: P – vortex particles buffer

 M – vorticity field mesh

 n – number of particles to process

Output: M – (processing in-place)

1: function DistributeStrengthsOnMesh(P, M, n)

 2: in ← determine the particle index based on worker thread information

 3: ioff ← index offset between processing particles

 4: for i ← 0 to n do

 5: p ← P[in + i * ioff]

 6: I ← compute indices of cell nodes in which particle p resides

 7: for all i in I do

 8: update the vorticity in M, node using p

 9. end for

 10: synchronize threads in group

 11: end for

 12: end

Fig. 1. Particle strength distribution step – GPU kernel pseudocode

Rys. 1. Pseudokod programu jądra etapu dystrybucji natężenia cząsteczek na GPU

4.2. Poisson equation solution

In this paper we use the fast spectral method solver to solve the second order elliptic

Poisson equation (5) in frequency domain with periodic domain boundaries. The high

efficiency of spectral methods in solving partial differential equations comes from the fact,

that in the frequency domain the costly differential operations on grid are replaced by simple

division by wavenumber, operations reducing the computational costs. In this step we used

the CUFFT library, which is a part of NVIDIA CUDA toolkit and which implements the Fast

Fourier Transform on GPU. The pseudocode illustrating the main concept of this step is

presented on Fig. 2.

Fluid motion modelling using vortex particle method on GPU 37

 Input: M – vorticity field in time domain
 n – slice size of mesh elements to process

Output: A – vector potential in time domain

1: function SolvePoissonFFT(M, n, A)

2: B ← convert M from real to complex

3: B ← forward FFT B

4: launch SolvePoissonInFrequencyDomain(B, n) kernel

5: B ← inverse FFT B

6: A ← convert B from complex to real

7: end

Fig. 2. Poisson equation solution main step – GPU kernel pseudocode

Rys. 2. Pseudokod programu jądra głównego etapu rozwiązywania równania Poissona na GPU

 Our solver takes vorticity mesh buffer M as input and places the result in vector potential A

buffer. In order to compute the Fourier transform and solution in the frequency domain, the

input data must be firstly converted from areal number of float type to the complex type

cufftComplex and – analogously after obtaining solution and inverse Fourier transform –

back to the real type, saving the result in output A vector potential buffer. Here, the auxiliary

B buffer is used, where transformation operations are computed in-place. The

SolvePoissonInFrequencyDomain() is the kernel function launched on all worker threads,

which pseudocode is presented on Fig. 3.

 Input: M – vorticity field in frequency domain buffer

 n – slice size of mesh elements to process

Output: M (processing in-place)

1: function SolvePoissonInFrequencyDomain(M, n)

2: x, y ← determine the X, Y indices based on worker thread information

3: z0 ← determine Z slice start index

4: for z ← z0 to z0 + n

5: k ← compute the wavenumber for Mxyz element

6: Mxyz ← Mxyz / k

7: synchronize threads in group

8: end for

9: end

Fig. 3. Poisson equation solution in frequency domain - GPU kernel pseudocode

Rys. 3. Pseudokod programu jądra rozwiązywania równania Poissona w dziedzinie częstotliwości

na GPU

At first the global x, y element indices are computed with z0 slice start index. In the main

for loop, the n elements in slice are processed – divided by previously computed

wavenumber. As the elements are only read and written once, memory operations are made

on single buffer M which works both as input and output. At the end of the for loop the

synchronization operation between worker threads in a group is inserted, which is needed to

achieve the coalesced memory reads. The overall number of threads running the kernel is

n

NNN
=t

zyx

total

, where Ni corresponds to the i-th dimension size of vorticity field grid.

38 Ł. Roguski, S. Deorowicz

4.3. Vortex particle update

After computation of a velocity field from vector potential and velocity field gradients,

the particles update step is done. The pseudocode for GPU particles update kernel is

presented on Fig. 4. Analogously, like in the particle strength distribution kernel, the particle

index in buffer with particle index offset for slice processing are firstly determined, where the

total number of launched threads on GPU is
sizeslice

untparticleco
=ttotal .

 Input: P – vortex particles buffer

 V – velocity field mesh

 G – velocity field gradients

 h – time step size

 n – number of particles to process

 Output: P (processing in-place)

 1: function UpdateParticlesAB2(P, V, G, h, n)

 2: in ← determine the particle index based on worker thread information

 3: ioff ← index offset between processing particles

 4: for i ← 0 to n do

 5: ip ← in + i * ioff

 5: p ← P[ip]

 6: v ← sample velocity from V at p.x // p.x – position at t-1

 7: g ← sample velocity gradients from G at p.x

 8: f ← compute stretching using g and p.a // p.a – strength at t-1

 9: p.x ← p.x + 0.5h(3v – p.v) // p.v – velocity at t-1

 10: p.a ← p.a + 0.5h(3f – p.f) // p.f – stretching at t-1

 11: p.v ← v

 12: p.f ← f

 13: P[ip] ← p // save new particle value

 14: synchronize threads in group

 14: end for

 15: end

Fig. 4. Vortex particles update step – GPU kermel pseudocode

Rys. 4. Pseudokod programu jądra etapu aktualizacji cząsteczek wirowych na GPU

At the beginning of the for iteration, the particle data with specified index is read from

buffer and next – the velocity with gradients at particle position are sampled, using trilinear

interpolation function. The stretching term is computed according to (9) and particle position

with stretching value are updated using second order Adams-Bashforth scheme. At the end of

the iteration the current sampled velocity and stretching values are saved, which will be used

again in the particle update step at t+1 time.

4.4. Visualization

To visualize the simulation results, we used OpenGL graphics interface library with

supported cuda_gl_interop option to share GPU buffers with CUDA interface, which

makes almost instant results rendering possible. Vortex (and free marker) particles are

represented as simple GL_POINTS with positions stored in CUDA particle buffer, while

Fluid motion modelling using vortex particle method on GPU 39

particle color is set globally in order to reduce needed operations or additional GPU memory

color buffer.

5. Numerical results

As a numerical vortex ring model for our simulations we chose a ring (or rather a torus)

consisting of 256 slices, with 121 vortex particles on each, giving a total sum of 30976

particles per whole vortex ring. The basic idea of construction of vortex ring is presented in

Fig. 5 – we chose the distribution model of particles inside the slice similar as in [4].

Fig. 5. Vortex ring construction idea

Rys. 5. Idea konstrukcji pierścienia wirowego

5.1. Leap frogging vortex rings simulations

As a first simulation to test the environment the vortex rings leapfrogging phenomenon,

was chosen, known also as the “vortex game”. In this phenomenon we observe a specific

interaction between two vortex rings moving along the common axis in the same direction.

While traveling, the second ring – which is on the back towards the direction of movement –

under the velocity field inducted by the heading ring starts to accelerate and deform – shrink

it's size. The heading ring, however, under the velocity field induced by the back ring starts

reducing it's velocity and also deform – stretches it's own size. When the distance between

rings reaches zero, the ring on the back passes through the center of the heading ring and

starts to accelerate with stretching it's size. The roles change and the process continues. This

experiment is very hard to carry on in the laboratory, as it's stability depends on conservation

of vortex rings shapes and their starting positions. Also the inviscid fluid model is required.

In an idealistic situation the rings should move in that manner to infinity, but in the computer

simulations, due to e.g. particle distortion or numerical diffusion the vortex rings become

distorted and break into pieces or connect to one structure.

40 Ł. Roguski, S. Deorowicz

Fig. 6. Vortex game simulation

Rys. 6. Symulacja gry wirów

Fluid motion modelling using vortex particle method on GPU 41

Fig. 7. Vortex ring collision simulation visualization

Rys. 7. Wizualizacja symulacji kolizji pierścieni wirowych

42 Ł. Roguski, S. Deorowicz

In our simulation we chose two identical vortex rings with radii R = 1.5 and circulation

Γ = 1.0 with uniform distribution of vorticity inside the cores, which radius ε = 0.11. The

rings were set to travel along OX axis with initial distance between their centers Δx = 0.9. The

computational domain for selected simulation was a cube of 2Π length per dimension, which

in next step was covered by a 646464 mesh – the spacing between mesh nodes h =

0.098. The time step size for time integrator was chosen as Δt = 0.01.

In Fig. 5 we present the visualization results of vortex game simulations in selected

moments. The obtained results are very similar to those reported in [4]. In our work, we

managed however to get the rings become less distorted in time, so that just after the t = 5s

they don't slowly start to connect. This is due to the fact, that we used a vortex rings with

higher resolutions – with 2.5 times more slices and nearly 3 times more particles per ring.

During simulation we unfortunately observe the influence of numerical diffusion on the

rings' shape, which slowly gains quadrature distortions. The numerical diffusion is one of the

main problems of computational methods that use grid to interpolate values between particles

and grid. However, the reduced computational cost is very significant in comparison to the

classical methods [1], where computing the velocity at given location in space comes down to

the n-body problem. The next simulation example we chose was the head-on vortex rings

collision phenomenon, which can be commonly observed in nature. Here we focused more on

the visualization side results using free marker particles to visualize fluid elements instead of

vortex particles. We used the same rings models as in previous simulation but with radius R =

1.0 and used 65535 marker particles per each vortex ring. The rings were placed on the OZ

axis with distance Δz = 2.0 between them. As for computational we also used the box with

2Π length per side, but covered it with a 128128128 mesh. The simulation visualization

is showed on Fig. 7.

6. Performance

The CPU version was written in C/C++ and was highly optimized using SSE vector

instruction set provided by SONY Vectormath library. The Fast Fourier Transform operations

were used from FFTW library. Programs were run on Intel Pentium Dual-Core E5200 with

2,5GHz core clock with DDR2 RAM memory running at 800 MHz. As for GPU – the

NVIDIA GeForce 460 GTX was used with 756 MB DDR5 RAM memory. The used GPU

have 7 Streaming Multiprocessors, where each can handle up to 8 active thread block at time

or up to 1546 active threads, running at 1350 MHz core clock. The CUDA kernels were

compiled using CUDA Toolkit v.4.0. Although the application was implemented and tested

Fluid motion modelling using vortex particle method on GPU 43

in single GPU environment it can be easily extended adding the support for multi GPU

environment.

To analyze the GPU algorithm speedup versus the CPU version we carried on the single

vortex ring evolution simulation using different ring configurations (core radius 0.11ε)

with mesh sizes which are shown in Tables 1 and 2. The speedup factor was computed as

GPUtime

CPUtime
=f . We only omit here the GPU buffers initialization time and the initial RAM

to GPU memory data transfer, as it is done only once at application startup. All the

computations on the GPU are done without the need of exchanging the data between GPU

memory and external RAM.

In the next part of this chapter we present analysis of achieved speedup results using GPU

on selected processing stages – the presented timings are a truncated mean from 100 tests,

where 20% of extreme results were discarded.

Table 1

Used computational mesh configurations

Symbol Mesh size Total number of nodes

S32 323232 32768215 =

S64 646464 262144218 =

S128 128128128 2097152221=

Table 2

Used vortex ring configurations

Symbol Number of slices Particles / slice Total number of particles

R128 128 25 3200

R256 256 121 30976

R512 512 4089 2093568

6.1. Particle strength distribution

To process particles on GPU we used a thread group of size {128, 1, 1}, where each

thread processed only one particle – after many tests with different group sizes and particle

processing per thread numbers this configuration performed the best. When using this

configuration, the GPU multiprocessors can handle 8 active thread groups each.

The satisfactory speedup results we achieved only on S128 grid with using R128 and R256 ring

models. In other cases the performance difference between the CPU and GPU version was

comparable, where on S32 grid and using R128 ring model the CPU version performed even

better. The measured processing times are shown in table 3 and on Fig. 8 the speedup factor

chart is presented.

44 Ł. Roguski, S. Deorowicz

This step turned out to be the bottleneck of our algorithm. The achieved speedup results

on GPU are not fully satisfactory, which is due to the fact that we used performance

expensive atomic operations to update vorticity values in the grid nodes from particles. In the

pessimistic case, the atomic operations can highly reduce the GPU parallel processing

 efficiency, where memory write operations requests to the same memory address are

serialized. In order to make better use of GPU highly parallel data processing ability we need

to redesign this step and resign from atomic operations usage.

Table 3

Particle strength distribution timing results

Device Ring
Grid

S32 S64 S128

CPU

R128 0.39 2.04 18.91

R256 1.02 3.90 20.86

R512 142.09 145.61 163.09

GPU

R128 0.74 0.93 1.23

R256 2.56 4.23 4.75

R512 134.33 159.95 181.78

Fig. 8. Particle strength distribution speedup factor f chart

Rys. 8. Wykres współczynnika przyspieszenia f dystrybucji natężenia

cząsteczek

6.2. Solving Poisson and computing velocity with gradients

During Poisson solving and velocity with gradients computing steps the processing times

are only dependent on the size of mesh. Theoretically the GPU speedup factor on those steps

should improve with increasing the mesh size. In every analyzed case we see a significant

advantage of the algorithm on GPU versus the CPU version as expected, where in the case of

solving Poisson equation on S128 mesh the GPU version outperforms the CPU version even

60x times. As for GPU configuration, here we used a thread block of size {512, 1, 1},

where each work thread processed 4 (S32, S64) or 8 (S128) grid nodes simultaneously. The

timing results are shown in Tables 4, 5 and 6, where on Fig.9 the speedup factor chart was

presented.

R128 R256 R512

0,1

1

10

100

S32

S64

S128

Fluid motion modelling using vortex particle method on GPU 45

Table 4

Poisson equation solution timing results

Device
Grid

S32 S64 S128

CPU 8.29 88.31 858.04

GPU 0.78 2.29 13.48

Table 5

Velocity field computation from vector potential timings

Device
Grid

S32 S64 S128

CPU 0.83 6.84 54.91

GPU 0.13 0.28 1.66

Table 6

Velocity field gradients computation timings

Device
Grid

S32 S64 S128

CPU 1.16 9.24 76.38

GPU 0.14 0.44 2.92

Fig. 9. Speedup factor f chart on analyzed steps

Rys. 9. Wykres współczynnika przyspieszenia f na wybranych etapach

6.3. Vortex particle update

Here we also achieved satisfactory GPU algorithm speedup results against CPU version,

where in case S32 grid and R512 ring model the GPU speedup factor reached 85. As expected,

the speedup factor improved with the particle number increase, which is shown on Fig. 10

with timing results in Table 7. Analogously like in distribution step, the GPU thread group

size was {128, 1, 1} and one particle per thread processing in one time step was set.

The interesting observation was the decrease of speedup factor f while increasing the

mesh size for analyzed ring model case. The used NVIDIA GeForce GTX 460 is based on the

NVIDIA Fermi architecture, in which for the first time on the market the unified memory

cache system was implemented, while the traditional graphics chipsets had only texture data

memory cache. During performance analysis using NVIDIA Visual Profiler tool, we saw that

Posson equation Velocity compute Gradients compute

1

10

100

S32

S64

S128

46 Ł. Roguski, S. Deorowicz

when interpolating values from grid to particle locations the memory cache hit ratio factor

ranged from 90% to 40% and decreased with increasing the resolution of the computational

mesh. The variable cache hit ratio situation was connected with the distribution of vortex

particles in space and the size of grid cell – when was a high density of particles in a grid cell,

which were being processed by multiprocessor, there was a definitely greater probability that

the grid node value had been already read and cached.

Table 7

Vortex particle update timings

Device Ring
Grid

S32 S64 S128

CPU

R128 1.28 1.34 1.76

R256 12.35 12.42 13.66

R512 839.77 849.91 881.68

GPU

R128 0.31 0.32 0.41

R256 0.46 0.64 0.98

R512 9.79 12.69 18.94

Fig. 10. Vortex particle update speedup factor f chart

Rys. 10. Wykres współczynnika przyspieszenia f na etapie aktualizacji cząsteczek

6.4. Overall

In Table 8 we present a combined sample timing and GPU speedup results for single

vortex ring evolution simulation with using R256 ring model, S128 mesh with 32768 free

marker particles.

Table 8

Sample simulation overall timing results

Stage Timings GPU speedup f

 CPU GPU

1. Distribution 20.86 4.75 4.39

2. Poisson 858.04 13.48 63.65

3. Velocity + gradients 131.29 4.58 28.67

4. Particle update 13.66 0.98 13.94

5. Free markes update 6.24 0.59 10.40

Total: 1030.09 24.38 42.25

Practically, on every step we gained a significant GPU processing time advantage over

CPU gaining overall average speedup factor f = 42.25. In both versions, the most time took

R128 R256 R512

1

10

100

32

64

128

Fluid motion modelling using vortex particle method on GPU 47

the Poisson solving step, which in CPU version represents more than 80% of overall

computation time, while solving Poisson equation on the GPU took over 55% of overall

processing time.

7. Conclusion

In the presented work the fluid motion modeling using vortex particle method for

simulating three dimensional inviscid flows was for the first time implemented on GPU. The

method has been validated on different scenarios including leapfrogging vortex rings, vortex

rings head-on collision and single vortex ring evolution in time. We achieved satisfactory

GPU speedup factor over the CPU version algorithm, where e.g. solving Poisson equation

using GPU on 128128128 mesh took 60 times less time than using CPU for computation.

To improve the GPU solver performance more, we need to redesign the vorticity distribution

algorithm, which showed to be the bottleneck of out method. Implementation of the viscous

fluid model and solid boundary conditions would provide a very efficient and comprehensive

solution for simulation more realistic three dimensional flows.

Publication was co-financed by the European Union from the EuropeanSocial Fund within

the INTERKADRA project UDA –POKL-04.01.01-00-014/10-00.

BIBLIOGRAPHY

1. Cottet G.-H., Koumoutsakos P. D.: Vortex Methods: Theory and Practice. Measure-

ment Science and Technology 12, 2001.

2. Cottet G.-H., Michaux B., Ossia S., VanderLinden G.: 2002. A comparison of spectral

and vortex methods in three-dimensional incompressible flows. J. Comput. Phys. 175,

2, (January 2002), p. 702÷712.

3. Schlegel F., Wee D., Ghoniem A. F.: A fast 3D particle method fot the simulation of

buoyant flow. J. Comput. Phys. 227, 21 (November 2008), p. 9063÷9090.

4. Kudela H., Regucki P.: Vorticity Particle Method for Simulation of 3D Flow. [in:]

International Conference on Computational Science, 2004, p. 356÷363.

5. Harris M. J.: Fast fluid dynamics simulation on the GPU. [in:] Fernando R. (ed.), GPU

Gems, vol. 38, Addison Wesley, 2004, p. 637÷665.

6. Crane K., Llamas I., Tariq S.: Real-Time simulation and rendering of 3D fluids. [in:]

Nguyen H. (ed.): GPU Gems 3. Addison Wesley Professional, Ch. 30. Aug. 2007.

48 Ł. Roguski, S. Deorowicz

7. Stock M. J., Gharakhani A.: GPU-accelerated Boundary Element Method and Vortex

Particle Method. AIAA 40th Fluid Dynamics Conference and Exhibit (July 2010),

p. 1÷12.

8. Rossinelli D., Koumoutsakos P.: Vortex methods for incompressible flow simulations

on the GPU. Vis. Comput. 24, 7 (July 2008), p. 699÷708.

9. Rossinelli D., Bergdorf M., Cottet G.-H., Koumoutsakos P.: GPU accelerated simula-

tions of bluff body flows using vortex particle methods. J. Comput. Phys. 229, 9 (May

2010) .

10. Kosior A., Kudela H.: Modelowanie dynamiki pierścienia wirowego metodą cząstek

wirowych z wykorzystaniem obliczeń równoległych na kartach graficznych. Modelo-

wanie Inżynierskie, Vol. 13, (September 2012).

Omówienie

W pracy została przedstawiona obliczeniowa metoda modelowania trójwymiarowych

przepływów płynów przy użyciu techniki wir-w-komórce skierowana na układy graficzne. Za

analizowany ośrodek został przyjęty płyn doskonały o zerowej ściśliwości i lepkości wraz

z periodycznymi warunkami brzegowymi, co umożliwiło w dalszym kroku wykorzystanie

szybkich metod spektralnych do rozwiązywania różniczkowych równań ruchu płynu. Metoda

została z powodzeniem zastosowana do przeprowadzenia symulacji ewolucji pojedynczego

pierścienia wirowego, „gry wirów” oraz kolizji pierścieni wirowych. Dodatkowo, dla

symulacji „gry wirów” oraz symulacji kolizji pierścieni wirowych zostały zaprezentowane

przykładowe wizualizacje, posługując się swobodnymi cząsteczkami markerów. Symulacje

zostały przeprowadzone wykorzystując osobno do obliczeń układ graficzny oraz procesor.

Testy zostały przeprowadzone dla 3 siatek obliczeniowych o różnych wymiarach oraz dla

3 modeli pierścienia wirowego o różnej budowie i ilości cząsteczek wirowych. Zostały prze-

prowadzone szczegółowe pomiary czasu trwania symulacji z podziałem na poszczególne jej

kroki, uzyskując całkowite średnie przyspieszenia na poziomie 42% na układach graficznych.

Addresses

Łukasz ROGUSKI: Polish-Japanese Institute of Information Technology, ul. Koszykowa 86,

02-008 Warszawa, lucas.roguski@gmail.com

Sebastian DEOROWICZ: Silesian University of Technology, Institute of Informatics,

ul. Akademicka 16, 44-100 Gliwice, sebastian.deorowicz@polsl.pl

mailto:lucas.roguski@gmail.com
mailto:sebastian.deorowicz@polsl.pl

	1. Introduction
	2. Physical background
	3. Vortex-in-cell method
	4. GPU implementation details
	4.1. Particle strengths distribution on mesh nodes
	4.2. Poisson equation solution
	4.3. Vortex particle update
	4.4. Visualization

	5. Numerical results
	5.1. Leap frogging vortex rings simulations

	6. Performance
	6.1. Particle strength distribution
	6.2. Solving Poisson and computing velocity with gradients
	6.3. Vortex particle update
	6.4. Overall

	7. Conclusion

