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Chapter 2. MODELLING CLONAL EVOLUTION OF TUMOURS BY 
USING HIGH RESOLUTION STOCHASTIC SIMULATIONS  

2.1.  Introduction 

Tumor growth, caused by accumulation of genomic somatic mutations, which 
disturb and eventually dysregulate cellular processes of signaling, metabolism and 
replication, is a complex process with various stages and modes of dynamics. 
Fundamental research on scenarios and mechanisms of tumor evolution, combined with 
observational data and biological/genetic knowledge, is of great importance for cancer 
research. There are many studies both theoretical and experimental devoted to 
characterization/observation of the process of progression of tumors. The latter ones, 
especially those using high throughput molecular biology assays provide quantitative 
background for studies on scenarios of cancer development [1-3].  

Important insights to the study of dynamics of cancer evolution are given by 
mathematical/computational modelling tools. Mathematical models require introducing 
a lot of simplifying hypotheses in order to obtain interpretable conclusions. 
Computational stochastic simulation approaches allow for address wider range of 
evolution scenarios, important for explaining observational data, which are recently 
becoming available [3, 4]. There are several attempts to provide mathematical models 
able to reflect at least some properties of evolving tumor [5-7].  

We present a stochastic simulation tool, based on Gillespie algorithm [8] for 
modelling evolution of cancer cells population. Replication process of cancer cells is 
affected by two types of somatic mutations occur, driver with high impact on tumor 
growth and passenger, assumed to have mildly deleterious effect. The elaborated 
algorithm allows for high resolution modelling of evolution of cancer, with 
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distinguishing between cancer cells and both types of somatic mutations occurring over 
time. It allows for confronting simulation results with experimental data concerning 
clonal structures of tumor cells and statistics of somatic mutations. 

2.2.  Scenario of evolution with driver and passenger mutations 

Tumor cells evolution scenario, on which algorithm is based, consist of three 
possible events: cell death, cell division or cell division with mutation. Mutation types 
are considered as passenger (slightly deleterious effect) or driver (highly advantageous 
effect). When driver mutation occurs, its high effect on cell fitness is likely to create  
a new clone, which also have positive impact on cell division probability. Each cell in 
one clone have same driver mutation set. Passenger mutations provide differentiation 
between cells. Each passenger mutation causes mildly or no effect on fitness cell. When 
mutation is considered to have impact on cell fitness its accumulation in one cell 
increases death probability. Figure 1 describes all evolutionary events considered in 
algorithm construction. 

Intensity of the cell division process depends on cell fitness and population size. 
When cell fitness is high it is more likely that cell will divide or/and mutate, on  
the contrary when cell fitness is low the probability of cell death is higher. Also, 
population size has impact on event probability. When population size is large more 
events occur and worse adapted cells are dying. In the course of evolution, the 
phenomenon of clonal interference takes place. Clonal interference is extinction of 
already existing clones, which are replaced by new ones. When a new clone with mean 
fitness of its cells emerges in the evolution it is likely that it displaces existing one ore 
one. The process of clonal interference is nonlinear, depends on fitness of neoplastic 
cells in clones as well as on clones’ sizes.  

The size of the whole population of cancer cells evolves according to the dynamics 
shaped by the mean fitness of all cancer cells. Depending on accumulated effects of 
deleterious and advantageous mutations acquired during evolution the cancer cells 
population can either increase in size, and eventually explode or decrease and extinct. 
Probabilities of these two scenarios depend on intensities of occurrences of driver and 
passenger mutations and on strengths (relative strengths) of their positive/negative 
selection effects.  
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Fig.  1. Stochastic events in the evolution scenario of clonal growth of cancer 
Rys. 1. Zjawiska występujące w trakcie rozwoju poopulacji komórek nowotworowych 

2.2.1. Division process 

Cell division probability/intensity depends on its fitness. Higher fitness provides higher 
chance for cell to divide. Division time can be calculated using formula (1) 

 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟𝑡𝑡𝑒𝑒𝑟𝑟𝑒𝑒(1) / 𝑓𝑓𝑒𝑒𝑡𝑡𝑟𝑟𝑒𝑒𝑓𝑓𝑓𝑓 (1) 

where division time of cell without mutations is calculated from exponential 
distribution. The “random.exponential(1)” notation in the above equation denotes  
a number generated by pseudo random generator function of exponential distribution 
with scale parameter equal to one. Scaling by fitness produces the variable on the left-
hand side of the above equation with probability distribution adequately characterizing 
the process of division of cells of given fitness. Division time is inversely proportional 
to fitness value. In each simulation step event with event time as low as possible are 
considered. 
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2.2.2. Death process 

Cell death is mostly dependent on population size. If number of cells is greater than 
population capacity it is more likely for cell to die. Death time can be calculated using 
formula (2) 

 𝑡𝑡𝑑𝑑𝑑𝑑ℎ = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟𝑡𝑡𝑒𝑒𝑟𝑟𝑒𝑒(1) ∗
𝑁𝑁
𝐾𝐾

 (2) 

where N denotes population size and K defines population capacity, 
“random.exponential(1)” has the same meaning as previously. If cells number exceeds 
population capacity it is more likely for cell to die than to divide.  

Cell death event is considered to have bigger priority than division or division and 
mutation. 

2.2.3. Mutation processes and its offect on fittness 

Mutation can be divided into two types: passenger and driver mutation type. 
Passenger mutation provides cells differentiation while driver mutation provides 
creation of new clone. Mostly considered are events where driver mutation have mildly 
adventegous effect on cell fitness and passenger mutation have slightly negative effect. 
Cell fitness is calculated using formula (3) 

 𝑓𝑓𝑒𝑒𝑡𝑡𝑟𝑟𝑒𝑒𝑓𝑓𝑓𝑓 =
(1 + 𝑓𝑓)𝑙𝑙

(1 + 𝑓𝑓)𝑘𝑘 (3) 

where s stands for driver mutation, advantegous effect, f stand for passenger mutation 
deleterious effect and l and k are numbers of, respectively, driver and passenger 
mutations in cell. 

2.2.4. Parameters of processes 

In Table 1 examplary simulation parameters are presented. Driver mutation effect is 
considered to be quite high (about 2–5%) while passenger mutation efect should be 
lower (about 0.1–0.5%). Passenger mutation effect also should be considered as 
negative effect while driver as positive. The probabilty of mutation occurance should 
be respectively low for driver type and high for passenger type of mutation. As 
population capacity we assume the initial population size. 
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Table 1 
Example simulation parameters 

Model parameters 

Mutation effect High for driver mutation: f.e. 2%, low for 
passenger mutation: f.e. 0.2%  

Initial population 10’000 

Population capacity 10’000 

Mutation probability Low for driver mutation: f.e. 1%, high 
for passenger mutation: f.e. 50% 

Simulation where provided till population gained about 1’000’000 cells 

Driver and passenger mutation effects and probabilities are assumed for scenario 
when only one kind of both types occurs. It is possible to implement more than one 
effect for both types to differentiate mutation kinds. 

2.3.  Gillespie simulation algorithm 

Basing on described scenario we have elaborated appropriate version of Gillespie 
algorithm. We introduce modification which provides a possibility to track every 
mutation in population in reasonable time stamp. Modification is based on division of 
the whole population into clones what enables parallel computing. Each clone is 
composed of clone parameters: size, previous clone, driver mutation list and passenger 
mutation matrix. Each cell in one clone have same set of driver mutation so it is not 
needed to include them into cell mutation profile. The main element in clone is mutation 
matrix which enables tracking each mutation in every cell. Matrix rows represent clone 
cells and columns represents mutations. First column describes each cell fitness which 
is computed directly after mutation event but only for new cell. Each other column 
represents events of mutations existing in cell. Including mutation matrix provide 
possibility to copy only cells which divide or mutate without interacting with whole 
matrix in every simulation loop.  

Each clone is updated simultaneously one cycle after another. Firstly, based on cells 
fitness, random variables representing time of events in the evolution, are generated 
according to exponential distribution. Mutation events occur only when division event 
happen. Mutation probabilities differ between drivers and passengers. It is possible to 
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implement few driver and passenger mutation types to differentiate mutation probability 
and effects. For each cell in clone event time is compared to simulation step – tau step. 
Every cell which death time is smaller is simply deleted from clone. When division time 
is smaller mutation flag is checked. If cell mutate type of mutation have to be considered – 
when driver mutation occurs new cell will create new clone, when passenger mutation 
occurs simply new mutation is added to mutation matrix. If cell only divide copy of that 
cell with no new mutation is added to mutation matrix. Block diagram of that Gillespie 
algorithm modification is presented on Figure 2. 

After every clone update simulation time is extended by tau step and new loop is 
considered. Simulation end when ending condition is completed – maximum size of 
population is reached or simulation time exceeds assumed time. 
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Fig.  2. Block diagram of the Gillespie simulation algorithm using parallel computing and mutation 

matrix 
Rys. 2. Diagram blokowy algorytmu Gillespiego z wykorzystaniem obliczeń równoległych i struktury 

macierzy mutacji 
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2.4.  Implementation of the mutation matrix 

Table 2 
Fragment of mutation matrix structure 

Fitness Pass. Mut. 
ID 

Pass. Mut. 
ID 

Pass. Mut. 
ID 

Pass. Mut. 
ID 

Pass. Mut. 
ID 

 0 1 0 0 0 
 0 0 0 1 1 
 0 0 1 1 0 

 1 0 0 0 0 

Mutation matrix represents, in the form of binominal values, mutations presence or 
absence in cells. One mutation can be assigned to multiple cells and one cell can be assigned 
to multiple mutation. If cell contains mutation, value 1 is present in appropriate column. 
Because of matrix structure it can have big dimensions. To reduce memory usage that 
structure can be saved as sparse matrix (compressed form like map but with every ability 
of matrix). In python environment we are using scipy library with sparse matrix structures. 

First column describes the cumulative effect of all mutation. Each driver mutation 
(same for every cell in clone, not present in mutation matrix) have positive effect on 
cell fitness. The highest fitness in clone always have cell from which clone starts 
progression. Each passenger mutation (all mutations in matrix) have negative effect on 
cell what is calculated only when parent cell mutates.  

Mutation matrix application provides possibility to easily handle evolutionary 
events. When cell dies simply row is extracted from matrix and deleted. When cell 
divides, hard copy of row is appended to matrix. If cell also mutates (passenger mutation 
type) besides row copy, one more column is appended with value 1 in last row.  

2.5.  Results 

High resolution stochastic simulation, implementing the idea of mutation matrix, 
enables tracking every mutation both separately in clones and in the whole population. 
Our method is able to provide information about VAF of every mutation. Mutation 
distribution can be viewed as VAF histogram for whole population with or without 
division into clones, or for one clone.  
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2.5.1. Clone diagrams of the evolution of cancer cells population 

Basic information about clone – size and parent clone, can be used for plotting clone 
diagram. In Figure 3 clone size distribution along population progression has been 
shown. Different clones are marked by using different colors. Clone diagram provides 
information about dominant clone in each generation, when occurs driver mutation 
which have huge impact on population and how fast population is rising. The simulation 
end condition was about 10 times enlargement of initial population. 

 
Fig.  3. Clone diagram of the evolution of cancer cells population 
Rys. 3. Wykres zmian struktury klonów w trakcie ewolucji populacji 

2.5.2. Evolution of variant allele frequencies (VAFs)  

Due to emergence and extinction of clones, VAFs change dynamically over time. 
Frequencies are calculated basing on maximum cells number of interpreted groups. VAF 
histograms provide appropriate information to track cells differentiation and clone 
evolution. 

2.5.3. Evolution of variant allele frequencies inside clones  

In Figure 4 below we show two examples of VAF frequecies computed, separately 
in clones, in the course of evolution of cancer cell population. It is seen that VAFs inside 
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both clones are bimodal. Driver mutation, whose occurrence lead to new clones are 
present in all cell of the clone. All cells of the clone also contain passenger muations 
from the ancestral cell of the clone. In the process of evolution of the clone new 
passenger mutations are also generated. These passenger muations appear only in small 
subsets of clonal cells and therefore they correspond to low values of VAFs, 
concentrated on the left hand side of the chart. The above described mechanism leads 
to bimodality of VAF distribution shown in both charts in Figure 4. 

 
Fig.  4. VAF histograms for single clone in one generation of whole population. On chart mutation types 

are colored in different colors. Mutation frequency is calculated basing on only one clone cells 
Rys. 4. Histogram VAF dla jednej generacji pojedynczego klonu. Na wykresie wyróżnione zostały 

rodzaje mutacji poprzez zastosowanie różnych kolorów. Częstotliwość mutacji obliczana jest 
na podstawie komórek pojedynczego klonu  
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2.5.4. Evolution of variant allele frequencies for the whole population  

Simulated data enable also showing mutation frequencies in the whole population, 
as presented in Figure 4. Here the whole population of cancer cells contains two clones. 
Combination of all mutations in one plot results in modification of frequencies of 
mutations. VAFs of mutations in the whole population depend on sizes of clones and 
on mutations frequencies inside clones. This is seen in the plot in Figure 5. Two colors 
are used for showing mutations coming from two different clones. Combining VAFs of 
mutations of all clones in one plot results now in multimodal distribution.   

 

Fig.  5. VAF histogram for one generation of whole population. Each clone is presented as different 
color. VAF is calculated with respect to mutation frequency in all cells 

Rys. 5. Histogram VAF dla jednej generacji całej populacji. Każdy klon został zaznaczony za pomocą 
odrębnego koloru. VAF obliczany jest na podstawie częstotliwości mutacji w odniesieniu do 
całej populacji 

2.6.  Summary and conclusion 

Clonal composition of tumor is a very important determinant of its potential for 
malignancy transition to methstasis and predicted response to therapies.  
The research devoted to studying clonal structures of tumors and their relations to 
biological background of cancer development and clinical observations is  
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a wide area in computational oncology [9–13]. This scientific research area is also 
supported by mathematical and computational models of cancer clonal development.  

We presented a high – resolution simulation system for tracing clonal evolution of 
tumor with interacting driver and passenger mutations.  Evolution of clones when cancer 
cells population progresses and increases in time leads to dynamic changes of 
frequencies of mutations. During the evolution of separate clones distributions of VAFs 
(allelic frequencies) of passenger muations are biomodal, as shown in Figure 4. When 
distributions of VAFs are drawn for the whole cancer cells populations, as shown in 
Figure 5, they display multimodal shapes. These results are consistent with many 
observations of VAFs obtained in experimental studies [4].  
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MODELLING CLONAL EVOLUTION OF TUMOURS BY USING HIGH 
RESOLUTION STOCHASTIC SIMULATIONS 

Abstract 

Tumor growth, caused by accumulation of genomic somatic mutations, which 
disturb and eventually dysregulate cellular processes of signaling, metabolism and 
replication, is a complex process with various stages and modes of dynamics. 
Fundamental research on scenarios and mechanisms of tumor evolution, combined with 
observational data and biological/genetic knowledge, is of great importance for cancer 
research. 

Important insights to the study of dynamics of cancer evolution are given by 
mathematical/computational modelling tools. Mathematical models require introducing 
a lot of simplifying hypotheses in order to obtain interpretable conclusions. 
Computational stochastic simulation approaches allow for address wider range of 
evolution scenarios, important for explaining observational data, which are recently 
becoming available. 
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We present a stochastic simulation tool, based on Gillespie algorithm for modelling 
evolution of cancer cells population. Replication process of cancer cells is affected by 
two types of somatic mutations, driver with high impact on tumor growth and passenger, 
assumed to have mildly deleterious effect. The elaborated algorithm allows for high 
resolution modelling of evolution of cancer, with distinguishing between cancer cells 
and both types of somatic mutations occurring over time. It allows for confronting 
simulation results with experimental data concerning clonal structures of tumor cells 
and statistics of somatic mutations. 

Keywords: Stochastic simulation, Clonal evolution, VAF histograms, Gillespie algorithm 
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