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Chapter 4. NO-MAPPING MAPPING OF OXFORD NANOPORE  
LONG READS 

4.1. Introduction 

Understanding the DNA code has been one of mankind's most important tasks for 
years [1]. There are many reasons for this, such as the development of new treatments 
and therapies [2, 3]. The problem has led to discoveries and advances in the field of 
science, bringing with it various sequencing techniques and the concept of mapping  
(i.e. aligning reads with a reference sequence, making it possible to find where a DNA 
read originates [4]). Historically, sequences have not been long strings. Depending on 
the generation and platform, they averaged between tens and hundreds of base pairs 
(bp). The situation has changed slightly with Third-Generation Sequencing (TGS) for 
which average lengths are mostly reported in thousands of bp [5]. Among these, we can 
distinguish companies such as Pacific Biosciences and Oxford Nanopore Technologies 
differing in their approach to reading the sequence of nucleotides [6]. The latter 
company bases its innovative idea on nanopores, i.e. proteins placed in  
a membrane through which a single DNA/RNA strand passes. Based on the changes in 
current arising from passing a string of nucleotides, we are able to read individual letters 
of the sequence. Such a process is characterized by the absence of restrictions on the 
read length, resulting in so-called “long reads” [7]. 

TGS opens up new possibilities and brings with it new problems to solve. One  
of them is the search for a specific sequence fragment in a relatively short time.  
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Such a fragment could be a specific gene that acts as a marker for a screening test that 
determines the dose of ionizing radiation absorbed by a person. Finding the marker itself 
is not an easy task and is a separate problem. Based on the literature [8, 9], it can be 
concluded that such a marker potentially is the FDXR gene, which was used for  
the present study. 

Despite the ever-growing list of sequence alignment software, it still ties the task of 
searching for a nucleotide fragment to using a computer to search all possible read 
locations on a given reference, which translates into computation time. In this paper, we 
wanted to replace the alignment program with a machine learning model, thus 
narrowing down the task to searching for a specific sequence/gene. We base our idea 
on methods known from Natural Language Processing (NLP) [10]. Using appropriate 
methods, we encoded the entire sequence in a first step and then focused on the problem 
of narrowing our encoding to the n initial sequences and observed how this affected the 
efficiency of our model. In this way, we showed that it makes sense to apply NLP 
methods to bioinformatics tasks and how far we can move with the encoding to obtain 
satisfactory efficiency. 

4.2. Materials and Methods 

4.2.1. Data 

The data consisted of Oxford Nanopore sequencing data from three repetitions of 
the biological experiment: A, B, C. The HT1080 cell line was used. In each repetition, 
the cells were exposed to a radiation dose of 10 Gy. RNA was then extracted and 
libraries were prepared using a direct RNA kit. Finally, six samples of epithelial cells 
were available, where three of them were not irradiated (Control-A, Control-B, Control-C) 
and another three were samples 24 hours after exposure to a 10 Gy dose (24h-A, 24h-B, 
24h-C). After sequencing, 8.5 million long-read RNA sequences were obtained.  

4.2.2. Data visualization 

Knowing the characteristics of the data is fundamental in making further decisions. 
For this purpose, visualization using various plots is used, which helps humans to 
understand the data, detect possible errors and anomalies. In this case, to check  
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the distribution of read lengths of each sample, it was decided to generate a violin plot 
[11]. This made it possible to compare the density of the distribution and generally 
interpret the data. 

4.2.3. Data preparation 

In order to prepare the data for further use, it was decided to perform filtering to 
remove short reads. It was assumed that such reads could be the result of various 
mistakes and would not be useful for the present study. For this task, it was decided to 
use the Empirical Cumulative Distribution Function (ECDF) plot that was generated for 
each sample. By analysing the data distributions shown therein, a threshold value was 
chosen to ensure that the beginning of the plot line on its right-hand side was 
characterised by a steep slope to the horizontal axis, while at the same time not 
excluding too many reads from further analysis. 

The final step was to divide the reads into those that could potentially belong to  
a given genome fragment (the FXDR gene) and those that do not. For this purpose,  
the minimap2 [12, 13] was used, which is responsible for matching the sequence data 
with the given reference sequence. This allows us to find the likely location of each 
read. In this case, the FDXR gene was chosen as the reference sequence.  

4.2.4. Experimental design 

The research was based on a machine learning model, which was responsible for 
determining whether or not a given sequence could potentially originate from the FDXR 
gene. A neural network consisting of three dense layers. The first two contained fifty 
neurons and ReLU activation functions, while the last contained one neuron and  
a sigmoid function. The training process was based on ten epochs and used Leave-One-
Out Cross-Validation (LOOCV) to assess the performance of the predictive models 
[14]. Each time, one of the six samples was set aside as a test set, while the remaining 
five samples were used for training. Such a process was repeated six times, thus 
ensuring that each sample was used exactly once as a test set (Fig. 1). 
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Fig.  1. Leave-One-Out Cross-Validation for performed experiments 
Rys. 1. Walidacja krzyżowa Leave-One-Out dla przeprowadzonych eksperymentów 

In order to overcome the problem of converting long sequences of nucleotides into 
a computer-friendly form, techniques known from natural language processing (NLP) 
were used. Firstly, the long sequences were presented as six-letter words (k-mers) with 
an offset equal to one nucleotide. This means that a single word consists of two codons. 
Sequences of four words (four-grams) were then created and such subsets formed  
the final dictionary with which each long-read was encoded. The method used is called 
“bag-of-words” [15] and is widely applied in the field of NLP.  

The present study focused on encoding n initial nucleotides and observing the impact 
on the final performance of machine learning models. In order to select N (the set of 
considered n), quartiles were calculated as one measure of the position of the observations 
(the string lengths). Then a certain Δ step was selected to increase the size of this set. In 
addition, the other end of the sequence was considered, for which the same experiment 
was performed. In this case, the order of nucleotides read was from right to left.  

Accuracy was used as a measure of model evaluation. All long-reads belonging to 
the test set were encoded identically as during the model training step (same n and same 
end of the sequence). It is noteworthy that even for the encoding of the whole reads,  
the strings for the start and end of the sequence are not identical. The difference is in 
the order of the nucleotides: from left end to right end, or from right end to left end. 
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4.3. Results and discussion 

4.3.1. Data visualization 

Fig. 2 shows the distribution of read lengths of each sample. As can be seen, all 
distributions are bimodal and right-skewed. The long tail indicates a relatively small 
number of reads greater than 3,000 bp. The exact number of reads per sample is shown 
in Table 1. 

 

Fig.  2. Distribution of read lengths of individual samples 
Rys. 2. Rozkład długości odczytów poszczególnych próbek 

4.3.2. Data preparation 

Plots of the empirical distribution function for the control and irradiated sample can 
be seen in Fig. 3. Based on these, a threshold value of 500bp was chosen. That said,  
all reads with a length greater than this value were not rejected. In the end, nearly  
7.2 million long-reads remained. The exact numbers of long-reads per sample before 
and after filtering are shown in Table 1. 
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Fig.  3. Empirical cumulative distribution function plots for two samples 
Rys. 3. Wykresy dystrybuanty empirycznej dla dwóch próbek 

Table 1 

Number of long-reads per sample 

Sample 
Not filtered Filtered 

Number of reads Number of reads Q1 Median Q3 

Control-A 1,232,364 1,040,293 784 1231 1692 

Control-B 1,665,661 1,410,171 780 1204 1702 

Control-C 1,254,760 1,069,828 802 1263 1720 

24h-A 1,670,162 1,356,675 745 1146 1556 

24h-B 1,859,656 1,570,158 786 1229 1721 

24h-C 862,354 718,141 772 1209 1648 

Total 8,544,957 7,165,266 

By performing the alignment process, the long-reads were divided into two groups. 
According to the aligner, the majority (7,128,352) were given the label “unmapped”. 
This means that no potential location was found for them on the reference.  
The remaining reads (36,914) according to the aligner could potentially originate from 
the FDXR gene. Such a large difference in group sizes is as expected, because this task 
focused on only one among the entire set of genes. 

4.3.3. Experimental design 

The LOOCV approach provides a good method for validation, but involves  
the training of several artificial intelligence models [14]. Considering also the number 
of total reads (nearly 7.2 mln), which on average contain about 1,400 nucleotides and 
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which have to be transformed and encoded, such a process is time-consuming  
and complex in a memory context. Therefore, it was decided to randomly select  
4,000 sequences potentially derived from the FDXR gene and 12,000 sequences 
unmapped to this gene during the training phase (hereinafter referred to as “approach 1”). 
The whole study was then repeated, but this time increasing the number of reads to 
10,000 and 30,000 respectively (hereinafter referred to as “approach 2”). 

As mentioned earlier, the N set containing the numbers of n first encoded nucleotides 
was selected based on the calculated quartiles (summarised in Table 1) and the selection 
of a certain Δ step. That said, N∈{800; 1700} were chosen, corresponding roughly to 

Q1 and Q3 of each sample. Next, the step Δ = 300 was adjusted, thus obtaining the 
final N∈{200; 500; 800; 1100; 1400; 1700; whole sequence}. 

Table 2 

Model evaluation (approach 1) – accuracy with 95% confidence interval 
Number of nucleotides (n) Start of the sequence [%] End of the sequence [%] 

Whole sequence 98.31 (98.07; 98.55) 98.31 (98.13; 98.48) 

1,700 96.15 (94.99; 97.31) 97.13 (96.33; 97.92) 

1,400 95.59 (94.13; 97.05) 96.84 (95.85; 97.83) 

1,100 94.86 (93.44; 96.28) 96.19 (94.92; 97.45) 

800 93.99 (92.33; 95.65) 94.99 (93.43; 96.54) 

500 92.54 (90.45; 94.63) 92.69 (90.66; 94.72) 

200 90.17 (87.24; 93.09) 87.08 (83.35; 90.81) 
 

Table 3 

Model evaluation (approach 2) – accuracy with 95% confidence interval 
Number of nucleotides (n) Start of the sequence [%] End of the sequence [%] 

Whole sequence 98.58 (98.37; 98.79) 98.62 (98.50; 98.73) 

1,700 96.96 (95.90; 98.02) 97.99 (97.54; 98.44) 

1,400 96.67 (95.81; 97.56) 97.68 (97.04; 98.31) 

1,100 96.10 (94.98; 97.22) 97.22 (96.45; 97.99) 

800 95.36 (94.03; 96.69) 96.33 (95.26; 97.40) 

500 94.12 (92.42; 95.81) 94.64 (93.03; 96.24) 

200 91.90 (89.57; 94.22) 89.34 (85.95; 92.72) 
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Fig.  4. Visual comparison of models' accuracies with 95% confidence intervals (approach 1) 
Rys. 4. Wizualne porównanie dokładności modeli z 95% przedziałem ufności (podejście 1) 

 

 
Fig.  5. Visual comparison of models' accuracies with 95% confidence intervals (approach 2) 
Rys. 5. Wizualne porównanie dokładności modeli z 95% przedziałem ufności (podejście 2) 

Model accuracies presented as confidence intervals with α = 95% are shown in 
Table 2 and Table 3 for approach 1 and 2, respectively. In addition, Fig. 4 and Fig. 5 
show a decrease in accuracy with a decrease in the number of n initial encoded 
nucleotides. 
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Referring to Table 3, the approach used to generate words and encode whole 
sequences gives a high accuracy of 98.62% thus showing the potential of applying 
methods known to NLP to bioinformatics. The value decreases with decreasing n of the 
initial nucleotides encoded and reaches a minimum value of 91.90%/89.34% for  
n = 200. In general, the second end of the sequence is more efficient, as can be seen in 
Fig. 5. Only in one case does the first end have a higher accuracy. 

Table 2 shows that despite the training set being more than three times smaller, the 
accuracy of the models is marginally worse than the models trained on “approach 2”. 
The nature of the changes remains similar, which is brilliantly shown in Fig. 4.  
The reduction of the training set results in faster training of the classifier, leading to  
a smaller dictionary size needed to encode the sequence. 

1.4. Conclusions 

In summary, our research shows that methods known from NLP can be successfully 
implemented into the analysis of Oxford Nanopore long-reads and can serve as the 
alternative to classical mapping approaches. Encoding a sequence in this way, training  
a classifier and then using it for prediction achieves an accuracy of 98.62%. The 
research confirmed the conjecture that encoding only the initial n nucleotides is 
associated with a decrease in classifier performance. For the initial 200 nucleotides, this 
is a decrease of up to 10% compared to encoding the whole sequence. As n decreases,  
the standard error increases. Such results can be satisfying when computation time  
is crucial.  

In addition, when comparing the results of both ends of the sequence with each other, 
higher accuracy was obtained for the second end in almost every case. Furthermore, 
when comparing the results of the models trained on the two different datasets, the 
accuracy remains roughly similar despite more than three times fewer long-reads in 
approach 1. 
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NO-MAPPING MAPPING OF OXFORD NANOPORE LONG READS 

Abstract 

Sequence mapping is a time-consuming and crucial step when processing  
DNA-/RNA-seq data. The purpose of the study is to evaluate the effectiveness of 
machine learning models in replacing traditional targeted mapping for long-read 
sequencing data. Oxford Nanopore sequences consisted of three pairs of epithelial cell 
samples, where one of each pair was irradiated with 10 Gy. A total of 8.5 million long-
read RNA sequences were available. Our approach proposed an alternative to classical 
bioinformatics solutions by using techniques known from natural language processing 
(NLP). At the beginning, long strings of nucleotides were expressed as base word 
sequences. During this research, a word length of six nucleotides and an offset of one 
nucleotide were used. Several sequence encoding scenarios were considered: whole 
sequence, first 1700 only, first 1400 only and so on until only first 200 nucleotides. In 
addition, the second end of the string is included. As a sequence classifier, a neural 
network with a dense 3-layer architecture with 50, 50 and 1 neurons, respectively, was 
chosen. A Leave-One-Sample-Out-Cross-Validation scheme was applied. The best 
results with an average accuracy of 98.62% were obtained for whole sequences, as 
expected. Reducing the sequence representation to 200 nucleotides resulted in  
a decrease to 89.34% for the same end of the sequence. These results confirmed the 
potential of using NLP methods in bioinformatics. 

Keywords: sequencing, long reads, classification, natural language processing, oxford 
nanopore technology 
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