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Chapter 5. DNA SEQUENCING READS CORRECTION EVALUATION: 
REAL VS SIMULATED READS 

5.1. Introduction 

Techniques of a DNA sequencing give an opportunity to achieve a variety of 
scientific goals. The process typically is performed with automated machines called 
sequencers, resulting in a set of short DNA sequences called reads. The reads undergo 
a further processing, including matching them mutually in a task called de novo 
assembly to obtain long sequences called contigs. The aim is to generate the contigs 
possibly well-resembling sequences of the sequenced chromosomes. Another task is 
reads mapping, i.e. aligning them to a previously known sequence of the genome 
(reference genome). Mapping may be a part of workflows aiming at genetic disorders 
analysis, genome variants calling, identifying functional elements in genomes, and 
many others. 

This work focuses on reads generated with Illumina sequencers, as it is one of the 
most popular technique. The Illumina reads are characterized by short length and 
relatively low amount of errors appearing in a sequencing process: some part (about 
a few percent, the fraction is called an error rate) of sequences symbols are incorrectly 
altered in reads by another ones. Such changes are called substitution errors, and are 
typically tens times more frequent than errors of another type, called insertions and 
deletions (indels). They include situations, when (typically single) symbols additionally 
appear in the read sequences or, respectively, they are missing. These errors tend to 
degrade the quality of downstream analysis. Consequently, a number of algorithms 
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(correctors) aiming at detection and correction of the errors were devised. Detection can 
be facilitated with Phred quality scores, associated with the read symbols, however, in  
a step of the correction, all the algorithms utilize a data redundancy in the read. That 
follows, that the total length of the reads typically is significantly bigger than the length 
of the genome, hence one can expect, that a specified fragment of the genome is 
represented in multiple reads. The ratio of the lengths is called sequencing depth. 

The introduction of a new corrector or performing a comparative analysis of  
the existing ones require choosing a correction evaluation method. One of the utilized 
strategies is simulating reads in silico and performing the correction of artificial reads. 
The other one is correcting reads obtained in real sequencing experiments. An emerging 
question concerns a concordance of these methods conclusions. In this work we focus 
on comparing correctors quality results obtained with three methods: two ones based on 
reads simulation and the one based on real reads. Our strategy is similar to the one 
adapted in a work [1], where it was used to evaluate correctors, however, now we 
observe another set of correctors, some correctors and an auxiliary assembler are of 
newer versions, we utilize another tool for reads simulation and obtain results for  
a wider range of sequencing depths. Moreover, here we consider strictly the comparison 
of the evaluation methods, rather than correctors evaluation. 

5.2. Reads correction evaluation methods 

In the literature, there are two main approaches of reads correction efficacy 
considered: 
• direct, utilizing reads simulated with a computer by random probing a given 

reference genome and introducing errors; the method allows for simply comparing 
of corrected and erroneous reads with the original sequence and observing changes 
introduced by the corrector, 

• indirect, utilizing reads obtained from real sequencing experiments, which are 
corrected and then passed as an input for another algorithms, aiming at acheiving 
some specific goals, as de novo assemblers, reads mappers or genome variant calling 
pipelines, and observing the results quality of such downstream processes. 
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5.2.1. Reads simulation methods and rationale 

Utilizing simulated reads has several advantages over real ones: 
• the position in the genome, where the real read originates from is not known [2], 
• the period between the sequencing experiment and publishing the reads in a database 

can be long [2], 
• a simulation allows reads with the specified characteristics to be obtained [2], 
• real reads can be “contaminated” with another organisms sequences [3], 
• a cost of a reads simulation is lower [3]. 

A simple method, based on Phred quality scores allows to simulate reads as follows. 
Given the reference genome and a real reads set (profile set), the sequences of the quality 
scores from the profile set are extracted. Then the probabilities of bases (reads symbols) 
substitution errors are computed by decoding the scores. Next, subsequences from  
the random positions of the reference genome are extracted. The subsequences are of  
the length equal to the profile reads, and they constitute the output reads set. Finally,  
the read sequences are disturbed by generating the errors with the obtained probabilities. 
As a result, a reads file is generated, containing the subsequences with introduced errors 
and accompanying quality score sequences from the profile set. The method is popular 
as an ad hoc strategy, as in [4]. In [5] it is enhanced by including different probabilities 
of various subtitution errors, e.g. the probability of substituting a symbol A with C is 
higher than with G or T. 

Another approach is to engage specialized simulation tools. A group of them was 
presented in an overview work [6], but with no experimental veryfication. One of  
the tools is ART [7]. It was designed to simulate reads of a few types, including the ones 
from Illumina sequencers. Authors included a set of generating read models (error 
profiles). The profiles correspond to rather outdated versions of sequencers, 
nevertheless, ART allows to simply generate own error profiles based on given profile 
sets, hence its utilization is still adequate. Another tool, SInC [8], has a built-in model 
to simulate only Illumina reads of length 100 bp (base pairs). It allows to generate 
sequencing reads, but the tool is rather desinged to simulate genome variants, which 
manifest itself in the reads similarly to errors, however, they definitely are not the same. 
Both of them are a differences with the reference genome, but the errors differs also 
with the genome being sequenced. CuReSim [9] was developed to simplify a reads 
mappers evaluation. It has a few predefined error probability distributions, can be 
parametrized with real error scores and a read length, and is designed to generate reads 
of any type. FASTQsim [10], as the authors stated, also would be capable to simulate 
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reads of any techniques, as it is equipped with a tool for real reads analysis and may be 
parametrized with a read length, substitution probability distribution, indel length 
distribution, etc. 

Regardless of the simulation method, the evaluation is in general similar: simulated 
(erroneous) reads with the errors are corrected and the resulting (corrected) reads are 
compared with the ones devoid of the errors (proper ones, also returned by  
the simulator), which allows to simply measure number of errors before and after  
the correction, including number of errors introduced by the corrector. The comparison 
may be performed in two granulation modes: in terms of single symbols (a single base 
error correction is treated as a success), or of entire reads (the entire read must contain 
just proper symbols to be successfull). 

The correction measure typically is defined as 

gain =
TP − FP
TP + FN

 (1) 

where: 
TP – number of symbols/reads perfectly corrected 
FP – number of symbols/reads originally correct, but disrupted by the corrector 
FN – number of uncorrected or miscorrected symbols/reads  

The value of gain is negative, when a number of disruptions is higher than a number 
of effective corrections. 

5.2.2. Comparison with real reads 

Correctors evaluation can be performed by correcting a set of real reads and 
processing the output by another algorithm. In such a situation, a quality of  
that algorithm is measured. One of the most useful, however not straighforward method, 
is apdapting a de novo assembler. The output quality, a set of obtained contigs, typically 
is rated with a set of measures, i.a.: N50, NG50, NGA50, genome coverage (cov), 
number of missassemblies (misasm), or LGA50 values. N50 is such a contig length,  
that the total length of the contigs of length N50 or more constitutes half of all  
the contigs length. NG50 is such a contig length, that the total length of the contigs of 
length NG50 or more constitute a half of the entire genome. NGA50 is similar to NG50, 
but before rating the contigs are splitted in places of assembly errors. Genome coverage 
(or genome fraction) is the percentage of contig bases aligned to the reference genome, 
whereas number of missassemblies refers to wrong alignments of the contigs positions. 
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LGA50 is defined similarly to NGA50, however, it is a number of contigs rather than 
the length. Number of misassemblies and LGA50 indicate better results when are lower, 
the other ones – when higher. 

5.3. Results and discussion 

Table 1 contains reference genomes identifiers, whereas table 2 contains accession 
numbers of the real read sets used in the experiments. To simulate reads and evaluate 
de novo assembly results, we chose three model organisms: Saccharomyces cerevisiae, 
Caenorhabditis elegans, Musa acuminata. We simulated reads of various 
characteristics: read lengths, error rates, and sequencing depths, with two methods: 
Phred and ART, both based on predefined profile sets, accordant to the intended read 
length and error rate. The choice of the ART is motivated by possibility to generate 
a profile with a given profile reads set. It allows the output read characteristics to be 
flexibly configured with an expected length and error rate. In a context of the 
abovementioned arguments, the potentially competing tool for ART would be not 
discussed Mason 2 [2], however, due to technical problems, described in [11], we will 
not take it into account. Moreover, in the overview work [6] ART was stated as the best 
simulator. 

The results were compared with a granulation of the entire reads, due to a higher 
usefullness of the “completely” corrected reads [12] and the reason stated in 
a supplementary material of [13]: a small part of Illumina reads have a huge number of 
errors, hence such reads can strongly affect the whole rate. Moreover, expecting  
the entire reads to be error-free is a stricter requirement. 

The real reads evaluation was performed by assembling them with Minia [14] and 
achieving the aforementioned measures with Quast [15]. In experiments we have 
included the correctors presented in Table 3. 

Table 1 
Reference genomes 

Organism Genome length [Mbp] Accession number 

S. cerevisiae 11.63 GCF_000313865.2 

C. elegans 102.8 GCF_000002985.6  

M. acuminata 461.5 GCF_000313855.2  
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Table 2 
Read sets accession numbers 

Accession no. Read length [bp] Depth Application 

ERR422544 100 41 Real reads for S. cerevisiae 
SRR543736 101  57 Real reads for C. elegans 
ERR204808 108  16 Real reads for M. acuminata 
DRR031158 100  – Profile set for p ≈ 2% 
SRR1802178 150  – Profile set for p ≈ 2% 
SRR065390 100  – Profile set for p ≈ 4 – 5% 
SRR650760 151  – Profile set for p ≈ 4 – 5% 

Table 3 
Correction algorithms 

Algorithm Version Paper Algorithm Version Paper 
RECKONER 2.0 [16] Lighter 1.1.2 [21] 

Musket 1.1 [4] BFC BFC-ht, 
version r181 

[13] 

RACER – [17] Karect 1.0 [22] 

BLESS 1.02 [18] SAMDUDE Uploaded 2 
May, 2018 

[23] 

Fiona 2.4.0 [19] CARE 2.1 [24] 
Blue 1.1.3 [20]    

The reads sets were generated for two lengths (100 bp and about 150 bp), two error 
rates p (about 2% and 4 up to 5%) and three sequencing depths (20×, 30×, 60×), for 
three different-sized genomes, representing a wide range of possible reads 
characteristics. The real reads sets were downloaded from a public database ENA, and 
represent the mentioned three genomes. In a case, when a corrector has to be 
aparametrized with a k-mer length, we run it multiple times and chose the value resulting 
the best output (for simulated reads we chose the length for a sets of 20× depth). 

Figures 1, 2 show, respectively, result for Phred simulation and simulation with 
ART. Notation LxDy means a read length x [bp] and a sequencing depth y. Gain measure 
values were multiplied by 100. Figures 3, 4 show results for de novo assembly of the 
real reads. As a reference, we added results for not corrected real reads, marked as (raw). 
With a dagger (†) we marked cases, when a corrector failed due to a timeout (more than 
24 hours), with a section mark (§), when it crashed, and with an asterisk (*), when it 
returned a message about wrong quality scores (BLESS). For M. acuminata measures 
referring to a genome size (NG50, NGA50, LGA50), due to a low total contigs lengths, 
are unavailable. 
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Fig.  1. Results for reads simulated with a Phred method 
Rys. 1. Wyniki dla odczytów symulowanych metodą Phred 
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Fig.  2. Results for reads simulated with ART 
Rys. 2. Wyniki dla odczytów symulowanych narzędziem ART 
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Fig.  3. Results for de novo assembly of the real reads 
Rys. 3. Wyniki asemblacji de novo odczytów rzeczywistych 
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Fig.  4. Results for de novo assembly of the real reads (cont’d) 
Rys. 4. Wyniki asemblacji de novo odczytów rzeczywistych (cd.) 

The results for Phred simulation show, that RECKONER is extremely efficient and 
in most of the cases it allows to correct over 90% of erroneous reads, in some cases 
achieving almost 100%. Another good algorithm is Karect, and as a third appears Blue. 
RACER and Lighter achieve similar, average results. BLESS and BFC should be rated 
rather poorly, but clearly negatively outstanding algorithms are Musket, CARE and, 
especially, SAMDUDE. For the third genome very weak results was obtained by Fiona, 
which in three cases caused a general data degradation. An interesting observation  
is a read length impact. In the case of good-quality reads (p ≈ 2%) for longer reads better 
results were obtained. In a case of the other reads (p ≈ 4–5%) the trend is inverted.  

In the case of ART reads the general observation is that the results are more even, 
both between different genomes and algorithms. The correctors ranking is more varied, 
depending on the cases. Typically, the best is one of BFC or Karect, however, for  
M. acuminata reads Karect results are out of the top and usually the best one is 
RECKONER. Moderated results are obtained for BLESS and Blue. There are no cases, 
when Musket or Fiona are severely outstanding. The weakest algorithms are Lighter, 
sometimes RACER, SAMDUDE and CARE. The observed read length impact is 
different and more subtle. For the reads of both error rates the longer ones cause lower 
quality, but in some cases such phenomenon is not visible. 

The relative values of de novo assembly evaluation, performed for the real reads 
corrected with different algorithms vary slightly, which is an effect of some assembler 
tolerance for the sequencing errors and not a straightforward transfer of the errors to the 
contigs quality. It seems, that the best algorithm is Karect, followed by RECKONER 
and Blue, however the top varies, depending on the genome and a measure. For 
example, for S. cerevisiae the top algorithms change in terms, respectively, N50 and 
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NG50. In general, Musket, Fiona, Lighter, BFC characterise by moderated results.  
The poorest algorithms are RACER, BLESS, CARE, and SAMDUDE. All of them have 
weak values of contigs length measures, but additionaly RACER has huge numbers of 
missassemblies. 

To summarize, in many cases a relative and an absolute correctors qualities differ 
for various evaluation strategies. We will list the most visible cases. RACER achieves 
an average results in a case of Phred reads, rather weak for ART reads, however in 
a case of de novo assembly, the results are definitely bad. Results for BLESS are weak 
for the Phred and average for the ART simulated reads, but for the real ones are very 
poor. Fiona achieves very weak results for M. acuminata Phred simulated reads, but for 
the simulated with ART and the real ones the quality does not seem to be negative. For 
the Phred simulated and the real reads BFC is classified as an average algorithm, in 
contrast to the ones generated with ART, where it is one of the best. On the other hand, 
in some cases all the comparisons yielded similar conclusions. RECKONER is one of 
the best one in all the cases (except for the Phred reads, where it advantageously 
outstands), similarly to Karect. SAMDUDE and CARE in all the cases achieve weak 
results. 

5.4. Conclusions 

The experiments showed, that the correction algorithms evaluation results differ 
depending on the adopted strategy. A simple Phred method results are dispersed 
depending on the chosen corrector, probably privileging the ones accepting idealized 
conditions of the method. Results for the reads generated with ART are more levelled, 
but still does not clearly correspond to the real reads. On the other hand, the outcome 
for real reads undergo an impact of the addtional step of de novo assembly and 
inconsistent results for a single reads set may be obtained. Moreover, the results of  
the various algorithms differ just slightly. 

In contrast, the comparison of methods showed, that in some cases the results are 
consistent. In all the strategies RECKONER and Karect are in a group of the best 
algorithms, while SAMDUDE and CARE almost always are the weakest, but these 
situations are not a clear rule. The observations give no basis to conclude, which method 
of simulation is more concordant with an indirect method of de novo assembly 
utilization. 
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DNA SEQUENCING READS CORRECTION EVALUATION: REAL 
VS SIMULATED READS 

Abstract 

The problem of Illumina whole genome sequencing reads correction is widely 
considered in the literature. Nevertheless, new correction algorithms are still introduced, 
requiring reliable methods of the process efficiency evaluation to be available.  
The methods include utilization of both reads simulated in silico and real ones, obtained 
from DNA sequencing process. The paper focuses on comparing these approaches, 
trying to give the answer, if a convenient reads simulation allows the correction quality 
to be reliably verified. We evaluated a set of correction algorithms by processing reads 
generated with a simple method based on a Phred scores utilization and simulated with 
a specialized tool. We also de novo assembled sets of reads obtained from real 
sequencing experiments, observing an impact of the correction to the contigs 
characteristics. Finally, a concordance of the three methods results was analyzed. 

Keywords: DNA sequencing, Illumina, read error correction, reads simulation, genome 
assembly 
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