
STUDIA INFORMATICA 2013

Volume 34 Number 2A (111)

Ewa PŁUCIENNIK-PSOTA, Tomasz PŁUCIENNIK

Silesian University of Technology, Institute of Computer Science

USING OBJECT DATABASE AS A CACHE FOR A RELATIONAL

DATABASE − PERFORMANCE AND USAGE CONSIDERATIONS

Summary. Every non trivial application cooperates with database, usually of rela-

tional type. In most cases this cooperation decreases the performance. The fastest, but

not too handy, way to access a relational data from an object application is SQL. As

alternative one can use object-relational mapping and/or object or NoSQL database.

Object database paradigm is the same as object application uses. This makes it possi-

ble to avoid characteristic concept dualism (so-called impedance mismatch) and re-

sulting from this need to transform relations into objects and vice-versa. This article

presents an attempt to use ORM and object database to increase performance of ac-

cessing relational database.

Keywords: object application, relational database, object database, impedance

mismatch, object relational mapping, caching, JPA, Hibernate, db4objects, data repli-

cation system

WYKORZYSTANIE OBIEKTOWEJ BAZY DANYCH JAKO PAMIĘCI

PODRĘCZNEJ DLA RELACYJNEJ BAZY DANYCH – ROZWAŻANIA

DOTYCZĄCE WYDAJNOŚCI I UŻYTKOWANIA

Streszczenie. Każda nietrywialna aplikacja współpracuje z bazą danych, zwykle

typu relacyjnego. W większości przypadków konieczność tej współpracy obniża wy-

dajność. Najszybszym, choć nie najwygodniejszym sposobem dostępu do relacyjnych

baz danych jest język SQL. Jako alternatywę można wykorzystać narzędzia mapowa-

nia obiektowo-relacyjnego (ORM) i/lub obiektowe bazy danych lub bazy NoSQL. Pa-

radygmat obiektowych baz danych jest taki sam jak obiektowej aplikacji. Pozwala to

na uniknięcie swoistego dualizmu pojęć (tzw. niedopasowania impedancji), a co za

tym idzie – konieczności transformacji relacji na obiekty i vice-versa. Niniejszy arty-

kuł przedstawia próbę wykorzystania narzędzi ORM i obiektowej bazy danych do

zwiększenia wydajności dostępu do relacyjnej bazy danych.

146 E. Płuciennik-Psota, T. Płuciennik

Słowa kluczowe: aplikacja obiektowa, relacyjna baza danych, obiektowa baza da-

nych, niezgodność impedancji, mapowanie obiektowo-relacyjne, pamięć podręczna,

JPA, Hibernate, db4objects, system replikacji danych

1. Introduction

In present-days majority (if not all) production applications cooperate with a database, typi-

cally a relational one. In a relational database data is stored in tables of rows related to each

other, containing columns of values with specified types [1, 2]. In terms of object applications

(i.e. created using object programming languages like Java or C#) accessing the databases is

much more convenient using objects instead of tables and rows. One have to build bridges be-

tween these two realms that have different paradigms which leads to a very adverse effect called

object-relational impedance mismatch
1
. One way to avoid this discrepancy is to use an object

database instead of a relational database. As for now object databases have only small part of

the market. Relational model is standardized and have been widely used for decades. Its strength

lies in common query language − SQL. Although attempts were made to create a counterpart

query language for object databases since early 1990s [3, 4], they were not successful. Object

Query Language defined by Object Data Management Group standard never achieved the same

popularity as SQL. Still most of IT projects consist of an object application, a relational dataset

and (in many cases) an additional layer called Object-Relational Mapping (ORM).

Using ORM increases system load. Of course ORM solution can be tuned to increase the

performance [5, 6]. However, an object database, which internally stores objects instead of

tables and has its own access interface, will probably perform faster than ORM with a rela-

tional database. This article present first practical tests of using an object database as a cache

for relational database, the idea presented in [7].

2. Caching in Database Access

In this paper it is assumed that the source data originate from a relational database which

stays a main data storage (e.g. a legacy database). In case of already existing and maintained

data it is hard to migrate everything into new structures. The idea here is to increase perform-

ance of access to such data without undertaking a revolution. Instead an evolution is proposed

which eventually could led to superseding the relational database by an object one.

1
 Term “impedance mismatch” comes from electrical engineering and stands for a resistance mismatch of source

and receiver, which causes loss of power.

Using Object Database as a Cache for a Relational Database… 147

From this point on focus will be put on Java-based technologies. There are tools for Java

platform, which can help in proving the validity of the idea without implementing everything

from scratch. The idea presented in this paper is to replace the second level cache in any JPA

(Java Persistence API) implementation with an object database. This new second level cache

would also be used more extensively. Load of the relational database will be limited to rare

updates of its state against the new cache an vice-versa. Using ODBC/JDBC and SQL is con-

sidered faster but from the developer point of view using JPA and objects (POJOs) is more

convenient. Furthermore, the object database access should be faster than querying tables and

be even faster in comparison to JPA.

The components chosen to verify the idea usefulness are: Hibernate as a representative of

the object-relational mapping tools and Versant's db4o object database [8]. There are of

course other candidates with similar capabilities, like Versant VOD (which is a non-free

product), ObjectDB
2
 or any other object database. However, db4objects can be easily syn-

chronized with other relational data stores using dRS (db4o Replication System) system [8].

Fig. 1. Traditional (a) and object (b) access to relational database

Rys. 1. Tradycyjny (a) i obiektowy (b) dostęp do relacyjnej bazy danych

As show in Fig. 1 between the client application and the relational database an intermedi-

ate module is placed. It contains the object database and replication layer responsible for

keeping both databases synchronized (using JPA). All traffic between the application and the

relational database is routed through the object database which should limit response times on

the client side. Bidirectional synchronization of the databases occurs periodically in the back-

ground, completely transparent for the end user. Frequency of updates will be related to data

character (e.g. often changing data should be updated as soon as possible). It is also required

to consider what is the cost-effective update type (full update, incremental update).

2
 http://www.objectdb.com/

148 E. Płuciennik-Psota, T. Płuciennik

3. Test Environment

Instead of implementing the new JPA or even accommodating an existing one a prototype

system was created.

Fig. 2. Elements of the test system corresponding to Fig. 1

Rys. 2. Elementy systemu testowego odpowiadające rys. 1

Fig. 2 represents the test system with elements corresponding to the Fig. 1. MySQL 5.5

database is the typical representative of a relational database. It can be accessed using Hiber-

nate library, which is one of the classic solutions. db4o database and dRS are accordingly the

object database cache and the module responsible for synchronization of the data stores. dRS

has the capability to communicate with the relational database using Hibernate, so together

they correspond to object-relational replication layer in Fig. 1. On both previous figures no

ORM was placed between the client application and the object database (ORMs for object

databases do exist, like e.g. DataNucleus, however it is not supporting db4objects any more

[9]). Instead of actual JPA for the tests db4o interface is used directly, since JPA is only

a standard defining the API and its implementation is not needed at this point. Separately Hi-

bernate and direct JDBC SQL access is used for comparison needs. All software used in the

test system is open source and available under the GPL/LGPL license.

Versant provides users with data replication system which is currently (newest version of

db4o and dRS is 8.1) able to communicate with their own database and any SQL database

through Hibernate. dRS system, though useful, have its limitations:

 requires identifier of type long in every table, which complicates relations adding: one

have to change any foreign keys into required long values and modify the source database,

 it keeps additional information in its own tables (containing information about registered

data providers, tracked objects and changes history − Fig. 3), so the legacy database will

require further modifications,

Using Object Database as a Cache for a Relational Database… 149

 it needs so-called replication session active during loading of the source database to up-

date its metadata, which negatively impacts on performance (refer to Fig. 5),

 Hibernate entities can be configured only via XML,

 unfortunately is does not work with Hibernate 4 and therefore the used version is 3.6.10.

Fig. 3. dRS metadata with example rows

Rys. 3. Metadane dRS z przykładowymi wierszami

Additionally, it is encouraged by the db4o creators to use indexes on all object's attributes

being queried, however it requires using objects instead of primitive types in entity's fields

[10]. On the other hand dRS have some positives. It is free of charge, available on Java and

.NET platforms as is db4o, it works with Hibernate, and generally it is very easy to use.

For tests presented in this paper only one table and entity class will be used to reduce the

negative impact of dRS's shortcomings. The test data was taken from GeoNames database
3
.

3
 www.geonames.org

150 E. Płuciennik-Psota, T. Płuciennik

The data contained 53584 objects, representing geographical names for Poland. This data

rarely change and therefore in the production environment the presented solution would be

the most effective.

Fig. 4. The simple test database model and example rows

Rys. 4. Prosty model testowej bazy i przykładowe wiersze danych

Fig. 4 presents the test entity schema. The corresponding Java class with short description of

every field is presented as following:

public class GeoName implements Serializable {

 // id required by dRS

 private Long typed_id;

 // integer id of record in geonames database

 private Integer geoNameId;

 // name of geographical point (UTF-8)

 private String name;

 // name of geographical point in plain ascii characters

 private String asciiName;

 // alternatenames, comma separated

 private String alternateNames;

 // latitude in decimal degrees (WGS-84)

 private Double latitude;

 // longitude in decimal degrees (WGS-84)

 private Double longitude;

 // group of the objects to which the object belongs to

 private String featureClass;

 // type of the map object

 private String featureCode;

 // ISO-3166 2-letter country code

 private String countryCode;

 // alternate country codes, comma separated, ISO-3166 2-letter country code

 private String cc2;

 // fipscode (subject to change to iso code)

 private String admin1Code;

Using Object Database as a Cache for a Relational Database… 151

 // code for the second administrative division

 private String admin2Code;

 // code for third level administrative division

 private String admin3Code;

 // code for fourth level administrative division

 private String admin4Code;

 // bigint (8 byte int)

 private Long population;

 // in meters

 private Integer elevation;

 // average elevation of 900m x 900m area in meters

 private Integer gtopo30;

 // the timezone id

 private String timezone;

 // date of last modification in yyyy-MM-dd format

 private Date modificationDate;

 // ...

}

Additional tables containing administrative codes descriptions were also available but ignored

because of relation mapping issues mentioned above. The chosen entity class have the biggest

amount of attributes useful for testing the selection operations performance.

All data stores were placed in a single machine environment to be able to ignore

LAN/WAN network influence on the test results. The operations (queries) conducted on the

data stores can be divided into following groups:

 load test − supplying the databases with the data,

 selection tests − querying the data with different conditions,

 update test − insert, update delete operations,

 retrieval tests − tests focusing on getting a single object by its identifier or all objects

since some data stores offer special, usually optimized, procedures to access them,

 replication test − checking how much time is consumed by the synchronization process

and how big impact it will have in the proposed solution.

4. Test Types and Results

The main goal of the test is to check and prove that object database is faster than an ORM

cooperating with a relational database. Tests results contain already mentioned load, selec-

tion, update, retrieval and replication comparisons. Additionally retrieval and selection tests

will be run against the MySQL JDBC connector. Following subchapters will describe in de-

tail what and how is being compared and present the results.

4.1. Data Load

This test assumes empty data store to be filled with GeoNames objects. In theoretical

working system it is assumed that source data is stored in the relational database but here

152 E. Płuciennik-Psota, T. Płuciennik

loading of the object database will also be tested. The loading of the source database have to

fill the dRS metadata, so the further use of replication system will report any changes that

have to be forwarded into the object cache. Fig. 5 presents comparison of load times in vari-

ous configurations.

Fig. 5. Times of data load in various configurations

Rys. 5. Czasy ładowania danych w różnych konfiguracjach

Load of the relational database with active dRS system dramatically extends the time re-

quired to store the data (98 minutes 41 seconds). Inserting the metadata manually, knowing its

structure reduces the time by about 30% (70 minutes 31 seconds) but this is still very long

comparing to clean load of the GeoNames data. After the data is stored in the database (of

course with the required long identifiers), one have to recreate the dRS metadata and loading

them as a separate session takes very short time. Both phases took only 20 seconds to com-

plete. Additionally the load time of db4o (which is joined with dRS in a way that metadata is

see-through for the user) is even faster than simple load of the relational table through Hiber-

nate (7 and 16 seconds respectively). What is more, db4o was creating indexes during load-

ing, which slowed it down more or less two times.

In production environment it is assumed that the system starts with an relational database

and the data is replicated to the object database(s) as needed. Therefore the object database

does not have to have all the data stored. This next test checks how long it takes to replicate

the full dataset. For a moment it is assumed that the object database is the source database.

Using Object Database as a Cache for a Relational Database… 153

This might be also corresponding to a massive update of the relational database. Full replica-

tion of the GeoNames for Poland from db4o to MySQL through Hibernate took 275 minutes

and 50 seconds, which is almost 5 hours. On the other hand in the target solution, in which

the object database is filled based on source database, the full replication was completed in 65

minutes 15 seconds. Please note, that this will be done only once.

4.2. Data Querying: Selection and Updates

For more reliable results all selection queries are conducted in two phases: so-called cold

and hot cache. First, the cold phase is done for the DBMS to fill its buffers before the actual

test. The hot phase corresponds to the database acting later, when it has achieved its optimal

performance. The result of hot phase are the ones expected during the majority of queries in

the application lifecycle. Both phases contain a 10 time repetition of a query and the average

value is the actual result. The second phase result is the more probable one but first phase

result are also presented.

Table 1 shows the select queries in SQL form. Each of the queries have other goal to

achieve. Queries represent accordingly:

 retrieving all the data,

 a simple condition based on one parameter,

 a simple spatial query returning objects placed inside the given Minimal Bounding Rec-

tangle [11],

 multiple conditions in one query as a example of more complicated query,

 a simple condition based on one parameter but with no matching results.

Table 1

Test select queries

No. Name SQL

1 QUERY_ALL select * from geonames

2 QUERY_NAME select * from geonames where name = 'Jurassic park'

3 QUERY_BBOX select * from geonames

where longitude <= 21.0 and longitude >= 20.0 and

latitude <= 51.0 and latitude >= 50.0

4 QUERY_MULTIPLE select * from geonames

where name like 'A%' and population > 0

5 QUERY_NON_EXISTING

_NAME

select * from geonames where name = 'Eiffel Tower'

These SQL queries can be easily translated info Hibernate HQL queries. In db4o there are

three main query types: predicates, query by example and SODA [10]. Query by example is

not applicable here, because example structure can provide only either a single value of an

attribute to find by or no value at all. SODA is db4o's internal query interface and it is sug-

154 E. Płuciennik-Psota, T. Płuciennik

gested not to use it if not necessary [10]. The third query type are predicates which are simple

methods returning logical true if a given object fulfils the query conditions. Predicates have

limitations but are very versatile and easy to translate from SQL. Because of a bug in db4o,

preventing from using indexes when logical alternative is used in the query condition [12],

such operation was not included in the test.

In case of update operations no cold and hot cache phases are distinguished simply be-

cause every time a different object is updated. Operations are repeated 10 times, however

every repetition have different parameters i.e. 10 random objects added, updated or deleted

and average values for every operation are the final results. Only object identifiers are pre-

served between operations so that at the end both databases are in the same state as before the

test. SQL access is this time was not taken into account.

Table 2

Queries (average execution times in milliseconds over 10 executions)

Query ID

db4o predicate Hibernate HQL SQL
Object

count
cold

cache

hot

cache

cold

cache hot cache

cold

cache hot cache

ALL 50,0971 15,3033 490,2861 290,4702 531,3170 952,7941 53584

NAME 3,8136 1,0095 91,6430 91,9786 91,2974 92,4229 1

BBOX 126,7103 87,9322 104,5975 104,5928 108,5443 108,6018 1918

MULTIPLE 60,4562 49,2289 101,0946 101,0859 100,9114 100,5565 52

NON_EX 0,9205 0,6855 90,8131 90,7453 90,5254 90,6929 0

INSERT 143,0374

6,2444

10

UPDATE 97,7620 3,4613 10

DELETE 177,1562 1,7889 10

Results of select and update operations are presented in Table 2. The table provides also

the affected object count. All corresponding select query results were equal. Although db4o is

slower in terms of updates it has undeniable superiority over Hibernate in select operations. It

is on average 50 times faster. The result is owed to extensive use of indexes in db4o. Unfor-

tunately they slow down the update operations. Hibernate uses SQL in its core however it is

able to use cache and provide performance boost over direct JDBC.

4.3. Data Retrieval by Identifiers

Reading object by its identifier is a very common operation. It does not receive any other

conditions on the object so there is plenty of room for optimization. Both db4o and Hibernate

have special methods of returning an object by ID.

In case of db4o beside the standard predicate-based queries a mechanism called query by

example is available. In short it searches for objects matching the provided example filled

with interesting values (in this case the identifier). Both predicates and example-based queries

Using Object Database as a Cache for a Relational Database… 155

are translated into internal SODA queries. db4o also provides user with lazy loaded result sets

[10] based on Java collections. All types of queries were checked and as it turns out predi-

cates were the slowest reaching an average time of 1.8 ms to execute. Query by example was

an order of magnitude faster. Using SODA directly gave a little bit of acceleration (about 10-

20 microseconds), but still half of the time the object was read from the result set. For com-

parison the query by example was chosen.

Table 3

Read single by ID (average execution times in milliseconds over 10 executions)

Object
db4o query by example Hibernate get by ID SQL

cold cache hot cache cold cache hot cache cold cache hot cache

1 3,2992 0,4168 2,6487 0,0265 0,7729 0,7209

2 0,5639 0,4023 0,2842 0,0271 0,7066 0,6906

3 0,5286 0,4024 0,2754 0,0270 0,8073 0,5835

4 0,5649 0,3965 0,2559 0,0274 0,6679 0,6604

5 0,4825 0,4052 0,2626 0,0274 0,6333 0,6426

6 0,4794 0,4367 0,2808 0,0272 0,6185 0,6066

7 0,5025 0,4042 0,2805 0,0279 0,7013 0,6791

8 0,4420 0,3669 0,2589 0,0278 0,6447 0,5618

9 0,4141 0,3370 0,2305 0,0277 0,5779 0,5593

10 0,4144 0,3402 0,2500 0,0274 0,5654 0,5464

Average 0,7691 0,3908 0,5028 0,0273 0,6696 0,6251

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

db4o query by example Hibernate get by ID SQL

m
s

Cold cache Hot cache

Fig. 6. Operation time comparison of reading a single object by ID

Rys. 6. Porównanie czasu operacji pobrania pojedynczego obiektu po identyfikatorze

Hibernate can simply return on abject based on its mapped identifier. In SQL a typical

where phrase is processed. The test results are presented in Table 3 for 10 executions over 10

156 E. Płuciennik-Psota, T. Płuciennik

objects. As previously tests were conducted in cold and hot cache phases. Fig. 6 shows

graphical comparison of the results which states that although Hibernate is very fast when

caches are filled, using object database is faster than traditional SQL access and even beats

Hibernate if it is initiated later than db4o (e.g. in some dispersed system with multiple types

of clients to one database).

4.4. Full Read

Full read of the dataset was also tested with distinction into cold and hot cache phases.

Here db4o provides a special way of getting the whole result by being able to query the data

without any predicate. Although a large amount of data was returned every time, all access

methods (even SQL access) achieved better results in the second phase as shown in Ta-

ble 4 and Fig. 7. Hibernate again made use of its own caches, but db4objects was more than

10 times faster. Lazy loaded result sets are very helpful here. They do not require copying and

in every test the session to a database is open throughout the test so the data is returned as

needed.

Table 4

Read all (average execution times in milliseconds over 10 executions)

Phase db4o no predicate db4o predicate Hibernate HQL SQL

Cold cache 43,3834 24,0600 485,5906 535,1678

Hot cache 15,6460 13,1701 290,4488 444,9254

0

100

200

300

400

500

600

db4o no predicate db4o predicate Hibernate HQL SQL

m
s

Cold cache Hot cache

Fig. 7. Operation time comparison of reading all objects

Rys. 7. Porównanie czasu operacji pobrania wszystkich obiektów

Using Object Database as a Cache for a Relational Database… 157

The fact that providing db4o with a predicate always returning true gave performance in-

crease over simply getting all the objects is a bit confusing. However results are not that dif-

ferent and may vary based on temporal system state and the fact that the database was initi-

ated once and the test was performed in one JVM in order presented in the table.

4.5. Data Replication

Replication is considered as a two-way check of changes between the two data sources

and synchronization of any updated objects. Until this time the update tests were conducted

without the replication. To simplify the next test it is assumed that replication is done be-

tween any atomic operations. Now the whole update test is repeated multiple times but in

between the operations a replication phase is conducted. First, replication is done before and

after the whole test, then after updates on both databases and finally after every single update.

Table 5 presents the replication run times and number of replicated changes in various states

of both databases. Separately presented are times for both directions of replication and repli-

cation of deletions.

There is of course a correspondence in single direction replications − the more objects

were modified the loner their replication will take compare to replication of the other data-

base. Unfortunately in current version of dRS deletions have to be replicated separately and it

takes a lot of time even if nothing was deleted (dRS checks both providers like in replication

of other updates). As it turns out there are still bugs in deletions replication, especially with

Hibernate [13]. There was also strange case of replicating one object less than was actually

changed (this happened every time the test was conducted). The replication mechanism is still

being developed and one can hope future versions will be more stable.

Table 5

Replication

Type
db40 -> Hibernate Hibernate -> db4o

deletions (bidirec-

tional)
Sum

ms changes ms changes ms changes ms

Clean DBs 0,4156 0 4,0702 0 2,7257 0 7,2115

Both updates 0,5248 0 1,8958 0 1,6948 0 4,1154

db4o update 0,2188 0 1,4438 0 1,2866 0 2,9492

Hibernate update 0,2556 0 1,3104 0 1,1368 0 2,7029

db4o insert 163,9086 10 5,2421 0 50,8574 0 220,0081

db4o update 124,7600 10 2,4179 0 45,0489 0 172,2269

db4o delete 0,2449 0 3,8491 0 25,6885 0 (bug) 29,7826

Hibernate insert 0,4618 0 49,8423 10 62,4449 0 112,7490

Hibernate update 1,8819 0 35,0438 9 (bug) 39,3655 0 76,2912

Hibernate delete 0,2319 0 1,3785 0 34,7103 10 36,3206

158 E. Płuciennik-Psota, T. Płuciennik

Full replication (all updates bidirectional) times are comparable with executing a selection

query (the "Sum" column). Therefore in the target system it can be assumed that during typi-

cal replication of new changes one query will run twice as long as normally, which is accept-

able.

5. Conclusion

To summarize the conducted tests it has to be stated, that though update operations took

more time in object database, selections were significantly faster. In typical application there

are a lot of reads and much less updates. The exception is supplying of the data which is gen-

erally done during low network traffic. Surprisingly supplying of the object database is also

faster and one can imagine synchronizing the new data to the relational database in the back-

ground and/or during the night.

Because of general acceleration in database responsiveness, there is plenty of time to con-

duct replication. Theoretically, if at least a bit less than the whole database idle time is spent

on synchronization, the proposed system is still faster. In real system replication of large data-

sets will be rare. More common will be small (tens or hundreds of objects) updates done by

users.

It has to be stated that object cache can be local for every client or global for the whole

system. In first case one have to deal with replication changes made via one of the object da-

tabase instances to the rest of them but accessing local database it faster. In second case, cli-

ents connect to the one object database instance via network but when any replication is

needed we can use hot swap between two instances of object databases – operational and rep-

licated. Source database can be updated directly by a legacy application in which case all ob-

ject caches have to be updated in non-scheduled mode. Amount of updates might be signifi-

cant and again hot swap is suggested. In every synchronization process there can occur con-

flicts. This is a typical problem and dRS has mechanisms for handling such situations.

Presented test system still has problems originating from db4o and dRS themselves. Limi-

tations on ORM usage, unresolved bugs in the replication system may be the cause of choos-

ing other products in the future. However these tools were easy enough to use and present the

idea of caching through an object database. Of course the presented solution should be tested

with another object database e.g. VOD or Neodatis. It is worth mentioning that DataNucleus

(JPA and JDO
4
 implementation for diverse data stores like RDBMS, NoSQL, XML, xlxs

files, etc.) also offers data replication functionality [14]. Although is not automated it should

4
 Java Data Objects

Using Object Database as a Cache for a Relational Database… 159

be considered for future testing. Tests were conducted using slow changing data of moderate

amount to tentatively apprize proposed solution usefulness. Further tests should encompass

larger datasets with different changing characteristics and more complicated structure (related

entities).

BIBLIOGRAPHY

1. Garcia-Molina H., Ullman J. D., Widom J.: Database System Implementation. Prentice

Hall, 2000.

2. Ullman J. D., Widom J.: First Course in Database Systems, 3rd Edition. Prentice Hall,

2007.

3. Lausen G., Vossen G.: Models and Languages of Object-Oriented Databases. Addison-

Wesley, 1997.

4. Kim W.: Introduction to Object-Oriented Databases. The MIT Press, 2008.

5. Bauer C., King G.: Hibernate in Action. Manning Publications, 2005.

6. Linwood J., Minterd.: Beginning Hibernate, Second Edition. Apress, 2010.

7. Płuciennik-Psota E., Płuciennik T.: Object Database-Based Optimization of Relational

Database Access. Proceedings of the VIth International Conference on Computer Sci-

ence and Information Technologies, Lviv, Ukraine 2011.

8. Versant db4o Object Database, http://www.versant.com/products/db4o-object-database

[online, 2013-01-05].

9. DataNucleus, http://www.datanucleus.org/ [online, 2013-01-05].

10. db4o Reference, http://community.versant.com/documentation/reference/db4o-8.1/

java/reference/ [online, 2013-01-05].

11. Longley P. A., Goodchild M. F., Maguire D. J., Rhind D. W.: Geographic Information

Systems and Science. John Wiley & Sons Ltd, 2005.

12. db4o Issue Tracker, http://tracker.db4o.com/browse/COR-1409 [online, 2013-01-05].

13. db4o Issue Tracker, http://tracker.db4o.com/browse/DRS-106 [online, 2013-01-05].

14. DataNucleus AccessPlatform v.3.2 User Guide, http://www.datanucleus.org/products/

accessplatform_3_2/datanucleus-accessplatform-docs.pdf [online, 2013-01-12].

Wpłynęło do Redakcji 16 stycznia 2013 r.

160 E. Płuciennik-Psota, T. Płuciennik

Omówienie

We współczesnym świecie większość nietrywialnych aplikacji współpracuje z bazą da-

nych, przeważnie relacyjną. Ponieważ zwykle aplikacja jest obiektowa, mamy do czynienia

ze współpracą dwóch światów opartych na zupełnie innych paradygmatach, co pociąga za

sobą konieczność stosowania warstwy pośredniczącej w postaci narzędzi mapowania obiek-

towo-relacyjnego, tzw. ORM. Każda dodatkowa warstwa w aplikacji może oznaczać spowol-

nienie jej działania. Alternatywą dla takiego rozwiązania jest użycie obiektowej bazy danych.

Tego typu bazy pozostają jednak w cieniu baz relacyjnych, które przez lata ugruntowały swo-

ją pozycję. Trudno więc się spodziewać, że przedsiębiorstwo, które od lat stosuje relacyjną

bazę danych, zaryzykuje przejście na bazę obiektową.

W artykule przedstawiono pierwsze testy rozwiązania, które pozwala wykorzystać obiek-

tową bazę danych jako pamięć podręczną do intensywnej współpracy z obiektową aplikacją.

Pamięć ta jest okresowo synchronizowana z relacyjną bazą danych. Częstotliwość synchroni-

zacji zależy oczywiście od charakteru danych. Testy przeprowadzone na danych nazw geogra-

ficznych z użyciem obiektowej bazy db4o, biblioteki Hibernate oraz MySQL pokazały, że

baza obiektowa może przyspieszyć działanie aplikacji klienckiej. Operacje selekcji, najczę-

ściej dotyczące największej ilości danych, można było dzięki nowemu podejściu przyspieszyć

średnio o kilkadziesiąt razy. Odbywa się to kosztem dłuższych operacji zapisu, aktualizacji

i usuwania, które jednak nie są wykonywane aż tak często. Mając więc ogólnie szybszy sys-

tem, można część zyskanego czasu przeznaczyć na wykonywanie synchronizacji obu baz da-

nych. Pierwsze testy przeprowadzono dla umiarkowanej liczby danych o mało zmiennym

charakterze, aby przekonać się, czy zaproponowane rozwiązanie przynosi korzyści i czy war-

to przeprowadzać dalsze testy, które powinny objąć większe zestawy danych o większej

zmienności i bardziej złożonej strukturze.

Addresses

Ewa PŁUCIENNIK-PSOTA: Silesian University of Technology, Institute of Computer

Science, Akademicka 16, 44-100 Gliwice, Poland, Ewa.Pluciennik-Psota@polsl.pl.

Tomasz PŁUCIENNIK: Silesian University of Technology, Institute of Computer Science,

Akademicka 16, 44-100 Gliwice, Poland, Tomasz.Pluciennik@polsl.pl.

	1. Introduction
	2. Caching in Database Access
	3. Test Environment
	4. Test Types and Results
	4.1. Data Load
	4.2. Data Querying: Selection and Updates
	4.3. Data Retrieval by Identifiers
	4.4. Full Read
	4.5. Data Replication

	5. Conclusion

