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Abstract
Measurements, modelling and control of flow in grinding installation

with electromagnetic mill

Doctoral dissertation by Oliwia Krauze

Silesian University of Technology

Comminution of raw materials is a massive and large-scale process present in numerous

branches of industry. New equipment and technologies are constantly being developed to

improve product quality and throughput, and to decrease costs and environmental im-

pact. One of new solutions to ultrafine grinding of hard materials is an electromagnetic

mill with its dedicated grinding installation with pneumatic material transport. Be-

ing still a new invention, the system requires extensive studies (including experimental

research), e.g., on dedicated measurement methods, mathematical modelling of system

components, automatic control algorithms.

This thesis proposes some indirect methods for measurement of raw material features,

such as flow rate, particle size and moisture content. These experimental methods are

fast and contactless, though approximate, and they are based on vibration, acoustic or

vision signals.

Secondly, this dissertation presents several steady-state and dynamic models (mainly

of black box type), based on experiments carried out on the grinding installation with

electromagnetic mill. Some models assess the mutual effects between material moisture

and particle classification subsystem. Others describe steady-state and dynamic rela-

tionships between positions of air dampers (actuators) and air flows or pressures in key

parts of the pneumatic transport system.

Lastly, this work introduces the hierarchical layout of control loops in the grinding

installation and focuses on control of transport air flow in the lowest (direct) control

layer. The flow of air is a crucial factor as it determines the flow of the processed material,

thus affecting particle size distribution of the product, efficiency of the grinding process,

and even its stable operation. A simulation framework is prepared to easily test air

flow control schemes. Then, several types of control algorithms are tuned, assessed and

compared.

The above-mentioned findings help to monitor or control some key parts of the grinding

installation with electromagnetic mill, and to do it efficiently. Moreover, some research

outcomes — mainly, the methods of indirect measurements — may be utilized also in

other plants and processes.
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Chapter 1

Introduction

Comminution (crushing and grinding) of raw materials is an essential stage of a wide

range of industrial processes worldwide. Some examples are: coal pulverization for fossil-

fuel power plants; metal ores enrichment; production of mortars and cements, paints, and

paper; manufacturing of cosmetics, pharmaceuticals and food; waste recycling.

The comminution processes usually involve massive amounts of raw material and high

energy consumption. For example, at mine sites the comminution stage is the most

energy-consuming process, accounting typically for about 30–50% of total energy usage

at the plant [4; 100] and about 35–55% of its total operating costs [24]. In total, com-

minution processes consume nearly 2% of all electric power generated worldwide [72].

Moreover, specific energy grows with decreasing particle size. This means more energy

per unit weight of material is required to reduce average particle size N times for smaller

input particles than for larger ones [59; 109]. Also, the smaller the particles, the harder

it is to grind them further, and conventional technologies — such as tumbling (ball,

rod, etc.) mills — are even not capable of very fine grinding [109]. Hence, considerable

research and development effort is constantly devoted to improve the existing comminu-

tion technologies and to invent new ones — especially in fine and ultrafine grinding, that

is, in production of particles sized tens of micrometers and less. The goal of these works

is to achieve higher product quality (in terms of desired particle size, shape, surface

area etc.), throughput and energetic efficiency. These improvements would be impos-

sible without the use of dedicated measurement and control systems in the grinding

installations, which creates many research opportunities in the automatic control field.

One of novel approaches to fine and ultrafine grinding involves an electromagnetic mill,

which is believed to address all of the above demands. However, the device is a relatively

new invention; and the innovative complete grinding system built around it, which is

considered in this dissertation, is an even younger design (from year 2015 [82]). Thus,
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the topic needs substantial research work, part of which was conducted by the author of

this thesis and is described hereby.

It is necessary to acknowledge here the project "SYSMEL: System for grinding mineral

materials in electromagnetic mill, including control system, providing high technologi-

cal efficiency and low energy consumption in micro- and macroindustrial applications"

(project no. PBS3/B3/28/2015). It was financed by the National Centre for Research

and Development, Poland, under Applied Research Programme. A substantial amount

of the work presented in this thesis, and also much of other scientists’ research, was

done within or in relation to this project. Also, a major part of the considered grinding

installation was financed from the project.

1.1 Electromagnetic mill

Electromagnetic (EM) mill [58; 90; 95] is a powerful and versatile device used, e.g., for

grinding, mixing and activation of hard substances. The mill consists mainly of an

inductor of strong rotary electromagnetic field. The research included in this dissertation

used an EM mill designed and manufactured by ELTRAF company [58]; it has a salient-

poles inductor with a hexagonal yoke surrounding six radially arranged electromagnets

(Fig. 1.1).

In the middle of the inductor, perpendicularly to it, a cylindrical working chamber is

located. It is made of non-magnetic material, such as ceramics, titanium or austenitic

stainless steel [34; 90]. The working chamber may be shaped as a capsule with a lid

(for batch processing) or as a pipe fragment (for continuous, flow-through processing

of materials). The treated substances (feed material) are supplied into the working

chamber together with small ferromagnetic elements (grinding media), which are usually

rod-shaped. They are shown in Fig. 1.2. The rotating electromagnetic field moves the

grinding media inside the working chamber. There, they collide with the particles of the

feed material. The process occurs in the whole volume of the working chamber [95]; it

is turbulent and rapid. This creates a unique combination of phenomena simultaneously

affecting the treated material [34; 35; 90]:

– alternating electric field of high intensity,

– alternating magnetic field of high intensity,

– high temperature,

– high local pressures,

– friction,

– acoustic phenomena (including ultrasounds).

2
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(a) (b)

Figure 1.1: Electromagnetic mill designed and manufactured by ELTRAF company.
(A) Diagram of EM inductor: blue — yoke, orange — coils, gray — ring stabilizing the
coils, green — tube serving as the working chamber (strictly, not a part of the inductor,

but part of the mill). (B) Inductor in casing.

Figure 1.2: Standard grinding media for the EM mill: ferromagnetic rods of 10 mm
length and about 1 mm diameter

Such principle of operation makes the electromagnetic mill a multifunctional device

which may be used in multiple branches of industry for [34; 35; 58; 90]:

– fast fine or ultra-fine grinding of solids (in dry or wet environment),

– mixing of hard granular materials,

– mixing of liquids and gases,

– production of permanent emulsions,
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– surface activation of hard materials,

– catalysing chemical reactions,

– producing active powders and compositions thereof (including mechanical alloying),

– mechanochemical synthesis of new materials,

– fluid catalytic cracking,

– modifying physical and chemical properties of substances,

– grinding and activation of fly ash, and more.

The characteristic features of the electromagnetic mill are the following:

• The intensity of the processes occurring inside the working chamber is so high

that the necessary residence time of the treated materials is in the order of several

to several tens of seconds. This is dozens to thousands of times faster than in

conventional devices [90]. Such great speed of processing provides good throughput

despite the small capacity of the working chamber (one or several litres [34; 35]).

• The mill is capable of batch or continuous processing because the working chamber

may be a closed capsule or a pipe. In the case of continuous flow of material, the

magnetic field itself keeps most of the grinding media inside the working area and

prevents them from flowing outside, together with the processed material. The

grinding elements (or their fragments) that manage to escape the working chamber

may be easily isolated from the material by means of magnetic separation [34].

What is worth noticing, many conventional devices, e.g. many mills, operate only

in batch manner, which might be a drawback for some industrial processes.

• Feed material for the EM mill might be dry granular material, moistened granular

material, slurry (mixture of powders and liquids), or liquid. Of course, each of

them may require specific supply and transport devices, but the mill itself may

operate with each of them without modifications.

• Feed material should be non-magnetic.

• When used for grinding of solids, the EM mill produces fine or ultrafine particles

(i.e., sized about hundreds or tens of microns). The size of feed material’s particles

must also be small — up to ca. 1 mm for working chamber of diameter 100 mm,

up to ca. 1.5–2 mm for chamber diameter 200 mm.

• By default, the grinding media are small steel rods of length about 10–15 mm and

diameter about 1–2 mm [94; 110]. Different sizes or shapes of grinding media may

be used to match the input or target particle size, or other particle parameters.

For example, bigger grinding media or mixes of different sized elements seem to be

more suitable for coarser feed [94; 110].
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• By changing the conditions of the grinding process (such as amount of material

in the working chamber; particle residence time in the working chamber; grinding

media amount, size and shape; frequency of EM field rotation; moisture content

in feed material; etc.), the operator may influence some physico-mechanical pa-

rameters of the output particles: their size, shape, specific surface area, surface

properties, etc.

• The processed material is warmed and dried during grinding or mixing because of

the heat produced inside the working chamber. This phenomenon may be especially

useful if the produced material needs to have low moisture content (no or less

additional drying is necessary). Moreover, high temperature helps to break up the

ground particles.

• By introduction of various gases into the working chamber, the grinding or mix-

ing processes may be conducted in specific atmosphere — reducing, oxidizing or

protective — if necessary [90].

• The electromagnetic mill is relatively small, compared to conventional solutions.

Its small footprint may be a big advantage for many industrial plants. For exam-

ple, a φ100 mill (with 100 mm diameter working chamber) manufactured by EL-

TRAF company — inductor together with metal casing and cooling fans — is sized

113.5×70×115 cm (width×depth×height) and weighs 520 kg [35]. Their φ200 mill

(with 200 mm diameter working chamber) has dimensions about 1.5 times bigger

than φ100 mill and weighs 950 kg [34].

• Contrary to conventional mills, the electromagnetic mill does not include any large-

size moving parts. This provides less mechanical wear of the device and less faults,

which also means lower operating costs.

The research presented here regards a φ100 version of the EM mill [35], that is, one

with working chamber of 100 mm diameter. However, the company has also designed

and manufactured φ200 and φ320 mills. They are larger, have bigger capacity, induce

stronger magnetic field, and also consume more power [34]. They are suitable for pro-

cessing slightly coarser granular material than φ100 mills, and for higher-throughput

applications.
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1.2 Grinding systems with electromagnetic mill

1.2.1 Existing setups with EM mill

The simplest setup with EM mill involves a standalone mill operating in batch mode,

with the working chamber being a cylinder with a tight lid. This capsule is not hermetic,

but it is equipped with a pressure release valve for safety reasons [80; 114].

For continuous operation with continued material flow through the mill, the literature

reports several setups for laboratory or industrial uses. A simple solution is a tilted

EM mill, in which the feed material is sliding down the wall of the working chamber.

However, this means uncontrolled sliding speed — and in effect, no or little control over

grinding time. The fixed position also limits the available range of material through-

put [79].

Patent application [91] proposes a tilted EM mill with adjustable tilt degree. It pro-

vides some control over the material’s residence time in the working chamber. For ex-

ample, grinding of coal [87], copper compounds [97] or fly-ash [25] was performed in this

manner. However, this way it is still difficult to precisely control the speed of sliding

particles.

In patent [88], the material is falling down a vertically positioned mill chamber, which

gives even less control over grinding process. This device is mainly targeted at material

drying, and grinding plays only a secondary role there. Thus, the parameters of the

latter process are not much adjustable in this design.

The setups described above usually lack particle classification and recycle systems —

they mainly operate with open-loop flow of the material, with no re-grinding of oversized

particles. Only the solution in patent application [91] uses a sieve at mill output to

classify the desired and oversized particles; but sieves are easily clogged with material.

To overcome these limitations on grinding process control and to leverage the capabil-

ities of electromagnetic mill, an entirely new solution was proposed and patented [82]. It

is used to fine-grind dry or moist materials (but still powders) and it includes a vertically

positioned mill chamber, particle classifiers, recycle of coarse particles (to be re-ground),

underpressure material transport and a hierarchical automatic control system to ensure

best process control and optimization. This system was used for most of the research

presented in this dissertation. Its details are described in the next section.

To complement the above list of setups with EM mill, it is worth noting that the mill

may also perform wet grinding, that is, grinding of slurries — mixtures of solid and liquid
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materials, supplied with pumps. Examples of open- and closed-loop circuits (i.e., without

and with recycle of coarse material) are shown e.g. in [80, Figure 5].

1.2.2 Dry grinding circuit with electromagnetic mill

Within the mentioned SYSMEL project, a grinding system was designed, patented [82]

and built that incorporated the electromagnetic mill, a dedicated underpressure system

for material transport and classification, and a measurement and control system. The

setup is shown in Fig. 1.3–1.4 and was described in detail e.g. in [77; 111]. The system

was created to leverage the EM mill potential by providing continuous flow of material

and automatic recycle of oversize particles, for the case of dry grinding, i.e. in air or

other gaseous medium (not in liquids).

The working chamber of the EM mill is oriented vertically, with fresh feed material

and grinding media supplied from the top by means of a controllable screw feeder. The

grinding media are sustained in the mill chamber simply by magnetic force; and material

particles are suspended in the air stream supplied from the bottom. Controlling this air

stream provides regulation of residence time of the particles inside the mill. Small enough

particles are carried from the working chamber upwards, to the preliminary classifier

integrated with the mill. This element forms an internal recycle stream and prevents the

particles from exiting the mill chamber prematurely. Next, a precise particle classifier

is located; inertial-impingement classifier was employed [112], but other designs are also

possible to use. This classifier selects the particles of the desired fineness and directs them

to the cyclone, where they are separated from the transport air and collected as final

product; coarser particles are recycled (to be re-ground) and transported back to the mill

chamber in a stream of air. This recycle material is supplied to the working chamber

from the bottom, making sure that the particles come in contact with the grinding

media before they are blown upwards again. Contrary, the fresh feed is deliberately

delivered from the top. This allows the feed particles which are already small enough

to immediately leave the mill chamber, increasing mill throughput and reducing the

amount of overground (too small) particles in the final product. Additionally, water

moist may be supplied to increase moisture content in the material. This helps to

create optimal conditions in the mill chamber (e.g., size and shape of product particles,

and energetic efficiency of grinding change with moisture level). Also, safe handling of

possibly explosive dust is ensured this way.

The air flow in the system is forced by a blower mounted at the end of the installation

(near air exhaust). This makes the material be transported in underpressure, rather than

overpressure, which prevents dust escape through inevitable leaks in the piping. The air
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Figure 1.3: Diagram of dry grinding system with electromagnetic mill

Figure 1.4: Dry grinding system with electromagnetic mill built at the Silesian Uni-
versity of Technology. Rear right — EMmill and precise classifier, front right — cyclone
and transport air pipes, rear left — control cabinet for automatic control systems, front

left — power supply and control cabinet for EM mill’s inductor.
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is supplied from a single filtered intake through three streams with controllable butterfly

dampers. The main air stream keeps the material in the mill chamber. The recycle air

stream also contributes to it, and carries the coarse product of classification back to the

mill. The additional air stream allows to achieve the required air flow through the precise

classifier without having excessive flow through the mill chamber.

The electromagnetic field inductor creates significant amounts of heat during operation

and needs cooling. So, several fans are installed in the mill casing. The warm air at their

output is collected at another pipe and may be directed to the input of pneumatic

transport system. (Another controllable butterfly valve allows for mixing the warm

"recycle" air from the cooling fans with fresh air from the intake.) This heat recovery

system improves energetic efficiency of the process: it allows for even more intensive

drying of (possibly damp) input material, if necessary, and aids particle breakage in the

working chamber of the mill, as the heat accelerates this process.

The measurement system of the grinding circuit is quite extensive and covers many

quantities throughout the whole installation. Some examples include measurements

of [77; 111]:

– air speed, temperature, humidity, and pressure in several points of the pneumatic

system;

– temperature of various sections of the installation;

– electric power consumed by mill inductor;

– mass of product material in the collection tank.

Moreover, some indirect measurement methods have been developed specially for this

installation, such as:

– vibration (or acoustic) method for approximation of particle size and flow rate in

the pipeline — see Section 2.1;

– vibroacoustic assessment of the amount of material in the mill chamber [79; 81];

– evaluation of grinding media amount in the mill chamber, based on measurements

of active power generated by frequency inverter supplying the mill inductor [79];

– measurement of moisture content in feed and product material based on impedance

(surface resistance) measurement and near infrared absorption [11; 101; 102];

– computer vision analysis of material moisture (Section 2.2.1), or particle size and

other parameters of the final product [12–15].

On the other hand, there are numerous signals that act as manipulated variables in

the control system of the grinding process. These control signals are, for example:

9
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– base and output frequencies of the inverter supplying mill inductor;

– flow rate of fresh feed (controlled with the frequency setting of the inverter sup-

plying the screw feeder);

– supply of grinding media;

– openings of butterfly air dampers;

– flow of water mist moisturizing the processed material.

The long list of input signals (controlled variables as well as disturbances) and out-

put variables shows that the grinding system is a complicated plant. It appears even

more complex when taking into account very different time horizons on which the many

disturbances and setpoint changes occur. Moreover, there are other challenges, such as

nonlinear characteristics of many elements, couplings between signals and subsystems,

and the instability of material flow through the mill chamber in open-loop operation.

This instability means that without proper control of the air flow, the processed mate-

rial may easily fall onto mill bottom and clog the air inlet; or the opposite — the particles

may be immediately blown upwards, to the classifier. This complexity makes control of

the whole system a challenging task, and requires a hierarchical control system. More

details on it are given in Chapter 5.

1.3 Objective and thesis of this dissertation

The objective of the dissertation is to enhance or even enable the operation of dry grind-

ing circuit with electromagnetic mill, by: providing indirect measurement methods of

material flow rate and quality, modelling of selected system components, and developing

algorithms for control of transport air flow.

The thesis of the dissertation is formulated as follows:

Data processing algorithms, in particular indirect measurements

and experiment-based modelling, allow to monitor and control

the operation of dry grinding installation with electromagnetic mill.

1.4 Scope of the dissertation

The content of this dissertation is organized as follows:

– Chapter 2 focuses on the raw material processed in the grinding installation. Meth-

ods of measuring material flow rate, particle size and moisture content are de-

veloped and discussed. Mutual relations between material moisture and particle

classification process are also investigated.
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– Chapter 3 describes static and dynamic modelling of the inlet air flow in the grind-

ing installation. Identification experiment and the hardware used in it are also

detailed there.

– Chapter 4 presents inlet air flow simulator based on the above models, with its

design and validation procedures.

– Chapter 5 introduces the layered control system of the grinding installation and

then focuses on control of air flow. Many control schemes are designed, parametrized

and then tested using extended version of the air flow simulator.

– Chapter 6 summarizes the dissertation.

– Original contributions of the author of this thesis are listed in "Author Contribu-

tions".
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Chapter 2

Indirect Measurements of Raw

Material Features

Modern grinding systems aim at delivering high quality end product while providing

energetic efficiency. These goals require advanced automatic control systems. In turn,

they need appropriate input: measurements of various quantities. Preferably, these are

automatic online measurements, without taking samples for a laboratory analysis. The

quantities that are essential for efficient operation of grinding plants are, among others,

the ones describing the processed material — such as flow rate, but also particle size or

moisture content.

Firstly, flow rate of raw material should be known in various parts of the grinding

system. It is easy to estimate it for the fresh feed, which is usually supplied in a controlled

way (in the discussed grinding circuit, this happens through a screw feeder with controlled

rotational frequency). However, determination of material flow rate is more complicated

in other points of the installation (e.g., in recycle stream), whereas these measurements

are often essential. For example, material flow rate may affect the necessary flow rates

of transport media, moist, heat, or amount of grinding media [55]. Moreover, excessive

amounts of recycled material indicate too short grinding time and consequently, a loss

in efficiency.

Secondly, particle size of the grinding product is usually the most important factor

determining product quality, as too coarse or too small particles are of no use in the

target processes or in the following technological stages. Thus, particle size distribution

or mean size, or maximum size, etc. of the final product are valuable feedback signals

for the grinding process. On the other hand, particle size of the input material (fresh

feed or recycle stream) may be used in feed-forward manner. This allows for a priori

parametrization of the grinding process, providing further improvement in efficiency.
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Material moisture is another important parameter, in many ways [53]. Water content

in the ground material affects, e.g., the necessary grinding time and shape of produced

particles. Appropriate moisture level is also necessary for material transport within the

grinding installation: too damp powders tend to stick to the inner walls of pipes and

other elements, and too dry — pose a risk of explosion. Moreover, there might exist

some requirements on the moisture content in the final product. These demands may

arise from technological usability of the product, methods of its transport and storage,

shelf life (durability), and so on.

Some indirect methods of measuring these quantities were developed and described

in this chapter. In the case of flow rate and particle size estimation, the presented

experiments and all stages of data processing were performed solely by the author of this

dissertation. In the research on moisture measurements, the author was a member of

a bigger team. She did not develop the measurement methods themselves, but she took

part in the experiments and then in the high-level data processing. The contribution

was significant enough to include also this research topic in this dissertation.

2.1 Material flow rate and particle size

2.1.1 Existing methods of solids flow measurement

In industry, volumetric or mass flow rate of solid materials in pneumatic or free-fall

pipelines is measured in quite many ways. Some examples are shortly described below [38;

54; 71].

Impact flowmeter, the oldest and most common solution [71], operates on gravity-fed

material. The particles flow is guided to hit a slanted sensing plate. Then, load cells or

linear variable differential transformers (LVDT) measure the horizontal component of the

impact force; this way, the meter determines the instantaneous mass flow rate. Taking

into account only the horizontal component makes the measurement result insensitive

to potential material build-up on the plate. Additional advantages of the device are

easy calibration and wide measurement range. However, the contact with the material

gradually damages the sensing plate, and some periodic cleaning of the plate is also

needed [39].

Coriolis mass flow meter [36; 71] directs the material particles to a vaned wheel (mea-

suring wheel) which is constantly rotated by a motor. As a result, the particles are

accelerated to the wheel’s speed. This generates Coriolis force (proportional to material
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2.1. Material flow rate and particle size Chapter 2. Indirect Measurements

mass flow rate), observed on the motor as reaction torque. There are numerous advan-

tages of such a design: the measurements are of high accuracy, not disturbed by material

density, moisture content or inter-particle friction. The device is also rather small. The

motor part of the meter is dust-tight, unaffected by the flowing particles. However, it

is not so with the measuring wheel, so it wears from attrition. Moreover, the meter is

relatively expensive and power consuming (due to the motor operation).

Another method is to generate microwave radiation inside a pipe. Thanks to Doppler

effect, frequency and amplitude of microwaves reflected by flowing particles carry infor-

mation about material mass flow rate [69; 71; 96]. No moving parts and practically no

contact with the measured material make the sensor wear resistant. It is also relatively

small. It may be used in both free-fall and pneumatic transport systems, but some limi-

tation is that it requires metallic pipes. The mounting method is a borehole in the pipe

wall plus a welded mounting bracket; so, it is only a bit intrusive, much less than in the

case of the previous meters. It is also less expensive than them, but less accurate, too

(compared, e.g. to Coriolis flowmeters).

It is also possible to measure pipe capacitance, proportional to material concentration

inside. In combination with particle speed this produces flow rate readings [71]. To get

the speed of material flowing, two sensors are mounted within a specified distance along

the pipe, and the phase shift (so, time difference) between their readings is analysed.

These readings may show, for instance, electrical charge, generated naturally by friction

between the material and pipe walls [33; 38]. Such solution is contactless, relatively

low-cost and suited to both gravity-fed and pneumatic transport systems. On the other

hand, it is not very accurate and it involves three sensors for one flow rate measurement.

A similar method uses gamma or X-ray radiation in place of capacitive measure-

ment [5]. A radiation source is placed on the pipe and the beam is attenuated mainly by

the mass of material flowing across beam trajectory. So, the attenuation, measured by

a radiation detector mounted opposite the source, reflects particle concentration. The

method is highly accurate, contactless and non-invasive to the piping (source and detec-

tor are mounted outside the pipe, so it is not cut). However, the equipment is costly,

and ionising radiation poses a risk to the plant staff. As a result, this method is often

used only to calibrate other sensors. Furthermore, the radiation source needs a housing

(usually made of lead and steel), which is thick and heavy, and so — requires proper

support [38].
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2.1.2 Existing methods of particle size measurement

A common and accurate method of assessing particle size, that gives the whole size

distribution curve, is sieving on a set of laboratory sieves of decreasing aperture size

(sieve hole size). However, this is an offline method — it requires material sampling,

trained personnel and significant amount of time. As a result, it is rather unacceptable

for continuous monitoring of long-term grinding processes. Thus, online methods were

also developed (or semi-online, that is, ones that reguire taking material samples). Some

of them are explained below [54].

The classical laboratory setup was adopted to continuous operation by introducing

material outlet at each of the vibrating sieves in the stack [3; 44; 46]. Measuring flow

rate or, simply, the increase in weight of each fraction produces current particle size

distribution curves. Apart from the measurement, the material is separated into the

selected size fractions, which may be an advantage for some applications. The solution

is suitable for free falling material, and sieve apertures must be selected a priori. Unfor-

tunately, sieve screens require regular cleaning because they easily get clogged with the

processed material. Usually this is done automatically, by applying additional periodic

excitation –e.g. with electromagnetic vibrators or unbalanced motors [108]. However, the

initial sieve throughput remains impaired. Also, attrition causes gradual screen wearing.

A different approach involves machine vision systems, in several configurations. In

contrast to sieving, these methods are contactless and provide size distribution curves

with nearly arbitrary detail level — introducing more analysed size fractions does not

involve extra equipment. Additionally, particle shapes may be investigated, not only

sizes. However, processing of vision information requires strong computing capabilities.

One of such vision methods uses a light source and a line scan camera to observe the

shadows of individual falling particles [107]. Such measured diameters are totalized into

size distribution curves. Some difficulty is that the stream of material must be shaped

into a single layer to observe single particle shadows. This is achieved with a small

vibrating hopper. It also means that a representative sample from the whole stream

must be provided, or the flow needs to be much limited. One more drawback is the

2D only analysis, which may give false results depending on particle orientation in space

while falling (but this is the case with sieving as well). A natural extension of this setup

is a 3D system containing two pairs of light source and detector, mounted at 90 degrees

to each other [48].

Another group of vision methods use a camera with top view on static (not moving)

material sample [12–14]. A macro lens may be necessary. A light source (or, possibly,

two sources at different angles [15]) and dedicated image processing algorithms produce
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particle size distributions or other statistic measures of particle size. Particle shapes,

liberated metal content or more descriptors may also be provided. The mechanical

setup of the material sampler might be simpler here, but it is still necessary. Also, the

equipment is rather costly.

A very different principle is used in measurements of acoustic emissions caused by

particles’ impact on a metallic obstacle in the pipeline [41]. Particle size estimations

come from peak voltages measured by the acoustic emission sensor, combined with par-

ticle speed assessed by cross-correlating three electrostatic measurements. The method

may be used with pneumatic material transport. The advantages are low sensor cost,

relatively little invasiveness, and less computational requirements than in vision systems.

However, the accuracy is much affected by signal-to-noise ratio, so it is better for bigger

particles and higher speeds. Also, some calibration is needed to match the particular

type of material.

2.1.3 Proposed vibration method

The wide range of existing methods, and the list of their advantages and limitations,

indicate that no solution is universally good. In particular, it is not that easy to find

a method which is simultaneously online, contactless (or wear resistant), inexpensive, and

uses equipment simple to install and use. There is still room for innovation, so an indirect

method was proposed based on vibration sensing [51; 54; 55]. It satisfies all the above

industrial requirements; however, as such, it gives only approximate results, but sufficient

for providing feedback to control loops. Additional benefit of the developed method is

simultaneous estimation of particle size and flow rate, from the same measurement data

and using many common processing stages. Besides, vibration-based measurements are

already widely used in industry (e.g. in fault detection, condition monitoring). Thus, it

should be easy to introduce one more method of this type to the, rather conservative,

industrial community.

When particle stream is transported in a pipeline, it causes vibrations dependent on

particle size, mass and speed. They are most pronounced when the material impacts

an obstacle. It may be specially introduced into some pipe cross-section, or a natural

shape of the installation may be leveraged, e.g. a place where the loose material is fed,

or falls, on top of some element or into a pipe. In general, the material, dimensions and

other properties of the element/pipe might be optimised to accordingly shape the vibra-

tion modes. The vibrations induced by impacting particles may then be measured and

processed using the numerous and well-established digital signal processing techniques.
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Many approaches were examined [51], and the most effective one is presented below; but

firstly, the test rig and experiment scenario are explained.

2.1.3.1 Experiment

A dedicated laboratory rig was assembled for this research (Fig. 2.1). It was built of two

slanted metal channels to ensure gravitational movement of loose solids. The material
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(b) Full experiment setup. "XYZ" denote accelerometer axes.

Figure 2.1: Test rig used for experiments with vibrational measurements of particle
size and material flow rate
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was supplied to the upper channel. Then the particles were sliding down and falling onto

the lower channel. At its bottom surface, close to the point of impact, an accelerometer

was mounted. Vibration was measured along Y and Z axes of the sensor (see Fig. 2.1b),

so along the channel and along the normal to its surface. Data were recorded during

material flow, and also before and after each test run, to gather noise background. The

measurements were stored on computer disk for offline processing, to enable testing

various methods. However, the same setup is also capable of online operation during

a technological process (such as grinding), if needed. Similarly, the finally developed

signal processing algorithms need very little adjustment to operate in real time.

2.1.3.2 Raw material

Loose material used in the experiment was fine-ground carbonate copper ore. The ma-

terial was sieved into four size fractions ranging from 71 µm to 1 mm (see Table 2.1).

Such choice represents a material actually used in industrial applications (e.g. grinding

systems) that are the aim of the developed measurement method. However, this involves

some difficulty: copper ore minerals are rather soft (about 2–4 in Mohs scale [92]), so

their particles may get fragmented during handling. This disturbs the initially prepared

particle size ranges.

A sample of each size fraction was supplied to the test rig in a continuous stream. This

resembled the real operating conditions in technological processes. The material was

supplied using three sizes of feeding devices, so three flow rates A, B, C were examined

for each fraction. However, the flow rates were not identical among different fractions,

due to the type of the supply method. In future research, a different device may be used

for this — e.g., a screw feeder powered through a frequency inverter — thus allowing to

achieve comparable mass flow rates for all tested material types.

Each size fraction was supplied to the test rig through each feeding device several

times to achieve reasonable duration of the recorded signals. Measured data from all

these runs, having the same particle size and flow rate settings, will be called a dataset

from now on.

Furthermore, for each material fraction and feeder type, the material was supplied to

the test rig several times (6–10) to record the total mass of the sample and its feeding

time. These were transformed into mass flow rate estimates. The average estimates for

each dataset (± sample standard deviation) are listed in Table 2.1.
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Table 2.1: Particle sizes and approximate flow rates (± sample standard deviation)
used in the experiment

Size fraction
Particle size [µm] Mass flow rate [kg/h]

from to A B C

fraction 1 71 100 20.5±0.3 22.6±1.0 20.6±0.1
fraction 2 100 200 34.1±0.1 41.6±0.2 43.5±0.2
fraction 3 200 500 35.4±0.1 44.4±0.2 52.2±0.2
fraction 4 500 1000 34.0±0.2 34.4±1.9 46.2±0.3

2.1.3.3 Measurement equipment

The accelerometer was a triaxial piezoelectric sensor, model M356A17 by PCB Piezotron-

ics [83]. Only two measurement axes were used: Y and Z. The sensor had measurement

range ±10 g (±98 m/s2) at peaks, more than enough for the purpose of these tests.

What is important, it provided high sensitivity, over 500 mV/g (51 mV/(m/s2)) for each

measurement axis. Also, noise floor was quite low, so the signal-to-noise ratio was very

good. Accelerometer’s frequency range was 0.4–4000 Hz and so, this range was analysed

during vibration data processing.

Apart from the sensor, the measurement system included a signal conditioning device,

necessary for the accelerometer. It was also manufactured by PCB, model 482A16. Two

of its four channels were used, with gains set to ×1 or ×10, depending on the vibration

signal amplitudes. (Gains ×1, ×10 and ×100 were available.)

The analog signals provided by the signal conditioner were digitalized using data ac-

quisition card NI-USB 6251 BNC, manufactured by National Instruments [73]. It offered

16-bit resolution and analog input ranges of ±{0.1, 0.2, 0.5, 1, 2, 5, 10} [V]; ranges ±{2,
5, 10} [V] were used. For simultaneous sampling of multiple channels, the maximum rate

was 1 MS/s (aggregate sampling rate for all channels currently in operation). Thus, in the

case of two active channels, the resultant maximum rate was 500 kS/s per channel. This

was enough to set sampling rate beyond twice the highest-frequency components in the

acquired signals, taking into account both the nature of the impact-induced vibrations

and the resonant frequency of the accelerometer [83].

2.1.3.4 Signal processing methods

Computer programs for data acquisition and signal processing were written in LabVIEW

graphical environment. The code was kept modular, allowing for re-use of the same blocks

in different parts of the algorithm.
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Processing of vibration data was performed mainly in frequency domain — namely,

using power spectral density (PSD). This allows to efficiently remove the noise, especially

wideband, as was in this case. Also, it is convenient to devise signal processing schemes

in frequency domain.

The proposed algorithm included many stages responsible for noise removal from the

recorded vibration data. Firstly, in frequency-domain characteristics of noise there were

peaks that indicated single-frequency or very narrow-band components. They came

e.g. from other devices plugged to the same power grid. This kind of disturbances could

be effectively avoided if a separate power source (e.g. a battery) was used solely for the

measurement equipment. However, this solution is not always feasible, due to extra

expenses or necessary installation and maintenance works. Thus, a signal-processing

method of removing these spectral artifacts is also desired. The mentioned peaks in

the PSD estimates were removed first, not to disturb the averaged noise characteristics

calculated further. The latter one was necessary to perform spectral subtraction — the

second part of the de-noising procedure. This stage, in turn, diminished the influence of

wideband noise on the useful signal.

After de-noising, a simple outlier detection mechanism was employed to improve relia-

bility of the data analysed further. Analogous procedure was applied also to noise data,

when calculating the representative noise characteristics for spectral subtraction.

After removing the detected noise and outliers, the PSD characteristics of useful signals

were subjected to feature extraction in various ways [51]. The results were examined for

correlation with particle size or mass flow rate of the material sample. The most promis-

ing methods are detailed in the next sections; they involve the shape of the processed

PSD curve in a specific frequency band, and a numerical index related to signal power,

that is, to the integrated PSD characteristics of the signal.

Note 1: In real conditions, with continuous size and flow rate measurements, it is

recommended to add one more stage at the end. It is some kind of averaging (lowpass-

filtering) the estimates produced from the features extracted from the characteristics.

This should improve the accuracy of flow rate and particle size estimation, as outlying

values will be removed — and the true values of the measured quantities should not

change abruptly, especially the mean particle sizes. If overlapping time segments of the

measured vibrations are used in the beginning stages, then the less probable it is that the

true values undergo sudden changes, so such final filtering is the more justified. Time

constants of these filters (or, more generally, structure and parameters of the filters)

should be adjusted to the expected dynamics of flow rate and particle size changes, so

that the outlying estimates are indeed neglected, but actual increases or decreases in the

measured quantities are captured with no excessive delay.
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Note 2: Some high-level parts of the algorithm could be modified with no harm to

the others, if needed. For example, outlier detection mechanism could be based on

different statistical measures, or the whole de-noising algorithm could be changed to

better suit particular disturbances present at the given measurement stand. In the end,

what matters the most is the cleaned and smoothened characteristics of useful signal,

that undergoes feature extraction. Nevertheless, the particular methods proposed here

were designed to be quite versatile.

All processing stages are summarized in the block diagram in Fig. 2.2. Their details

are described below.

Cropping (of raw measurements) Noise and useful signal fragments were extracted

from the raw data files. As indicated in Fig. 2.3, only the periods of stabilised flow rate

were concerned. These time intervals were omitted that correspond to starting and

finishing of supplying the material onto the test rig.
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Figure 2.3: Exemplary raw vibration signal collected in the experiments. Accelerom-
eter Z axis, material fraction 3 (200–500 µm), flow rate C.

Splitting into segments Both noise and useful vibration waveforms were split into

segments of constant length. This created handy data chunks for further processing, and

more importantly, this made the algorithm suitable for handling continuous measure-

ments, such as in the real-world applications.

The segments were 2 seconds long. This resulted in number of samples high enough

to produce good frequency resolution in further stages. Simultaneously, this was short

enough not to introduce excessive averaging of collected signal features (power spectral

density was calculated later from the whole segment). Moreover, signals of such number

of samples could be handled quickly by the processor in all subsequent calculations.
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Additionally, these 2-second windows were overlapped by 66.67%. In online measure-

ments, this would produce more frequent output of estimation result — so, faster reaction

to changes in the observed material stream — without shortening the window length,

which would decrease frequency resolution.

In general, segment length and amount of overlap may be selected to match the dy-

namics of changes in the monitored material stream. It is also recommended to set the

window length (in samples) as a power of 2, to make use of the efficient Fast Fourier

Transform in the next stage.

For data from the considered experiment, this stage of the algorithm produced about

500–1100 segments of useful signal per dataset, and more than 200 noise segments. These

numbers of items were reasonably high for averaging and other statistical treatment,

which was performed in further stages.

PSD calculation One-sided power spectral density of each segment was calculated

with Fast Fourier Transform (FFT) algorithm. Hann (Hanning) window was applied

to the signal before taking the FFT. Windowing was necessary to prevent the artifacts

otherwise introduced by discrete finite Fourier transform. Particularly, Hann window was

used because it performs well with many signal types, has quite small side lobes and,

most importantly, is zero-valued at the edges [51]. Afterwards, the window’s influence

on PSD values was removed with division by a factor: w2(i)/Lw, where w(i) is the

i-th sample of the window and Lw is the window length (here, the length of the whole

analysed signal fragment).

Cropping to 0.4–4000 Hz Only the PSD fragments corresponding to frequencies

0.4–4000 Hz were analysed further. As already mentioned in Section 2.1.3.3, this was

the accelerometer’s frequency range, so bins outside this interval carried no reliable in-

formation.

All distinct peaks removal Each noise PSD vector was cleared of all distinct peaks.

Namely, these unwanted peaks were defined as values higher than 5 times (chosen exper-

imentally) the median value in a sliding window. The window length was experimentally

selected as 10% of the whole PSD vector’s length. The removed values were replaced

with linear interpolation of values at the nearest neighbouring bins.

Finding frequent high peaks High peaks in noise PSD characteristics were identi-

fied. Namely, they were defined as values exceeding 10 times (chosen experimentally)
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the median value computed in a sliding window. Again, the window length was 10% of

the whole PSD vector’s length. These peak locations (frequency bins) were remembered

that repeated often among all noise segments, that is, in at least 20% of segments.

Noise peaks removal In useful signal characteristics, PSD values at bins identified

in the previous stage were removed as potential noise peaks. The removed PSD values

were replaced with linear interpolation of the nearest remaining ones.

Smoothening Each characteristics was smoothened to focus on the general shape

instead of particular fluctuations. The smoothening filter was weighted moving average

of length equal to 10% of the whole characteristics’ length (chosen experimentally). The

weights used were Hann window values, and the window was centered at the currently

processed bin.

Averaging Average PSD value was calculated at each frequency bin (so, it was a kind

of ensemble average). In the case of noise, all available data vectors were averaged, as the

noise was apparently stationary. (During long-term online operation of the algorithm,

rather some lowpass filtering should be used for each frequency bin — to forget the old

values and adapt to the possibly changing noise characteristics.) In the case of useful

signal, averaging was performed separately for each dataset.

Standard deviations (σ) calculation For each PSD characteristics, standard devi-

ation was calculated relative to the average defined in the previous stage. This could

be called an ensemble standard deviation, as opposed to the classical sample standard

deviation. Again, noise data were treated collectively, and useful signal data were treated

dataset-wise.

Selection based on σ PSD characteristics much different than the appropriate av-

erage were assumed as outlying and excluded from futher analysis. Namely, these were

the characteristics with standard deviation higher than 1.5 times the median σ in the

dataset, for any of the accelerometer axes. After such selection there remained about

68% of noise vectors and 72–93% of useful signal vectors, depending on the dataset.

The outlying data fragments might have been caused e.g. by accidental extra vibrations

introduced by objects or people in the neighbourhood of the test rig. In the case of

useful signal, outliers could also be due to, e.g. momentary fluctuations in flow rate of

the material.
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Spectral subtraction The prepared representative characteristics of noise was sub-

tracted bin-wise from each characteristics of useful signal. Thus, noise suppression pro-

cedure was finished.

Normalisation Each characteristics of useful signal was normalised to zero mean value

and unit standard deviation. Of course, this involved the usual averages and standard

deviations from a sample, not their ensemble versions. Note: transforming the original

characteristics to a zero-mean curve was not required by further processing steps, it only

helped to visually compare (in the plots) the curves for different signals. On the other

hand, normalisation to unit standard deviation was necessary to produce unambiguous

results later.

This stage allowed to compare the shapes rather than the values of the characteris-

tics. So, distribution of power into subsequent frequency bands (proportions between

power contained in them) could be analysed instead of specific power in each band. The

resultant curve will be called a PSD variability curve from now on.

Power index calculation Apart from the shapes, also the values of the processed

characteristics were of interest. For easy comparison of different cases, a numerical index

was derived. It was simply based on integration of the processed PSD characteristics, so

it was related to the power of the vibration signal:

JP =
1

Ts
·
N−1∑
i=0

PSD(i) , (2.1)

where: Ts — sampling period of the time-domain signal, i — frequency bin number,

N — length of PSD characteristics (total number of bins), PSD — the finally processed

version of PSD characteristics, i.e., after removing outliers, but without normalisation

(which was done in a parallel path of the whole algorithm).

What is important, previous research [51] showed that it is necessary to smoothen the

PSD estimate before calculating the power index. Power estimates calculated directly

from the unsmoothened frequency-domain characteristics did not form any apparent

relationship to particle size or flow rate of raw material.
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2.1.4 Vibration method results

2.1.4.1 Comparison of shapes of the processed PSD characteristics

When analysing the shapes of the processed characteristics, firstly, a bin-wise average

of the variability curves was examined for each dataset. These averages are plotted in

Fig. 2.4.
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Figure 2.4: PSD variability curves for vibration signals — ensemble average for each
dataset

In Z axis data for the finest material fraction, the main peak of the curve is sigificantly

shifted to higher frequencies, compared to the coarses particles’ data. This may reflect

the specific way in which such small particles were sliding down the test rig — they tended

to accumulate on the surface of the transport channel, instead of sliding freely. Probably

they were small and lightweight enough to bring into focus the adhesive forces between

the particles and the metal channel; perhaps, these were the electrostatic phenomena.

Some irregularity also occurs in the Y axis data for the most coarse material, flow

rate B. The main peak there behaves more like the peaks for finer fractions, instead

of being similar to peaks for other flow rates for the same fraction. This is the more

interesting because A and B flow rate values were very similar for this material, and

quite distinct from flow rate C (see Table 2.1). Probably the feeding device B behaved

slightly differently for this type of material and hence the modified PSD characteristics.
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These two observations are only some singularities in the locations or shapes of the

most prominent peaks in the characteristics. They do not show any universal dependen-

cies between the analysed quantities. Apart from these single features, the low frequency

range (up to about 1000 Hz) does not seem to carry much valuable information regarding

particle sizes or material flow rates. However, the higher frequency range (approximately

1200 Hz and above) could be more effective in this matter. The values at successive bins

in this range vary much, but only for coarse particles. The finer the material, the more

flat the curve. Thus, sample standard deviation was calculated from the variability

curve’s values only in the 1200–4000 Hz range, to quantify variability of the observed

PSD estimates. The results are shown in Fig. 2.5.

The mentioned sample standard deviation strongly depends on particle size, and this

relation is nearly linear (Fig. 2.5a, 2.5b). For Z axis data and significantly different

particle sizes (fractions 3 and 4), the value ranges of the standard deviations do not

overlap, so these two fractions are fully distinguishable. Also, the finest fraction can be

clearly differentiated from the next one, especially using Y axis data.

The examined standard deviations exhibit only little dependence on flow rates (Fig. 2.5c,

2.5d). This means that material flow rate is not a significant disturbance to particle size

assessment with this method, at least for the tested range of flow rate values. The mass

flow rate itself apparently does not correlate with sample standard deviation.

The measures of variability of the processed PSD estimates might be fine-tuned to

achieve best distinguishability between size fractions (least overlap of value ranges be-

tween different fractions). For example, sample standard deviation could be changed to

a different function. However, so far median absolute deviation (MAD) and sum of abso-

lute differences between consecutive samples (SAD) were tested with no effect. Namely,

SAD performed very similar to sample standard deviation, and MAD was slightly worse

than them, i.e. the range overlap between different material fractions was a bit bigger

when using MAD. Nevertheless, the option to change the function should be kept in mind

when analysing data associated with other installations or other types of raw material.

It is also possible to modify the frequency range used for statistical analysis (currently

1200–4000 Hz) — perhaps a slightly different one would give more clearly separated ma-

terial fractions. Moreover, the optimal (and even: meaningful) frequency range probably

varies with the chemical composition of the raw material; shape, size and material of the

transport installation; and maybe even with the method of raw material supply.
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(a) Standard deviation vs particle size, accelerometer Z axis
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Figure 2.5: Sample standard deviation calculated in 1200–4000 Hz range from PSD
variability curves of vibration signals.

Bottom, middle and top horizontal lines in the boxes indicate 1st, 2nd and 3rd quartiles,
respectively. Whiskers extend to the minimum and maximum values in each dataset.
In panels (A) and (B), the three boxes for each fraction are data associated with flow
rates A, B, C (from left to right), and they are horizontally centered within their

associated particle size range.
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2.1.4.2 Comparison of values of the processed PSD characteristics (power

index values)

The values of power index (2.1) compared among all datasets, plotted against particle

size, are shown in Fig. 2.6. Please note the logarithmic vertical scale of the plots, due to

widely spread index values.

71  
100 

200 
500 

1000

100

101

102

po
we

r i
nd

ex
 (l

og
 sc

ale
)

(a) Accelerometer Z axis

71  
100 

200 
500 

1000

100

101

102

po
we

r i
nd

ex
 (l

og
 sc

ale
)

(b) Accelerometer Y axis

Figure 2.6: Power index (2.1) of the vibrations, in relation to particle size.
Bottom, middle and top horizontal lines in the boxes indicate 1st, 2nd and 3rd quartiles,
respectively. Whiskers extend to the minimum and maximum values in each dataset.
The three boxes for each fraction are data associated with flow rates A, B, C (from left
to right), and they are horizontally centered within their associated particle size range.

The influence of particle size on the index values is much stronger than the influence

of flow rate, at least for their value ranges tested in this experiment. Nevertheless, the

effect of flow rate is still noticeable and it will be examined in the following plots.

30



2.1. Material flow rate and particle size Chapter 2. Indirect Measurements

The finest fraction stands out from the log-linear trend observed in data for the other

size fractions. Except for these finest particles, the fractions may be clearly distinguished

from each other, as the value ranges occupied by subsequent fractions do not overlap.

The wide spread between these ranges suggests that far narrower fractions could still be

correctly distinguished with this method. Alternatively, the sizes used in the experiment

could be discriminated even if wider range of flow rates was in use. Summarizing, if

particle sizes in the examined material range from about 100 µm up (at least to 1 mm),

the power index method alone is capable of estimating the size with good accuracy and

good resolution.

The smallest particles need to be treated with a different method. It may be, e.g. the

one just decribed (Section 2.1.4.1) that uses variability of the processed PSD in 1200–

4000 Hz range. In such a case of potentially very fine particles, a fusion of the mentioned

two methods is recommended. Firstly, the PSD variability method should be used to get

a rough estimate of particle size. If size smaller than 0.1 mm is indicated, the algorithm

should finish. Actually, for such small particles the estimation result would be of quite

good quality (unambiguous), especially when using Y axis data — see Fig. 2.5b. If

coarser particles are detected, then the estimation result should be refined with power

index method.

The plots that examine the relation between power index and material flow rate are

shown in Fig. 2.7–2.8. Figure 2.7 compares all size fractions together to give an overall

view. Again, here the vertical scale in the plots is logarithmic, due to its wide value

range. Figure 2.8 presents all size fractions individually to show more details, and the

vertical scale there is linear.

The graphs confirm the general positive correlation between mass flow rate and power

index. However, to use this index in mass flow rate estimation, particle size needs to

be known first (e.g., estimated as just explained), because it has a dominant impact on

JP values. Moreover, such flow rate estimation may only be approximate, as value ranges

of power index significantly overlap between the tested flow rates. Perhaps some of this

uncertainty would be reduced if material flow rates in the experiment were more constant

(with even smaller fluctuations than estimated in Table 2.1). This hypothesis needs to

be verified in another experiment, with more accurate feeding equipment. Also, maybe

the accuracy of flow rate estimation could be improved with continuous operation of the

algorithm and averaging (lowpass filtering) many estimates on a longer time interval. It

is suggested by the inter-quartile ranges (boxes in the plots) being much narrower than

the min-max ranges (whiskers in the plots).

Some data do not follow the positive correlation of flow rate and power index — these

are all data for the smallest particles (Fig. 2.8a–2.8b) and Z axis data for the most
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coarse particles (Fig. 2.8g). Probably this was caused by some specific type of vibrations

introduced by one (or more) particular feeding devices to these particular materials. The

data could be more predictable with a different type of feeder (e.g. having more rigid

construction), but this needs to be verified.

Data for Y axis of the accelerometer (along the axis of the metal channel) have nearly

linear dependence on flow rate, and data for Z axis do not. This indicates Y axis might be

more convenient to use in flow rate estimation. That needs to be tested experimentally

on flow rate values which are more numerous and distributed in a broader range.
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Figure 2.7: Power index (2.1) of the vibrations, in relation to mass flow rate of the
material — all size fractions compared.

Bottom, middle and top horizontal lines in the boxes indicate 1st, 2nd and 3rd quartiles,
respectively. Whiskers extend to the minimum and maximum values in each dataset.
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Figure 2.8: Power index (2.1) of the vibrations, in relation to mass flow rate of the
material — individually for each size fraction.

Bottom, middle and top horizontal lines in the boxes indicate 1st, 2nd and 3rd quartiles,
respectively. Whiskers extend to the minimum and maximum values in each dataset.

2.1.5 Modification: acoustic method

An approach was also examined that used sound recordings instead of vibration mea-

surements. Experiment scenario and raw material were the same as in the experiment

with vibration method (see Section 2.1.3.2). Also, the test rig was nearly identical (see

Section 2.1.3.1), but instead of the accelerometer mounted on the bottom surface of the

transport channel, a microphone was placed nearby. It was an omnidirectional condenser
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microphone, model MM 1 by beyerdynamic, operating within 20–20,000 Hz frequency

range [7]. (A properly oriented unidirectional microphone could also be used to minimize

the impact of other sound sources. However, such equipment was not available at the time

of conducting this experiment. So, quiet ambient conditions were provided for the dura-

tion of the measurements.) Sound recordings were made with a handheld audio recorder,

model H4n Pro Black by Zoom. It operated at 44,100 S/s sampling rate, and analog-to-

digital conversion used 24 bits (16 bits physically with oversampling ×128) [118].

Sound processing followed the same stages as with the vibration data (Section 2.1.3.4).

The only modification was that PSD characteristics were cropped to 20–20,000 Hz inter-

val instead of 0.4–4000 Hz interval, to match the frequency range of the new sensor.

At the beginning of data processing, there were 50 fragments of background noise, and

90–326 fragments of useful signal per dataset. After removing outliers, there remained

36 noise characteristics (72% of the original number), and 74–219 characteristics of useful

signal, corresponding to 65–92% of all fragments, depending on the dataset. This was

enough to perform reliable statistic calculations.

Note: Industrial operating conditions are far from the quietness of the laboratory,

and the acoustic disturbances often are non-stationary. To effectively suppress them,

it is advisable to use two microphones (or even more, if needed). The primary one

should be placed possibly close to the material transport installation, and the other(s)

within some distance, so that they collect practically only the background noise. Then,

an adaptive filter could be used, parametrized e.g. with least mean squares algorithm,

to model the dynamic dependence between the primary and secondary microphones’

signals. (The geometrical arrangement of the microphones relative to the unwanted sound

sources would introduce some differences in times at which the disturbances reach the

primary and secondary microphones, and also in recorded sound intensities.) The filtered

background noise — so, the estimate of the disturbance at the primary microphone —

should be subtracted from the measured signal to yield an estimate of clean useful signal,

further subjected to feature extraction stage of the algorithm. Such de-noising method

was not necessary in the case of the presented laboratory measurements, so it was not

used, but it would be beneficial in real-life applications, where sound sources are multiple

and changing.

Actually, such approach could also be used with vibration data. A secondary ac-

celerometer could be mounted close to devices that generate significant vibrations and

disturb the measurements used for flow rate and particle size estimation. In the case

of the considered grinding installation, such secondary vibration sensor could be located

e.g. near the outlet pipe from the electromagnetic mill. However, this noise filtering
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method seems more easily applicable to acoustic measurements, as the secondary micro-

phones may be placed anywhere in space, also relatively close to the primary microphone

(which gives good estimates of noise components in the primary signal). In contrast, vi-

bration sensors need to stay in contact with vibrating parts of the installation, so they

cannot be placed arbitrarily.

2.1.6 Acoustic method results

Processing results will be presented in the same way as for the vibration method. Firstly,

the shape (the variability) of the PSD characteristics will be analysed, and then the PSD

values transformed into a single-number power index (2.1).

2.1.6.1 Shapes of the processed PSD characteristics

The bin-wise averages of PSD variability curves in each dataset are shown in Fig. 2.9.

Again, variation of the curve increases with growing particle size — the same as it was

for the vibration data (see Fig. 2.4). The plot with acoustic data suggests that a suitable

frequency range for calculating statistical measures is approximately 3–20 kHz.
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Figure 2.9: PSD variability curves for acoustic signals — ensemble average for each
dataset

Sample standard deviation, sum of absolute differences and median absolute deviation

were calculated in 3–20 kHz range from each PSD variability curve of useful signal.

All these measures of variation performed very similarly, but the first two had a single

outlying result in the dataset for fraction 1, flow rate A. In contrary, MAD was able

to suppress the outlying values in this particular curve, so this time, MAD was plotted

instead of standard deviation (Fig. 2.10).

The results are very similar to the ones for vibration data (see Fig. 2.5). Firstly, the

coarser the particles, the higher the statistic measure, and the trend is close to linear.

Secondly, flow rate has little effect on the calculated statistics and there is no clear trend
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Figure 2.10: Median absolute deviation calculated in 3–20 kHz range from PSD
variability curves of acoustic signals.

Bottom, middle and top horizontal lines in the boxes indicate 1st, 2nd and 3rd quartiles,
respectively. Whiskers extend to the minimum and maximum values in each dataset. In
panel (A), the three boxes for each fraction are data associated with flow rates A, B, C
(from left to right), and they are horizontally centered within their associated particle

size range.

between them, at least for the tested range of mass flow rates. An improvement compared

to vibration method is that MAD value ranges do not overlap between different size

fractions, at least for these particular experimental results (Fig. 2.10a). However, exact

comparison of performance of these two methods is not possible, as the measurement

data presented here come from two distinct experiments (the sound and vibrations were

not measured simultaneously during the same tests, but on different days — during

similar, but not the same, test runs).

2.1.6.2 Power index values of the processed PSD characteristics

Figures 2.11 and 2.12 show power index (2.1) calculated from the acoustic data, compared

among all tested size fractions and all tested flow rates, respectively. The vertical scale

of the plots is logarithmic. Then, the relation between power index and flow rate for

individual size fractions is presented in more detail in Fig. 2.13, using linear vertical

scale.
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Figure 2.11: Power index (2.1) of the acoustic signal, in relation to particle size.
Bottom, middle and top horizontal lines in the boxes indicate 1st, 2nd and 3rd quartiles,
respectively. Whiskers extend to the minimum and maximum values in each dataset.
The three boxes for each fraction are data associated with flow rates A, B, C (from left
to right), and they are horizontally centered within their associated particle size range.

Once more, the observations are similar as in the case of vibrations (see Fig. 2.6–2.8).

A log-linear trend is again observed in the first plot, and particle sizes may be clearly

distinguished, as value ranges of power index are far from overlapping (Fig. 2.11). There

is one remarkable improvement in comparison to vibration data — this time, results for

the finest particles agree well with the overall trend. So, when using sound recordings,

particle size could be determined solely with the power index method, without using the

shape (variability) of processed PSD characteristics.

For flow rates (Fig. 2.12 and 2.13), the value ranges associated with different datasets

are not that distinct and in many cases they have significant amount of overlap — at least

for the tested range of flow rates, which was not very wide. Nevertheless, the positive

correlation between power index and flow rate is apparent for most size fractions. On

the other hand, the shape of this relation differs — it is concave for fraction 1 and

convex for fractions 2 and 3 (Fig. 2.13). The data for the coarsest particles do not follow

any monotonic relationship. However, this may be due to some specific operation of

one of the feeding devices, as similar behaviour (though, not that strong) was already

observed for the vibration signal. In general, conclusions regarding flow rate estimation

need to be verified in another experiment, with more flow rates in a broader range.
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Figure 2.12: Power index (2.1) of the acoustic signal, in relation to mass flow rate of
the material — all size fractions compared.

Bottom, middle and top horizontal lines in the boxes indicate 1st, 2nd and 3rd quartiles,
respectively. Whiskers extend to the minimum and maximum values in each dataset.
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Figure 2.13: Power index (2.1) of the acoustic signal, in relation to mass flow rate of
the material — individually for each size fraction.

Bottom, middle and top horizontal lines in the boxes indicate 1st, 2nd and 3rd quartiles,
respectively. Whiskers extend to the minimum and maximum values in each dataset.
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2.1.7 Comments and conclusions

A hypothesis was formed that particle size and flow rate of bulk material may be esti-

mated by processing of vibrations or acoustic signals generated by the moving particles.

The above findings confirmed this suggestion. Especially, results of particle size assess-

ment were much promising: they came from a fusion of two approaches, using shapes and

values of the processed PSD characteristics. This fusion improved estimation accuracy.

Flow rate approximations were also possible, though probably more coarse (the exact

results need to be verified in a new experiment).

Processing of acoustic data produced slightly better results than processing of vibra-

tions. Also, suppressing non-stationary disturbances may be easier with sound mea-

surements. However, type of measured signal needs to be selected individually for the

particular measurement case, so that the disturbances are minimized. Also, fusion of

results from these two indirect measurements is possible, and may further improve the

accuracy.

The advantage of the proposed method is simultaneous estimation of both particle size

and flow rate of bulk material, using a single sensor and even using much similar process-

ing algorithms (many stages at the beginning are common to both algorithms and so,

need to be performed only once). More sensors may be used to improve the de-noising

procedure or to perform fusion of vibration and acoustic data; but essentially, measuring

of the two quantities is possible using only one accelerometer or one microphone. Other

benefits of the method are: online operation (no need to take material samples), contact-

less working (no excessive sensor wear), inexpensive equipment, easy and non-intrusive

mounting. The drawbacks are limited accuracy, and the need to calibrate the method

to the particular type of raw material and to the specific measurement point (material

transport installation).

This research, though fruitful, appeared to be somehow preliminary. There are some

tentative conclusions to be verified on more datasets. Also, the results might be extended

in many ways. Future experiments could provide, for example:

• narrower size fractions, to verify size estimation methods proposed here;

• more ultrafine fractions (<100 µm) — especially if the method is to be used in

fine and ultrafine grinding installations — and more coarse fractions, to find the

particle size range to which the method is applicable;

• test runs using a mix of several size fractions previously examined individually, to

check if estimation results rather show the mean particle size, or maximum size, or

other quantity — this is important in many real-life measurements;
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• more flow rate values (especially higher than in this experiment, as these were quite

small), to verify the proposed methods of flow rate estimation;

• more stable (constant) flow rates, to get more reliable value ranges of the extracted

PSD features;

• other types (chemical compositions) of the raw material1 and other types (geome-

tries, compound materials) of the transport installation2, to verify if the method

is applicable universally, or only to some particular cases.

However, so far these ideas were not much explored. The topic is broad and may provide

many findings, but also it requires quite extensive experiments. Thus, advances in this

research path were postponed for the future, and the results gathered thus far were

assumed sufficient for now. The scientific effort of the author was directed to other

areas, also important to the research on EM mill installation, and equally — or even

more — developing to the author.

2.2 Moisture content

2.2.1 Indirect moisture measurements

In the grinding installation with electromagnetic mill, water content should be measured

in fresh feed and recycle material streams to then estimate the (physically unmeasurable)

total water content in the material inside the working chamber of the mill. Also, moisture

in the final product is of interest, as it may be subject to limitations imposed by the

recipient or by demands of the following technological processes. To measure water

content in these material streams, some innovative methods were proposed by the team

working in SYSMEL project. These were based on impedance measurements and near

infrared absorption [11; 101; 102] or computer vision and thermovision analysis [10]. The

author of this dissertation took part in the experiments and results analysis for the last

method mentioned, so it is shortly described below; more details may be found in the

published paper [10].

1Some work in this area, using construction sand instead of copper ore, was published by the author
of this dissertation in [54]. However, this was the first study in this topic; material supply methods were
quite simple, and the accelerometer used there operated in a much narrower frequency range. Thus, the
results should be considered preliminary.

2Some experiments with copper ore were performed on recycle and product pipes in the grinding
installation with electromagnetic mill [11]. However, the pipe walls (stainless steel, 2 mm thick) appeared
to suppress the vibrations too strongly to perform any analyses of useful signal. In such a case, a small
obstacle should be introduced into the pipe cross-section just next to the sensor placement — to amplify
the vibrations caused by particle impact — and then the experiment should be repeated.
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This research developed a contactless method for approximate measurement of mois-

ture content in granular material, for use in industrial plants, especially. The experiments

incorporated fine-ground carbonate copper ore, but most probably the same methodol-

ogy could be used also with other materials. However, calibration would be needed, that

is, acquisition and processing of a series of images showing the new material at several

different moisture levels.

2.2.1.1 Experiments

In the experiments, ground copper ore was sieved into five size fractions: 0–0.1 mm, 0.1–

0.2 mm, 0.2–0.5 mm, 0.5–1 mm and 1–2 mm. A mixture of these was also tested, with

composition detailed in Fig. 2.14. Such particle size distribution of the mixture emulated

a possible feed to the electromagnetic mill, as the developed measurement methods could

also be applied in the grinding installation.
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Figure 2.14: Composition of the mixed-size material: mass histogram (bar graph)
and particle size distribution (curve).

Source [10]: Buchczik D.; Budzan S.; Krauze O.; Wyzgolik R. Moisture determination
for fine-sized copper ore by computer vision and thermovision methods. Sensors 2023,

23, 1220. https://doi.org/10.3390/s23031220, Fig. 3.
Re-used under Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/).

All material fractions were moistened with demineralised water, to have relative mois-

ture content around 0.5, 1, 3, 5, 7, 9 and 11%. The accurate values were determined

with Radwag MA 110.R moisture analyzer [85]. This was the broadest range of moistures

possible to be tested in such conditions. At 11% relative moisture content, especially

with the coarser particle fractions, the water started to accumulate at the bottom of the

container — i.e., free (not adsorbed) moisture appeared [74] — and the sample needed

nearly continuous mixing to remain homogeneous. The moisture values used here were
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wet-based mass percentages [10, eq. (1)]:

MC =
mwater

mwet
· 100% =

mwet −mdry

mwet
· 100% , (2.2)

where m is mass and the subscripts "water", "wet" and "dry" denote, respectively, the

contained water, wet (moisturized) material and completely dried material.

After moisturizing the ore, thermovision images (in long-wavelength infrared) and

vision (color) images of all samples were taken using standard and macro lenses. Details

of the hardware setup may be found in [10], if needed — here they will be skipped for

brevity.

2.2.1.2 Image processing methods and their results

The thermograms were assessed for their mean surface temperature, under the assump-

tion of ore’s emissivity equal to 0.9. It was expected that presence of water — which

itself has high emissivity (0.95–0.98) — combined with the assumed fixed emissivity of

the sample (0.9) would modify the temperature readings even though the actual sample

temperature remained constant. However, this effect was not visible in the acquired

data [10, Sec. 4.1]. On the other hand, the thermograms showed different sample tex-

tures with increasing moisture, which was attributed to particles agglomerating more

and more [10, Fig. 12]. This could probably be leveraged by using image processing

approach on the thermal images. This is planned for the future, as well as changing the

infrared range to near, short or medium wavelength, but the latter requires preparation

of new imaging equipment.

For vision images, the processing was as follows [10, Sec. 3.4]. The images had the

white balance corrected to normalize colors in all of them. Also, a border of 150 pixels

was cropped from each side of an image in case it showed some particles which already

started to dry out (this sometimes happened near sample edges). Then, each image

was sectioned into quarters to produce more data points for analysis from each sample.

Later, two processing paths were applied. Firstly, the color images were transformed to

grayscale; i.e., pixel intensity was calculated from the R, G, B (red, green, blue) channels.

Secondly, the color images were converted from RGB to HSL (hue, saturation, lightness)

color space, and pixel saturation was extracted as a representation of color purity. Then,

median value of pixel intensity or saturation was determined for each image. For easier

analysis, the median values acquired for all the collected images were normalized (by the

maximum of them) to have the new maximum value equal to 1. The most interesting

results are compiled in Fig. 2.15–2.16; more graphs may be found in [10, Sec. 4.2]).
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The error bars in the plots represent expanded measurement uncertainties, calculated

according to [10, Appendix A].
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Figure 2.15: Median intensity of an image related to sample moisture, for different
size fractions of the ore.

Source [10]: Buchczik D.; Budzan S.; Krauze O.; Wyzgolik R. Moisture determination
for fine-sized copper ore by computer vision and thermovision methods. Sensors 2023,

23, 1220. https://doi.org/10.3390/s23031220, Fig. 17.
Re-used under Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/).

In general, median intensity of the image decreases with the increase in sample moisture

(Fig. 2.15). However, the exact values, and even the shape of the curve, vary between

material fractions, so a separate intensity-moisture model is needed for each curve (for

each size fraction). In the same time, the observed curves overlap, which means particle

size needs to be known first (to select the appropriate model) and then the moisture

content may be assessed. Fortunately, if information on the particle sizes is not known

from other sources, it may be obtained from the same image as is used for moisture

estimation, using algorithms such as [12–15].

For a single analysed fraction (apart from the finest one), intensity values are quite

similar for all moistures higher than 5%. This means that the presented method of

analysing median image intensity may be used for moisture assessment only in the range

up to about 5% (gravimetric) relative moisture. This is some limitation of the method

but still, it may be useful in practice — such moistened material resembles damp sand

used for building castles, so it is alredy a noticeable amount of moisture.

Median saturation of the image usually increases with growing moisture, but not in

the whole moisture range (Fig. 2.16). Also, measurement uncertainty is much higher

here than for the intensity. This makes median image saturation not much useful as

an indicator of copper ore moisture. Only image intensity will be used further, i.e., for

modelling intensity-vs.-moisture relationships.
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Figure 2.16: Median saturation of an image related to sample moisture, for different
size fractions of the ore.

Source [10]: Buchczik D.; Budzan S.; Krauze O.; Wyzgolik R. Moisture determination
for fine-sized copper ore by computer vision and thermovision methods. Sensors 2023,

23, 1220. https://doi.org/10.3390/s23031220, Fig. 22.
Re-used under Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/).

2.2.1.3 Models and their validation

To describe the relation between median image intensity and sample moisture, several

model structures were tested:

– linear function,

– quadratic function,

– cubic smoothing spline.

Predictor variable was the accurate value of moisture content (measured with moisture

analyzer) and response variable was the median intensity of an image. One dataset was

associated with one size fraction, so there were six datasets. Each contained four data

points per each of four moistures (around 0.5, 1, 3, 5%), in total 16 points per dataset.

The coefficients of the first two models were estimated using ordinary least squares

method. Using weighted least squares method was assumed as not feasible in this case,

as uncertainties in predictor variable were the same for all data points, and uncertainties

in response variable were all similar and also small compared to the whole signal range

(see Fig. 2.15). Higher order polynomials were also tested, but they produced excessive

ripples in-between data points and so, were not included in the following analysis. Spline

models were identified with the built-in MATLAB function fit [62]. The output of

created models is shown in Fig. 2.17, and some measures of goodness of fit are listed in

Table 2.2. These quality indices are:
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• root mean squared error:

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 ; (2.3)

• coefficient of determination [106]:

R2 = 1−
∑N

i=1 (yi − ŷi)2∑N
i=1 (yi − y)2

; (2.4)

• adjusted coefficient of determination [99; 116]:

R2
adj = 1−

(
1− R2

)
· N − 1

N − 1− n
, (2.5)

where: N = 16 is the number of data points in the dataset, yi — measured value of

response variable (here: median intensity of an image), ŷi — sample of model output,

y — mean value of response variable, n — number of model coefficients (not counting

the free coefficient, if present).

Table 2.2: Goodness-of-fit indices for "direct" models from Fig. 2.17, that is, similar-
ity between measured and modelled intensities of an image. ’quad.’ means quadratic

function.
Source [10]: Buchczik D.; Budzan S.; Krauze O.; Wyzgolik R. Moisture determination
for fine-sized copper ore by computer vision and thermovision methods. Sensors 2023,

23, 1220. https://doi.org/10.3390/s23031220, Table 1.
Re-used under Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/).

Measure Model
type

Size fraction [mm]
0–0.1 0.1–0.2 0.2–0.5 0.5–1 1–2 mix

number
of coeffi-
cients1

linear 1 1 1 1 1 1
quad. 2 2 2 2 2 2
spline 2.11 2.13 2.09 2.13 2.11 2.09

RMSE
(2.3)

linear 0.032 0.053 0.040 0.11 0.11 0.056
quad. 0.028 0.026 0.039 0.057 0.047 0.020
spline 0.032 0.028 0.035 0.046 0.041 0.025

R2

(2.4)

linear 0.842 0.948 0.974 0.874 0.912 0.883
quad. 0.877 0.987 0.975 0.965 0.983 0.985
spline 0.876 0.988 0.984 0.982 0.990 0.982

R2
adj

(2.5)

linear 0.831 0.944 0.972 0.865 0.906 0.875
quad. 0.858 0.985 0.971 0.960 0.980 0.983
spline 0.856 0.986 0.982 0.979 0.988 0.979

1 Excluding free coefficient. This is variable n in Equation (2.5).
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Figure 2.17: Median image intensity modelled with respect to material moisture,
for different size fractions of ore (A–F), using linear function, quadratic function and

smoothing spline models.
Source [10]: Buchczik D.; Budzan S.; Krauze O.; Wyzgolik R. Moisture determination
for fine-sized copper ore by computer vision and thermovision methods. Sensors 2023,

23, 1220. https://doi.org/10.3390/s23031220, Fig. 23.
Re-used under Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/).

46

https://doi.org/10.3390/s23031220
https://creativecommons.org/licenses/by/4.0/


2.2. Moisture content Chapter 2. Indirect Measurements

Figure 2.17 and Table 2.2 show that linear fitting is usually very rough and it per-

forms reasonably well only for a few size fractions. Quadratic and spline models provide

definitely better fit quality, as confirmed by usually much lower RMSE and much higher

coefficients of determination. Those two higher order models perform similarly good,

or the spline model is slightly better than the quadratic model, in terms of the calcu-

lated quality indices. Of course, of these two models, spline model has more parameters

and is more computationally complicated, but still this is not a very complex model.

High values of R2 and R2
adj (all above 0.8, and most of them even above 0.9) confirm

strong statistical correlation between median image intensity and moisture content in

the sample, and justify such moisture estimation method as presented here.

The models from Fig. 2.17 may be inverted to provide moisture estimates based on

median intensity of input image. Namely, for models identified as described above, an

intensity value was supplied as a query point and the corresponding moisture content

was returned as the queried value. The returned moisture values were limited to 0–5.5%

moisture range (assumed as the operating range of this measurement method) to possibly

prevent duplicated results from quadratic or spline functions. This means that when some

results were returned from the inverse model, the ones outside the mentioned range were

discarded. If afterwards only one value was left, it was — with good probability —

reasonably close to the true moisture value of the sample. If all results got discarded, then

the one closest to the 0–5.5% range was coerced to 0% or 5.5% value (which was closer)

and returned as the final result. Some warnings on possibly out-of-range measurements

could be issued then in the measurement system. Moreover, quadratic and spline models

could also produce no results. In such a case, the measurement system should also

raise some out-of-range warning, and no moisture estimate could be specified. In real-

world applications with continuous flow of measured material — at which the presented

measurement method is especially targeted — the zero-result case could be handled by

re-using the last valid moisture estimate. This should give acceptable results provided

that the measurements are taken frequently enough for the real material moisture not to

change rapidly. Similarly, if quadratic function or smoothing spline models would return

two results in range, the one closer to the last valid estimate could be picked as more

probable.

To assess the quality of such inverse models, leave-one-out validation was performed [86].

This way, data points used for model validation were not used in model training (i.e., in

model identification), which produced possibly reliable estimates of model performance

on new images. The results of this cross-validation are presented in Fig. 2.18 and Ta-

bles 2.3–2.4. Goodness-of-fit indices in Table 2.3 were calculated with the same formulas

as for the "direct" models in Table 2.2, but then, the compared signals were the measured

and modelled image intensities, and now they were the measured and modelled moisture
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values. While evaluating goodness of fit, in the cases when the model returned two re-

sults, the worse of the two errors was used in calculations. In turn, in the cases when the

model returned zero results, the value was just omitted in calculation of quality indices;

so actually, for some datasets, the models which returned zero results (see Table 2.4)

performed worse than indicated by corresponding index values in Table 2.3.

Table 2.3: Goodness-of-fit indices for inverse models from Fig. 2.18 tested in leave-
one-out manner, that is, similarity between measured and modelled moisture content

in the material. ’quad.’ means quadratic function.
Source [10]: Buchczik D.; Budzan S.; Krauze O.; Wyzgolik R. Moisture determination
for fine-sized copper ore by computer vision and thermovision methods. Sensors 2023,

23, 1220. https://doi.org/10.3390/s23031220, Table 3.
Re-used under Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/).

Measure Model
type

Size fraction [mm]
0–0.1 0.1–0.2 0.2–0.5 0.5–1 1–2 mix

RMSE
(2.3)

linear 0.72 0.45 0.31 0.74 0.61 0.65
quad. 0.72 0.35 0.33 0.62 0.38 0.80
spline 0.70 0.32 0.32 0.60 0.33 0.66

R2

(2.4)

linear 0.823 0.932 0.966 0.820 0.880 0.866
quad. 0.773 0.957 0.962 0.875 0.951 0.785
spline 0.833 0.964 0.964 0.882 0.966 0.864

R2
adj

(2.5)

linear 0.810 0.928 0.964 0.808 0.871 0.856
quad. 0.732 0.949 0.956 0.856 0.942 0.738
spline 0.805 0.959 0.958 0.862 0.961 0.842

Table 2.4: Number of cases (out of total 16 images per size fraction) when the inverse
model tested in leave-one-out manner returned: no outputs at all (0 ); only some out-
of-range outputs which were then coerced to a single value (coer.); single output (1 );

two outputs (2 ).
Source [10]: Buchczik D.; Budzan S.; Krauze O.; Wyzgolik R. Moisture determination
for fine-sized copper ore by computer vision and thermovision methods. Sensors 2023,

23, 1220. https://doi.org/10.3390/s23031220, Table 2.
Re-used under Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/).

Size fraction
Linear function Quadratic function Smoothing spline
0 coer. 1 2 0 coer. 1 2 0 coer. 1 2

0–0.1 mm 0 3 13 0 2 1 13 0 0 3 13 0
0.1–0.2 mm 0 1 15 0 2 0 14 0 0 1 15 0
0.2–0.5 mm 0 0 16 0 0 0 16 0 0 0 16 0
0.5–1 mm 0 0 16 0 0 0 12 4 0 0 16 0
1–2 mm 0 0 16 0 1 0 14 1 0 0 16 0
mixture 0 3 13 0 4 0 10 2 0 2 14 0
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Figure 2.18: Outputs of inverse models (material moisture vs image median intensity) as obtained in leave-one-out cross-validation. Source [10]:
Buchczik D.; Budzan S.; Krauze O.; Wyzgolik R. Moisture determination for fine-sized copper ore by computer vision and thermovision methods.

Sensors 2023, 23, 1220. https://doi.org/10.3390/s23031220, Fig. A1.
Re-used under Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/).
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Figure 2.18: Outputs of inverse models (material moisture vs image median intensity) as obtained in leave-one-out cross-validation. (Cont.)
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Figure 2.18: Outputs of inverse models (material moisture vs image median intensity) as obtained in leave-one-out cross-validation. (Cont.)
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Figure 2.18 and Table 2.3 suggest that fit quality depends more on the dataset than

on the model type. However, there were some datasets (e.g., for fractions 0.5–1 mm,

1–2 mm and mixture) where higher order models performed significantly better than

linear function models.

RMSE values (Table 2.3) were usually less than 0.8% moisture, which constitutes less

than 15% of the assumed measurement range of the method (i.e., 0–5.5% moisture).

This indicates the method is suitable for approximate measurement of moisture content

in carbonate copper ore (in this value range). Coefficients R2 and R2
adj were high (mostly

above 0.8, often well above 0.9), which also justifies the use of the proposed method.

Linear function is inherently not capable of returning no results or duplicate ones,

which is some advantage. However, spline models appeared equally good from this

point of view (Table 2.4), and also they sometimes had better goodness of fit, as already

mentioned. Quadratic function models performed quite poorly in this regard (Table 2.4),

producing a total of 9 "no results" cases and 7 two-value results, out of 96 images tested.

This is a serious argument for not using quadratic models in the presented moisture

estimation method, unless some new tests with more data points suggest otherwise.

All in all, smoothing spline models are recommended thus far for use in this moisture

measurement method.

2.2.1.4 Comments and conclusions

This research proposed a novel contactless method for approximate measurement of

moisture content in fine-ground carbonate copper ore, for moistures in range from about

0% to about 5–5.5% of wet-based moisture (gravimetric). Higher moisture values cannot

be differentiated with this method, unless the ore particles are very fine (below 0.1 mm).

Probably the method may be adapted to other material types, but this requires taking

additional test images of the given material at several moisture levels. The achievable

moisture measurement range may then appear different.

The method is based on simple analysis of vision images. In essence, median intensity

of the image is used, so probably even grayscale images would suffice. Some tests were

also carried out with color image saturation and with thermal images, but the former did

not produce much useful results and the latter require further research, as was detailed

above.

The proposed method has several advantages. It may be used on site, especially with

processes using continuous flow of material. The measurement is contactless. Image

proccessing algorithm is uncomplicated, so it may be carried out fast and on simple pro-

cessing units. The equipment is not very costly, and may even come without any additinal
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costs — if vision images are already used in the technological installation for estimating

other material features, such as particle size or shape, material composition, etc. Then,

moisture could be approximated very easily even from the same images.

A drawback of this measurement method is that it is sensitive to particle size (dif-

ferent calibration curve needs to be used for different particle sizes). Fortunately, this

may be assessed from the same image, using vision processing algorithms like [12–15].

Also, the method gives only approximate results, but this is because it was intended for

fast, uncomplicated estimation, even as an extra side-effect of taking other vision-based

measurements.

The image intensity–material moisture models developed here should be treated as

preliminary and approximate. To make them more accurate and more reliable, similar

experiments could be repeated several times, to obtain images of many independent

samples for each size fraction and moisture level. Also, once the optimal moisture range

for the method is known, more moisture values could be tested in this range to verify

the shapes of model curves.

2.2.2 Modelling of moisture content throughout the grinding installa-
tion

Apart from measuring water content in specific places, such as feed material inlet, product

outlet or recycle pipe, moisture content should be known — at least approximately —

throughout the whole transport system in the grinding installation. This is necessary to

ensure safe and efficient transport of the material, as too damp powders stick to pipe

walls, and too dry powders might explode (if transported simply in air, instead of special

non-flammable gaseous atmosphere). Thus, some research was conducted on modelling

the moisture content of the material in the grinding installation [53; 103]. So far, this

included the classification part of the grinding circuit, that is, the part downstream the

EM mill and its integrated preliminary classifier, up to the outlet of final product.

2.2.2.1 Test rig

The test rig used for this research is shown in Fig. 2.19. This was a fragment of the

grinding installation with EM mill (see Fig. 1.3), but the mill itself and the inlet air

pipes were disconnected from the rest of the system. The screw feeder supplying raw

material was mounted directly below the inlet to the precise classifier, which divided the

particles into two streams. Because of the lack of the mill, the coarse particles (lower

classification product) were not recycled to be re-ground, but they were simply collected
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in a tank. It was similar to the fine particles (upper classification product), also collected,

as usual.

air 
exhaust

upper 
product

fine particles

coarse 
particles

input
material

 
 

air blower

clean air

granular 
material

material 
+ air

Legend:

lower 
product

screw feeder

precise
classifier

rotary 
valves

cyclone

Figure 2.19: Diagram of the test rig for research on material moisture in classification
system of the grinding installation

A benefit of such setup was the ability to inspect the properties of the coarse mate-

rial (e.g. moisture content, particle size distribution), which would be impossible in the

standard arrangement with material recycle to the mill. On the other hand, the reason

for excluding the mill etc. from the experiment was to reduce the complexity of the

analysed system [103]. Mill operation produces significant amount of heat, which dries

the material in the working chamber. In contrary, extra moist may be supplied to the

material in the recycle stream, which then enters the mill. These phenomena should be

inspected in a separate study. All the material produced as a result of these enters the

precise classifier in a single stream of particles, and this situation was analysed in the

presented research. The material normally leaving the mill was emulated with the use

of the screw feeder. The feeder itself was controlled through a variable frequency drive,

which allowed for testing different feeding rates.

2.2.2.2 Raw material

Granular material in these experiments was again carbonate copper ore, ground to par-

ticles sized 0–1.25 mm. Such range definitely would not be exceeded in classifier input

during normal operation of the grinding installation. The ore was sieved into several size

fractions, using sieves with apertures 0.12 mm, 0.25 mm, 0.49 mm and 0.75 mm. Then,

a mixture of these fraction was composed such that fine particles were the most abundant
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— as it would be with the product of grinding in EM mill. The exact composition of the

feed is presented in Fig. 2.20.
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Figure 2.20: Particle size distribution of feed material — histogram and cumula-
tive histogram. Average values (color bar heights or points on the curve) and sample

standard deviations (error bars) from all test runs are presented.

2.2.2.3 Test scenario

In subsequent test runs, feed material was intensely mixed with demineralised water, in

amounts appropriate to achieve approximately 0.5, 1, 1.5, 2, ..., 5% relative moisture. An

illustration to give a sense of these values is as follows: relative moisture of 0.5% meant

oven-dried material (when drying bulk amounts for about 30 minutes in approximately

130 °C), 5% resulted in consistency appropriate for building sand castles. Higher moisture

levels were also tested, but such material was sticking to the inner pipe walls and was

not moving freely. Thus, these cases were not included in the analysis as being out of

operational range of the installation.

The exact water content was verified with moisture analyzer Radwag MA 110.R [85].

The device uses thermogravimetric method of moisture measurement, i.e., it thoroughly

dries a small sample of the measured material and compares its weight before and after

drying. The resultant relative mass moisture content in material is defined as:

MC =
mwater

mwet
· 100% =

mwet −mdry

mwet
· 100% . (2.6)

Symbols mwater, mwet, mdry denote masses of: water contained in the sample, wet

(damp) sample and completely dried sample. Details of the method and measurement
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uncertainties estimated for this particular type of material are described in [11, Sec-

tion IV.A.3] and [103, Section III.C]. Finally, the above sources estimated the expanded

uncertainty of moisture measurement as 0.3%, with 95% confidence level.

In the experiment, before each test run, three samples of about 8 g were taken from

different areas of the input material tank. Their moisture content was measured and the

average of the three values was used in the following analyses.

The moistened input material was supplied to the test rig using 50% and 100% of the

nominal throughput of the screw feeder, that is, using supply current of 25 Hz and 50 Hz

frequency. The portions weighed about 1.5 kg or 3 kg (in 25 Hz or 50 Hz experiment

runs, respectively). This resulted in around 3–4 minutes of continuous material flow

through the installation in each case. Material flow rates were around 15–25 kg/h or

30–45 kg/h, respectively for half- and full-throughput experiments. The exact values

differed between test runs due to the changing moisture.

Afterwards, the product material in each collection tank was carefully mixed and then

sampled. Three small samples were taken from each tank to measure the moisture con-

tent again, using the same procedure as for the feed material. A bigger sample (about

80–100 g) was collected from each container for determining particle size distribution.

The sample was oven-dried, then sieved on the mentioned 0.75 mm, 0.49 mm, 0.25 mm

and 0.12 mm screens, and each fraction was weighed. Finally, all the material was mixed

together and moistened again for use in the next test run. This way, only several kilo-

grams of copper ore were needed to perform all tests, and also, particle size distribution

of the feed was constant throughout the experiment. The mixing of the material or

supplying it with a screw feeder did not significantly disturb the feed composition (the

particles rather were not further fragmented). This was verified with statistical analysis

of size distribution curves coming from subsequent tests. Namely, correlations between

ordinal number of experiment and masses of specific size fractions were investigated.

The resultant Pearson and Spearman correlation coefficients were not statistically sig-

nificant for most size fractions, with 95% confidence level. (The details of calculation of

correlation coefficients are off the topic of this section. Instead, they may be found in

Section 2.2.3.)

Other conditions of the process were kept possibly constant. The most important

parameters were: air humidity at intake — ca. 20–28%, air temperature — ca. 18–23 °C,

and air flow rate — ca. 2600–3000 L/min, which resulted in air speed of about 7.6–

8.8 m/s through the most of the pipeline (86 mm diameter). Such values were typical

for operation of this grinding installation.
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2.2.2.4 Measurement results

The measured moisture content in lower and upper products of classification, related to

moisture in input material, is plotted in Fig. 2.21. For each test case, the single measure-

ment values were indicated, as well as their averages and sample standard deviations.

Comparison of the four data series in one chart is shown in Fig. 2.22, with only the

average moistures plotted for clarity.

The collected data show that the material was dried by the transport air when the

particles moved through the installation elements. Upper classification product was drier

because it travelled a longer distance — not only through the classifier, but also through

the cyclone and some additional piping (see Fig. 2.19). Particle size surely also affected

the final moisture level, but the most important was the effect of farther distance and

thus, longer contact with transport air.

Coarse particles were dried in a manner close to linear (in terms of relation to input

moisture). Fine particles behaved differently, and their moisture level was saturated at

about 1.6–1.7% moisture.

A quantitative model of the relationship between these input and output moistures is

desirable, as it would enable to monitor or control the water content in material through-

out the entire installation. Such model would also reduce the number of measurement

points necessary to achieve this. Two approaches were adopted: I) simple models using

straight lines, for easy usage in control algorithms [53]; II) more complex, but also more

accurate polynomial models [103].

2.2.2.5 Data processing I: straight line models

Straight line only Linear function models were estimated from the measured mois-

tures, taking into account the uncertainties in both predictor and response variables.

This was advisable as both of these had measurement errors of similar magnitudes (see

Fig. 2.21). Moreover, the uncertainty varied between data points. Thus, an ordinary

least squares algorithm was not sufficient; some weighted modification was necessary to

find optimal estimates of model coefficients. Many such methods were studied and com-

pared in a review article [17]. From among them, an iterative method [117] was chosen

because in the review paper it was assessed as accurate and convenient. It also computes

standard errors of model coefficients, not only coefficients themselves.

The iterative weighted least squares algorithm [117] was adopted for this particular

case (moisture modelling) and implemented in a MATLAB script. The algorithm had

the following features:
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(b) Upper (fine) product,
100% throughput (50 Hz)
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(c) Lower (coarse) product,
50% throughput (25 Hz)
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(d) Lower (coarse) product,
100% throughput (50 Hz)
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mean  std. dev., input material
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coarse product,   50% throughput

coarse product, 100% throughput

fine product,   50% throughput

fine product, 100% throughput

Figure 2.21: Moisture content measured in classification products in relation to mois-
ture content in input material.

Source [53]: Krauze O.; Buchczik D.; Budzan S. Measurement-based modelling of ma-
terial moisture and particle classification for control of copper ore dry grinding process.

Sensors 2021, 21, 667. https://doi.org/10.3390/s21020667, Fig. 7.
Re-used under Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/).
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Figure 2.22: Average measurements of moisture content compared between classifica-
tion products and different throughput experiments. Input moisture (gray line) drawn

for reference.

• predictor variable was the average of the three input moistures measured for each

test run;

• response variable was each single moisture measured for coarse or fine product

supplied at half or full throughput (so, there were four datasets and four straight

line models);

• the initial weights for predictor and response variables were reciprocals of sam-

ple variances calculated from the appropriate three measurements (as suggested

in [117]);

• the initial slope of the straight line model was the slope estimated with ordinary

least squares method, having predictor and response variables as defined above (as

suggested in [117]);

• errors between predictor and response variables were assumed uncorrelated, be-

cause the measurements were independent (in the other case, the algorithm may

be supplied with a desired correlation function).

The exact method equations are probably too detailed to be cited here; they may be

found in the original paper [117]. In general, the operation of the algorithm was as follows.

For each i-th data point, the algorithm combined the individual weights for predictor and

response variables into a single weightWi. Then, straight line coefficients were estimated

that minimized the sum of squared errors (or, equivalently, mean squared error) weighted

with the just mentioned Wi values. (The formula for weighted mean squared error will

be given shortly, in (2.7).) In turn, new straight line model produced new values of
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weights Wi, and so on. The algorithm stopped when slope estimates from subsequent

iterations differed by less than the selected tolerance, set to 10−10 in this case. For

moisture data from this experiment, this meant convergence after 5–7 iterations. The

finally estimated model coefficients are listed in Table 2.5 at the end of this section.

To assess goodness of fit of the model output ŷi to measured data yi, several numeric

indices were calculated (they use the final values of weightsWi and number of data points

in the dataset N):

• weighted mean squared error:

WMSE =

∑N
i=1Wi · (yi − ŷi)2∑N

i=1Wi

; (2.7)

• coefficient of determination [106]:

R2 = 1−
∑N

i=1 (yw,i − ŷw,i)2∑N
i=1 (yw,i − yw)2

= 1−
∑N

i=1Wi · (yi − ŷi)2∑N
i=1

(√
Wi · yi − yw

)2 , (2.8)

with yw,i =
√
Wi ·yi and ŷw,i =

√
Wi · ŷi being weighted outputs of the plant and of

its model, and yw = 1
N

∑N
i=1 yw,i being the mean value of the weighted measured

output3;

• adjusted coefficient of determination4 [99; 116]:

R2
adj = 1−

(
1− R2

)
· N − 1

N − 1− n
, (2.9)

where n denotes number of parameters in the model, excluding the free coefficient

(so, for the straight line model, n = 1). By accounting for the number of coef-

ficients, R2
adj allows comparing different structures of models, which will be used

shortly.

The values of these goodness-of-fit measures are collected in Table 2.5 at the end of this

section.

Moreover, 95% prediction intervals were computed, according to [28]. Prediction inter-

vals estimate the value range in which a single data point would fall with the probability

specified. Small modifications were made to adapt the formulas from [28], which use

3In equation (2.8), instead of weighted outputs yw,i and ŷw,i, also the plain unweighted yi and ŷi
could be used. According to [106], it is not obvious which of these two formulas is more proper. However,
the research presented in this thesis used the formula with weighted output signals, to include the varying
quality of the measurements also in the goodness-of-fit indices.

4The above remarks apply.
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weights in reciprocal form, to the direct-form weights Wi, as used in model estimation

algorithm [117]. The final equations were as follows:

• common factor between variances of modelling error at different data points (vari-

ance of weighted residuals) [28]:

s2e =

∑N
i=1Wi · (yi − ŷi)2

N − 2
; (2.10)

• variance of modelling error at specific data point — not present in [28], but added

here to get individual variances of unweighted residuals:

s2ei = s2e ·
1

Wi
; (2.11)

• variance of model output at i-th data point [28]:

s2ŷi =
(

1 + XT
i

(
XTWX

)−1
Xi + s2xia

2
)
· s2ei , (2.12)

where superscript T indicates matrix transpose; matrix X =


1 x1
...

...

1 xN

 collects

values of predictor variable xi; column vector Xi is [1, xi]
T; a is the final value of

the slope of the straight-line model; s2xi is sample variance of the predictor values

at i-th data point.

Note: In general, variance s2xi may vary irregularly between the data points. This

is also the case with the moisture data analysed here. This produces non-smooth

prediction intervals [28].

• prediction interval around model output at i-th data point [28]:

PIi = ŷi ± tα,N−2 · sŷi . (2.13)

where coefficient tα,N−2 is taken from Student’s t-distribution corresponding to

N − 2 degrees of freedom and significance level α (here, probability 1 − α = 0.95

was selected, so α = 0.05).

The data points, outputs of straight line models and their 95% prediction intervals

are plotted in Fig. 2.23. Moreover, Fig. 2.24 shows the corresponding weighted residu-

als [106]:

ei =
√
Wi · (yi − ŷi) . (2.14)
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(a) Fine product, 50% throughput
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(b) Fine product, 100% throughput
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(c) Coarse product, 50% throughput
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(d) Coarse product, 100% throughput
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95% prediction interval

Figure 2.23: Straight line models
fitted to moisture data
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(d) Coarse product, 100% throughput

Figure 2.24: Weighted residuals
of straight line models from Fig. 2.23

Source [53]: Krauze O.; Buchczik D.; Budzan S. Measurement-based modelling of material
moisture and particle classification for control of copper ore dry grinding process.

Sensors 2021, 21, 667. https://doi.org/10.3390/s21020667, Fig. 8 (left) and Fig. 9 (right).
Re-used under Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/).62
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The figures show that straight lines quite well approximate the moisture of coarse

product. Such model is sufficient for simple uses. However, there is some additional

nonlinear trend not included in the model, but visible in the residuals. In the case

of fine product, the patterns in residuals indicate that the straight line should rather

be saturated for high input moistures. Also, prediction interval is very wide for fine

product fed at full rate (Fig. 2.23b), and the corresponding residuals are very significant

(Fig. 2.24b). The residuals for half-throughput fine product (Fig. 2.24a) have a bit

smaller absolute values — similar to these of coarse products — but when related to

the whole moisture range achieved in the fine product, these errors become quite big.

These observations suggest that a better model structure should be searched for; first,

a saturated straight line model was identified.

Straight line saturated for high input moisture This model had three coefficients:

slope a and intercept b of the slanted line — fitted to data at lower values of predictor

variable — and the "boundary" predictor value xb above which the model output stayed

constant. To estimate these coefficients, the following algorithm was proposed that

modified the previous one used for straight line identification:

a) Choose initial value of the predictor variable that indicates the boundary between

the slanted and horizontal lines (xb). In this research, xb was initially set to

3% moisture, which was a reasonable coarse approximation (see Fig. 2.21a–2.21b).

b) Using the already introduced algorithm [117] (see pages 57–60 in this dissertation),

fit a straight line ŷi = axi + b to the subset of data points at xi ≤ xb.

c) Knowing the slope a and intercept b of this optimal straight line, calculate model

output at xb: ŷb = axb + b. This value is also the model output for inputs xi > xb,

where saturation occurs and the slanted line turns into horizontal one.

d) Compute weights Wi for data points at xi > xb in the same manner as in the

algorithm [117]. Using them and the weights already calculated for points at xi ≤
xb, determine WMSE (2.7) for the whole dataset.

e) Find optimal xb value for the given dataset: change xb and repeat steps b)–d)

above until the minimum WMSE is reached. Namely, MATLAB built-in function

fminsearch [64] was used as optimization procedure.

The final coefficients of saturated straight line models are listed in Table 2.5. They

indicate that saturation was used only with fine product datasets, but not with coarse

product datasets. Thus, the latter models were actually estimated as identical to the

previously identified straight-line models. (This turned out to produce lower WMSE

than when applying saturation at any value.)
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Goodness-of-fit measures are also specified in Table 2.5. To enable comparison of the

two model types, the same quality indices were used as for the models without saturation.

Their values confirm that the fit to fine product data was significantly better this time.

Table 2.5: Model coefficients and goodness-of-fit measures for straight line models
without and with saturation. Notation: up — upper (fine) product of classification;
low — lower (coarse) product of classification; 50% and 100% — fraction of nominal
throughput of the screw feeder; SD — standard deviation; WMSE — weighted mean
squared error (2.7); R2 — coefficient of determination, weighted version (2.8); R2

adj —
adjusted coefficient of determination, weighted version (2.9); x — predictor variable
(relative moisture content in feed material [%]); y— response variable (relative moisture

content in product material [%]).
Source [53]: Krauze O.; Buchczik D.; Budzan S. Measurement-based modelling of ma-
terial moisture and particle classification for control of copper ore dry grinding process.

Sensors 2021, 21, 667. https://doi.org/10.3390/s21020667, Tables 2 and 3.
Re-used under Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/).

Model
Quantity

Dataset

type up, 50% up, 100% low , 50% low , 100%

st
ra
ig
ht

lin
e

slope a 0.2005 0.2689 0.3553 0.4994

SD of a 0.0032 0.0062 0.0040 0.0034

intercept b 0.7285 0.706 0.3935 0.2263

SD of b 0.0076 0.017 0.0086 0.0085

WMSE 0.0017 0.023 0.0037 0.0012

R2 0.9965 0.9512 0.9810 0.9985

R2
adj 0.9964 0.9496 0.9804 0.9985

sa
tu
ra
te
d
st
ra
ig
ht

lin
e

slope a 0.2408 0.437 0.3553 0.4994

SD of a 0.0072 0.011 0.0040 0.0034

intercept b 0.675 0.430 0.3935 0.2263

SD of b 0.012 0.022 0.0086 0.0085

saturation
for x ≥ ... 3.71 2.91 > 5, so does

not occur
> 5, so does
not occur

saturated
at y = ...

1.57 1.70 not
applicable

not
applicable

WMSE 0.00056 0.0025 0.0037 0.0012

R2 0.9994 0.9944 0.9810 0.9985

R2
adj 0.9993 a 0.9940 a 0.9804 b 0.9985 b

Number of model parameters used in Equation (2.9):
a n = 2, as saturation was indeed used;

b n = 1, as saturation was not actually used.

Outputs of saturated-line models, including 95% prediction intervals (2.13), are plotted

in Fig. 2.25. The corresponding weighted residuals (2.14) are shown in Fig. 2.26. For the

coarse material datasets — where saturation was not used and the models were actually
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plain straight line models — the plots would be identical to the ones in Fig. 2.23–2.24, so

these datasets were omitted now. Comparison of figures for plain and saturated straight

line models shows that the latter are better fitted to measurement data: prediction inter-

vals are narrower (especially in Fig. 2.25b), residuals have smaller amplitudes (especially

in Fig. 2.26b), and error distribution is closer to random.
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(a) Fine product, 50% throughput
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(b) Fine product, 100% throughput
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Figure 2.25: Saturated straight line
models fitted to moisture data. Plots
for coarse product were not shown as
they are identical to Fig. 2.23c–2.23d.
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(a) Fine product, 50% throughput
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(b) Fine product, 100% throughput

Figure 2.26: Weighted residuals
of saturated straight line models
from Fig. 2.25. Plots for coarse prod-
uct were not shown as they are iden-

tical to Fig. 2.24c–2.24d.

Source [53]: Krauze O.; Buchczik D.; Budzan S. Measurement-based modelling of material
moisture and particle classification for control of copper ore dry grinding process.
Sensors 2021, 21, 667. https://doi.org/10.3390/s21020667, Fig. 10 (left) and

Fig. 11 (right).
Re-used under Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/).

2.2.2.6 Data processing II: polynomial models

Polynomial models were identified using the same measurements as for the straight line

models (see Fig. 2.21). Predictor variable was the relative moisture of feed material,

averaged over the three samples taken from the feed container in each experiment run.
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Response variable was relative moisture of given classification product (fine or coarse)

under specific screw feeder throughput (half or full nominal throughput). Similar poly-

nomial models were derived in paper [103], co-authored by the author of this dissertation.

In the paper, product moisture was used as the average of three samples taken from the

material tank in one experiment run; hereby, all three individual values are used. Firstly,

this makes the data processing similar to the case with straight line models, and enables

better comparison with these models. Secondly, this provides more data points in each

set, producing more reliable estimates of model coefficients.

For each dataset, polynomial models of degrees 1–5 were identified with least squares

method. To help compare the models’ performance, e.g., Akaike Information Criterion

(AIC) may be used [2]. For least-squares estimation it may be written in the form [16,

p. 63]:

AIC = N · ln SSE
N

+ 2 · n , (2.15)

withN being the number of observations in the dataset, n—number of model parameters

(i.e., degree of polynomial plus one), SSE =
∑N

i=1 (yi − ŷi)2 — sum of squared errors,

i.e., sum of squared differences between measured moisture yi and modelled moisture ŷi.

However, especially for higher order polynomials, the ratio N :n (number of data points

versus number of parameters estimated from them) is not very high. This suggests

using second-order variant of AIC [16, p. 66], that is, AIC corrected for small sample

size N [42]:

AICc = AIC +
2 · n · (n+ 1)

N − n− 1
. (2.16)

The lowest criterion value indicates the best model structure amongst the tested ones.

All the model structures and their information criteria values will be discussed below.

Fine product, 50% throughput Outputs of models identified for this dataset and

their residuals are plotted in Fig. 2.27. The corresponding values of information criteria

are shown in Fig. 2.28.

According to AIC and AICc values (Fig. 2.28), the moistures in this dataset should

be modelled with a third order polynomial. Looking at the plots in Fig. 2.27, indeed

the higher order models produce curve shapes and residual patterns much alike the third

order model does, so there is no benefit of raising the model order beyond three. However,

the quite sharp drop of the model curve at the end of the examined predictor interval

(near 5% feed moisture) looks a bit unnatural in the context of the underlying physical

process. At higher input moistures (about 2.5–5%), the second order curve seems more

realistic. On the other hand, it is less accurate at lower input moistures (about 0–2.5%),

especially near 0%, where product moisture seems underestimated. So, perhaps these
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Figure 2.27: Polynomial models fitted to moisture data (top row), and their corre-
sponding residuals (bottom row). Dataset: fine classification product, 50% material

throughput.
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Figure 2.28: Information criteria — AIC, eq. (2.15) and AICc, eq. (2.16) — for the
polynomial models. Dataset: fine classification product, 50% material throughput.

two models should be combined:

M̂Cfine,50% =

=

−0.03587 ·MC2
in + 0.3888 ·MCin + 0.5614 , if MCin > 2.7%

−0.02711 ·MC3
in + 0.1824 ·MC2

in − 0.1114 ·MCin + 0.8530 , if MCin < 2.7% .

(2.17)

Symbol MCin denotes relative moisture of input (feed) material, and M̂C• is the modelled

product moisture in the dataset specified by the subscript. Feed moisture of about 2.7% is

where the two curves intersect, so it was selected as the boundary value between the two

cases. For such combined model, we may assume number of parameters n as the mean

between n values for 2nd and 3rd order models (n2 = 3 and n3 = 4) weighted by number
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of data points actually covered by these models (N2 and N3, where N2 +N3 = N):

n2+3 =
n2 ·N2 + n3 ·N3

N2 +N3
=

3 · 15 + 4 · 18

33
≈ 3.545 . (2.18)

Using this n value and the model outputs calculated from (2.17), the information criteria

for the combined model are: AIC = −149.1 and AICc = −148.0. These are better than

for the second order polynomials, but worse than for the third order model. Still, the

combined model structure appears the best in terms of curve shape reasonably reflecting

the underlying physical processes.

Fine product, 100% throughput Model outputs and residuals for this dataset are

shown in Fig. 2.29, and the corresponding information criteria are plotted in Fig. 2.30.
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Figure 2.29: Polynomial models fitted to moisture data (top row), and their corre-
sponding residuals (bottom row). Dataset: fine classification product, 100% material

throughput.

1 2 3 4 5
-160

-140

-120

Figure 2.30: Information criteria — AIC, eq. (2.15) and AICc, eq. (2.16) — for the
polynomial models. Dataset: fine classification product, 100% material throughput.
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For this dataset, fourth order model was suggested by information criteria, and fifth

order model was very similar (Fig. 2.30). Model coefficients were estimated as:

M̂Cfine,100% = 0.03332 ·MC4
in−0.3621 ·MC3

in+1.255 ·MC2
in−1.229 ·MCin+1.111 . (2.19)

However, the plotted model output (Fig. 2.29) is much curved upwards at both ends (near

0 and 5% feed moistures), which does not seem realistic. This is due to a small amount

of extrapolated data shown in the graphs; within the strict limits of feed moistures used

in the experiment (and these only are included in the information criteria), the model

behaves reasonably. In conclusion, it is suggested to be very cautious with the model

when feed moisture is close to 0 or 5%.

Models of second and third order were also much alike in curve shape and information

criteria values, with quadratic model slightly better of these two (and simpler, of course).

These scores were not far from the fourth order model. Near 5% feed moisture, the

quadratic function performs reasonably (it shows a small drop in product moisture, which

may not be true, but fourth order model first shows a small drop and then a sharp rise,

which may be even worse). Near 0% feed moisture, the parabolic curve has low values,

which again is more realistic than the upwards "tail" of the fourth order polynomial. So,

if important features of the model are its simple structure and sensible behaviour even

near the extremes of the operating range of feed moisture, then the small loss in accuracy

could be endured and the model should be second order:

M̂Cfine,100% = −0.08037 ·MC2
in + 0.6730 ·MCin + 0.2908 . (2.20)

Coarse product, 50% throughput The corresponding model outputs and residual

plots are shown in Fig. 2.31. Information criteria may be found in Fig. 2.32.

For this dataset, information criteria suggest 5th order polynomial (Fig. 2.32), though

its superiority over 4th order model is small. Model outputs in Fig. 2.31 shown an

undesired drop near 5% feed moisture for model of order 5, but not for order 4. So, the

latter is preferred. It was identified as:

M̂Ccoarse,50% = −0.02296 ·MC4
in + 0.2478 ·MC3

in−0.8739 ·MC2
in + 1.488 ·MCin−0.05063 .

(2.21)

If the use of the model favors simpler structures, then actually the parabolic function also

performed very well: its curve shape was completely reasonable, whereas AIC and AICc

were not much higher than for the 4th order model. So, the following could also be used:

M̂Ccoarse,50% = 0.03006 ·MC2
in + 0.2163 ·MCin + 0.4986 . (2.22)
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Figure 2.31: Polynomial models fitted to moisture data (top row), and their corre-
sponding residuals (bottom row). Dataset: coarse classification product, 50% material

throughput.
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Figure 2.32: Information criteria — AIC, eq. (2.15) and AICc, eq. (2.16) — for the
polynomial models. Dataset: coarse classification product, 50% material throughput.

Coarse product, 100% throughput Model outputs and residuals for this dataset

are illustrated in Fig. 2.33. Associated values of information criteria are shown in

Fig. 2.34.

In the last dataset, the observations form a pattern even simpler than in the previous

case, much close to a straight line (Fig. 2.33). AIC favors the fourth order model, but

AICc finds it practically equally good as second order one (Fig. 2.34), and the criterion

values differ by minimal amounts — in the whole tested range of model orders. Model

output curves in Fig. 2.33 do not seem overfitted (there is no excess curvature), and

residual patterns (in the same figure) are more random for models of order 4 and 5 than

for the other ones. Thus, for best model accuracy, fourth order polynomial should be

selected:
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M̂Ccoarse,100% = −0.01338 ·MC4
in + 0.1522 ·MC3

in−0.5717 ·MC2
in + 1.283 ·MCin−0.0905 ,

(2.23)

but usually even the linear function should suffice:

M̂Ccoarse,100% = 0.4968 ·MCin + 0.2104 . (2.24)
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Figure 2.33: Polynomial models fitted to moisture data (top row), and their corre-
sponding residuals (bottom row). Dataset: coarse classification product, 100% material

throughput.
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Figure 2.34: Information criteria — AIC, eq. (2.15) and AICc, eq. (2.16) — for the
polynomial models. Dataset: coarse classification product, 100% material throughput.
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2.2.2.7 Summary

The conducted experiments showed (Fig. 2.22) that both coarse and fine products of

classification were significantly dried, compared to the material fed to the precise clas-

sifier. (Some exception was the fine product when the feed was extremely dry — near

0.5% relative moisture content — as then the product was slightly moistened by the

humid air.) Assuming that classifier feed cannot be more moist than 5% (because other-

wise, the particles stick to the inner walls of pipes and fittings), it appeared that recycle

material (coarse product of classification) can have up to about 2–2.5% moisture, and

final product (fine particles) — up to about 1.7% moisture. If higher water content is

needed for some reason, then moisturizers need to be applied.

The product moisture-vs.-feed moisture curves have different shapes for the coarse

and fine particle streams, as these two have different capabilities of absorbing water on

their surfaces, and also, they travel different paths in the pneumatic transport system.

Product moisture is also affected by material flow rate — generally, less material gets

dried more effectively by the air, but for small input moistures (less than 1%), the effect

of material flow rate is the opposite. Summarizing, each product stream needs its own

moisture models to be identified, and they should depend on material flow rate.

Some polynomial and saturated straight line models were proposed for each examined

dataset (in Sections 2.2.2.5–2.2.2.6). More tests are required to uncover the exact effect

of material amount on product moisture; so far, separate models were identified for each

tested throughput. Also, to make the models even more accurate, some further studies

are recommended that would examine the influence of transport air parameters, such as

temperature, humidity, flow rate.

2.2.3 Investigating impact of moisture on particle classification process

While Section 2.2.2 studied how the classification equipment changed moisture content

in the material, the opposite was also true: moisture in the classified material affected

the classification process. This was observed in measurements from the same experiment

(Sections 2.2.2.1–2.2.2.3), so it was described in the same paper as cited above [53].

These findings are also summarized below.

In each experiment run, classification products were sampled and subjected to sieve

analysis (Section 2.2.2.3). This allowed to estimate the partition curves for the classifier,

indicating the mass percentage of each size fraction from feed material contained in the

lower product of classification (or in the upper product — both definitions are used in

literature) [32, p. 89–91]. Partition curve PCe for e-th experiment run has a point (degree
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of separation) PCe,i for each i-th size fraction of the material. This degree of separation

is defined as [113; 115]:

PCe,i =
mlow,e,i

mlow,e,i +mup,e,i
· 100% =

mlow,e,i

min,e,i
· 100% , (2.25)

where ms,e,i is the mass of i-th size fraction (mass of material retained on i-th sieve),

during e-th experiment run, in material stream s = {low, up, in} = {lower product, upper
product, input material}.

Partition curves were ordered by moisture of feed material entering the classifier and

plotted in Fig. 2.35. In the graphs, the XZ cross-sections show individual partition

curves (PCe,i for fixed experiment number e); and YZ cross-sections show PCe,i for fixed

i-th size fraction of the material, that is, the YZ cross-sections illustrate the influence of

moisture on degree of separation for each size fraction. They are shown in more detail in

Fig. 2.36. Degree of separation appears rather constant for coarser fractions, but slightly

grows with moisture for finer fractions.

To verify the strength of the observed relationships between feed moisture and sepa-

ration degree, two correlation coefficients were used:

• Pearson’s product–moment correlation coefficient rP, which measures linear corre-

lation between variables xi and yi, i = 1, 2, ..., N [84]:

rP(x, y) =

∑N
i=1 (xi − x̄) (yi − ȳ)√∑N

i=1 (xi − x̄)2 ·
∑N

i=1 (yi − ȳ)2
=

sxy√
sxx · syy

. (2.26)

Symbol x̄ is the mean of all xi, sxx is the sample variance of all xi, the same for ȳ

and syy; and sxy denotes the sample covariance of x and y.

• Spearman’s rank correlation coefficient rS, which measures any monotonic corre-

lation between variables [93]. Values xi are sorted in ascenting order and then

they are assigned sequential ranks rx,i so that min(xi) gets rank 1 and max(xi)

gets rank N . The same applies to the other variable y. Then, Spearman’s correla-

tion coefficient is calculated as Pearson’s correlation coefficient between the value

ranks rx, ry rather than between the x, y values themselves:

rS(x, y) = rP(rx, ry) . (2.27)

Both these coefficients take values from −1 (perfect negative correlation) to 1 (perfect

positive correlation). Value 0 means no linear/monotonic correlation. Fractional values

indicate there is some weaker (not perfect) positive or negative correlation, with higher

absolute values of rP or rS meaning stronger association between variables.
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Figure 2.35: Partition curves for classifier supplied with input material of varying
moisture content.

Source [53]: Krauze O.; Buchczik D.; Budzan S. Measurement-based modelling of ma-
terial moisture and particle classification for control of copper ore dry grinding process.

Sensors 2021, 21, 667. https://doi.org/10.3390/s21020667, Fig. 5.
Re-used under Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/).

Such obtained correlation coefficients were subjected to Student’s t-test to verify their

statistical significance [43]. Values of r = rP, rS were transformed to:

tr = r

√
N − 2

1− r2
. (2.28)

The transformed coefficients were then compared with critical value t1−α, taken from

Student’s t-distribution with N − 2 degrees of freedom and a selected level of signifi-

cance α. Then if |tr| > t1−α, it means coefficient r is statistically significant at (1 − α)

confidence level. In this research, there were N = 11 observations in each dataset, so
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Figure 2.36: YZ cross-sections of 3D plots from Fig. 2.35, i.e., degrees of separation
in relation to moisture content in input material.

Source [53]: Krauze O.; Buchczik D.; Budzan S. Measurement-based modelling of ma-
terial moisture and particle classification for control of copper ore dry grinding process.

Sensors 2021, 21, 667. https://doi.org/10.3390/s21020667, Fig. 6.
Re-used under Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/).

there were N − 2 = 9 degrees of freedom; and a commonly used value of α = 0.05 was

selected. This produced the critical value of t1−α = t95% = 2.26. Calculated values of

plain and transformed correlation coefficients, as well as results of their t-tests, are listed

in Table 2.6.

Values of correlation coefficients confirm the linear or monotonic relationships between

moisture in feed material and degree of separation, but only for finer fractions of the

material. In many cases, the identified association was strong: r• coefficient value was

about 0.8 or above, or in other words, transformed coefficient tr• was well above the

critical value. Moreover, cumulative errors were assessed as random (not systematic) [53].

So, there is high probability that the identified correlations are true. It suggests that

water makes small particles heavier or even causes agglomeration of particles, so they

behave like bigger ones when they undergo classification.

More material fractions were affected when the throughput was smaller. This may

be related to fewer collisions between the particles, so, fewer agglomerates broken by

impact.

These observations that classifier operation (partition curve) varies with material mois-

ture are important for the whole grinding process. Particle size distribution of the final

product is slightly changed (there are more fine particles). Material flow in the recycle

stream is increased, which requires many control subsystems to react. It might even
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lower the overall throughput of the installation. When the moisture-partition curve

dependencies are known, proper adjustments may be made beforehand.

Table 2.6: Measures of correlation between material moisture and degree of separation
for each particle size fraction. rP — Pearson’s correlation coefficient (2.26), rS —
Spearman’s rank correlation coefficient (2.27), trP or trS — transformed correlation
coefficient (2.28), "sig.?" — is the result statistically significant at 95% confidence

level?
Source [53]: Krauze O.; Buchczik D.; Budzan S. Measurement-based modelling of ma-
terial moisture and particle classification for control of copper ore dry grinding process.

Sensors 2021, 21, 667. https://doi.org/10.3390/s21020667, Table 1.
Re-used under Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/).

50% of nominal throughput

Particle size rP trP rP sig.? rS trS rS sig.?

0.75–1.25 mm 0.527 1.86 no 0.485 1.66 no

0.49–0.75 mm 0.246 0.761 no 0.251 0.778 no

0.25–0.49 mm 0.471 1.60 no 0.613 2.33 YES

0.12–0.25 mm 0.835 4.55 YES 0.795 3.93 YES

0–0.12 mm 0.812 4.18 YES 0.673 2.73 YES

100% of nominal throughput

Particle size rP trP rP sig.? rS trS rS sig.?

0.75–1.25 mm −0.0170 −0.0510 no −0.0183 −0.0549 no

0.49–0.75 mm −0.522 −1.83 no −0.506 −1.76 no

0.25–0.49 mm −0.335 −1.07 no −0.165 −0.502 no

0.12–0.25 mm 0.111 0.335 no 0.0276 0.0828 no

0–0.12 mm 0.864 5.15 YES 0.802 4.03 YES
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Chapter 3

Models of Clean Air Flow

Capturing and analysing behaviour of signals in inlet air streams brings many benefits.

Static and dynamic models of air pressure and flow rate (or air speed) versus positions

of air dampers may be used to:

– design and tune direct-layer algorithms for control of air flow in the three inlet

streams (main, recycle and additional);

– design and tune upper-layer algorithms for control of the key air flows in the instal-

lation: through the EM mill working chamber, through the precise classifier and

in the recycle stream;

– improve performance of air flow controllers thanks to de-coupling of control sub-

systems using pressure information;

– create a simulator of this part of pneumatic system, which will greatly reduce the

time and effort needed to test the control algorithms;

and more. This chapter presents derivation of such models, along with identification

experiment performed to collect the necessary input data. Similar research was published

firstly (in preliminary version) in [56], then in [52]. Here, the descriptions are more

detailed than in the papers.

3.1 Identification experiment

The research in this chapter was based on grinding installation with the flow of clean

air only, without raw material or grinding media. Obviously, these substances influence

the flow of air as they introduce additional pneumatic resistance to the system; however,
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it would be difficult to test everything in a single experiment. The clean air scenario

itself requires quite a long-lasting experiment, as will be explained shortly. The addition

of other variables would make it overwhelmingly long, as the duration of the experi-

ment grows exponentially then. Thus, this experiment aimed only at providing detailed

information on air flow behaviour when the dampers are moved to different positions.

Separate tests, probably done only for a limited subset of damper positions, may reveal

how these air flows are affected by:

– amount (throughput) of raw material,

– type of raw material (chemical composition, particle size, moisture content, etc.),

– amount of grinding media,

– size and shape of grinding media,

– frequency of EM field rotation.

As this list (probably still not complete) is already quite long, it is resonable to create

a "baseline" characteristics using clean air only, and then to adjust it after further mea-

surements are available. (Actually, this thesis’ author and her colleagues did a similar

thing in [37]. The paper considered how the clean air flows were affected by grinding me-

dia mass and rotational frequency. Some details of this research are given in Section 3.3.)

Moreover, a great advantage of clean air tests is that they can be done fully automat-

ically and they do not require excessive masses of raw material (which would need to be

prepared, supplied to the system and collected at the output). Thanks to these, damper

positions inspected in this experiment were quite numerous, giving a detailed overview

of the system’s behaviour.

Note: The experiments and data processing techniques described in this chapter led

to models that described collectively the behaviour of the process itself, its actuators

and sensors. The models were not divided into these three subsystems, but treated as

a whole because these sensors and actuators were going to be present also in the control

loops, and generally: always during the operation of the grinding installation. However,

if any of these elements were replaced, then it would be advisable to check the individual

characteristics of the old and new elements, and then to update the "aggregate" plant

models accordingly.

3.1.1 Test rig

To create air flow models, an identification experiment was performed on dry grind-

ing installation with electromagnetic mill (see Section 1.2.2, especially Fig. 1.3 there).
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Figure 3.1 shows the elements of the grinding circuit that were important for the iden-

tification experiment.
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Figure 3.1: Diagram of the test rig for identification of air flow models

During the experiment, the SCADA system was automatically switching between the

tested operating points, i.e., different positions of air dampers. The blower was turned

on to force the flow of air in the installation. Also, rotary valves, which are designed

to output the coarse (recycle) material and final product, were turned on to imitate the

standard operating conditions of the plant (in terms of air tightness in these places). The

EM mill with its cooling fans was switched off, so no heated air was recycled and only

fresh air was let in. Thus, the warm air recycling system is not shown in the diagram.

Also, the raw material feeder was turned off. The container for input material was

sealed with an air-tight lid, which imitated the standard situation when the pile of feed

material prevents air inflow through the screw feeder input. This is because the tests

were run on clean air only — granular material and grinding media were not present in

the installation, as was already explained above.

The input and output signals from the experiment as well as related hardware will be

detailed in the next subsections. A brief summary is the following:
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– The controlled input signals were the requested positions of the dampers.

– The measured outputs were, in the first place, centerline air velocity and relative

pressure in the three inlet air streams, as indicated in Fig. 3.1.

– Air velocity and pressure were also measured near the outlet of the installation,

but only for the sake of checking the correctness of plant operation. These values

were not used for model development.

– Furthermore, the positions actually achieved by the dampers were recorded.

– Moreover, air temperature was measured in inlet and outlet streams, and near

the air intake. Temperature was not an output of the models derived in this

research, and the main source of heat — the EM mill — was turned off during

this experiment. Thus, air temperature was nearly constant over time and it was

very similar in all the measurement points (the differences were usually up to

2 °C). Despite this, temperature was indeed measured, because it was required

for calculation of some other physical quantities, as will be explained later (see

Section 3.2.1).

3.1.2 Test scenario

The excitation signal in the experiment was defined as a series of step changes of damper

position (from closed to open and vice versa), at all possible combinations of the positions

of the two remaining dampers. A schematic representation of the design is plotted in

Fig. 3.2.

It was necessary to choose specific damper positions in such a way that all the in-

teresting behaviour (such as curvature of the static characteristics) is captured in the

experiment. On the other hand, it was reasonable to limit the number of tested damper

positions as far as possible, because each extra position could add an hour or more to

the total duration of the experiment. Thus, the specific positions for each damper were

chosen based on a preliminary experiment, detailed in Section 3.1.6.2. The positions

finally examined in the identification experiment were:

– for the main damper: {0, 10, 15, 20, 30, 40, 50, 99} % open;

– for the recycle damper: {0, 10, 15, 20, 30, 50, 99} % open;

– for the additional damper: {10, 20, 30, 40, 50, 70, 99} % open.

After each step change of requested damper position, the SCADA system recorded all

the measurements for 40 seconds, which was enough for the signals to settle down. In

the cases when step changes had big amplitude (setting a damper from 100% open to
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Figure 3.2: Schematic graph of the order of changing damper positions during identifi-
cation experiment. Firstly, the most-often changing damper ("damper 1" in the figure)
was the main damper; in the next experimental series, it was the recycle damper; and

finally, the additional damper.

some small value), the next step change was issued after 100 seconds instead of the usual

40 seconds.

Sampling period of the signals (both input and output) was 0.5 seconds, which is

normally used in the PLCs and SCADA system during the operation of this plant.

3.1.3 Actuators – butterfly air dampers

There are multiple control signals in the whole grinding installation, such as: base and

output frequencies of EM mill frequency inverter; frequency of supply current for material

feeder; switching on and off the rotary valves or cooling fans, and so on. However, for

the sake of the planned identification experiment, only the positions of air dampers were

considered as excitation signals.

The dampers are single-plane butterfly valves with double seal around the disc, labeled

PJB-U-100T3-SO-UP-C4, manufactured by Smay [89]. Their positions are controlled

with electric rotary actuators Belimo LMQ24A-SR (see Fig. 3.3 and datasheet [6]). Each

damper may be positioned in the range from 0% (fully closed) to 100% (fully open).

A full-range motion takes 2.5 s, according to electric actuator datasheet [6].

The requested position (value sent from the PLC to damper actuator) may be specified

in the system with 1% resolution. The actual position of the damper (position feedback)
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Figure 3.3: Electric actuator placed over a butterfly damper in air inlet pipe
of EM mill installation

is returned by damper actuator to the PLC with a greater resolution. This real position

is usually a bit smaller than requested, but mostly up to 1% lower (meaning "percent

open" as a unit, not as fraction of requested value) — as was observed in the experiment.

Such small deviations have little impact on the performance of the pneumatic system.

Moreover, these differences vary during damper operation — there is no fixed relationship

of actual position versus requested position of a damper. Of course, also the control

system has no direct influence on the actual valve opening, only on its requested value.

Hence, requested (not actual) damper position will be used as input or output signal in

all models and control schemes analysed in this research.

3.1.4 Air velocity and temperature transducers

Air velocity (at pipe centerline, so maximum air velocity) and temperature at the three

inlet streams were measured with Delta OHM HD2937T01 transducers (see Fig. 3.4 and

datasheet [30]).

Velocity measurement was set to "slow" response time, as is suggested for turbulent

flows in sensor documentation. This means each air speed reading was a result of two

seconds long integration of values measured in the air stream [30]. Measurement ranges

were set to 0.2...10 m/s, resulting in accuracy of ±(0.5 m/s + 3% of measurement) [30].

These were the smallest available ranges that covered all air speeds possibly encountered

during the operation of the grinding installation.

These transducers simultaneously measured air temperature in range -10...+60 °C,

with accuracy ±0.3 °C [30].
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Temperature (and humidity, which was not used here) of air near the intake was mea-

sured with Delta OHM HD4917T transducer (see Fig. 3.5 and datasheet [31]). Its oper-

ating range is −20...+80 °C, but during the experiments described here, the temperature

was between 20 and 30 °C; this meant accuracy of ±0.3 °C [31].

All air speed measurements were taken at the necessary distances downstream the

recent obstacles, which allowed for the flows to settle down (see Fig. 3.1). Namely, recycle

air velocity was measured about 1.29 m ≈ 12.6D (pipe diameters) from the recycle air

damper; main and additional air velocity — about 2.21 m ≈ 21.6D from their respective

air dampers. Recommended run-out distances were also provided, that is, the distances

to the nearest following flow obstacles (elbows or reducers): about 0.5 m ≈ 4.9D at

main and additional pipes, and about 0.4 m ≈ 3.9D at recycle pipe. (The latter pipe

was shorter than the others, so the run-in and run-out distances were necessarily smaller

than at the other pipes.)

Figure 3.4: Air speed and temper-
ature transducer mounted in air inlet

pipe in EM mill installation

Figure 3.5: Air speed and rel-
ative humidity transducer mounted
in air filter in EM mill installation

3.1.5 Pressure transducers

Underpressure in the three inlet pipes was measured with industrial differential pressure

transducers ABB 264DS (see Fig. 3.6 and datasheet [1]). As these are differential sensors,

they include two process inputs, labeled "L" and "H". The "L" inputs were connected

to the piping with short elastic tubes. The "H" inputs were left without connections,

so they were subject to atmospheric pressure. As a result, the sensors were measuring

relative pressure in the pipeline.

Sensors’ response times were rather fast: 40 ms dead time and about 130 ms time

constant [1], with no extra damping (additional damping time constant was set to zero).
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Also, physical connections did not introduce much dynamics, as the tubes were of small

length — about 20–30 cm.

Figure 3.6: Pressure transducer connected to air inlet pipe in EM mill installation

3.1.5.1 Verification of pressure readings

According to the datasheet [1], sensor’s base accuracy is ±0.075% of calibrated span,

which is very good. For the measurement range finally used in the experiment (0...8 kPa),

this would give accuracy of 6 Pa. The transducers also allow for calibrating out the zero

error in the field, which improves the quality of measurement.

However, factory calibration is valid for 5 years. The devices were manufactured in

2008, and the experiments were conducted in 2021, long after the factory calibration

expired. Thus, to verify if good accuracy is still preserved, the sensors were recalibrated

before the experiments. The process involved a climatic chamber with temperature

setpoint of 25 °C, and Druck DPI 510 precision pressure controller/calibrator. The setup

is shown in Figures 3.7 and 3.8.

The transducers were put to the climatic chamber, levelled and let for warming up.

Then, they were calibrated one after another, using the following procedure.

Each transducer was connected to the pressure source: "L" input connected to pressure

calibrator output, "H" input subject to the atmosphere. It was also plugged to a HART

circuit which included a laptop running a dedicated software from the sensor vendor

(ABB Field Information Manager). With this program, the transducer was configured

to 0 s time constant (no damping) and 0...4 kPa measurement range. (Later, this range

appeared to be too small and was modified to 0...8 kPa. Despite this, conclusions from

calibration procedure are still valid.) Then, the transducer was zero calibrated at input

pressure equal to atmospheric one. Finally, the calibrator issued underpressure of -4 kPa
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Figure 3.7: Diagram of laboratory setup used to verify pressure readings of the used
transducers

Figure 3.8: Pressure transducers inside climatic chamber

to "L" sensor input and the corresponding measurement result was read from the software

(measured values were sent digitally via HART).

The collected pressure measurements are listed in Table 3.1. They indicate that all

transducers still have good accuracy and may be used in the experiments.
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Table 3.1: Pressure calibration of ABB differential pressure transducers

Serial number 6408029152 6408029154 6408030632

Product code 264DS 264DS 264DS
GSSA1BH GSSA1BH ESSA2BH

Location additional recycle main
in installation stream stream stream

Max range ±65 kPa ±65 kPa ±16 kPa
Calibrated range (CR) 0...4 kPa 0...4 kPa 0...4 kPa

Expected reading (X) 4000 Pa 4000 Pa 4000 Pa
Actual reading (A) 3977 Pa 3970 Pa 3971 Pa
Error (E = A−X) -23 Pa -30 Pa -29 Pa

Relative error (E/CR) -0.58% CR -0.75% CR -0.72% CR

3.1.5.2 Verification of output current

With such conclusions from pressure calibration procedure, the transducers were mounted

in the grinding installation. They were placed close to the points of measurement, to keep

the connecting tubes short and thus, to prevent delays in measurements. The points of

measurement themselves were lying 10 cm upstream of air velocity measurement points,

so the air streams were settled down in these places. Transducer casings were levelled,

and this was also checked directly before each experimental series. The transducers were

zero calibrated again in these final positions.

Next, second stage of calibration was carried out, namely: verification of the output

current from the transducers, as seen by the PLC–SCADA measurement and data ac-

quisition system. In the first stage of calibration, only digital output values (transmitted

via HART) were analysed; now, the physically generated current was examined.

A HART circuit was connected to the existing electrical circuits of the grinding instal-

lation. Each pressure transducer was accessed in turn from the vendor software and its

output was artificially driven to 4, 12 and 20 mA. These correspond to the lower bound

of measurement range, half of the range, and upper bound of the range, respectively.

Values of actual output current as seen in the SCADA system were recorded and are

listed in Table 3.2. The discrepancies between the theoretical and real values are very

small — less than half percent of the range 4–20 mA (usually a lot less). The previous

assumption about good measurement accuracy is therefore finally confirmed.
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Table 3.2: Verification of output current for ABB differential pressure transducers

Sensor
location

Expected
reading (X)

Actual
reading (A)

Error
(E = A−X)

Relative
error

( E
20−4 · 100%)

additional
stream

4 mA 4.023 mA 0.023 mA 0.14%

12 mA 11.986 mA -0.014 mA -0.09%

20 mA 19.958 mA -0.042 mA -0.26%

recycle
stream

4 mA 4.014 mA 0.014 mA 0.09%

12 mA 11.977 mA -0.023 mA -0.14%

20 mA 19.940 mA -0.060 mA -0.38%

main
stream

4 mA 4.000 mA 0.000 mA 0.00%

12 mA 12.005 mA 0.005 mA 0.03%

20 mA 20.000 mA 0.000 mA 0.00%

3.1.6 Preparatory experiments

Some preliminary tests were needed to complete the configuration of measurement devices

and to select details of the experiment scenario. They will be explained in this section.

3.1.6.1 Testing signal ranges

The first preparatory experiment aimed at determining the maximum air velocity and

underpressure occurring in each point of measurement. To achieve this, appropriate

sensors were temporarily set to wide measurement ranges. Then, air dampers were set

to all combinations of open and closed positions.

The biggest damper opening in this preliminary experiment was not 100%, but slightly

below (98%) — simply because requesting the maximum value puts excessive load on

the actuator. This is probably some case of mounting of damper shaft in the actuator.

However, the operating characteristics of the valves is very flat at this end of range, so

setting the damper to nearly 100% instead of exactly 100% has practically no impact on

the measured results.

As for the "closed" state, main and recycle dampers were tested for 0% positions (fully

closed), but this value was not used for the additional damper. This is because during

normal operation of the plant, the dampers should never be closed all at once. This would

cause excessive underpressure and pose a risk of damage to the installation. Moreover,

the additional air damper is supposed to never be fully closed because the main classifier
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needs substantial air supply — bigger than the devices upstream, such as the working

chamber of the mill [76].

The subsequent damper openings and the corresponding measurements in inlet and

outlet air streams are listed in Table 3.3. Based on these results, the final measurement

ranges of sensors were selected, as specified in the same table. Each chosen measurement

range ensured that the whole recorded data interval will be covered with some safety

margin.

Table 3.3: Air velocity and pressure ranges reached in the pneumatic system of the
grinding installation. Maximum values for each signal (each column) are in bold. Ab-

breviated air stream names: m — main, r — recycle, a — additional.

Requested damper
position [% open]

Measured air
velocity [m/s]

Measured
underpressure [Pa]

m r a m r a m r a

0 0 10 0.2 0.6 0.2 6400 6400 6900

98 0 10 4.1 0.3 0.3 0 1600 2300

98 98 10 3.2 1.3 0.2 0 90 1700

0 98 10 0.4 2.4 0.2 3400 50 3900

0 98 98 0.1 0.6 4.8 100 100 30

98 98 98 1.0 0.4 4.2 0 100 30

98 0 98 1.0 0.1 4.5 0 300 30

0 0 98 0.1 0.1 5.1 150 350 40

Selected range
0.2... 0.2... 0.2... 0... 0... 0...
10 10 10 8000 8000 8000

Available ranges 0.05...1, 0.10...2,
0.20...10, 0.20...20

any from -65,000 to
+65,000

3.1.6.2 Selecting damper positions to be examined

Another preliminary test was needed to select damper positions to be used in the main

experiment. For identification purposes, the dampers should be positioned to many

values in the whole range of 0–100% open. This would allow to properly record the

nonlinearities in the dampers’ operating characteristics, which had already been noticed

during previous experiments. At the same time, the number of tested positions should be

strictly limited, because each additional position exponentially increases total duration

of the experiment. For example, if about 10 positions per damper are defined, then

introducing one more tested position of just one damper prolongs the whole experiment

by an hour, approximately.
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Previous experiments on the same installation (but with the old dampers) have shown

the approximate shapes of dampers’ operating characteristics [56]. However, the exact

positions for the identification experiment needed to be fine-tuned to match the particular

making of the new dampers. Thus, a preliminary test was performed in which the step

changes of damper positions were made on a much limited set of values. The exact

positions used were as follows:

– for the main and recycle dampers: {0, 15, 30, 50, 70, 98} % open;

– for the additional damper: {15, 30, 50, 70, 98} % open.

During the experiment, all their combinations were applied, but only in the order of

increasing damper opening. This yielded 6 · 6 · 5 = 180 step responses 40 seconds each,

so 2 hours of experiments, which is not very long.

As seen above, again, main and recycle dampers were tested for positions starting from

0% (fully closed), and for the additional damper this value was a bit higher. Moreover,

the biggest damper opening in this preliminary experiment was not 100%, but slightly

below. The reasons for this have already been explained in Section 3.1.6.1.

During this preliminary experiment, steady-state air speed and pressure were measured

after each step change of damper positions. The results were coarsely sampled operating

characteristics of the dampers. Some examples of these are shown in Fig. 3.9.

Figure 3.9: Examples of coarsely sampled static characteristics gathered in the pre-
liminary experiment

Based on these introductory results, damper positions for the main experiment were

selected as:

– for the main damper: {0, 10, 15, 20, 30, 40, 50, 99} % open;

– for the recycle damper: {0, 10, 15, 20, 30, 50, 99} % open;

– for the additional damper: {10, 20, 30, 40, 50, 70, 99} % open.
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They follow the rules already specified, ie., they provide good insight into the shape

of operating characteristics, but are as sparse as possible to limit time duration of the

experiment.

3.1.7 Experiment results

The final identification experiment was prepared and conducted as described above. As

a result, about 24 hours 40 minutes of measurements were collected (not at once, but in

three runs, about 8 hours each). The following signals were stored:

– requested positions of the main, recycle and additional dampers: xm,req, xr,req,

xa,req [% open];

– actual positions of the main, recycle and additional dampers: xm, xr, xa [% open];

– air velocities at pipe axes in main, recycle and additional streams: vm, vr, va [m/s];

– relative pressures in main, recycle and additional streams: pm, pr, pa [Pa];

– air temperatures in main, recycle and additional streams: Tm, Tr, Ta [K];

– air temperature near air inlet to the installation: Tin [K].

Exemplary fragments of the collected data are shown in Fig. 3.10.
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Figure 3.10: Exemplary step responses of air speed and relative pressure collected in
the experiments
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3.2 Measurement data processing

3.2.1 Calculation of derived quantities

The quantities measured in each inlet air stream were:

• air speed at pipe axis v [m/s],

• temperature T [K],

• relative pressure p [Pa].

They were used to derive other physical quantities needed in the modelling process1:

• Absolute pressure pabs [Pa]:

pabs = p+ patm ; (3.1)

atmospheric pressure patm was not measured during the experiments, but with

reasonable accuracy for the following modelling and estimation procedures, it was

assumed as patm = 1013 hPa.

• Air density ρ [kg/m3] [45]:

ρ =
pabs
r · T

=
pabs ·M
R · T

, (3.2)

where specific gas constant r = R/M , universal gas constantR = 8.31446 J/(mol·K),

and molar mass of air was assumed as molar mass of dry air: M = 28.97 g/mol,

since the discrepancies between dry and humid air are too small here to be of

interest.

• Dynamic viscosity of air µ [Pa·s]:

an approximation valid for temperature range -20...400 °C was used [98]:

µ = 2.791 · 10−7 · T 0.7355 . (3.3)

• Mean air speed in pipe cross-section w [m/s]:

w = c · v , (3.4)

where c is a dimensionless proportionality factor explained below.

1Derivation of most of the following quantities was covered in [52]. However, here the explanations
are more detailed, and extended with friction factor definition.
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• Proportionality factor c [–] between mean and maximum air speed in pipe cross-

section:

its value depends on the flow regime (laminar or turbulent), or, more accurately

speaking, on Reynolds number Re (defined in the following points).

– For laminar flow (Re < 2000), axial velocity profile is paraboloid and so,

c = claminar = 0.5 [105, p. 357].

– For turbulent flow (Re > 4000), axial velocity profile is flatter, so, c is higher.

It also changes with growing Reynolds number Re, or, with growing Darcy fric-

tion factor λ, which is related to Re (for definition, see the following points).

The approximate relationship is [105, eq. (6.43)]:

c =
w

v
≈ 1

1 + 1.33
√
λ

(3.5)

but it may be further simplified to a relation to Reynolds number presented

in Table 3.4 [105, p. 367].

Thus, to accurately determine c, firstly λ or Re must be known. However,

both the latter depend on w, so both firstly need c value to be specified. In

consequence, all of these quantities need to be iteratively approximated until

the algorithm converges (the details of such procedure are given in the next

point about Reynolds number).

To simplify this dependency, a constant approximation of c = cturbulent = 0.8

was chosen for turbulent flow. It was based on the fact that Reynolds num-

bers finally determined from the measured data did not exceed Re = 28, 000.

So, c for turbulent flows encountered in this part of the grinding installa-

tion should always lie in the range from about 0.79 to about 0.82, as follows

from Table 3.4; and test calculations that used c = 0.79 or c = 0.82 showed

no significant changes in Reynolds numbers, compared to Re calculated with

c = 0.8. Thus, the selected value of 0.8 appears accurate enough for these

particular experimental data.

– For transitional flow (2000 < Re < 4000), such formula for c was adopted

that defined the transition between laminar and turbulent flow in a similar

way to Darcy friction factor λ (see the following points). Namely, a weight β,

Table 3.4: Approximate relationship between proportionality factor c and Reynolds
number Re for turbulent flow. After [105]: White, Frank M. "Fluid Mechanics", 7th edi-

tion. New York: McGraw-Hill 2011, p. 367.

Re 4000 104 105 106 107 108

c = w/v 0.794 0.814 0.852 0.877 0.895 0.909
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ranging from 0 to 1, is defined that specifies how much the flow is laminar [19,

eq. (9)]:

β =
1

1 +
(

Re
2720

)9 . (3.6)

Then, the c values for laminar and turbulent flow are combined, similarly

to [19, eq. (1)]:

c = (claminar)
β · (cturbulent)1−β = 0.5β · 0.81−β . (3.7)

This function is plotted in Fig. 3.11.

As seen in the graph, function value is close to 0.5 for Reynolds numbers in

the laminar region and close to 0.8 for Reynolds numbers in the turbulent

region. This allows to use a single formula (3.7) for calculation of c values in

the whole range of Reynolds numbers.
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Figure 3.11: Ratio c between average and maximum flow velocity, adopted in this
research. Calculated from (3.7).

• Reynolds number Re [–] [105, eq. (1.24)]:

Re =
ρ · w · L

µ
, (3.8)

with L being the characteristic length. In the case of flow in circular ducts, L is

the pipe’s inner diameter D [105, Chap. 5].

Reynolds number depends on average velocity w, which must be computed from

the measured maximum velocity using the proportionality factor c, which in turn

depends on Reynolds number. So, this loop of dependencies needs to be solved

iteratively. The following algorithm was used:

a) Initialization: c = (claminar+cturbulent)/2, then initial w (3.4) and then Re (3.8)

are computed accordingly.

b) Calculate weight β (3.6) from Re.

c) Update proportionality factor c (3.7) from β.
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d) Update mean air speed w (3.4) from c.

e) Update Reynolds number Re (3.8) from w.

f) Compare the old and new estimations of Re, denoted here Reold and Renew:

if
|Renew − Reold|

Reold
≤ Retolerance , (3.9)

then finish the algorithm. Otherwise, repeat points b)–f), starting from Renew.

Value of Retolerance = 0.001 was used. This seems a reasonable accuracy (a promile

change in Re) and also, this resulted in stable (converging) algorithm.

• Darcy friction factor λ [–]:

it describes pressure losses due to friction on pipe walls.

– For laminar flow [105, eq. (6.13)],

λ = λlaminar =
64

Re
. (3.10)

– For turbulent flow, the most accurate representation of friction factor seems

to be Colebrook (or Colebrook–White) equation [22]:

1√
λ

= −2 log

(
e/D

3.7
+

2.51

Re ·
√
λ

)
. (3.11)

It incorporates the effect of pipe wall roughness on friction factor: e [m] is

roughness height of the pipe’s surface, e/D [–] is called relative roughness.

The equation is implicit in λ and so, it may be computationally demanding to

solve it. This gave rise to numerous explicit approximations discovered and

published over the years; however, also some fast and accurate algorithms

exist that iteratively solve the exact Colebrook equation (3.11). The latter

option was used in the research presented in this thesis — it was a so-called

quartic iterations algorithm published together with a ready-made MATLAB

function [21].

Values of D = 102.3 mm and e = 0.05 mm were used in this dissertation,

i.e. the normative inner pipe diameter for the so-called φ100 ventilation pipes

and recommended wall roughness for steel pipes [105, Tab. 6.1].

– Transitional flow poses some problem in terms of λ.

On the one hand, no well-grounded definitions of friction factor exist for the

range 2000 ≤ Re ≤ 4000 [105, p. 371], just because of the very nature of such

flow [70]. This is even reflected in the famous Moody chart [70] — a graphical

representation of both laminar- and turbulent-region friction factors — as no

plot lines are drawn in this transitional range.
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On the other hand, some practical applications, including modelling and sim-

ulation software, require that a value of λ is calculated for each possible set of

operating conditions. This also occurs here, in the research just discussed. So,

e.g. some interpolation method may be used to define an approximate friction

factor in the transitional region.

Such interpolation was found in [19] and was then slightly modified. The

cited paper combines several formulas for friction factor. Firstly, it weights

formulas for laminar and turbulent regions [19, eq. (1)]:

λ = (λlaminar)
β · (λturbulent)(1−β) (3.12)

Weight β was already presented in (3.6). Friction factor for laminar flow λlaminar

is the standard equation (3.10); and to get friction factor for turbulent flow

λturbulent, the paper [19] suggests a weighting between two formulas for fully

smooth and fully rough pipes, analogous to the weighting in (3.12). However,

in the research described in this thesis, λturbulent was substituted directly with

the solution of Colebrook equation (3.11). The author of this thesis assumed

that such approach would be better suited to industrial ventilation ducts (used

in the grinding installation), which have a random distribution of roughness

elements, as the author of [19] himself noticed.

Function (3.12) is asymptotic to (3.10) and (3.11) for Reynolds numbers below 2000

or above 4000, respectively (see Fig. 3.12). As such, it may be used as a single

formula for calculation of friction factors in the whole range of Reynolds numbers.
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Figure 3.12: Friction factor calculated with different formulas: for laminar flow
only (3.10), turbulent flow only (3.11) and for all flow regimes (3.12). e/D [–] is relative
pipe roughness. Note: Laminar and turbulent friction factors extend into transitional
region only for illustrative purposes — they indicate lower and upper limits for transi-

tional friction factor.
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• Volumetric flow rate Q [m3/s]:

Q = A · w , (3.13)

where A
[
m2
]
denotes the area of pipe cross-section, so A = πD2

4 .

• Mass flow rate q [kg/s]:

q = Q · ρ . (3.14)

Note: the iterative algorithm for calculation of c, w and Re is necessary only when

converting the physically measured signals v, p, T to the above derived quantities, so

only for the endpoint of each inlet pipe. Calculating the necessary quantities (as model

outputs) for other points in the installation is more straightforward, as these calculations

are already based on mass flows instead of maximum velocities. So, these mass flows

need to be iteratively determined only once (at pipe endpoints) and then, the mass

conservation law may be used.

3.2.2 Static characteristics

Several static characteristics of the inlet pipes were estimated from experimental data,

namely, steady-state mass flow of air and relative pressure in each of the three air streams,

as functions of requested positions of the three air valves: qm/r/a = f(xm,req, xr,req, xa,req)

and pm/r/a = f(xm,req, xr,req, xa,req) [52]. If needed, similar static characteristics for air

velocity or volumetric air flow may be calculated — either by using the same methodology

on appropriate input data from the experiment, or by arithmetic calculations on the mass

flow static characteristics (see Section 3.2.1).

Each static characteristics was calculated in six versions: for each air damper gradually

opened or gradually closed. These characteristics differ a bit, showing hysteresis in

damper operation. One reason for it is that the actual position of the valve, x, is slightly

different when approaching the same requested position xreq from lower or higher starting

position. Usually, the final x is lower when the valve gets closed from higher xreq1 to

lower xreq2, than when the valve is opened from some even lower xreq3 to the same

xreq2. This is visible from the x data returned by damper actuators as damper position

feedback. Some contribution to the hysteresis may also be the different positioning of

the rubber seals around the valve disc when the damper is opened or closed.

Moreover, mass flow and pressure steady states finally reached after each step change

on damper positions sometimes differ between the experiment series even if the direction

of particular step changes was the same in all considered series. This may have been

caused by slightly different actual positions of the dampers in each series, or slightly

varying underpressure generated by the air blower, or similar phenomena.
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To mitigate these effects, a seventh version of the static characteristics was also calcu-

lated, which is the arithmetic average of all the others. This type of static characteristics

is intended for uses that neglect the hysteresis.

Block diagram in Fig. 3.13 summarizes the data processing stages that lead from raw

measurement data to the static characteristics. The details of each stage are given in the

following subsections.

division into individual step responses

stream of raw measurement data

calculation of
derived quantities 

calculation of steady states

outlier detection and removal

3D interpolation

final 3D static characteristics

3D smoothening

target signal type

division into datasets

averaging
the datasets

pressure

mass flow

gains for dynamic models

calculating derivatives along each dimension

checking monotonicity

Figure 3.13: Data processing stages used to calculate all static characteristics
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3.2.2.1 Calculation of derived quantities

In the case of mass flow static characteristics, the mass flow values need to be calcu-

lated from the measurement data, as was explained in Section 3.2.1. For pressure static

charateristics, this stage is omitted as the pressures are measured directly at the plant.

3.2.2.2 Division of raw measurements into individual step responses

It is easy to differentiate between the signals associated with subsequent step changes

— a change in requested position of any damper indicates the beginning of a new step

change and step responses. For each step response, the following data were stored for

future processing:

– requested positions of the main, recycle and additional dampers: xm,req, xr,req, xa,req,

– actual positions of the main, recycle and additional dampers: xm, xr, xa,

– pressure or mass flow of air in the main, recycle and additional streams: pm, pr, pa
or qm, qr, qa,

– the damper whose position has just changed (main, recycle or additional),

– direction of this step change (up or down).

3.2.2.3 Calculation of steady states

Steady-state values of air mass flow or pressure were searched from the end of each step

response towards the beginning, with some predefined ±margins based on signal values

observed in the measured data. If signal fragment contained within such margins lasted

for at least 5 seconds, the steady-state value was calculated as the average value in that

fragment. If the fragment was too short, the step response was labeled as not reaching

its steady state and was discarded from future processing.

3.2.2.4 Division into datasets

All collected step responses of a specific output signal were sorted into six categories,

called datasets from now on, which were the basis for the further processing stages. Each

dataset contained steady-state data related to one particular damper’s position making

step changes up or down.

The output signals were mass flow of air or relative pressure in each horizontal inlet

pipe of the grinding installation: qr, qm, qa, pr, pm, pa(six signals). There were three

dampers with their requested positions stored: xr,req, xm,req, xa,req, each differentiated
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between two "directions" of step changes. This means 6 groups with 3 · 2 = 6 datasets

in each of them.

3.2.2.5 Outlier detection and removal

A manual review of plotted steady-state data revealed that some values were outlying,

being definitely too distant from their neighbours recorded at similar damper positions.

So, the following outlier detection mechanism was proposed and run separately on each

dataset:

a) Collect all data points from the dataset as an initial population.

b) Calculate the "expected" steady states — for each data point in the original

dataset:

– create a new population by excluding the considered point from the initial

population,

– based on this new population (new set of known datapoints), calculate three-

dimensional linear interpolation of the deleted data point.

Linear interpolation is very simple, but it was chosen on purpose as it creates

no excessive ripples in the resultant hypersurface.

c) Define the quality of each data point: calculate the absolute difference between the

actual steady state and its "expected", interpolated value.

As shown by the algorithm results, absolute differences seem to be a reasonable,

though simple, quality measure. To be even more effective, in the future this could

be substituted with some weighting function that takes into account the reliability

of interpolation result, e.g., number of data points used to compute the interpolated

value and their distances to the queried point.

d) Calculate a data quality threshold at n-th percentile of the above-mentioned quality

values. In this research, n = 97 was used.

e) Mark all data points with quality worse than the threshold as possible outliers.

f) Some outliers may have biased the interpolation that calculated the "expected"

values for other data points, so:

– create new initial population that contains all data points that were NOT

marked as possible outliers,

– repeat the actions from b) to e) (note: these actions should be performed on

all points from the original dataset, even on those that were already marked

as possible outliers),
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– compare the indices of possible outliers that were found in this and in previous

iteration of the algorithm.

g) Continue the search f) until:

– the indices remain the same (the algorithm converges), or,

– from iteration to iteration, the indices cycle between two sets of values.

In the latter case, the final set of outliers may be defined as intersection or union

of the two sets. The author of this thesis decided to use the more cautious option,

so to indicate all the suspicious points as outliers.

h) Delete from the original dataset the data points that were finally marked as outliers.

3.2.2.6 3D interpolation

For use in plant simulations or controller design and tuning, it was necessary to in-

terpolate the static characteristics into the range of all damper positions that may be

encountered during normal operation of the grinding installation (see Section 3.1.6.1).

So, the interpolation target was such a fine grid of damper positions where: xm,req —

from 0 to 100%, xr,req — from 0 to 100%, xa,req — from 10 to 100%, all in 1% increments.

To maximally improve the interpolation result, several preprocessing stages were in-

troduced. Firstly, the "coarse grid" of xreq (i.e., the positions from the identification

experiment) was missing some points. Some step responses did not reach steady states

due to excessive disturbances (Section 3.2.2.3). Other data points were removed as prob-

able outliers (Section 3.2.2.5). Moreover, obviously no xreq made a step up from the value

of 99%, nor a step down from the minimal position. It was advisable to restore these

data points to avoid big empty regions in the input data for interpolation. Such missing

inputs could strongly deteriorate interpolation results in these regions — especially at

xreq close to minimum and maximum, because there extrapolation must be used instead

of interpolation.

Thus, each missing data point was approximated as average value of corresponding

data points in other datasets — preferably, from the datasets associated with the same

direction of step changes; if no such data was available, then the average was computed

over all other datasets. This made the datasets nearly complete — after this procedure,

only a few data points were still missing from each dataset (only the ones that due to

excessive disturbances were not defined in any original dataset). Their values were to be

interpolated during the main interpolation stage.

The second preprocessing stage was based on the observation that all static char-

acteristics are flat for high xreq. This had been observed in preliminary experiments
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(Section 3.1.6.2) and was the reason for sparse sampling of xreq ranges for wide damper

openings: only xm,req = {50, 99}%; xr,req = {50, 99}%; xa,req = {70, 99}% were used in

the experiment. Now, the information about this flatness needed to be contained in the

hard data so that the interpolation algorithm would follow this. Otherwise, with some

interpolation methods, unnecessary ripples could occur in interpolated data in these re-

gions. So, each dataset was artificially expanded to include intermediate datapoints with

10% increments for these regions. Namely:

• xm,req = {60, 70, 80, 90}%; {xr,req, xa,req} = any of the original experimental

values;

• xr,req = {60, 70, 80, 90}%; {xm,req, xa,req} = any of the original experimental

values;

• xa,req = {80, 90}%; {xm,req, xr,req} = any of the original experimental values.

Data values at these locations were taken from 3D linear interpolation of the existing

data points.

Then, the major 3D interpolation stage was performed, calculating the approximate

static characteristics over the target fine grid of xreq. Several options for multidimensional

interpolation were tested:

• MATLAB built-in function scatteredInterpolant [67] with interpolation method:

linear, nearest neighbour or natural neighbour, combined with extrapolation method:

linear or nearest neighbour;

• radial basis functions (RBF) interpolation [20] with methods (selectable jointly for

interpolation and extrapolation): Gaussian, thinplate, cubic, multiquadrics, linear.

The last one was identical to linear interpolation with scatteredInterpolant.

Gaussian and multiquadrics methods have an adjustable scalar parameter, whose

several values were tested.

Examination of plotted interpolation results showed that for this type of input data,

thinplate RBF interpolation yielded the best output, meaning smooth hypersurfaces

and very little unnecessary ripples. Unfortunately, this method appeared to introduce

many non-monotonic areas to the produced hypersurfaces, which was unacceptable —

the real plant’s static characteristics are monotonic along each dimension, i.e., each

damper position; this means also the gains of incremental dynamic models always have

the same sign, and this directly affects the operation of control loops. So, eventually,

linear 3D interpolation was used, but is was augmented with 3D smoothening in a later

stage to get rid of sharp edges.
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3.2.2.7 Averaging the datasets

For each analysed output signal, by taking averages of the corresponding values from

all six interpolated static characteristics, a seventh static characteristics was created. It

aggregated all measured data into one characteristics per output signal.

3.2.2.8 3D smoothening

Smoothening was performed on interpolated data from each individual dataset and on

the average data as well. This provided smooth hypersurfaces which were similar to the

real-world behaviour of the plant; also, they were necessary to achieve sensible gains in

the next stage.

Smoothening in three dimensions was done with smooth3 [68], a built-in MATLAB

function. It offers a box convolution kernel of selectable size or a Gaussian kernel with

selectable standard deviation. After testing several options and examining plotted re-

sults, box kernel of size 15× 15× 15 was selected as best.

Figure 3.14 shows some examples of smoothened average characteristics. They were

used in further research, e.g., for calculation of plant gains (see next section) and in the

simulator of inlet air streams (see Chapter 4).
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Figure 3.14: Examples of averaged static characteristics in their final shape, i.e. after
3D smoothening (2D slices of 3D characteristics are presented)

3.2.2.9 Checking monotonicity

Careful review of measured steady states showed that the static characteristics of the

plant are generally* monotonic along each dimension (damper position). Of course, this

agrees with the rule of operation of butterfly dampers. Thus, processed (interpolated

and smoothened) static characteristics also needed to be monotonic, especially that this
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strongly affects the operation of feedback control loops, which will be analysed later

(Chapter 5).

The final static characteristics were checked for monotonicity and this showed that

thinplate RBF interpolation did not perform well with respect to this criterion. So,

the method was changed to 3D linear interpolation with more substantial smoothening,

which ensured monotonic hypersurfaces.

* Note: A single but notable exception was at low openings of recycle damper (about

0–15%). In many such regions, the static characteristics were not monotonic, e.g. the

recycle air flow had its minimum around 10–15% opening instead of the expected 0%.

Repeatability of this phenomenon suggests it really occurred and was not a measurement

error. This behaviour could be due to improper (not fully straight at 0% opening)

mounting of the recycle damper’s disc.

Thus, until this damper is fixed, it is recommended to limit its operating range to

15–100%, as the openings lower than 15% do not provide any new air flow values, but

instead they cause problems to the controllers (they introduce non-monotonic behaviour

to the plant). These limits will be used in the control part of this research (Chapter 5).

3.2.2.10 Calculating derivatives along each dimension

This stage does not strictly belong to the procedure of calculating static characteristics,

but is closely associated with it. For each static characteristics y = f (xr,req, xm,req, xa,req),

where y is the steady state of air mass flow or pressure at the end of a horizontal inlet

pipe, the partial derivative of this static characteristics with respect to x•,req represents

the gains of dynamic models of output signal y versus the same input x•,req. (The

dynamic models are discussed in more detail in Section 3.2.3.)

In the source code used for static characteristics calculation, the characteristics were

3D matrices of numeric values, with X, Y, Z dimensions corresponding to xr,req, xm,req,

xa,req variables; so, the mentioned partial derivatives were simply directional deriva-

tives of these 3D matrices. They were calculated with MATLAB’s built-in function

gradient [66], which numerically approximates the partial derivatives with central differ-

ences for data points in the interior of the input matrix, and with single-sided differences

for the points along the edges of the input matrix.

Such approach to gains calculation provided model gains that perfectly matched the

static characteristics. This was important to prevent discrepancies in calculations, for

instance, during simulation of plant model. This ideal match would not be achieved if
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model gains were obtained with the same procedure as was used for determining other

model parameters (Section 3.2.3).

Actually, the need to calculate model gains as derivatives of the steady-state char-

acteristics was the very reason for making these static characteristics smooth. Any

artificial ripples or edges introduced by the interpolation algorithm would only get am-

plified during numerical differentiation, producing unnatural, unrealistic variability of

gains. Thus, the interpolation method for the static characteristics was carefully chosen

(Section 3.2.2.6), and additionally, smoothening was applied (Section 3.2.2.8).

3.2.3 Dynamic models

From the point of view of plant simulation and design of air flow controllers, the dynamic

models of interest are flow and pressure responses to changes in requested damper posi-

tion. Air flow is the quantity that we need to control; pressure may be a helpful extra

signal in more advanced control schemes; and requested positions of the dampers are

the variables that may be manipulated in the installation. If needed, other models may

easily be identified using the same methodology and even the same MATLAB scripts —

for example, models with air speed or volumetric flow as outputs, or models with actual

damper positions as inputs.

The three analysed air streams are strongly coupled because of the physical pipe

interconnections — first at air intake, and then downstream from the dampers: at the

mill bottom and just below the main classifier (see Fig. 3.1). Due to these couplings,

it was decided to estimate model parameters for each combination of input and output

variables. So, for each output variable (mass flow or pressure at each horizontal pipe),

three single-input single-output (SISO) models were identified — one for each damper,

whose position served as the input. Later, these SISO models were combined to create

a three-input single-output model for each output variable; however, this is detailed in

Chapter 4 and in paper [52].

From the measured data it follows that each SISO model should have parameters

varying with positions of all dampers. So, each step response recorded in the experiment

was used to estimate the coefficients of a single "compound model", valid in the vicinity

of the operating point defined by all dampers’ positions. Moreover, these step responses

were treated as deviations from steady state, and the whole multi-input single-output

(MISO) model was composed of a static characteristics and three incremental models

for three input variables. So, the MISO model resembled a nonlinear dynamic model

linearized around specific operating points. Such model structure was convenient to
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identify and simulate, and could easily be used to tune some classic controllers or design

more advanced, model-based control schemes.

The hysteresis already mentioned in the static characteristics means that also the di-

rection of changes in damper position is important, i.e., dampers opened or closed cause

different plant behaviour. So, the measurement data were divided into six datasets that

represented each of the three dampers being gradually opened or closed (the same data

grouping was performed when calculating static characteristics). Damper position that

was changing the most frequently in an experiment series was used as model input; posi-

tions of the other two dampers only defined the operating point of the plant. Parameters

of dynamic models were identified separately for the input signal increasing or decreas-

ing. Then, also the average of these two variants was calculated for more approximate

uses that neglect the small differences between these two situations.

Specific parameters of dynamic models were obtained with a somehow similar method-

ology as the one used with static characteristics. So, block diagram of the processing

stages (Fig. 3.15) contains many operations already explained in Section 3.2.2; the new

items are described in the following subsections.

3.2.3.1 Assumed model structure

From the step responses collected in the experiment (see Fig. 3.10 for some examples)

it follows that the increments in output variable ∆Y versus increments in input variable

(damper position) ∆U may be described well enough by first or second order dynamics

with delay. So, the following structures of dynamic models were tested:

• 1st order inertia with delay:

∆Y (s)
∆U(s)

=
k

sT1 + 1
e−sT0 , (3.15)

• 2nd order system with delay:

∆Y (s)
∆U(s)

=
kω2

s2 + 2ζωs + ω2
e−sT0 ; (3.16)

• 2nd order system (without delay):

∆Y (s)
∆U(s)

=
kω2

s2 + 2ζωs + ω2
, (3.17)

with: s — Laplace variable, k — DC gain, T1 — time constant, T0 — time delay, ω —

natural (undamped) pulsation of the system, ζ — damping ratio. General second-order
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division into individual step responses

stream of raw measurement data

calculation of
derived quantities

rough estimation of model coefficients

outlier detection and removal

3D interpolation

final sets of dynamic model coefficients

target signal type

division into datasets

averaging
pairs of datasets

pressure

mass flow

refining (optimization) of model coefficients

calculation of steady states

repeating optimization for badly fit models

assumed
model

structure

3D smoothening

Figure 3.15: Data processing stages used to estimate parameters of all dynamic
models

dynamics was allowed, not only second-order inertia, because some step responses showed

a slight overshoot. Also, second order system without delay was tested in case it was

difficult for the identification algorithms to properly differentiate the effects of delay and

two time constants.

The transfer functions were defined in Laplace domain, not in discrete domain, because

the former form is extremely convenient to use: it may be directly used in continuous-

time simulation of the plant; it allows for effortless changes in sampling period of the

simulated measurement and control system (if needed); it is used in many tuning rules

for classical controllers (e.g., of PID type). If necessary, such continuous models may be
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discretized, or (to be even more accurate) discrete-time models may also be estimated

directly from the measurements.

Conclusions regarding the optimal model structure are presented in Section 3.2.3.13,

after all processing stages are explained.

3.2.3.2 Calculation of derived quantities

Same stage as for static characteristics (Section 3.2.2.1). Mass flow values were calculated

from the measurement data, according to the equations in Section 3.2.1. Pressure values

were measured directly at the plant and did not require any calculations.

3.2.3.3 Division of raw measurements into individual step responses

Similar stage as for static characteristics (Section 3.2.2.2). For each step response, the

following data were stored for future processing:

– requested positions of the main, recycle and additional dampers: xm,req, xr,req, xa,req,

– actual positions of the main, recycle and additional dampers: xm, xr, xa,

– pressure or mass flow of air in the main, recycle and additional streams: pm, pr, pa
or qm, qr, qa,

– steady-state values of all the above signals: just before the step change on input

("old" steady states) and after the step change ("new" steady states),

– the damper whose position has just changed (main, recycle or additional),

– direction of this step change (up or down).

3.2.3.4 Calculation of steady states

Same stage as for static characteristics (Section 3.2.2.3). The steady states were needed

for estimation of model gain in the next stage.

3.2.3.5 Rough estimation of model coefficients

Model coefficients may be estimated from characteristic features of the step response,

but this method works well only for good quality measurement data. It may return

inaccurate or even erroneous values when operating on noisy signals, and this is the case

particularly with mass flows, which often showed great turbulences. (Prior to estimation,

step response was smoothened using a non-causal filter, but still, improvement provided
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by this operation is limited.) So, the results from this estimation method were not used as

final model coefficients, but only as some reasonable starting points for the optimization

procedure performed in the next stage.

The method operates on deviations ∆ of input u and output y from the steady states

u0, y0 which they had right before the step change:

∆y(t) = y(t)− y0 , (3.18)

∆u(t) = u(t)− u0 . (3.19)

This means that if output signal did not reach steady state after the previous step change

on input, then the current step response could not be analysed, due to lack of y0 value.

Specific equations used were similar as in [8; 57; 60], but were adapted to include time

delay in the model, where necessary.

Gain Gain k is the same for all structures of dynamic models. It is the ratio of

magnitude of steady-state change in the output versus magnitude of steady-state change

in the input [8; 57; 60]:

k =
yend − y0
uend − u0

=
∆yend
∆uend

, (3.20)

where subscripts "0" and "end" indicate, respectively, the steady states before and after

the step change on input. Of course, such defined gain could not be determined if the

previous (y0) or new (yend) steady state was not reached, e.g. due to excessive turbulences

in the air stream.

1st order model with delay Assume tn% as time period between the occurrence of

the step change on input and the first time instant at which the output ∆y(t) reaches

or surpasses n% of its final steady state value. Time constant T1 and time delay T0 of

1st order model with delay may then be estimated as:

T1 = 1.25 · (t70% − t33%) , (3.21)

T0 = 0.5 · (3 · t33% − t70%) . (3.22)

2nd order model For computational purposes, 2nd order models need to be differen-

tiated between oscillatory systems (formula (3.17) with damping ratio 0 < ζ < 1) and

2nd order inertia systems with two time constants T1 and T2:

∆Y (s)
∆U(s)

=
k

(sT1 + 1) (sT2 + 1)
. (3.23)
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Of course, from mathematical point of view, the latter may be transformed to the same

general 2nd order formula (3.17), with:

ω =
1√
T1T2

, (3.24)

ζ =
1

2
(T1 + T2) · ω , (3.25)

which always results in damping ratio ζ ≥ 1. However, these two types of models need

to follow different numerical procedures to get the estimated model coefficients. This is

because using a single estimation method (suited to the more general oscillatory system

equation) to both cases results in very inaccurate estimations of natural pulsation and

damping ratio for the inertial systems.

→ 2nd order inertia To recognize from the step response if the system should

be oscillatory or not, the ratio t90%/t50% was analysed. For a 2nd order inertia, this

ratio should lie within range 2.32...3.32 [8]. In such case, time constants T1 and T2 were

calculated based on the exact t90%/t50% ratio and its associated proportions t50%/T1 and

T2/T1, as listed in [8, Table 3.1]. Then, time constants were transformed to natural

pulsation (3.24) and damping ratio (3.25).

→ 2nd order oscillatory system A faster step response (with t90%/t50% < 2.32)

indicates a potential 2nd order oscillatory system. In such case, damping ratio was

estimated in two ways:

a) Values t100% and t50% were determined from the step response. Then, ζ1 was

interpolated from [8, Table 3.2], which lists specific t100%/t50% ratios with their

corresponding ζ values.

b) Based on suggestions from [8], ζ2 was calculated using the overshoot of the step

response. For positive ∆y values, the overshoot OS is defined as:

OS =
max

{
∆y(t)

}
−∆yend

∆yend
, (3.26)

and with min
{

∆y(t)
}
for negative ∆y values. The overshoot is related to damping

ratio [9]:

OS = exp

(
− πζ√

1− ζ2

)
. (3.27)

From this follows:

ζ2 =
− ln(OS)√
π2 + ln2(OS)

. (3.28)
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In case some of these two methods gave invalid numerical results (e.g., "not a number"

or infinite), the other result was used. If both methods gave numerically correct values,

ζ = 1
2(ζ1 + ζ2) was used as the final result. Such approach provided some robustness to

noisy step responses.

Natural pulsation ω was calculated from the above damping ratio ζ and the period Tosc
of the actual (damped) oscillations [57]:

ω =
2π

Tosc ·
√

1− ζ2
. (3.29)

Value of Tosc was estimated as twice the time textr from the step change occurrence to

the first oscillation’s extremum [8].

2nd order model with delay The above methodology for 2nd order models was

modified to account for the delay. At first, a very crude (but good enough for this

purpose) estimation of time delay was used, verified experimentally:

T approx
0 = 0.97 · t1% . (3.30)

Then, modified t50% and t90% values were calculated with the delay removed:

t∗n% = tn% − T
approx
0 , (3.31)

and such modified ratio t∗90%/t
∗
50% was used to differentiate between 2nd order inertia

and oscillatory systems.

→ 2nd order inertia with delay For 2.32 ≤ t∗90%/t
∗
50% ≤ 3.32, the case of 2nd order

inertia with delay was assumed. The delay value estimated so far was adopted as the

final delay estimate: T0 = T approx
0 . Also, the delay-stripped t∗50% and t∗90% values were

used to find the time constants T1, T2of the model, in the same way as it was with t50%
and t90% values for the model without delay. Finally, T1 and T2 were transformed to

natural pulsation and damping ratio, as in (3.24–3.25).

→ 2nd order oscillatory system with delay In the case of oscillatory system,

delay estimate was refined thanks to availability of two methods of ζ calculation. Firstly,

damping coefficient was found using the second method just described (method b) above),

which is based only on output signal values (on overshoot), not on time measures. Then,

the tabularized numeric data from method a) were used "the other way round", that is, to

estimate the "true", delay-stripped ratio t∗100%/t
∗
50% = Rtrue from the known ζ value. At

110



3.2. Measurement data processing Chapter 3. Models of Clean Air Flow

the same time, the values t50%, t100% and textr were determined from the step response.

They were biased with the delay, and the "true" ratio Rtrue was not. From these, it

follows:

t100% − t50% = (t∗100% + T0)− (t∗50% + T0) = t∗100% − t
∗
50% =

= Rtrue · t∗50% − t
∗
50% = (Rtrue − 1) · t∗50% ,

so then, sequentially, the following values were calculated:

t∗50% =
t100% − t50%
Rtrue − 1

, (3.32)

T0 = t50% − t∗50% , (3.33)

t∗extr = textr − T0 , (3.34)

Tosc = 2 · t∗extr , (3.35)

and then natual pulsation ω from (3.29).

3.2.3.6 Refining (optimization) of model coefficients

Model coefficients estimated in the previous stage were good initial values for the opti-

mization procedure, because in most cases they were quite close to the optimal coeffi-

cients. However, they still needed to be refined.

The optimization goal was based on mean absolute error (MAE) between ∆y coming

from the measurements and model output ∆̂y for the model excited with the same step

change as the real plant:

Θoptim = arg minMAE
(

∆̂y(Θ),∆y
)

= arg min
1

N

N∑
i=1

∣∣∣∆̂yi(Θ)−∆yi

∣∣∣ , (3.36)

where subscript i means i-th sample of the step response (modelled or measured); Θoptim

is the optimal set of parameters; and vector Θ contains all parameters of the currently

analysed structure of the model, i.e.: Θ = [k, T1, T0] or Θ = [k, ζ, ω, T0], or Θ =

[k, ζ, ω].

Optimization started from initial Θ values as determined in the previous stage (Sec-

tion 3.2.3.5). Alternatively, if any of these parameters could not be defined (was calcu-

lated as "not a number" or infinite), the initial point was assumed as the last optimal

parameters found — recently analysed step responses were associated with a rather simi-

lar operating point of the plant, so their optimal parameters should also be a bit similar.
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Optimization was performed with MATLAB built-in function fminsearch [64]. If the

minimization ended because of exhausted limit of allowed iterations instead of satisfied

tolerance constraints, then the process was repeated from another initial point: from

optimal parameters for the previously analysed step response, or from [1, 0, ..., 0]. The

best-fit model of all such computed ones was stored.

3.2.3.7 Repeating optimization for badly fit models

As mentioned above, in some cases changing the initial point for the optimization pro-

cedure could improve the final fit of the model to the measured data. So, after all

step responses were assigned their optimal model parameters (if possible), a ratio of

fit function value (MAE) to output signal range was calculated for each step response.

The worst-fit models, i.e., the ones for which this ratio was above 95-th percentile, were

optimized again. This time the initial parameters for minimization were the optimal pa-

rameters for the previous and next step response, and the average of the two (if available).

Eventually, the best-fit case of the old and new models was stored.

Note 1: Actually, such re-estimation could be performed for all step responses; however,

it was time consuming. Thus, the optimization was repeated only for the worst fitted

models, and the others were assumed as good enough and probably not possible to be

considerably improved.

Note 2: To determine the badly fit models, the above-mentioned ratio of MAE to

output signal range was used, instead of just MAE. This is because the range of output

signal in a single step response may vary significantly with the operating point of the

installation; and it was undesirable to punish the wide-range step responses with small

model inaccuracy more than narrow-range step responses with significant inaccuracies.

3.2.3.8 Division into datasets

Similar stage as for static characteristics (Section 3.2.2.4). In the case of dynamic mod-

els, a dataset is defined as collection of all step responses (and their estimated model

parameters) that are associated with the same output signal and input signal.

Output signals were mass flow of air or relative pressure in each horizontal inlet pipe

of the grinding installation: qr, qm, qa, pr, pm, pa. Input signals were the requested

positions of all dampers: xr,req, xm,req, xa,req. This means 6 · 3 = 18 datasets.

Later in each dataset also two sub-datasets were introduced, that corresponded to

increasing and decreasing step changes on input signal.
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3.2.3.9 Outlier detection and removal

At this stage, statistic calculations were performed at one dataset at a time (with datasets

defined as in the previous paragraph). In the case of dynamic models, outliers may be

understood in different ways; several definitions were adopted here. Models indicated as

outlying by any of these definitions were excluded from further analyses:

• Firstly, all step responses were removed that were marked as outliers in a similar

stage of steady-state data processing (see Section 3.2.2.5).

• Secondly, badly fit models were removed, i.e., the ones for which the ratio of fit

function value versus output signal range was lying above the 95-th percentile.

• Next, values of individual model parameters were analysed: for each parameter,

a histogram was calculated. Then, this portion of the histogram was kept that

included at least 95% of data points in the narrowest possible, contiguous interval

of histogram bins. (To prevent keeping too many data points due to very wide

bins, the number of bins was selectable; it was always set to such value that at

least 10 bins were kept.)

If any parameter for a step response was indicated as outlying, then the whole

model (the whole step response) was rejected from further analyses. Estimates of

model parameters for a single step response are mutually dependent due to the per-

formed optimization procedure, so even one outlying (that is, probably incorrectly

estimated) parameter means that the other parameters are also probably incorrect

— even if they happen to lie in a reasonable value range.

After removing outliers, in each dataset there remained 360–538 step responses with

their estimated models (479 on average). These represented 54–80% of originally recorded

step responses (72% on average).

3.2.3.10 3D interpolation

This stage was similar as for static characteristics (Section 3.2.2.6). This stage operated

on sub-datasets instead of whole datasets, as defined in Section 3.2.3.8 — so, separate

interpolation was performed for data associated with increasing and decreasing step

changes on inputs.

Note: from this point, model gains k were no longer analysed; only the other parame-

ters of the models were interpolated. A more accurate result than a simple interpolation

of estimated gains was achieved by numerical differentiation of the static characteristics

(Section 3.2.2.10).
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Just as it was with steady-state data, the sub-datasets for steps up were obviously

lacking data for xreq = 99%, and sub-datasets for steps down contained no data for

the minimal xreq used in the experiments. Thus, before performing the actual interpo-

lation, the sub-datasets were extended with reasonable approximations of these values.

The first version of approximated values were the model parameters at corresponding

{xr,req, xm,req, xa,req} points for the other direction of step changes (so, from the other

sub-dataset). The second version of approximated values were model parameters at the

neighbourhood, within the same sub-dataset. The final approximations were assumed

as average of these two versions, if both values were available; and if one of them was

missing from the data, only the other was used. This operation provided values that

were probably more sensible than a pure extrapolation result.

Then, the grid of data points for wide damper openings was expanded with linearly

interpolated values at 10% increments of damper positions, identically as it was described

for the steady states (Section 3.2.2.6). Static characteristics of the plant were flat in these

regions, and the dampers performed similarly within these whole ranges of wide openings,

so it was justified to also assume similar dynamic parameters in these regions. These

extra datapoints would be useful for more complex interpolation methods to prevent

ripples in these areas.

Finally, such prepared sub-datasets were interpolated to fine grids (with 1% incre-

ments) of damper positions, the same as for the static characteristics. After some tests,

three-dimensional linear interpolation was found sufficient.

3.2.3.11 Averaging pairs of sub-datasets

In each dataset, its two sub-datasets were averaged. This produced a single set of model

parameters for each output signal, input signal and operating point {xr,req, xm,req, xa,req},

regardless of the direction of changes in the input signal. Such model parameters were

intended for use in models that neglected the influence of hysteresis in the plant, for

simplicity.

3.2.3.12 3D smoothening

This stage was similar as for the static characteristics (Section 3.2.2.8). Smoothening

was used to reduce the effect of measurement errors and processing artifacts — in the

real plant, dynamic properties would not change abruptly with any damper’s position.
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3.2.3.13 Analysis of identification results

Best structure of dynamic models The three model structures (Section 3.2.3.1)

— 1st order with delay, 2nd order with and without delay — were identified for a few

exemplary pairs of input and output signals. The identification algorithm (Fig. 3.15)

was performed up to (and including) the stage of outlier removal, and then the resulting

final fits were compared — see Fig. 3.16.

These plots reveal that 1st order model with delay, though simple, was completely

sufficient to describe the dynamics of the collected plant responses — fit values for this

model were no worse (and sometimes better) than for 2nd order model with delay, and

often noticeably better than for 2nd order model without delay. Moreover, using 1st order

inertia with delay led to more models assumed as correctly estimated than when using

2nd order model with delay (less models and corresponding step responses were rejected

in outlier removal stage, as detailed in Section 3.2.3.9). Thus, 1st order inertia with delay

was assumed as the best dynamic model type for these measurement data. All models

(for all combinations of input and output signals) were estimated based on this structure,

this time — using the full processing path from Fig. 3.15, including interpolation and

averaging of estimated parameters. These models were used in further research, e.g. in

plant simulator (Chapter 4).

Shape of 3D hypersurfaces Time constants and time delays estimated in this pro-

cedure did not exhibit any repeatable relationship to damper positions. This suggests

that more accurate measurement data should be collected if these model coefficients need

to be determined precisely. However, the currently available data are accurate enough

to describe the nature of the underlying processes. It is possible to calculate approxi-

mations of dynamic model coefficients that are suitable for design and tuning of control

algorithms. Besides, the designed controllers need to be robust anyway, because param-

eter variability is the very nature of the grinding process. Slight hysteresis in operational

characteristics of butterfly valves, changes in air temperature and humidity, introduc-

tion of different types and amounts of raw material and grinding media, dust build-up

on inner surfaces of installation elements, etc. all affect the dynamic parameters of the

identified systems, as well as the steady states. Small variations in these constantly hap-

pen during the operation of the grinding circuit, so some inaccuracies in estimation of

time constants or time delays do not introduce significant errors.

Parameters variability Variability of parameter values was assessed for the finally

chosen model type, i.e. 1st order inertia with delay. The models were analysed after the

stage of removing outliers, but before parameters interpolation. For each parameter (k,
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(a) Dynamic models of qr versus xr,req

(b) Dynamic models of qm versus xm,req

(c) Dynamic models of qa versus xa,req

(d) Dynamic models of pr versus xr,req

(e) Dynamic models of pm versus xm,req

(f) Dynamic models of pa versus xa,req

Figure 3.16: Comparison of final values of fit function (mean absolute error, MAE)
for different structures of dynamic models. Data for each model type are sorted by

ascending MAE (descending goodness of fit).116
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T1 and T0), the following dimensionless measures of variability were calculated over each

dataset: quartile coefficient of dispersion:

qcd =
Q3−Q1

Q3 +Q1
, (3.37)

where Q1 and Q3 are 1st and 3rd quartiles of parameter values in one dataset; and

similar to it, but based on 5-th and 95-th percentiles P5 and P95:

pcd =
P95− P5

P95 + P5
. (3.38)

The results are listed in Table 3.5. It should be noted that such measures of data

dispersion are meaningful only for a positively valued sample. Thus, in the case of model

gains, coefficients of dispersion could be calculated only for models of qs or ps versus

position of the damper in the same pipe s.

Table 3.5: Dispersion coefficients for values of dynamic model parameters

Model Model qcd (3.37) for: pcd (3.38) for:

number type k T1 T0 k T1 T0

1. qr vs xr,req 1.07 0.31 0.46 1.89 0.85 0.97

2. qm vs xm,req 0.84 0.22 0.16 0.96 0.72 0.48

3. qa vs xa,req 0.65 0.12 0.13 0.96 0.46 0.32

4. pr vs xr,req 0.98 0.53 0.49 1.15 1.00 1.00

5. pm vs xm,req 0.77 0.16 0.16 0.99 0.42 0.51

6. pa vs xa,req 0.83 0.26 0.11 0.99 0.58 0.48

Variability of model gain k was always bigger than of the other parameters — and quite

often, it was even several times bigger. Nevertheless, for some datasets this difference

in dispersion was not so pronounced and reached only 15% (pcd{k} to pcd{T1} or to

pcd{T0} for model 4.), or 33% (pcd{k} to pcd{T1} for model 2.).

Consequently, it would be interesting to define a model with varying gains (fitted

independently to each operating point of the pneumatic system), but with fixed time

constant and time delay (fitted simultaneously to all measurement data, associated with

all operating points). Such simplified model could then be used for design and tuning

of control algorithms for the pneumatic system. With only the gains changing in the

plant model, the structure of a control algorithm could be simpler than in the case when

all plant parameters are varying; and simpler algorithms are easier to tune, easier to be

implemented in hardware, and also require less hardware resources and less computation

time. Thus, possibly there is a lot to gain; but firstly — due to such situations as with

the mentioned models 2. and 4. — it needs to be verified if such model simplification
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does not exceedingly deteriorate the performance of the control algorithm. This topic is

only announced here and will be the subject of future research.

3.2.4 Phenomenological model of pressure losses

For the understanding of the processes going on in the pneumatic system of the grinding

installation, it would be beneficial to create a phenomenological model of air flows and

pressures in the installation. (The model could also incorporate heat transfer — in

the future, when proper experiments and modelling are performed.) However, building

a fully phenomenological model requires modelling of the whole installation from air

intake to the blower (which has a built-in underpressure indicator), or at least to the

point between cyclone and blower where measurements of outlet air are taken. This is

a single point where all air streams are joined together and any measurement data on

them are available. To accomplish such a model, truly excessive work is needed, and

much of it would be of no use for the research considered here, which is focused on inlet

air only. Moreover, numerous model parameters would need to be estimated from data

originating at very few measurement points. This could lead to problems with parameter

optimization procedures, or to low-accuracy estimations. So, this thesis considers only

a model of the inlet part of the pneumatic system.

Due to lack of modelling of the joint flows, the mass air flows at the three inlet streams

are assumed to come simply from the measurement data (they are given "as is"; only

a black box model is created for them, without any physical equations). This is detailed

in Section 3.2.2. However, if these mass flows are given, then the pressure losses on

subsequent elements of the pipeline may be calculated from theoretical equations. The

parameters of such a model are taken from literature where applicable, or fitted to

measurement data where necessary. The model is built as follows. Model equations use

symbols as defined in Fig. 3.17–3.18.

The model is built using steady-state data with probable outliers detected and re-

moved. The procedure of obtaining such dataset is described in Section 3.2.2 (the part

of the algorithm up to "outlier detection and removal" stage, without interpolation and

smoothening — see Fig. 3.13). Only these data points are used that have non-outlying

both pressure and mass flow values.

3.2.4.1 Mass flow of air

Mass flows of air were determined for all considered points in the installation, using mea-

sured data and mass conservation law (so, no air leakage into the pipeline was assumed):
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Figure 3.17: Inlet part of the pneumatic system with naming conventions used in
the phenomenological model. In black: labels associated with straight pipe fragments;
in blue: labels associated with pipe fittings and valves. Also, sensor locations are
indicated with: p — for relative pressure, v — for air velocity at pipe axis, T — for air

temperature measurements.

• Air flows at the ends of the three inlet pipes were calculated from the measurement

data as detailed in Section 3.2.1:

qsD = qs for s ∈ {r, m, a} . (3.39)

• Air flow throughout any of the three horizontal pipes is constant:

qsA = qsB = qsC = qsD for s ∈ {r, m, a} . (3.40)

• Air flow through the top vertical pipe is the same as through the additional pipe:

qtopA = qtopB = qa . (3.41)

• Air flow through the middle vertical pipe is the sum of both flows branching from

the main pipe’s tee, so it is the sum of main and additional pipes’ flows:

qmidA = qmidB = qm + qa . (3.42)
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Figure 3.18: Inlet part of the pneumatic system with geometrical dimensions indi-
cated. (Scheme not to scale.) Bullets mark the boundaries between piping system
elements; at these points, physical quantities were estimated in the phenomenological

model.

• Air flow through the bottom part of the installation is the sum of both flows

branching from the recycle pipe’s tee, so it is the sum of recycle, main and additional

pipes’ flows:

qbotA = qbotB = qr + qm + qa . (3.43)

3.2.4.2 Air temperature

Temperature values were assumed based on measurements taken near the air filter at

the intake (Tin) and at the ends of the three horizontal pipes (Tr, Tm, Ta). In the

collected data, all these signals have similar values and usually they differ by no more

than 2 °C (all these temperatures for any given time instant lie within a range 2 °C

wide). So, in the case of modelling that does not include heat transfer phenomena,

a single average temperature value could be used in all the locations. However, the

actually measured values and some interpolations between them may also be used, just

to improve the accuracy of calculating temperature-dependent quantities, such as air

density ρ (3.2) or viscosity µ (3.3). The latter approach was adopted, with some very

simple approximations of temperature values for intermediate points between sensor

locations, as this did not require much effort.
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The used temperature values were as follows:

• For the vertical pipe, all temperatures were assumed identical and equal to Tin

measured at the air filter:

TbotA = TbotB = TmidA = TmidB = TtopA = TtopB = Tin . (3.44)

• At the ends of horizontal pipes, measurements were directly available:

TsD = Ts for s ∈ {r, m, a} . (3.45)

• At A, B, C points along the horizontal pipes, identical temperatures were assumed,

as these points lie close to each other in space. The used value was a simple

approximation between the temperatures before the appropriate tee and at the

end of the pipe. More complicated formulas seem unnecessary as the differences

between temperature measurements were quite small in the whole system:

TrA = TrB = TrC =
TbotB + TrD

2
, (3.46)

TmA = TmB = TmC =
TmidB + TmD

2
, (3.47)

TaA = TaB = TaC =
TtopB + TaD

2
. (3.48)

3.2.4.3 Pressure losses

Each straight pipe fragment of length L introduces pressure loss ∆p (so-called major

loss) in the form [105, Sec. 6.3]:

∆p =
1

2

L

D
λρw2 . (3.49)

Also, each pipe fitting, such as elbow, tee or valve, causes pressure loss (called minor or

local loss) [105, Sec. 6.9]:

∆p =
1

2
Kρw2 , (3.50)

where K denotes dimensionless pressure loss coefficient, dependent e.g. on the shape and

size of the fitting.

There are several methods of defining K, e.g., in the order of increasing accuracy:

equivalent length method, K (excess head) method [23], Hooper’s 2-K method [40],

Darby’s 3-K method [26; 27]. They also list suggested K values for numerous popular

121



Chapter 3. Models of Clean Air Flow 3.2. Measurement data processing

fittings and valves. In the research presented in this thesis, 2-K method was used [40]:

K =
K1

Re
+K∞ ·

(
1 +

1

Dinch

)
. (3.51)

As the name suggests, the method is based on two parameters: K1, K∞. Pipe diame-

ter Dinch should be given in inches to use loss coefficients for popular fittings tabularized

in the paper. This method accounts for the increase in loss coefficient observed for small

Reynolds numbers [40]. This is much desirable in the case of three inlet air streams

of the grinding installation, where the flows are often laminar, as shown by Reynolds

numbers computed from the experimental data. Loss coefficient’s dependence on pipe

inner diameter Dinch is not that important in this thesis, as all pipes in the considered

fragment of the installation have equal diameters, and also all coefficients K1, K∞ are

estimated from measurement data (not taken from the literature) to be more accurate.

For the same reason, in this thesis, 2-K method was favored over 3-K method with three

parameters K3K,m, K3K,i, K3K,d [26; 27]:

K =
K3K,m

Re
+K3K,i ·

(
1 +

K3K,d

D0.3
n,inch

)
. (3.52)

Symbol Dn,inch is the nominal inner diameter of the pipe in inches. The above formula

shows that additional accuracy of 3-K method only comes from better dealing with scaled

fitting sizes, which is not applicable to the data analysed in this thesis.

Summarizing: pressure values, due to blower’s suction and frictional losses on pipeline

elements, were modelled as:

• At air intake (point botA), absolute pressure is equal to atmospheric, so relative

pressure is zero:

pbotA = 0 . (3.53)

• At the end of recycle pipe (point rD), the modelled pressure is:

prD = pbotA −∆pbot −∆pr,br −∆pr,bf −∆pr,damp −∆pr,af , (3.54)

which is to be compared with the actually measured pressure pr.

• At the end of main pipe (point mD), the modelled pressure is:

pmD = pbotA−∆pbot−∆pr,st−∆pmid−∆pm,br−∆pm,bf−∆pm,damp−∆pm,af , (3.55)

which is to be compared with the actually measured pressure pm.
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• At the end of additional pipe (point aD), the modelled pressure is:

paD = pbotA −∆pbot −∆pr,st −∆pmid −∆pm,st −∆ptop −∆pa,br+

−∆pa,bf −∆pa,damp −∆pa,af , (3.56)

which is to be compared with the actually measured pressure pa.

Each pressure loss on a straight pipe fragment (3.49) was calculated using geometrical

dimensions defined in Fig. 3.18 and other quantities (defined in Section 3.2.1) calculated

for the point at the beginning of the pipe fragment. For example, pressure drop over the

middle vertical pipe was:

∆pmid =
1

2

Lmid

D
· λmidA · ρmidA · w2

midA , (3.57)

and similarly for other straight pipes.

Each pressure loss on a fitting (3.50) was calculated using an individual loss coeffi-

cient K (3.51) and other quantities (defined in Section 3.2.1) calculated for the point

immediately upstream the fitting. For example, pressure drop over the bottom (inlet)

part of the installation was:

∆pbot =
1

2
Kbot · ρbotA · w2

botA , (3.58)

and similarly for tees and butterfly valves.

In the whole model, the following loss coefficients were used:

– for the bottom (inlet) part of the installation: Kbot,

– for straight-through flows in recycle and main tees: Kr,st and Km,st,

– for branch flows in recycle, main and additional tees: Kr,br, Km,br and Ka,br,

– a separate coefficient for each requested position of each butterfly valve: Ks,damp,N%

for s ∈ {r, m, a}, for N values as listed in the description of the experiment (Sec-

tion 3.1.2).

Separate K value for each position of a damper is a necessity, as the conditions of

the flow dramatically change with varying valve opening. Requested damper position

was used to distinguish between cases, not actual position. The latter would give more

accurate model, but in the grinding system this variable is not directly controllable by

the operator, whereas the requested position is.

Also, individual coefficients for all similar objects were used (e.g., two separate values

for two straight runs in tees, even though both tees are very similar). This is because
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particular making and fixing of a fitting may noticeably change its loss coefficient [105,

Sec. 6.9]. For the same reason, no literature data was used directly as K values in

the model — the suggestions from literature were only used as initial values for the

optimization procedure that finally determined all the above loss coefficients. The details

of optimization procedure are given in Section 3.2.4.5.

3.2.4.4 Pressure losses on butterfly dampers

Numerous works report experimental loss coefficients for partially open butterfly valves,

mainly for fully turbulent flows. A few such positions were used in this thesis to determine

initial values for loss coefficient optimization procedure, and also to serve as reference

when validating optimization results. Namely, literature data used were:

– a single data series from [104] (omitting the infinite K for zero opening2);

– four data series from [49] (approximate values read from Fig. 8 there);

– two data series (experiments only) from [47] (approximate values read from Fig. 4

there);

– two data series being averages for the same pipe diameter over different velocities

from [18];

– a single data series (experiment only) from [29].

The literature data and their averaged version are presented in Fig. 3.19.

Different valve positions were used in each of these works, so firstly, the original data

were inter- or extrapolated to 0...100% range of valve openings with 1% increments. The

exact calculation method was to take the decimal logarithm of an original data series,

perform linear interpolation (or extrapolation) to the mentioned range of xreq, then get

back to the original scale by raising 10 to the power of interpolated values. Then, such

finely sampled characteristics of K = f (xreq) were averaged.

Due to extrapolation, the approximated values outside of the original ranges of valve

position are low fidelity data. This applies especially to the range of low damper openings,

which were rarely tested in the literature items used here. Taking into account the

overall shape of the characteristics, probably the extrapolations for these small openings

underestimate the true loss coefficients. Nevertheless, even such extrapolated values

may be a valuable guideline when selecting initial K values for optimization algorithm

or when veryfying the sensibility of optimization results.

2In [104], the author included an infinite loss coefficient for a fully closed damper, which is true for
the ideal case of a completely tight sealing around damper’s disc. In reality, there is always some leakage
around the sealing, the flow is not zero, and the pressure loss coefficient is finite.
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Several types of functions were fitted to such literature data, both original and average.

In the end, two formulas seemed to quite well mimic the trend in the data (see Fig. 3.20):

K = 10(a(xreq+b)2+c) (3.59)

with tunable parameters a > 0, b < −100, c ∈ R; or,

K = 10

(
a

xreq+b
+c
)

(3.60)

with tunable parameters a > 0, b < 0, c ∈ R. The shapes provided by these functions

or particular parameters a, b, c fitted to literature data (e.g., to their average) may be

used in the optimization procedure, as will be detailed in the next sections.

What is important, the presented literature data was based on fully turbulent flow

conditions, so it actually shows K∞ behaviour only (compare with 2-K method (3.51)):

Klit =

[
K1,lit

Re
+K∞,lit ·

(
1 +

1

Dlit

)]
Re→∞

≈ K∞,lit ·
(

1 +
1

Dlit

)
(3.61)

— so, the literature data reveals nothing on K1 values. Still, it is reasonable to assume

a similar behaviour of K1 parameters for the dampers.
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Figure 3.19: Literature data on butter-
fly valve loss coefficients, and their inter-
polations. Data sources: s1 — [47], s2 —
[18], s3 — [104], s4 — [49], s5 — [29]. For
details on original data series, see appro-

priate references.
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3.2.4.5 Optimization of pressure loss coefficients

To achieve good fit of pressure loss model to measurement data, Hooper’s K1 and K∞
parameters (3.51) for all the above-mentioned loss coefficients were calculated by means
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of optimization. Namely, it was minimization of mean absolute error (MAE) between

modelled and measured pressure at the ends of the three horizontal pipes:

Koptim = arg minMAE
(

[prD (K) , pmD (K) , paD (K)] , [pr, pm, pa]
)

=

= arg min
1

3Np

( Np∑
i=1

∣∣prD,i (K)− pr,i
∣∣+

Np∑
i=1

∣∣pmD,i (K)− pm,i
∣∣+

+

Np∑
i=1

∣∣paD,i (K)− pa,i
∣∣),

(3.62)

where i denotes subsequent steady state values at the total of Np data points, and

Koptim is the vector of optimal parameter values.

Vector of optimized variables K contains K1 and K∞ parameters for bottom (inlet)

part of the installation, two tee straight runs (recycle and main) and three tee branches

(recycle, main and additional); this is 2 parameters times 6 fittings, i.e. 12 variables.

Vector K also contains the parameters necessary to calculate loss coefficients for dampers

(separately for each position xreq); this may be achieved in several ways. The following

options were tested:

a) All K1 parameters for a damper are estimated independently, the only requirement

is that they should not increase with growing damper opening xreq. The same

applies to K∞ parameters. Vector K then directly contains all K1,s,damp,N% and

K∞,s,damp,N% values for s ∈ {r, m, a} and for all tested damper positions N%.

This is 2 parameters times (8+8+7) damper positions (respectively for recycle,

main and additional damper), so 44 variables; in total, 12 + 44 = 56 optimized

variables in K vector.

b) All K1 parameters for a damper follow a model K1 = f(xreq) as in (3.59). This

appends only 3 model parameters a, b, c to vector K instead of 7 or 8 parame-

ters, as it is in option a). The same model structure applies to K∞ parameters of

each damper. This gives 2 "K•" parameters times 3 "a, b, c" parameters times

3 dampers, so 18 variables; in total, 12 + 18 = 30 optimized variables in K vector.

This is much less than in option a), which should result in better performance

of optimization solver (e.g., convergence to a local minimum in fewer iterations,

shorter calculation time of a single iteration, lower risk of outputting a local mini-

mum which is not a global one). However, this also puts quite tight constraints on

dampers’ loss coefficients, which may negatively affect the final value of fit function.

c) The conditions are identical to option b), only model (3.60) is used instead of (3.59).

This option was tested in case a different mathematical formula supplied to the

solver yields substantially different directions of search in the solution space.
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Minimization was performed in two ways, with MATLAB built-in functions: fmincon

(minimization of constrained nonlinear function) [63] and ga (genetic algorithm) [65]. In

the end, fmincon was used, as for this minimization problem it performed significantly

faster and gave much better results (in terms of fit function value) than ga. The fmincon

optimization solver was supplied with the following settings:

• stopping criterion: value of fit function differs by less than 10−6 from the previous

iteration (relative difference),

• no limit on performed iterations of the algorithm or evaluations of fit function,

• fit function as in (3.62),

• initial values of K elements (Table 3.6) — several variants were tested:

– literature-based — used for options a), b) and c):

Where possible, the initial values for K1 and K∞ coefficients were based

on Hooper’s original loss coefficients [40]. As for the dampers, their initial

K∞ values were based on average literature data (Fig. 3.19). It also seemed

reasonable to use a multiplication ofK∞ values as initialK1 values, to preserve

the shape of the characteristics K = f(xreq). Several scaling factors were

tested: cK1 = K1
K∞

= {1, 10, 100, 1000}.

– based on optimal parameters for a simplified model — used for option a) only:

Firstly, the model was simplified to include only a single-valued loss coeffi-

cient K for each fitting and for each position of each damper. Then, pa-

rameters of such simpler model were optimized as usual, with initial values

analogous to these in the first approach described above. Such reduction in

the number of optimized variables — by a factor of two — was expected to

help to find the global minimum of the fit function, or its good approximation.

Afterwards, the results would only need to be fine-tuned to incorporate again

the 2-K method.

Thus, the single-valued K coefficients resulting from optimization of the sim-

pler model were scaled down by (1 + 1/Dinch) and used as initial values for

K∞ parameters, and multiples of the latter — as initial values for K1 param-

eters, in optimization of the standard model that follows the 2-K method. For

the tees and the bottom part of the installation, K1 were set to 1000 times

K∞ values. Such ratio of these two coefficients was included in the mentioned

literature [40]. As for the dampers, preliminary optimization runs had shown

that 1000 might not be the best proportion, so again, several scaling factors

were tested: cK1 = {1, 10, 100, 1000}.
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• lower and upper bounds on values of K elements (solution found by the solver must

lie within these bounds) — also see Table 3.6,

• linear inequality constraints:

– For option a), values of K1 and K∞ for dampers should not increase with

growing xreq. (For options b)–c), this is already ensured by bounds imposed

on a, b, c parameters.)

– Loss coefficients for tee branches should be greater than for tee straight runs.

– Loss coefficients for the inlet (bottom) part of the installation should be

greater than for the tees. It should also be greater than loss coefficients for

much opened dampers, but it is hard to define the particular valve positions

to which this rule should apply, so such constraint was not imposed at all.

– Fittings of similar shape should have comparable loss coefficients — i.e.,K1,•,st

for both tees should be similar, and K∞,•,st as well; the same for all three tee

branches. For these desirably similar K• values, differences only by a factor

of cdiff = 1.5 were allowed. It means that for any two coefficients Ka and Kb,

these constraints were simultaneously imposed:

Ka ≤ cdiff ·Kb , Kb ≤ cdiff ·Ka . (3.63)

• nonlinear inequality constraints:

– All dampers also are similar in shape, so their K1 and K∞ loss coefficients

(at the same damper positions) should follow the inequalities (3.63). For

options b) and c), this is easy to impose, as their respective models of K• =

f(xreq) allow to calculate loss coefficient values for arbitrary xreq values.

However, imposing such constraints for option a) is more complicated because

each damper has an individual set of positions present in the experimental

data. Thus, to compare all dampers, first an interpolation of loss coefficients

is needed, so that their xreq values match. The interpolation method was the

same as for literature data (see Section 3.2.4.4), so, interpolated values were

10 to the power of linearly interpolated decimal logarithms of the estimated

loss coefficients.

Interpolated coefficients for main and recycle dampers were compared to each

other in the full range xreq = 0...100%, with 1% increments. Comparison

of these dampers to the additional damper was performed only in the range

xreq = 10...100% — the latter damper did not operate on positions lower than

10%, so loss coefficients were not estimated for them.
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Note: For testing purposes, the above nonlinear constraints on similarity of

damper coefficients were switched on or off. The results are shown and com-

mented in Section 3.2.4.6.

Table 3.6: Initial values, lower and upper bounds for optimized elements of vector K.
Abbreviations: bnd. – bounds, init.v. – initial value, lit. – literature data, par. – pa-

rameter.

Bottom part of installation

Its many elements (including air filter) produce big pneumatic resistance. Hence the
high initial values (selected arbitrarily) in the first approach.

Parameter
Initial value

Bounds
literature

simplified model; dampers...

... similar ... nonsimilar

K1,bot 2000 1000 ·K∞,bot 0...∞
K∞,bot 100 8.8685 9.3315 0...∞

Dampers, option a): K 6= f(xreq)

Klit.,N% is the average data from literature (Fig. 3.19) for specific damper position N%.
The whole formula was derived from (3.61).

Parameter

Initial value

Bnd.
lit.

simplified model; dampers...

... similar ... nonsimilar

r m a r m a

K1,•,damp,N% cK1 ·K∞,•,damp,N% 0...∞

K∞,•,damp,N%

Klit.,N%

1 + 1
Dinch

all
0...∞

– N = 0% 10030 96082 64073 — 1.1188e5 1.7205e5 —

– N = 10% 1859.0 59783 39856 59783 1.1188e5 30004 1.8229e5

– N = 15% 825.14 27294 18198 — 1.1188e5 17473 —

– N = 20% 374.99 9746.3 6499.6 8282.7 1.1187e5 6421.2 8284

– N = 30% 90.931 858.34 795.32 572.26 1477.5 797.67 572.11

– N = 40% 28.181 — 118.57 89.838 — 121.29 90.171

– N = 50% 10.158 21.073 30.209 27.923 34.741 31.077 28.430

– N = 70% 1.8922 — — 3.1511 — — 3.4556

– N = 99% 0.38996 0.098470 0.084739 0.068768 5.2197 0.019483 0.093867
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Table 3.6: (Continued.)

Dampers, option b): K = f(xreq) (3.59) and option c): K = f(xreq) (3.60)

Parameters •1,•,damp are used in K1 calculations; parameters •∞,•,damp – in K∞ cal-
culations. Expression "+ log(cK1)" gives K1,•,damp,N% = cK1 · K∞,•,damp,N%. Ex-
pression "− log(...)" scales the total K to K∞ – see (3.61). Values [a, b, c] =
[2.93e−4, −124, −0.499] or [a, b, c] = [658, 78.1, −4.05] give optimal fit to average
literature data (Fig. 3.19).

Par.
Option b) Option c)

init.v. – lit. only Bounds init.v. – lit. only Bounds

a1,•,damp a∞,•,damp 0...∞ a∞,•,damp 0...∞
b1,•,damp b∞,•,damp −∞...−100 b∞,•,damp −∞...0

c1,•,damp c∞,•,damp + log (cK1) −∞...∞ c∞,•,damp + log (cK1) −∞...∞

a∞,•,damp 2.93 · 10−4 0...∞ 658 0...∞
b∞,•,damp –124 −∞...−100 78.1 −∞...0

c∞,•,damp −0.499− log
(
1 + 1

Dinch

)
−∞...∞ −4.05− log

(
1 + 1

Dinch

)
−∞...∞

Tees

Literature-based initial values as for tee with stub-in branch [40], which is the tee type in
the grinding installation. Model-based initial K1,•,st same as in literature because there
is no sensible scaling factor for K∞,•,st when the latter is close to 0. Final parameters
should be similar as in literature, hence limited upper bounds.

Par.

Initial value

Bounds
lit.

simplified model; dampers...

... similar ... nonsimilar

r m a r m a

K1,•,st 100 100 100 — 100 100 — 0...200

K∞,•,st 0 1.8087e-3 1.9469e-3 — 3.0166e-3 3.4534e-3 — 0...1

K1,•,br 1000 1000 ·K∞,•,br 0...2000

K∞,•,br 1 1.6005 1.0679 1.0691 1.5998 1.0673 1.1429 0...2

3.2.4.6 Final coefficients of the model

Table 3.7 presents the final fit achieved for all model options a), b), c) under all tested

initial values of the optimization algorithm (based on literature data or simplified model).

Results for option a), which has more variables to be optimized, were significantly better

than for the other options. This means that loss coefficients observed in the measured

data do not follow exactly the dependencies (3.59) or (3.60), as was in the case of loss

coefficients reported in literature (see Fig. 3.20).
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Even for the best case, optimization results were not fully satisfactory. Errors were

quite big — particularly for the recycle stream, as shown by a more detailed analysis.

Thus, one more model variant was tested: constraints (3.63) on similarity of loss coeffi-

cients were relaxed for dampers, and kept only for tee branches and straight runs. This

enabled the model to better fit the measurements from the recycle stream — appar-

ently, different from the others — without losing accuracy for the other streams. Again,

option a) produced the best fit (see Table 3.7). However, this operation improved the

final fit only partially. Besides, models b) and c) produced physically incorrect results,

as for all tested sets of initial values the final K1 coefficients for some dampers were

very close to zero, with the corresponding K∞ being abnormally high, or vice versa. (In

total, these yielded reasonable K coefficients, but the individual K1 and K∞ values were

inappropriate.) Thus, these models will not be further analysed; only option a) with

non-similar dampers and all options a), b), c) with similar dampers will be listed in the

following graphs and tables.

Table 3.7: Final fit achieved by the optimization algorithm for all tested model options
and all sets of initial parameter values (see Table 3.6). In bold — best case for each
model option. Symbols and abbreviations: lit. — literature-based initial values, s.m. —
initial values based on a simplified model, cK1

— scaling parameter between initial
values for K1 and K∞ coefficients for dampers.

Option a) Option b) Option c)

lit. s.m. lit. only lit. only

with
damper

similarity
constraints

cK1 = 1 317.22 317.14 369.52 391.13

cK1 = 10 314.03 314.18 406.15 390.45

cK1 = 100 314.21 312.96 361.42 378.79

cK1 = 1000 314.51 297.02 372.60 358.56

no damper
similarity

constraints

cK1 = 1 250.23 222.79 299.74 328.51

cK1 = 10 223.81 227.46 300.52 327.99

cK1 = 100 223.23 259.63 304.64 326.69

cK1 = 1000 223.14 353.06 330.28 306.44

Figure 3.21 compares modelled and measured pressures at the ends of horizontal pipes,

so, psD and ps values for s ∈ {r, m, a}. This is directly related to the fit function values

just discussed.

Generally, underpressure in the recycle pipe is largely underestimated. Even the

model a) with non-similar damper coefficients (Fig. 3.21a) provides only a slightly bet-

ter fit to recycle stream pressure. Main stream’s pressure is best reflected by option a)

models. Additional stream’s data are interesting — big underpressures are greatly under-

estimated, for the others the fit is very good. These errors may be caused by particularly
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(a) Option a), non-similar damper coefficients
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(b) Option a), damper similarity imposed
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(c) Option b), damper similarity imposed
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(d) Option c), damper similarity imposed

Figure 3.21: Relative pressure at the ends of horizontal inlet pipes: output of phe-
nomenological model psD compared to real measured values ps, for s ∈ {r, m, a}. Data

points sorted by increasing ps.

low relative accuracy of air velocity measurements at low air speeds (i.e., for only slightly

opened damper, which also gives high underpressure).

The next figures provide more detail to the comparison of modelled pressure psD and

measured pressure ps. These plots show the error (psD − ps) (Fig. 3.22) and relative

error 100% · (psD − ps) /ps (Fig. 3.23).

The graphs confirm the observations made in association with Fig. 3.21. Clearly visible

are the small errors and relative errors for most data points related to the additional pipe.
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For the other air streams, often a trend is observed in the plotted errors, which suggests

that some deterministic component is missing in the model. Moreover, many data points

have errors and relative errors that are unacceptably big.
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Figure 3.22: Difference (error) between modelled and measured pressure at the ends
of horizontal inlet pipes: psD−ps, for s ∈ {r, m, a}. Data points sorted by increasing ps.

Black lines mark the desired value of zero error.
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Figure 3.23: Relative difference (relative error) between modelled and measured pres-
sure at the ends of horizontal inlet pipes: 100% · (psD − ps) /ps, for s ∈ {r, m, a}. Data
points sorted by increasing ps. Black lines mark the desired value of zero relative error.

Table 3.8 lists the final values of optimized model coefficients. The bottom part of the

installation was assigned a K∞ coefficient lower than expected — only slightly above 7,

in all presented cases. This is quite low, taking into account the rather thick air filter.

Also, tee straight runs were often assigned significantly smaller K1 coefficients than the

literature value of 100, but K∞ are as expected — close to 0. As for the tee branches,

both their K1 and K∞ coefficients were usually estimated as higher than in literature

(which states [K1, K∞] = [1000, 1]), often over 90% higher.
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Table 3.8: Optimized coefficients of different structures of the phenomenological
model. Abbreviations: Dmp. — Damper, Par. — Parameter, Pos. — Position, n.a. —
not applicable. More symbols explained in Fig. 3.17. Note: For options b) and c),
damper parameters K1 and K∞ were not optimized directly, but they followed from the
a, b, c parameters. Nevertheless, dampers’ K1 and K∞ coefficients for these options

were included in the table for comparison with option a).

Option a) Option a) Option b) Option c)
dampers: non-similar similar similar similar

final fit
(MAE) 222.79 297.02 361.42 358.56

Fitting K1 K∞ K1 K∞ K1 K∞ K1 K∞

bot 29237 7.5334 11984 7.3114 2000.5 7.3780 7981.2 7.1428
r,st 24.659 4.0600e-3 19.36 4.7540e-4 99.002 0.36571 50.244 0.38805
m,st 28.423 4.6820e-3 23.676 5.6659e-4 100.22 0.54823 74.276 0.58205
r,br 1947.0 1.9964 1905.1 1.9996 1001.5 1.9994 1997.5 2.0000
m,br 1330.7 1.3319 1272.6 1.3332 998.63 1.3332 1332.1 1.3333
a,br 1594.5 1.5050 1857.5 1.3749 1000.2 1.9993 1995.8 1.9999

Dmp. Par. (n.a.) (n.a.) for K1 for K∞ for K1 for K∞

r
a — — 6.3836e-5 1.2752e-4 38420 59855
b — — -371.23 -315.98 914.20 873.09
c — — -0.86433 -7.8258 -34.124 -63.643

m
a — — 7.0171e-5 1.6715e-4 33787 33390
b — — -354.75 -257.26 835.80 630.38
c — — -0.72164 -5.9809 -32.346 -47.879

a
a — — 2.0359e-4 3.0104e-4 2168.8 5795.6
b — — -154.16 -165.57 179.39 236.24
c — — 3.4107 -2.9974 -3.8288 -19.223

Dmp. Pos. K1 K∞ K1 K∞ K1 K∞ K1 K∞

r

0% 1.6464e5 2.7153e5 9.6082e7 79300 1.2855e8 1.2075e5 1.1962e8 1.2283e5
10% 1.2260e5 1.2038e5 5.9782e7 27436 4.1517e7 17321 3.9799e7 18289
15% 1.0756e5 1.2037e5 2.7294e7 21267 2.3882e7 6752.4 2.3180e7 7215.0
20% 54752 1.2036e5 9.7463e6 7782.4 1.3849e7 2683.5 1.3586e7 2887.3
30% 24322 1471.7 8.5784e5 810.29 4.7714e6 448.99 4.7545e6 482.04
50% 17720 34.111 22332 21.957 6.2402e5 15.835 6.2520e5 15.733
99% 17375 4.0505 22257 1.1053 7379.1 0.016062 6261.5 7.9416e-3

m

0% 1.7275e5 62863 6.4073e7 52869 8.5704e7 80511 7.9749e7 81890
10% 30181 30088 3.9868e7 18296 2.9203e7 12965 2.7990e7 13706
15% 30161 17463 1.8199e7 14180 1.7236e7 5318.3 1.6723e7 5692.6
20% 28226 6424.2 6.4999e6 5190.3 1.0248e7 2213.9 1.0046e7 2387.7
30% 27995 797.52 7.9462e5 730.06 3.7033e6 400.93 3.6850e6 432.37
40% 822.36 124.24 1.1750e5 120.16 1.3782e6 76.998 1.3804e6 81.281
50% 283.47 32.203 26143 32.916 5.2821e5 15.682 5.2772e5 15.843
99% 79.425 0.025775 15789 0.76235 7353.4 0.015056 6242.5 8.5379e-3

a

10% 1.8214e5 2.5280e5 5.9776e7 27444 4.3803e7 19445 4.1984e7 20559
20% 53715 8381.9 8.2827e6 7327.5 1.1882e7 2411.2 1.1187e7 2480.3
30% 27220 571.87 5.7383e5 540.29 3.5399e6 343.45 3.3825e6 350.76
40% 27140 89.761 92339 88.981 1.1583e6 56.196 1.1405e6 57.150
50% 27067 28.319 29409 29.561 4.1625e5 10.562 4.2280e5 10.570
70% 26960 3.2604 16252 4.7212 71216 0.56554 73771 0.50327
99% 5932.6 0.53575 16223 1.1116 10717 0.021721 9161.0 0.011607
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Dampers’ loss coefficients K1 and K∞ are better discussed with the aid of their plotted

version (Fig. 3.24). The curvature of function K• = f(xreq) produced by model b)

(Fig. 3.24c) and model c) (Fig. 3.24d) is barely noticeable in log scale. However, this

curvature is not negligible, as will be visible in the plots of total loss coefficient vs

damper position (Fig. 3.25). Deviation from linear (in log scale) dependency is bigger

for models a) (Figures 3.24a and 3.24b). Moreover, these shapes indeed do not resemble

the model functions (3.59) and (3.60), so the latter did not succeed that much (produced

higher MAE).

For all four model types, the ranges of K∞ coefficients are similar. Parameters K1 are

also of similar range for all models with imposed damper similarity constraints (though

for model a), the intermediate values are much different than for the other models).

Range of K1 coefficients is different (much narrower) only for the model in Fig. 3.24a.

Apparently, when similarity of damper coefficients was not necessary, it was more feasible

to yield more of total K’s variability by changing K∞, not K1 parameters. Still, these

K∞ values do not differ from each other very strictly — the general shape is similar, only

the low K∞ values (i.e., the ones for widely open valves) show big relative differences,

but these are not big absolute differences. Also, an unexpectedly flat fragment is present

in the characteristics K∞,r,damp = f(xr,req) for low damper openings.
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Figure 3.24: Parameters K1 and K∞ optimized for the dampers 137



Chapter 3. Models of Clean Air Flow 3.2. Measurement data processing

Figure 3.25 presents the total loss coefficient K calculated from the above two pa-

rameters, according to (3.51). The calculation assumed pipe diameter as in the real

installation, and several Re values from the range observed in the measurement data.
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Figure 3.25: Total loss coefficients for dampers: output of phenomenological model for
several Reynolds numbers Re, compared to literature data for high Re. Lines between
data points indicate interpolated data. Sources of literature data: same as in Fig. 3.19.
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3.2.4.7 Conclusions

Summarizing, from Fig. 3.21–3.22 it follows that pressure estimations were of particu-

larly bad quality for data points with high measured underpressure. For moderate and

low measured underpressures, model outputs fit to them significantly better. One of the

reasons for this is probably the accuracy of air velocity measurement: at high underpres-

sures, i.e. for much closed valves, the air flows are small, so relative accuracy of their

measurement is not very good. This biases the calculations in the model performed for

these data points and affects many of optimized parameters — not only damper loss

coefficients for low openings, but also damper coefficients for other valve positions and

even loss coefficients for other fittings, because all these parameters are linked by many

dependencies.

It is also possible that description of some phenomena is missing in the model structure,

and so the fit is not very good. Such hypothesis seems the more plausible that estimated

dampers’ loss coefficients are much higher than in literature — from several to about

ten times higher (see Fig. 3.25). Moreover, there is the case of the functions (3.59)

and (3.60): their shapes quite well fit the literature data (Fig. 3.20), but they cannot

provide satisfactory fit to the experimental data analysed in this thesis (Fig. 3.21). This

is another sign that suggests a missing component in the very structure of the model.

Perhaps air leakage in some points of the pipeline should be taken into account, or some

other phenomena, yet to be analysed.

In conclusion: the phenomenological model is promising, but it requires some further

extension to be properly accurate. Even the best case from the various options tested,

i.e. a model with independent loss coefficients for each damper position (option a)), is

not accurate enough to be used for plant simulation or for controller design, tuning and

validation. Thus, eventually, a black-box model of pressures was used for these purposes

— that is, a model of similar structure as the model of air mass flows (see Section 3.2.2).

Nevertheless, the current results of phenomenological modelling are interesting and the

work is worth continuing.

3.3 Model extension: air flows under the presence of grind-

ing media

As was stated in Section 3.1, the clean-air models may be adjusted to incorporate the

effect of material or grinding media, or other factors. Mr Bartosz Kordala, a then-student

at the Faculty of Automatic Control, Electronics and Computer Science of the Silesian

University of Technology, performed some experiments for his master’s thesis [50] that
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examined flow of air through the grinding installation, also under the presence of rotating

grinding media in the mill chamber. He then shared his experimental results with his

supervisors, including dr Szymon Ogonowski. As a result, the latter and the author of

this thesis collaborated with other partners on paper [37]. In this research, the task of

this thesis’ author was to identify incremental static characteristics of air flows in the

grinding installation, using measured data from the mentioned master’s project.

3.3.1 Identification experiment

Description of the experiment was taken from [50], but it is included here for the sake

of completeness of this chapter. The design choices will not be discussed here, as this

design was part of the mentioned master’s thesis [50]. The author of this dissertation did

not take part in planning or performing the experiment; she only processed the available

measurement data for her own purposes.

The particular experiment used in the mentioned paper [37] was similar to the one in

Section 3.1. The laboratory rig was the same (see Fig. 3.1), but the EM mill was turned

on and grinding media (in the standard shape of small rods) were present in the working

chamber of the mill. (No raw material was supplied.) Several amounts of grinding media

were used: mgrind = {500, 700, 1000} [g]. Also, a few frequencies of supply current

to the mill inductor were tested: fEM = {30, 50, 60} [Hz]. The selected values were

typical for such grinding installation and based on previous research, e.g. [78]. Moreover,

a "baseline" experiment with no grinding media was performed. This gave a total of

3 · 3 + 1 = 10 experiment series.

In each such series, successive step changes were applied to the three butterfly dampers.

For series with mgrind = 500 g or fEM = 50 Hz, many operating points were tested,

namely, all combinations of:

xm,req = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} [%];

xr,req = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} [%];

xa,req = {10, 30, 50} [%].

For the other combinations of mgrind and fEM, a smaller subset of damper positions was

tested to shorten the — already long — experiment duration:

xm,req = {10, 30, 90} [%];

xr,req = {10, 30, 90} [%];

xa,req = {10, 30, 50} [%].
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The dampers were repositioned exactly in the order written above: from 10% up, and

from the maximum value directly back to 10% (only rising step changes were applied);

and main damper was opened the most frequent, then — after its full cycle — recycle

damper was moved to the next position and all main damper positions were tested again,

and so on. The additional damper was moved the least frequent. Each step response

lasted 20 s and then the next step change on the input was applied.

Only steady-state signal values were collected by the author of this experiment. These

were air speeds in the horizontal inlet pipes: vr, vm, va.

3.3.2 Data processing

In the research performed by the author of this dissertation, air speeds were transformed

into air flows in inlet pipes: Qr, Qm, Qa, and then into the following quantities:

– flow through the working chamber of the EM mill:

Qw = cw,r ·Qr + cw,m ·Qm , (3.64)

– flow through the precise classifier:

Qc = cc,r ·Qr + cc,m ·Qm + cc,a ·Qa , (3.65)

where scaling coefficients cw,• = 1.12 and cc,• = 0.2 followed from specific pipe diameters

in the pneumatic system [76]. So, also this model assumed no leakage of false air into

the pipeline.

Further, the steady-state values of Qr, Qw, Qc were analysed. These three air flows

are critical for operation of the whole grinding circuit, and they are in the scope of upper

layer control algorithms [37; 76].

Comparing the different cases of nonzero fEM and mgrind to the no-grinding case,

significant differences in air flows are observed. Some statistics are presented in Table 3.9.

Also, Fig. 3.26 illustrates exemplary air flow values. The notable differences in air flows

(compared to the no-grinding case) prove the need to update the clean-air static models.

A control scheme was already proposed in [76] that was tuned based on clean air static

characteristics. So, the following assumptions were made for the form of the new static

models:
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Table 3.9: Statistic information on the changes in air flow values introduced by the
grinding media. Uses relative change ∆Qrel = 100% · (Qgrind −Qno grind) /Qno grind,
where Qgrind = Qs,fEM,mgrind,xr,req,xm,req,xa,req

, Qno grind = Qs,0Hz,0 g,xr,req,xm,req,xa,req
,

air stream s ∈ {r, w, c}.

stream s min(∆Qrel) max(∆Qrel) mean(|∆Qrel|)

r -86.5% 169.4% 39.6%

w -75.4% 38.7% 28.9%

c -65.4% 56.3% 13.3%

Figure 3.26: Air flow through the working chamber of the mill for xa,req = 30%, at
fEM = 50 Hz or none (no grinding)

• their output was incremental (relative to the no-grinding case) — to enable using

the new models in compensators that would augment the existing algorithm, such

as in [76];

• the models were decomposed with respect to position xa,req— just as with the

existing models in the considered control algorithm;

• the models were also decomposed with respect to fEM and mgrind values — again,

to make them consistent with the existing models (not to introduce new input

variables to the models).

Such decomposition provided simpler models and better fit of model outputs to mea-

sured data. In the cases when the grinding circuit operates on different values of xa,req,

fEM, mgrind than the ones tested, interpolation of model outputs (or model coefficients)

may be used to find approximate air flow values at these operating points.
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In consequence of such assumptions, the final form of the model was:

∆Qs,fEM,mgrind,xr,req,xm,req,xa,req

def
= Qs,fEM,mgrind,xr,req,xm,req,xa,req −Qs,0Hz, 0 g,xr,req,xm,req,xa,req

= f (xr,req, xm,req) .

(3.66)

Such model was identified for each combination of the other variables: s ∈ {r, w, c},
fEM = {30, 50, 60} [Hz], mgrind = {500, 700, 1000} [g], xa,req = {10, 30, 50} [% open].

Measurement data associated with one such combination (one model) will be called

a dataset henceforth.

The specific model structure examined was polynomial approximation:

∆Qs,fEM,mgrind,xa,req (xr,req, xm,req) =

Ni∑
i=0

Nj∑
j=0

aij · (xr,req)i · (xm,req)j , (3.67)

with: aij — polynomial coefficients to be estimated; Ni, Nj —maximum degrees of input

variables. The latter were set to 4, and also only the cross-terms up to degree 4 were used

(i + j ≤ 4). This was to prevent overfitting the model. Consequently, model structure

could contain 15 terms (15 aij coefficients) or less, if some of them were excluded. All

possible model versions were estimated, i.e. the full model and all subsets of it, for each

dataset. Least squares method was used for parameter estimation.

Before optimizing model coefficients, the signals were scaled — damper positions xr,req,

xm,req by 0.01, and air flow changes ∆Q by 100. So, the exact model used in identification

procedure was not (3.67) itself, but a slight modification of it:

ŷ∗
def
= 100 ·∆Qs,fEM,mgrind,xa,req (xr,req, xm,req) =

Ni∑
i=0

Nj∑
j=0

a∗ij ·
(xr,req

100

)i
·
(xm,req

100

)j
.

(3.68)

This made all signals be of the same order of magnitude (one), thus providing better

numerical properties of the estimation procedure.

Then, least-squares estimation was performed, and adjusted coefficient of determina-

tion R2
adj was calculated for each model version [99; 116]:

R2
adj = 1−

(
1− R2

) N − 1

N − n− 1
, (3.69)
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where: N — number of data points in the dataset, n — number of model coefficients

(excluding the free coefficient, if used), R2 — coefficient of determination [106]:

R2 = 1−
∑N

i=1 (yi − ŷi)2∑N
i=1 (yi − y)2

. (3.70)

The samples of measured output yi were changes in air flow ∆Qs,fEM,mgrind,xa,req (from

one dataset, as defined before) for all positions xr,req, xm,req. Symbol y denotes their

mean value, and ŷi is model output for the same inputs xr,req, xm,req.

Coefficients of determination R2
adj and R2, when high-valued (close to 1), indicate

a good fit of model output to measured data. However, when comparing various struc-

tures of models, having different number of parameters n, it is better to use R2
adj instead

of plain R2 because the former accounts for the improvement in fit caused simply by

larger n.

Finally, for each dataset, all identified model structures were reviewed and the best

one was selected, based on the following criteria:

– high value of R2
adj (3.69), i.e., good fit;

– low complexity (among model variants having similar values of R2
adj, the ones with

less terms were favoured);

– the same structure for all decomposed models, i.e. for all values of fEM, mgrind,

xa,req for one air stream s (needed for compensator design).

3.3.3 Results

As a consequence of the above selection procedure, it turned out that the same structure

was the best for all air streams s ∈ {r, w, c}. It was the following seven-parameter

model:

∆Qs,fEM,mgrind,xa,req (xr,req, xm,req) = a00 + a10 · xr,req + a20 · (xr,req)2+

+ a30 · (xr,req)3 + a40 · (xr,req)4 + a01 · xm,req + a02 · (xm,req)2 . (3.71)

Exemplary model output is shown in Fig. 3.27.
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Figure 3.27: Model output compared to measured values. Dataset for air flow through
the working chamber of the mill, fEM = 60 Hz, mgrind = 500 g, xa,req = 30%.
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Chapter 4

Simulation of Air Flows

Static and dynamic models of clean air flow rate and pressure were incorporated into

a simulator of the inlet part of the pneumatic system. The simulator was needed to later

test the operation of various control algorithms, before the best ones are implemented in

hardware.

Simulator structure and results of validation tests were published in [52]. They are

also given below, often with more detail than in the paper.

4.1 Simulator development

The simulator of airflow in inlet pipes was built using static characteristics described in

Section 3.2.2 and parameters of dynamic models presented in Section 3.2.3. The averaged

versions of static characteristics and of model parameters were used, meaning that the

simulator did not include hysteretic behaviour of the dampers.

In the simulation, inputs to the plant model were the requested positions of the three

air dampers: xr,req, xm,req, xa,req. Outputs were mass flows of air in the three inlet pipes:

qr, qm, qa; and if needed, also pressures at the same locations: pr, pm, pa.

The simulator was built in MATLAB Simulink environment. The Simulink block

diagram was supported with a MATLAB script that initialized the necessary model

parameters, run the simulation and saved the results to a file. Continuous-time blocks,

such as integrators, were used to simulate the continuous time domain. The solver

was parametrized to use a small fixed-size simulation step Ts,plant = 1/40 s, which was

20 times faster than in the control loop (introduced later) and also much faster than the

usual values of time constant and time delay of the dynamic models. For example, for air
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flow models, median time constant was 1.43 s and median time delay was 2.11 s. Thus,

the step size was small enough to treat the simulation time as apparently continuous.

Simulator of air mass flows was built first, as the more important one. Later —

for simulation of control schemes that make use of pressure measurements — pressure

simulation was added and it followed exactly the same structure. Mass flow and pressure

components of the simulation were independent of each other, they only shared the same

values of input signals (damper positions).

Structure of simulated models resembled the result of linearization of a nonlinear plant

model by Taylor series expansion — the model of each mass flow (or pressure) consisted

of a steady-state characteristics plus three dynamic components, each producing the

output deviation from steady state in response to deviation from the previous position of

one damper. These dynamic models were 1st order systems with delay, as already stated

in Section 3.2.3.13. The specific point on the static characteristics as well as parameter

values for the dynamic models were selected according to the current operating point of

the simulated plant. Namely, all the characteristics and sets of parameter values were

stored as 3D matrices with dimensions corresponding to positions of the three dampers.

Each such matrix was used as a 3D lookup table indexed with the current positions of

all dampers. Note: Time constant T1 currently used in dynamic model simulation was

not directly the one indicated by the current damper positions. Instead, time constant

values indicated this way were treated as signal samples, then they were delayed by the

current T0 value, and finally used in the dynamic model.

A schematic diagram of the general idea of such model structure is presented in Fig. 4.1.

This structure was repeated six times to calculate mass flows of air qs and relative

pressures ps in all three horizontal inlet pipes, so, for s ∈ {r, m, a}.

The idea is quite simple, but actually, model structure was more complicated. This was

because the value from the static characteristics and values of dynamic model parameters

were varying with each change in damper positions. Also, there were some limitations

due to putting a theoretical concept into a programming language.

Firstly, the usual approach of linearization by Taylor series expansion is that some

base steady state is selected, and then deviations from it are approximated with linear

dependencies, resulting in estimation of a new steady state. In the simulator, however,

the new steady state was immediately turning into the base steady state for a next change

in inputs. Moreover, the steady states were not necessarily reached by the signals before

new input changes were issued. So, the best solution was to always use this point of the

static characteristics that corresponded to the current positions of dampers — not some

previous steady state corresponding to some earlier positions. However, this produced

148



4.1. Simulator development Chapter 4. Simulation of Air Flows

x
r,req

(t) x
m,req

(t) x
a,req

(t)

static characteristics

y
s
(x

r,req
, x

m,req
, x

a,req
)

      Δy
s
(s)       k e–sTo 

     Δx
r,req

(s)      sT
1
+1

{k, T
1
, T

0
} = f (x

r,req
, x

m,req
, x

a,req
)

=

      Δy
s
(s)        k e–sTo 

     Δx
m,req

(s)      sT
1
+1

{k, T
1
, T

0
} = f (x

r,req
, x

m,req
, x

a,req
)

=

      Δy
s
(s)        k e–sTo 

     Δx
a,req

(s)      sT
1
+1

{k, T
1
, T

0
} = f (x

r,req
, x

m,req
, x

a,req
)

=

y
s
(t)

Δ

Δ

Δ

y
s
(t)

Δy
s vs r

(t)

Δy
s vs m

(t)

Δy
s vs a

(t)

Figure 4.1: Schematic diagram of the idea of air flow simulator for a single pipe.
Signal y denotes air mass flow q or relative pressure p. Operator ∆ means the difference
between current and previous signal value; this difference is possible to be calculated
because physically, the simulation uses small discrete time steps that only simulate

continuous time.

the target (final) steady state at the output of ’static characteristics’ block, and not the

base steady state. Consequently, the dynamic models of mass flow deviations needed to

act a bit counter-intuitively. The dynamic models were not producing some "additive"

deviations that should evolve the base steady-state value into a new one; they rather

had to create some "subtractive" deviations to slow down the immediate change that

happened on the output of ’static characteristics’ block. This is schematically plotted in

Fig. 4.2.

Note: The graph and the following paragraphs assume changes in input signals in form

of step changes. This helped to design the simulator and also made it easier to explain

the development process. However, this does not introduce any constraints on the input

signals, as each signal shape may be composed of some number of sequential step changes

— especially that in the real plant these inputs, i.e. requested positions of dampers, are

set by electronic equipment which uses a finite sampling period.

From the graph it follows that after each step change on input, the dynamic model

output should contain a single square pulse of length T0, of amplitude equal to the change

in steady state ys, but with the opposite sign; and then the signal should settle down

(like inertia’s impulse response) when the square is switched off. This was achieved by
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Figure 4.2: Schematic graph of signal behaviuor in the plant simulator. Shaded area
is the target sum of dynamic models’ outputs needed to introduce the desired dynamics

into the output signal.

setting unit gains on all dynamic models and exciting them with a processed version of

∆ys rather than with ∆xs,req (because k ·∆u = k ·∆xs,req = ∆ys, and operating in such

way guaranteed that the change in ’static characteristics’ block output would always be

perfectly compensated by dynamic model response).

This mentioned processing of input signal was just generation of proper square pulses.

On each change ∆ys 6= 0, a pulse was started with amplitude −∆ys, and also the

current simulation time was registered. Simultaneously, at each simulation step the

present simulation time was compared with start times of the square pulses; generation

of a pulse was stopped if its duration reached or exceeded the current value of time delay

in the plant model. Consequently, the actual excitation signal for the dynamic model was

a sum of square pulses shaped by changes in steady-state values and by time delay values

in the plant model. A new square pulse for a model was added to the excitation signal

only if the change in steady state was caused by repositioning the damper associated

with this particular model. In other words, only one dynamic model was additionally

excited when one damper was changing position; excitation signals for the other models

remained unchanged.

For such scheme to work, additionally, the state variable needed to be reset in the

dynamic model. Namely, the state variable of the integrator block was modified with

−∆ys each time when the dynamic model was to be excited with a new square pulse

(so, each time when the damper associated with this model changed its position). As

a result, when the new square pulse started on input, the dynamic system acted as if

such excitation had already been long present and was only continued. This way, there

was achieved the desired sharp edge at the start of the dynamic model response (at its

"left side", as visible in Fig. 4.2). Otherwise, the beginning of the response would be

a slow-changing transient analogous to the end of the response.
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One more modification was needed to account for the situation when multiple dampers

(say: N dampers) were re-positioned at the same time instant. If all associated dynamic

models reacted, then each of them would produce a response that aimed at initial can-

cellation of the whole ∆ys, and the total result would be exagerrated: immediately after

the step change on inputs, the total deviation from the old steady state would be equal

to (N − 1) · (−∆ys) instead of the desired zero. There were several possible solutions to

this problem, for example:

a) Excite only one of the discussed N dynamic models, and leave the other(s) unmod-

ified.

The excited model could be e.g. the one with the slowest response of all N (at

the current operating point). This slowest response could be defined as having

maximum (T0 + T1) value, or (T0 + 3 · T1), or similarly. (These values are not

arbitrarily chosen, but for 1st order systems with delay, they correspond to times

needed to reach 63% and 95% of the final steady state [8] — so, a substantial

fraction of the final output value.)

b) Excite only one dynamic model, but with parameters T0, T1 that combine in some

way the parameters of all discussed N dynamic models at the present operating

point.

The combined values could be e.g. the maximum of the N individual values.

c) Excite allN dynamic models, but with 1
N of the usual input signal, i.e. with 1

N ·∆ys.

Contrary to the previous options, this approach would not produce a smooth iner-

tial transient, but a superposition of two or three inertial responses with distinct

time constants and time delays.

d) First apply a change in only one damper position, respond with the associated

dynamic model. Then, in the same simulation step, apply the change in another

damper’s position. This would produce another variation of the target steady

state, to which the other dynamic model would respond. Finally, repeat for the

third damper, if necessary.

This way, each dynamic model would react only to a part of the overall steady-

state change, but these parts would not necessarily be equal, as was in the previous

option. This approach may seem somehow natural (in the sense of no "artificial"

divisions by N), however, it has some serious drawbacks.

Firstly, there is no single proper order of re-positioning the dampers; and different

orders would result in different magnitudes of the partial changes in steady state, so

eventually, these would yield different transients. So, there is no way to scientifically

support any selection of the order in which the dampers change positions.
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Secondly — and more importantly — such partial changes in target steady-state

value could have different signs, i.e., some might be increasing and some decreasing.

With distinct, unrelated temporal parameters of all dynamic models, this would

easily lead to situations where a fast rising inertial output is then mitigated by

a slower inertia aiming at a lower final steady state (or vice versa). Such spikes

or ripples in the resulting superposition of inertial responses were definitely not

observed in the measurement data, which finally rendered the presented approach

unacceptable.

Still, the first three methods were reasonable. Theoretically, it could be debated which

of them would be the closest to reality; but practically, the differences in output signals

produced with these methods would be so small that any of these designs could be used.

Thus, the third one was chosen, simply because it was definitely the easiest to implement

in the existing structure of the Simulink diagram.

The final block diagram of a single dynamic model, as built in Simulink, is shown in

Fig. 4.3. It may seem complicated, but again, this complexity was only caused by some

limitations when implementing the model as a program in a specific environment. The

general idea behind this implementation remains as simple as was shown in Fig. 4.1.
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4.2 Verification and validation

Multiple tests were conducted to check if the simulator worked as intended. Some tests

verified if the assumed structure of plant model was correctly implemented, and others

validated simulator outputs versus data measured at the plant.

4.2.1 Test 1: one damper moving at a time, with waiting for steady
states

The first test simulation was simple: the excitation signals (damper positions) were set

to several values, chosen arbitrarily. Only one damper was moved at a time, and model

outputs were let to settle down before another step change happened on some input.

The resulting mass flows of air are presented in Fig. 4.4.

The plots on the left show the total mass flows. The air flows indeed react to step

changes on any damper’s position. The transients are shaped according to the right

model type (1st order inertia with delay), and their parameters change when the system

is moved to another operating point. The air flows reach their expected steady state

values, as marked in the plots by static characteristics qs.

The plots on the right detail the four components of each air flow: the steady-state

value and three deviations from it, caused by three dampers moving. Each deviation

signal ∆q• vs s correctly reacts only to repositioning of one appropriate damper s. A step

change in damper position xs,req causes an immediate step change ∆qs in steady-state

value and a dynamic response of ∆q• vs s. This transient has an instant rise or fall at the

beginning, reaching the value of −∆qs; then, with varying delay and time constant, it

settles back to zero, so that the total flow rate qs achieves the full steady-state value qs.

So far, all these observations confirm correct behaviour of the simulated model.
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Figure 4.4: Simulator output in test 1: mass flows of air (in blue) for plant model
excited with arbitrary step inputs (in red). Three top rows show the entire simulation

time, the bottom row shows only a fragment.
Bottom row’s source [52]: Krauze O. Model and simulator of inlet air flow in grinding
installation with electromagnetic mill. Scientific Reports 2023, 13, 8281. https:

//doi.org/10.1038/s41598-023-34664-0, Fig. 4.
Re-used under Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/).
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4.2.2 Test 2: multiple dampers moving at once, with waiting for steady
states

Next verification test used a scenario where multiple dampers changed positions simulta-

neously. At the beginning — at simulation times t = {25, 50, 75} [s] — each possible pair

of dampers was moved at once. Later (at t = 100 s), all three dampers were repositioned

at the same moment. To simplify the analysis of results, again, the intervals between the

successive excitations were long enough for the output signals to settle down.

Exemplary results — the ones for the recycle air stream — are shown in Fig. 4.5.

Signal values were correct: deviations ∆qr vs s responded to their associated inputs xs,req,

the transients were properly shaped and the total output air flow qr achieved the right

steady-state values.

4.2.3 Test 3: without waiting for steady states

This scenario checked simulator operation when new excitations appeared fast, still dur-

ing the transient phase produced by some recent excitation. The test included several

stages:

– at simulation time t = [0; 55) s: a step change in position of damper s1, then 3 s

interval, then a step change in position of another damper s2 6= s1, finally a longer

break — repeated several times for different pairs of s1, s2;

– at t = [55; 80) s: step changes in positions of all three dampers, one after another,

separated by 3 s intervals;

– at t = [80; 125) s: a step change in position xs,req, then 3 s break, then another

step change in the same damper’s position, then a longer break; repeated for each

damper s ∈ {r, m, a};

– at t = [125; 150] s: step changes issued simultaneously on all three dampers’ posi-

tions; then 1–3 s interval; repeated several times for different positions.

In between these stages and at the very end, no new excitations were issued for longer

periods, in order to observe if the output signals reached correct steady states after each

part of the test.

Simulation results are presented in Fig. 4.6 — for the recycle stream only, as an exam-

ple. The simulated signals had appropriately shaped transients and correct steady-state

values. This confirmed proper implementation of switching the dynamic models between
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Figure 4.5: Simulator output in test 2: recycle air mass flow in response to simulta-
neous step changes on multiple inputs.

Source [52]: Krauze O. Model and simulator of inlet air flow in grinding installation
with electromagnetic mill. Scientific Reports 2023, 13, 8281. https://doi.org/10.

1038/s41598-023-34664-0, Fig. 5.
Re-used under Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/).

various steady states: generation of square pulses, resetting state variables (accumula-

tors) in integrators, etc. The simulated model operated well even if its outputs did not

have enough time to settle down; this proved that the model was able to respond to any

shape of excitation signal, not only to single step changes.
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Figure 4.6: Simulator output in test 3: air mass flow in recycle stream (top panel)
for plant model excited with frequent step changes (bottom panel).

Source [52]: Krauze O. Model and simulator of inlet air flow in grinding installation
with electromagnetic mill. Scientific Reports 2023, 13, 8281. https://doi.org/10.

1038/s41598-023-34664-0, Fig. 6.
Re-used under Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/).

4.2.4 Test 4: validation using data from identification experiment

The above tests verified that simulator structure was implemented as planned. Af-

terwards, some validation tests were run, which checked similarity between values of

simulated and measured (experimental) signals. These tests checked the correctness of

simulator implementation, but also of measurement data processing (Section 3.2).

The input signals to the real plant that were previously used in the identification

experiment were now fed to the model. The resultant simulator output was compared

to the measurements from the experiment. The comparison is plotted in Fig. 4.7–4.8.

The former contains a smaller fragment of the output signals, magnified to examine the

transients. The latter shows the whole experiment series no. 3 (the other two series are

not plotted, but were tested as well). This figure provides an overview on matching

between the steady states from simulation and from the experiment.

From Fig. 4.7–4.8 and from the other (not plotted) results it follows that the simulator

works well. The transients — their delays, rates of change, shapes — are well reflected.

Also, the simulated and measured steady-state values are alike, the discrepancies between

them are generally small. Only for the recycle air there are several operating points where

experiment and simulation differ much. These differences in steady states come from the

fact that the model uses static characteristics which was averaged over all data series (see
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Section 3.2.2), and the individual results from these series vary. These variations may

be examined in more detail in Fig. 4.9. In each chart, one colored rectangle represents

a steady state from one operating point of the installation, with the specific steady-state

value indicated by the color. The rectangles form vertical lines, and the lines constitute

groups; the first six lines in each group show experimental data from the six datasets

(see Section 3.2.2.4), and the rightmost (seventh) vertical line illustrates the averaged

smoothed static characteristics, which was made of them and used in the simulator

(see Section 3.2.2.8). Looking along the horizontal dimension within one group, the

colors are not always identical. This means the steady-state values sometimes varied

between datasets, and were also different from the averaged static characteristics. Thus,

in simulation results such as in Fig. 4.7–4.8, steady states of simulated signals were not

always in perfect accordance with measured data, coming from a single specific dataset.

4.2.5 Conclusions

The above tests proved that the simulator provides good quality data — both dynamic

and steady-state. Thus, it may be used for prototyping control algorithms for the air

flows in grinding installation, which is indeed done in Chapter 5.
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Figure 4.7: Result of test 4: mass flow rate of air in the main stream, simulation and
experimental data compared. A short fragment illustrating the transients.

Source [52]: Krauze O. Model and simulator of inlet air flow in grinding installation
with electromagnetic mill. Scientific Reports 2023, 13, 8281. https://doi.org/10.

1038/s41598-023-34664-0, Fig. 8.
Re-used under Creative Commons Attribution (CC BY) license

(https://creativecommons.org/licenses/by/4.0/).
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Figure 4.8: Result of test 4: mass flow rate of air in all streams, simulation and experimental data compared. A long fragment illustrating the
steady states in a whole experiment series.
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Figure 4.9: Steady states of air mass flow rates compared between datasets. In one chart, n-th vertical lines in all line groups illustrate the
same dataset. The first six datasets are experimental data, the last (rightmost) dataset is the final combined static characteristics. Empty (white)
rectangles indicate missing data points in the experimental datasets, due to excessive turbulences in air flows or possibly outlying measurements.
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Chapter 5

Control of Air Flow

5.1 Hierarchical control system of the grinding installation

The grinding circuit is a multiple-input, multiple-output plant. Moreover, the input

signals change in much varying time horizons — for example, type of raw material

should remain constant for long periods of time, but air flow through different parts of

the installation would probably change with much higher rates. This means the control

system for the whole plant needs to be a hierarchical one, where each higher layer is

responsible for processes (or disturbances) with longer time constants [37; 77–79; 111].

A general structure of a layered control system is sketched in Fig. 5.1.

plant

direct control
layer

measurement
system

supervisory
control layer

optimization
layer

production
management

Figure 5.1: Structure of a general hierarchical control system. Based on [111, Fig. 7].

In the case of dry grinding installation with electromagnetic mill, the top layer (pro-

duction management) is responsible for setting e.g. the target throughput (production
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rate); desired features of the product, such as particle size (mainly), or additionally par-

ticle shape, moisture content, or other physicochemical properties, as needed; average

time of grinding; mass and type (shape, material) of the grinding media [77]. Production

rate is assumed the leading variable for the lower layers. This means it has a key impact

on the functional structure of control loops in these layers [37; 78].

Optimization layer, thoroughly discussed in [78], aims at minimizing energy consump-

tion of the grinding circuit, while keeping the setpoint production rate and final product

quality. Energetic efficiency is achieved mainly by controlling the output and base fre-

quencies of the inverter that supplies the EM mill inductor. These inverter frequencies

and mass of grinding media are the most important factors affecting the energy con-

sumption of the mill [37; 78]. Moreover, heat recovery system is controlled from the

optimization layer [77]. It determines the optimal mix of fresh air and the heated air at

the output of fans cooling the EM mill.

Supervisory layer mainly provides setpoint values for the lower layer control loops, tak-

ing into account e.g. the cross-couplings between them. This makes the direct controllers

simpler and more efficient [77].

Direct control layer in the grinding installation comprises many subsystems. Some

examples are the control of [78; 111]:

– air flows in the working chamber of the mill, in the precise classifier and in the

recycle stream,

– fill level of the working chamber (amount of material in the working chamber),

– moisture content of the raw material in the mill chamber,

– grinding media amount in the mill.

These control loops mostly serve for disturbance attenuation.

5.2 Air flows control in the grinding installation

For the technology of dry grinding referenced in this thesis, three air flows are of particular

importance. These are [37; 76]:

– Air flow through the working chamber of the EM mill (qw or Qw). High enough

value is necessary to keep the raw material particles suspended in the working area

of the grinding media; otherwise, the material would fall onto the mill bottom. On

the other hand, too big air flow would blow the particles out of the mill cham-

ber before they are properly ground. This would cause excessive recycle stream

generated in the precise classifier. This in turn would result in forced decrease of
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fresh feed throughput and deteriorated energetic efficiency of the grinding process.

Summarizing, this flow rate is the key factor influencing material residence time in

the mill chamber.

– Air flow through the precise classifier (qc or Qc). For proper operation of the

classifier, higher air flow is needed here than in the mill chamber, so an additional

air stream is let into the classifier chamber [112]. The specific value of this air

flow affects the classification process — e.g., sharpness of the partition curve and

the so-called d50 particle size, which describes the diameter of particles that are

directed equally often into the coarse and fine product streams [112].

– Air flow in the recycle stream (qr or Qr). This air flow carries the recycle material

(coarse product of classification) back to the mill chamber, for re-grinding. The

requirements for this flow rate are less strict than for the other two, as the recycle

air flow just should not fall below a minimum that is capable of transporting the

particles of the processed material, but it is not necessary to maintain a single

specific value.

Apart from the recycle air flow, these flow rates cannot be measured directly due to

technical limitations [76]. The mill and classifier chambers are filled with the processed

material (the air is not clean), which is a serious problem for the potential measurement

equipment, especially for its durability. Moreover, even if such air flow (or air speed)

transducers were mounted in the installation, their readings would be of quite low ac-

curacy — because of the air borne particles possibly affecting the measurements, and

also due to lack of required run-in and run-out distances to nearest air flow obstacles.

So, rather than being measured, the mill chamber and classifier air flows need to be

estimated (modelled) using the available clean air measurements: in the recycle, main

and additional inlet air streams (see Fig. 3.1).

Assuming no false air leakage into the pipeline, the above-mentioned flow rates (in

steady state) may be estimated in the following way:

• flow through the working chamber of the mill:

Qw = cw,r ·Qr + cw,m ·Qm , (5.1)

qw = qr + qm ; (5.2)

• flow through the precise classifier:

Qc = cc,r ·Qr + cc,m ·Qm + cc,a ·Qa , (5.3)

qc = qr + qm + qa . (5.4)
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The constants c•,• follow from geometric relationships between pipe diameters in the

pneumatic system. Of course, as was already discussed in Chapter 3, it holds that

Qs = f(xr,req, xm,req, xa,req) and qs = f(xr,req, xm,req, xa,req) for s ∈ {r, m, a}.

These simple models may be improved by taking into account the leakage of false air,

which is observed in the physical installation. This leakage might be estimated using

e.g. pressure readings in the inlet pipes and total air flow measured near the exhaust in

the installation. However, this is out of the scope of this dissertation and may be a subject

of future works. For the sake of the following considerations, it is enough to assume that

there exists an upper layer model, (5.1)–(5.4) or other, of structure Qs = f(Qr, Qm, Qa)

or qs = f(qr, qm, qa) for s ∈ {r, w, c}. So, the requirements for the technologically

critical flows s ∈ {r, w, c} may be transformed (in the mentioned upper layer algorithm)

into equivalent setpoints for physically measured flows s ∈ {r, m, a} in the inlet pipes.

(Anyway, all flow rate setpoints are achieved in the same way, that is, by simultaneous

manipulation of three air valves’ positions: xr,req, xm,req, xa,req.) This way, many direct

control schemes may be tested and evaluated, independent of the specific upper layer

model of flows through the mill and classifier. Some of these direct control algorithms

are described in the following sections of this chapter.

The design, tuning and testing of control algorithms was done in simulation, using

Simulink block diagrams and accompanying MATLAB scripts. The plant simulator from

Chapter 4 was used, and it was extended with the considered control loops. Compared

to on-site tests, such simulation-based approach requires much less time, effort and costs.

It is also safer to the installation, as many bugs or erroneous parameter settings may

be spotted and elliminated even before the algorithms are run on the real plant. In the

future work, selected (best) control schemes may be implemented in hardware in the

grinding installation and then subjected to the final tests and corrections.

Note: for simplicity, the direct layer algorithms were treated here as standalone control

systems, with setpoint values supplied manually. When these algorithms are plugged into

the full layered control system, their structure may require some modifications, or fine-

tuning of controller gains may be required. Still, with such standalone testing, it was

possible to capture the strengths and weaknesses of the tested algorithms, and to check

what was the best possible performance of these control system structures. This way,

the acceptable control schemes could be indicated (the ones performing with the desired

quality).
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5.3 Test scenario

Plant model was simulated in quasi-continuous time, i.e., with very small simulation

steps of 1/40 s. It was the same as with the open-loop simulation (Section 4.1). Control

algorithms operated in discrete time. Control period was programmable; value of 0.5 s

was used to mimic the current setting in the control system of the grinding installation,

but other values may also be tested easily. Between the controller outputs and plant

model inputs, zero-order hold (ZOH) blocks were used to imitate the hardware operation

in the real installation.

The scenario for testing controller performance was, of course, identical for all control

algorithms under research. It involved successive step changes on setpoints for all three

air flows, mostly on one setpoint value at a time, as this is already a disturbance to the

other air flows and so, is an interesting case to examine. The specific setpoint values were

picked from among the results of open-loop plant simulation, so they were physically

reachable. This was to assess the actual capabilities of the tested control algorithms,

without biasing the quality measures with forced errors due to unrealizable setpoints.

Several setpoint flow rates were selected for each stream, related to both small and wide

damper openings; the differences between the openings (the step changes) were of both

positive and negative sign, and of small or big amplitude. The step change was selected

as it is a classical signal type for such tests. It is the most abrupt chang possible, so if the

control algorithm can handle it satisfactorily, then it will also perform well for smoother

changes.

This was not an exhaustive, comprehensive test scenario showing closed-loop system

performance in its whole operating range. Such tests would be quite cumbersome and

they need to be the subject of a separate study. Instead, this was aimed as a rather simple

scenario, still: showing a variety of operating points, but not testing all possibilities.

5.3.1 Scenario 1 – ideal plant model

In the basic test scenario, parameters used for plant model simulation and for controller

tuning were exactly the same. This allowed to create controllers of each tested type

that were tuned as good as possible. Their performance indicated a supremum that for

sure could not be surpassed in a real-world situation. The parameters used here were

obtained as described in Sections 3.2.2–3.2.3.
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5.3.2 Scenario 2 – non-ideal plant model

Control schemes that performed best in the first scenario were also subjected to the

second one, closer to reality. In this case, flow setpoint values were the same as previously,

but plant model was simulated with parameters slightly different than the ones in plant

model used for controller tuning. This resembled the real-world cases, where any models

only approximate the behaviour of the physical plants.

In this scenario, again, controllers were tuned based on the already introduced param-

eter sets (Sections 3.2.2–3.2.3), that is, on the best available knowledge about the plant.

The simulated plant, however, used parameters slightly randomly modified. These values

were generated once and then used throughout the tests of all control schemes, to ensure

identical conditions in all tests.

To modify the static characteristics of a given signal, firstly, the individual (not av-

eraged) six datasets of measured steady states were gathered (see Section 3.2.2.4), with

outliers deleted, and with missing values interpolated (Section 3.2.2.6). Then, for each

operating point {xr,req, xm,req, xa,req} from the "coarse grid" of points visited during

the experiment, minimum and maximum of the six individual steady-state values was

determined. One of them (minimum or maximum value) was randomly chosen as pre-

liminary value of the target static characteristics at this "coarse-grid" operating point.

(Only extreme values were selected because later the hypersurface would be smoothened

and variability of values would noticeably decrease.) Then, the values were checked

for monotonicity along all three axes (positions of three dampers), and sorted if nec-

essary, to enforce monotonicity. Finally, 3D linear interpolation to fine grid and then

3D smoothening were applied, in the same way as it was done so far.

The resultant randomized static characteristics was compared to the "ideal" model

(averaged static characteristics) by calculating statistics on the difference between the two

hypersurfaces, denoted δrandom. The same statistics were computed on the differences δi,

i = 1, 2, ..., 6, between the averaged characteristics and each of the individual ones. The

statistic measures for δrandom are similar as for δi (see Table 5.1). This indicates that the

above method produces randomized static characteristics which reasonably differs from

the averaged model, i.e., differs in the extent which might be encountered in the real

plant operation.

Similar methodology was applied to the dynamic parameters. The main difference was

that here, only two (not all six) individual datasets were used for drawing random values.

These were the two sub-datasets from Section 3.2.3.8. Then the randomized values were

3D-interpolated to fine grid and smoothened.
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Table 5.1: Statistics describing differences δ between averaged static characteristics
of air flow rates and: individual experimental data series i = {1, 2, ..., 6} (δi), or ran-
domized characteristics used in test scenario 2 (δrandom). Abbreviations: std. dev. —

standard deviation. All quantities given in [kg/s].

Measure δ1 δ2 δ3 δ4 δ5 δ6 δrandom

Additional air stream

median of |δ|, ×10−4 1.06 2.05 1.17 1.78 2.16 2.01 1.60
mean of |δ|, ×10−4 1.48 2.51 1.46 2.13 2.67 2.46 1.85
minimum δ, ×10−3 -0.849 -1.03 -0.947 -0.964 -1.54 -0.702 -1.19
maximum δ, ×10−3 0.692 0.765 0.711 0.771 1.05 1.19 0.689

std. dev. of δ, ×10−4 1.98 2.51 1.85 2.20 2.79 2.31 2.14

Main air stream

median of |δ|, ×10−4 1.22 2.10 1.07 2.02 1.57 1.63 1.47
mean of |δ|, ×10−4 1.80 2.76 1.71 3.31 2.36 2.24 2.22
minimum δ, ×10−3 -1.30 -0.943 -1.07 -2.70 -0.607 -1.11 -0.627
maximum δ, ×10−3 1.09 1.31 1.08 0.931 1.19 1.16 1.20

std. dev. of δ, ×10−4 2.60 3.47 2.39 4.33 2.88 2.91 2.60

Recycle air stream

median of |δ|, ×10−4 0.792 1.38 0.888 1.57 1.11 1.58 0.907
mean of |δ|, ×10−4 1.31 3.41 2.53 4.59 2.09 2.46 2.05
minimum δ, ×10−3 -3.85 -5.31 -3.85 -3.79 -3.85 -1.75 -3.50
maximum δ, ×10−3 1.60 3.76 2.21 5.55 1.52 3.09 1.22

std. dev. of δ, ×10−4 2.45 6.01 4.04 6.85 3.27 3.11 3.95

5.3.3 Evaluation of controller performance

To compare the performance of different control schemes, several quantitative measures

were used which were meaningful yet easy to compute automatically. The following

notations use symbols: e = (qs,SP− qs) — error signal, u — plant excitation, i.e. control

input (requested damper position), ∆u — difference of consecutive samples of signal u

(increment of u). The most important quality indices are marked in bold:

– integral of absolute error (IAE) [kg],

– maximum absolute error (max |e|) [kg/s],
– maximum value of control input (max u) [% open],

– minimum value of control input (min u) [% open],

– standard deviation of control input values (std(u)) [% open],

– maximum absolute increment of control input (max |∆u|) [% open],

– sum of absolute increments of control input (Σ|∆u|) [% open].
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The best-case values of these measures are tabularized in the following sections. Average

and median values of |∆u| were also computed; they were always the same — much

below 1 or equal to 0, respectively (which indicated correct operation of control loops)

— so they are not shown in the tables.

Moreover, time-domain plots of simulated signals were observed. They are presented

in their associated sections of this chapter.

5.4 Applied control schemes

5.4.1 3 × SISO PI control

5.4.1.1 System setup

A basic approach to be tested is an individual controller per each inlet air stream, so three

independent control loops (Fig. 5.2). This structure is very simple to build. However, as

a result of this independence, the actions of controller A, aiming at stabilising flow rate

in stream A, disturb the flow also in streams B and C.

  

additional stream
controller

plant

discrete time

continuous time

main stream
controller

recycle stream
controller

ZOH ZOH ZOH

q
a,SP

q
m,SP

q
r,SP

–

–

–

q
a

q
m

q
r

x
a,req

x
m,req

x
r,req

Figure 5.2: Diagram of control system with three single-input, single-output (SISO)
feedback controllers, one for each air stream

PID-type controllers were tested first, namely: PI controllers. Their outputs were

limited to 0–100% (for main stream), or 15–100% (for recycle stream), or 10–100% (for

additional stream). Anti-windup method (clamping) was included. Moreover, controller

output was rounded to nearest integer, as in the grinding installation, the available

settings of damper positions are only whole numbers.
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The PI controllers were implemented in simulation using MATLAB Simulink’s built-

in block called "PID controller" [61]. Its settings were: discrete-time operation, parallel

form, trapezoidal integration method, limited output (with limits as above), clamping

anti-windup method, zero initial conditions for the integrators, and external controller

gains supplied from the MATLAB script as needed.

This setup — especially with fixed-value controller parameters (Sections 5.4.1.3 and

5.4.1.4) — may be treated as a benchmark, as such simple SISO loops with PID-type

controllers are undoubtedly the most prevalent control schemes in industry [75, Sec. 1.1].

5.4.1.2 PI controller tuning rules

Rules for controller tuning were based on the plant model (first-order system with delay)

in the primary paths: from a damper to air flow rate in the same stream. The rules

implemented and tested in simulation were a selection of fourteen methods from an

extensive review book [75]. The methods were originally authored by (and are such

labeled in the review book):

– robust methods:

a) Rivera et al., 1986, first version [75, p. 74];

b) Rivera et al., 1986, second version [75, p. 74];

c) Ogawa, 1995 [75, p. 75];

d) Åström and Hägglund, 2006, robust tuning version [75, p. 76];

e) Åström and Hägglund, 2006, aggressive tuning version [75, p. 76];

– methods shaping process reaction:

f) Hazebroek and Van der Waerden, 1950 [75, p. 30–31];

g) Moros, 1999, first version [75, p. 31];

h) Moros, 1999, second version [75, p. 31];

i) Wolfe, 1951 [75, p. 31];

– methods providing minimum integral of absolute error:

j) Shinskey, 1988 [75, p. 33];

k) Marlin, 1995 [75, p. 38];

l) Edgar et al., 1997, first version [75, p. 38];

m) Edgar et al., 1997, second version [75, p. 38];

n) Shinskey, 2003 [75, p. 39].

See the review book for the specific formulas.
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5.4.1.3 PI version 1: fixed parameters, based on averaged plant model

Controller parameters This type of PI controllers was the simplest. Controller

parameters were tuned only once, for all operating points simultaneously, and they were

not changing throughout the simulation.

Parameters for air flow controller for stream s were calculated based on parameters

of dynamic model ∆qs,SP vs. ∆xs,req averaged over all operating points. This meant

that plant parameters at any operating point would be possibly close to the model

parameters used for tuning the controller. Some tuning methods, especially robust ones,

should manage to handle the fact that the actual plant parameters were not always very

close to the model ones.

Simulation results — scenario 1 only Controllers were tuned according to each of

the above-mentioned rules, in turn (all three controllers with the same rule). Simulations

were carried out, following scenario 1 (ideal knowledge of plant parameters). Plots of

simulated signals and values of quality indices were compared, and rule d) was definitely

the best. It provided the least IAE for main and recycle air flows; second best IAE for

the additional air flow; the least sum of control signal increments for main and additional

streams; second best Σ|∆u| for the recycle stream; and the smallest oscillations in the

plant outputs (Fig. 5.3). In all of these criteria, other tuning rules performed significantly

worse.

Note: Values of quality indices (Section 5.3.3) for the best case of each version of

PI control are collected in Table 5.2.

However, the oscillations were still very significant, whereas none of them are desired

on the outputs, and also on control signals (not to wear out the actuators). So, these

simulation results show that variability of plant parameters — especially, gains — is too

big even for the robust tuning methods. Moreover, the non-oscillatory transients were

rather slow.

5.4.1.4 PI version 2: fixed parameters, based on worst-case plant model

Controller parameters The same methodology was used as before, but now, instead

of averaged plant model, the worst-case plant parameters were used as input to the tuning

rules. These parameters were the maximum gain, and minimum time constant and time

delay of dynamic plant model. They were supposed to yield more conservative controller

tuning, thus avoiding oscillations in plant output.
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Figure 5.3: Simulation result for 3 × SISO PI control in version 1 (fixed parameters
based on averaged plant model), test scenario 1. Best case: tuning rule d).

Simulation results — scenario 1 In general, the results were better than for scheme

version 1, as the simulated signals contained little oscillations, and better IAE was

achieved in a few cases. However, no single tuning rule provided really good results

for all three streams at once. So, for each stream a separate "best rule" was determined

— one that produced the lowest IAE, smallest oscillations and rather small variability of

control inputs. These were rules b), h) and l) for main, recycle and additional controllers,

respectively. Then, each stream’s controller was tuned according to its own best rule and

they were simulated together in the same test scenario as usual.

The result is plotted in Fig. 5.4 and it is better than expected — the oscillations

are not frequent and have small amplitudes, and the flow rates settle down relatively

fast, compared, e.g., to Fig. 5.3. Most of the quality indices are better than for scheme

version 1. Unfortunately, still the main and recycle air flows are often strongly disturbed

by changing setpoints of other flow rates.
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Figure 5.4: Simulation result for 3 × SISO PI control in version 2 (fixed parameters
based on worst-case plant model), test scenario 1. Best case: tuning rules b), h) and l)

for main, recycle and additional controllers, respectively.

Simulation results — scenario 2 Relatively good performance in scenario 1 means

it is worth testing the algorithm in scenario 2 as well. Again, no single tuning rule was

best (or even good) for all three air streams, but rule b) was selected for the main stream,

rule l) — for the additional stream, and rules g), h), j) were equally good for the recycle

stream control. Each of these rule combinations was tested in another simulations and

then, rules g), h) turned out nearly the same, with the latter barely better for this set of

setpoint values. These results are plotted in Fig. 5.5. The transients are usually similar

to the result of scenario 1 — obviously, including the significant errors on main and

recycle flow rates — but now there are more oscillations, which is not desired. Values

of quality indices are similar as previously, IAE is even slightly better, but the quite big

oscillations of the recycle flow rate indicate worse performance.
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Perhaps the performance of this control scheme could be improved by fine-tuning the

controllers to even more conservative gains. However, but this needs substantial effort:

trial-and-error procedure or a detailed analysis (e.g., involving Nyquist diagrams). The

simple methods, such as using literature formulas based on model parameters, seem to

be exhausted.
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Figure 5.5: Simulation result for 3 × SISO PI control in version 2 (fixed parameters
based on worst-case plant model), test scenario 2. Best case: tuning rules b), h) and l)

for main, recycle and additional controllers, respectively.

5.4.1.5 PI version 3: parameter scheduling

Controller parameters Tuning rule formulas were the same as previously. However,

a separate set of controller parameters was prepared for each triple of damper positions

{xr,req, xm,req, xa,req}, to achieve maximum fit to the plant model. When implemented

in hardware, the algorithm might also use some number of intervals into which the whole

operating range would be divided, with one set of controller parameters per one such
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3D region in which plant parameters do not vary much. Number of regions (so, number

of stored sets of controller parameters) could be suited to the available memory etc. in

the hardware system.

All necessary values of controller parameters were calculated before simulation. They

were based on coefficients of plant model — time constants, time delays and gains,

with the latter being the "theoretical" gains resulting from partial differentiation of the

static characteristics (see Section 3.2.2.10). So, no online calculations were necessary

during controller operation, a simple lookup table of controller parameters was enough.

However, this meant that the plant gains used for controller tuning were valid only in

the neighbourhood of the point at which the partial derivatives were calculated. (The

size of this neighbourhood was varying with the curvature of the static characteristics.)

In consequence, large changes in plant input could result in "apparent" gains1 of the

plant different than these theoretical ones, and the controller tuning could turn out not

optimal, or even totally improper.

Simulation results — scenario 1 This time, tuning rule a) was definitely the best

in terms of IAE for all air flows. Sums of control signal increments were also the lowest or

close to the lowest for this rule. Moreover, the values of IAE were also noticeably better

than for the fixed-parameter controllers. The plots (Fig. 5.6) show that oscillations

were not present in flow rates nor damper positions. Control inputs were changed a bit

more aggressively than in control scheme version 2, but were reasonable anyway. Also,

flow rates settled down faster than with the fixed-parameters controllers. Nevertheless,

changing flow setpoints on other air streams still caused great momentary errors of main

and recycle flows, and rendered the result not fully satisfactory — even though better

than previously.

Simulation results — scenario 2 This control scheme performed relatively good, so

it was also tested according to scenario 2, where controller tuning and plant simulation

are based on slightly different parameter sets. Again, tuning rule a) provided the least

errors. Values of quality indices were similar as for scenario 1 — a little worse or a little

better. Simulated signals (Fig. 5.7) had similar good and weak points as in scenario 1.

To conclude, the algorithm structure and its parameters were robust enough to handle

well the inaccuracies in the plant model, but some further improvement is still welcome.

1In this chapter, apparent plant gain is understood as the gain actually observed in plant model
response to a given input. It could be defined as the slope (along proper dimension) between two
points on the static characteristics of the plant, corresponding to the old and new operating point
{xr,req, xm,req, xa,req} (before and after the change on input).
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Figure 5.6: Simulation result for 3 × SISO PI control in version 3 (with parameter
scheduling), test scenario 1. Best case: tuning rule a).
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Figure 5.7: Simulation result for 3 × SISO PI control in version 3 (with parameter
scheduling), test scenario 2. Best case: tuning rule a).
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5.4.1.6 PI version 4: parameter scheduling with plant gain adaptation

Controller parameters The controllers were parametrized in a similar way as pre-

viously (Section 5.4.1.5), however, current parameters were computed online instead of

being pre-calculated and looked up. Again, the tuning was based on time constants and

time delays from plant model (known a priori, as before); but instead of the modelled

(local, "theoretical") gains, the currently expressed, "apparent" plant gains were used.

They were calculated from current and previous points on the known static characteris-

tics of the plant, as the ratio of increment in modelled steady state ∆qs to increment in

damper position on the same stream, ∆xs,req. This apparent gain is used in simulation

when the stream’s own damper position has just changed (∆xs,req 6= 0); otherwise, the

apparent gain is undefined, so the theoretical gain is used.

Simulation results The best results are shown in Fig. 5.8. Once more, tuning rule a)

yielded the lowest IAE for all three streams, but the index values were slightly worse

than for the previous case. Overshoots in the main and recycle air flows were smaller

than for the plain gain-scheduled algorithm, but they were still big at some points. Also,

sometimes the control inputs were much varying — not only for this tuning rule, but also

for others. The transients in the plots confirm, too, that this control method is probably

slightly worse than the two previous ones.
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Figure 5.8: Simulation result for 3 × SISO PI control in version 4 (with parameter
scheduling and adaptation of modelled plant gain), test scenario 1. Best case: tuning

rule a).

5.4.1.7 Summary of 3 × SISO PI control

Quality indices (see Section 5.3.3) for the above-mentioned best cases of all versions of

the algorithm are listed in Table 5.2. Index values were already commented on next

to descriptions of associated algorithm versions, but they are given here collectively for

easier comparison.

Relatively good control of the flows could be achieved with some variants of this

control scheme, even with fixed (non-scheduled) controller parameters. Unfortunately,

substantial errors still occur in recycle and main control loops when setpoints change in

other air streams, due to couplings between them. Only the additional air flow is free

from these big overshoots — this stream was the easiest to control.
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Table 5.2: Quality of air flows control with 3 × SISO PI controllers — scenarios 1
and 2, best case for each tested version of the algorithm

Scenario 1 Scenario 2

Quantity Control algorithm version
1 2 3 4 2 3

Additional air stream

tuning rule d) l) a) a) l) a)
IAE [kg] 1.52 0.654 0.453 0.589 0.623 0.525

max |e| [kg/s] 0.0304 0.0297 0.0293 0.0293 0.0298 0.0296
max u [% open] 67 74 87 100 69 96
min u [% open] 10 10 10 10 10 10
std(u) [% open] 18.2 20.8 24.3 23.4 19.3 23.4

max |∆u| [% open] 18 11 39 90 11 44
Σ|∆u| [% open] 196 212 252 1140 206 268

Main air stream

tuning rule d) b) a) a) b) a)
IAE [kg] 0.452 0.329 0.212 0.241 0.303 0.212

max |e| [kg/s] 0.00463 0.00464 0.00464 0.00464 0.00599 0.00599
max u [% open] 40 50 83 100 40 40
min u [% open] 4 4 1 4 2 0
std(u) [% open] 7.60 9.53 16.5 14.2 8.6053 9.1609

max |∆u| [% open] 8 3 55 60 4 7
Σ|∆u| [% open] 359 138 370 784 133 154

Recycle air stream

tuning rule d) h) a) a) h) a)
IAE [kg] 0.374 0.279 0.197 0.218 0.256 0.177

max |e| [kg/s] 0.00404 0.00585 0.00544 0.00442 0.00702 0.00718
max u [% open] 44 48 100 100 45 100
min u [% open] 15 15 15 15 15 15
std(u) [% open] 8.95 9.76 24.6 22.3 7.59 19.3

max |∆u| [% open] 18 4 43 44 4 21
Σ|∆u| [% open] 962 124 814 1346 124 318

Manual tuning of the controllers, without the estimated plant models, would be cum-

bersome and very difficult. Different tuning rules performed best for different versions of

the control algorithm, which makes the tuning not an easy task even when plant models

are utilized.
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Some further modification of 3 × PI control scheme could be parameter scheduling (in

version 3 or 4) based on the actual position of the damper x instead of the requested

position xreq. This would better reflect the current local curvature of the static charac-

teristics (i.e., the theoretical or apparent gains of incremental dynamic models). Thus,

probably, this could further improve the transients. However, to test this, the simulator

needs to be extended with a model of xs vs. xs,req relationship for each stream s.

As was suggested in Section 3.2.3.13, it might also be worth to test parameter-

scheduled PI controllers tuned on the basis of changing plant gain only (with integration

time constant fixed and only controller gain scheduled). This would greatly reduce the

memory required to store lookup tables on the controller, which might be important

for some hardware devices. Tests are needed to check if control quality does not get

deteriorated in this scheme.

5.4.2 Open-loop control using MIMO inverse model

5.4.2.1 System setup

The control algorithm used the inverse static characteristics of the air flows, in open loop.

This structure was implemented only to test the correctness of inverse model before its

further use. It is not meant for implementation on site, as due to lack of feedback, it is

completely vulnerable to disturbances and modelling inaccuracies.

This algorithm could be considered as one combining the direct layer and, partially,

the supervisory layer of the hierarchical control system. It was a multi-input multi-

output (MIMO) system: a single law with 3 inputs (air flow setpoints) and 3 outputs

(calculated control signals, i.e. air dampers’ positions). System diagram is shown in

Fig. 5.9.

Such MIMO block was supposed to suppress the negative effect of separate control

loops unintentionally disturbing each other, as was the case with algorithms described

in Section 5.4.1. Moreover, feed-forward structures are known to be acting faster than

feedback ones, as the former do not require an error to occur on the plant output.

5.4.2.2 Operation of the algorithm

The key part of this scheme was the inverse of air flow static characteristics determined as

in Section 3.2.2 (the averaged version was used). The three steady-state characteristics
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Figure 5.9: Diagram of open-loop system with a single multi-input multi-output
(MIMO) inverse model

had the form:

qr = f (xr,req, xm,req, xa,req) ,

qm = f (xr,req, xm,req, xa,req) ,

qa = f (xr,req, xm,req, xa,req)

(5.5)

and they shared the same inputs, so they might have been considered as a single three-

input, three-output relation:

{qr, qm, qa} = f (xr,req, xm,req, xa,req) . (5.6)

Consequently, the inverse characteristics was of the form:

{xr,req, xm,req, xa,req} = f (qr, qm, qa) . (5.7)

When a vector of three flow setpoints {qr,SP, qm,SP, qa,SP} was supplied to the con-

troller, it compared these setpoints to all known triples of plant outputs’ steady states.

Such triple {q∗r,SP, q∗m,SP, q
∗
a,SP} was selected that was the closest to the originally re-

quested one in terms of a selected distance definition. This minimized distance function

between {qr,SP, qm,SP, qa,SP} and {q∗r,SP, q∗m,SP, q
∗
a,SP} vectors could be defined in sev-

eral ways, e.g. with mean squared error, mean absolute error, maximum absolute error.

Also these errors themselves could be calculated in many ways, e.g. as simple differences

between corresponding vector elements: (qs,SP − q∗s,SP) for each stream s; or as relative

differences: (qs,SP − q∗s,SP)/qs,SP; or as differences relative to the range of achievable

flow rates for the particular stream. The tested control algorithm implemented a dis-

tance function with maximum absolute error, to ensure that no flow rate setpoint would
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be changed significantly; and differences relative to whole signal ranges were used, as

different air streams have noticeably different air flow ranges (Table 5.3).

Table 5.3: Ranges of air mass flow rates in horizontal inlet pipes. Values taken from
the smoothed average static characteristics (see Section 3.2.2).

Air stream
Mass flow rate of air [kg/s]

min max range

recycle 1.61e-4 0.0179 0.0177

main 7.32e-4 0.0299 0.0291

additional 8.08e-4 0.0399 0.0391

Note: when the inverse model is plugged into the full layered control system, this

setpoint-processing part of the algorithm will not be needed anymore (or at least, it

will be redundant and kept only for safety reasons). It will be the responsibility of

the supervisory layer to transform setpoints {qw,SP, qc,SP, qr,SP} into possiby close,

reasonable and physically reachable setpoints {q∗r,SP, q∗m,SP, q
∗
a,SP}. This conversion may

even incorporate current mesurements of air flows, not only their setpoints. However,

for the present tests, when the inverse model operates standalone (without the upper

layers), such processing stage was necessary as a component of the inverse model itself.

After the reachable flow rate setpoints {q∗r,SP, q∗m,SP, q
∗
a,SP} had been determined, the

corresponding damper positions were read from the static characteristics of the plant.

These positions were the control signals fed to the inputs of plant model.

5.4.2.3 Simulation results

Test scenario already used with SISO PI controllers was also simulated with the in-

verse model. The plots (Fig. 5.10) show that the output of simulated plant perfectly

follows the setpoints in the steady states, and the rate of reaching them is only limited

by the dynamics of the simulated plant. This proves the inverse model was correctly

implemented.

Figure 5.11 presents simulation of the same test in scenario 2, i.e., with parameters of

simulated plant slightly different than the ones known by the inverse model. Of course,

the open-loop structure is not capable of reacting to model discrepancies and so, the

steady-state errors are nonzero — sometimes they are even significant. This is why the

inverse model will actually be only a part of a feedback algorithm (see next section).

Quality indices for both scenarios are listed in Table 5.4, to provide context for similar

measures related to other control schemes.
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Figure 5.10: Simulation result for open-loop control using MIMO inverse model, test
scenario 1
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Figure 5.11: Simulation result for open-loop control using MIMO inverse model, test
scenario 2

Table 5.4: Quality of air flows control with MIMO inverse model — scenarios 1 and 2

Quantity
Scenario 1, stream: Scenario 2, stream:

main recycle additional main recycle additional

IAE [kg] 0.0778 0.0484 0.215 0.308 0.443 0.563

max |e| [kg/s] 0.00464 0.00442 0.0293 0.00599 0.00505 0.0298

max u [% open] 83 100 87 59 47 71

min u [% open] 4 15 12 4 15 12

std(u) [% open] 19.9 30.5 25.7 13.5 10.4 20.9

max |∆u| [% open] 59 80 55 35 23 42

Σ|∆u| [% open] 170 343 217 118 121 159
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5.4.3 MIMO inverse model with SISO feedback control

5.4.3.1 System setup

After testing the inverse model, it was used in a more robust structure that included

also feedback controllers (namely, SISO PI controllers). This way, the advantages of

the two approaches were combined. The MIMO inverse model provided de-coupling of

the three air streams and fast response to setpoint changes, whereas the feedback part

elliminated the remaining small steady-state errors coming from discrepancies between

modelled and real static characteristics of the plant, or from other disturbances. Diagram

of such hybrid system is shown in Fig. 5.12.
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Figure 5.12: Diagram of control system with combined MIMO inverse model and three
SISO feedback controllers. Symbols: x•,fb — output of feedback controller, x•,inv —

output of inverse model.

The overall saturation limits
[
xlows,req, x

high
s,req

]
for each control signal xs,req still hold, but

now, this control signal is a sum of two components: output of inverse model xs,inv and

output of feedback controller xs,fb. The inverse model produces outputs anywhere within

the xs,req limits, and so, the saturation limits for the feedback controller are not the full

xs,req limits anymore, but they are modified with the current output of inverse model:

xlows,fb = xlows,req − xs,inv , (5.8)

xhighs,fb = xhighs,req − xs,inv . (5.9)

This means that controller saturation limits need to change dynamically during the

simulation. The built-in MATLAB Simulink block for PI controller does not support
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this, so it was edited to incorporate this feature. The new modifiable limits were used in

the controller to properly saturate the output signal, but also to provide correct operation

of anti-windup mechanism (clamping).

5.4.3.2 Controller parameters

Inverse model was defined as in the previous section.

PI controllers’ parameters were selectable from all four versions presented in Sec-

tion 5.4.1. However, the controllers, in such a structure together with the inverse model,

did not aim at reaction to full change in flow setpoint anymore — instead, they only

reacted to small errors left after the inverse model performed its job. Thus, tuning of

feedback controllers used a modified version of plant gain: multiplied by a factor of 10

(selected experimentally). In effect, controller gain was smaller and the tuning was more

conservative.

5.4.3.3 Simulation results

This control scheme was tested on scenario 2 only, as in scenario 1, the feedback con-

trollers are not needed (most of the time there is no error left after the operation of the

inverse model). Best results (smallest IAE) were achieved with PI control in version 2

(fixed parameters), with tuning rule i). Simulation result is shown in Fig. 5.13, and

quality indices are listed in Table 5.5. Compared to best case of sole PI control, which

seems to be the algorithm version 3 (see Table 5.2),this time IAE was slightly worse for

main and additional streams and better for the recycle stream. Sum of control signal

increments was usually smaller now. The most important change is visible in the plots

— the once very big errors near the end of simulation are now very much reduced. In-

stead, a noticeable error appeared in the recycle stream near simulation time 250 s, but

nevertheless, it is smaller than in the case without the inverse model.

Summarizing, this result is the best so far, but the improvement is not quite as clear

as was expected. Some further tuning could probably be applied to upgrade it.
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Figure 5.13: Simulation result for combined MIMO inverse model and SISO feedback
control, test scenario 2. Best case: PI controllers in version 2, tuning rule i).

Table 5.5: Quality of air flows control with MIMO inverse model and PI controllers
— scenario 2 only

Quantity
Stream:

main recycle additional

IAE [kg] 0.292 0.163 0.560

max |e| [kg/s] 0.00599 0.00432 0.0300

max u [% open] 59 50 72

min u [% open] 3 15 12

std(u) [% open] 13.4 10.8 21.2

max |∆u| [% open] 35 23 42

Σ|∆u| [% open] 144 167 167

189



Chapter 5. Control of Air Flow 5.5. End notes

5.5 End notes

The list of control schemes worth testing is by no means exhausted by the above re-

search. In the future, further investigations are planned, e.g., with parameters scheduled

according to simulated actual damper positions x instead of the requested ones xreq;

with air stream de-coupling thanks to simulated pressure readings; with MIMO feedback

controllers; with modern control techniques.

The created simulation environment and the developed methodology of estimation of

plant model coefficients make the above task much easier. These tools allow to design and

verify many control schemes and multiple sets of controller parameters with relatively

small effort, keeping the cumbersome hardware implementations and on-site testing to

the minimum. This way, the tools developed in this dissertation allow to prepare a well-

performing control algorithm suitable for the demanding task of air flow control in the

grinding installation.
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Chapter 6

Summary

This dissertation concerned a novel grinding system with electromagnetic mill, which

aims at improvement of grinding product quality and reduction of energy consumption

in the ultrafine comminution process. The topic is important due to grinding processes

being extremely common in industry. This field of research is also demanding and diver-

sified, as the considered plant incorporates multiple signals arranged in many interrelated

subsystems, which operate in different time scales.

The studies presented here helped to monitor and control the grinding process by

developing new methods of indirect measurement. Key quantities describing the raw

material — mass flow rate, particle size, moisture content — were assessed this way.

These measurement methods were augmented with steady-state mathematical models to

enable estimation of selected process parameters in the locations where measurements

were very difficult or impossible to conduct. The identified models described material

moisture in the installation and its influence on particle classification process.

Another set of models addressed steady-state and dynamic properties of transport air

flow in the grinding system. Thanks to developing these models, simulation environment

was prepared for testing air flow control algorithms. Selected control schemes were

designed and parametrized based on these models as well. The best performance so

far was achieved with an algorithm that combined proportional-integral controllers and

multivariate inverse model of the pneumatic system. However, more research work is

planned to futher improve the performance of this control subsystem, and the prepared

simulation environment is going to be used for it.

Conducting numerous experiments and processing of experimental data resulted in

new methods and models that: help to monitor the operation of the grinding system,

provide feedback or feed-forward information for its control subsystems, propose air flow

control algorithms, and enable easier development of new air flow control schemes.
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