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COVERAGE OF EXACT DECISION RULES 

Summary. In the paper, author proposes a heuristics based on dynamic program-

ming algorithm for optimization of exact decision rules relative to coverage. There are 

two aims for the proposed algorithm: (i) study of coverage of rules and comparison 

with coverage of rules constructed by the dynamic programming algorithm, (ii) study 

of size of directed acyclic graph (the number of nodes and edges) and comparison 

with size of the graph constructed by the dynamic programming algorithm.  
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POKRYCIE DOKŁADNYCH REGUŁ DECYZYJNYCH 

Streszczenie. W artykule zaproponowano heurystykę na podstawie algorytmu dy-

namicznego programowania dla optymalizacji dokładnych reguł decyzyjnych odno-

śnie do pokrycia. Celem przeprowadzonych badań jest: (i) zbadanie pokrycia reguł 

konstruowanych za pomocą proponowanego algorytmu oraz porównanie z pokryciem 

reguł konstruowanych za pomocą algorytmu dynamicznego programowania, (ii) zba-

danie rozmiaru grafu (liczba węzłów i krawędzi w skierowanym grafie acyklicznym) 

skonstruowanego za pomocą proponowanego algorytmu oraz porównanie go z roz-

miarem grafu skonstruowanego za pomocą algorytmu dynamicznego programowania.  

Słowa kluczowe: reguły decyzyjne, pokrycie, algorytm dynamicznego progra-

mowania 

1. Introduction 

Decision rules are used in many areas connected with data mining and knowledge repre-

sentation. There are different approaches for construction of decision rules, for example, 

Boolean reasoning [8, 9, 11], different kinds of greedy algorithms [8, 12], separate and con-
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quer approach [6, 7], dynamic programming approach [2, 3]. Also, there are different rule 

quality measures that are used for induction or classification processes [4, 10].  

In the paper, author presents a heuristics that is based on the dynamic programming algo-

rithm for exact decision rules optimization relative to coverage [3]. The rule coverage is 

a measure that allows to discover major patterns in the data.  

For a given decision table T the directed acyclic graph (T) is constructed. Nodes of this 

graph are subtables described by descriptors (pairs attribute=value). In comparison with clas-

sical algorithm presented in [3], subtables of the graph (T) are constructed only for the most 

frequent value of each attribute (value of an attribute attached to the maximum number of 

rows).  So, the size of the graph (T) is lesser. This fact is important from the point of view 

of number of rows and attributes in a decision table, and from the point of view of scalability. 

Based on the graph (T) we can describe sets of decision rules for rows of table T. Then, 

based on a procedure of optimization relative to coverage we can find decision rules for table 

T and row r with the maximum coverage.  

There are two aims for a proposed heuristics: (i) study of a coverage of rules and compar-

ison with a coverage of exact decision rules constructed by the dynamic programming algo-

rithm, (ii) study of a size of directed acyclic graph (the number of nodes and edges) and com-

parison with a size of the directed acyclic graph constructed by the dynamic programming 

algorithm.  

The paper contains also experimental results with decision tables from UCI Machine 

Learning Repository [5]. 

The paper consists of six sections. In Section 2, main notions are presented. In Section 3, 

proposed algorithm for construction of directed acyclic graph is considered. Section 4 con-

tains a description of a procedure of optimization relative to coverage. Section 5 contains 

experimental results, Section 6 – conclusions. 

2. Main Notions 

A decision table T is a rectangular table with n columns labeled with conditional attrib-

utes f1,…,fn. Rows of this table are filled with nonnegative integers that are interpreted as val-

ues of conditional attributes. Rows of T are pairwise different and each row is labeled with 

a nonnegative integer that is interpreted as a value of the decision attribute.  

We denote by N(T) the number of rows in table T. The table T is called degenerate if T is 

empty (in this case N(T) = 0) or all rows of T are labeled with the same decision.  

A minimum decision value that is attached to the maximum number of rows is called the 

most common decision. We will say that an attribute fi, i1,…,n is not constant on T if it has at 
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least two different values. For each attribute that is not constant on T we denote the most fre-

quent value. It is an attribute value attached to the maximum number of rows. If there are two 

or more such values then we choose the most frequent value of an attribute for which exists 

the most common decision.  

A table obtained from T by the removal of some rows is called a subtable of the table T. 

Let T be nonempty, fi1,...,fim ∈  {f1,…,fn} and a1,…,am be nonnegative integers. We denote by 

T(fi1,a1)...(fim,am) the subtable of the table T that contains only rows that have numbers  

a1,…,am at the intersection with columns fi1,…,fim. Such nonempty subtables (including the 

table T) are called separable subtables of T. 

We denote by E(T) a set of attributes from {f1,…,fn} with the most frequent value. For any 

fi ∈  E(T), we denote by E(T,fi) the most frequent value of the attribute fi in T. 

The expression  

fi1 = a1 ∧ . . . ∧ fim = am → d (1) 

is called a decision rule over T if fi1,…, fim ∈  {f1,…,fn}, and a1,…,am, d are nonnegative inte-

gers. It’s possible that m = 0. In this case (1) is equal to the rule 

→d. (2) 

Let r = (b1,…,bn) be a row of T. We will say that the rule (1) is realizable for r, if  

a1 = bi1,…,am = bim. If m = 0 then the rule (2) is realizable for any row from T. We will say 

that the rule (1) is true for T if each row of T for which the rule (1) is realizable has the deci-

sion d attached to it. Note that (1) is true for T if and only if the table  

T′ = T(fi1,a1)…(fim,am) is degenerate and each row of T′ is labeled with the decision d. If m = 0 

then the rule (2) is true for T if and only if T is degenerate and each row of T is labeled with 

the decision d. If the rule (1) is true for T and realizable for r, we will say that (1) is a deci-

sion 

rule for T and r. 

Let  be a decision rule over T and  be equal to (1). The coverage of  is the number of 

rows in T for which  is realizable and which are labeled with the decision d. We denote it by 

c(). The coverage of decision rule (2) is equal to the number of rows in T that are labeled 

with the decision d. If  is true for T then c() = N(T(fi1,a1)…(fim,am)). 

3. Directed Acyclic Graph (T) 

In this section, we present an algorithm that construct, for a given table T, a directed 

acycylic graph. Based on this graph we can describe sets of decision rules attached to rows of 

T. Nodes of the graph are separable subtables of the table T. During each step, the algorithm 
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processes one node and marks it with the symbol *. At the first step, the algorithm constructs 

a graph containing a single node T that is not marked with *. 

Let us assume that the algorithm has already performed p steps. We describe now the step 

(p+1). If all nodes are marked with the symbol * as processed, the algorithm finishes its work 

and presents the resulting graph as (T). Otherwise, choose a node (table) , that has not been 

processed yet. If  is degenerate, then mark  with the symbol * and go to the step (p+2). 

Otherwise, for each fi ∈ E(), draw an edge from the node  and label it with pair (fi,bi) (bi is 

the most frequent value of the attribute fi). This edge enters to node (fi,bi). If such node 

(fi,bi) is absent in the graph then add this node to the graph. We label each row r of  with 

the set of attributes E(T)(,r)  E(). It is possible that E(T)(,r) will be empty. Mark the 

node  with the symbol * and proceed to the step (p+2). The graph (T) is a directed acyclic 

graph. A node of this graph will be called terminal if there are no edges leaving this node. 

Note that a node  of (T) is terminal if and only if  is degenerate. 

In the next section, we will describe procedure of optimization of the graph (T) relative 

to the coverage. As a result we will obtain a graph G with the same sets of nodes and edges as 

in (T). The only difference is that any row r of each nondegenerate table  from G is labeled 

with a set of attributes EG(,r) ⊆ E(T)(,r), that allows to describe, for a row r, set of decision 

rules with the maximum coverage. It is possible also that G = (T). 

Now, for each node  of G and for each row r of  we describe a set of decision rules 

RulG(,r). If the set EG(,r) is empty then the set RulG(,r) will be empty also. We will move 

from terminal nodes of G to the node T. 

Let  be a terminal node of G:  is a degenerate table, so each row is labeled with the 

same decision d. Then 

RulG(,r) = {→d}. 

Let now  be a nonterminal node of G such that for each child ′ of  and for each row r′ 

of ′ the set of rules Rul(′,r′) is already defined. Let r = (b1,…,bn) be a row of  labeled with 

a decision d. For any fi ∈  EG(,r), we define the set of rules RulG(,r,fi) as follows: 

RulG(,r,fi) = {fi = bi ∧  →d : →d ∈  RulG((fi,bi),r)}.  

Then  

RulG(,r) = fi∈EG(,r) RulG(,r,fi). 

To illustrate the presented algorithm we consider a simple decision table T0 depicted on 

the top of Fig. 1. We denote the obtained graph (T0) by G. Now, for each node  of the 

graph G and for each row r of  we describe the set RulG(,r). We will move from terminal 

nodes of G to the node T0. Terminal nodes of the graph G are 1, 2, 4, 6. For these nodes, 

RulG(1,r1) = RulG(1,r2) = RulG(1,r4) = {→1};  
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RulG(2,r1) = RulG(2,r4) = {→1}; 

RulG(4,r2) = RulG(4,r4) = {→1}; 

RulG(6,r2) = {→1}; 

Now, we can describe the sets of rules attached to rows of nonterminal node 5. For this 

subtable the child (subtable 6) is already treated, and we have: 

RulG(5,r2) = {f1 = 0→1};  RulG(5,r3) ={ }. 

Now, for 3 all children 4 and 5 are already treated, and we have: 

RulG(3,r2) = {f1 = 1→1, f2 = 0∧  f1 = 1→1}; 

RulG(3,r3) = { }; 

RulG(3,r4) = {f1 = 1→1}; 

Finally, we can describe the sets of rules attached to rows of T0: 

RulG(T0,r1) = {f1 = 1→1, f2 = 1→1}; 

RulG(T0,r2) = {f1 = 1→1, f3 = 0∧  f1 = 1→1, f3 = 0∧  f2 = 0∧  f1 = 1→1}; 

RulG(3,r3) = { }; 

RulG(T0,r4) = {f1 = 1→1, f2 = 1→1, f3 = 0∧  f1 = 1→1}; 

 

Fig.1. Directed acyclic graph for decision table T0 

Rys. 1. Acykliczny skierowany graf dla tabeli decyzyjnej T0 
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4. Procedure of Optimization Relative to Coverage 

In this section, we present a procedure of optimization of the graph G relative to the cov-

erage c. For each node  in the graph G, this procedure describe for rows of  the set 

Rul
c
G(,r) of decision rules with the maximum coverage from RulG(,r) and the number 

Opt
c
G(,r) – the maximum coverage of a decision rule from RulG(,r). Note, that if RulG(,r) 

=  then Rul
c
G(,r) =  and Opt

c
G(,r) = 0. 

We will move from the terminal nodes of the graph G that are degenerate tables to the 

node T. We will assign to each row r of each table  the number Opt
c
G(,r) and we will 

change the set EG(,r) attached to the row r in the nonterminal table . We denote the ob-

tained graph by G
c
.  

Let  be a terminal node of G. Then we assign the number Opt
c
G(,r) = N() to each row r of 

. Let  be a nonterminal node and all children of  have already been treated. Let r = 

(b1,…,bn) be a row of . We assign the number  

Opt
c
G(,r) = max{Opt

c
G((fi,bi),r): fi ∈  EG(,r)} 

to the row r in the table  and we set 

EG
c
 (,r) = {fi : fi ∈  EG(,r), Opt

c
G((fi,bi),r) = Opt

c
G(,r)}. 

Figure 2 presents the directed acyclic graph G
c 
obtained from the graph G (see Fig. 1) by the 

procedure of optimization relative to the coverage. 

 

Fig. 2. Graph Gc 

Rys. 2. Graf Gc 
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Using the graph G
c
 we can describe for each row ri, i = 1,…,4, of the table T0 the set 

Rul
c
G(T0,ri) of decision rules for T0 and ri with the maximum coverage. We will give also the 

value Opt
c
G(T0,ri) which is equal to the maximum coverage of decision rule for T0 and ri. This 

value was obtained during the procedure of optimization of the graph G relative to the cover-

age. We have 

Rul
c
G (T0,r1) = {f1 = 1→1}, Opt

c
G(T0,r1) = 3; 

Rul
c
G (T0,r2) = {f1 = 1→1}, Opt

c
G(T0,r2) = 3; 

Rul
c
G (3,r3) = { }, Opt

c
G(T0,r3) = 0; 

Rul
c
G (T0,r4) = {f1 = 1→1}, Opt

c
G(T0,r4) = 0; 

5. Experimental Results 

We considered a number of decision tables from UCI Machine Learning Repository [5]. 

Some decision tables contain conditional attributes that take unique value for each row. Such 

attributes were removed. In some tables there were equal rows with, possibly, different deci-

sions. In this case each group of identical rows was replaced with a single row from the group 

with the most common decision for this group. In some tables there were missing values. 

Each such value was replaced with the most common value of the corresponding attribute. 

Experiments were done in a system Dagger [1] created in KAUST. 

Table 1 

Minimum, average and maximum coverage of decision rules 

Decision table attr rows min avg max without rules 

adult-stretch 4 16 0 6.00 8 25% 

balance-scale 4 625 0 0.51 5 90% 

breast-cancer 9 266 0 4.22 15 33% 

cars 6 1728 0 323.00 576 42% 

lymphography 18 148 1 20.52 32 0% 

monks-1-test 6 432 0 31.00 108 67% 

monks-1-train 6 124 0 5.77 17 30% 

soybean-small 35 47 10 12.53 17 0% 

tic-tac-toe 9 958 5 57.61 90 0% 

Zoo 16 59 3 11.07 19 0% 

       
For each of the considered decision tables T and for each row r of the table T, we find the 

maximum coverage of a decision rule for T and r. If in T exist rows without rules than the 

maximum coverage of a decision rule for T and r is equal to 0. After that, we find for rows of 

T the minimum coverage of a decision rule with maximum coverage (column min), the max-
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imum coverage of such a rule (column max), and the average coverage of rules with maxi-

mum coverage (one for each row) (column avg). The considered results can be found in Ta-

ble 1. Column attr contains number of conditional attributes, column rows – number of rows. 

The last column denotes a percent of number of rows without rules. 

We repeated experiments connected with the coverage for irredundant decision rules [1],  

in the same way as presented for Table 1, of course in this case we don’t have rows without 

rules. Table 2 contains the minimum, average and maximum coverage of decision rules con-

structed by the dynamic programming algorithm. 

Table 2 

Minimum, average and maximum coverage of irredundant decision rules 

Decision table attr rows min avg max 

adult-stretch 4 16 4 7 8 

balance-scale 4 625 1 4.21 5 

breast-cancer 9 266 1 9.53 25 

cars 6 1728 1 332.76 576 

lymphography 18 148 2 21.54 32 

monks-1-test 6 432 12 45.00 108 

monks-1-train 6 124 1 13.45 29 

soybean-small 35 47 10 12.53 17 

tic-tac-toe 9 958 6 66.68 90 

zoo 16 59 3 11.07 19 

      
Table 3 contains comparison of the minimum, average and maximum coverage of rules 

constructed by proposed algorithm and dynamic programming algorithm. Each cell of this 

table contains a relative difference that is equal to  

(Optimum_Coverage - Coverage)/Optimum_Coverage, 

where Coverage denotes the coverage of decision rules constructed by proposed algorithm, 

Optimum_Coverage denotes the coverage of irredundant decision rules constructed by the 

dynamic programming algorithm. 

Based on presented results we can see that the biggest relative difference exists for the 

minimum values of the maximum coverage. It follows from the fact, that for the proposed 

algorithm there exist rows without decision rules. Only for decision tables soybean-small and 

zoo there are equal values of the minimum, average and maximum coverage. If we consider 

values of the maximum coverage, the relative difference exists only for two decision tables: 

breast-cancer and monks-1-train, for the rest of decision tables the values are equal. For the 

average values of the maximum coverage the smallest relative difference exists for cars – 3% 

and lymphography – 5%. The biggest relative difference exists for decision table balance-

scale – 88%. 
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Table 3 

Comparison of coverage of decision rules 

Decision table attr rows min avg max 

adult-stretch 4 16 1 0.14 0 

balance-scale 4 625 1 0.88 0 

breast-cancer 9 266 1 0.56 0.40 

cars 6 1728 1 0.03 0 

lymphography 18 148 0.5 0.05 0 

monks-1-test 6 432 1 0.31 0 

monks-1-train 6 124 1 0.57 0.41 

soybean-small 35 47 0 0 0 

tic-tac-toe 9 958 0.17 0.14 0 

zoo 16 59 0 0 0 

      
Table 4 presents size of the directed acyclic graph, i.e., number of nodes and number of 

edges for graph constructed by the proposed algorithm (column proposed algorithm) and 

graph constructed by the dynamic programming algorithm (column dynamic programming).  

Table 4 

Size of the directed acyclic graph 

Decision table 

proposed algorithm dynamic programmic 

nodes edges nodes edges 

adult-stretch 12 12 72 108 

balance-scale 31 36 1212 3420 

breast-cancer 1362 4325 6001 60387 

cars 40 52 7007 19886 

lymphography 25078 177090 40928 814815 

monks-1-test 56 92 2772 7878 

monks-1-train 200 300 1168 4592 

soybean-small 3012 35825 3592 103520 

tic-tac-toe 7626 14493 42532 294771 

zoo 4067 34010 4568 83043 

     
Table 5 contains comparison of the size of the directed acycylic graph for the proposed 

algorithm and dynamic programming algorithm. Each cell of this table is equal to number of 

nodes/edges for the dynamic programming algorithm divided by the number of nodes/edges 

for proposed algorithm.  

Presented results show that for each decision table size of the directed acyclic graph for pro-

posed algorithm is lesser. The biggest difference exists for decision tables: cars, balance-scale 

and monks-1-test. 
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Table 5 

Comparison of size of the directed acyclic graph 

Decision table nodes edges 

adult-stretch 6.00 9.00 

balance-scale 39.10 95.00 

breast-cancer 4.41 13.96 

cars 175.18 382.42 

lymphography 1.63 4.60 

monks-1-test 49.50 85.63 

monks-1-train 5.84 15.31 

soybean-small 1.19 2.89 

tic-tac-toe 5.58 20.34 

zoo 1.12 2.44 

6. Conclusions 

In the paper, a heuristic based on dynamic programming algorithm for optimization of ex-

act decision rules relative to coverage was presented. Based on experimental results we can 

observe differences in size of the directed acycylic graph – that is important from the point of 

view of scalability, size of decision tables.  There are only two decision tables for which exist 

relative differences connected with the values of the maximum coverage. However disadvantage 

for the proposed algorithm is that for a given decision table we can find rows without decision 

rules. So in the further work we need to improve proposed algorithm, for example, connect ap-

proach based on the most frequent value for a given attribute with a greedy heuristics or attribute 

with the minimum number of values. 
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Omówienie 

W artykule zaproponowano heurystykę na podstawie algorytmu dynamicznego progra-

mowania dla optymalizacji dokładnych reguł decyzyjnych odnośnie do pokrycia [3]. Dla 
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danej tablicy decyzjnej T konstruowany jest skierowany graf acykliczny (T). Węzłami tego 

grafu są podtabele tabeli T opisane przez system deskryptorów „atrybut=wartość”. W porów-

naniu z klasycznym algorytmem zaproponowanym w [3] podtabele tworzone są tylko dla 

jednej wartości każdego atrybutu. Jest to wartość, która występuje dla największej liczby 

wierszy. W związku z tym rozmiar konstruowanego grafu jest mniejszy, co ma znaczenie z 

punktu widzenia skalowalności, rozmiaru danej tablicy decyzyjnej. Na podstawie grafu (T) 

można opisać zbiór reguł dla tablicy T i wiersza r. Następnie, w wyniku optymalizacji grafu 

(T) względem pokrycia, można opisać zbiór reguł dla tablicy T i wiersza r o maksymalnym 

pokryciu. 

Celem przeprowadzonych badań jest: (i) zbadanie pokrycia reguł konstruowanych za 

pomocą proponowanego algorytmu oraz porównanie z pokryciem reguł konstruowanych za 

pomocą algorytmu dynamicznego programowania, (ii) zbadanie rozmiaru grafu (liczba wę-

złów i krawędzi w skierowanym grafie acyklicznym) skonstruowanego za pomocą propono-

wanego algorytmu oraz porównanie go z rozmiarem grafu skonstruowanego za pomocą algo-

rytmu dynamicznego programowania. 
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