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Summary. A basic approach to estimation of mixture model parameters is by us-

ing expectation maximization (EM) algorithm for maximizing the likelihood function. 

However, it is essential to provide the algorithm with proper initial conditions, as it is 

highly dependent on the first estimation (“guess”) of parameters of a mixture. This 

paper presents several different initial condition estimation methods, which may be 

used as a first step in the EM parameter estimation procedure. We present compari-

sons of different initialization methods for heteroscedastic, multi-component Gaussian 

mixtures. 
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PORÓWNANIE METOD INICJALIZAJI ALGORYTMU EM 

DLA WIELOSKŁADNIKOWYCH HETEROSCEDASTYCZNYCH 

MIESZANIN ROZKŁADÓW NORMALNYCH 

Streszczenie. Algorytm EM (ang. expectation-maximization) jest szeroko stoso-

wanym rozwiązaniem problemu estymacji parametrów mieszanin rozkładów prawdo-

podobieństwa poprzez maksymalizację wiarygodności. Istotne znaczenie dla działania 

algorytmu mają parametry początkowe, stanowiące pierwsze przybliżenie badanej 

mieszaniny. Publikacja przybliża kilka metod wyznaczania warunku początkowego 

dla iteracji algorytmu EM oraz porównuje ich skuteczność dla przypadku heterosceda-

stycznych, wieloskładnikowych mieszanin rozkładów normalnych. 

Słowa kluczowe: expectation maximization, algorytm EM, dopasowanie do wzor-

ca, warunki początkowe 
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1. Introduction 

Mixture models have extremely wide range of applications in statistical data analysis, e.g. 

[5, 7, 1, 2, 3]. Areas and examples of their applications include detecting structure in animal 

populations [3], separating sources of variability of experimental data in cellular biology [8], 

analyses of images, e.g., medical imaging, separating areas of different types [10], estimating 

concentrations of different chemical compounds or protein or peptide species in samples by 

means of NMR or protein mass spectrometry [11, 13], analyses of factors behind financial 

market behaviors [9], and many others. Due to the importance of Gaussian distribution, mix-

tures of Gaussian distributions play a special role in the area of mixture modeling. 

A challenging problem in applications of mixture distributions is fitting mixture parame-

ters to data. A standard approach by maximization of the likelihood function, due to the un-

observable mechanism of generation of data by different sources, cannot be carried out ana-

lytically. Likelihood maximization for mixture distributions is most often performed by using 

expectation maximization (EM) algorithm [1, 2, 3], i.e., a recursive procedure involving 

computing conditional expectations of unknown identities of data source, given available data 

(E-step) followed by maximization with respect to weights and parameters of mixture distri-

butions (M-step). The construction of the EM procedure guarantees a step by step increase of 

the likelihood function. Unknown identities of data sources are called hidden or latent varia-

bles. 

Despite a step-by-step increase of the value of the likelihood function EM iterations may 

fail to converge or may “stick” to a local maximum corresponding to undesired values of the 

mixture parameters, far from optimal/reasonable estimates, e.g. [3]. Due to both of these is-

sues, a problem of basic importance is the choice of initial conditions for iterations of the EM 

algorithm. A good choice of a starting point for EM iterations can result in reducing the prob-

ability of erroneous estimation of parameters as well as in faster convergence of EM itera-

tions. Several researches and results concerning the influence of the strategy of the choice of 

the initial condition for EM iterations on the performance of the whole algorithm were pub-

lished in the literature, both in monographs [3, 2] and in journal or conference papers [23, 24, 

28, 30, 31, 32]. A terminology used in [24] has been referenced in several later papers, so we 

base on it when describing approaches to setting up initial conditions for EM iterations. 

The simplest and obvious approach is random initialization (REM) involving generation of 

initial values of parameters and component weights by using some assumed probability dis-

tributions. Random generation can be done by using different probability distributions, often 

normal or uniform distributions are used for mean values of components and uniform or de-

terministic values are used for standard deviations and component weights. Parameters of 
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distributions are chosen such that initial mean values of components fall within ranges given 

by observed data. 

Multiple short runs (SREM) initialization involves multiple repeats of randomly initial-

ized EM recursions which are stopped after given number of iterations (short runs — typical-

ly corresponding to 10-20 iterations). The simplest version of short runs initiation involves 

generating multiple initial values for random methods and starting EM iterations for the one 

corresponding to highest likelihood. This method is called here multiple initializations EM. 

Then only one iteration process, namely the one, which attained the highest value of the like-

lihood function is continued. 

Classification (clustering) initialization (CEM) includes a family of approaches where 

some kind of clustering procedure applied for the data set is used to compute initial parame-

ters for EM iterations. Most often hierarchical clustering or k-means clustering algorithms are 

used. 

Finally, stochastic initialization (SEM) stands for an approach where EM iterations are 

modified, most often in such a way that searching through parameter space is more intensive, 

which leads to avoiding local maxima of the likelihood function. In addition to SEM methods 

there are also many other versions of modifications of EM iterations with the analogous aim 

of improving intensity of searching through parameter space. These methods can be used as 

algorithms for setting initial values of mixture parameters, after a run of a modified EM itera-

tions standard EM iterations are then applied [28, 33]. Some other methods [35, 34, 17] can 

in principle be used in the same manner for initiation of EM iterations, but their authors rather 

recommend replacing EM iterations by the modified versions. Results presented in the over-

viewed papers concern mixtures of both univariate and vector valued distributions. 

Users of available software packages for mixture modeling, [15, 17, 16] are provided with 

the possibility of setting initial conditions for EM iterations by choosing one of the listed 

methods. 

In this paper we readdress the problem of comparison of methods of initializing EM itera-

tions for mixtures of Gaussian distributions. Papers, where related researches were reported, 

are [23, 24, 25]. In [23] initialization methods were compared for univariate mixtures of 1, 2 

and 3 components, with the additional assumption on homoscedascity (equal variances). Pa-

pers [24, 25] concerned methods of initialization of EM iterations for multivariate (two di-

mensional) Gaussian mixtures with number of components ranging from 2 to 4. In this paper 

we restrict our study to comparison of methods for initialization of EM iterations for 

univariate Gaussian mixtures. In the present paper we extend the area explored by previous 

studies by (i) analyzing mixtures of Gaussian distributions where number of components can 

take considerably larger values (in numerical experiments we study the range from 5 through 
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10 components) and (ii) allowing general heteroscedastic (unequal variances) case. We study 

performances of different initialization methods for mixtures of Gaussian components with (i) 

different numbers of components, (ii) mixtures with equal variances versus mixtures with 

unequal variances, (iii) mixtures with different degrees of overlap between components. 

An example of an area of applications where assumptions taken in the performed study 

are justified, is the analysis of spectra, protein mass spectra or nucleic magnetic resonance 

NMR spectra, or their fragments. Protein mass and NMR spectra can be well modeled with 

the use of mixtures of Gaussian distributions [12, 13]. There are usually numerous compo-

nents of the spectra, well modeled by Gaussian distribution functions and different compo-

nents can have different widths. 

We perform analyses of efficiencies of different initialization methods and we formulate 

some recommendations concerning possible applications and further developments. 

2. EM algorithm for fitting Gaussian mixture parameters to data 

A univariate Gaussian mixture model, which we study in this paper has the form of 

weighted sum of component probability density functions 
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and component weights satisfy normalization condition 
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Parameters of component Gaussian distribution functions, means and standard deviations, 

μ1, ..., μK, σ1, ..., σK, and component weights α1, ..., αK, are elements of the parameter vector p 

in (1) 

 KKK  ,...,,,...,,,..., 111p . 

Given a vector x of (independent) available univariate observations 

 Nxxx ,..., 21x  (4) 
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the problem of fitting the model (1) (2) to data (4) is solved by maximization of the log likeli-

hood function 
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One, general assumption is that the number of observations must exceed the number of com-

ponents by a factor, which is often taken as at least 10.  

Maximization cannot be achieved analytically, therefore expectation maximization (EM) 

algorithm is used. In order to apply EM algorithm we define hidden (missing) variables as 

unknown identities of components, χ1, ..., χN, which had generated observations x1, ..., xN. 

Given a parameter guess, denoted by p
old
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conditional distributions of hidden variables can be computed by using Bayesian formula 
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and, consequently the following expression for updates for values of parameters can be de-

rived [1, 2, 3] 

 

N

kP
N

n

n

k






 1new



 , (8) 

 

 












N

n

n

N

n

nn

k

kP

kPx

1

1new





  (9) 

and 

 
   

 












N

n

n

N

n

nkn

k

kP

kPx

1

1

2new

2new





 , (10) 

where k = 1, 2, ..., K. It is easily seen, in (9), that iterations (7)-(10) preserve normalization 

condition for μ1, ..., μK.  

After defining 

 newnewnewnewnewnewnew ,...,,,...,,,...,
111 KKK

p  (11) 

and substituting p
old

 = p
new

, expressions (7)-(11) become a recursion. Expressions (7)-(10) 

used in a recursive manner are called EM iterations. In order to start the EM iterations some 
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reasonable initial values of mixture model parameters must be substituted for p
old

. EM itera-

tions are executed and continued until a suitably defined termination criterion is satisfied. 

In the forthcoming sections several methods for computing initial values of mixture pa-

rameters will be presented and compared for several artificially created datasets. 

2.1. Execution of the EM iterations 

Properties of log likelihood functions for mixture distributions as well as convergence of 

the EM algorithm and EM iterations for estimating parameters of mixtures of distributions 

were studied and described in [21, 22, 3, 2] and [18, 20, 19]. It is well known that in the gen-

eral case of unequal variances of components of the Gaussian mixture, the log likelihood (5) 

is unbounded [21]. Unboundedness of the log likelihood functions results in the fact that 

global maximum does not exist. It also results in the fact that in practical computations with 

the use of recursions (7)-(10) a numerical divergence can be encountered. Nevertheless, 

among local maxima (also called internal maxima) of the log likelihood function there is 

a sequence, which corresponds to consistent estimates of mixture parameters [21, 22]. 

Several modifications were proposed in the literature, aimed at modifying the form of the 

likelihood function / optimization criterion such that unboundedness is removed [36, 37, 38, 

39]. In [38] it was demonstrated that modification of the likelihood function by introducing 

constraints on ratios of variances of components both prevents divergence of iterations and 

leads to better convergence properties of the EM iterations for Gaussian mixture distributions. 

Several authors propose some other, partly heuristic, modifications of the form of EM itera-

tions aimed at avoiding divergence and “sticking” to undesired local maxima and/or to speed-

ing up convergence e.g. [33, 34, 35]. These modifications are shown to improve performance 

of EM iterations for estimation of mixture parameters. 

In this paper we take we take the original approach to the execution of the EM iterations, 

based on using iterations (7)-(10) without any modifications. In this approach, depending on 

the strategy for setting initial condition, divergence of iterations may take place. In our soft-

ware implementation for EM iterations occurrences of divergent solutions are detected and 

registered. Then, statistics of divergent solutions are compared between different methods of 

initiation of EM iterations. 

2.2. Termination criterion 

Termination of EM iterations is usually based on either the change of the log likelihood 

function or on the change of parameter values [3]. Here we take the approach based on the 
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scaled change of values of parameters between two successive iterations. We use the follow-

ing formula 
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If the value of ε given by above formula is lower than the threshold (assumed equal to 

10
-4

) iterations are terminated with a “convergence” status. 

The scaling method in the formula (12) is aimed at making the stopping criterion invariant 

with respect to the size of the decomposition problem (number of components) and with re-

spect to different widths of Gaussian components. 

3. Algorithms for setting initial values 

In this section we describe algorithms for setting initial conditions for EM iterations used 

in this study. Each of the method of initiation of EM iterations has many possible variants of 

deciding on the full set of parameters. Most important is setting mean values (locations) of 

components. However, methods of setting initial values of component variances and weights 

have also influence on the performance of the algorithm. Comparison of methods for setting 

initial conditions for EM iterations requires making some heuristic choices, due to the fact 

that verifying all possible combinations is computationally too prohibitive. Algorithms pre-

sented below were constructed in such a way that component means were computed accord-

ing to the main idea and then reasonable choices of methods for initial values of component 

variances and weights were applied. 

3.1. True 

The first method is initiating EM iterations by using true values of parameters. In the sim-

ulation study performed here the "true" method gives a reference for other methods. 

3.2. Random methods (REM) 

The simplest method of choosing an initial condition for the EM recursions is by generat-

ing it in a random manner. Methods reported most frequently in the literature are generating 

values of means of components by using uniform [23] or Gaussian distribution [3]. Here we 

use two methods, uniform with bounds defined by the range of observations and the method 

based on inverting the empirical cumulative distribution. 
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3.2.1. Uniform (Rand-U) 

In the first case, as stated above, initial mean values of components are generated with the 

use of uniform probability distribution supported on the observed range of data 

    xxUk max,minini  . (13) 

In the above expression U(a,b) denotes uniform distribution supported on the interval 

<a,b>. 

Initial values for component standard deviations and for component weights are also gen-

erated with the use of uniform distributions, as follows, 

 maxmin

ini , Uk  , (14) 
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Parameters of the above distributions αmin, αmax, σmin and σmax are chosen with the use of 

simple rules, as further described in the “Numerical Experiments” section. Clearly, values of 

component weights α
*
k in (15) must be scaled by (16) to conform to normalization condition 

(3). Final values of weights α
ini

k, given by (16) follow Dirichlet distribution, e.g. [24]. 

Abbreviation for random generation of initial means, variances and weights with uniform 

distribution, (13)-(16), is Rand-U. 

3.2.2. Inverse-CDF (R-invCDF) 

The second method of random generation of initial mixture parameters uses inversion of 

the empirical cumulative distribution function (CDF), and is called inverse CDF method. 

The inverse-CDF method is based on an empirical cumulative distribution function (CDF) of 

mixture data, given by the formula 
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where Ix≥xi is the indicator function equal to zero for x < xi and one otherwise, xi is the i-th 

sample of observed mixture data. The procedure starts with a selection of K random points, 

generated by using a uniform distribution: 

 1,0* Urk  , Kk ...1  (18) 
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and then values r1, r2, ..., rK are obtained by sorting r
*
k in an ascending order. Next, these ran-

dom values (in the <0,1> range) are mapped onto axis of values of observations by inverting 

empirical cumulative distribution function (17) for the analyzed mixture: 

   kk rF
1empini 

 . (19) 

Clearly, the distribution of μ
ini

k is an approximation of the distribution f
mix

(x,p). 

The intuition behind the inverse-CDF method is that mixture components should be located 

preferentially in regions of high values of the probability density function, which correspond 

to high values of slopes of the CDF function. 

Initial values for component standard deviations and for component weights are generated 

with the use of a method different than that for the for uniformly distributed means, (14)-(16). 

For the case of means generated by the inverse CDF method we use the following rules for 

component standard deviation and weights 
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and 
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where we additionally assume r0 = 0 and rK+1 = 1. 

Rules for computing standard deviations and weights, (20) and (21) are similar to those 

used in the case of hierarchical clustering methods, CEM, described in the next section. 

Abbreviation for random generation of initial means, variances and weights with uniform 

distribution, (19)-(21), is R-invCDF. 

3.3. Multiple initializations of random methods (Rand-U-20, R-invCDF-20) 

We have also implemented initialization algorithms based multiple repetitions of random 

initialization methods Rand-U and Rand-invCDF. In these algorithms random initializations 

Rand-U or Rand-invCDF are repeated 20 times and then EM iterations are performed for the 

set of parameter values, which corresponded to the highest likelihood. 

The algorithms for multiple initializations of random methods Rand-U and R-invCDF are 

abbreviated Rand-U-20 and R-invCDF-20. 

3.4. Hierarchical clustering methods (CEM) 

Hierarchical clustering methods, e.g. [6], create clusters of samples by using successive 

operation of merging. For samples (observations) x1, x2, ..., xN we define a distance matrix 
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  ji xxd ,D  (22) 

where d(xi,xj) is the (Euclidean) distance between xi and xj,  

  jiji xxxxd , . (23) 

Samples xi* and xj* with the shortest distance between each other 

 ji
ji

xxdji ,min,
,

**   (24) 

are then merged into new sample xz 

zji xxx ** , . (25) 

3.4.1. Average linkage clustering (Clust-AL) 

In the simplest version of hierarchical clustering, called average linkage clustering, xz is 

defined as the mean of xi* and xj* 

 
**2

1
jiz xxx   (26) 

and then the distance matrix is updated such that new distances are defined by using mean 

operation 

      jkikzk xxdxxdxxd ,,,
2
1  . (27) 

3.4.2. Complete linkage clustering (Clust-CL) 

Another version of hierarchical clustering method analyzed here, called complete linkage, 

uses merging operation in (25), which leads to creation of a union of indexes of samples 

},{, jiji xxx  . (28) 

The above operation leads to creation of clusters of samples. Defining new distances be-

tween clusters Cm = { i1, i2, ..., iM } and Cl = { i1, i2, ..., iL } is based on the following defini-

tion 

      
lmLM jiiiiiii xxdxxd ,max, ,...,,,...,, 2121

 . (29) 

The above definition is also a base for merging clusters. 

Both in the average linkage clustering and in complete linkage clustering, the process con-

tinues iteratively until the number of clusters assumes the desired value K. 

In one dimensional case assumed here, creation of whole N×N distance matrix (22) is not 

necessary, only above-diagonal elements are important. 

3.4.3. Initial values for parameters in initial clustering methods 

After average or complete linkage clusters are formed, initial values of means for the EM 

iterations are computed with the use of the following method. For the m-th cluster containing 

samples i1, i2, ..., iM, Cm = { i1, i2, ..., iM }, the corresponding initial mean is computed as 
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the initial value for standard deviation is computed as 
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and the initial value for component weight is computed by 

N

MCm
m 

x#

#ini , (32) 

where #Cm and #x denote numbers of elements in the cluster C and in the vector x, respec-

tively. 

Two analyzed clustering methods, described above, are represented in figures and tables 

by using abbreviations Clust-AL, and Clust-CL. 

3.5. “Maximum over likelihoods” method (Max-Lik) 

Implementation of several, different estimation methods gives a possibility of defining 

and studying a “meta” method, i.e., a method which uses/combines estimates of values of 

parameters obtained by using other, already implemented methods. We define here 

a “maximum of likelihoods” method, abbreviated as “Max-Lik” as a method, which takes 

estimates of mixture parameters equal to the parameters obtained by the method, which led to 

maximum of all likelihoods. We take maximum of likelihoods over the following set of 

methods: Rand-U, R-inv-CDF, Rand-U-20, R-inv-CDF-20, Clust-AL and Clust-CL. 

The method “True” is not on the list, due to the fact that it is only a reference and uses true 

parameters as starting values, not known in all other initialization methods. 

4. Computational experiments 

Computational experiments involved generating artificial datasets on the basis of known 

underlying Gaussian components, and their further analyses by using EM algorithms started 

with the above described algorithms of setting initial conditions. 

4.1. Description of the created datasets 

In the computational experiments performed, a total of 12 cases of mixtures of Gaussian 

distributions have been analyzed. These included two groups, of 5 component and 10 compo-

nent mixtures. Each of the groups (of 5 and 10 component mixtures) contained 6 cases and 

each group could be further subdivided into 2 subgroups. One subgroup included mixtures of 

components with equal variances (homoscedastic) and the other one — components with un-
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equal variances (heteroscedastic). Finally, each of the subgroups included 3 mixtures differ-

ing in the level of overlap between components, from the case of almost completely disjoint 

components, through the medium level of overlap to the case of a mixture with high overlap 

between components. We introduced labeling for cases of mixtures by using three symbols, a 

number (5 or 10) indicating the number of components, a symbol (O for homoscedascity or V 

for heteroscedascity) indicating equal or unequal variance and another symbol (N, L or H) 

indicating the level of overlap between components, no (N), low (L) or high (H). With this 

labeling, for example the symbol 5VL stands for a 5 component Gaussian mixture with une-

qual variances of components and low level of overlap between components. 

Parameters of all mixtures are given in Tables 1 and 2. 

Table 1 

Parameters of analyzed 5-component Gaussian mixtures 

Symbol Parameters 

5OL 

αi 0.2 0.2 0.2 0.2 0.2 

μi 1 2 3 4 5 

σi 0.1 0.1 0.1 0.1 0.1 

5OM 

αi 0.2 0.2 0.2 0.2 0.2 

μi 1 2 3 4 5 

σi 0.2 0.2 0.2 0.2 0.2 

5OH 

αi 0.2 0.2 0.2 0.2 0.2 

μi 1 2 3 4 5 

σi 0.3 0.3 0.3 0.3 0.3 

5VL 

αi 0.2 0.2 0.2 0.2 0.2 

μi 1 4 9 16 25 

σi 0.2 0.4 0.6 0.8 1.0 

5VM 

αi 0.2 0.2 0.2 0.2 0.2 

μi 1 4 9 16 25 

σi 0.4 0.8 1.2 1.6 2.0 

5VH 

αi 0.2 0.2 0.2 0.2 0.2 

μi 1 4 9 16 25 

σi 0.7 1.4 2.1 2.8 3.5 
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Table 2 

Parameters of analyzed 10-component Gaussian mixtures 

Symbol Parameters 

10OL αi 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

 μi 0 2 4 6 8 10 12 14 16 18 

 σi 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

10OM αi 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

 μi 0 2 4 6 8 10 12 14 16 18 

 σi 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 

10OH αi 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

 μi 0 2 4 6 8 10 12 14 16 18 

 σi 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 

10VL αi 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

 μi 0 2 5 9 14 20 27 35 44 54 

 σi 0.1 0.25 0.4 0.55 0.7 0.85 1.0 1.15 1.3 1.45 

10VM αi 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

 μi 0 2 5 9 14 20 27 35 44 54 

 σi 0.2 0.5 0.8 1.1 1.4 1.7 2.0 2.3 2.6 2.9 

10VH αi 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

 μi 0 2 5 9 14 20 27 35 44 54 

 σi 0.3 0.75 1.2 1.65 2.1 2.55 3.0 3.45 3.9 4.45 
 

Stochastic simulations with random normal numbers generators were used to create artifi-

cial datasets. Numbers of samples in each dataset were 1000 for 5 component mixtures and 

2000 for 10 component mixtures. 

4.2. EM iterations 

For all instances of analyzed mixtures of Gaussian distributions, the EM algorithm (7)-

(11) was launched many times, with each of the previously described method applied as 

a procedure for setting initial condition for iterations. Iterations continued unless any of the 

three possible conditions was encountered (i) termination criterion given in (12) was satisfied, 

(ii) divergence of iterations was detected (the condition for divergence was assumed as 

min(σi) ≤ 10
-4

 or min(αi) ≤ 10
-4

) or (iii) the upper limit for the number of iterations (assumed 

equal to 10000) was exceeded. Termination due to condition (i) is called normal while termi-

nation due to (ii) or (iii) is called abnormal. 
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5. Results 

In this section we report results of fitting mixture models to generated datasets. First we 

define performance criteria used to score the obtained results, then we show Tables 3 and 4 

which illustrate dependence of values of criteria on the strategy of computing initial condition 

for iterations. 

5.1. Performance criteria 

There are many possible methods to score performance of the algorithms for fitting mix-

ture models to data. A criterion commonly used in the literature, based on the (final) value of 

the log likelihood function, is the percentage (probability) of attaining “maximum” likelihood 

by a method of initialization of EM iterations [23, 24]. “Maximum” likelihood is understood 

as the value of the likelihood obtained by using true values of parameters as initial values for 

EM iterations (for computations 5% margin is allowed). The probability of attaining “maxi-

mum” likelihood is denoted here by P(max). 

In this study we also use a second, direct criterion, namely a scaled absolute difference be-

tween true and estimated locations of components, averaged over all components. Scaling is 

aimed at making the distribution of errors (differences) invariant with respect to component 

widths and to components weights. The criterion is defined as follows 
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In the above expression, μi
true

, σi
true

 and αi
true

 are true parameters of the analyzed mixture 

distribution, K is the number of mixture components and N is the sample size. By μi
est 

we un-

derstand the value of the estimated mixture component mean closest to μi
true

. The above crite-

rion allows scoring one experiment of estimating a mixture parameters. In order to character-

ize performance of a method we used mean value of criterion Q, mean(Q) following from 

multiple repetitions of EM iterations (terminated with the status-normal). Clearly, it only 

makes sense to use criterion Q (33) if EM iterations terminate with the status “normal”. 

In the case where components of the mixture are disjoint (well separated) and the estima-

tion method (EM algorithm with an initial values close to true values) leads to correct as-

signment of samples to components, minimal expected value of the criterion Q can be com-

puted theoretically as expected absolute value of a standard normal random variable 
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Since EM iterations can terminate either normally or abnormally, as an additional, sup-

plementary criterion we also use estimated probability of abnormal termination of the EM 

iterations, denoted as P(abnormal). 

5.2. Tables of scores 

Results of our experiments are reported in Tables 3 and 4, where for all 12 mixtures de-

scribed in Tables 1 and 2, we report effects of using initialization algorithms Rand-U, R-inv-

CDF, Rand-U-20, R-inv-CDF-20, Clust-AL, Clust-CL, Max-Lik and True. For initialization 

methods Rand-U, R-inv-CDF, Rand-U-20, R-inv-CDF-20, Clust-AL, Clust-CL and True we 

report values of mean(Q), P(max) and P(abnormal). The format of an entry of the table is: 

mean(Q) ( P(max) ) P (abnormal). For example, application of the Rand-U initialization 

method for the dataset 5OL leads to output reported as 10.175 (0.66) 0.03, which means  

  175.10mean Q ,   66.0max P ,   03.0abnormal P . 

For the Max-Lik method the format of entry in Tables 3 and 4 is different. For the Max-

Lik method, estimated probability of abnormal termination, P(abnormal) is not reported in 

Tables 3 and 4, due to the fact that in all experiments it never happened that for a dataset all 

methods Rand-U, R-inv-CDF, Rand-U-20, R-inv-CDF-20, Clust-AL, Clust-CL terminated 

with abnormal status. As a conclusion, for Max-Lik method probability P(abnormal) is al-

ways equal to 0. Instead of listing all values equal to 0, we report another probability defined 

as follows. Under the assumption of independence we can theoretically compute probability 

that at least one of the initialization methods, Rand-U, R-inv-CDF, Rand-U-20, R-inv-CDF-

20, Clust-AL, Clust-CL, attained “maximum” likelihood (defined as above). This probability 

is denoted by P
Est

(max ) and is given by the following formula 

    



Ii

iPP max11maxEst . (35) 

In the above formula I = {Rand-U, R-inv-CDF, Rand-U-20, R-inv-CDF-20, Clust-AL, 

Clust-CL }. If the initialization methods Rand-U, R-inv-CDF, Rand-U-20, R-inv-CDF-20, 

Clust-AL, Clust-CL are independent (close to independent), we should (approximately) ob-

serve 

   maxmax Est

LikMax PP  . (36) 

The format of entries of the “Max-Lik” column of Table 4 is: mean(Q)Max-Lik 

( PMax-Lik(max) ) [ P
Est

(max) ]. Contemplating reported values of both probabilities in (36), 

PMax-Lik(max ) and P
Est

(max), allows verifying a hypothesis of independence of different ini-

tialization methods. 
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Table 3 

Results of application of initialization methods 

Rand-U, R-inv-CDF, Rand-U-20 and R-inv-CDF-20 

 Rand-U R-inv-CDF Rand-U-20 R-inv-CDF-20 

5ON 10.175 (0.66) 0.03 8.883 (0.70) 0.04 8.093 (0.72) 0.04 7.340 (0.75) 0.02 

5OL 4.707 (0.76) 0.0 4.724 (0.73) 0.01 3.450 (0.81) 0.01 2.957 (0.84) 0.01 

5OH 2.060 (0.80) 0.0 3.433 (0.67) 0.01 1.986 (0.81) 0.0 2.424 (0.78) 0.01 

5VN 23.606 (0.28) 0.24 22.681 (0.39) 0.07 13.452 (0.54) 0.11 14.666 (0.53) 0.04 

5VL 16.198 (0.20) 0.07 11.620 (0.38) 0.02 9.620 (0.45) 0.03 6.762 (0.60) 0.0 

5VH 5.061 (0.45) 0.05 4.193 (0.64) 0.01 3.407 (0.79) 0.02 3.433 (0.73) 0.01 

10ON 9.568 (0.37) 0.18 15.284 (0.20) 0.21 6.483 (0.56) 0.08 13.892 (0.24) 0.13 

10OL 6.503 (0.30) 0.05 8.324 (0.21) 0.02 4.736 (0.47) 0.07 7.813 (0.21) 0.04 

10OH 4.921 (0.33) 0.09 6.200 (0.25) 0.05 3.826 (0.49) 0.05 5.903 (0.26) 0.03 

10VN 39.987 (0.01) 0.34 22.530 (0.06) 0.19 26.111 (0.04) 0.24 17.150 (0.10) 0.13 

10VL 17.226 (0.01) 0.11 10.281 (0.09) 0.04 12.871 (0.05) 0.08 8.524 (0.13) 0.03 

10VH 8.932 (0.18) 0.19 6.718 (0.35) 0.16 7.353 (0.26) 0.19 6.658 (0.39) 0.15 

 

Table 4 

Results of application of initialization methods 

Clust-AL, Clust-CL, Max-Lik and True 

 Clust-AL Clust-CL Max-Lik True 

5ON 0.797 (1.0) 0.0 0.797 (1.0) 0.0 0.797 (1.0) [1.0] 0.797 (1.0) 0.0 

5OL 0.831 (1.0) 0.0 0.888 (1.0) 0.0 0.831 (1.0) [1.0] 0.831 (1.0) 0.0 

5OH 1.862 (0.85) 0.13 1.989 (0.85) 0.0 1.699 (0.97) [0.99] 1.655 (1.0) 0.0 

5VN 2.094 (0.79) 0.18 31.379 (0.04) 0.08 1.266 (0.98) [0.98] 0.787 (1.0) 0.0 

5VL 16.868 (0.00) 0.19 16.736 (0.02) 0.03 2.344 (0.90) [0.89] 0.850 (1.0) 0.0 

5VH 7.244 (0.12) 0.19 5.434 (0.31) 0.06 2.525 (0.97) [0.99] 2.318 (1.0) 0.0 

10ON 0.797 (1.0) 0.0 0.797 (1.0) 0.0 0.797 (1.0) [1.0] 0.797 (1.0) 0.0 

10OL 0.875 (1.0) 0.0 1.507 (0.91) 0.0 0.875 (1.0) [1.0] 0.875 (1.0) 0.0 

10OH 1.953 (0.78) 0.18 3.100 (0.68) 0.01 2.026 (0.94) [0.99] 1.765 (1.0) 0.0 

10VN 20.659 (0.0) 0.57 40.952 (0.0) 0.07 13.051 (0.19) [0.20] 0.804 (1.0) 0.0 

10VL 17.391 (0.0) 0.22 17.340 (0.0) 0.08 6.392 (0.27) [0.25] 1.116 (1.0) 0.0 

10VH 9.107 (0.12) 0.26 8.909 (0.14) 0.18 6.727 (0.52) [0.81] 3.949 (0.85) 0.15 

6. Discussion 

In this section we comment on the comparisons on different initialization strategies 

shown in Tables 3 and 4. As illustrations of our computational experiments we also give fig-

ures, which present in a more comprehensive and detailed way some phenomena observed 



Comparison of methods for initializing EM algorithm... 65 

when fitting mixture models to data and how they depend on parameters and on initiation 

strategy. We also try to apply simple computational models to explain values reported in Ta-

bles 3 and 4. Further in the Conclusions section we summarize some recommendations con-

cerning practical problems of fitting mixture models to spectroscopic data, which can be 

drawn from our research. 

6.1. Comments on the created and analyzed datasets 

The datasets created and analyzed in this paper have one common feature, which can be 

called linear or sequential structure. By this name we mean that possible overlaps occur only 

between neighboring components. In contrast, artificially created datasets for benchmarking 

algorithms for analyzing mixtures of density functions, which can be found in the literature 

can exhibit more complicated overlap structures (e.g., claw-like probability density functions 

[3]). Confining the analysis to a narrower class of probability density functions is aimed at 

making possible obtaining some explicit conclusions on the influence of the structure of data 

on the performance of different initialization methods. The structures of the analyzed datasets 

(Tables 1 and 2) were chosen in order to support studies on the influence of (i) 

homoscedascity versus heteroscedascity, (ii) the extent of the overlap between Gaussian com-

ponents and (iii) the number of components in the mixture, on the performance of different 

methods of initialization of EM iterations. Comments on these influences are given in the 

following subsections. 

6.2. Comments on comparisons 

When contemplating entries of Tables 3 and 4 one can observe that using different meth-

ods of initialization of EM iterations can lead to substantial differences in the obtained re-

sults. Theoretical lower bound, given by equation (34) is attained by True method for all mix-

tures with no overlap between components and by both clustering methods CL and AL but 

only for homoscedastic, non overlapping mixtures 5ON and 10ON. For the case of homosce-

dastic mixtures with low or high level of overlap between components, 5OL, 5OH, 10OL, 

10OH, initialization methods basing of hierarchical clustering still perform very well, similar-

ly or only slightly worse than the True method. However, performance of hierarchical cluster-

ing methods changes for the case of heteroscedastic mixtures. For this case hierarchical clus-

tering initialization methods lead to substantially worse results and can even be outperformed 

by some of random initialization methods. The decline of the performance of hierarchical 

clustering methods for heteroscedastic case is further amplified by increasing the number of 

components in the mixture. Two clustering methods, CL and AL can lead to different out-
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comes. The average linkage method AL performs better for mixtures with no or low overlap. 

This method, however, ho has also always higher probabilities of abnormal termination, 

P(abnormal). 
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Fig. 1. Plots in the right panel of the figure demonstrate multi-modality of distributions of scaled 

errors, which occurs despite quite strong overlap between mixture components. In contrast, 

distributions of log likelihoods are here unimodal, with shapes well approximated by normal 

distributions 

Rys. 1. Wykresy po prawej stronie rysunku przedstawiają wielomodalność rozkładów przeskalowa-

nych błędów, występującą mimo znacznego przekrywania się składników mieszaniny. Roz-

kład wiarygodności logarytmicznej w tym przypadku jest unimodalny, a jego kształt można 

przybliżyć rozkładem  normalnym 

  
Random methods show similarities in their outcomes in the sense that they always lead to 

considerably higher average errors than the True method. The methods based on inverting 

CDF, lead to higher probabilities of abnormal termination, which results from its strategy of 

setting initial variances, leading to narrower initial components. Variants with multiple ini-

tializations always lead to some improvement of the average scaled error. 

The Max-Lik is a reasonable method of aggregating (combining) results obtained with 

different methods of initializing EM iterations. As seen in Table 4, it leads to substantial im-

provement of the value of mean scaled error in all analyzed mixture datasets. 
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6.3. Comments on distributions of scaled errors and log likelihoods 

Probability distributions of scaled errors and log likelihoods obtained in the performed 

computational are often multi-modal, which follows from the fact that analyzed datasets are 

multi-component. In Figure 1, as an example, we show plots corresponding to probability 

distributions of log likelihoods (left) and scaled errors (right) in the experiment 5VH, for 

three initialization methods True, Rand-U-20 and Clust-AL. 

In the cases where there is a high overlap between mixture components one can observe 

the existence of the so called “local spurious maximizers” in the obtained solutions. 

This phenomenon is well known in the literature, e.g. [3]. By existence of “local spurious 

maximizers” we mean a situation where orders of values of log likelihoods and (scaled) er-

rors, corresponding to some of obtained solutions to estimation of mixture parameters prob-

lems, are inverted. In other words, normally the greater value of the likelihood would imply 

smaller value of the scaled error, but there are situations that for a generated dataset two solu-

tions X and Y are such that likelihood of X > likelihood of Y, but scaled error of X > scaled 

error of Y. One example of a spurious local maximizer encountered in computational experi-

ments is presented in Figure 2. 
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Fig. 2. Illustration of the phenomenon of spurious local maximizers 

Rys. 2. Ilustracja zjawiska pozornych lokalnych maksimów 
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We do not report exact statistics here, but occurrences of spurious local maximizers are 

rather rare in the analyzed datasets. Despite the existence of spurious local maximizers values 

of the criteria mean(Q) and P(max), are strongly negatively correlated. Correlation coeffi-

cient, computed over all simulation experiments is -0.76. Another fact, confirming that spuri-

ous local maximizers do not have a very strong impact on statistics of solutions is observed 

high efficiency of the Max-Lik method. It should, nevertheless, be noted that frequency of 

occurrence of spurious local maximizers increases with the increase of the number of compo-

nents in the mixture model. 

7. Conclusions 

In this paper we have presented a comparison study of methods for initialization of EM it-

erations for univariate, multi component, heteroscedastic Gaussian mixtures models. Compar-

ing different strategies for initialization of the EM algorithm is a surprisingly complex issue. 

Comparisons are complicated by facts that, (i) EM algorithm, despite its simplicity, can ex-

hibit complex behavior (unboundedness, non-convergence), and (ii) initialization and applica-

tion of the EM algorithm for estimating mixture parameters requires using many parameters 

and making many decisions, whose influence on the results interfere one with another. Un-

derstanding this influence requires systematic studies. 

A set of methods implemented in this study includes mostly algorithms already described 

and tested in the cited references. One exception is the inverse CDF method , which accord-

ing to our knowledge was not previously researched. It, however, belongs to the group of ran-

dom methods and is quite similar to other methods in this group. The contribution, compared 

to previous papers is exploring the case of multi - component heteroscedastic mixtures. Simi-

larly to previous studies [23, 24, 25] we must report that no single initialization method 

(Rand-U, R-inv-CDF, Rand-U-20, R-inv-CDF-20, Clust-AL and Clust-CL) can outperform 

others in all experiments. The method, which always leads to an improvement in terms of 

average scaled error, is our meta method Max-Lik. 

We have assumed that the number of components in the mixture was known. In practical 

applications this assumption is rather never true. The problem of estimating the number of 

components in the mixture is a separate research area, and is approach by different methods, 

e.g., by using Bayesian Information Criterion (BIC) [3]. 

As far as implications of our study for analyses of real data are concerned, it should be 

stated that the initialization algorithms in their original forms, studied in the literature, are 

rather not enough efficient for practical computations for proteomic or NMR spectra. 

For practical applications further improvements are necessary. An obvious way of develop-
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ing/improving algorithms is including a priori knowledge of the structure of mixtures into the 

algorithm (both to initialization methods and to execution phase of EM). This knowledge can 

be available for real data and includes lower and upper bounds on variances of components 

and bounds on overlaps between components. Another way is developing more efficient and 

sophisticated initialization algorithms, which can be an area of further studies. 
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Omówienie 

Mieszaniny rozkładów prawdopodobieństwa mają szerokie zastosowanie w statystycznej 

analizie danych, między innymi w zakresie analizy struktury populacji zwierząt, rozpoznawa-

nia wpływów różnych czynników na rynki finansowe, rozdzielania źródeł zmienności 

w danych eksperymentalnych czy też analizy wyników obrazowania medycznego. Szczególne 

znacznie mają skończone mieszaniny rozkładów normalnych, w których z góry znana liczba 

składowych rozkładów prawdopodobieństwa Gaussa (2) tworzy nową wypadkową funkcję 

gęstości prawdopodobieństwa (1) z pewnym zadanym udziałem każdej ze składowych. 

Czołowym problemem pojawiającym się w praktycznych zastosowaniach mieszanin roz-

kładów normalnych jest estymacja parametrów rozkładów na podstawie danych eksperymen-

talnych. Szeroko stosowanym i opisanym w literaturze rozwiązaniem tego problemu jest al-

gorytm EM, który w sposób iteracyjny na zmianę wyznacza szacunkowe prawdopodobień-

stwo przynależności poszczególnych obserwacji do składowych mieszaniny oraz maksymali-

zuje wiarygodność poprzez dobór wag i parametrów poszczególnych składowych mieszaniny. 

Idea algorytmu EM zapewnia wzrost wiarygodności obserwacji w każdej kolejnej iteracji. 

Zbieżność algorytmu EM oraz jakość uzyskanego rozwiązania są zależne od początkowej 

estymacji parametrów mieszaniny (warunku początkowego). Według wiedzy Autorów, 

w literaturze kwestia metod doboru warunku początkowego nie jest dostatecznie opisana. 

Publikacje jej dotyczące ograniczają się do jedno- lub dwuwymiarowych mieszanin od 2 do 4 

składowych, przy czym często są to mieszaniny o równych wartościach wariancji wszystkich 

składowych. 

W powyższej publikacji Autorzy rozszerzają wiedzę na temat doboru warunku początko-

wego algorytmu EM przez analizę mieszanin jednowymiarowych (i) o większej liczbie skła-
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dowych (od 5 do 10) oraz (ii) o różnych wartościach wariancji składowych (heterosceda-

styczne). Zostały zaprezentowane wyniki badań w zależności od (i) liczby składowych, 

(ii) zróżnicowania wariancji składowych, (iii) zróżnicowania przekrycia poszczególnych 

składowych. 
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