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Chapter 1: Introduction

The significance of image resolution across various domains [9], such as medi-
cine [5], satellite imaging [10], and digital photography [3], is underscored at
the outset. However, the attainment of high-resolution (HR) images is hin-
dered by certain physical and digital limitations [8, 11, 19]. Super-resolution
reconstruction (SRR) emerges as a viable solution to augment the spatial res-
olution of existing low-resolution (LR) images.

The chapter delineates between single-image super-resolution (SISR) and
multi-image super-resolution (MISR). SISR aims to enhance the resolution
of a single image [7], while MISR endeavours to utilize multiple images to
create a more detailed HR image [16]. The two primary stages of MISR, reg-
istration and fusion, are elaborated, along with the challenges like temporal
differences, occlusions, and varying lighting conditions [12].

The limitations of traditional convolutional neural networks (CNNs) [14]
for MISR are discussed, highlighting issues like handling temporal variations
among input images or limited information about shifts between LR images
provided in the input data. This discussion sets the stage for the motivation
behind employing graph neural networks (GNNs) [13] for MISR, which is
anticipated to address the identified challenges more effectively.

Guided by the following theses, the subsequent chapters of this disserta-
tion are poised to explore GNNs in the context of MISR, aiming to provide
both a detailed theoretical analysis and empirical validations through exper-
iments:

• Thesis 1: By representing a set of LR images with sub-pixel shifts as
a graph, GNNs are capable of processing this graph to yield super-
resolution results that are comparable or superior to those achieved by
leading MISR architectures based on convolutional networks.

• Thesis 2: GNNs can improve their MISR performance by integrating
techniques inspired by existing state-of-the-art MISR models based on
CNNs, such as individual feature extraction for each LR image, the em-
ployment of attention mechanisms, and dynamic and trainable input
registration.

• Thesis 3: GNNs can reconstruct a scene from a specific point in time
by designating a particular reference image from the input LR image
set, with the remaining images serving as supplementary information
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sources to improve super-resolution accuracy. This methodology is an-
ticipated to mitigate visual inconsistencies in regions of high temporal
variability and produce a temporally consistent image.

Chapter 2: Related Work

The field of super-resolution reconstruction has seen significant advance-
ments over the years, driven by the increasing demand for high-resolution
imagery in diverse domains such as remote sensing, surveillance, and med-
ical imaging. Various methods and techniques have been developed to ad-
dress the challenges associated with super-resolution reconstruction [1, 4, 6,
15, 18, 20, 21]. In the realm of machine learning, neural networks have played
a crucial role in advancing numerous fields, including image and speech
recognition, and natural language processing [2, 22]. However, traditional
neural networks often struggle with irregularly structured data, as seen in
images or time series, and tend to overlook the relational information inher-
ent in the input data. This is where GNNs come into play, showcasing their
strength in handling such data.

The chapter then focuses on GNNs, providing a foundation for under-
standing the advantages they offer in dealing with MISR challenges, address-
ing traditional limitations of convolutional networks, such as problems with
processing irregularly structured data and the tendency to neglect informa-
tion about relationships present in the input data [17].

This chapter serves as a comprehensive literature review of MISR tech-
niques, with a particular emphasis on deep learning-based approaches. It
outlines the existing research gaps and challenges associated with current
MISR techniques, laying the groundwork for the proposed MISR technique
using deep GNNs in the following chapter.

Chapter 3: Architecture Design

In the initial sections of this chapter, the process of creating a graph from
multiple LR images is elaborated. The unique approach amalgamates mul-
tiple LR images into a single integrated graph, ensuring a lossless transition
while preserving all original information. Moreover, this transition is not
only lossless, as it also enriches the volume of information of the input data
by specifying providing additional data about sub-pixel translations between
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FIGURE 1: A step-by-step visualization of graph creation pro-
cedure.
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the input images. This conversion, depicted in Figure 1 is a three-step pro-
cess:

1. Node positioning: The step describes the process of converting pixels
from LR images to nodes on a unified plane, with each node’s position
reflecting the original pixel position, and assigning input features to
nodes based on the image channels.

2. Displacement calculation: The displacement vectors are determined
in this step to align LR images concerning a reference image, aiding
in the accurate positioning of nodes in the graph to reflect the spatial
relationships and deviations between different LR images.

3. Graph construction: In this part, edges between nodes are established
based on proximity, using a specified radius, and edge attributes are in-
troduced to capture spatial offsets between nodes, forming a structured
graph representation of the original LR images.

The chapter also introduces several models developed to substantiate the
second thesis of this dissertation. The models created in this pursuit are dis-
cussed in detail, each representing a distinct approach or enhancement to-
wards leveraging the aforementioned techniques for MISR.
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FIGURE 2: The architecture of MagNAt.

• MagNet: By processing the input graph, composed of multiple LR im-
ages, MagNet is the first GNN used in MISR, yet considered as a proof-
of-concept.

• MagNet++: This model introduces graph-based upsampling in Mag-
Net, potentially overcoming the limitations of MagNet.
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• MagNetenc: An improved feature extraction procedure is presented in
this model.

• MagNAt: This model introduces learnable relationships with attention-
based convolution and dynamic registration. It is used as the main
GNN model throughout the experimental validation part of this dis-
sertation. The architecture of MagNAt is depicted in Figure 2.

• MagNAtno_reg: This is a modification of the MagNAt model lacking the
dynamic registration component, to assess its importance on the super-
resolution performance.

• MagNAtlead: A model aiming to substantiate the third thesis aiming to
reconstruct a scene at a specific point in time dictated by the leading LR
image.

Chapter 4: Data Description and Simulation

This chapter outlines the datasets employed for the research, underscoring
their role in training and validating the proposed models.

• Simulated Dataset: Two simulated datasets, SRRB and SRRBenh, of dif-
ferent levels of complexities are created for training and evaluation pur-
poses, providing a controlled environment to test the models. The pro-
cess of generating these datasets and their significance in the research
is elaborated.

• Real-World Dataset: The real-world dataset, specifically the Proba-V
MISR dataset, is introduced. It discusses the structure of the dataset, its
spectral bands, and how real-world challenges are handled. The impor-
tance of the Proba-V MISR dataset in the research is also highlighted.

The chapter sets the foundation for experimental validation in subse-
quent chapters by ensuring a thorough understanding of the data dynamics
in MISR.

Chapter 5: Training Methodology and Evaluation

Metrics

This chapter delineates the training methodology and evaluation metrics cru-
cial for optimizing and assessing the models’ performance in super-resolution
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tasks. The training hyperparameters for each model, namely HighRes-Net,
RAMS, PIUNET, and TR-MISR, are provided, with a note that their specific
hyperparameters were derived directly from their corresponding papers, en-
suring a faithful reproduction of each model’s performance.

• Training Regimen: The training protocols adopted for all models are
described, underscoring the significance of validation-based performance
tuning to prevent overfitting and ensure robust learning.

• Evaluation Metrics: The evaluation metrics, namely cPSNR, SSIM, LPIPS,
MGE, and TBE, are discussed, providing a comprehensive means to as-
sess and compare the quality of super-resolved images produced by
different models. Also, the process of their adoption for addressing
MISR-specific challenges is delineated.

This discussion sets the stage for the experimental validation carried out
in the subsequent chapter, ensuring a thorough understanding of the method-
ologies that underpin the research.

Chapter 6: Experimental Results and Discussion

This chapter delves into the comprehensive evaluation of the models devel-
oped in this dissertation, with the main focus on MagNAt. It encompasses
a range of evaluations on both simulated and real-world datasets, providing
critical insights into the capabilities and limitations of the proposed model
and comparing it with current state-of-the-art MISR models. This chapter
explores the performance of the models from various angles, including their
effectiveness in handling simulated scenarios, real-world challenges, tempo-
ral variations, architectural progression, and computational efficiency. The
following sections provide a succinct overview of the key topics covered in
this chapter:

1. Simulated Datasets: The models are assessed on simulated datasets
through both quantitative (Table 1) and qualitative (Figure 3) analysis,
supported by statistical tests. The performance of MagNAt is partic-
ularly highlighted, demonstrating its effectiveness in generating high-
quality super-resolved images and showcasing its superior handling of
simulated scenarios compared to other models.
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TABLE 1: Aggregated performance metrics for super-resolution
models, combining results from both simulated datasets. The
best scores are highlighted in bold, and the second-best scores

are underlined.

Dataset Model cPSNR cSSIM cLPIPS cMGE TBE

SRRB

Bicubic 24.56 0.783 0.355 0.129 0.405
HighRes-Net 29.60 0.913 0.057 0.036 0.314
RAMS 31.96 0.945 0.038 0.021 0.315
PIUNET 31.49 0.941 0.052 0.026 0.323
TR-MISR 30.38 0.920 0.055 0.031 0.318
MagNAt 32.81 0.948 0.041 0.019 0.310

SRRBenh

Bicubic 24.35 0.749 0.386 0.136 0.396
HighRes-Net 27.83 0.863 0.118 0.051 0.334
RAMS 29.10 0.888 0.100 0.037 0.333
PIUNET 28.90 0.884 0.103 0.038 0.340
TR-MISR 28.06 0.867 0.115 0.045 0.334
MagNAt 30.12 0.901 0.094 0.026 0.330

TABLE 2: Performance metrics obtained by all tested methods
on the Proba-V dataset. The best scores are highlighted in bold,
while the second-best scores are underlined for each spectral

band independently.

Band Model cPSNR cSSIM cLPIPS cMGE TBE

NIR

Bicubic 33.380 .8625 .2791 .0119 .4595
HighRes-Net 35.401 .9117 .1361 .0065 .3338
RAMS 35.648 .9148 .1571 .0065 .3382
PIUNET 35.769 .9127 .1683 .0067 .3510
TR-MISR 35.958 .9166 .1307 .0062 .3337
MagNAt 36.169 .9161 .1777 .0059 .3280

RED

Bicubic 36.419 .9000 .3028 .0068 .4481
HighRes-Net 37.743 .9337 .1393 .0037 .3245
RAMS 38.492 .9411 .1601 .0033 .3206
PIUNET 38.629 .9430 .1706 .0035 .3462
TR-MISR 38.650 .9396 .1299 .0033 .3238
MagNAt 38.819 .9406 .1649 .0032 .3195

2. Real-World Evaluation: In this section, the real-world performance
of MagNAt on the Proba-V dataset is explored through both quan-
titative and qualitative analysis, supported by statistical tests, show-
cased in Table 2 and Figure 4. MagNAt exhibits competitive perfor-
mance when compared to other models, effectively addressing real-
world challenges. The dynamics of performance with varying numbers
of input images are also discussed, along with a qualitative analysis on
NIR and RED subsets.
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FIGURE 3: Examples of super-resolved simulated images from
BSDS100 (top) and Set14 (bottom) datasets.

3. Temporal Variations and Super-Resolution: The challenge of tempo-
ral variability in input data is discussed, with a focus on how MagNAt
mitigates this challenge by guiding the reconstruction process to a spe-
cific timeframe dictated by the leading input image. The effectiveness
of this approach in producing temporally consistent super-resolved im-
ages is highlighted, as shown in Figure 5.

4. Comparative Analysis of Architectural Progression: This section dis-
cusses the evolution of models developed throughout the dissertation,
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(2) Comparison on RED subset.

FIGURE 4: Visual comparisons of different models on the NIR
(A) and RED (B) subsets of the Proba-V dataset. The images are
cropped to a 150 × 150 region centred at the same location for

all models.

with a focus on how MagNAt, with its attention-based convolution
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FIGURE 5: Reconstruction results from MagNAtlead for the
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(d) captured at the same time as the HR image. Correspond-
ing cPSNR and cSSIM scores are provided below each super-

resolved image.
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and dynamic registration, improved MISR performance by integrating
techniques inspired by existing state-of-the-art MISR models based on
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CNNs.

5. Time and Memory Analysis: A detailed analysis of the time and mem-
ory requirements of MagNAt, shown in Figure 6 revealed its compu-
tational demands. While the model shows promise in achieving high-
quality super-resolution results, the analysis identified opportunities
for optimization to improve its efficiency and make it more suitable for
real-time applications.

Chapter 7: Summary and Conclusions

The dissertation discussed the significance of MISR, set the context for GNNs
in MISR, and established the research’s theses. A comprehensive literature
review highlighted gaps and challenges in existing MISR techniques, paving
the way for the proposed GNN-based approach. The creation of a graph
from LR images and the introduction of GNN-based models were discussed,
along with their enhancements. Simulated and real-world datasets were cho-
sen for evaluation. The chapter provided training details for models and in-
troduced evaluation metrics, setting the stage for rigorous experimentation.
The research presented results and discussions on simulated and real-world
datasets, validated the theses, and addressed temporal variations and model
enhancements. A detailed analysis of time and memory requirements shed
light on computational efficiency and scalability, with optimization opportu-
nities identified.

The future directions were also discussed, including a focus on optimiz-
ing computational efficiency and scalability, exploring more efficient graph
construction methods, and leveraging advanced hardware for faster com-
putations. Also, adapting the model for multispectral MISR represents a
promising research avenue. Moreover, exploring handling rotations, non-
rigid transformations, and spatially irregular data processing can extend the
model’s applicability to complex MISR scenarios.
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