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Chapter 10. INTELLIGENT SELF-ADAPTIVE H&E-STAINED TISSUE 
SCAN QUANTISATION 

10.1. Introduction 

Tumour-infiltrating lymphocytes (TILs) can effectively indicate the immune risk [1] 
as they provide information about the organism's response to the cancer cells, which 
play a significant role in therapy or treatment selection. The score representing TIL's 
concentration relates to patient survival [2]. To obtain necessary information about 
tissue structure and cell spatial distribution in the collected specimen, samples are 
stained with hematoxylin and eosin (HE) to selectively colour cancer cells, blood cells, 
and fibres in a specific way that enables their identification. Analysing such preparations 
by doctors or specialists is highly time-consuming and challenging, and obtaining 
precise results is difficult. Unsupervised machine learning methods must be adopted to 
extract the crucial diagnostic information from H&E-stained tissue scans efficiently. We 
propose a three-stage modular pipeline for automated tissue detection on HE-stained 
scans, staining quantisation and image segmentation and demonstrate its properties 
using the exemplary breast cancer tissue scans from the TCGA database. 
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10.2. Materials and Methods 

10.2.1. Data 

Images are scans of breasts tissues cancer, as the example in Fig.1, saved in TIFF 
format and of a substantial spatial resolution, containing millions of pixels and 400 + GB 
volume. They are considered Big Data and need to develop suited and intelligent 
solutions that avoid increasing computational costs. Data come from TCGA (The 
Cancer Genome Atlas) database and contain over thousand images of breast cancer 
H&E stained scans. 

 

Fig.  1. Exemplary tissue scan with the zoom region marked as yellow box 
Rys. 1. Przykładowy skan wycinka tkankowego z obszarem zainteresowania oznaczonym ramką  

w kolorze żółtym 

10.2.2. Tissue mask detection 

Among the various image segmentation methods available, the aim was to choose 
an approach that would effectively separate the tissue region from a relatively 
homogeneous background. The most popular watershed segmentation algorithm was 
discarded through experimental trials as it led to over-segmentation for complex images. 
The reasons for rejecting the watershed segmentation algorithm were also low 
computational efficiency, the need for calculations performed on each pixel, and  
the large number of hyperparameters that impede code automation and task universality.  
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Fig.  2. Grayscale histogram (A) and its GMM decomposition (B) for the exemplary tissue scan 
Rys. 2. Histogram w kolorach szarości (A) i jego dekompozycja do mieszaniny rozkładów normalnych 

(B) dla przykładowego skanu wycinka tkankowego 

Segmentation based a threshold usage obtained from the analysis of the grayscale 
image's histogram's envelope allowed us to reduce computationally expensive iterative 
operations on each pixel. The selection of the threshold point was performed through 
histogram analysis using the Gaussian Mixture Model (GMM) decomposition (Fig. 2) 
[3]. The GMM-type algorithm can be applied to segment the image histogram and 
determine the threshold for thresholding mask segmentation. The signal frequency 
distribution is modelled as a Gaussian mixture following the formula: 

𝑓𝑓(𝑒𝑒𝑛𝑛) = ∑ 𝛼𝛼𝑘𝑘𝑓𝑓𝑘𝑘(𝑒𝑒𝑛𝑛, 𝜇𝜇𝑘𝑘,𝜎𝜎𝑘𝑘)𝐾𝐾
𝑘𝑘=1     (1) 

where K stands for the number of Gaussian components in the model, the coefficients 
αk that sum up to 1 are the weights of the individual component with means µk and 
standard deviations σk. Dempster's expectation-maximisation algorithm is used to 
estimate the model parameters. Let us define the term envelope, which refers to  
a curve resulting from the sum of Gaussian components in the obtained model (Fig. 3). 
Additionally, we define a set of potential thresholds similarly as it is done for  
GMM-based classification problems. The crosspoints between consecutive GMM 
components are considered candidate greyscale image segmentation thresholds, and  
the first one after the dominating Gaussian component is chosen (as value 211 in  
the exemplary envelope in Fig. 2B – red arrow – and Fig. 3).  
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Fig.  3. GMM envelope for the exemplary scan 
Rys. 3. Obwiednia modelu mieszanin rozkładów normalnych dla przykładowego skanu wycinka 

tkankowego 

The number of Gaussian components is determined by the Bayesian Information 
Criterion (BIC). The criterion is conceptually defined as the model probability expressed 
through Bayes' theorem for model M and dataset y, where P(M|y) represents the 
marginal likelihood function:  

𝑃𝑃(𝑀𝑀𝑑𝑑|𝑦𝑦1,⋯ , 𝑦𝑦𝑛𝑛) = 𝑃𝑃�𝑦𝑦1,⋯ , 𝑦𝑦𝑛𝑛�𝑀𝑀𝑑𝑑�
𝑃𝑃(𝑦𝑦1,⋯,𝑦𝑦𝑛𝑛)

𝑃𝑃(𝑀𝑀𝑑𝑑)   (2) 

Pixels with colour values above the chosen threshold are considered background, 
while the remaining ones constitute the tissue mask. To guarantee mask spatial 
homogeneity, the standard morphological operations as dilation and erosion are applied. 

10.2.3. Staining quantisation 

Quantisation is the process of reducing the number of signal or data values. This 
reduction can be helpful in data compression, denoising, standardisation, and extracting 
crucial and relevant information. Colour images can contain millions of unique colours, 
making it difficult for algorithms to effectively select features and make predictions or 
classifications with the desired accuracy. 
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Fig.  4. (A) Unique colours of the original image (B) Unique colours of the quantised image in expanded 
RGB space (eRGB) 

Rys. 4. (A) Unikatowe kolory oryginalnego skanu (B) Unikatowe kolory dla obrazu po wstępnej 
kwantyzacji barw w rozszerzonej przestrzeni RGB (eRGB) 

Therefore, minimising the loss of information and the number of unique colours 
through colour reduction can be essential for identifying tumour-infiltrating 
lymphocytes. In our method, quantisation was achieved by utilising Gaussian Mixture 
Models for each RGB channel's histogram separately. Gaussian distributions are 
calculated based on the analysis of these histograms and with the Bayesian Information 
Criterion (BIC) to determine the number of components. The new colour values for each 
pixel are defined by their relation to RGB-specific Gaussian components. We propose 
to use a colour projection method that translates H&E stained colour images into new 
expanded colour space. New colour space is dynamic and defined by GMM components 
identified per each RGB channel. The final colour vector is of Mx1 dimension, where 
M denotes the total of GMM components from all RGB channels. The new colour 
feature value is 1 if GMM-based classifier assigns the pixel to the respective RGB 
channel specific GMM component, otherwise is equal to 0. Instead of 3D colour space 
we get the expanded M-dimensional space with 0/1 values only. That dimensionality 
expanding and colour coding let us distinguish colours and features that could not be 
distinguished in RGB space.  

10.2.4. Image segmentation 

The final step involves image segmentation performed in the expanded colour 
domain via pixel grouping according to their colour in the expanded colour domain. 
Clustering is done by the K-means++ algorithm, first introduced in [4]. The method is 
based on iterative fitting data into a static and predefined number of groups represented 
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by the mean of each group, aiming to minimise the error of data fitting. The K-Means++ 
variant ensures more evenly distributed and distant initial centroids. As a result,  
the algorithm is less prone to convergence to local minima, which helps achieve better 
cluster quality. The properly chosen initial in K-means++ results in faster convergence 
and a reduction of the number of iterations required to achieve convergence. 
Dimensionality expanding and colour quantisation let us effectively spread the colour 
values into distinguishable groups. The number of K-means clusters is defined by  
the Calinski and Harabasz score. Finally, the obtained colour clusters are represented by 
a static colour palette, which aims to standardise the obtained results, enabling more 
effective analysis of the scans by doctors. The kNN algorithm is applied to identify 
palette colours for each cluster. The reference palette is represented in Fig. 5. 

 

Fig.  5. The final reference colour palette in RGB space 
Rys. 5. Ostateczna paleta pseudobarw klastrów przedstawiona w przestrzeni RGB 

The resulting pipeline is presented in Fig. 6. It effectively utilises machine learning 
techniques for the segmentation, quantisation, and clustering of histopathological 
images stained with the H&E method. 

 

Fig.  6. The image processing pipeline 
Rys. 6. Proponowany potok przetwarzania obrazów 
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10.3. Results 

The developed pipeline has been applied to a diverse set of images from the TCGA 
dataset, and the proposed method proves to be successful in extracting principal features 
important for TIL scoring. The developed tissue region segmentation method provides 
an accurate and precise binary mask, as presented in Fig. 7A.  

 

Fig.  7. Segmentation mask (panel A) and quantisation result (panel B) for the exemplary tissue scan 
from Fig. 1 

Rys. 7. Binarna maska wycinka tkankowego (panel A) oraz wyniki kwantyzacji barw (panel B) dla 
przykładowego skanu wycinka tkankowego z Rys. 1 

The number of unique colours in the exemplary image from Fig. 1 was 1,152,408. 
The applied colour quantisation method resulted in the reduction to 730 unique colours, 
and K-means clustering ended up with seven tissue segments (as shown in Fig. 7B and 
Fig. 8). The details of the cell neighbourhood are presented in Fig. 9, where one can 
easily distinguish the cell nucleus and cytoplasm. The preservation of this information 
in the process of image segmentation is essential from the point of view of the TILS 
index value assessment.  

 
Fig.  8. Image segmentation for the zoom of the exemplary tissue scan from Fig. 1 
Rys. 8. Wynik segmentacji obrazu dla wybranego regionu zainteresowania z przykładowego skanu 

wycinka tkankowego przedstawinego na Rys. 1 
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Fig.  9. Details of the original (panel A) and segmented (panel B) tissue region 
Rys. 9. Szczegóły wybranego fragmentu tkanki: oryginalny obraz (panel A) i po segmentacji (panel B) 

To investigate the importance of the RGB colour domain expansion, a similar image 
segmentation pipeline using the K-means clustering algorithm and the number of 
clusters set based on the analysis performed in expanded RGB (eRGB) was applied to 
the image represented in RGB colour space. Figure 10 presents the results of tissue 
region segmentation without (panel B) and with colour domain expansion (panel C). 
One can notice that quantisation without domain expansion provides a lower quality of 
the compressed images, where cells are inseparable. That phenomenon is not observed 
in the second case (panel C).  

 

Fig.  10. Zoom of the original (panel A) and segmented tissue regions done without (panel B) and with 
(panel C) expansion of the colour space 

Rys. 10. Szczegóły wybranego fragmentu oryginalnego skanu (panel A) i po segmentacji wykonanej 
bez (panel B) oraz z (panel C) proponowanym rozszerzeniem przestrzeni barw 

10.4. Conclusions 

We have shown that it is possible to perform fast and effective H&E-stained tissue 
scan segmentation by using the expanded RGB colour domain combined with  
the classical K-means approach. As the staining quantisation and standardisation are 
crucial either for cell identification as well as for further Deep Learning TIL score 
estimation, the above-developed image preprocessing pipeline should be a required step 
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in data analysis schema. For a more comprehensive exploration, we defer further 
discussion on the topic of effectively determining the number of clusters and estimation 
of TILs score to future research endeavours. 
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INTELLIGENT SELF-ADAPTIVE H&E-STAINED TISSUE SCAN 
QUANTISATION 

Abstract 

H&E-stained tissue scans are widely used to estimate the tumour-infiltrating 
lymphocyte score, serving as an essential prediction factor in cancer treatment. The 
proportion and location of the lymphocytes can determine the organism's response. 
However, this analysis is a demanding and time-consuming task. The support of 
machine learning approaches is crucial for achieving complete and precise estimates. 
Existing computer-aided methods allow image segmentation and lymphocyte 
identification by supervised and unsupervised learning methods. Although still,  
the obtained results are unsatisfactory and sensitive to different stain concentrations.We 
present a three-stage, modular self-adaptive image quantisation pipeline which uses 
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statistical modelling and clustering techniques. DL-based TILS regression models can 
then efficiently analyse the quantified images. At first, RGB colour channels are 
analysed independently. The channel-specific colour quantisation is based on the 
Gaussian Mixture Model of its intensity histogram. Then, the k-means pixel grouping is 
done, with the variance ratio criterion applied to set the number of clusters. The 
proposed quantisation reduces the number of unique colours from millions to 330,000 
and afterwards to ~700 in the exemplary image without any apparent loss of quality or 
detail. The K-means grouping detected seven main tissue subtypes, which concord with 
the biological structure of a given tissue. The apriori set of pseudocolours is assigned to 
each cluster. 

Keywords: H&E tissue stained scans, image processing, segmentation, colour 
quantisation, clustering, unsupervised machine learning 


