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Chapter 3. TRANSCRIPTOMICS-BASED MUSCULAR DYSTROPHY 
PATIENT STRATIFICATION WITH THE USE OF 
MACHINE LEARNING 

3.1. Introduction 

Muscular dystrophies are a group of genetic disorders characterized by progressive 
muscle wasting and degeneration. There are several different types of muscular 
dystrophies with distinct patterns of muscle development and genetic causes. By 
identifying relevant features, personalized treatment strategies can be provided [1]. 

Over the past few years, RNA sequencing (RNA-seq) has emerged as a powerful 
genomic tool for the identification of genetic variants that are associated with various 
diseases, including rare genetic disorders like muscular dystrophies. RNA-seq is  
a powerful tool for unravelling the complexity of gene regulation and understanding the 
dynamics of RNA molecules in tissues [2]. 

Machine learning is a subset of artificial intelligence that focuses on developing 
algorithms and models capable of learning and making decisions. It has the ability to 
analyze complex datasets and discover hidden patterns and associations. When 
combined with RNA-seq, machine learning can be leveraged to develop clustering 
models for muscular dystrophy patient stratification, leading to improved diagnosis and 
treatment strategies. The aim of this study is to create a preprocessing pipeline that 
includes a series of steps to prepare the data for effective analysis and identifying 
molecular signatures. 
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3.2. Dataset 

The dataset consists of 61,587 gene expression profiles from 197 patients with 
muscular dystrophies, obtained using the RNA-seq method with HiSeq4000 and 
NovaSeq platforms. RNA-seq is high-throughput sequencing technique used to analyze 
the transcriptome of an organism. It provides insight into the RNA molecules present in 
a biological sample, enabling the study of gene expression. It quantifies the amount of 
RNA molecules produced from that gene and provides valuable information about its 
transcriptional activity [2]. The range of expression levels in RNA-seq dataset spans 
several orders of magnitude, reflecting the varying levels of gene expression between 
different genes and patients. At the lower end of the range are genes with very low or 
negligible levels of expression. On the other hand, genes that are highly expressed can 
have expression levels that are several orders of magnitude higher.  

A description of the clinical features is provided in Tables 1, 2 and 3. 

Table 1 
Patients phenotype 

Phenotype Number of patients 

Titinopathy 63 

Myopathy 32 

IBM 28 

Amputee control 12 

CK control 7 

Myopathy 
(HNRNPA1) 

6 

DMD 5 

SMPX myopathy 4 

FSHD 3 

Actinin-2 myopathy 2 

LGMD D2 1 

Control cells 1 

Becker 1 

OPDM 1 
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Table 2 

Patients sex 
Sex Number of patients 

Male 91 

Female 48 

Not known 28 
 

Table 3 

Age at biopsy 
Age at biopsy Number of patients 

<30 23 

30 – 50 37 

>50 78 

Not known 29 

3.3. Methods 

The preprocessing pipeline in the context of machine learning refers to a series of 
steps and techniques applied to raw data to transform it into a format suitable for training 
a machine learning model. Each step in the pipeline serves a specific purpose and 
contributes to the overall data preparation process. The pipeline created is shown in Fig. 1. 

 

Fig.  1. Preprocesing pipeline 
Rys. 1. Potok przetwarzania 
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3.3.1. Feature selection 

The first step in a preprocessing pipeline, especially in high-dimensional datasets, is 
feature selection. It refers to the process of identifying the subset of  features that are 
most relevant to the analysis. In the context of feature selection for muscular dystrophy, 
we decided to reject genes that are not actively expressed or have low levels of 
expression. Hence, the expression levels of genes were converted into binary values 
representing the presence or absence of gene expression. The binary heatmap depicted 
in Fig. 2 represents gene expression activity, where active genes are denoted by 1, and 
inactive genes are denoted by 0.  

 

Fig.  2. Binary form of gene expression 
Rys. 2. Binarna postać ekspresji genów 

The Gaussian Mixture Model (GMM) was then applied to the data to reject certain 
components if they did not provide meaningful information. It assumes that the data 
points are generated from a mixture of Gaussian distributions. Determining the optimal 
number of components is an important step in the analysis of gene expression data. For 
this purpose, Bayesian Information Criterion (BIC) was used. The BIC is based on the 
principle of penalized likelihood, which takes into account both the likelihood of the 
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data given the model and a penalty term for model complexity. The GMM with  
the lowest BIC value is usually considered to be the optimal model. The visual 
representation of the GMM results is shown on Fig. 3.  

 
Fig.  3. GMM result 
Rys. 3. Wynik działania GMM 

After applying the gene rejection criteria based on low expression levels, the dataset 
was reduced from its original size of 61,587 genes to 32,606 genes. 

3.3.2. Clustering 

Determining the optimal number of clusters is a critical step in clustering analysis.  
The Calinski-Harabasz index and the Davies-Bouldin index were used to evaluate  
the clustering performance and to determine the optimal number of clusters. As  
the number of clusters increased, the Davies-Bouldin index increased, indicating 
worsened cluster separation and compactness. The highest Calinski-Harabasz index 
reflects a clustering solution with the most distinct clusters. Based on the indices values, 
it was observed that the solution with two clusters yielded the best between cluster 
separation and compactness within each cluster. 
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Clustering is a fundamental technique in unsupervised machine learning that 
involves grouping similar data points together based on their intrinsic characteristics.  
It is a process of dividing a dataset into subsets or clusters, where data points within 
each cluster have certain similarities and are dissimilar to data points in other clusters. 

Sparse k-means involves selecting a sparse set of relevant features that contribute 
most to each cluster. By selecting a sparse set of features, the algorithm reduces  
the dimensionality of the data, which can improve accuracy and scalability compared to 
classical k-means [3]. The application of sparse k-means clustering to the gene 
expression dataset produced distinct and interpretable clustering results. UMAP 
(Uniform Manifold Approximation and Projection) was used for visualization purposes 
in the analysis of the dataset. The main UMAP principle is to find a low-dimensional 
representation which will preserve these neighborhoods as much as possible [4]. The 
using of UMAP to the patients gene expression dataset resulted in a plot on Fig. 4 that 
effectively captured the underlying structure and relationships of the data. The UMAP 
plot revealed distinct clusters representing different groups within the patient 
population. By applying UMAP to a dataset affected by batch effects, it is possible to 
visualize and potentially correct for these unwanted variations. However, the second 
plot provides evidence that there is no batch effect, so there is no need to apply a batch 
correction technique. 

 

Fig.  4. UMAP visualisation 
Rys. 4. Wizualizacja UMAP 

The improved separation between clusters and reduced dimensionality through 
feature sparsity contributed to a more efficient and interpretable clustering solution. 
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3.3.3. Statistical analysis 

To identify the most diversifying genes within specific clusters, the Mann-Whitney 
test was utilized. By performing the Mann-Whitney test on a feature of interest within 
different clusters, was determined whether the feature exhibits significant variation that 
distinguishes the clusters. 

The Rank Biserial Correlation Coefficient can be used to assess the effect size in the 
context of clustering analysis. A higher absolute value of the coefficient indicates  
a stronger cluster separation based on the feature. 

Figure 5 shows box plots illustrating the gene expression levels of of the most 
diversifying genes across different clusters, including MYH7, TNNI1 and ACTN2. 
These muscular genes play important roles in muscle contraction. Both cardiac and 
skeletal muscle disorders can result from a defect of MYH7 [5]. The TNNI1 gene is 
switched on during skeletal muscle myogenesis and is co-expressed during early stages 
of development [6]. ACTN2 is highly abundant in cardiac and skeletal muscle, where it 
plays several functional roles in the sarcomeres [7]. Each box corresponds to a different 
cluster and the vertical axis represents the gene expression values. The box represents 
the interquartile range of values within each cluster, with the median indicated by a line 
inside the box. By examining the box plots, we can observe variations in gene 
expression levels between clusters. 

 
Fig.  5. Gene expression values across clusters 
Rys. 5. Wartości ekspresji genów pomiędzy klastrami 
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3.3.4. Dimensionality reduction 

Dimensionality reduction is an additional step that was included in the preprocessing 
pipeline to reduce the number of features in the dataset while preserving the most 
important information. Autoencoders were used as part of the analysis. The autoencoder 
neural network was trained on the dataset to learn a compressed representation of  
the input data. By minimizing the reconstruction error between the original input and 
the reconstructed output, the autoencoder effectively captured the most important 
features but yield a different number of clusters than what was previously determined.  
The analysis using the autoencoder resulted in the identification of 5 distinct clusters 
within the dataset which are demonstrated in Fig. 6 after UMAP transformation. 

 

Fig.  6. UMAP space after applying the autoencoder 
Rys. 6. Przestrzeń UMAP po użyciu autenkodera 

The Sankey diagram shows on Fig. 7 the distribution of genes within clusters, 
comparing the results with and without dimensionality reduction techniques. It visually 
represents the flow of genes between clusters in both scenarios, highlighting any 
similarities in gene assignments and transitions.  
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Fig.  7. Sankey diagram 
Rys. 7. Diagram Sankey 

3.3.5. Model analysis 

Using the SHAP algorithm, we can calculate the impact of each feature on a given 
prediction by evaluating its contribution to the difference between the predicted 
outcome and the expected average prediction. SHAP (Shapley Additive exPlanations) 
is a model-agnostic interpretability technique used to explain the predictions of machine 
learning models [8]. Positive SHAP values indicate features that push the prediction 
towards the positive class, while negative values indicate features that push it towards 
the negative class. Fig. 8. Illustrates the results of the SHAP algorithm using Random 
Forest as the prediction model. By analyzing the SHAP values of the genes, it is possible 
to identify the genes that have the most significant effect on the separation of the clusters. 
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Fig.  8. SHAP 
Rys. 8. SHAP 

3.4.  Conclusions 

In conclusion, clustering analysis of the patients dataset revealed two distinct 
subgroups based on genetic profiles. The analysis of muscular genes revealed diverse 
expression patterns across different clusters. Specifically, the genes MYH7, TNNI1, or 
ACTN2 exhibited varying expression levels among the clusters. Further investigation 
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into the specific genetic mutations and biomarkers associated with each cluster could 
potentially lead to personalized treatment strategies and improved prognostic indicators 
for patients with muscular dystrophies.  
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TRANSCRIPTOMICS-BASED MUSCULAR DYSTROPHY PATIENT 
STRATIFICATION WITH THE USE OF MACHINE LEARNING 

Abstract 

Muscular dystrophies are a set of genetic disorders characterized by progressive 
muscle wasting and degeneration. Each type of muscular dystrophy is associated with 
specific gene mutations that have an effect on the function of the muscles. We aim to 
identify patient subpopulations and find their molecular signatures. The dataset consists 
of 61,587 RNA-Seq-based gene expression profiles from 197 patients with different 
muscular dystrophies. The preprocessing pipeline was created to filter noisy data that 
can lead to misinterpretation of the study results. 

First, genetic data were transformed to present/absent form, and then the Gaussian 
Mixture Model of their occurrence distribution was used to identify genes with high 
absences. Then, the sparse K-means algorithm was applied to partition samples into 
clusters with Calinski-Harabasz and Davies Bouldin indices used to find the cluster 
number. Differences in gene expression across clusters were detected by the Mann- 
-Whitney test and rank biserial correlation coefficient serving as effect size measure.  
The large effect size was observed in 219 features, mainly associated with muscular 
genes such as MYH7, TNNI1, or ACTN2. UMAP transformation was used to visualize 
results, and the 2D graph spanned over the limited feature domain was built to confirm 
obtained patient splitting. 

Keywords: muscular dystrophy, unsupervised learning, sparse K-means, UMAP 
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