
 

 

SILESIAN UNIVERSITY OF TECHNOLOGY 

FACULTY OF MECHANICAL ENGINEERING 

DEPARTMENT OF COMPUTATIONAL MECHANICS AND ENGINEERING 

 

 

 

Doctoral Dissertation 

M. Sc. Eng. Przemysław Sebastjan 

 

 

OPTIMIZATION OF AUTOMOTIVE SUSPENSION COMPONENTS WITH 
CONSIDERATION OF THEIR UNSTABLE BEHAVIOR  

 

 

 

 

 

Supervisor:  

Wacław Kuś, BEng, PhD, DSc 

 

 

Gliwice, 2023



List of Contents 

 2  
 

List of Contents 

List of Contents 

List of symbols and abbreviations ................................................................................ 4 

1. Introduction .......................................................................................................... 7 

1.1. Prologue .......................................................................................................... 7 

1.2. Dissertation motivation, aims, range, and thesis............................................. 7 

1.3. Plan of the optimization methodology implementation .................................. 9 

1.4. Dissertation structure ..................................................................................... 9 

2. The design, exploitation, and numerical modeling of shock absorbers ................ 11 

2.1. Automotive shock absorber work principle ................................................... 11 

2.1.1. The design and operation of the shock absorber .................................... 11 

2.1.2. The stability of the shock absorber in compression ................................ 15 

2.2. Shock absorber discrete analysis using the finite element method ................ 20 

2.2.1. Displacement formulation of the Finite Element Method ....................... 20 

2.2.2. Shape functions ...................................................................................... 24 

2.2.3. Finite element method for nonlinear problems ....................................... 26 

3. Optimization and metamodeling methods .......................................................... 30 

3.1. Optimization ................................................................................................. 30 

3.1.1. Gradient-based optimization .................................................................. 33 

3.1.2. Evolutionary optimization ...................................................................... 36 

3.1.3. Topology optimization ........................................................................... 41 

3.2. Metamodeling ............................................................................................... 45 

3.2.1. Sampling plans ....................................................................................... 45 

3.2.2. Response Surface Method (RSM) ........................................................... 49 

3.2.3. The Kriging ............................................................................................ 50 

3.2.4. The Artificial Neural Networks .............................................................. 53 

4. Hybrid optimization ............................................................................................ 58 

4.1. Optimization problem formulation................................................................ 58 

4.2. Interpolation schemes ................................................................................... 65 

4.3. Manufacturing constraints ............................................................................ 69 

5. Hybrid optimization parameters tuning .............................................................. 72 



List of Contents 

 3  
 

5.1. Metamodel of the FEM simulation ............................................................... 74 

5.2. Hybrid optimization algorithm parameters definition ................................... 78 

5.3. Hybrid optimization algorithm parameters tuning ........................................ 79 

6. Shock absorber optimization methodology – implementation examples .............. 87 

6.1. Optimization of the passive shock absorber .................................................. 87 

6.1.1. The passive shock absorber model .......................................................... 87 

6.1.2. Topology optimization - spatial LSM ..................................................... 87 

6.1.3. Topology optimization - projection method ........................................... 90 

6.1.1. Verification of results ............................................................................. 92 

6.2. Optimization of the semi-active shock absorber ............................................ 95 

6.2.1. The semi-active shock absorber model ................................................... 95 

6.2.2. Topology optimization - spatial LSM ..................................................... 96 

6.2.3. Topology optimization - projection method ........................................... 97 

6.2.4. Verification of results ........................................................................... 100 

6.3. Results summary ........................................................................................ 103 

7. Summary .......................................................................................................... 105 

7.1. Conclusions ................................................................................................. 105 

7.2. Industrial implementation of optimization methodology ............................. 110 

7.3. Future tasks ................................................................................................ 111 

References ................................................................................................................ 112 

Abstract ................................................................................................................... 121 

Streszczenie .............................................................................................................. 122 

 



List of symbols and abbreviations 

 4  
 

List of symbols and abbreviations 
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�� – unsprung mass 

� – the mass of the optimized part 

�� – damping coefficient of the shock absorber 

�� – damping coefficient of the tire 

�� – stiffness of the shock absorber (or spring) 

�� – stiffness of the tire 

�	
� – force at the beginning of plastic deformation 

��� – the force that may be transmitted by the system without losing stability 

������ – the total axial force required by the car manufacturer that specifies the limit 
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� – arbitrary body with a certain area 

�  – the boundary of the body � 

� – stress 

�0 – yield stress 

� - strain 

� – nodal displacement  

b – body (volumetric) force 

� – surface traction 

f – nodal force 

� – Young modulus 
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��� – Kronecker Delta 

����� – stiffness tensor component 

��� – strain tensor component 

��� – stress tensor component 

  – shape function 
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! – differential operator 
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$ – stiffness matrix 
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QFG_�T� – mutation rate (genetic algorithm) 

6FGHUV – number of autonomous populations (multi-island genetic algorithm) 
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6FG__��N��� – interval of migration (multi-island genetic algorithm) 

QFG_��NO – the probability of migration (multi-island genetic algorithm) 

W>S> – population ratio (genetic algorithm) 

:XY – number of mutants within a single generation (evolution strategy) 

Z – auxiliary field (level-set method) 

�;Y[  – threshold value (level-set method) 

\� – i-th scaling factor associated with the height of the RBF (level-set method) 

]>�, �>� – offset and constant values used to scale RBF (projection method) 

����^A – characteristic length of the finite element 

_(̂8) – approximation of function �(�) 

a – vector of polynomial coefficients (response surface method) 

b, Q – parameters scaling the Gaussian basis function (Kriging method) 

*cdef – correlation matrix (Kriging method) 

*̃ – augmented correlation matrix (Kriging method) 

<, ���M – parameters of Gaussian process – mean and standard deviation (Kriging 

method) 

h – activation function (artificial neural networks) 

i� – weight associated with the j-th neural connection (artificial neural networks) 

�[YX – loss function based on mean squared error (artificial neural network) 

(1, (2 – learning rate and momentum parameters (artificial neural network) 

W2 – coefficient of determination (metamodeling) 
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1. Introduction 

The following dissertation is a culmination of the four-year implementation 
doctorate project done in cooperation with one of the leading manufacturers of 
automotive shock absorbers. All of the examples shown within the dissertation are 

associated with the products created by the company, with real-world requirements 
regarding the design, its strength and structural behavior. 

 

1.1. Prologue 

Hydraulic shock absorber technology is growing rapidly since the beginning of the 

XXth century when the idea of the damper with a viscous fluid was first introduced. 
The role of the shock absorbers grew constantly through the years, ranging from 
a simple damping unit to a suspension strut, which not only counteracts the oscillations 

of the vehicle body and wheels but also assures the required rigidity, comfort, and 
handling properties required by the driver. Modern trends in the design of vehicles force 
suspension manufacturers to seek for mass-optimized solutions, with the lightweight 

target being one of the widely addressed topics in scientific literature. This can be 
achieved in several ways [125], i.e. by means of advanced manufacturing technologies 

[87], lightweight materials [51], or structural optimization [112]. The ongoing 
transformation from vehicles internal combustion engines (ICE) to electric vehicles 
(EV) increases the demand for weight reduction, as firstly, the mass of the batteries 

exceeds the mass of the ICE, and secondly, one of the EVs weaknesses - the range - is 
dependent on the total vehicle mass [23], [24]. Although most of the works are devoted 
to the primary function of the shock absorber, i.e. its damping [19] or the noise, 

vibration, and harshness (NVH) performance [121], the structural strength of the shock 
absorber and its components is also of interest [57], as it allows not only for the weight 

reduction but also for mitigating the performance issues associated with the inertia of 
unsprung mass and decrease in the material or manufacturing cost. 

 

1.2. Dissertation motivation, aims, range, and thesis 

The motivation for this dissertation is the need to meet the automotive market 
demands for lightweight shock absorber designs that are able to fulfill intricate 

structural requirements. Among those requirements, the constraint that is not often 
considered during the design phase (and design optimization) is the suspension 
stability, i.e. its ability to resist certain load levels without buckling or failure of 

particular components. Such a problem is associated with the fact, that a suspension 
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system (like the shock absorber) may not be able to withstand the desired loads, even 

if each of the constituent components subjected isolatedly to that load is sufficiently 
strong. In automotive chassis designs, the shock absorbers usually play the additional 

role of wheel travel limiters, therefore they are subjected to extreme load levels 
associated with either rebound or compression events. The effect of the latter type of 
loading on the shock absorbers is usually addressed with linear buckling analysis 

incorporating the finite element method [28], [91], from which the eigenvalues 
associated with specific buckling modes are obtained. Unfortunately, the application of 
that theory yields overly conservative results, leading to a nonoptimal weight of the 

part. That is why accounting for the actual load limits during the design optimization 
is crucial, even if it requires significantly higher computational cost compared to the 

linear analyses [66]. The design optimization itself must also incorporate the 
manufacturing requirements which are specific to a certain application. In this 
dissertation, the shock absorber forged brackets are of interest, therefore, on the 

optimization level, the manufacturability of those components must be assured. 
Summing up, the doctoral project requires the following sub-steps to be taken to 
achieve the goal: 

1. Choosing the appropriate method of numerical analysis of the shock absorber 
subjected to extreme compression loads causing the loss of stability at the system 

level, incorporating effects of large deformations, material plasticity, and contact 
interactions 

2. Definition of design topology and shape modification method that allows to 

arbitrarily modify the shock absorber design without violating the 
manufacturing constraints, and overcoming the drawbacks of the state-of-the-
art optimization methods 

3. Creation of an efficient optimization algorithm to couple simulations from step 1 
with updated designs generated by the method from step 2 without any prior 

knowledge regarding the resultant shape of the component 
4. Tune the optimization algorithm parameters to allow for maximum reduction of 

the shock absorber mass within the available computational timeframe 

5. Verification of the proposed optimization method on the actual industrial 
examples of shock absorber constrained mass minimization 

To avoid excessive complexity of the doctoral project and the dissertation, all of 

the work concerned in this dissertation is limited to telescopic automotive shock 
absorber designs with conventional (metallic) materials, conventional chassis 

technologies (double wishbone, multilink suspension, etc.), and with loads and 
boundary conditions reflecting the physical and virtual validation of the isolated shock 
absorbers (even though their actual vehicle-based working conditions may be different). 
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Based on the literature studies, there is no off-the-shelf solution that can be easily 

adapted to the specific problem of structural optimization with stability constraints 
considered in this dissertation. Therefore, the following thesis is formulated: 

It is possible to formulate an optimization method and algorithm that allows for 

mass minimization of the shock absorber taking into consideration the stability of the 

whole system under extreme compression loads and its manufacturing requirements. 

 

1.3. Plan of the optimization methodology implementation 

The planned implementation of this doctoral project is the methodology of 
structural optimization that allows for the minimization of shock absorber mass, taking 

into account the system (chassis) stability under extreme compression loading and the 
manufacturability of the obtained components topology. The motivation for such 
implementation is the increase in the innovation and the competitiveness of the 

company (the graduate student employer), shorter prototyping phase, and solution of 
the drawbacks associated with optimization methods used currently within the 

company. 

To assure that the presented methodology can be used within the company without 
additional investments, all of the required software is either already available (Abaqus 

[129], Isight [130], MiniTab [131]) or is freely available online, like the programming 
language Python [132] and site packages associated with it, such as pyTorch [133] or 
scikit-learn [134].  

 

1.4. Dissertation structure 

The dissertation consists of 7 chapters and it is written in a coherent way, as 

described briefly in the paragraphs below. Only the fundamental theoretical 
background needed to understand the work is included in this dissertation.  

Chapter 1 (this section) provides the motivation for this doctoral project, aims, 
limitations, and goals.  

Chapter 2 consists of the description of shock absorber design and work principles, 

problems associated with its operation, and stability considerations. Furtherly, the 
description of the finite element method is given with a focus on nonlinear aspects of 
simulations used within the dissertation for the assessment of shock absorbers structural 

behavior. 

Chapter 3 provides an introduction to the field of optimization, with the 

fundamental description of algorithms utilized within the work done in this doctoral 
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project. The second part of this chapter is devoted to the field of metamodeling 

(surrogate modeling) that is (together with optimization theory) used excessively in 
subsequent chapters. 

Chapter 4 gives a detailed description of the optimization method that was used to 
meet the objectives of this doctoral project, with references to methods described in 
Chapter 3. The complete description of the topology optimization method and the 

hybrid optimization algorithm are given with reference to the considered shock absorber 
FEM analysis, as introduced in Chapter 2.  

Chapter 5 deals with the process of tuning the optimization algorithm parameters 

using surrogate modeling described in Chapter 3. This chapter presents the steps taken 
to increase the efficiency of the proposed optimization method that was described in 

Chapter 4 (and partially in Chapter 2). 

Chapter 6 shows examples of the proposed methodology implementation for two 
different designs of automotive shock absorbers. The detailed verification of the 

structural behavior of the optimized shock absorbers is described, with emphasis on the 
stability and failure modes of the complete system. 

Chapter 7 provides a summary of all the work done within the doctoral project with 

a short discussion about future tasks and opportunities.



 

 

2. The design, exploitation, and numerical modeling of shock 

absorbers 

Shock absorbers are present in every road vehicle, from small passenger cars to 

trucks. They are used not only in chassis design, even though this is their primary 
environment, but also in seats, cabins, or steering systems. Depending on the 
application, their design may differ, the same as the load levels, design requirements, 

or manufacturing technologies. Still, modern shock absorbers damp the vibrations and 
oscillations through the usage of viscous fluid, i.e. hydraulic oil, even though different 

designs or valve technologies are incorporated.  

 

2.1. Automotive shock absorber work principle 

The following subsections provide an introduction to the shock absorbers designs, 
their function in the vehicle suspension, force flow inside the complete unit (shock 
absorber or modular assembly), and bring insight regarding sources of unstable 

behavior. 

 

2.1.1. The design and operation of the shock absorber 

The role of the shock absorber is quite broad, as the shock absorber itself may be 
an assembly of different systems, or its design may vary accordingly to the allowable 

packaging in the chassis. Still, the main set of requirements may be summarized in the 
following way [42]: 

• The shock absorber should damp any oscillations or vibrations coming from the 
road that are transmitted to the vehicle body 

• The shock absorber should reduce or eliminate the wheel oscillations and 

vibrations that are induced by the road conditions to assure constant contact 
between the tire and the road surface 

The first point is connected to the feeling of the driver or passengers once the vehicle 

is subjected to input from the road. Different damping characteristics may be required 
for different vehicle types, e.g. comfort is a target for a family car while being not 

necessarily the concern for the sports car, where performance is the ultimate goal. The 
second point, on the other hand, treats the vehicle performance, i.e. its ability to 
accelerate, steer, or brake. Usually, this point is dominant in racing applications. In 

most automotive vehicles, a compromise must be found between comfort and 
performance.  



The design, exploitation, and numerical modeling of shock absorbers 

 12  
 

Depending on the type of shock absorber, there are other requirements associated 

with its operation. The points above are mostly associated with the damping function 
(hence shock absorbers are commonly referred to as dampers). However, a vast part of 

the shock absorber designs is an assembly of a damper with the suspension spring. With 
the suspension spring being integrated into the shock absorber design, the unit forms 
a response for both – velocity and displacement excitation, as per (2.1) and (2.2), as 

shown schematically in Figure 2.1, together with the wheel (rim and tire).  

 
Figure 2.1. The quarter vehicle chassis model [93] 

The shock absorber force response is obtained utilizing the differential 
equilibrium equations  of the following form: 

�� l2ml�2 = −�� (lml� − l_l�) − ��(m − _) (2.1) 
�� l2_l�2 = −�� (l_l� − lml�) − ��(_ − m) − �� (l_l� − lℎl�) − ��(_ − ℎ) (2.2) 

where �� is the sprung mass, �� is the unsprung mass, �� and �� are damping 

coefficients of the shock absorber and tire respectively, �� and �� are stiffness 

coefficients of the shock absorber and tire respectively. The ℎ, _, and m represent the 
road input (excitation), unsprung mass, and sprung mass displacements respectively. 

The displacements of the vehicle body �� and wheel center �� is coupled through the 
springs and dampers. Those equations are usually transformed and solved into the 

matrix form in the time domain [37], as in real conditions, coefficients ��, ��, ��, �� are 
not constant, and they are functions of displacement, velocity, or frequency [111]. 

Another, obvious method for obtaining the shock absorber force response is to perform 
a physical measurement, however, this method is usually not available in the prototype 
phase (which is dominated by the virtual prototypes and computer simulations).   

The automotive springs usually take a form of a helical coil design or an air spring. 
Even though those are completely different designs, the working principle and the roles 
are the same. On top of that, shock absorbers serve as travel-limiting devices, 
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preventing the wheel to hit the car body or other suspension parts. This makes the 

design of a shock absorber much more complicated, and it is associated with the 
increased level of forces that must be transferred through the shock absorber. A scheme 

representing different designs of a shock absorber is shown in Figure 2.2. Even though 
different types of shock absorbers are shown, they share almost the same type of 
structural components, i.e. the upper attachment (top mount), the rod, the tubes 

(depending on the application, from one to three), and the lower attachment which is 
some form of the bracket, either a loop or a stamped or forged component. 

 
Figure 2.2. Structural components of the automotive shock absorber 

All of the aforementioned components play a significant role in the load transfer, 

even though they participate in varying degrees and are responsible for different 
actions. The roles of the components may be listed in the following way: 
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• The upper attachment (usually a top mount or a loop) is a bridge between the 

vehicle body and the shock absorber. It isolates the rod vibrations from the body, 
prevents excessive rotation of the rod, and fixes the position of the shock absorber 

during its work 

• The compression bumper is one of the travel limiting features (serving the same 

purpose as a rebound bumper, but for a different stroke direction). It prevents the 
wheel from colliding with the vehicle body or other suspension components. It is 
activated once a certain level of the compression stroke is reached, and there is no 

further possibility of stopping this movement through spring or damping 

• The suspension spring supports the weight of the vehicle (vehicle corner weight). 

Depending on the chassis design, it may be subjected to forces several times higher 
than the weight of the quarter, due to the motion ratio between the wheel and 

shock absorber. Spring preload and rate play a significant role in absorbing the 
shock input from the road surface. It also prevents excessive body roll (which in 
general is a primary function of the stabilizer bar) 

• The main role of the rod is to guide the piston, which is usually the main valve 

of the shock absorber system. In MacPherson struts, the rod must counteract the 

side forces and bending moments generated by this type of chassis. However, in 
other chassis designs, like multilink or double wishbone suspensions, the rod may 
be subjected to side forces due to one of the following reasons: stabilizer bar loads 

which are inclined versus the shock absorber axis, suspension spring piercing points 
misalignment or lateral deformation of the system subjected to excessive 

compressive loading, i.e. buckling 

• The piston is, together with the rod guide, a contact point between the rod (the 

part connected to the vehicle body) and the structure of the shock absorber 

(connected with the wheel by a spindle or knuckle). In passive shock absorbers, 
pistons are used as a part of the valve system 

• The reserve tube serves two major roles – first is to make room for the gas (pure 

nitrogen or air without oxygen and moisture) which compensates for the volume of 

the rod being displaced into the shock absorber body. The second role is the 
structural support of side and axial loads, especially those coming from the 
suspension spring and the bumpers 

• The pressure tube counteracts the pressure of the oil being displaced or 

compressed by the rod and valves. Also, it guides the piston (also it guides the 

floating piston in a single tube design) 

• Lower attachment (usually a loop, bracket, or housing) connects the shock 

absorber to the chassis (knuckle, spindle). In semi-active shock absorbers, it serves 
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as a valve mounting point. The role of the lower bracket is also to assure the 

stability and lateral stiffness of the shock absorber during excessive operating loads 
 

2.1.2. The stability of the shock absorber in compression 

One of the primary roles of the shock absorber is to transmit the whole collection 
of axial forces from the road surface to the vehicle body (and vice versa). Those axial 

forces may act only in two directions: either in the rebound stroke, where the wheel is 
pushed out of the vehicle body, or in the compression stroke (referred to as the 

jounce stroke), in which the wheel is pushed towards the vehicle body.  

The first case, i.e. rebound stroke, is rather limited in force, as the total 
magnitude of the load is generated as a result of energy accumulated in the compressed 

suspension spring, jounce bumper, and the gas from inside the shock absorber. This 
total energy may be foreseen during the shock absorber development phase, and the 

rebound bumper characteristic may be adjusted to minimize the peak force during the 
short period of wheel sudden deceleration. 

On the other hand, the compression stroke is barely limited in the maximum 

force that may be generated on the shock absorber, as there always may be an 
additional factor increasing the total load magnitude, e.g. higher vehicle speed or mass, 
bigger obstacle, lower tire profile, etc. Therefore, the peak compression forces are 

significantly higher compared to the values achieved for the rebound strokes. On top 
of that, any additional load applied to the chassis is usually transferred mainly by the 

jounce bumper to the shock absorber, as this component tends to have an asymptotic 
load-deflection characteristic, which causes it to transmit a significant portion of load 
once it is subjected to additional, minor compressive displacement while being in a pre-

compressed state. An example of the force overview inside the shock absorber during 
the ‘drive through pothole’ event is presented in Figure 2.3, clearly showing the unequal 
load distribution between components. The red curve represents the total axial force 

measured at the shock absorber, while the green, blue, and violet curves represent the 
spring load, damping load, and the jounce bumper load respectively. For the considered 

example, at the beginning of the event, i.e. before the pothole strike, there is no force 
transferred by the jounce bumper, as the vehicle is suspended by the spring force and 
minor oscillations are countered by the damping force. During the peak loading, at the 

strike, when the suspension is fully compressed, 86% of the total load is transferred by 
the jounce bumper, 13% by the spring load, and only 1% by the damping load. The 
increase in the spring load is almost negligible, compared to the delta in jounce bumper 

load before and during the event. The total increase in the axial force transferred by 
the shock absorber before and during the strike is over 700%. 
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Figure 2.3. Force distribution inside the shock absorber during the ‘drive through 

pothole’ event 

 
Even though the strength of the material is usually higher for compression rather 

than tensile stress, the dangerous phenomenon of lateral deflection and/or buckling 
may occur, as the result of the compression forces. Especially, the lateral deflection 
during the jounce phase is something that should be avoided, as once the whole 

structure starts to bend or deflect laterally, there are additional bending moments and 
side loads generated in the system, as the load application points - like the spring seat 

or jounce bumper cap - are shifted away from the original shock absorber axis. Such 
a case is shown schematically in Figure 2.4. 

The translation of the load application point is visible clearly on the deformed 

model of the shock absorber. This deflection together with the axial force creates 
a bending moment due to load application point and structure supports misalignment. 
The sources of the lateral deformation may include: 

• Bending moments generated due to suspension bushing deflection and/or 

rotation 

• Suspension spring piercing points misalignment 

• Unsymmetric cross-section of the structural components, which is generally 

observed for the lower brackets and housings 
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Figure 2.4. The shock absorber: a) undeformed model, b) model subjected to lateral 

deformation due to axial forces 

The bushing behavior is usually adjusted by the vehicle manufacturer, to match 
the noise, vibrations, and harshness (NVH) requirements, as well as the anticipated 
levels of elastic deformation due to chassis operation. 

Suspension spring piercing points are usually production flaws (despite 
MacPherson struts, in which the piercing points misalignment is induced intentionally 

for the purpose of minimizing the contact and friction forces inside the shock absorber), 
so they are not influenced by the shock absorber or vehicle manufacturer. 
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The process of designing the shape of the brackets, or housing, is usually the 

responsibility of the shock absorber manufacturer. As this part may play a significant 
role in inducing (or countering) the transverse deformation, it is of great importance to 

design such parts with caution. Generally, it is required to verify the influence of the 
lower brackets on the strength of the shock absorber with the system level analysis 
(shock absorber level) rather than as an isolated component analysis. The reason for 

that is the compliance (both axial and lateral) of the lower attachment that affects the 
stress distribution over all other structural components - especially the rod and the 
tubes – which then may act as potential failure modes of the system. 

The failure mode is considered as a component that fails first under the given 
chassis loads. Failure may be related to either plastic deformation, crack, or separation 

of the part. As the shock absorbers are generally slender, they rarely achieve material 
failure due to purely compressive stresses, but rather due to transverse deformation of 
the whole system instead. Therefore it is so important to predict the system behavior 

and take into account its stability. For many slender constructions under compressive 
forces, the transition between the linear state of deformation to the collapse is almost 
instantaneous, as shown in Figure 2.5, in which the shock absorber is loaded 

incrementally until reaching the point of its stable behavior, leading to excessive 
(plastic) deformation and degradation of further load bearing capacity. 

 
Figure 2.5. Compressive load-deflection curve of the shock absorber  

There are three points marked on the presented load-deflection graph. The 

yellow point represents the �	
� which is a force at the beginning of plastic 
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deformation, the red point represents the maximum force ��� that may be 

transmitted by the system without losing stability, and the violet point is the arbitrary 

post-buckling deformation mode of the whole system (�MAtSO�AM). They are all 

represented by different levels of plastic strain and deformation, as shown in Figure 
2.6. 

 
Figure 2.6. Shock absorber with different levels of deformation and normalized 
equivalent plastic strain (1 – engineering strain at the ultimate tensile strength) 

The shock absorber is no longer fulfilling its role as the wheel travel limiter once 

the ��� is reached, as the subsequent deformation is achieved without increasing the 

operational load (like the inertia of the vehicle body). Therefore predicting the ��� is 
a crucial part of design development. 
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2.2. Shock absorber discrete analysis using the finite element 

method 

To verify the structural behavior of the shock absorber (or any arbitrary body) 
subjected to a combination of assembly and axial compression loads, computer 

simulations may be utilized. This chapter provides a brief introduction to the finite 
element method (FEM), which is one of the most commonly used tools to analyze the 
intricate problems of structural mechanics in most fields of practical engineering, such 

as civil, automotive, space, or aerospace engineering. 

 

2.2.1. Displacement formulation of the Finite Element Method 

The beginnings of the FEM span to the first half of the 20th century, with 
pioneering works such as [22], [48]. Rapid development occurred during the second half 

of that century, with works such as [126]–[128]. The classical analysis of continuous 
mechanics problems requires the determination of the stress, strain, and displacement 

fields that satisfy the differential equilibrium equations, and constitutive and geometric 
relationships at all points in the considered area, including the boundary of the body. 
Therefore, analytical models are often not available for practical engineering problems. 

The finite element method is assuming the approximate displacement field, in each of 
the discretized small domains, called finite elements. The determination of the stress 
and strain fields is calculated for the finite number of points only and approximated 

(interpolated) across the whole body. This way the FEM can be adapted to numerous 
applications, taking into consideration more sophisticated formulations like nonlinear 

geometrical behavior, anisotropy with inelastic characteristics, or interaction between 
bodies – contact, both in problems of static and dynamic systems [56], [85]. 

The derivation of FEM equations for the discrete system is a consequence of the 

analysis of the principle of virtual work for the continuous body. This body � with the 

boundary �  is presented in Figure 2.7. The body forces (or volumetric forces) u are 

applied over the whole volume of the body. The surface forces �0 are applied on the 

part of the boundary ��. The prescribed displacements �0 are specified for the part of 

the boundary �T. Such a deformable body, which is treated as a part of the continuous 
medium, stays in equilibrium under the presence of the aforementioned loads. The 

following equations apply: � = �� ∪ �T and �� ∪ �T = ∅ 
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Figure 2.7. Deformable body Ω 

The following equilibrium equations may be formulated for the body considered: 

yzH{y�{ + u� = 0 within the body Ω (2.3)  
where ��� is a stress tensor component, such that: 

� = [�11 �12 �13�21 �22 �23�31 �32 �33
] = [��� ��� ��^��� ��� ��^�^� �^� �^^

] = [�� ��� ��^��� �� ��^�^� �^� �^
] (2.4) 

Taking into account the moment equilibrium in a unit body, the stress tensor 
(2.4) can be represented by a vector (2.5): 

� = [��, ��, �^, ���, ��^, ��^] (2.5) 
The boundary conditions for the considered body are given as per (2.6) and (2.7): 

�� = ��0 on the boundary �T (2.6) 
���6� = ��0 on the boundary �� (2.7) 

where nj is a versor normal to the boundary � , and ti is the surface force vector. 

The constitutive equations (Hooke law) that determine the relationship between 
stress and strain of the body may be formulated (2.8): 

��� = �(1 + �) [��� + �(1 − 2�) ������] , (2.8) 
or in general form (2.9): 

��� = �������� (2.9) 
where � is the Young modulus, � is the Poisson coefficient, ��� is the Kronecker Delta, 

����� is the stiffness tensor, and ��� is a strain tensor component, such that: 
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� = [�11 �12 �13�21 �22 �23�31 �32 �33
] = [��� ��� ��^��� ��� ��^�^� �^� �^^

] =
⎣⎢
⎢⎢⎢
⎡ ��

���2 ��^2���2 ��
��^2�^�2 �^�2 �^ ⎦⎥

⎥⎥⎥
⎤

 (2.10) 

Similarly to the stress tensor, the strain tensor can be represented by a vector (2.11): 

¢ = [��, ��, �^, ���, ��^, ��^] (2.11) 
The strains shown in (2.11) are partial derivatives of the displacements (2.12): 

��� = 12 (¤��¤.� + ¤��¤.�) (2.12) 
The above equations can be used to formulate the weak form of the displacement 

formulation of the linear elasticity equations: 

∫ ������� l�
§

= ∫ ���u� l�
§

+ ∫ ����� l�
¨

 (2.13) 
where ��� are the arbitrary displacements and the arbitrary strains have the form as 
per (2.14): 

���� = 12 (�¤��¤.� + �¤��¤.� ) (2.14) 
Equation (2.13) may be rewritten in the matrix form: 

∫ �¢T�l�
§

= ∫ �,Tªl�
§

+ ∫�,T« l�
¨

 (2.15) 
where the left side of the equation is the work stored in the deformed body as the strain 

energy, while the right side represents the work generated by the body and traction 
forces done on the virtual displacements. 

The virtual work done by the system may be calculated on the element-basis, 

instead of dealing with the continuum. Such a procedure requires the continuum to be 
replaced with a set of discrete finite elements (therefore the process is called 
discretization). The deformable body in discrete form is presented in Figure 2.8, where 

triangular elements were used to divide the body area into a set of finite elements. 
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Figure 2.8. Deformable body � in discrete form 

The displacement and the arbitrary displacement fields are interpolated inside 

the finite elements, using the shape functions  . The role of the shape function is to 
determine the unknown displacements inside the finite element, based on the calculated 

displacements in the element nodes. 

�(.) = ¬, (2.16) 
��(.) = ¬δ, (2.17) 

Equation (2.17) may be used to formulate the arbitrary (virtual) strains in (2.15) 
using the following form: 

�� = ®��(.) = (®¬)�� = ¯�� (2.18) 
where ! is the differential operators' matrix. 

The above equation may be used to reformulate the internal virtual work (2.13) 

of a system in the form of (2.19): 

∫ ¯T° l�
§

= ± (2.19) 
where ± is the external virtual work: 

± = ∫ ¬Tªl�
§

+ ∫ ¬T« l�
¨

 (2.20) 
For a simple linear stress-strain relationship, the matrix ° may be replaced using (2.21): 

° = #² (2.21) 
where # is the elasticity matrix. Also, the strains may be rewritten as (2.22): 

² = ¯, (2.22) 
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The equation (2.19) may be again rewritten, using the equations (2.21) and 

(2.22) in a new form (2.23): 

∫ ¯T#¯l�,
§

= ± (2.23) 
Defining the stiffness matrix $ as (2.24): 

$ = ∫ ¯T#¯l�
§

 (2.24) 
 equation (2.22) may be rewritten to the final form of (2.25): 

$, = ± (2.25) 
There are numerous ways to solve the following equations to get the unknown 

nodal displacements , taking into account the boundary conditions, such as direct 

methods: Gauss elimination, LU decomposition or Cholesky factorization, and iterative 
methods: Gauss-Seidel method or conjugate gradient method [7]. Once the system 
(2.25) is solved, the calculation of stress inside the body is performed using equations 

(2.21) and (2.22). 

 

2.2.2. Shape functions 

The displacements in any point of the analyzed body are calculated using the 
shape functions, as shown in (2.16). They enable interpolation of the displacement 
inside any finite element based only on the information about the displacement vector 

in the element nodes. The type of the shape function is dependent on the element 
geometry, i.e. its shape and the number and position of nodes.  

There are several requirements that must be met for a given set of shape 
functions. They must allow for a description of any strain state, as well as rigid body 
motion. Also, they must ensure continuous displacement interpolation at the common 

nodes of the finite elements. There are also two properties with regard to the values of 
the shape functions, i.e. the sum of all shape functions in any point inside the finite 
element must be equal to one (2.26): 

∑  �(., _, m)�
�=1

= 1 (2.26) 
and at each of the element nodes, the values of the shape functions must be either zero 

or one (2.27): 

 �(.�, _�, m�) = {1,   iℎ·¸·  ¹ = º0,   iℎ·¸· ¹ ≠ º   ¹, º = 1,… , 6 (2.27) 
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with 6 representing the number of nodes in the finite element. 

Although the order of the polynomial used for a shape function is not directly 
restricted, in practical applications, the 1st and 2nd order polynomials are sufficient for 

most purposes. When it comes to the higher order polynomials, the increased 
computational cost associated with the increased number of degrees of freedom may 
not be compensated by the increase in accuracy, compared to the 2nd order polynomial 

interpolation. 

For isoparametric finite elements, in which both the coordinates and 

displacements are using the same order of interpolation, the shape functions are defined 
in the local coordinate system of undeformed finite element, as per Figure 2.9.  

 
Figure 2.9. Second-order finite element: a) deformed, in a global coordinate system, 

b) mapped to the local coordinate system [126] 

The following formulation of shape functions using 2nd order polynomials is used 
for the hexahedral elements: 

Corner nodes (2.28): 

 � = 18 (1 + &0)(1 + (0)(1 + )0)(&0 + (0 + )0 − 2) (2.28) 
Exemplary mid-side node (2.29): 

 � = 14 (1 − &2)(1 + (0)(1 + )0) (2.29) 
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for &� = 0, (� = ±1, )� = ±1, and where &0 = &&�, (0 = ((�, )0 = ))�. 
The shape functions that are used for tetrahedral elements are often expressed 

using volume coordinates, as per Figure 2.10. 

 
Figure 2.10. Volume coordinates [126] 

The volume coordinates are constructed in such a way, that they are 
representing the ratio of the volume of the sub-tetrahedron to the volume of the total 

tetrahedron. The sub-tetrahedron is a tetrahedron, in which one of the vertices was 

replaced by point P. The exemplary coordinate ½1, which represents the volume ratio 
between the sub-tetrahedron (having point P instead of vertex 1) to the volume of the 

total tetrahedron is formulated as in equation (2.30).  

½1 = ¾
234¾1234  (2.30) 
The shape functions for the corner nodes of the tetrahedron (using notation from Figure 

2.10) are as per equation (2.31): 

 1 = (2½1 − 1)½1,   ·��. (2.31) 
while for mid-nodes as per (2.32): 

 5 = 4½1½2,   ·��. (2.32) 

 

2.2.3. Finite element method for nonlinear problems 

 Three sources of nonlinearity may be encountered in the FEM simulation, 
including a nonlinear material model, large strains, and contact between bodies. One 
of the most common sources of material nonlinearity is elastic-plastic material behavior. 

What is more, the presence of plastic deformation usually involves strains for which 
the small-strain theory is not sufficient [120]. 

5 

6 

7 

6 
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10 
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 To include the large strains, the strain formulation from (2.12) is replaced with 

the formula (2.33), which includes the product of partial derivatives of strains: 

��� = 12 (¤��¤.� + ¤��¤.� + ¤��¤.�
¤��¤.�) (2.33) 

Equation (2.33) is known as the Green-Lagrange strain tensor definition, which 

may be referred to as the sum of the small strain tensor and the quadratic term of the 
strain. Such a tensor is commonly used to describe finite deformation, together with 

the second Piola-Kirchhoff stress tensor. Exemplary elastic-plastic material models, for 
which the high strains are anticipated, are shown schematically in Figure 2.11: 

 
Figure 2.11. Different elastic-plastic material models incorporating plastic 

deformation 

 In order to include the nonlinear material constitutive model in the finite 
element method, the system of equation (2.25) needs to be defined as a function of 
strain, or more generally, as a function of displacements, from which the strains are 

derived. As the matrix # (2.21) is now dependent on the strains (displacement 
derivatives), the general form of the canonical equation for a non-linear problem in the 

finite element method is shown in (2.34): 

$(,), = ± (2.34) 
The stiffness matrix $(,) that is dependent on the current deformation state is 

referred to as the tangent matrix $Á with the form (2.35), which is an extension of 
(2.24): 

$% = ∫ ¯Á#Á
Â

¯l� (2.35) 
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where #Á is a tangent elasticity matrix, dependent on the level of strain. Using such 

notation, the equation (2.34) may be rewritten in incremental form as (2.36): 

$% d, = d± (2.36) 
As the forces, strains, and stresses are now considered in the iterative form, the 

dedicated solution method must be introduced. Commonly, the iterative approach is 
combined with the incremental increase in the applied loads, especially for highly non-

linear systems, like plastic deformation, or second-order deformations. Systems of 
equations as in (2.36) are commonly solved by the Newton-Raphson or the Modified 

Newton-Raphson method, both of which being the iterative procedures [120]. The first 
one is known to have a quadratic rate of convergence, on the cost of the computationally 

expensive calculation of the $%  matrix in each iteration, while the second uses the 

initial $%  and update it only after finding the equilibrium for the given load increment. 
The equilibrium equation for the nonlinear problem is given in the following matrix 

form (2.37):  

*(,) = ± − $(,) = Ã (2.37) 
where the *(,) is a vector of force residuals. The Newton-Raphson method 

approximates the equation (2.37) using the incremental approach (2.38): 

*(,e+Ä) ≈ *(,e) + (¤*¤Æ)e l,e = Ã (2.38) 
where l,� is the increment of displacement in the i-th iteration, which updates the 
vector of nodal displacements as per (2.39). Similarly, the increment of force applied in 

the i-th iteration is added to the nodal force vector, as per (2.40): 

, = l,1 + l,2 + ⋯+ l,� + ⋯ + l,� (2.39) 
± = l±1 + l±2 + ⋯+ l± � + ⋯+ l±� (2.40) 

where , and ±  are displacement and external force vectors respectively, and n is the 

total number of iterations in the Newton-Raphson method. As the (yÈyÉ) in (2.38) 

represents the (negative) tangent stiffness matrix $% , the equation (2.38) may be 
rewritten to (2.41): 

*(,e) = Ê%� l,e (2.41) 
The Newton-Raphson method and its modified version are depicted in Figure 

2.12. The difference between those methods, i.e. $%  update frequency, is visible in the 

convergence paths, as the variable or constant tangent moduli in the one-dimensional 
example shown in Figure 2.12. 
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Figure 2.12. Iterative methods: a) Newton-Raphson (NR) method, b) Modified 

Newton (MN) method [127] 

The algorithm of the aforementioned Newton-Raphson method is the following: 

1. Calculation of the tangent stiffness matrix $Ái (,i) 
2. Solution of the system of equations and calculate l,e+Ä: 

$Ái (,i)l,i+1 = l*Ì (2.42) 
3. Calculation of the total displacements: 

,�+1 = ,e + l,� (2.43) 
4. Update of the tangent stiffness matrix Ê%�+1(Æ�+1) 
5. Calculation of the l*e+Ä 

This algorithm is repeated as long, as the l* is higher than a specified tolerance. 
If the Modified Newton method is used instead of the Newton-Raphson method, the 

4th step is omitted, as the initial tangent stiffness matrix is used throughout the step 
(or increment).
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3. Optimization and metamodeling methods 

Once the behavior of the (shock absorber) mechanical system may be predicted by 

means of the finite element simulation (or any other technique in general), the iterative 
modification of the system layout may be introduced to achieve certain goals, such as 

minimization of the mass of the shock absorber taking into consideration its unstable 
behavior. The subsections of this chapter provide an introduction to the techniques of 
mathematical optimization and methods of shape and topology optimization. Also, they 

present the concept of metamodeling and methods of constructing and training the 
surrogates, that can be used to mimic the simulated behavior of the shock absorber 
within a small fraction of a second needed to perform a single FEM-based analysis.  

 

3.1. Optimization 

Optimization is a field of mathematics that aims to seek the best possible solution 

under given circumstances, which is either a minimum or maximum value of a certain 
function or functional [34], [63], [76], [101]. It is hard to point to any particular date 

which can be considered as the beginning of mathematical optimization, but some 
authors find Euclid (3rd century BC) to be the first mathematician to consider the 
optimization problem -  seeking the shortest distance between two geometrical features. 

Then, after almost two millennia, Isaac Newton and Gottfried Wilhelm Leibniz 
formulated the basis of the calculus of variation, which started a new era in modern 
mathematics. The first optimization method that was developed, and is still used until 

this day, was the Gradient Descent method, which is attributed to Augustin-Louis 
Cauchy (1847). The rapid development of optimization techniques started in the second 

half of the 20th century, as a result of computational methods development and 
computing power growth. 

The optimization aims to seek the minimum or maximum value of a certain 

function or functional (3.1). However, any arbitrary function may be multimodal, i.e. 
it can contain numerous local minima (or maxima) and only one global minimum (or 

maximum) value within a given domain. To distinguish the latter minima (or maxima) 
types, both of those types are shown in Figure 3.1, which shows a multimodal function 
of one variable. Local extrema are marked with green circles, while global are marked 

with red stars: 

_ = \¹6(.) + \¹6 ((103 .).) for . ∈ (0,6) 
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Figure 3.1. The multimodal function of one variable 

 For simplification of the notation, only minimization problems are of interest in 
this dissertation. There are numerous optimization techniques, that aim to find the 
best solution, however, most of those usually end up finding only local minima. This is 

the case mostly for deterministic optimization, especially gradient-based algorithms. 
This is why alternative optimization methods were developed, to avoid premature 

convergence to the local extrema, instead of exploring the available domain to find the 
global, true extrema. Generally, the optimization methods can be divided in the way 
shown in Figure 3.2. The mathematical optimization algorithms may be divided in 

many ways, so the proposed scheme is not the only possible one, as commonly the 
primary distinction is done between local and global search algorithms. However, the 
scheme proposed below shows the nature of the algorithms with some most common 

examples of a given algorithm type. 
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Figure 3.2. Examples of optimization methods 

Optimization problem formulation contains the objective function (or functional) 
and sets of equality or nonequality constraints, as in (3.2)-(3.3): 

�¹6Ï  _ = C(8) (3.1) 
such that:  

7(8) ≤ 0 (3.2) 
ℎ(8) = 0 (3.3) 

where C(8), 7(8), and ℎ(8) are functions of the design variables vector �.  

The considerations of the constraints set up yet another division of the 

optimization algorithms. To handle to 7(8) and ℎ(8) constraints problem, they must 

be incorporated into the original objective function C(8). This may be achieved in two 

alternative ways: 

• The Lagrange method 

• The penalty method 

The first method directly reformulates the optimization problem of the form 
(3.1)-(3.3) into the new one (3.4): 

�¹6Ï,ÒÓ,ÔÓ
 _ = ½(8, :;, <;) (3.4) 
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where ½(8, :;, <;) is called a Lagrange function (or Lagrangian) of the form (3.5):  

½(8, :;, <;) = C(8) + :;ℎ(8) + <;7(8) (3.5) 
while :; and <;are Lagrange multipliers that are now new design variables.  

The second method, i.e. the penalty method, is based on a simpler concept. The 
objective function (3.1.) is modified in such a way, that once the set of constraints 

(3.2)-(3.3) is violated, the penalty is added to the modified objective function, as in 
(3.6), where the external penalty method is presented [63]: 

�¹6Õ  _ = C(8) + !(8) (3.6) 
where the !(/) is the calculated penalty (3.7): 

!(8) = ℎ(8) + max (0, 7(8)) (3.7) 
Almost every arbitrary form of the !(8) may be used in this method, as there 

is no general rule on how to choose the form of the penalty function. If there is no 
continuity requirement, the penalty may even take the form of a step function, where 
there is a constant number added on top of the objective function regardless of the 

level of constraint violation. However, the usage of such a step penalty function may 
be undesirable in certain situations, such as in metamodeling.  

Assuming that the violation �� represents the difference between the calculated 

constraint function value and the required constraint value, i.e. => = max(0, 7(8)), the 

following general penalty function (3.8) may be incorporated: 

!(8) = ?@ + ?� ∗ =>
J  (3.8) 
where ?@ is the penalty base (step), ?� is the penalty multiplier that scales the violation 

=> which is raised to the power ?A (penalty exponent). 

 

3.1.1. Gradient-based optimization 

Thanks to the aforementioned development of the calculus of variations, the 

gradient-based methods were born and are until this day widely used in optimization 
problems [109]. The general idea behind the gradient methods is to use the information 

about the variation of the objective function in the vicinity of the analyzed point 8. 
This is done by differentiation of the objective function over the set of design 
variables (3.9): 

∇C(8) = [¤C(8)¤.1
¤C(8)¤.2 ⋯ ¤C(8)¤.� ]Û (3.9) 
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The graphical representation of the gradient is the vector, which is perpendicular 

to the level set of the function hypersurface going through that point. A gradient vector 

field together with the function C(., _) = .2 − _2 is shown in Figure 3.3. The length of 

the vector (arrow) represents the steepness of the function in the gradient calculation 
point. The arrow points to the direction of maximum change in the function value. It is 
clearly visible, that going in the direction of a negative gradient minimizes the value of 

the analyzed function, which shows the nature of gradient-based optimization.  

 
Figure 3.3. Gradient field (arrows) of the nonmonotonic function  

One interesting feature can be observed in Figure 3.3 – the gradient is zero at 

the point [0,0], so it could be expected to find the local function minima there. However, 
this is the saddle point, in which the function first derivative (gradient) is indeed zero, 
but it does not meet the local extrema definition, as points in the vicinity of this point 

show both higher (x) and lower (y) function values. Therefore, it is useful to rely not 
only on the function gradient but also on the rate of its change, i.e. function second 

derivative. To do so, the Hessian matrix is introduced (3.10): 

D(8) =
⎣⎢
⎢⎢
⎡¤2C(8)¤.12 ⋯ ¤2C(8)¤.1¤.�⋮ ⋱ ⋮¤2C(/)¤.�¤.1 ⋯ ¤2C(/)¤.�2 ⎦⎥

⎥⎥
⎤

 (3.10) 

For any critical point, i.e. a point in which all of the first derivatives of the function 
are zero, the following test can be conducted using the Hessian matrix to verify the 

presence of minima or maxima: 

• If the Hessian matrix D(8) is positive definite in the critical point, the function C 
has a local minimum in this point 
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• If the Hessian matrix D(8) is negative definite in the critical point, the function C 

has a local maximum in this point 

• If the Hessian matrix D(8) is neither positive nor negative semidefinite in the 

critical point, the function C has no extrema in this point 

Introduction of the information coming from the Hessian matrix D(8) to the 

optimization procedure is known as the Newton method. In general, as all of the 
gradient methods are iterative, the difference between first-order methods (purely 

gradient-based) and second-order methods (Hessian-enhanced) is visible in the 
determination of the direction for the one-dimensional search procedure. Equations 

(3.11) and (3.12) shows the direction E calculation procedure for 1st and 2nd-order 

method respectively: 

E(�) = − ÞC(8(�)) (3.11) 
E(�) = −ß−1(8(�)) ÞC(8(�)) (3.12) 

During the optimization iteration, the new design point is determined based on 

the search direction E, step length ℎ, and the previous design point, according to the 
formula (3.13): 

8(�+1) = 8(�) + ℎ(�)E(�) (3.13) 
until the optimum is found or stop conditions are met. 

The Newton method requires the calculation of the Hessian matrix, which may 
be a costly process once the underlying function is unknown, so gradients must be 

approximated using finite differences, or the number of variables is excessive. Therefore, 
there is a group of quasi-Newton methods, in which the Hessian matrix is approximated 

iteratively over the optimization procedure. In such a case, the equation (3.12) is 
substituted with (3.14):  

E(�) = − à(�+1)∇C(8(�)) (3.14) 
One of the most prevalent quasi-Newton methods is the BFGS algorithm, named 

after its creators names: Broyden, Fletcher, Goldfarb, and Shanno [15], [29], [33], [99]. 

It assumes the following approximation of the Hessian matrix à(�) ≈ D−1(8(�)), 
as in (3.15): 

à(�+1) = à(�) + á(�) + ¯(�) (3.15) 
with: 

á(�) = â(�)(â(�))Û
(â(�))Û ã(�) (3.16) 
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¯(�) = −à(�)ä(�)(s(�))Û à(�)
(ä(�))Û à(�)ã(�) (3.17) 

where ã(�) = ∇C(8(�)) − ∇C(8(�−1)) and æ(�) = 8(�) − 8(�−1).  
In the first iteration of the BFGS algorithm, the Hessian matrix is approximated 

with the identity matrix and updated iteratively in the subsequent optimization steps. 
This quasi-Newton approach leads to a significantly reduced number of operations 

compared to the original Newton method, therefore it is broadly used in practical 
optimization. 

 

3.1.2. Evolutionary optimization 

The gradient-based methods shown in the previous chapter have certain 

limitations, like they tend to lead to local extrema (instead of global) or they require 
costly finite-differences calculations to approximate gradients once the underlying 
objective function is of unknown form. One of the methods to address those flaws is 

the incorporation of biology-inspired optimization algorithms [6], [69], which do not 
share the same drawbacks as the gradient-based methods. Among the group of 

evolutionary methods, genetic algorithms (GA) and evolution strategies (EVOL) are 
one of the most widely used, even with the ongoing development of particle swarm 
optimizers or artificial immune systems [18]. An additional advantage of genetic 

algorithms is the ease of parallelizing their execution, which results in lower 
optimization wallclock time [59], [61]. 

The creator of the genetic algorithms is John Henry Holland, who published his 

work in the field of computational intelligence originally in 1975 [45]. The basic idea 
behind the genetic algorithm is the replication of the adaptation process observed in 

nature, where the chance of survival is highest for individuals that are best adapted to 
the environment. As observed in the real world, the adaptation process takes 
a stochastic form, during which generations of individuals are changed semi-randomly, 

i.e. two descendants from the same parents do not share the same features (two siblings 
are not identical) in general. However, the set of inherited features is somehow related 
to the features of the parents. The following naming convention is introduced to better 

describe the evolution process: 

• A chromosome is most commonly a string containing coded information of all of 

the optimization variables. It consists of an ordered collection of genes, each 
representing a single design variable. 

• Gene is a single element of the chromosome    
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• The population is a set of chromosomes that forms a single generation. 

The amount of individuals (unique chromosomes) in the population is known 
upfront and it is one of the key parameters of the genetic algorithm. The population 

in each iteration of the genetic algorithm is referred to as a generation.  

• The fitness function represents how well the given individual (represented by the 

chromosome encoding its properties) is fitted. The higher the fitness function value, 
the better for the individual, as its chance to survive and yield offspring increases.   

The process of generating a new population by means of genetic operators (elitism, 
selection, crossover, and mutation) is controlled by the evolutionary optimization 

parameters, which directly influence the convergence rate (or even convergence at all) 
of the algorithm. Elitism assures, that the best-fitted individual among the generation 

is kept unchanged, i.e. it is replicated, to carry its desired features for the subsequent 
generation(s). Crossover is responsible for generating a new individual from the 

parents chromosomes, with a certain strategy. The parents that will be crossed are 
priorly picked using one of the selection strategies. The selection is responsible for 

minimizing the possibility that poorly fitted individuals will pass their genes to new 
generations, but rather they will extinguish.  The last genetic operator is the mutation, 

which specifies the probability of the change of a single gene within the chromosome. 
It induces additional randomness in the generation of new offspring. The schematic 

representation of the working principles of the genetic algorithms is shown in Figure 
3.4: 

                           
Figure 3.4. General working principle of genetic algorithms [63] 
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The selection of the individuals for a crossover may be done in several ways, 

each having an influence on the convergence of the genetic algorithm [32]: 

• Roulette wheel selection – the individuals are occupying the roulette wheel 

angular width according to (proportionally to) their objective functions (fitness 
functions). The wheel is then moved, and the individual whose circular sector is 

overlapping with the roulette indicator is chosen as the parent for the next 
generation. The better the fitness of the individual, the higher probability of being 
chosen as a parent. 

• Ranked selection is a similar selection method to the roulette wheel, but rather 

than dividing the wheel proportionally to the fitness function, it is divided 

according to the rank of the individual.  

• Tournament selection – a group of � individuals is picked from the population 

and the most fitted individual from the group is picked as a parent for the next 
generation 

Once the individuals that will serve as parents are selected, they are crossed 

together according to one of the following crossover scenarios: 

• Single-point crossover – a point (position) among the chromosome is randomly 

selected. Genes that are positioned before that point inherit their values from 
parent A, while genes that are positioned after that point inherit their values from 
parent B 

• Multi-point crossover – similar to a single-point crossover, but two points are 

randomly selected. An offspring inherits genes after parent A for genes positioned 

before the first and after the second point. The genes between points A and B are 
inherited from the parent B 

• Homogenous crossover – each gene has an equal probability to inherit its value 

from parent A or B 

• AND / XOR crossover – a gene is formed as a result of logical operator AND 

or XOR performed on the adequate genes of the parents 

The examples of aforementioned crossover scenarios are shown in Table 3.1. Even 

in such a simple example, all of the generated offspring are different. The apostrophe 
symbol represents the point(s) of the crossover.  
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Table 3.1. Crossover types and examples 

 

The only process shown in Figure 3.4 that is still missing is the stop condition. 
There are two stop conditions that are most commonly used in genetic algorithms: 

• Maximum number of function calls 6FG_��AO which is calculated as the number 

of individuals  6FG_��M multiplied by the number of generations  6FG_NA�AO in the 

genetic algorithm 

• Lack of objective function improvement over 6FG_NA�AO within the 

convergence limit 6FG_P 
Usually, the second stop condition is neglected, as due to randomness in the 

offspring generation process, there is always a chance to make an improvement, even 
after a significant number of generations without success. 

All of the aforementioned operators describe the fundamental type of the genetic 

algorithm. However, one of the widely used modifications is especially popular – the 
multi-island genetic algorithm (MIGA). The core of the algorithm is analog to the one 

proposed by J. Holland. However, the MIGA incorporates several, distributed 
autonomous populations, which are represented as islands [16], [60], [62], [118]. 
The standard genetic operations are held out within each of the islands separately. 

After each 6FG__��N��� generations, the migration between the island takes place. 

The individuals are picked with a certain probability QFG_��NO and moved to another 

island, increasing the population diversity and introducing more randomness in the 
optimization process.  

Genetic algorithms are examples of global optimization techniques. However, there 

is another biology-inspired optimization method that also aims to find the global 
optima, which is the evolution strategy. It was independently introduced by American 

scientist Lawrence J. Fogel [30] and by German scientists Rechenberg [84] and Schwefel 
[11], [94]. In the basic form of the evolution strategy, the only genetic operator is the 
mutation, which drives the optimization process. 

During each iteration of the algorithm (as in Figure 3.5), a random vector, with 
normally distributed quantities, is added to the vector of design variables of the parent 
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individual. The standard deviation, which is responsible for the level of randomness in 

the random vector generation, is adjusted during the optimization, according to the 
number of successful mutations in the previous generations, making the evolution 

process self-adaptive. In contrast to the aforementioned genetic algorithm, the evolution 
strategy does not incorporate a binary representation of genes. Therefore, each gene 
(or design variable) is represented using a real value.  

                       
Figure 3.5. General working principle of evolution strategy 

There are many variants of the evolution strategies, from which (1+:XY)-ES is 

commonly used for its parallelization capabilities. Instead of having a population of 
1 parent and 1 offspring, as in the fundamental implementation of the ES, the parent 

yields 	
� number of mutants, each subjected to a different mutation vector (however 

with the same standard deviation). Those :XY individuals can be then computed in 

parallel (instead of consecutive calculations in (1+1)-ES), and the best of those mutants 
is used as a parent for the next generation.  

The field of evolutionary optimization is under constant development, with recent 
works such as [55] in which the natural disasters that are happening during the lifespan 
of civilizations are imitated to replace certain individuals with randomly generated 

specimens with intact (previously unprocessed) chromosomes. Another novel type of 
GA [72] is based on alternating usage of genetic operators, i.e. crossover and mutation, 

which are done over individuals each 26 and 26 + 1 generations respectively. Genetic 
algorithms are also incorporated in the optimization of automotive suspensions, as in 
[124] which proves the GA efficiency even with a relatively low number of generations.  
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3.1.3. Topology optimization 

Topology optimization is a different field of mathematical optimization, as it is 
directly linked to the design process of solid structures. It serves as a dedicated 

mathematical tool that enables the determination of the optimal material distribution 
(layout) within a certain domain under given goals and requirements (objective 
function and constraints respectively). The growth of topology optimization techniques 

is connected to advancements in available computing power and computational 
mechanics, from which the finite element method is the most widely implemented. 

Topology optimization is the most general form among optimization problems, as 
shown in Figure 3.6, where a simple overview of structural design optimization is 
presented. Topology optimization may handle all types of design changes, including the 

ones which are imposed in the sizing optimization (here shown as explicit design 
parametrization) or shape optimization, which varies only the boundary of the body. 
On the other hand, neither sizing nor shape optimization is not able to create new 

boundaries, i.e. induce the general form of a hole in the structure. 

 
Figure 3.6. Types of structural design optimization [1] 

The early works on FEM-based topology optimization are dated to 1988 when 

the homogenization method was introduced [9]. The aim of this method was to make 
the optimization process well-posed, which is not the case for the discrete 0-1 approach, 
in which each of the finite elements is either removed from or it is maintained in the 

structure being optimized. Homogenization allowed to make design variables 
continuous, as the material properties of the structure (within each finite element) were 

approximated using the homogenization technique. That started a new era, in which 
the implicit design description was used for optimization purposes, instead of explicit 
design parametrization, which is not general.  
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Shortly after the homogenization method, the new density-driven topology 

optimization strategy was proposed [8], in which the final layout of the structure was 
a function of elemental densities only. This material density was used for two reasons: 

firstly, it was used to calculate the mass of the whole design (summing elemental 
weights), and secondly, to interpolate the mechanical properties of the isotropic 
material [10]. In the most popular SIMP (Solid Isotropic Material with Penalization) 

method or the RAMP (Rational Approximation of Material Properties) method [105], 
the optimal distribution of elemental densities is sought, such that the optimized 
structure satisfy the initial constraints. This type of approach was called the “soft-kill” 

penalization, as it suffered from certain limitations, with intermediate “grey” densities 
being the most problematic one. During the optimization procedure (either by means 

of the optimality criteria method [78], or mathematical programming [106]), the 
resultant body could include elements with a density that does not correspond to purely 
void – lack of material, or to totally solid. This creates situations, in which the result 

may be hard to interpret physically, as in real representation the part is seen as a black-
and-white design without any intermediate zones. Besides being a very computationally 
efficient method, the SIMP-based optimization technique suffers from other drawbacks, 

like solution dependency on the degree of material penalization, initial density, and 
especially numerical problems in intermediate-density elements subjected to high levels 

of strain [113]. The latter feature makes this method prone to a lack of convergence for 
tasks including structural stability, where nonlinear effects are taken into account (such 
as the ones considered within this dissertation). Additionally, in buckling or stability 

analysis, the material penalization scheme may strongly influence the level of 
convergence, or even lead to a lack of convergence at all [65]. Therefore, the density-
based method like SIMP may not be that efficient in the cases of structural stability, 

even though multiple different constraints are incorporated in the method, like the 
stress constraints [46], [100].  

Another family of the FEM-based topology optimization, hence not related to 
the adjoint, density-based formulation mentioned above, is the ESO (Evolutionary 
Structural Optimization) method,  proposed in 1992 [122], [123]. The ESO method 

iteratively removes obsolete elements from the given design space. The contribution of 
the element to the objective function or constraint function is calculated based on the 
filtered sensitivities. The variant of ESO that allows the material (elements) to be 

added to the existing structure is called BESO (Bi-Directional Evolutionary Structural 
Optimization)[80]. Both methods are based on the heuristic assumption, that elements 

with the lowest criterion metric – stress, strain energy, or similar – are not efficiently 
used within the given space, therefore they must be excluded from the design. It is 
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done on a finite element basis, as the basic implementation of BESO operates on 

discrete values (“hard-kill” method). 

None of these methods could efficiently represent the boundary of the optimized 

structure, due to the limitations of the elemental approach. Therefore, a new approach 
was proposed in 2000, called the LSM (Level-Set Method) [4], [98], [116]. It utilizes the 

auxiliary field Z that varies throughout 2D or 3D design space ç. In each point of the 

design space, the auxiliary field value is calculated and compared with the assumed 

threshold value �;Y[ . The LSM defines the design using the following relations (3.18) 

[25]: 

⎩{⎨
{⎧ Z(ì) > �;Y[ → ì ∈ � (�ï�·¸¹ïð)Z(ì) = �;Y[  → ì ∈ � (uñ�6lï¸_)Z(ì) < �;Y[  → ì ∈ (ç\�) (=ñ¹l) (3.21) 

The value of the auxiliary field is calculated as a sum of the basis functions of 

the form (3.22), where the ì denotes the spatial coordinates and \� are the optimization 

variables scaling the basis functions: 

Z(ì, ä) = ∑ Z�(ì, \�)�
�=1

 (3.22) 
where the basis function Z�(ì, \�) can be represented as (3.33): 

Z�(ì, \�) = \� �(ì) (3.23) 
Finally, when implementing e.g. Radial Basis Functions (RBF) for the 

Level-Set-Function (LSF) [117], the following form is obtained (3.24): 

Z�(ì, \�) = \� ∗ ·−‖�−�H‖2
MH2  (3.24) 

where ‖. − .�‖ represents the Euclidean distance between the considered point and the 

center of the basis function, while l� represents an additional scaling factor, but related 

to the width of the RBF, rather than its height (as \�).  
The centers of the basis functions (knots) may be located in the nodes of the 

given fixed FEM mesh grid or may be disjoint from the body discretization. Basis 

functions may be formulated over any arbitrary points, however, the regular grid is 
most commonly utilized in the literature. The iterative manipulation of the body 
boundaries during the optimization may be realized either directly by the optimization 

algorithm [89] or by utilizing shape or topological sensitivities with Hamilton-Jacobi 
equations [3] that track the shape and topology changes. The definition of the design 
using the LSM is shown in Figure 3.7, where the level set function defined by two radial 

basis functions is overlapped with the threshold plane, forming a curved boundary and 
the solid body inside.  
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Figure 3.7. Graphical representation of the Level Set Method [73] 

 The number of radial basis functions used to create the auxiliary field is directly 

connected to the resolution of the resultant shape, as shown in Figure 3.8.  

 
Figure 3.8. The cantilever beam topology optimization using 45 RBFs [38] 

On the cost of higher optimization complexity (increased amount of design 
variables), the resultant topology may become more sophisticated, allowing for 

maximum exploitation of available design space.
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3.2. Metamodeling 

The usage of metamodels (also called surrogate models) enables the engineers to 
augment the analysis results obtained through expensive simulations, like the nonlinear 
finite element analysis described in the previous chapters [36]. Those models may mimic 

the underlying nature of the problem, once they are exposed to the samples (data 
points) obtained in a specific manner. Then, metamodels may be used either to replace 

the high-cost methods or to provide additional information based on the learned 
patterns. The main advantage of metamodels is execution time reduced by several 
orders of magnitude compared to the computer simulation. Chapter 3.2.1 describes the 

method of obtaining the training data, or rather designing a data sampling plan to 
create the metamodels most efficiently, i.e. achieve good fits within the limited number 
of expensive FEM analysis runs and possibly the best representation of the design 

space. Three different types of metamodels are described in the subsequent chapters 
3.2.2-3.2.4, i.e. the Response Surface Method (RSM) [14], the Kriging [58], and the 

Artificial Neural Networks (ANNs) [49], representing metamodels widely used 
according to recent research papers [41], [102]. All of the descriptions and conclusions 
are made for normalized data, i.e. for inputs and outputs that are reduced to the range 

of [0,1]. This procedure allows to avoid the distortion of the polynomial coefficients, 
Kriging theta values, or neural network weights due to uneven orders of magnitude, 

making the training process more robust and resultant fitted models easier to analyze. 

 

3.2.1. Sampling plans 

 In metamodeling, it is assumed that the underlying problem that is trying to be 
mimicked by a surrogate is of a black box type. The design variables are passed to such 

a black box, and the generated (calculated) responses are recorded, as in (3.25.): 

8(�) → y(�) = C(8(�)) (3.25) 
where 8 is the design variables vector, y is the model response, and ¹ is the sample 

number. For � design variables, C(8) is an output for a point within the design space D, 

such that 8 ∈ D ⊂ ℝ�. The collection of all vectors 8 is called a sampling plan, 

represented as ì = {8Ä, 8ú,… , 8e,… , 8û}. 
Such a black box process does not provide any general information about the 

model, or behavior of the underlying problem across the whole design space. Therefore, 
the design space must be sampled, i.e. numerous design points (design variables vectors) 
must be spread across the allowable space, from which the model response will be 

recorded and used for the surrogate training. The overlay of those points influences 
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greatly the quality of the constructed metamodel. There are numerous possible methods 

for the generation of the sampling plan for metamodel training and validation purposes, 
with full- or fractional-factorial designs of experiments (DOE, also referred to as grid 

search), (Optimal) Latin hypercubes (OLHS/LHS), Sobol sequences, orthogonal arrays, 
or Monte Carlo methods being commonly incorporated in the scientific papers [31]. 
Some of those methods are shown in Figure 3.9 below: 

 

Figure 3.9. Sampling plans for 2 dimensions: a) full-factorial DOE, b) Monte-Carlo, 
c) LHS, d) OLHS [95] 

Even though all of the above plans are applicable for metamodel training, each 

of them exhibits sets of advantages and disadvantages. The main problem associated 
with the factorial DOE approach is that the number of samples grows exponentially 
with the increase in the number of design variables, as: 

6 = 2� ñ¸ 6 = 3� (3.26) 
where the base is adjusted depending on the number of levels in the DOE. For a simple 
problem with 10 variables, the sampling plan would require 210=1 024 or 310=59 049 

samples, depending on the desired number of levels per factor. Even for such small 
problems, those numbers often seem exaggerated. This feature of the factorial sampling 
plans is referred to as a curse of dimensionality [53]. Therefore, for the time-consuming 

simulations, the factorial plans may be too computationally expensive. On top of that, 
even though a significant number of design points is generated, the distribution of 

samples projected on each of the design variable axes is very narrow, as shown in Figure 
3.10, so there is no possibility of capturing higher-order dependency between the input 
and output variables (or harmonic behavior). 
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Figure 3.10. Sample points projected on x1 and x2 axes – areas, where multiple points 
are located are marked with D (dense), and areas without any sample points are 

marked with N (none) 

It would seem reasonable to choose a random distribution of the design points, 
as it is quick and the resultant number of samples is not restricted to any dependency 

(like in the factorial design). However, a totally random process may generate areas of 
dense point distribution, or even overlapping points (not favorable for certain 
metamodeling techniques, like the Kriging, which will be described later) and areas 

without any points at all (lack of function information). Therefore, one of the most 
common techniques used for generating the sample plan is the Latin Hypercube 
Sampling (also referred to as Latin Hypersquare Sampling), in which the saturation of 

each of the design variables axis with design points is almost uniform, on the cost of 

unequal spacing between the design points within ç. That is why, the Optimal Latin 

Hypercube Sampling was developed, to mitigate the aforementioned flaw, by the 
process of maximization of the minimum distance between any two design points, as 
described in [50]: 

min�≤1,�<�,�≠� l(8(�), 8(�)) (3.27) 
where  l(8(�), 8(�)) is the distance measured for any two sample points 8(�) and 8(�), 
calculated as: 

l(8(¹), 8(º)) = l�� = [∑∣8(¹)� − 8(º)�∣��
�=1

]1 �⁄  (3.28) 
and � depends on the used norm (1 - Manhattan, 2 - Euclidean). 
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The ∅� criterion, introduced in [74], which is based on (3.27), states that the 

sampling plan is optimal when the ∅> criterion is minimized (3.29). To verify that for 

a given LHS, all of the distances must be calculated. Once it is done, they must be 

sorted in ascending order (l1, l2,… , l�). The next step verifies how many of the design 

points, within the sample plan, are separated by the same distance l�. In this way, the 

index vector is created  (�1,�2,… ,��), which contain �� elements. The sampling plan 

ì is called the maximin plan (among all of the available plans) if it maximizes l1, 
minimizes �1, maximizes l2, minimizes �2, etc. 

∅> = [∑ ��l�−>�
�=1

]1>  (3.29) 
 The aforementioned plans, like Monte Carlo, LHS, or OLHS are suited for most 
types of surrogate models. However, there are groups of metamodels that need a very 
specific sampling plan to fit the model. One of such plans is the Box-Behnken (BB) 

[13] sampling designed especially for the Response Surface Method (RSM) surrogate. 
The plan minimizes the number of design points needed to fit the model, with the 
limitation of fitting the model up to the quadratic term (i.e. RSM with the squared 

term, product of two factors, linear term and constant). In cases where there is a special 
concern about the corners, i.e. the combination of the factors at the extreme values, 

RSM can be fitted using a more computationally expensive, Central Composite 
Circumscribed (CCC) plan. The CCC can be represented as the full factorial design 
with an additional star design, to capture the curvature of the output data. A graphical 

comparison of the Box-Behnken and CCC sampling plans for 3 factors (variables) is 
shown in Figure 3.11. 

 
Figure 3.11. Sampling plans: a) central composite circumscribed (CCC), b) Box-

Behnken (BB) 
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There are some drawbacks of the CCC plan, like the design points being (by 

default) positioned outside the design space, but this may be partially limited by 

adjusting the factor �. Unfortunately, some obstacles are hard to overcome, like the 

distribution of design points which does not apply to integer factors (e.g. number of 
individuals in the genetic algorithm, which cannot be a fraction). Those problems are 
mitigated in the BB sampling plan, where all of the variables (factors) are positioned 

in [-1,0,+1] levels, with -1 and +1 being the extreme values of a factor range. 

In the process of constructing a surrogate, it is important to take into account 

that not only training vectors must be provided using a suitable technique, but also a 
set of validation data, which consists of data points that were not presented to the 
metamodel during the training. This way, a surrogate performance may be verified. 

If the quality metrics show a good fit, but poor prediction capabilities for unseen data, 
the model is said to be overfitted, as shown in Figure 3.12. Overfitting occurs e.g. when 
an overly intricate model is fitted to the data, making its predictions useful only in 

very close vicinity of the training points (sampled data), and useless in any other region. 

 
Figure 3.12. Surrogate predictions vs true function 

 

3.2.2. Response Surface Method (RSM) 

The Response Surface Method is one of the oldest techniques that is being used 
as the surrogate model. The concept was described in 1951 [14], and it consists of 

a polynomial equation that relates the output (predicted variable _) with the input 

variables by means of sums of the polynomial coefficients � multiplied by the design 

parameters vector 8, as in (3.30): 

_̂ = �0 + ∑��.�
�

�=1
+ ∑ ���.�2

�
�=1

+ ∑ ���.�.���(�<�)
(3.30) 



Optimization and metamodeling methods 

 50  
 

Equation (3.6.) represents the model with order up to the quadratic term only. 

However, it is possible to use 3rd or 4th-order polynomials, which results in a more 
flexible model, but on the cost of sampling the data on more levels. In such cases, 

Central Composite (circumscribed or inscribed) designs are preferred over the 
Box-Behnken ones, as CCC probes 5 values along the axis, while BB probes at 3 levels 
only, which is not sufficient to fit higher order polynomials.  

One of the limitations of the RSM is the assumption made regarding the function 
(or process) being surrogated. If it is multimodal or highly nonlinear along the whole 
design space, then the RSM would provide a poor fit, as the generalization capabilities 

of the RSM are directly associated (limited) with its underlying mathematical model, 
i.e. polynomial equation. Nonetheless, if RSM is fitted properly, it provides insight 

about the modeled function, by the analysis of vector a containing fitted polynomial 
coefficients.  

The response surface method has a unique feature (among other regression 

metamodeling techniques), that the derivatives of the _ ̂are available directly, therefore 
the RSM is suited for optimization purposes [70], as finding the function local 

minima/maxima is almost costless. 

 

3.2.3. The Kriging 

The Kriging method, even though much more sophisticated than the RSM, was 
developed at a similar time, as the original work by D. Krige was published in 1951 

[58]. This interpolation method was initially developed for geostatic application, as the 
author master thesis. It was used for gold exploration, relying on soil sampling data 
measured over the area (two-dimensional problem). Nowadays, the Kriging method 

(referred to as the Kriging) is one of the most widely used interpolation methods, which 
finds use in multidimensional problems as well. As the Kriging is a very flexible model, 

it is eagerly used as a metamodel for strongly nonlinear processes, often represented by 
computationally expensive FEM-based simulations [81], [88]. 

Even though there are several types of Kriging, they share a similar form. The 

most common types of this model include ordinary, simple, universal, and blind Kriging 
[21]. The first two types have the most straightforward implementation and they 

provide good generality of the data. The prediction in the Kriging method is done using 
formula (3.31): 

_(̂8) = C(8) + �(8) (3.31) 
where _ ̂ is the predicted value, C(8) represents the trend function, and Z(8) is the 
realization of a stochastic process, usually a normally distributed Gaussian random 
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process, with zero mean < and standard deviation ���M. The first component - C(8) - is 
a global trend model. It is common to use constant C(8) = �, in which � is the known 

mean, or C(8) being the low-order polynomial function. On the other hand, the Z(8) 
may be understood as the part modeling local deviations, and it is fully characterized 
by its correlation function (3.32): 

�ñ¸[_(8(�)), _(8(�))] = ·−∑ 	{∣�{(H)−�{(V)∣�{�{=1  (3.32) 
The equation (3.32) represents the Gaussian basis function, in which the vectors 

� and � represent its shape (bell curve). The influence of changing the � and � 
parameters on the correlation function is shown in Figure 3.13: 

       
Figure 3.13. The correlation functions [53] with: a) varying �, b) varying � 
When all of the design parameters (factors) are predicted to yield a similar 

influence on the output function, vector � can be replaced with a single value of b. 
This yield an isotropic version of the Kriging, which is the simplest to fit, however in 

most engineering applications, the anisotropic Kriging with the vector of unknown bs 
is incorporated, providing more accurate predictions. The equation (3.32) may also be 

replaced by one of the other basis functions, including exponential, cubic spline, matern 

linear, and matern cubic [82]. One of the useful insights from the fitted � vector in the 

anisotropic Kriging is the preliminary analysis of the factors. Once the bs are fitted, 
the parameters mostly affecting the output function may be identified as the ones 

associated with the highest b values, which may serve as the initial screening. 

The correlation matrix *cdef is generated for the whole dataset used to fit the 

model, as in (3.33): 

*cdef = ⎝⎜
⎛�ñ¸[_(8(1)), _(8(1))] ⋯ �ñ¸[_(8(1)), _(8(�))]⋮ ⋱ ⋮�ñ¸[_(8(�)), _(8(1))] ⋯ �ñ¸[_(8(�)), _(8(�))]⎠⎟

⎞ (3.33) 
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The Kriging model fitting process is done by maximizing the likelihood ½ of the 

observed data �, as shown in (3.34). This way the generalization error of the model is 
minimized.  

½(_(1) + _(2) + ⋯ + _(�)∣<, �) =  1 (2����M2 )�/2∣*cdef∣1/2 ·−[(�−ÄÔ)�È−1(�−1Ô)2zUI�2 ] (3.34) 
Equation (3.34) may be simplified utilizing natural logarithms to form (3.35): 

ln(½) = −6 2 ð6(2�) − 6 2 ð6(�2) − 1 2 ð6(∣*cdef∣) − [(� − �<)Û *cdef−1(�− �<)2���M2 ] (3.35) 
Differentiating the equation (3.35) and equating to zero, the maximum likelihood 

estimates (MLEs) for the < and ���M are: 

µ̂ = �Û *cdef−Ä�
�Û *cdef−Ä� (3.36) 

���M2̂ = (� − �<)Û *cdef−1(�− �<)6 (3.37) 
Using equation (3.35) with MLEs calculated in (3.36) and (3.37) without the 

constant terms yields the concentrated ln-likelihood function (3.38), which is now 

dependent solely on unknown b and Q parameters. It is worth mentioning that 

commonly, the Gaussian basis function incorporates the constant Q = 2, which reduces 
the model fitting time with little to no reduction in its quality. 

ln(½) ≈ −6 2 ð6 (���M2̂ ) − 1 2 ð6(∣*cdef∣) (3.38) 
The function (3.14) is usually maximized utilizing one of the global search 

optimization techniques, like simulated annealing or genetic algorithm. Once the thetas 

are optimized, the Kriging may be used for predictions, as shown in (3.31). To obtain 
the function value in the unknown location (within the design space), the correlation 

matrix *cdef is augmented with the vector of correlations between the new prediction 

_(8) and data used to fit the model, as shown in (3.39): 

 = ⎝⎜
⎛�ñ¸[_(/(1)), _(/)]⋯�ñ¸[_(/(�)), _(/)]⎠⎟

⎞ (3.39) 
The augmented correlation matrix *̃ takes a form (3.40): 

*̃ = ( *   T 1) (3.40) 
Again the ln-likelihood is calculated this time for the augmented data. 

As a result, the following formula for the Kriging prediction is achieved:  
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_(̂/) = µ̂ + T*−1(_ − �µ̂) (3.41) 
The formula (3.41) describes the interpolating Kriging metamodel. However, 

when dealing with noisy data (physical experiments), or when generalization properties 

are more important than the interpolation capabilities (numerical simulations), the 
regression Kriging might be used instead. It belongs to the approximators family, i.e. it 

does not represent the actual data when making a new prediction for the samples used 
to fit the model. To achieve such a surrogate model, the equation (3.41) is modified, 

by adding the constant term : to the diagonal of the correlation matrix *cdef, yielding 

the following regression Kriging equation (3.42): 

_Ô(8) = µÔ + T(*cdef + :")−1(_ − �µÔ) (3.42) 
where: 

µÔ = �Û (*cdef + :")−1��Û (*cdef + :")−1� (3.43) 
In the Kriging method it is assumed that the data comes from the random 

process, so the uncertainty of the prediction, once the model is fitted, may be used for 
either the in-fill process [83], [92] or to assess the possible range of the output, instead 

of taking simply the mean output value. Researchers highlight that current trends in 
Kriging methods development are devoted to the aforementioned infill process [41] and 

minimization of the hyperparameters number [12].  

 

3.2.4. The Artificial Neural Networks 

The basic idea behind the artificial neural network is to mimic the behavior of 
the human nervous system. The main part of this system is a single neuron (Figure 

3.14 a) which collects the information from other neurons via dendrites, aggregates the 
collected signals via a cell body, and sends the collated data via axon to the axon 
terminal. Other neurons dendrites are connected with those terminals via a connection 

called a synapse. As synapses vary in their sizes and amount of neurotransmitters, the 
same signal may cause different levels of activation between the connected neurons.  

The analogy between McCulloch-Pits artificial neuron [68] introduced in the 

1940s and the actual neuron is quite straightforward. The dendrites, which are 

connected via synapses with other neurons, are replaced by weighted inputs ���, where 

the magnitude �� is equivalent to the size of the synapse, and � represents the input 

signal received by the dendrite (Figure 3.14 b). Then,  all of the weighted input signals 
are summed in the node, the same as in the cell body. Whether or not the neuron is 
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activated, is dependent on the summed input. Depending on the activation function, 

the artificial neuron may respond in a different manner to the same weighted input.  

 
Figure 3.14. Model of a neuron: a) human (mammal) biological neuron [43], b) its 

artificial counterpart 

To form a network of artificial neurons (Figure 3.15), single perceptrons are 
connected layer-to-layer, forming a dense grid of connections – a multi-layer 
perceptron (MLP).  

 
Figure 3.15. Neural network concept: multilayer perceptron network, where IL – 

input layer, HL1 & HL2 – hidden layer 1 & 2, OL – output layer 
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Each connection has its own weight, and each node has its bias term, which is 

equivalent to the weight of the unit signal. The output of the single perceptron, i.e. one 

node, is calculated using the formula (3.44). This bias notation is equivalent to i0.0, 
where .0 = 1. 

_�(8) = h(∑i�.� + i0
�

�=1
) (3.44) 

The function � is an activation function, which may be of many types. 
In practical applications, the most common types (yet one of the dozens available 

generally) are shown in equations (3.45)-(3.47)[2]: 

Sigmoid activation function: 

h(.) = 11 + ·−�  (3.45) 
Tanh activation function: 

h(.) = ·� − ·−�
·� + ·−� = tanh(.) (3.46) 

ReLU (rectified linear unit) activation function: 

h(.) = max (0, .) (3.47) 
The graphical representation of those functions is shown in Figure 3.16. 

The aforementioned type of ANN can be classified as the feed-forward network, in 

which the input data is transferred from the input neurons, through the sets of neurons 
in one or more hidden layers, and then passed through the output layer. Each of the 
subsequent layers works on the data processed by the previous layer. However, the 

main problem of the ANN is the determination of the weights and biases, which directly 
affects the way the data is modified throughout the layers. 

 
Figure 3.16. Neuron activation functions: sigmoid, tanh, and ReLu 
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The rapid growth of Artificial Neural Network (ANN) based metamodels started 

after the backpropagation learning algorithm was implemented broadly in the artificial 
neural networks [90], even though the first papers describing fundaments of this method 

were published over 20 years earlier [27], [54]. The backpropagation enabled the 
multilayer ANNs to learn complicated patterns of data efficiently.  

 Thanks to the aforementioned error backpropagation algorithm it is possible to 

achieve optimal, or at least quasi-optimal distribution of %, during the supervised 

learning process. The network is fed with the input vectors 8 and the calculated _(̂8) 
is compared with the actual, known _(8). The error metric (loss function) is usually 
the mean square error (MSE) between the target and predicted value (3.48): 

�[YX = 16∑ (_(�) − _(̂�))2�
�=0 (3.48) 

As the aim is to find % that is minimizing the ���
  error, so the derivative of  

���
 must be calculated with respect to the %. This cannot be calculated directly, but 

it is done using the rule of chain differentiation [35]. The weights update is done 
iteratively over epochs. The update scheme is shown in (3.49), which represents the 

delta rule: 

∇i�(�) = (1�(�) ¤h(ï)¤ï(�) .�(�) (3.49) 
where the (1 represents the learning rate parameter and error �(�) is calculated 

differently for the last, output layer �S(�) and hidden layer (��(�)): 

�(�) =
⎩{⎨
{⎧ �S(�) = _(�)−_�(�) ; ñ��Q�� ðï_·¸

��(�) = ∑ i�(�)(�)��(�)
�

�=1
 ;ℎ¹ll·6 ðï_·¸(\) (3.50) 

and � is a neuron number in the hidden layer, 6 represents the total number of neurons 

from the subsequent �th layer, and (º) is the epoch number.  

The learning rate parameter (1 governs the pace at which the network is 

learning, with the usual values of (1 ∈ 〈0.01, 5.0〉. A too-small value of (1 result in 

a long learning process, i.e. an excessive number of epochs is needed to minimize the 

MSE. On the other hand, high (1 values may cause the network not to learn at all, due 
to unstable gradient calculations. Another hyperparameter that influences the learning 

process greatly is the momentum (2, which relates the current weight update with the 
weights update from the previous epoch, as in (3.51): 

∇i�(�) = (1�(�) ¤h(ï)¤ï(�) .�(�) + (2∇i�(�−1) (3.51) 
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 The momentum parameter can vary between (2 ∈ 〈0.0, 1.0〉. Generally, learning 

with momentum reduces the number of epochs needed to train the network, as it allows 
for larger weight updates. Usually, the momentum method is paired with small learning 

rate parameters (1, in order to mitigate the inadequate weight update, which is 
a response to the error function. As the weight update is associated with multiplying 
many gradients, including the activation function derivatives, it is important to avoid 

the problem of vanishing gradients, especially in deep neural networks (the number of 
hidden layers above one). This phenomenon happens for tanh and sigmoid (logistic) 

activation functions, as the derivative of h(.) is usually a small value, so when in the 
chain rule several such small values are multiplied, the resultant update of the weights 

may not yield any significant improvement. This may be solved by replacing the 
aforementioned activations functions with e.g. ReLU (3.47), which derivative is equal 
to one each time the neuron is activated.  

The usage of ANNs in engineering is still intensive, as ANNs are recognized as 
a universal approximator[47] applicable in the regression (trend modeling) problems of 
engineering, as a metamodel cheap to execute and relatively easy to train, due to 

numerous existing dedicated programming frameworks. Another class of the ANNs used 
widely for metamodeling is the network with radial basis functions as hidden neuron 

activations [5], [103], due to their more succinct architecture (single hidden layer) and 
simpler training. However, the multilayer perceptron networks (MLPs) may take 
advantage of their extensive structure, numerous activation functions, and additional 

features like output normalization or network regularization [44], [104]. Also, they may 
incorporate numerous weight optimizers, including stochastic gradient descent (SGD) 
algorithm [86], SGD with momentum (including NADAM – Nesterov Adaptive 

Momentum [26]), and second order quasi-Newton L-BFGS (limited memory Broyden-
Fletched-Goldfarb-Shanno [67]) algorithms, which are broadly used in many practical 

implementations of ANNs [64]. All of those features may seem like an excessive 
complexity, however, it provides flexibility in finding the optimal network topology, 
assuring a surrogate model with maximum efficiency. 
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4. Hybrid optimization 

Numerous optimization techniques may be incorporated into engineering 

applications. Some of those algorithms were briefly described in Chapter 3.1, providing 
both the advantages and disadvantages of incorporating a certain type of optimization 

technique. There is a method, however, that enables to mitigate the drawbacks of 
individual algorithms called hybrid optimization, in which several optimization 
algorithms are coupled together [77], [96]. Hybrid optimization may incorporate 

a purely evolutionary approach, or may couple both the bio-inspired and gradient-
based methods [17]. They may be run either in parallel or consecutively and may consist 
of two or more optimization techniques. This chapter consists of the description of such 

a hybrid algorithm applied to automotive shock absorber lower bracket topology 
optimization, consisting of a genetic algorithm and an evolution strategy. 

 

4.1. Optimization problem formulation 

The shock absorber consists of several structural components, as presented in 

Chapter 2.1.1. However, not all of those components may be freely modified to reduce 
their mass, as there are plenty of design requirements (like a need to achieve proper 
sealing) that forbid any arbitrary shape variations. Examples of such rules are e.g. the 

rod, which must always be cylindrical or the pressure tube must have a constant 
circular cross-section. One of the components that are not directly influenced by those 
requirements is the lower bracket, which in many cases is specifically designed for 

a particular application, taking into account the allowable design space, as well as load, 
mass, and manufacturing requirements. 

The final form of the lower bracket is a subset of the total allowable volume, referred 
to as design area or design space. The volume of the design area is fulfilling any point 
in space in the vicinity of the shock absorber axis, that is not in collision with other 

suspension components, taking into account all possible suspension kinematic forms, 
its elastokinematic behavior (compliance), and required clearances. This yields a very 

uneven, complicated shape, within which the optimal material allocation is sought. 
An example of such a lower bracket design space, assembled together with the rest of 
the automotive shock absorber structural components is shown in Figure 4.1, where 

the considered design space is shown after the geometrical cleanup. The lack of possible 
material allocation in the central part of the bracket design space is a result of the 
vicinity of the drive shaft, while the upper corner and side chamfers are applied to 

avoid collision with the stabilizer bar, rim, tire, and brake calipers.  
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Figure 4.1. The design space (grey) within which the optimal shape of the lower 

bracket is sought 

In the same figure, the typical loading scenario is shown, which represents the forces 
coming from vehicle suspension (jounce bumper and suspension spring) in the severe 
compression loading event, as highlighted in detail in Chapter 2.1.2, together with 

forces from the assembly process – bolt pre-tensioning that mounts the shock absorber 
with the swingarm via bushing. As the jounce bumper and suspension spring transfer 
all of the axial load (the contribution of damping force is insignificant), the sum of 

those forces is used to validate the design. The design validation is done based on 
vehicle manufacturers requirements, which specify i.a. the total shock absorber load at 

which no brakeage, crack, separation, or buckling may occur. The last condition is often 
the most challenging, as it tends to be the main failure mode of the shock absorbers. 
Especially, if the shock absorber is equipped with unsymmetric brackets which magnify 

the eccentric compression phenomenon while being subjected to excessive compression 
loading (as shown in Figure 2.6).  

To represent these operating conditions most adequately, the constant suspension 

spring load is considered (as a pre-load), while the jounce bumper load is incrementally 

increased until the point of failure (buckling). The achieved buckling force (���) is 

then compared with the vehicle manufacturers requirement (������), as the design must 
not fail below that limit (4.1). 

��� ≥ ������ (4.1)  
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To obtain the ���, which is the sum of the spring pre-load and incrementally 

updated jounce bumper load, the finite element method analysis is incorporated, as 
described in Chapter 2.2. A geometrical CAD model of the shock absorber 

(incorporating the design space) is used to build the numerical model, where each of 
the structural components is discretized using 2nd-order hexahedral or tetrahedral 
elements, which numerical formulation was given in Chapter 2.2.2. Loads are applied 

via the reference points connected with the structure through the MPC – multi-point 
constraints, i.e. distributing and kinematic couplings.  

As the aim is to minimize the mass while maintaining the system stability (lack of 
premature buckling), the nonlinear FEM simulation is carried out in each design 
optimization iteration, incorporating load-controlled solution techniques described in 

Chapter 2.2.3. The FEM analysis stops once the system reaches its ultimate strength, 
i.e. there can be no further increase in the transferred load, which is shown in Figure 

4.2 schematically by solid to dashed line transition. The ��� is obtained and recorded 

for each design (i.e. for each iteration of the optimization process). The red dotted line 

represents the ������ requirement. In each iteration of the optimization process, a new 

(evolved) shape of the lower bracket is considered. 

 
Figure 4.2. Load-deflection curves for two shapes of the lower bracket. Force-driven 
FEM analysis provides the solid line response (up to the point of maximum force), 

while the dotted lines represent post-buckling behavior, simulated using 
displacement-driven FEM analysis 

At the beginning of each FEM simulation, the solver calculates the total mass of 

the system, using the elemental volumes and pre-defined material density. 

Therefore each design is characterized by two output variables: mass � and achieved 
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maximum load ���. There are numerous different methods to iteratively modify the 

shape of any part, which are discussed in Chapter 3.1.3. To deal with the stability 
constraint, the modified, derivative-free Level-Set Method (LSM) is incorporated for 

changing the topology of the lower bracket. This method is similar in its formulation 
to [38], [39] but extended to three dimensions and coupled with filtering routines which 
will be covered in detail in Chapter 4.3. Also, it is modified to utilize global-range basis 

functions to reduce the total number of design variables. 

What makes this method suitable for such applications is its simple parametrization, 

which can be coupled with any mathematical optimization algorithms described in 
Chapter 3.1.1 and Chapter 3.1.2, and therefore may easily handle FEM analyses that 
didn’t converge to a given load value due to the loss of stability. The latter is a problem 

in most of the state-of-the-art topology optimization methods, as lack of FEM analysis 
convergence means e.g. lack of sensitivity calculations, and there is no step-back 
solution for algorithms like SIMP. Even very conservative density updates in the 

density-based methods do not guarantee avoidance of algorithm premature 
termination, which is often the case when dealing with unstable structures. On top of 

that, density-based methods may encounter equilibrium problems for intermediate-
density FE subjected to large strains (which is the case for stability-based problems).  

The aforementioned simple parametrization is yet capable of producing great 

variations in the shape of the part, which is not the case in sizing optimizations (when 
the object dimensions and their variability are pre-defined), even though a similar 
number of parameters may be involved.  

On top of that, stress-based or strain-based techniques like Evolutionary Structural 
Optimization (ESO) may fail to provide a lightweight design, especially in parts 

subjected to eccentric compression and manufactured by forging. The reason for such 
limitation is the fact, that high-stress gradients are visible in the cross-sections (due to 
eccentricity), and maximum stress values are concentrated at the extreme layers of the 

section (as shown in Figure 4.3 for shock absorber subjected to axial compression). 
In this case, the only portion of material that is not subjected to excessive stress levels 
is in the middle of the cross-section. Unfortunately, this part of the cross-section cannot 

be removed without violating the manufacturing constraint (no hollow structures are 
allowed in forging), so the resultant envelope of the part is similar to the envelope of 

the initial design space. However, stress-based methods such as ESO may be used in 
the post-optimization phase to filter-out regions of neglectable stress, that do not 
necessarily contribute to the total strength of the part.  
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Figure 4.3. Normalized von Mises stress [-] in the critical cross-sections under 
compressive load. A value of 1 indicates the stress at the yield strength of the 

material (��). The dotted area represents the volume of material that is stressed 
below 33% of the material yield strength. 

On the other hand, the proposed version of the Level-Set Method is capable of 
modifying the aforementioned cross sections, even though the areas of maximum stress 

may be excluded from the design. In such a case, the reduced cross-section is subjected 
to higher stress, but it is done only if the stability constraint is met (4.1). 

As the proposed version of the LSM algorithm does not change the geometrical 

model, but it affects the numerical model instead, the equation controlling the shape 
evolution (3.21) is rewritten to a new form (4.2). The boundary is naturally created by 

the edges and surfaces of the finite elements that remained in the numerical model after 
auxiliary field calculation and element removal, therefore the interface between the 
auxiliary field and the zero level set is not explicitly calculated (even though it is clear 

that the actual LSF boundary lays in the vicinity of the finite elements sides and 
vertices). This leaves a drawback of having uneven or sharp surfaces on the design 
contour. 

{Z(ì) > �;Y[ → ì ∈ � (�ï�·¸¹ïð)Z(ì) < �;Y[ → ì ∈ (ç\�) (=ñ¹l) (4.2) 
The method of obtaining the design shape based on the auxiliary field (design 

translation) has been shown schematically in a 2D example in Figure 3.7 and Figure 
3.8. During the design modification, there may be a situation, where mesh connectivity 
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is unsettled, i.e. a single 3D solid finite element (or a group of elements) is connected 

with the rest of the structure only via a single vertex, or not connected at all. In such 
a case, the numerical analysis will fail to converge, as poor nodal connectivity creates 

a mechanism. To overcome that issue, each of the finite elements in the considered 
design space is duplicated. The set of newly created elements is assigned with negligible 
stiffness, and its only role is to hold the modified, primary mesh together, even if the 

connectivity conditions are poor [20]. Such a glue-type mesh does not influence the 

system response (���), due to its marginal stiffness, but helps to overcome the 

numerical problems associated with hard-kill (0-1) topology change strategy, which is 
one of the main drawbacks compared to density-based methods like the SIMP. As this 
mesh does not require any new nodes, it does not directly increase the number of 

degrees of freedom of the numerical model, yet some additional, small computational 
cost associated with the structural response calculation of those elements is added to 
the analysis. 

The shape of the part depends on the parameters \� and l;Y[� specified for each of 
the radial basis functions, as shown in (3.22)-(3.24). The number and distribution of 

the basis functions are shown in the subsequent Chapter 4.2. The centers of the radial 
basis functions are referred to as knots, and the total amount of the knots is directly 
linked to the level of sophistication during design modification (number and size of 

details). At the same time, the number of optimization variables is related to the 
number of knots. In the considered application of the LSM, the Level-Set Function is 

calculated only for centroids of the finite elements that belong to the design space.  

Having the set of design variables (#à), the constrained mass minimization 
problem can be formulated. The optimization of the lower bracket may be expressed 

in the following way (4.3): 

min *+ C = ∫ , l¾
-

 (4.3) 
subjected to the constraint: 

.(#à) > 0, .(#à) = ���(#à) − ������, (4.4) 
 

Taking into account the discrete model and constant material density, equation 
(4.3) can be transformed into (4.5): 

min C = [,∑ ¾�
/

�=1
] (4.5) 
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where ¾� represent the volume of the �th finite element, and , represents material 

density. 

As most of the mathematical optimization methods rely on the starting point, 

it is not easy to provide a good guess that will begin the design evolution phase. 
To overcome this issue, the randomness of initial design generation associated with the 
nature of the genetic algorithm is exploited. What is more, the genetic algorithms are 

the class of the global search methods, therefore wide space-search is anticipated, 
minimizing the risk of failing in the regions of local minima. Also, short-chromosome 

GAs (i.e. chromosomes with a low number of bits per gene) are very effective in global 
search applications, on the cost of their lower resolution [107]. That is why, they should 
be paired with the local search algorithms that exploit the vicinity of the GA-based 

solution. Previous studies [97] have shown, that evolution strategies may provide good 
local search capabilities when dealing with non-smooth functions (as the hard-kill FEM 
optimization). Therefore, the combination of the genetic algorithm together with the 

evolution strategy yields an efficient hybrid optimization scheme, which will be tuned 
and described in detail in Chapter 5. A similar algorithms layout, yet combined in 

parallel, was utilized in [119] for the optimization of power systems stability. In the 
considered shock absorber optimization case it is important to highlight, that all of the 
optimization runs are limited to 2000 objective function calls (FEM simulations) due 

to the total simulation time constraint. The hybrid optimization is then divided into 
80%/20% parts, where the major part is related to optimization with the genetic 
algorithm, while the other 20% is spent on evolution strategy (EVOL), as shown in 

Figure 4.4. The genetic algorithm may be exploiting a single population (SPGA - basic 
formulation of the algorithm) or the multi-island version (MIGA). 

 
Figure 4.4. The proposed hybrid optimization flow [95] 

During each hybrid optimization iteration, the procedure shown in Figure 4.5 is 
executed. The nonlinear FEM simulation is carried out using Abaqus/Standard [129], 

so the model modification is based on the Abaqus input file (*.inp). The penalty 
function calculation is based on the equation (3.8). Adjustment of the design variables 
vector is controlled by the optimization algorithm – either genetic algorithm or 

evolution strategy. 
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Figure 4.5. Single optimization iteration – design modification 

 The hybrid algorithm is terminated after a total of 2000 iterations (objective 

function evaluations). The individual with the highest fitness function value (i.e. lowest 
mass among individuals fulfilling the stability constraint) is then reported as the 
optimal one. 

  

4.2. Interpolation schemes 

There are an almost infinite number of possible combinations of the number and 

location of the knots (radial basis functions centers) that are used to build the auxiliary 
field (LSF). The most general form of the knot distribution is the uniform grid of radial 
basis function centers among the whole design space. This type of LSF interpolation 

scheme is the easiest to apply, as it does not require any prior knowledge about the 
expected, resultant shape. Also, it is capable of significant design modification, 

especially with the increased number of interpolation knots. A similar approach to the 
grid-like interpolation schemes can be found in [79], [108]. Examples of different, yet 
uniform knot distributions are shown in Figure 4.6 a)-d), with 25,27,28, and 54 knots 

in total. In cases of a), b), and d), the distribution of knots among the cross-section is 
the same in each layer of knots in the vertical direction. In the case of c), the knots, 
which are located in the corners of the circumscribed square, are rotated by 45o with 

every other layer. 
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Figure 4.6. LSF interpolation knots distribution: a) 5x5, b) 9x3, c) 4x7, d) 9x6 knots 

The non-uniform distribution of knots, however, may be encountered once there 

is an insight into the underlying nature of the problem, i.e. the areas, where the material 
will be allocated (or that will certainly not be allocated) are expected a priori. 
An example of such an application to shock absorber is shown in [97]. There is however 

a drawback to such an attitude, where each of the knots has a different distance to 
surrounding knots. That yields uneven widths of the basis functions, causing different 
sensitivities of scaling parameters, making the optimization process more complicated. 

Also, when the material cannot be allocated in certain areas (like the vacancy left for 
the driveshaft), placing the interpolation knot in the vicinity of such an empty area is 

increasing the optimization dimensionality without improvement in the possible shape 
quality, as the LSF calculated for any finite element will not be affected the scaling 

factors (\� and l;Y[�) associated with this knot value. To overcome such an issue (like 

in Figure 4.6b, in the middle segment of knots), all of the parameters l;Y[� may be 
fixed before the optimization to act as a global RBFs (every RBF value is not negligible 

at any point of the design space). Then, equation (3.24) takes the form (4.6) for a three-
dimensional, rectangular uneven prism: 

Z�(ì) = \� ∗ ·−(
�−�HG123)

2+( �−�H	123)
2+( ^−^H5123)

2
M1232  (4.6) 

where 67	8 , 97	8 , and �7	8  are parameters used to normalize the uneven prism 

with edge lengths AxBxC (as shown in Figure 4.1) into a 1x1x1 cube. Parameter l7	8  

is a constant value scaling the width of the RBF, similar to the b in Figure 3.13. In 
such a case, the interpolation of the Level Set Function is done within the 1x1x1 cube. 
The total number of variables during optimization is therefore strongly limited, and is 

equal to the number of interpolation knots – and more specially – to the number of 
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parameters \� scaling those ¹ local LSFs. The interpolation scheme that was found to 

have good performance, i.e. ratio between the flexibility of the achieved design shape 
vs the interpolation complexity (number of variables), was the 3x3x3 knots structure 

presented in Figure 4.6b. Therefore it was used to modify the design using the developed 
Spatial Level-Set Method. 

The other utilized interpolation method uses a different approach to the shape 

modification, yet is also based on the interpolated auxiliary RBF field. In this method, 
referred to as the Projection Method (for clarity purposes), the design is modified by 

the two perpendicular projections of design contours. All of those contours are 
manipulated by the separate auxiliary fields. The common (shared) volume of the 
projected 2D shapes creates a new, intricate 3D structure, as shown schematically in 

Figure 4.7. 

 
Figure 4.7. The projection method – the principle of shape generation 

The contour of the 2D shape is obtained by comparing the coordinates of the finite 
elements with the calculated auxiliary field (similar to the spatial LSM method). 

However, in this case, the height of the RBF-based function (shown with the black 
dashed curves) of the XZ or YZ projection is compared with the horizontal coordinate 

of the finite elements. The horizontal coordinate refers to X-coordinate in the XZ 
projection and the Y-coordinate in the YZ projection. As there are two RBF-based 
functions in each projection, one related to positive and one to negative horizontal 
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coordinates, the resultant shape in the projection is a surface between those functions, 

as shown in Figure 4.8. The auxiliary functions are shown with solid black lines 
(contours), while the radial basis functions that are used to calculate them, are shown 

with red dashed lines, with the centers (knots) marked with yellow circles. Green 
straight lines represent the heights of the basis functions at their respective centers.  

 
Figure 4.8. XZ shape modification using the projection method – a) auxiliary fields 

generation, b) the cut-out generation, 

Also, for the XZ projection, the is an additional cut-out in between the bracket 
braces, as shown in Figure 4.8 b. Its height is directly manipulated as an additional 

design variable, while the resultant removal area is again a common surface between 
the offset contour functions, a minimum thickness of the braces, and the limiting height, 
as shown in Figure 4.9 by hatched area with red contour. 

 
Figure 4.9. XZ shape modification– shared area for the cut-out 
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As a result of such parametrization, the total number of 22 parameters are included 

in the shape evolution: 

• 20 parameters controlling the heights of the RBFs: each of 4 contours contain 5 

RBFs 

• 1 parameter controlling the height of the cut-out 

• 1 parameter modifying the offset of the contour (related to the minimum 

thickness of the braces) 

The RBFs that build up the contour are scaled and offset, to match the allowable 

design space in the most efficient manner. Firstly, the resultant contour line cannot 
cross the line of load application (line of symmetry in between braces which is 
equivalent to the central vertical axis of the shock absorber) – to avoid overlapping of 

the opposite contours. Secondly, the offset ]>� is adjusted in such a way, that the 

connection between the brace and the main part of the bracket is not removed during 
the optimization – the continuity of the material must be maintained in each iteration. 

To achieve those goals, two additional parameters -  ]>� and �>� - are added to (3.22) 

and (3.24), as shown in (4.7) and (4.8) respectively. 

Z(ì, ä) = ∑ Z�(ì, \�) + ]>�
�

�=1
 (4.7) 

Z�(ì, \�) = �>� ∗ \� ∗ ·−‖�−�H‖2
MH2  (4.8) 

where ]>� is the offset and �>� is the constant used to scale the RBFs. As a result of 

such modifications, the main variables responsible for shape modifications - \� – take 
any value from [0;1]. The contour functions are then interpolated in between the 5 RBF 

centers (per each side and each projection) assuring that the resultant shape is smooth 
with gradual transitions. 

 

4.3. Manufacturing constraints 

The intricate shapes that are generated as a result of either the spatial LSM or the 

projection method must fulfill the manufacturing requirements associated with the 
bracket production method. In the considered cases, the brackets are made by closed-

die forging, followed by the machining of the contact regions. Those regions are the 
interface between the bracket and the tube, and the interface between the braces and 
bushing or swingarm attachment. The forging process requires that there are neither 

any undercuts in the forging direction (X-direction according to Figure 4.7) nor holes 
in the structure. Generally, a blunt, rounded shape without any sharp transitions is 
desired for forging applications. 
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The global-range RBF interpolation is used in both: the projection method and 

spatial LSM. Therefore, in contrary to the auxiliary field obtained with numerous local-
range RBFs, the resultant shape of the structure is smooth and it lacks any rapid cross-

sectional changes. In the case of the spatial LSM, it is possible to achieve such an 
auxiliary field, that the bracket body would consist of infeasible cross-sections, as shown 

in Figure 4.10. To overcome this problem, an additional filtering routine is added during 
the optimization process. Similar problems are addressed in the literature [114], 
however different approach regarding the cross-sectional material distribution is 

utilized. For the proposed method, during the optimization, after each design variables 

adjustment (knot values \�), the body of the bracket is scanned iteratively to verify the 

feasibility of regions – as shown in Figure 4.10. The XY cross-section is checked 

iteratively over the height of the bracket in intervals of 2 ∗  C¹6¹�· ·ð·�·6� \¹m·, and 
the centroidal coordinates of the FEs are projected onto the XY plane. Then, any 

discontinuities in the auxiliary field with Z > �;Y[  along the forging directions are 
removed, assuring feasible shape of the cross-section, and therefore, of the whole part, 

once each of the sections is processed. This routine is shown schematically in  Figure 
4.10, where the discontinuous material distribution (along the forging direction) is 
mitigated, once the material is distributed evenly between the upper and lower contour 

of the cross-section. The algorithm of the filtering routine is shown in Figure 4.11.  

 
Figure 4.10. The unconnected regions resulting from the spatial Level-Set Method 
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Figure 4.11. The forging feasibility filter - algorithm 

The forging manufacturing constraints are met by default in the projection method, 
as the shape is modified along the forging direction. The only case in which feasibility 
issues may be observed is when the design space is concave in the XY cross-section 

with respect to the forging direction. However, such a problem is not associated with 
the shock absorber lower bracket optimization, therefore it does not require further 

attention, making the projection method less complicated compared to the spatial LSM.  
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5. Hybrid optimization parameters tuning 

The optimization methods described in the previous chapter are able to provide 
an intricate shape of the automotive shock absorber lower bracket that is fulfilling the 
design requirements (stability) and manufacturing conditions (a shape that is 

achievable by the forging process). The main drawback of the proposed optimization 
methods is the computational effort needed to reach the optimal design (or at least 

quasi-optimal in the close neighborhood of the actual optimum). To take the most out 
of the computational resources available in a given optimization time (2000 objective 
function calls), a proper setting of the hybrid algorithm is required. This time limitation 

is caused by the narrow timing associated with the design development period. 
As genetic algorithms may be freely adjusted to the user needs, different combinations 
of genetic operators could be utilized. However, it may have a significant influence on 

the algorithm convergence rate and the achieved level of solution optimality. 
Researchers point out that efficient sizing of the population (in evolutionary 

optimization) is a critical aspect of getting increasing the algorithm efficiency within 
the fixed computational (simulation) budget [110]. They also highlight that a proper 
choice of GA settings is crucial to find a balance between the exploration and the 

exploitation capabilities of the algorithms. What is more, the significance of the 
mutation operator is highlighted as one of the primary features that enable to switch 
between local basins, which can be later exploited by the local-search part of the hybrid 

algorithm. 

To find the set of genetic operators as well as the penalty function parameters, the 

DOE approach is utilized. This is the method commonly seen in the literature, however, 
the full factorial designs are the most widely adopted [75]. On the other hand, the usage 
of fractional factorial DOE instead of full factorial may significantly reduce the time of 

the analysis, due to decreased amount of required data. The main drawback of the 
fractional factorial approach is the aliasing of the parameters, i.e. when the interactions 
between certain factors are indistinguishable from the influence caused by the isolated 

parameters. The effect of aliasing may not be that problematic after all, as high-order 
interactions between genetic operators are rarely observed in the literature [71]. One 

phenomenon that cannot be captured correctly by both the full factorial and fractional 
factorial DOE is the nonlinear relationship between the parameters and the measured 
response. It was found during the parameter tuning process, that indeed there are 

factors presenting strongly nonlinear effects on the algorithm performance. Therefore, 
the Response Surface Method (RSM) approach was adopted in the studies, utilizing 

the Box-Behnken full-quadratic model fitting, as described in Chapter 3.2.2, without 
the need to run a highly expensive 3-level full factorial design. Still, the calculation 
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effort to perform such a study, including multiple repetitions of each parameter 

combination, is extensive and may not be feasible to complete such a study using 
expensive FEM-based simulations (as the ones presented in previous chapters). 

Therefore, the usage of surrogate-modeling is exploited, to greatly reduce the 
computation time. A comparison of both approaches to the hybrid optimization 
algorithm parameters tuning process is presented in Figure 5.1. The steps highlighted 

in red color represent the most time-consuming part of the process.  

For the considered case, a purely FEM-based approach resulted in approximately 
1.5 million function calls, as each of the parameter combinations must be verified 10x 

to include the random nature of the genetic algorithm, and a total of 73 different 
combinations were verified, which will be described in detail in the subsequent chapters. 

A single optimization run consists of 2000 objective function calls.  

 
Figure 5.1. Hybrid optimization algorithm parameters tuning – alternative 

approaches 

In the metamodel-based approach, the expensive FEM simulations are used solely 

to train the metamodels. In total, the metamodel training and validation required 7 000 
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FEM simulations, which is roughly 0.5% of the required computational effort of the 

previously described approach. Once the metamodels were trained and validated, they 
were called 1.5 million times to provide the response for the design points specified by 

the DOE (with the Box-Behnken sampling plan). The response, however, is barely an 
approximation, as it comes from the metamodel prediction. Still, it is very useful to 
predict trends and general behavior of the underlying functions or processes. 

The surrogates training and validation phase was done separately for both responses - 

the bracket mass � and for the load at the loss of stability ���. 

The total time needed to perform the step marked with green color is similar to 
a single nonlinear FEM simulation. However, the time needed to perform the step 
associated with training the metamodel (marked with blue color) is not negligible, even 

though it can be fully automated. In the considered case, hundreds of different artificial 
neural network topologies were tested along with the Kriging models. 

 

5.1. Metamodel of the FEM simulation 

The general idea behind metamodeling has been presented in Chapter 3.2. In this 
chapter, the most efficient surrogate model that represents the FEM-based simulation 

used for the optimization process (utilizing the spatial Level-Set method) is sought. 
To start the metamodel fitting process, the sets of training and validation data are 

needed. The Optimal Latin Hypercube Sampling (OLHS) method was used to generate 
separate sets of data for the training and validation phases. The sizes of the sampling 
plans were chosen to match the allowable time for data generation and desired level of 

stratification. The plans were constructed in such a way, that the ratio between the 
training data and validation data in each sampling plan is 4:1. As a result, two sets of 
plans were generated: 

• First plan: 5400 training samples (]½ß!1) and 1350 validation samples (]½ß!2)  
• Second plan: 1350 training samples(]½ß!2)  and 340 validation samples (]½ß!3) 

The validation samples from the first plan served also as the training samples for 
the second, smaller plan, for which additional 340 samples were generated to fulfill the 
validation purpose. In this way, adding a minor amount of samples (340) enabled to 

obtain two sets of data, that could be then used to verify the impact of the sampling 
size on the quality of the metamodel (its ability for accurate predictions). As the 

number of variables in the considered spatial LSM optimization was 27 (parameters \� 
scaling the ¹th radial basis function), the ratio between the number of available training 

samples and the number of variables in the process is 200 for the first plan and 50 for 
the second plan.  
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The metamodel training was conducted for different topologies of artificial neural 

networks and Kriging. The performance of the metamodel was compared using the 

coefficient of determination - W2 defined by equation (5.1), calculated for the validation 

set. Therefore, the quality of the surrogate prediction could be verified on the previously 

unseen data. Using the W2 obtained for the training data could be misleading due to 
two reasons: firstly, interpolators like the Kriging always reflect the training data 

perfectly (W2 = 1) even though their predictive capabilities may be limited. Secondly, 

when surrogates show high W2 for the training data with low values for the validation 

data, usually, it means that the model is overfitted, as shown in Chapter 3.2. 

W2 = 1 −∑ (_(�) − _(̂�))2�I�=0∑ (_(�) − _)̅2�I�=0
= 1 − ;!�¾ï¸(_) (5.1) 

The ;!� represents a mean square error and ¾ï¸(_) is the variance of the 

actual, not predicted response. The comparison of the obtained W2 is shown in Table 

5.1. The coefficient of determination is one of many different metamodel metrics, yet 
it was used primarily in literature studies [115]. The values highlighted with bold font 

are associated with the surrogates that showed the best performance among all of the 
analyzed models. They were also used for further metamodel-based studies of the hybrid 
algorithm parameters. 

Table 5.1. Resultant coefficients of determination for validation data                
(best-fitted models) [95] 

 

For the ;ï\\ response, the anisotropic Kriging was found to achieve the highest 

values of the coefficient of determination W2 among the analyzed metamodels. In the 

case of the ��� response, the artificial neural network with two hidden layers was the 

best-performing metamodel. It consisted of the 27-9-39-1 architecture, with rectified 
linear units (ReLU) activation functions in both hidden layers. The usage of 

regularization and normalization did not bring much improvement in the model fitting, 

as the W2 oscillated around the same values as in the model without those features. 
However, the process of finding the best network topology could be avoided when the 

drop-out method was incorporated. The drawback of such a method is the need to use 
bigger network sizes, i.e. the ANN with 27-216-216-1 neurons and drop-out probabilities 

of 0.1 and 0.25 (for 1st and 2nd hidden layer units respectively) achieved the W2 of 0.758, 
which is close to the aforementioned 27-9-39-1 ANN without the dropout. Even if 
seeking the most effective topology is not performed, the considered drop-out-based 



Hybrid optimization parameters tuning 

 76  
 

ANN has much more weights and biases to optimize, therefore the training process is 

greatly extended. The achieved coefficient of determination for validation data, 

for different topologies of 27 − ℎ61 − ℎ62 − 1 network for the ��� response is shown 

in Figure 5.2 (where ℎ6� represents number of neurons in the ¹th layer of the network). 
Incorporation of the normalization in the ANN, i.e. replacement of the linear unit with 
a sigmoidal activation function in the output layer, yielded almost the same results as 

the cheaper-to-evaluate ANN with the linear unit. 

 

Figure 5.2. The average validation data W2 for different network topologies      
(ReLU neurons in both hidden layers and linear output neuron) 

The choice of the algorithm optimizing weights and biases of the network greatly 

influence the training time and achieved W2. The algorithms described in Chapter 3.2.4 
were used to perform the ANN training. The one found as the most efficient was the 

L-BFGS quasi-Newton algorithm, and the convergence of the ANN training is shown 

in Figure 5.3Figure 5.3. ANN training for the ��� response. Even though the resultant 
values of the coefficient of determination were very similar among the aforementioned 

algorithms, the L-BFGS was able to train the network in 50-100 epochs, while the 
NADAM and SGD algorithms required 2000-8000 and 8000-16000 epochs respectively. 

The training process was repeated for different hyperparameters values, like the 

learning rate (1, momentum (2, decay, etc., and the highest W2 among different 
algorithm hyperparameters values was reported for a particular network topology.  

 The size of the training set played also a significant role in the process, as firstly – 
the training takes more time (especially for the Kriging method) once the number of 
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training samples grows. Secondly, the quality of all metamodels decreased with the 

lower number of samples. Yet the ;ï\\ response achieved only a negligible drop in 

surrogates performance (~2%). The ��� response, on the other hand, showed high 

sensitivity to the number of training samples, as the W2 dropped 9%-13% for both 
examined metamodels when the smaller dataset was used for the training. 

 

Figure 5.3. ANN training for the ��� response [95] 

Each of the metamodel training processes was repeated 10x times, as the initial 

weights and biases in ANNs, and initial theta values in the Kriging, are chosen 
randomly. Therefore, as the model fitting process is dependent on the starting values, 

different results were obtained, even though deterministic algorithms were used to find 
the optimal weights, biases, and thetas. The best-fitted model, among all the repetitive 
iterations, was reported for a particular network topology or Kriging model.  

Two surrogate models are described in this chapter, i.e.: 

• ANN with 2 hidden layers for ��� response, and  

• anisotropic Kriging for the ;ï\\ response 

were used to mimic the behavior of the nonlinear FEM analysis, in which the shape of 

the bracket was modified, according to the given RBF knots scale factors \�. Therefore, 

once the 27-knot values (\�) were given, a ;ï\\ of the bracket and the force at the loss 

of shock absorber stability ��� could be calculated in a fraction of a second. Such 

a combination of surrogate models could be used to perform the tuning of the hybrid 
optimization algorithm parameters. 
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5.2. Hybrid optimization algorithm parameters definition 

The proposed hybrid optimization algorithm has 9 parameters in total that can be 
tuned to achieve the highest efficiency. Current research papers highlight that the 
choice of the appropriate degree of crossover and mutation operators should be an 

essential part of the research in the field of evolutionary optimization [52]. Most of 
those parameters are associated with genetic operators, however, two of them concern 

penalty function. If all of those parameters were tuned together, the Box-Behnken 
sampling plan would consist of 130 parameter combinations. To reduce the size of the 
RSM design plans, the study (parameter tuning) was divided into two steps.  

The aim of the first stage was to optimize the common genetic operators associated 
with both versions of genetic algorithms (multi-island and single population GA) – 
crossover, mutation, and number of individuals in the population. Also, the penalty 

function parameters were included in this study, as the level of penalization directly 
influences the chance of infeasible designs being used as parents for further generations 

in both of the considered evolutionary algorithms. As the total number of objective 
function calls in the proposed algorithm was fixed to 1600 for the GA, one parameter 
(referred to as Population ratio) was sufficient to describe the resultant structure of 

the population, as shown in (5.2)-(5.3): 

W>S> = 6<6¹6l 6<67·6·¸  (5.2) 
6<67·6·¸ = √1600 W>S> (5.3) 

The list of the tunable parameters and their ranges of variability for the first stage 

of the RSM DOE is shown in Table 5.2. 

Table 5.2. Parameters for DOE performed on single population GA and EVOL [95] 

 

The aim of the second stage was to optimize four genetic operators associated 

strictly with the multi-island version of the GA, as listed in Table 5.3. The structure 
of the total population is a function of two variables, as having fixed 1600 objective 
function calls, only two out of three parameters could be mutually exclusive, as shown 

in (5.4).  6<6¹\ð ∗ 6<6¹6l ∗ 6<67·6·¸ = 1600 (5.4) 
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The other (common) genetic operators, as well as the penalty function parameters, 

were held fixed on the levels resulting from the first study.  

Table 5.3. Parameters for DOE performed on multi-island GA and EVOL [95] 

 

Therefore, instead of 130 parameter combinations, the two-stage RSM DOE 
approach resulted in 73 parameter combinations – 46 for the first stage, and 27 for the 
second stage. The ranges of variability for the parameters were adjusted based on 

literature studies [40]. All of the analyzed parameters maintained constant during 
a single operation of the algorithm (no adaptive formulations were included). 

Due to the stochastic nature of the evolutionary optimization, each of the hybrid 

algorithm runs with adjusted parameters (according to the RSM DOE design points) 
was repeated 10 times, and the average best individual was reported. The response of 

each of the parameters combinations was then used to optimize the hybrid algorithm 
parameters using the RSM. The coefficients of determination for both fitted fully-
quadratic response surfaces are 0.88 and 0.82 for the single- and multi-population 

version of the hybrid algorithm respectively.  

 

5.3. Hybrid optimization algorithm parameters tuning 

Once the polynomial regression surfaces are fitted to the provided data, the 
influence of each parameter or its interactions with other parameters is directly visible 

from the polynomial coefficients vector a. As the fully-quadratic model is used, the 

nonlinear response may be reflected during data analysis, i.e. it could be visible which 
of the hybrid optimization algorithm parameters causes the major impact on the 

bracket mass minimization capabilities and what is the nature of this input-output 
relation. 

The analysis of the main effects plot (for averaged responses) from the first study 

(Figure 5.4) shows, that the rate of mutation QFG>?I has the most significant influence 

on the final value of the objective function. Not only the influence is significant in terms 
of observed impact on the objective function, but it is also strongly nonlinear. 

The parameters associated with the penalty function show a nonlinear influence on the 
performance of the hybrid optimization algorithm, but their impact is lower than the 
one from the mutation rate, yet still important. Surprisingly, the influence of the 



Hybrid optimization parameters tuning 

 80  
 

population parameter W>S> (ratio between individuals and generations) and the 

crossover rate QFG@A is statistically insignificant for the considered case. 

 

Figure 5.4. The main effects plot for the hybrid optimization using single-population 
GA+EVOL [95] 

The effects of the penalty functions are not as widely studied in the literature, 
as the genetic operators. However, in the study performed for the proposed hybrid 
optimization, the penalty function not only showed a significant impact on the objective 

function but also the interactions between penalty parameters proved to be strong and 
nonlinear. The dependency between the penalty multiplier and penalty exponent and 

their impact on the final objective function value is shown in Figure 5.5. While 
increasing the penalty multiplier, the opposite trend may be observed when the penalty 

exponent is changed from ?A = 1 to ?A = 3, i.e. ?A = 1 showed decrease in the final 

objective function with an increasing penalty multiplier ?�, while ?A = 3 showed 
increase in the final objective function. Therefore, the choice of one of the penalty 

parameters should not be performed without consideration of the second parameter. 
Penalty function parameters are the only two parameters directly influencing the 
behavior of both – the GA and the EVOL.  

 
Figure 5.5. The interaction plot for the penalty function parameters [95] 

 As the response surface method utilize the full-quadratic polynomial regression 
model, finding the minimum value of the five-variable function can be performed 
efficiently and precisely. The outcome of such optimization is shown in Figure 5.6. 
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The resultant, tuned parameters of the hybrid algorithm form a genetic algorithm with 

a single population of 6FG_��M = 16 individuals, reproduced over 6FG_NA�AO = 100 

successive generations, with the probability of the individual crossover QFG_RS = 0.5 and 

probability of the gene mutation QFG>?I = 0.059. The penalty function is strongly 

nonlinear, with the multiplier ?� = 10 and exponent ?A = 3. 

 

Figure 5.6. The optimal values of the considered parameters for the hybrid 
optimization algorithm with single population GA + EVOL [95] 

To verify the correctness of the tuned parameters, the metamodel-based hybrid 
optimization was rerun with the adjusted values (as per Figure 5.6). This optimization 
was as well repeated 10 times to include the immanent randomness associated with the 

nature of bio-inspired algorithms. The convergence of the algorithm is shown in Figure 
5.7. For clarity purposes, the objective function (mass) is shown as a function of the 

number of individuals (objective function calls), instead of the number of generations. 
The dashed vertical line represents the transition between the genetic algorithm and 
evolution strategy, while the blue dashed line represents the average objective function 

(from the analyzed 10 runs). The resultant mass of the average best individual was 
0.332 after 100 generations of the genetic algorithm and furtherly reduced to 0.294 after 
100 generations of evolution strategy (each consisting of 4 individuals).  
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Figure 5.7. The convergence of the hybrid optimization after tuning – the single 
population version of the algorithm 

All of the aforementioned tuned parameters, besides the population ratio, are 

then used in the second stage of the RSM optimization. The first parameter – 
population ratio – is not used, as the multi-island version of the GA consists of different 

structures of the population. 

The hybrid algorithm with the multi-island version of the genetic algorithm was 
analyzed in terms of the main effects, as shown in Figure 5.8. The only parameter that 

was found to be statistically significant, was the number of islands 6FGHUV. Yet the 

number of generations, migration rate, and migration interval again showed a nonlinear 
impact on the final objective function value. The number of islands (autonomous 
populations) had the highest impact on the observed optimization capabilities, with 

fewer islands resulting in better optimization capabilities. Even though the number of 
islands showed the highest impact on mass minimization capabilities, its influence was 
found to be almost linear.  

 
Figure 5.8. The main effects plot for the hybrid optimization using multi-island 

GA+EVOL [95] 
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Again, strong interactions between parameters were found. Two of the 

statistically significant ones were highlighted with red borders in Figure 5.9.  

 

Figure 5.9. The interaction plot for the multi-island genetic algorithm parameters [95] 

Firstly, the number of islands and the migration rate showed mutual impact, 

where a high migration rate QFG_��NO occurred to be more effective for two islands, 

while a low migration rate was more effective for a higher number of autonomous 

populations. Secondly, the interaction between the migration interval 6FG>HBI and the 

number of generations 6FGCJBJK showed the opposite trends when the extreme values 

of the parameters were analyzed. For a multi-island genetic algorithm with a relatively 

low number of generations (6FGCJBJK = 40), frequent migration occurred to be efficient. 

On the other hand, for populations consisting of a small number of individuals, yet 

including a high number of generations (6FGCJBJK = 100), less frequent migration 

provided higher optimization efficiency.   

Similarly to the hybrid algorithm with single-population GA, the parameters of 
the hybrid algorithm with multi-island GA and EVOL were tuned by the RSM 

optimization process. In this case, all of the analyzed parameters were fixed at one of 

their extreme values. The optimal set of the algorithm consisted of 6FG_��� = 2 

autonomous islands, 6FG_NA�AO = 40 generations and migration rate QFG_��NO = 0.2 

performed in intervals of 6FG_��N��� = 4 generations. 



Hybrid optimization parameters tuning 

 84  
 

 

Figure 5.10. The optimal values of the considered parameters for the hybrid 
optimization algorithm with multi-island GA + EVOL [95] 

 Again, the MIGA-based hybrid algorithm with tuned parameters was run 10 

times to verify the impact of the adjusted parameters on the algorithm optimization 
capabilities. The convergence is again shown as a function of the number of individuals 

(or the number of objective function calls) in Figure 5.11. After the GA phase, 
consisting of 40 generations, the average objective function value was 0.333. Subsequent 
100 generations of the evolution strategy (each consisting of 4 individuals) furtherly 

reduced the objective function to 0.285. 

 

Figure 5.11. The convergence of the hybrid optimization after tuning – the multi-
island version of the algorithm 

 The last part of the study was the verification of the genetic algorithm 

performance without the local search performed by the evolution strategy in order to 
justify the algorithm hybridization. To maintain the same number of allowable 

objective function calls, the operation of the genetic algorithm was extended from 
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6FG_��AO = 1600  to 6FG_��AO = 2000. The study was performed for both – the single-

population GA and the multi-island GA. With the additional 400 function calls, the 
GA could utilize either additional individuals in the populations or additional 

generations to compensate for the lack of an evolution strategy. The metamodel-based 
optimization of all considered combinations was performed, with 10 repetitions of each 
combination. The results are shown in Figure 5.12, where the dashed lines represent 

the average objective function from the 10 repeated runs. The structure of the 
particular genetic algorithm is described symbolically, i.e. in the form of 

6FGHUV. 6FGHB� . 6FGCJBJK .  

 

Figure 5.12. Genetic algorithm with 2000 objective function calls – average 
convergence from four runs with different structures of the population 

The comparison of the average best individuals from each of the algorithms is 

shown in Table 5.4. It is clearly seen that the objective function value (the mass of the 
bracket) is the lowest for the proposed hybrid algorithm. The differences between the 
average of 10 runs for a hybrid algorithm incorporating a single population and a multi-

island genetic algorithm are barely noticeable. On the other hand, the average best 
individuals coming from the application of solely genetic algorithm have higher mass 
and higher spread in the results.  
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Table 5.4. Average best individuals for different algorithm properties 

 

The genetic algorithm with a single population (SPGA) performed better when 
more individuals were added to the population. On the other hand, the multi-island 

version of the genetic algorithm (MIGA) converged to the lower objective function 
value when more generations were included in the evolution of the population. 
Those observations might lead to the conclusion, that the SPGA is underpopulated, 

yet with sufficient steps of evolution (generations), while the MIGA, which incorporates 
more randomness in the design search (multiple populations, more individuals), on the 
contrary, has an insufficient number of generations that allow the individuals to cross 

and mutate. Those inferences are strictly connected to the constraint of having 
only 2000 objective function calls, which is severely limiting the allowable evolution of 

the population, yet it is constrained by the allowable algorithm execution time.  
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6. Shock absorber optimization methodology – implementation 

examples 

Two industrial examples were used to verify the ability of the proposed optimization 

methods and algorithms to minimize the mass of the automotive shock absorber while 
fulfilling the constraint related to the system stability. Both examples were verified 
using the spatial LSM and the projection method, as well as metamodel-based 

optimization.  

 

6.1. Optimization of the passive shock absorber 

The first example concerned the passive shock absorber design that was used in the 
previous chapters to present the general optimization methodology. The subsequent 

chapters contain model information, two methods of solution (optimization), and 
verification of the chosen design using the final shape of the part, after the adjustment 
and smoothing using CAD software. 

 

6.1.1. The passive shock absorber model 

The geometry of the passive shock absorber was presented in Figure 4.1. 
The shock absorber consisted of three major structural parts that are included in the 
analysis: the lower bracket (the aim of the topology optimization), the tube, and the 

rod. For all of those components, the elastic-plastic material behavior with hardening 
was assumed. The maximum force that the structure was able to withstand (having 

the material allocated within the whole design space) without losing stability was 

normalized to 1.0. The ������ for the considered case was 0.833. The mass of the total 
allowable design space was also normalized to 1.0, while the aim of the optimization 

was to minimize the mass of the bracket while fulfilling the structural and 
manufacturing constraints. Both responses, similarly to other quantities presented in 
previous chapters, were normalized to avoid the order-of-magnitude differences in 

fitness function calculations, like mass [kg] and force [N], which differ in magnitude by 
a factor of ~50 000. On top of that, normalization is suitable for maintaining business 

confidentiality.  

 

6.1.2. Topology optimization - spatial LSM 

The first topology optimization was done using the spatial version of the level 
set method. The interpolation knots distribution was realized as shown in Figure 4.6 
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(with 3x3x3 knots in X, Y, and Z directions). Each design variable (radial basis function 

scaling factors) was also normalized to a range of [0,1]. Both hybrid algorithms were 
used in the optimization to verify their performance – one with a single population 

(SPGA hybrid algorithm) and the second with a multi-island implementation of the 
genetic algorithm (MIGA hybrid algorithm). All of the genetic operator parameters as 
well as penalty function parameters are the result of the tuning process shown in 

Chapter 5.3. 

Both SPGA and MIGA-based hybrid algorithms were run 3 times to explore the 
randomness of the search. The convergence of those algorithms, as well as the average 

response of each of those algorithms, are shown in Figure 6.1. In the considered 
example, the difference between SPGA and MIGA average resultant mass was 0.4% 

after the genetic algorithm operation, and 1.7% after the evolution strategy. 
The MIGA-based optimization achieved the lowest final mass of the bracket and was 
also more efficient on average. 

 

Figure 6.1. The convergence of the hybrid optimization algorithm – spatial LSM for 
the passive shock absorber constrained mass minimization 

 The evolution of the shape during the ß_u¸¹l !?<61 optimization is shown in 
Figure 6.2. The first 7 shapes represent the evolution during the genetic algorithm 

operation, while the last two shapes reflect the changes induced by the evolution 
strategy. Only the individuals fulfilling the stability constraint are shown. The yellow 
areas of the bracket are non-design areas, i.e. the attachment of the tube (welding zone) 

and the attachment of the lower bushing. 
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Figure 6.2. The evolution of the bracket topology – ß_u¸¹l !?<61 run 

The evolution of the shape during the ß_u¸¹l ;D<61 optimization is shown in 

Figure 6.3: 

 

Figure 6.3. The evolution of the passive shock absorber bracket topology – ß_u¸¹l ;D<61 run  

This time, the first 5 shapes reflect the changes induced by the genetic algorithm, 

while the last 4 are the effect of the evolution strategy operation. 
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6.1.3. Topology optimization - projection method 

The second method of optimization that was used to minimize the mass of the 
bracket while fulfilling the stability constraint was the projection method. However, the 

simplicity of this method allowed for the implementation of efficient surrogate models, 
as with a limited number of objective function calls (needed to create the training and 

validation data), the metamodels were able to reflect the underlying simulation system 
precisely.  For a considered case of the passive shock absorber optimization, the mass 
minimization was performed solely with the Kriging surrogate models to predict the 

;ï\\ and ��� design responses. The reason for the choice of the Kriging instead of 
ANN is the lack of need for finding the optimal topology of the ANN, its activation 

functions, etc., with comparable efficiency in prediction.  

Three sets of data were used to verify the metamodel prediction quality: 4 400, 
1 100, and 275 samples, each consisting of two separate OLHS sampling plans with 

a 4:1 ratio between training and validation data (as described in Chapter 5.1). 
The coefficients of determination (for validation data) of the resultant Kriging models 
after the fitting process are shown in Table 6.1 for the aforementioned sampling plans. 

The sizes of the sampling plans were chosen to represent the same ratio between the 
number of variables and the number of samples as in the case of metamodels used for 

tuning hybrid optimization algorithm parameters.   

Table 6.1. The coefficient determination for Kriging (validation data) for various 
sampling plan sizes – passive shock absorber optimization 

 

The Kriging ��ï. predictions vs target data (for training and validation data 
sets) for the max and min sampling plans are shown in Figure 6.4. The coefficient of 
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determination for the training data is equal to 1.0, as the Kriging interpolates the data, 

so all of the training points are reflected precisely. 

 
Figure 6.4. The Kriging prediction - ��� – for 4 400 and 275 samples used for OLHS 

– passive shock absorber optimization 

 The optimization was done using the same hybrid algorithm that was used in 

the case of the spatial LSM. The results of the optimization are shown in Figure 6.5. 
The algorithm converges quicker compared to the plots from the spatial LSM 

optimization. Also, the spread between runs is lower compared to the more 
sophisticated, spatial variant of the optimization method.  

 

Figure 6.5. The convergence of the hybrid optimization algorithm – projection 
method for the passive shock absorber constrained mass minimization 

The projection method was not able to outperform the spatial LSM in terms of 

the best-fitted individuals, even though the average best-fitted individual for 

ß_u¸¹l !?<6 had a lower final mass compared to the spatial LSM counterpart. 
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From all of the obtained results, the ß_u¸¹l ;D<6 optimization incorporating the 

spatial LSM was most efficient in the constrained mass minimization. 

 

6.1.1. Verification of results 

The result of the optimization is a FEM model with coarse edges and geometrical 

imperfections, coming from the hard-kill optimization method and passable resolution 
of the contour, resulting from the used FEM discretization. In order to verify if the 
shape of the real bracket obtained using the proposed method was fulfilling the strength 

requirements, the CAD model was created based on the best individual from the 

ß_u¸¹l ;D<61 spatial LSM optimization. The CAD model was closely reflecting the 

obtained FEM model, with adjustments to the manufacturing details that were not 
reflected precisely in the FEM model (transition radii, member size, curvature, etc.). 
The comparison of the CAD and FEM models is shown in Figure 6.6. The shapes of 

the non-design areas (such as the lower part of the braces or the upper attachment 
with the tube) were adjusted to match the optimal layout of the bracket.  

 

Figure 6.6. The comparison between the CAD and the FEM models – passive shock 
absorber after topology optimization 

The same boundary conditions were used as in the optimization analysis, yet the 
shock absorber model was more detailed. The lower connection was changed from rigid 

to deformable body, the rod with a piston were modeled using 3D solid elements and 
the spring characteristic was nonlinear. Firstly, the load-deflection response of the 
system was measured, as shown in Figure 6.7a. Once the shock absorber was preloaded 

(lower bushing assembly loads and spring preload), the jounce bumper load was added 
incrementally. This part of the analysis was displacement-driven, so the reported total 
axial load was a sum of the jounce bumper reaction force and the axial component of 

the applied spring load. The shape of the deformed system is shown in Figure 6.7b, 



Shock absorber optimization methodology – implementation examples 

 93  
 

where the areas of plastic deformation were visualized in the cross-section 

(perpendicular to the direction of the least lateral stiffness). 

 

Figure 6.7. The simulation results of the optimized passive shock absorber: 
a) the load-deflection curve, b) normalized plastic strain distribution under max 

deformation  

The maximum compression force before losing stability was ��� = 0.886, so 6% 

above the ������ requirement. The analysis of stress and strain distribution over the 
shock absorber showed that the failure mode of the system was the tube, which was 

not part of the topology optimization, yet its strength is directly linked to the stiffness 
of the lower bracket (that is why changes in bracket material layout affected the 

constrained force ��� during the optimization). The overview of the normalized von 

Mises stress distribution for ������ and for ���  is shown in Figure 6.8. For the ������ 
load case, the plastic deformation starts to arise through the thickness of the 

compressed side of the tube. At the same time, localized plastic deformation is observed 

in the most out-of-axis cross-section of the bracket. For the ��� load case, the stress 

distribution over the bracket is almost the same as for the ������ load case, however, 
the plastic deformation at the tube level spread significantly, both – through the 
thickness and along the height of the tube. 
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Figure 6.8. Normalized von Mises stress [-] distribution over the passive shock 
absorber tube and the bracket: a) at the ������ load, b) at the ��� load 

The stress measured at the bracket and at the tube was higher than the yield stress 

of the respective materials used for those components in both – the ������ and ��� 
cases. Such a situation is desired, as the shock absorber may function correctly before 
the stability is lost, and the levels of plastic strain are below 6% of the total strain 

measured at the ultimate strength of the material, so the risk of material failure is 
considered to be negligible. The reason for losing stability is the behavior of the tube – 

the effect of the plastic hinge is observed at the cross-section in the height of maximum 
stress of the tube. Therefore the proposed passive shock absorber design was considered 
to be successfully optimized in terms of mass while fulfilling the stability constraint. 
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6.2. Optimization of the semi-active shock absorber 

The second example of the proposed methodology was the semi-active shock 
absorber, which despite having the same role in the suspension, has a different structure 
compared to its passive counterpart.  

 

6.2.1. The semi-active shock absorber model 

The semi-active shock absorber that is subjected to mass minimization with 
stability constraint is shown in Figure 6.9. The grey part is the lower bracket, which is 
connected with the chassis via the bushing, similarly to the passive shock absorber, but 

it is connected with the tube by torqued thread connection instead of welding. All of 
the structural components are described using elastic-plastic material law with 

hardening.  

 
Figure 6.9. The model of the semi-active shock absorber 
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The same type of loading conditions are present as in the case of the previous 

example: assembly loads (modular spring and bushing bolt pre-loads) are applied before 
the incrementally increased jounce bumper axial load is applied to the shock absorber. 

The maximum force that the structure was able to withstand (having the material 
allocated within the whole design space) without losing stability was normalized to 1.0, 
the same as for the example described in Chapter 6.1. The constraint associated with 

minimum force at the loss of stability (������) was 0.846. The mass of the total 
allowable design space was again normalized to 1.0. 

 

6.2.2. Topology optimization - spatial LSM 

The first topology optimization was done, similarly to the previous chapter, 

using the spatial version of the level set method. The same interpolation scheme was 
used (with 3x3x3 knots in X, Y, and Z directions). All of the optimization parameters 

(genetic operator values, number of objective function calls) were exactly the same as 
in the previous study. The only difference is the constant scaling factors 

67	8 ,97	8 , �7	8  from (4.6), which were adjusted to the size of the new part (design 

space). 

The convergence of the proposed hybrid algorithms, as well as their average 
response, are shown in Figure 6.10: 

 
Figure 6.10. The convergence of the hybrid optimization algorithm – spatial LSM for 

the semi-active shock absorber constrained mass minimization 

In the considered example, the difference between SPGA and MIGA average 
resultant mass was 3.8% after the genetic algorithm operation, and 1.9% after the 
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evolution strategy. In the case of a semi-active shock absorber, the SPGA-based 

optimization achieved the lowest final mass of the bracket and was also more efficient 

on average. The bracket shape evolution shape during the ß_u¸¹l ;D<61 optimization 

is shown in Figure 6.11: 

 

Figure 6.11. The evolution of the semi-active shock absorber bracket topology – ß_u¸¹l ;D<61 run  

The first six shapes represent the evolution during the genetic algorithm 
operation, while the last three shapes reflect the changes induced by the evolution 

strategy. Similarly to the passive shock absorber bracket, the front part of the semi-
active shock absorber bracket was mostly affected by the material removal, as its 
contribution to bending resistance was less significant compared to the rear part of the 

bracket. Additionally, the evolution strategy enabled to form a cavity between the 
braces, which has a similar form to the one seen in the previous example.  

 

6.2.3. Topology optimization - projection method 

The second method of optimization that was used to minimize the mass of the 

semi-active shock absorber bracket while fulfilling the stability constraint was the 
projection method. Again, due to the simplicity of this method, the Kriging-based 

surrogate modeling was used for optimization purposes. The same sizes of sampling 
plans were verified for their ability to create representative metamodels. The resultant 
coefficients of determination for the considered sampling plans are shown in Table 6.2. 

This time, the desired accuracy of the ��� prediction was maintained only for the 
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biggest sampling plan. The degradation of the W-2  for ��� response was observed for 

the medium and smallest of the sampling plans, while the W-2  for the ;ï\\ response 
maintained at acceptable level for all of the analyzed plans. 

Table 6.2. The coefficient determination for Kriging (validation data) for various 
sampling plan sizes – semi-active shock absorber optimization 

 

The Kriging ��� predictions vs target data (for training and validation data 
sets) for the max and min sampling plans are shown in Figure 6.12. The scatter 

in the ��� prediction for the validation samples is higher compared to the passive 
shock absorber bracket case (Figure 6.4), which is especially seen in the region of 

reduced strength (��� values below 0.5). 

 

Figure 6.12. The Kriging prediction - ��� – for 4 400 and 275 samples used for 
OLHS – semi-active shock absorber optimization 

The constrained mass minimization was performed using previously described 
versions of the hybrid algorithm. The optimization of the semi-active shock absorber 
bracket using metamodeling again converged faster compared to the spatial LSM, yet 

the convergence was not as sudden as in the case of the passive shock absorber example. 
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Figure 6.13. The convergence of the hybrid optimization algorithm – projection 
method for the semi-active shock absorber constrained mass minimization 

This time, the average result from the MIGA-based projection method 
optimization was lower compared to the spatial LSM counterpart, with 0.429 vs 0.438 

mass after optimization. Similarly to the passive shock absorber optimization, 
the lowest achieved mass value after optimization was observed for the hybrid 
algorithm incorporating the spatial LSM, yet in the semi-active shock absorber case, 

it was achieved using the hybrid algorithm with single population GA instead of 
multi-island GA. The evolution strategy in the semi-active shock absorber optimization 

utilizing the projection method brought minor improvement in the designs, with less 
than 1% of mass reduction over 400 objective function calls. 

One of the main threats associated with metamodel-based optimization is the 

possibility of constraint violation due to the limited accuracy of the surrogates 
(approximated response). In most of the best-fitted individuals from the 

metamodel-based projection method optimization, the stability constraint was not 
fulfilled once the FEM analysis was run using the optimized design variables. 
Even though the magnitude of violation was moderate, additional FEM-based 

optimization was needed to resolve the premature loss of stability of the semi-active 
shock absorber. Therefore, in such cases, the hybrid optimization incorporating 

a metamodel-based genetic algorithm coupled with a FEM-based evolution strategy 
may be used to resolve the problem of constraint fulfillment, as the necessary design 

variables changes are limited and well-handled by the local search (1 + 	) ��. 
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6.2.4. Verification of results 

To verify if the optimized shape of the semi-active shock absorber bracket is indeed 
fulfilling the design requirements using real geometry, the CAD model was created 

based on the best individual from the ß_u¸¹l ;D<61 spatial LSM optimization. 
The CAD model was closely reflecting the obtained FEM model, with minor 

adjustments needed to maintain the manufacturing feasibility and smoothness of the 
final part. The comparison of the CAD and FEM models is shown in Figure 6.14. 
The shapes of the non-design areas (such as the lower part of braces or the transition 

between the bracket body and the tube cavity) were adjusted to match the optimal 
layout of the bracket, assuring a lack of sharp or uneven transitions between adjacent 

surfaces.  

 
Figure 6.14. The comparison between the CAD and the FEM models – semi-active 

shock absorber after topology optimization 

 The model was verified using the same boundary conditions as in the 

optimization analysis, but again the shock absorber and the analysis were more 
detailed, as described in Chapter 6.1.1. Additionally, the connection between the tube 

and the bracket was modeled using contact interaction, therefore the stiffness of this 
connection could decrease under severe bending loads (as the contact interaction cannot 
transfer tensile loads when subjected to bending).  
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The first verified simulation output was the load-deflection response of the 

system, as shown in Figure 6.15a. Once the shock absorber was preloaded (lower 
bushing assembly loads, spring preload, and tube tightening), the jounce bumper load 

was added incrementally. The shape of the deformed system is shown in Figure 6.15b, 
where the areas of plastic deformation were visualized in the cross-section 
(perpendicular to the direction of the least lateral stiffness). This time, the plastic 

deformation was visible almost solely within the bracket, with the tube stressed below 
its yield stress. 

 
Figure 6.15. The simulation results of the optimized semi-active shock absorber: 
a) the load-deflection curve, b) normalized plastic strain distribution under max 

deformation 

The maximum compression force before losing stability was ��� = 0.915, so 7% 

above the ������ requirement. The analysis of stress and strain distribution over the 

shock absorber showed that the failure mode of the system was the lower bracket. 

The overview of the normalized von Mises stress distribution for ������ and for ���  
is shown in Figure 6.16. For the ������ load case, the plastic deformation is observed 

for both the compressed and tensioned part of the bracket cross-section. Those plastic 

strain areas propagate until ��� load is reached, and no additional load can be 

transferred by the system. The plastic strain at the tube is localized to the diameters 
transition only, and associated with the notch generated by that transition. 
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Figure 6.16. Normalized von Mises stress [-] distribution over the semi-active shock 
absorber tube and the bracket: a) at the ������ load, b) at the ��� load 

The reason for losing stability in the case of the semi-active shock absorber is the 

behavior of the bracket – the effect of the plastic hinge is observed at the cross-section 
at the height of the maximum drive shaft cavity. In contrary to the passive shock 

absorber, the transition between the beginning of plastic deformation, through the 

������ until the ��� is gradual. However, as the bracket is the main contributor to the 
failure of the system, it could explain why the metamodel training required more 

samples to achieve the desired prediction accuracy; in the passive shock absorber, the 
stiffness of the bracket was the main factor driving the strength of the system, however, 

in the semi-active shock absorber case, the plastic behavior of the bracket is the 
dominant factor. Stiffness is easier to predict, as it is a function of geometry, while the 
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plastic deformation is dependent on both – the geometry and the post-yield material 

behavior (the stress redistribution over the critical cross-section is not linear). 
Nonetheless, performed analyses showed that the proposed semi-active shock absorber 

design could be considered as successfully optimized in terms of mass while fulfilling 
the stability constraint. 

 

6.3. Results summary 

The constrained mass minimization examples shown in the previous section were 
solved using SPGA and MIGA-based hybrid algorithms, by means of either FEM or 

metamodeling techniques. The summary of all results is shown in Table 6.3, with the 
best and the average best individuals among the passive and semi-active shock absorber 
optimization highlighted in bold font. In all of the analyzed cases, the algorithms 

utilizing the spatial LSM were able to achieve the lowest mass among all combinations, 
regardless if the minimum or the averaged results were taken into consideration. 

However, the projection method achieves a lower spread in the final mass of the 
optimized components and usually converges quicker compared to the spatial LSM 

counterpart. In the majority of the analyzed examples, utilization of the evolution 
strategy (with 400 objective function calls) helped to reduce furtherly the objective 

function (;ï\\), even if marginal or no improvement was observed among the last 400 

iterations of the genetic algorithm. That ultimately confirms the effectiveness of the 
GA & EVOL combination, regardless of the utilized type of the GA. 

Table 6.3. The summary of optimization results 

 

 The conducted full-scale, detailed FEM analyses confirmed that the obtained 

topologies (after hybrid optimization) were able to fulfill the strength requirements 
regarding the shock absorber stability in complicated loading conditions. Even though 

different components were causing the failure of the system (associated with the plastic 
hinge phenomenon), the moment of failure resulted from the mutual interactions 
between the strength and stiffness of the considered structural components, among 

which the optimized bracket played a crucial role in assuring the desired stability. 
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For the passive shock absorber, the failure was associated with the material plastic flow 

propagating through the thin wall of the slender tube, with the bracket operating 
mostly within elastic strain limits. The load-deflection characteristic showed a sudden 

drop in the system stiffness in the vicinity of the ���, associated with the 
aforementioned cross-sectional plastic deformation. Any sudden changes in structural 
behavior are usually undesired, yet they are hard to overcome without significant design 

changes. Here, the optimized bracket allowed the structure to behave almost linearly 
through the whole operational load range and the failure occurred after the required 

������ was achieved. Such a situation is quite different from the semi-active shock 
absorber case, which utilizes less slender profiles, yet lower-strength materials. 

The optimized geometry of the bracket was sufficiently strong to withstand the ������ 
requirement, yet the failure mechanism was strictly associated with the cross-sectional 
plastic deformation of the bracket instead of the tube. The transition between the linear 

(elastic) operating region and the peak of the load-deflection curve was smooth, and so 
was the post-buckling behavior, which is again opposite to the passive shock absorber 
case.  

 In both of the examined examples, the resultant bracket topologies consist of 
a cavity occurring in between the braces. This may seem counter-intuitive, as the 
material is removed from the area that is subjected to bending during the assembly 

process. However, during the bracket assembly loading step, the lower bushing 
(consisting of a simplified bolt and sleeve) is pre-tensioned with a certain load, that 

aims to generate the friction between the bushing components and the bracket. To do 
so, firstly the gap between the assembly clearance between the sleeve and the braces 
must be resolved. This results in minor (yet noticeable) brace bending which is 

a function of the clearance magnitude. Therefore, it can be treated as kinematic loading 
which is only required to close the given assembly clearance (gap). In such a case, high 
compliance (low bending stiffness) of the braces is desirable, in order to avoid excessive 

bending resistance which contributes to additional stress in the structure and reduces 
the resultant friction force in the bushing connection (as the pre-tensioning force is 

unnecessarily spent on bending).  

The fitting of the Kriging model (based on the OLHS plans) enabled to see the 

contribution of specific parameters (RBF scaling factors �� in both methods and 

braces-related cavity parameters in the projection method). The most important insight 

was the fact, that there are no parameters that could be easily excluded to perform 
dimensionality reduction. This could be anticipated, as both proposed methods are 
based on the global-range RBFs (either auxiliary field in spatial LSM or contour curves 

in the projection method).
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7. Summary 

This chapter is divided into subsequent sections: 7.1 in which the conclusions 

regarding the proposed methodology are withdrawn, 7.2 which describes the 
implementation of the methodology within the company, and 7.3 which presents the 

planned, future research directions. 

 

7.1. Conclusions 

The work presented in this dissertation concerns the problem of automotive shock 
absorber mass optimization with consideration of the stability of the suspension system. 
As this problem is not trivial, multiple steps were necessary to take in order to finally 

propose an efficient optimization method.  

Firstly, the method of numerical analysis capable of capturing all of the nonlinearity 
sources was chosen. The finite element method utilizing the Newton-Raphson method 

for solving the force-driven, nonlinear static strength problem was incorporated in the 
research. This type of method is able to capture the peak of the load-bearing capacity 

within a very small tolerance (e.g. 0.01%) without the drawbacks of either the 
Riks method (also known as the Arc-length method) or the displacement-driven 
N-R method. The FEM simulation allowed to measure two desired outputs, that were 

then used for optimization purposes – the total mass of the considered component 

(;ï\\) and the maximum load that can be transferred by the shock absorber without 

losing the stability (���). 

Secondly, two methods of topology and shape modifications were proposed. The first 
of those methods, referred to as the spatial Level-Set Method, is able to generate any 

arbitrary form of the optimized body within the given resolution. One of the crucial 
steps was to find the perfect balance between the anticipated resolution of the method 

and its complexity (type and number of variables). The resultant setting of the method 
consisted of 27 variables, all of which were the scaling factors of the radial basis 
functions. Other variables, such as the threshold value, position of the RBF centers, or 

type of the RBF were fixed on constant levels based on the conducted studies. 
A dedicated filtering routine was developed to assure the manufacturability of the 
optimized components. During each iteration of the optimization, the final topology of 

the considered component was iteratively scanned, and infeasible areas were adjusted 
based on the assumed forging direction. The manufacturability was realized on the cost 

of additional optimization complexity, i.e. the nonlinear relation between the design 

variables (RBF scaling factors) and design outputs (���,;ï\\) got even more 
nonlinear. The second of the proposed topology and shape modification methods was 
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the projection method, in which the common volume of two perpendicular plane 

projections formed the final body of the structure. Again, the RBF-based type of field 
description was utilized to affect the resultant shape. This method utilized 22 

parameters, with 20 directly responsible for the external contours of the projections 
(2 contours with 5 RBFs per side) and 2 parameters responsible for the cavity in 
between the braces. Contrary to the spatial LSM, this method did not utilize any 

additional filtering routine, as the projection itself assures that the resultant shape is 
forgeable. The projection method is a simpler method, as the resultant design freedom 

is reduced by the capabilities of the perpendicular projections. However, the resolution 
of the contour is slightly higher compared to the spatial LSM. 

Thirdly, the hybrid optimization algorithm was proposed, which consists of the 
genetic algorithm and evolution strategy realized consecutively. The motivation for 
such a combination was the global-search capabilities of the short-chromosome genetic 

algorithm and the local-search abilities of the evolution strategy, with both being 

well-suited for not smooth functions, such as ��� and ;ï\\ responses. The problem 

with the lack of smoothness is a result of the hard-kill element approach associated 
with the implemented version of the topology optimization method. The responses 
values change in a quantified way, i.e. they are constant over a small ranges of design 

parameters and change to another level once another finite element is added or 
removed. This phenomenon makes the usage of gradient methods (incorporating 
finite-difference calculations) inefficient. What is more, the proposed hybrid algorithm 

does not require any prior knowledge about the shock absorber layout, as the initial 
individuals (initial population) are generated randomly, so there is no need for 

specifying the starting point for the optimization. The latter is the main drawback of 
other global and local-search techniques, such as Simulated Annealing, Hooke-Jeeves 
method, Nelder-Mead Simplex, or any of the gradient-based techniques. Even the 

multi-start approach utilizing the aforementioned methods (i.e. numerous different 
random individuals used as starting points for separate independent optimizations) 
does not guarantee achieving a better solution within the given optimization time limit 

than the proposed evolutionary-based hybrid optimization algorithm. On top of that, 
the proposed version of the hybrid algorithm was compared with a purely GA-based 

approach (without the local search) realized over the increased number of objective 
function calls (either by additional generations or by the increased size of the 
population) and outperformed it in every case.  

Furthermore, the efficiency of the proposed hybrid optimization algorithm was 
increased by the tuning process, which was realized by means of surrogate modeling. 
The reason for such a choice was the fact, that it was nearly impossible to verify all of 

the considered parameter combinations utilizing the costly finite element method. 
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Therefore, small, yet trend-representative sets of training and validation samples were 

generated using FEM simulations and then used to build the metamodels. 
Afterward, those models were called over 1.5 million times during the tuning process. 

Two types of surrogates were considered: interpolating Kriging and approximating 
artificial neural networks. Both of those models were built and tuned by the dissertation 
author using Python programming language and associated (freeware) site-packages. 

The choice of the models was based on the literature study of dominant and universal 
models used in engineering regression analysis and related fields of research. 
Both metamodel types showed different strengths and weaknesses, with ANNs being 

able to quickly learn the underlying nature of the problem (for a given network layout), 
on the cost of a broad search of optimal network topology and its hyperparameters. 

Kriging on the other hand occurred to be easier to adjust, with very few parameters to 
tune (bounds, optimizer, number of optimizer restarts, or type of the correlation 
function). However, the Kriging method is susceptible to design points that are in very 

close proximity, therefore they usually require optimization of the sampling plan, which 
was performed by usage of the optimal Latin hypercube sampling method, which 
maximizes the minimum distance between the sampling points. The research was 

extended to consider the size of the training and validation sampling plans. The Mass 
response occurred to be predicted well even with a limited number of available data to 

feed the metamodels. On the other hand, the quality of ��� response prediction was 
sensitive to the size of the sampling plan, regardless of the type of utilized surrogate 

model. Most importantly, the trained surrogate models could predict the new, unseen 
data within a small fraction of a second, which allowed them to be utilized in the hybrid 
optimization algorithm parameters tuning process. As a result, the efficiency of the 

proposed hybrid algorithm was increased compared to the average from the study by 
5-12%, depending on the version of the algorithm. Two of the aforementioned versions 
were proposed: one consisting of a single population, subjected to relatively long 

evolution, and a second, consisting of multiple populations (multi-island version of the 
algorithm) having more individuals but less than half of the generations compared to 

its single population counterpart. Even though both of those GA variants obtain their 
quasi-optimal solution in a different way, the local-search capabilities of the evolution 
strategy enable to find the final individual with a very similar fitness function (on 

average). The single-population GA cultivates the initial population over a long period 
of generations by means of selection, cross-over, and mutation operators, while the 
proposed multi-island GA exploits the randomness of the numerous individuals spread 

over the design domain. On top of that, the MIGA not only utilizes the aforementioned 
genetic operators but also interchange individuals between the autonomous population, 

increasing the diversity on each of the islands. On average, both methods (SGPA and 
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MIGA) should yield very similar results, however, a higher spread was observed for the 

single-population GA. 

Lastly, the verification of the proposed hybrid optimization algorithm after the 

parameter tuning process was performed on two industrial cases. In both of the 
considered examples, the optimization was performed using the spatial LSM and the 
projection method, incorporating the parameter-tuned SPGA and MIGA-based hybrid 

optimization algorithms. The spatial LSM showed good capabilities in generating 
arbitrary topologies, with the material allocated in the most critical parts of the 

available design space. Thanks to the implemented filtering routines, the final 
geometries were forgeable, despite having intricate resultant shapes after the 
optimization. The metamodel-based optimization utilizing the projection method 

achieved slightly less-fitted individuals, on the benefit of the lower spread between 
results and quicker convergence. The resultant shapes were less complicated compared 

to the spatial LSM due to the inherent simplicity of the proposed method. In the case 
of the passive shock absorber, when the bracket stiffness was the critical issue (not its 

strength per se) the metamodeling occurred to be an interesting choice for the 
optimization, as even an extremely low number of training samples was sufficient to 
construct an efficient surrogate able to correctly predict the system responses 

��� and ;ï\\. However, in the case of the semi-active shock absorber, when not only 
the stiffness but also the elastic-plastic behavior of the bracket was crucial, the 

metamodeling required more effort to construct a similarly efficient predictor. 

Even with a good approximator (W-2 = 0.935), the final individual from the metamodel-
based optimization required additional processing using FEM-based optimization to fall 

into an unpenalized region of sufficient stability. However, the spatial LSM-based 
topologies of the lower shock absorber brackets after optimization were used to form 

refined (smoothed) 3D CAD models, representing closely the resultant shapes. They 
were then verified in a nonlinear, system-level FEM analysis without any simplifications 
adopted during the optimization phase, and according to the sophisticated standards 

required by both the company (dissertation author employer) and the car 
manufacturers. Performed simulations confirmed the fulfillment of the stability 
requirements, correct structural behavior, and lack of additional failure modes 

introduced by the mass-optimized brackets geometry. The SPGA-based hybrid 
algorithm showed better performance in optimization of the semi-active shock absorber, 

where the system failure was related strictly to the component subjected to topology 
optimization, in both – the spatial LSM and projection method cases. On the other 
hand, the MIGA-based hybrid algorithm performed better in the case of passive shock 

absorber optimization, again for both considered shape modification methods. In that 
case, the failure mode was connected to the neighboring component (the tube), yet it 
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may yield the conclusion, that MIGA-based HA should be used for slender shock 

absorbers with the tube being the failure mode, while the SGPA-based HA should be 
incorporated in optimization of shock absorbers where the brackets are the main failure 

mode of the system (as in the semi-active shock absorber optimization case). 

In conclusion, all of the objectives associated with the doctoral project were met, 
and the presented dissertation delivers a few original insights into the fields of interest: 

1. The computationally-efficient, nonlinear, force-driven FEM-based numerical 
simulation which is capable of predicting the peak force assuring the stability of 
the shock absorber (or any other column-type structure) subjected to the 

extreme compression loads. 
2. Coupling the aforementioned computer simulation with one of two proposed 

methods of shape modifications, that allows for obtaining a wide range of shapes 
3. Two shape modification methods utilizing implicit geometrical representation of 

topology by means of radial basis functions, that can be easily coupled with any 

arbitrary mathematical optimization algorithms, and which assures the given 
manufacturability constraint (forgeable shape) using dedicated routine or the 
nature of the method itself 

4. The hybrid optimization algorithm that couples the genetic algorithm with the 
evolution strategy, which can be easily parallelized to achieve high 

computational efficiency, and which is able to efficiently optimize the structures 
showing non-smooth responses, such as ones associated with hard-kill 
optimization methods 

5. Method of tuning the optimization algorithm parameters utilizing the wide set 
of metamodeling techniques, including the response surface method, artificial 
neural networks, and Krigings 

The aforementioned conclusions can be considered as unequivocally confirming the 
thesis formulated in Chapter 1.2, i.e. it is possible to formulate an optimization method 

and algorithm that allows for mass minimization of the shock absorber taking into 
consideration the stability of the whole system under extreme compression loads and 
its manufacturing requirements. Besides the points listed above, numerous procedures, 

routines, and computer programs were developed to support the data preparation, 
optimization process, and results processing, with the dominant usage of the Python 
programming language.  
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7.2. Industrial implementation of optimization methodology 

The proposed optimization methodology has been gradually implemented in the 
company during the doctoral project execution. It allowed to couple the methods 
developed during the doctoral project not only with stability-related problems but also 

with ones related to stiffness and fatigue constraints. As for the main aim of the 
implementation, i.e. efficient optimization technique for automotive shock absorbers 

subjected to stability constraints, all of the assumed milestones have been met, with 
most of them before the actual due date. The proposed method allowed to perform the 
topology optimization tasks without encountering the problems typically seen in such 

aspects before, i.e. lack of algorithms convergence or infeasibility of the quasi-optimal 
solutions caused by poor manufacturability of the final topologies. Examples presented 
in this dissertation show that the utilization of the method enabled a 60-68% reduction 

of the initial (allowable) material volume, providing both cost and 
performance-effectiveness, which is crucial for the shock absorber manufacturing 

company (dissertation authors employer). 

The initial doctoral project assumptions were not including the metamodeling part 
of the presented work, which after all turned out to be very useful and usable in daily 

engineering challenges, not only related to optimization. The results of shock absorber 
optimization utilizing artificial intelligence were presented at industrial conferences 
throughout the implementation doctoral project. Utilizing the Python-based 

frameworks and site-packages, the metamodeling tools developed during the project 
were exceeding the commercial solutions in terms of flexibility and e.g. training speed, 

thanks to the newest achievements in computer programming methods allowing for 
maximum exploitation of available computer resources. 
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7.3. Future tasks 

There are several points that the author of the dissertation is planning to realize 
regardless of the finished doctoral project, which are a result of new possibilities 
associated with the developed methods: 

1. Replacing the currently used objective function relying on the mass of the shock 
absorber with the manufacturing cost of the parts being optimized. This can be 

done in cooperation with e.g. bracket suppliers, that provide insights that couple 
the geometrical features of the parts with the final cost of the part (like 
maximum circumference, smoothness of transitions, minimum or maximum 

thicknesses, etc.)  
2. Adding additional (partially heuristic) constraints to the optimization that can 

narrow down the set of admissible solutions, like the axial or lateral stiffness, 

stress response at the shock absorber components (besides the component 
subjected to the topology optimization), or minimum cross-sectional moment of 

inertia (in respect to the central axis of the shock absorber) 
3. Adding additional optimization variables associated with simultaneous 

modification of other shock absorber components (like local thinning of tubes in 

semi-active solutions) 
4. Creating the post-processing routine to smooth the resultant harsh contour of 

the part, which could increase the efficiency of the CAD model buildup 
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Abstract 

This dissertation deals with the optimization of the shape of automotive shock 

absorber components in regard to their mass, taking into consideration the constraints 
associated with the stability of the entire suspension system. The first part of the 

dissertation presents the fundamental theoretical background needed to understand 
and reproduce the topology optimization process, including the work principles of 
automotive shock absorbers, their role in the chassis, the method of simulating their 

behavior under critical loads using the finite element method, as well as optimization 
and metamodeling techniques. 

The main part of thesis focuses on the adaptation and extension of the existing 

methods of topology and shape modification to the considered shock absorber problem. 
As a result, two methods based on the implicit description of the geometry are 

proposed: the spatial level set method and the projection method. Design variables from 
both methods were combined with the proposed hybrid optimization algorithm, 
consisting of consecutive execution of the genetic algorithm (in one of two variants) 

and the evolutionary strategy (1+λ). 

Subsequently, this hybrid optimization algorithm was subjected to the process 
of tuning its parameters, i.e. the genetic operators and the parameters of the penalty 

function, in order to increase its efficiency within the assumed number of iterations 
(simulations). For this purpose, two groups of metamodels were created: artificial 

neural networks and Krigings. Best-performing models were then used to replace the 
costly FEM analysis in the DOE plan utilizing the response surface method, which 
enabled the verification of the nonlinearity of the input parameters of the hybrid 

algorithm (genetic operators, parameters of the penalty function) on its ability to 
minimize the mass of the suspension system while maintaining its stability. 

The algorithm adapted in this way was verified in the final part of the 
dissertation on two real industrial examples: optimization of a passive and semi-active 
automotive shock absorber. Both methods of geometry modification and two versions 

of the hybrid algorithm were compared, as well as the metamodeling capabilities of the 
proposed surrogates to replace the FEM simulation during the optimization process. 

The thesis is summarized with a discussion of the results and formulation of the 

further scope of work regarding the optimization of automotive shock absorbers in 
terms of their mass, with consideration of their unstable behavior.  
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Streszczenie 

 Niniejsza rozprawa dotyczy zagadnienia optymalizacji kształtu komponentów 

amortyzatora samochodowego pod kątem masy, jednak z uwzględnieniem ograniczeń 
związanych ze statecznością całego układu zawieszenia. W pierwszej części dysertacji 

przedstawiono niezbędne podstawy teoretyczne do zrozumienia i odtworzenia procesu 
optymalizacji, włączając w to zasadę działania oraz rolę amortyzatorów 
samochodowych, symulowanie ich pracy pod działaniem krytycznych obciążeń 

z wykorzystaniem metody elementów skończonych, oraz techniki optymalizacji 
i metamodelowania.  

 W części głównej skupiono się na adaptacji i rozszerzeniu istniejących metod 

modyfikacji topologii i kształtu części do rozpatrywanego zagadnienia, proponując dwie 
metody oparte o niejawny opis geometrii: przestrzenną metodę poziomic oraz metodę 

rzutowania. Parametry zmienne z obu metod połączono z zaproponowanym 
hybrydowym algorytmem optymalizacji, składającym się z kolejno wykonywanych: 

algorytmu genetycznego (w jednej z dwóch odmian) oraz strategii ewolucyjnej (1 + 	).  

 Następnie ów hybrydowy algorytm optymalizacji poddano procesowi 

dostosowania operatorów genetycznych oraz parametrów funkcji kary w celu 
zwiększenia jego efektywności przy założonych więzach co do całkowitej ilości 
wykonanych iteracji (symulacji). W tym celu najpierw stworzono dwie grupy 

metamodeli spośród których wybrano najlepiej rokujące: sztuczną sieć neuronową oraz 
Kriging. Posłużyły one do zastąpienia kosztownej analizy MES przy ich wielokrotnym 
użyciu, w celu wykonania założonego eksperymentu opartego o metodę powierzchni 

odpowiedzi, co umożliwiło weryfikację nieliniowości oddziaływania parametrów 
wejściowych algorytmu hybrydowego (operatory genetyczne, parametry funkcji kary) 

na jego zdolność do minimalizacji masy układu zawieszenia przy zachowaniu jego 
stateczności. 

 Tak dostosowany algorytm zweryfikowano w końcowej części pracy na dwóch 

rzeczywistych przykładach przemysłowych: optymalizacji pasywnego oraz pół-
aktywnego amortyzatora samochodowego. Porównano obie metody modyfikacji 
geometrii oraz dwie wersje algorytmu hybrydowego, jak również możliwości 

metamodelowania do zastąpienia rzeczywistego modelu opartego o symulacje MES.  

 Całość pracy wieńczy podsumowanie, dyskusja wyników oraz sformułowanie 

dalszego zakresu pracy nad zagadnieniem optymalizacji amortyzatorów 
samochodowych pod kątem ich masy z uwzględnieniem stateczności całego układu 
zawieszenia. 


