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Summary. In this paper we present the vortex-in-cell method aimed at graphic 

processor units. Inviscid fluid model is examined in domain with periodic boundary 

conditions. The leap-frogging vortex rings simulation results are presented with 

sample vortex rings collision visualization. At the end  the GPU solver performance 

advantage over CPU solver is presented. 
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MODELOWANIE RUCHU PŁYNÓW NA PODSTAWIE METODY 

CZĄSTEK WIROWYCH NA GPU 

Strzeszczenie. W pracy prezentujemy metodę obliczeniową wir-w-komórce zaim-

plementowaną na układach graficznych. Za model ośrodka został przyjęty płyn 

nielepki wraz z periodycznymi warunkami brzegowymi. W pracy przedstawiono 

wyniki symulacji dla gry wirów oraz przykładowe wizualizacje z wykorzystaniem 

cząsteczek markerów. Pod koniec została przedstawiona analiza uzyskanego 

przyspieszenia algorytmu na GPU względem wersji na CPU. 

Słowa kluczowe: modelowanie ruchu płynów w 3D, metoda cząstek wirowych, 

metoda wir-w-komórce, GPU, CUDA 

1. Introduction 

The computational fluid dynamics is one of the most intensive developing branches of 

physics in recent years, where fluid motion modeling problems can be solved virtually in 

computer simulations, reducing the costs of experiments. The main problem, however, 
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remains a construction of accurate flow and fluid model descriptions, where especially for 

turbulent cases obtaining the exact solution is almost impossible. To better understand the 

turbulence phenomenon the vortex methods were developed, which focuses on the vortical 

characteristics of the flow. 

In vortex methods we can distinguish two main branches – the direct and hybrid methods. 

The first, direct methods, relies on Biot-Savart law, where to compute the velocity at a given 

point in space one needs to sum up all the particles contributions in domain, which ends up to 

the n-body problem [1, 2, 3]. The second, hybrid methods, use the computational grid to 

solve Poisson equation and then obtain a velocity field of the computational domain [1, 4]. 

As both methods are computationally expensive, the usage of high-throughput computational 

devices is highly desirable. 

In recent years we can see an increasing trend in using graphic cards processing power to 

scientific computations. The GPUs used to be seen as devices for processing and displaying 

the graphics on monitor. Nowadays, we can treat GPUs as high-throughput parallel arithmetic 

coprocessors, capable of handling thousands of lightweight threads. GPUs have been widely 

used in computational fluid dynamics field, simulating fluid flow using grid-based methods 

[5, 6] and smoothed particle hydrodynamics methods, thus proving to be a highly-efficient 

tools. However application of GPUs for solving fluid flow problems using vortex methods is 

a rather young practice. In [7] researchers used GPUs to speedup three-dimensional flow 

problems using direct methods and fast treecode or fast multipole modifications, which 

proved to be handled efficiently by graphics processors. The hybrid method solver was 

successfully implemented for GPU [8] and then improved in [9], which gave ability to 

simulate two-dimensional bluff body flows in inviscid fluid with very good speedup. Quite 

recently also the researchers [10] successfully implemented the multigrid hybrid solver on 

GPU obtaining interesting results. 

In the current work, we present a hybrid solver designed for solving the three-

dimensional incompressible and inviscid flows using Fast Fourier Transform solver on GPU. 

We also present the sample simulation visualizations accompanied with GPU speedup results 

analysis. 

2. Physical background 

The common basis of most fluid motion modeling problems are the Navier-Stokes 

equations, describing the conservation of mass, momentum and kinetic energy. As a starting 

point we use the conservation of momentum equation, which for incompressible and inviscid 

fluid model with no external forces is determined as: 
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with velocity )( zy,x,=u


, pressure p, and density q. 

Applying the differential rotation operator for two sides of the first equation, we obtain 

the Navier-Stokes equation in vorticity form and after closing it with the condition of fluid 

incompressibility 0=u


  we obtain the full system of equations describing the evolution of 

vorticity field in time. For three-dimensional flow with selected incompressible and inviscid 

fluid model the system of equations follows: 
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where vorticity )( zyx ω,ω,ω=ω


 is described as:  

.u=ω


   (3) 

The most difficult problem lies in obtaining the velocity field. By applying the Helmholtz 

theorem about decomposition in relation to fluid flow and taking into account the condition 

of incompressibility, the velocity equation can be described: 

,A=u


  (4) 

Where A


 is the vector potential. 

The vorticity field is rotation of velocity field, so assuming additionally the non divergent 

potential field ( 0=A


 ) [4], we obtain the vector potential A


, which simplifies the solution 

to solving: 

,ω=A


2  (5) 

from which the obtaining the velocity field is simple. 

3. Vortex-in-cell method 

The vortex-in-cell method is a branch of vortex particle methods, where in order to 

compute the velocity field effectively, a computational grid is used. In this method, the three 

dimensional domain of flow is covered by a mesh of zyx NNN   size, with equal spacing 

h between grid nodes. The continuous vorticity field is discretized into vortex particles (or 

point vortices) [4]: 
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where  δδ is the delta Dirac function, pα


 is the vortex particle strength and is described as: 

,vxωxdω=α pp

V

pp )(


    (7) 

where pv  is the particle volume. 

Evolution of vorticity field is thus defined by evolution of vortex particles carrying the 

vorticity. As the vortex particle motion is passive (particles are advected in the velocity field), 

the rate of change in their position is described as 

.p

p
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Unlike in modeling two-dimensional flow problems – where vorticity is a constant – in three-

dimensional flows the rate of change in particle vorticity is described as stretching term 
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where t),x(u p


 states velocity field gradient at px


 position and in t moment. 

The procedure for incompressible and inviscid fluid motion modeling using the vortex-in-

cell method can be basally divided into 5 steps: 

1. Distribution of particle strengths onto the mesh nodes 
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where  nxω


 is the vorticity in the specified grid node and   is the interpolation (or 

filter) function. In the current work, the trilinear filter function is selected. 

2. Solution of the second order differential Poisson equation on grid in order to obtain the 

vector potential A


(5). In the paper we use the finite differences method with periodic 

boundary conditions similar in [2, 4, 9]. 

3. Computation of velocity field based on previously obtained vector potential A


(5) and  

computation of velocity field gradients. 

4. Interpolation of velocity values from the velocity field mesh nodes to the particles 
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where )x(u n


is the calculated velocity in grid node and )(x


  is the interpolation filter. 

Particle positions (8) and strengths (9) are updated using second order Adams-Bashfoth 

multi-step scheme: 
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where h is the size of time step. 



Fluid motion modelling using vortex particle method on GPU 35 

5. Update of the free markers positions, which are advected in velocity field just as vortex 

particles (8). 

4. GPU implementation details 

To aid the computations by using GPU the NVIDIA, CUDA interface was chosen, which 

enables programmer to treat the GPU as an high-throughput parallel arithmetic coprocessor. 

Although on the market there are other available programming interfaces for parallel 

computing using GPUs including the open standard OpenCL and Microsoft DirectCompute 

(as part of DirectX API), the NVIDIA CUDA toolkit offers the largest number of additional 

libraries and code base for parallel computing at the cost of being limited only to NVIDIA 

GPU cards.  

The CUDA interface describes GPU as a computational device, consisting of multiple 

independent processor groups called streaming multiprocessors, which can operate in parallel 

and handle thousands of lightweight hardware threads. Each streaming multiprocessor 

consists of multiple smaller arithmetic operation units – stream processors, which operating 

in thread groups called warps execute the same instruction. 

NVIDIA CUDA interface describes also the 3-level device memory hierarchy - global 

memory, shared memory, and registers. The first, usually can be seen as the RAM of the 

GPU and can be accessed by all computational units. The global memory has the largest 

memory address space but also the largest memory latency access time, so it's important to 

design algorithms to make use of it as less as possible. The shared memory, on the other hand 

is per streaming multiprocessor exclusive space with size is less than 50 kB, but has access 

times usually an order of magnitude smaller than in the global memory case, being the best 

solution for e.g. swap storage between execution units. The last – registers – are exclusive per 

streaming processor with negligible access time latency. 

Having in mind the CUDA device model, below we present the implementation details of 

the selected vortex-in-cell method steps. 

4.1. Particle strengths distribution on mesh nodes 

In the particle strength distribution step, we selected the trilinear interpolation function, 

where the strength of single particle is distributed between 8 grid nodes of the cell in which 

the particle resides. Fig. 1 presents the GPU kernel pseudocode of this step. 

At the beginning, particle index in particle buffer is computed, basing on available 

information for worker threads that is threadId, groupId and blockId. Next, the particle 

index offset ioff is determined, which depends on total number of particles, threads number 
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and processing slice size. During this stage, each multiprocessor operates on a consistent 

blocks of particles data, enabling coalesced memory reads. Each worker thread in a warp 

processes a slice of n particles – this process is divided into n iterations, giving n memory 

block read transactions initiated by multiprocessor and a minimum of 8n memory write 

transactions (they cannot unfortunately be coalesced). The aim of processing particle slices 

by a worker thread is mainly to reduce number of active threads, when the overall number of 

particles is too large to be efficiently handled in 1:1 thread to particle ratio. The total number 

of launched threads is thus  
sizeslice

untparticleco
=ttotal . 

 

Input:  P – vortex particles buffer 

    M – vorticity field mesh 

    n – number of particles to process 

 

Output:  M – (processing in-place) 

 

1:  function DistributeStrengthsOnMesh(P, M, n) 

 2:      in ← determine the particle index based on worker thread information 

 3:      ioff ← index offset between processing particles 

 4:      for i ← 0 to n do 

 5:          p ← P[ in + i * ioff ] 

 6:          I ← compute indices of cell nodes in which particle p resides 

 7:          for all i in I do 

 8:              update the vorticity in M, node using p 

 9.          end for 

 10:         synchronize threads in group 

 11:     end for 

 12:  end 

 

Fig. 1. Particle strength distribution step – GPU kernel pseudocode 

Rys. 1. Pseudokod programu jądra etapu dystrybucji natężenia cząsteczek na GPU 

    

4.2. Poisson equation solution 

In this paper we use the fast spectral method solver to solve the second order elliptic 

Poisson equation (5) in frequency domain with periodic domain boundaries. The high 

efficiency of spectral methods in solving partial differential equations comes from the fact, 

that in the frequency domain the costly differential operations on grid are replaced by simple 

division by wavenumber, operations reducing the computational costs. In this step we used 

the CUFFT library, which is a part of NVIDIA CUDA toolkit and which implements the Fast 

Fourier Transform on GPU. The pseudocode illustrating the main concept of this step is 

presented on Fig. 2. 
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   Input:  M – vorticity field in time domain 
          n – slice size of mesh elements to process 

 

Output:  A – vector potential in time domain 

 

1:  function SolvePoissonFFT(M, n, A) 

2:      B ← convert M from real to complex 

3:      B ← forward FFT B 

4:      launch SolvePoissonInFrequencyDomain(B, n) kernel 

5:      B ← inverse FFT B 

6:      A ← convert B from complex to real 

7:  end 
 

Fig. 2. Poisson equation solution main step – GPU kernel pseudocode 

Rys. 2. Pseudokod programu jądra głównego etapu rozwiązywania równania Poissona na GPU 

  
 Our solver takes vorticity mesh buffer M as input and places the result in vector potential A 

buffer. In order to compute the Fourier transform and solution in the frequency domain, the 

input data must be firstly converted from areal number of float type to the complex type 

cufftComplex and – analogously after obtaining solution and inverse Fourier transform – 

back to the real type, saving the result in output A vector potential buffer. Here, the auxiliary 

B buffer is used, where transformation operations are computed in-place. The 

SolvePoissonInFrequencyDomain() is the kernel function launched on all worker threads, 

which pseudocode is presented on Fig. 3. 

 
   Input:     M – vorticity field in frequency domain buffer 

              n – slice size of mesh elements to process  

 
Output:    M (processing in-place) 

 

1:  function SolvePoissonInFrequencyDomain(M, n) 

2:      x, y ← determine the X, Y indices based on worker thread information 

3:      z0 ← determine Z slice start index 

4:      for z ← z0 to z0 + n 

5:          k ← compute the wavenumber for Mxyz element 

6:          Mxyz ← Mxyz / k 

7:          synchronize threads in group 

8:   end for 

9:  end 
 

Fig. 3. Poisson equation solution in frequency domain - GPU kernel pseudocode 

Rys. 3. Pseudokod programu jądra rozwiązywania równania Poissona w dziedzinie częstotliwości 

na GPU 

  
At first the global x, y element indices are computed with z0 slice start index. In the main 

for loop, the n elements in slice are processed – divided by previously computed 

wavenumber. As the elements are only read and written once, memory operations are made 

on single buffer M which works both as input and output. At the end of the for loop the 

synchronization operation between worker threads in a group is inserted, which is needed to 

achieve the coalesced memory reads. The overall number of threads running the kernel is 

n

NNN
=t

zyx

total


, where Ni corresponds to the i-th dimension size of vorticity field grid. 
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4.3. Vortex particle update 

After computation of a velocity field from vector potential and velocity field gradients, 

the particles update step is done. The pseudocode for GPU particles update kernel is 

presented on Fig. 4. Analogously, like in the particle strength distribution kernel, the particle 

index in buffer with particle index offset for slice processing are firstly determined, where the 

total number of launched threads on GPU is 
sizeslice

untparticleco
=ttotal . 

 

    Input: P – vortex particles buffer 

         V – velocity field mesh 

         G – velocity field gradients 

         h – time step size 

         n – number of particles to process 

 

    Output:  P (processing in-place) 

 

 1:  function UpdateParticlesAB2(P, V, G, h, n) 

 2:      in ← determine the particle index based on worker thread information 

 3:      ioff ← index offset between processing particles 

 4:      for i ← 0 to n do 

 5:          ip ← in + i * ioff 

 5:          p ← P[ ip ] 

 6:          v ← sample velocity from V at p.x   // p.x – position at t-1 

 7:          g ← sample velocity gradients from G at p.x 

 8:          f ← compute stretching using g and p.a // p.a – strength at t-1 

 9:          p.x ← p.x + 0.5h(3v – p.v)       // p.v – velocity at t-1 

 10:         p.a ← p.a + 0.5h(3f – p.f)       // p.f – stretching at t-1 

 11:         p.v ← v 

 12:         p.f ← f 

 13:         P[ ip ] ← p                   // save new particle value 

 14:         synchronize threads in group  

 14:     end for 

 15:  end 
 

Fig. 4. Vortex particles update step – GPU kermel pseudocode 

Rys. 4. Pseudokod programu jądra etapu aktualizacji cząsteczek wirowych na GPU 

  
At the beginning of the for iteration, the particle data with specified index is read from 

buffer and next – the velocity with gradients at particle position are sampled, using trilinear 

interpolation function. The stretching term is computed according to (9) and particle position 

with stretching value are updated using second order Adams-Bashforth scheme. At the end of 

the iteration the current sampled velocity and stretching values are saved, which will be used 

again in the particle update step at t+1 time. 

4.4. Visualization 

To visualize the simulation results, we used OpenGL graphics interface library with 

supported cuda_gl_interop option to share GPU buffers with CUDA interface, which 

makes almost instant results rendering possible. Vortex (and free marker) particles are 

represented as simple GL_POINTS with positions stored in CUDA particle buffer, while 
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particle color is set globally in order to reduce needed operations or additional GPU memory 

color buffer. 

5. Numerical results 

As a numerical vortex ring model for our simulations we chose a ring (or rather a torus) 

consisting of 256 slices, with 121 vortex particles on each, giving a total sum of 30976 

particles per whole vortex ring. The basic idea of construction of vortex ring is presented in 

Fig. 5 – we chose the distribution model of particles inside the slice similar as in [4]. 

 
Fig. 5. Vortex ring construction idea 

Rys. 5. Idea konstrukcji pierścienia wirowego 

  

5.1. Leap frogging vortex rings simulations 

As a first simulation to test the environment the vortex rings leapfrogging phenomenon, 

was chosen, known also as the “vortex game”. In this phenomenon we observe a specific 

interaction between two vortex rings moving along the common axis in the same direction. 

While traveling, the second ring –  which is on the back towards the direction of movement – 

under the velocity field inducted by the heading ring starts to accelerate and deform – shrink 

it's size. The heading ring, however, under the velocity field induced by the back ring starts 

reducing it's velocity and also deform – stretches it's own size. When the distance between 

rings reaches zero, the ring on the back passes through the center of the heading ring and 

starts to accelerate with stretching it's size. The roles change and the process continues. This 

experiment is very hard to carry on in the laboratory, as it's stability depends on conservation 

of vortex rings shapes and their starting positions. Also the inviscid fluid model is required. 

In an idealistic situation the rings should move in that manner to infinity, but in the computer 

simulations, due to e.g. particle distortion or numerical diffusion the vortex rings become 

distorted and break into pieces or connect to one structure. 
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Fig. 6. Vortex game simulation 

Rys. 6. Symulacja gry wirów 
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Fig. 7. Vortex ring collision simulation visualization 

Rys. 7. Wizualizacja symulacji kolizji pierścieni wirowych 
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In our simulation we chose two identical vortex rings with radii R = 1.5 and circulation 

Γ = 1.0 with uniform distribution of vorticity inside the cores, which radius ε = 0.11. The 

rings were set to travel along OX axis with initial distance between their centers Δx = 0.9. The 

computational domain for selected simulation was a cube of 2Π length per dimension, which 

in next step was covered by a 646464   mesh – the spacing between mesh nodes h = 

0.098. The time step size for time integrator was chosen as Δt = 0.01. 

In Fig. 5 we present the visualization results of vortex game simulations in selected 

moments. The obtained results are very similar to those reported in [4]. In our work, we 

managed however to get the rings become less distorted in time, so that just after the t = 5s 

they don't slowly start to connect. This is due to the fact, that we used a vortex rings with 

higher resolutions – with 2.5 times more slices and nearly 3 times more particles per ring. 

During simulation we unfortunately observe the influence of numerical diffusion on the 

rings' shape, which slowly gains quadrature distortions. The numerical diffusion is one of the 

main problems of computational methods that use grid to interpolate values between particles 

and grid. However, the reduced computational cost is very significant in comparison to the 

classical methods [1], where computing the velocity at given location in space comes down to 

the n-body problem. The next simulation example we chose was the head-on vortex rings 

collision phenomenon, which can be commonly observed in nature. Here we focused more on 

the visualization side results using free marker particles to visualize fluid elements instead of 

vortex particles. We used the same rings models as in previous simulation but with radius R = 

1.0 and used 65535 marker particles per each vortex ring. The rings were placed on the OZ 

axis with distance Δz = 2.0 between them. As for computational we also used the box with 

2Π length per side, but covered it with a 128128128   mesh. The simulation visualization 

is showed on Fig. 7. 

6. Performance 

The CPU version was written in C/C++ and was highly optimized using SSE vector 

instruction set provided by SONY Vectormath library. The Fast Fourier Transform operations 

were used from FFTW library. Programs were run on Intel Pentium Dual-Core E5200 with 

2,5GHz core clock with DDR2 RAM memory running at 800 MHz. As for GPU – the 

NVIDIA GeForce 460 GTX was used with 756 MB DDR5 RAM memory. The used GPU 

have 7 Streaming Multiprocessors, where each can handle up to 8 active thread block at time 

or up to 1546 active threads, running at 1350 MHz core clock. The CUDA kernels were 

compiled using CUDA Toolkit v.4.0. Although the application was implemented and tested 
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in single GPU environment it can be easily extended adding the support for multi GPU 

environment. 

To analyze the GPU algorithm speedup versus the CPU version we carried on the single 

vortex ring evolution simulation using different ring configurations (core radius 0.11ε ) 

with mesh sizes which are shown in Tables 1 and 2. The speedup factor was computed as

GPUtime

CPUtime
=f . We only omit here the GPU buffers initialization time and the initial RAM 

to GPU memory data transfer, as it is done only once at application startup. All the 

computations on the GPU are done without the need of exchanging the data between GPU 

memory and external RAM. 

In the next part of this chapter we present analysis of achieved speedup results using GPU 

on selected processing stages – the presented timings are a truncated mean from 100 tests, 

where 20% of extreme results were discarded. 

Table 1 

Used computational mesh configurations 

Symbol Mesh size Total number of nodes 

S32 323232   32768215 =  

S64 646464   262144218 =  

S128 128128128   2097152221=  

    

Table 2 

Used vortex ring configurations 

Symbol Number of slices Particles / slice Total number of particles 

R128 128 25 3200 

R256 256 121 30976 

R512 512 4089 2093568 

   

6.1. Particle strength distribution 

To process particles on GPU we used a thread group of size {128, 1, 1}, where each 

thread processed only one particle – after many tests with different group sizes and particle 

processing per thread numbers this configuration performed the best. When using this 

configuration, the GPU multiprocessors can handle 8 active thread groups each. 

The satisfactory speedup results we achieved only on S128 grid with using R128 and R256 ring 

models. In other cases the performance difference between the CPU and GPU version was 

comparable, where on S32 grid and using R128 ring model the CPU version performed even 

better. The measured processing times are shown in table 3 and on Fig. 8 the speedup factor 

chart is presented. 
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This step turned out to be the bottleneck of our algorithm. The achieved speedup results 

on GPU are not fully satisfactory, which is due to the fact that we used performance 

expensive atomic operations to update vorticity values in the grid nodes from particles.  In the 

pessimistic case, the atomic operations can highly reduce the GPU parallel processing 

 efficiency, where memory write operations requests to the same memory address are 

serialized. In order to make better use of GPU highly parallel data processing ability we need 

to redesign this step and resign from atomic operations usage. 

Table 3 

Particle strength distribution timing results 

Device Ring 
Grid  

S32 S64 S128  

CPU 

R128 0.39 2.04 18.91  

R256 1.02 3.90 20.86  

R512 142.09 145.61 163.09  

GPU 

R128 0.74 0.93 1.23  

R256 2.56 4.23 4.75  

R512 134.33 159.95 181.78  

 
Fig. 8. Particle strength distribution speedup factor f chart 

Rys. 8. Wykres współczynnika przyspieszenia f dystrybucji natężenia 

cząsteczek 

  

6.2. Solving Poisson and computing velocity with gradients 

During Poisson solving and velocity with gradients computing steps the processing times 

are only dependent on the size of mesh. Theoretically the GPU speedup factor on those steps 

should improve with increasing the mesh size. In every analyzed case we see a significant 

advantage of the algorithm on GPU versus the CPU version as expected, where in the case of 

solving Poisson equation on S128 mesh the GPU version outperforms the CPU version even 

60x times. As for GPU configuration, here we used a thread block of size {512, 1, 1}, 

where each work thread processed 4 (S32, S64) or 8 (S128) grid nodes simultaneously. The 

timing results are shown in Tables 4, 5 and 6, where on Fig.9 the speedup factor chart was 

presented. 
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Table 4 

Poisson equation solution timing results 

Device 
Grid 

S32 S64 S128 

CPU 8.29 88.31 858.04 

GPU 0.78 2.29 13.48 

    

Table 5 

Velocity field computation from vector potential timings 

Device 
Grid 

S32 S64 S128 

CPU 0.83 6.84 54.91 

GPU 0.13 0.28 1.66 

    

Table 6 

Velocity field gradients computation timings 

Device 
Grid 

S32 S64 S128 

CPU 1.16 9.24 76.38 

GPU 0.14 0.44 2.92 

   

 

 
Fig. 9. Speedup factor f chart on analyzed steps 

Rys. 9. Wykres współczynnika przyspieszenia f na wybranych etapach 

  

6.3. Vortex particle update 

Here we also achieved satisfactory GPU algorithm speedup results against CPU version, 

where in case S32 grid and R512 ring model the GPU speedup factor reached 85. As expected, 

the speedup factor improved with the particle number increase, which is shown on Fig. 10 

with timing results in Table 7. Analogously like in distribution step, the GPU thread group 

size was {128, 1, 1} and  one particle per thread processing in one time step was set. 

The interesting observation was the decrease of speedup factor f while increasing the 

mesh size for analyzed ring model case. The used NVIDIA GeForce GTX 460 is based on the 

NVIDIA Fermi architecture, in which for the first time on the market the unified memory 

cache system was implemented, while the traditional graphics chipsets had only texture data 

memory cache. During performance analysis using NVIDIA Visual Profiler tool, we saw that 

Posson equation Velocity compute Gradients compute

1
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S32

S64

S128
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when interpolating values from grid to particle locations the memory cache hit ratio factor 

ranged from 90% to 40% and decreased with increasing the resolution of the computational 

mesh. The variable cache hit ratio situation was connected with the distribution of vortex 

particles in space and the size of grid cell – when was a high density of particles in a grid cell, 

which were being processed by multiprocessor, there was a definitely greater probability that 

the grid node value had been already read and cached. 

Table 7 

Vortex particle update timings 

Device Ring 
Grid  

S32 S64 S128  

CPU 

R128 1.28 1.34 1.76  

R256 12.35 12.42 13.66  

R512 839.77 849.91 881.68  

GPU 

R128 0.31 0.32 0.41  

R256 0.46 0.64 0.98  

R512 9.79 12.69 18.94  
 

 
Fig. 10. Vortex particle update speedup factor f chart 

Rys. 10. Wykres współczynnika przyspieszenia f na etapie aktualizacji cząsteczek 

  

6.4. Overall 

In Table 8 we present a combined sample timing and GPU speedup results for single 

vortex ring evolution simulation with using R256 ring model, S128 mesh with 32768 free 

marker particles. 

Table 8 

Sample simulation overall timing results 

Stage Timings GPU speedup f  

 CPU GPU   

1. Distribution 20.86 4.75 4.39  

2. Poisson 858.04 13.48 63.65  

3. Velocity + gradients 131.29 4.58 28.67  

4. Particle update 13.66 0.98 13.94  

5. Free markes update 6.24 0.59 10.40  

Total: 1030.09 24.38 42.25  
 

Practically, on every step we gained a significant GPU processing time advantage over 

CPU gaining overall average speedup factor  f = 42.25. In both versions, the most time took 
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the Poisson solving step, which in CPU version represents more than 80% of overall 

computation time, while solving Poisson equation on the GPU took over 55% of overall 

processing time. 

7. Conclusion 

In the presented work the fluid motion modeling using vortex particle method for 

simulating three dimensional inviscid flows was for the first time  implemented on GPU. The 

method has been validated on different scenarios including leapfrogging vortex rings, vortex 

rings head-on collision and single vortex ring evolution in time. We achieved satisfactory 

GPU speedup factor over the CPU version algorithm, where e.g. solving Poisson equation 

using GPU on 128128128   mesh took 60 times less time than using CPU for computation. 

To improve the GPU solver performance more, we need to redesign the vorticity distribution 

algorithm, which showed to be the bottleneck of out method. Implementation of the viscous 

fluid model and solid boundary conditions would provide a very efficient and comprehensive 

solution for simulation more realistic three dimensional flows. 
 

Publication was co-financed by the European Union from the EuropeanSocial Fund within 

the INTERKADRA project UDA –POKL-04.01.01-00-014/10-00. 
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Omówienie 

W pracy została przedstawiona obliczeniowa metoda modelowania trójwymiarowych 

przepływów płynów przy użyciu techniki wir-w-komórce skierowana na układy graficzne. Za 

analizowany ośrodek został przyjęty płyn doskonały o zerowej ściśliwości i lepkości wraz 

z periodycznymi warunkami brzegowymi, co umożliwiło w dalszym kroku wykorzystanie 

szybkich metod spektralnych do rozwiązywania różniczkowych równań ruchu płynu. Metoda 

została z powodzeniem zastosowana do przeprowadzenia symulacji ewolucji pojedynczego 

pierścienia wirowego, „gry wirów” oraz kolizji pierścieni wirowych. Dodatkowo, dla 

symulacji „gry wirów” oraz symulacji kolizji pierścieni wirowych zostały zaprezentowane 

przykładowe wizualizacje, posługując się swobodnymi cząsteczkami markerów. Symulacje 

zostały przeprowadzone wykorzystując osobno do obliczeń układ graficzny oraz procesor. 

Testy zostały przeprowadzone dla 3 siatek obliczeniowych o różnych wymiarach oraz dla 

3 modeli pierścienia wirowego o różnej budowie i ilości cząsteczek wirowych. Zostały prze-

prowadzone szczegółowe pomiary czasu trwania symulacji z podziałem na poszczególne jej 

kroki, uzyskując całkowite średnie przyspieszenia na poziomie 42% na układach graficznych. 

Addresses 

Łukasz ROGUSKI: Polish-Japanese Institute of Information Technology, ul. Koszykowa 86, 

02-008 Warszawa, lucas.roguski@gmail.com 

Sebastian DEOROWICZ: Silesian University of Technology, Institute of Informatics, 

ul. Akademicka 16, 44-100 Gliwice, sebastian.deorowicz@polsl.pl 

mailto:lucas.roguski@gmail.com
mailto:sebastian.deorowicz@polsl.pl

	1. Introduction
	2. Physical background
	3. Vortex-in-cell method
	4. GPU implementation details
	4.1. Particle strengths distribution on mesh nodes
	4.2. Poisson equation solution
	4.3. Vortex particle update
	4.4. Visualization

	5. Numerical results
	5.1. Leap frogging vortex rings simulations

	6. Performance
	6.1. Particle strength distribution
	6.2. Solving Poisson and computing velocity with gradients
	6.3. Vortex particle update
	6.4. Overall

	7. Conclusion

