
STUDIA INFORMATICA 2014
Volume 35 Number 1 (115)

Michał KOMOROWSKI
Politechnika Warszawska, Instytut Informatyki

APPLYING RECURRENCE PLOTS IN ANALYSIS OF COMPUTER
PROGRAMS

Summary. Recurrence plots are a tool which allow one to analyze and visualize
recurrence in non-linear dynamical systems. In this paper it was examined whether
recurrence plots could be used to analyze data collected by historic debuggers.
Besides a tool that facilitates this kind of analysis was proposed.

Keywords: historic debuggers, IntelliTrace, recurrence plots

ZASTOSOWANIE WYKRESÓW REKURENCYJNYCH W ANALIZIE
PROGRAMÓW KOMPUTEROWYCH

Streszczenie. Wykresy rekurencyjne to narzędzie pozwalające wizualizować oraz
analizować powtarzające się stany w nieliniowych systemach dynamicznych. Artykuł
ten opisuje eksperymenty, w których sprawdzono, czy wykresy rekurencyjne nadają
się do analizy programów komputerowych. Zaproponowano również narzędzie
wspomagające taką analizę.

Słowa kluczowe: debugery historyczne, IntelliTrace, wykresy rekurencyjne

1. Introduction

A set of variables that describes a dynamical system at some point of time is called a state
of a system. If a particular system returns (recurs) to already visited states, it means that it has
a property called recurrence. Recurrence plots [15, 17] (RP), that were described for the first
time in 80’s [17], are a tool which allows one to analyse and visualise recurrence in non-
linear dynamical systems, in order to better understand them, based on one dimensional
signals (time series).

6 M. Komorowski

RP are widely known and used in many domains of science, for example in [16] neuro-
science, geology, palaeo-climatology, analysis of financial data and many more. There are
also examples of application of RP in Information Technology field. Article [4] describes
how recurrence plots could be used for data classifications. Another example is analysis of
activity of computers users [6] or of network traffic [20]. The method described in [19]
allows one to perform attack on TCP protocol. This method is not based on RP but the author
adapts the same technique as is used to generate recurrence plots - delayed coordinate
embedding. [3] also does not use RP but shares the same idea of the graphical representation
and analysis of complex data, in this case DNA sequences.

This article describes a new approach in which recurrence plots are used to analyse data
collected by IntelliTrace [11, 14] historic debugger in order to support testing, detect bugs or
repeating users actions. RP seem to be well-suited to this scenario because they are dedicated
to non-linear dynamical systems and computer programs belong to this category [6].

RP could be used when we do not know all variables that affect a state of a system, there
is too many of them or it is difficult to measure them. In the case of computer programs the
number of variables is very big and at the same time the activity of users is difficult to take
into account. What is also important in the case of data collected by historic debugger many
different signals, required to create a recurrence plot, could be generated without need to
modify a source code.

At the beginning of this paper, in section 2, recurrence plots are described. Then, in
section 3 historic debuggers are introduced. The description of developed tools can be found
in section 4. Finally, the experiments which show that RP could detect recurring states in
IntelliTrace logs, are vulnerable to users activity etc. are described in section 5. The last
section contains summary.

2. Recurrence plots

Recurrence plots is a method of analysis of non-linear data, the result of which is a two
dimensional plot showing when states of a system being analysed were similar to each other.
The input data for recurrence plots analysis are in the form of a one dimensional signal (time
series). It means that we do not have to know all variables that affect the state of a system or
know how to measure all these variables. Everything that is required is one representative
variable, based on which reasoning about whole system is possible. A good example of this
kind of a variable is a price of stocks on a stock market.

Applying recurrence plots in analysis of computer programs 7

A generation of a recurrence plot begins with transforming input signal into multi-
dimensional one. This process is known as delayed coordinate embedding. If a signal looks as
follows:

XnXX ...2,1
then multi-dimensional vector Yi will look in the following way:

})1(...,2,,{ dmXidXidXiXiYi −−−−=
A vector Yi can be seen as a vector describing the state of a system in a original phase

space, at some point i, using m variables. A parameter m is called embedding dimension and
a parameter d - time delay. Let’s consider this signal:

,8,9...10,2,3,5,6
If m=3 and d=1, then a multi-dimensional signal will have a form:

{6,5,3}... = Y5 {5,3,2}, = Y4 {3,2,10}, = Y3
Vectors Y1 and Y2 were omitted, because for given values of parameters m and d it is not

possible to create them. The correct selection of m and d is important, because otherwise
analysis of RP would give wrong results. In order to calculate an optimal value of the delay
parameter the algorithm using mutual information could be used [13]. Article [9] describes
approach to determine parameter m based on the K-nearest neighbours algorithm.

The next step is to calculate a distance Di (a measure of similarity) between every pair
(Yi, Yj) of reconstructed vectors. A distance is usually calculated based on [16] Manhattan
norm, Euclidean Norm or Maximum norm. If the distance between two vectors (states) is
lower or equal than a given threshold Tr , a point (i, j) on a plot is marked with a colour. For
example a point 120, 250 on a plot would correspond to a distance between vectors 120 and
250 in the reconstructed multi-dimensional space. There are also some rules [16] which helps
in determining a value of the threshold Tr e.g. it should not exceed 10% of the maximum
phase space diameter.

There are some extensions to standard recurrence plots. For example Cross Recurrence
Plots (CRP) and Join Recurrence Plots (JRP) [15, 16] allow one to analyse dependencies
between two systems. CRP method requires that time series being analysed come from the
same system or systems that are very similar, while JRP could be used when both systems are
described by time series of different nature e.g. values of signals are expressed in different
units.

In order to quantify RP, some measures describing them were proposed. This approach is
known as Recurrence Quantification Analysis (RQA) [15, 16] and is based on density of
recurring points and diagonal, horizontal or vertical structures appearing on RP.

8 M. Komorowski

In the basic approach generated plots are sets of black and white points. There are also
tools [21] which create multi-colour recurrence plots. In this case a colour of a point depends
on a distance between vectors (states).

3. Historic debuggers

Historic debuggers were described for the first time in 60’s [12]. They allow one to move
back and forward in a history of a program execution. Thanks to that it is possible to quickly
fix bugs without restarting an application many times or reproduce rare problems.

Historic debuggers could be divided into two main categories. These in the first category,
log invocations of methods and changes to program states during a program execution [1, 2,
14, 18]. In the second approach a reverse version of a program code [10] is generated. Some
historic debuggers, in order to record a program execution, modify a program code before
executing it [14, 18], while others use virtual machines [1, 2].

IntelliTrace [14] is a historic debugger which is a part of Visual Studio Ultimate Edition
and is dedicated to .NET platform. It uses logging approach together with the instrumentation
of a program code. IntelliTrace attaches to an application and modifies its Common
Intermediate Language (CIL) by injecting special instructions. These instructions are
responsible for recording data. Collected data are stored in iTrace files which could be
examined in Visual Studio or programmatically. It works in two modes: basic and extended,
that differ in performance and range of information that is collected. In the article [11]
IntelliTrace was described in much more details.

The listing below shows a fragment of a computer program that was monitored with
IntelliTrace. The method StartCalculations is responsible for execution of some algorithm.
Figure 1, on the left side, shows how Visual Studio displays this code when being debugged
with IntellITrace. On the right side we can see a corresponding fragment of IntelliTrace log.
Table 1 shows the content of the recorded log when loaded into the database but only the
basic columns where shown. The first two columns contain identifiers of the call and of the
parent call. The next two columns show respectively the name of the callee and caller.

public Result StartCalculations()
{
 IAlgorithm alg;

 if (Mode == Mode.Simple)
 alg = new SimpleAlgorithm();
 else
 alg = new ComplexAlgorithm();

 return alg.Run();
}

Applying recurrence plots in analysis of computer programs 9

Fig. 1. A fragment of a code and of IntelliTrace log shown in Visual Studio
Rys. 1. Fragment kodu oraz logu IntelliTrace wyświetlony w Visual Studio

Table 1
Content of a log when loaded into a database

Id Parent Id Method Parent Method
1 NULL Test.Program.Main NULL
2 1 Test.Processor..ctor Test.Program.Main
3 2 Test.Processor.Mode Test.Processor..ctor
4 1 Test.Processor.StartCalculations Test.Program.Main
5 4 Test.Processor.Mode Test.Processor.StartCalculations
6 4 Test.SimpleAlgorithm..ctor Test.Processor.StartCalculations
7 4 Test.SimpleAlgorithm.Run Test.Processor.StartCalculations

4. Tools

There are many tools [5, 7, 21] which allow one to generate recurrence plots. Some of
them [21] were used in experiments described later in section 5, however it was decided to
develop a new tool because existing solutions were missing some important functionalities.
The developed component is called RecurrencePlot.dll and was used to extend the previously
developed application ExecutionTraceToolkit [11].

ExecutionTraceToolkit is a tool which simplifies and makes working with IntelliTrace
more efficient. It also allows users to load iTrace logs into a database or generate call trees.
This tools was extended and used in experiments that are described in the latter part of this
article. The improved version of ExecutionTraceToolkit allows users to:
• Generate RP for signals consisting of hundreds of thousands of elements. It was achieved

by using sampling.
• Generate signals (time series) for data collected by IntelliTrace historic debugger. There

are many possibilities how this kind of signal could be generated based on these data.
However, in this article one particular time series, consisting of methods identifiers, was

10 M. Komorowski

examined. It was chosen because executions of methods determine what happened in the
computer program.

• Define a specific algorithm which will be used to calculate distance between vectors
(state) for a given signal. This function should be used when standard algorithms e.g.
Euclidean distance are not suitable for data being considered. For example, in the
experiments (see section 5) a custom algorithm for a signal consisting of method
identifiers was used. This algorithm starts with a value equal to the parameter m. Then it
iterates through vectors (v1, v2) and decreases a value by one if vectors are the same on a
given position. If vectors differ on some position algorithm stops and returns a result. The
intuition is that two sequence of methods calls are similar if they consist of the same
methods. If at some position different methods were executed, it means that sequences
represent a different business logic.

• Generate a recurrence plot for a selected part of a signal. It is useful when we do not want
to analyse a whole signal.

• Generate a recurrence plot for a multi-dimensional signal. In this case a delayed
coordinate embedding step of the processing is skipped (see section 2). This functionality
is useful when we want to apply recurrence plot analysis to some existing multi-
dimensional data.

• Provide descriptions for elements of a given signal. These descriptions are then visible on
a plot. It makes analysis easier.

• Point out a point on a plot in order to see a pair of vectors based on which the point was
created. It also makes analysis easier.

• Export reconstructed phase space (a set of multi-dimensional vectors) to a file.
• Zoom in or zoom out any part of a plot. If a signal is long, then a plot may be too general.

In this case a user may want to zoom in and examine a selected part of a plot.
• Export a plot to a file.
• Calculate a phase space diameter in order to estimate a correct value of the threshold Tr.

Some of mentioned functionalities are also available in other tools but not all of them.
What is also important ExecutionTraceToolkit aggregates many functions in one place what
makes analysis more comfortable.

5. Experiments

In the experiments described later in this section three different programs were used. The
first one is a simple application Fibonacci which calculates Fibonacci numbers in a recursive

Applying recurrence plots in analysis of computer programs 11

way. It was used to perform a benchmark and check if RP could be used to analysed
computer programs at the example of the program with only a few methods and simple logic.

The next one is a program developed by the author, called LanguageTrainer. It is used to
maintain a set of words in foreign languages and help users in repeating and learning of these
words. The last is a commercial financial software called Rafaello (the name was changed),
which is a tool used by banks to maintain their business.

In order to calculate optimal value of parameters m and d the program VRA (Visual
Recurrence Analysis) was used. In order to calculate these parameters VRA uses algorithms
mentioned in the section 2 i.e. K-nearest neighbours and algorithm based on mutual
information. All recurrence plots shown in the following sections were generated by
ExecutionTraceToolkit.

The goal of conducted experiments was to check if RP could detect patterns in signals
generated based on logs of historic debuggers, how activity of a user affects recurrence plots
and if RP can be used to detect errors in the business logic of computer programs.

5.1. Fibonacci

In this experiment Fibonacci application was used. It is a simple and a recursive program
so RP should show repeating patterns. Initially, the program was run under control of
IntelliTrace and two Fibonacci numbers were calculated. Then iTrace log was processed and
a signal consisting of 4527 items was generated.

Figure 1 shows a plot that was created based on this signal (m=2, d=100 and Tr=0). On
the left side of this figure we can see a general plot and on the right side a zoomed in
fragment.

A plot is visibly divided into a few parts. It could be easily explained. A scenario used to
record iTrace log consisted of two steps. In each step one Fibonacci number was calculated.
Parts of a plot corresponds to these two steps. There are four of them (not two) because RP is
symmetric.

Fig. 2. A plot and a zoomed in fragment of it for the signal for Fibonacci program
Rys. 2. Wykres oraz jego przybliżenia dla sygnału dla programu Fibonacci

12 M. Komorowski

A zoomed in fragment of a plot shows clear diagonal structures. It means that a program
was executing the same path many times what is consistent with the implementation. It is also
worth noticing that the generated plot is not completely black. It means that except a
recursive method some other methods were executed. This observation is also consistent with
the implementation.

It is interesting to compare this plot with plots produced for a sine signal (m=2, d=4 and
Tr=0.28) and for a white noise signal (m=1, d=1 and Tr=1.25) (see figure 2). RP for a sine is
extremely well structured. A plot for a white noise is the opposite. Plots for time series
created based on iTrace logs are ”somewhere” between.

As to the plot for the white noise signal it is also important that it was generated with a
very high value of the threshold Tr i.e. equal to 50% of a phase space diameter. For smaller
values a recurrence plot was empty or contained a small number of recurring points. For all
other cases Tr was not exceeding recommended 10% of a phase space diameter [16].

Fig. 3. A plot and a zoomed in fragment of it for the signal for Fibonacci program
Rys. 3. Wykres oraz jego przybliżenia dla sygnału dla programu Fibonacci

This experiment also shows that it is important to limit the length of time series and/or to
propose automatic way of analyzing RP. The signal for the program is not very long but even
in this case a generated plot has more than 16 million of points (4527×4527). The signal
could be shortened by either using sampling, or by carefully selecting methods to be
monitored by a historic debugger, so that a recorded log would be smaller.

Finally, an error was injected into Fibonacci application i.e. the program has a property
NoOfCalls which stores number of recurrence calls, in the version with an error this property
was incremented more times than it was required. Figure 3 shows fragments of plots
generated for both versions of the program (m=2, d=100 and Tr=0) that were found to be
different.

Further investigation showed that in the signal for the program without an error there
were exactly 3 recurring states/vectors. In the second signal, 3 additional states appeared and
this disrupted a pattern. It leads to the conclusion that the sequence of called methods was

Applying recurrence plots in analysis of computer programs 13

somehow changed. However, it was difficult to determine where a bug was located without
investigating a code of a program.

Fig. 4. Plots for a program without an error (on the left) and with an error (on the right)
Rys. 4. Wykres dla programu bez błędu (z lewej) i z błędem (z prawej)

5.2. LanguageTrainer

This sections contains a description of four different experiments that were performed
with LanguageTrainer application.

5.2.1. Patterns detection

At the beginning, the paging component (at particular point of time only a subset of all
words is displayed and a user is able to switch from a page to a page) of LanguageTrainer
application was investigated.

Fig. 5. Plots for the paging component
Rys. 5. Wykresy dla komponentu odpowiedzialnego za stronicowanie

The application was run under control of IntelliTrace, but only methods responsible for
paging were monitored. The control parameters were m=9, d=3 and Tr=0. The application
was executed three times. Each time a user was working with the program longer performing
the same set of actions i.e. move one page forward, move 5 pages forwards, move to the last
page, move to the fist page. Finally, for each scenario a recurrence plot was generated.

14 M. Komorowski

In the first RP no recurring states were detected for given parameters except the main
diagonal line which appears on every recurrence plot.

The second and the third plots contains repeating structures. Moreover, the second plot
contains in itself the first plot and analogically the third plot contains in itself the second plot
(see solid rectangles). It suggests than RP are additive. It also means that RP detected
repeating actions performed by a user.

It is also worth investigating more carefully a fragment in the small dotted rectangle. We
can see a break in the long diagonal line (it is also visible in the second plot). This break
appears because at the beginning LanguageTrainer application counts the number of all
available expressions. This is a single actions which does not repeat/recur.

Interesting are also a single black points visible in the first and in the second plot. It
means that some states are rare and/or persist only for a very short time.

5.2.2. Vulnerability to changes in a signal

The next experiment was similar to the one described in section 5.2.1, but this time the
scenario was changed a little bit i.e. in the third step one additional action (move one page
forward) was performed by a user. Figure 5 shows a recurrence plot (m=9, d=3 and Tr=0)
generated for this scenario.

The plot differs from the one generated in the previous experiment. The diagonal lines
visible in the old plot are now ”broken” into two shifted parts (see dotted rectangle). Besides
the new short diagonal line (see solid rectangle) is now visible. It corresponds to the one extra
action performed by a user. This experiment shows that RP are vulnerable to even relatively
small changes in time series caused by a user activity.

Fig. 6. A plot for the paging component for a changed scenario
Rys. 6. Wykres dla komponentu odpowiedzialnego za stronicowanie w zmienionym scenariuszu

5.2.3. Additivity of RP

The goal of this experiment was to confirm that RP are additive i.e. a plot generated for a
given signal A (set of actions performed by a user) will be included in a plot generated for an
extended signal C which has a form (B denotes additional actions performed by a user):

Applying recurrence plots in analysis of computer programs 15

AB = C

Initially, a basic scenario consisting of five steps was prepared. Then LanguageTrainer
was run under control of IntelliTrace a few times but each time a scenario was different i.e.:
• Session 1 - Step 1
• Session 2 - Step 1, 2
• Session 3 - Step 1, 2, 3
• Session 4 - Step 1, 2, 3, 4
• Session 5 - Step 1, 2, 3, 4, 5
• Session 6 - Step 5, 1, 3, 4, 2

Finally, for each session a recurrence plot was generated using the same values of
parameters m and d. The results were consistent with observations from previous experiments
i.e.: RP for the session 2 contained the plot for the session 1, the plot for session 3 contained
the plot for the session 2 etc. What is also interesting a plot for the session 6 contained
fragments of other plots, but these fragments appeared in the order of steps in the session 6.

5.2.4. Errors detection

In this experiment it was examined if RP could be used to detect errors in the business
logic of a program. In order to do so, a few versions of LanguageTrainer were prepared.
Each version had a bug in some component of the application. Then LanguageTrainer was
run under control of IntelliTrace and a user was trying to perform set of actions (each time
the same).

This time IntelliTrace was monitoring all methods because bugs were located in different
components and it was difficult to choose a subset of methods to monitor. Finally, recurrence
plots were generated (m=3, d=2 and Tr=0) and compared with a plot for the application
without bugs.

The experiment showed a few problems with application of RP in analysis of computer
programs. Produced signals were very long (hundreds of thousands of items). It means that in
order to generate plots signals had to be sampled. Unfortunately, it turned out that sampling
affects generated plots seriously which makes comparison very difficult or even impossible.
Besides, even a small bug caused a considerable change in a plot and it was difficult to
translate/map changes in a plot to particular bugs.

5.3. Rafaello

In the last experiment Rafaello application was used. RP were used to check if a new
component in Rafaello, responsible for maintaining customers data, works correctly. The new

16 M. Komorowski

component replaced the old one, created in the old difficult to maintain technology, but the
interface of communication with the rest of the system was untouched.

The idea was to compare RP generated for the application with the old component and
with the new component. In order to collect required data two versions of the application
were monitored by IntelliTrace while a user was: creating a new private client, creating a new
corporate client or updating a private client. For both version of the program the common
interface should have been used in the same way, so signals were produced based on methods
of this interface (in the collected data 180 different methods were identified) i.e. RP were
generated not for the whole system but for a part of it.

Figure 6 (m=2, d=5 and Tr=0) shows on the left side a plot for the new component and on
the right side a plot for the old component. They are the same, except differences in the
central part of plots. Further investigation of a signals showed that these differences were
caused by a very minor differences between input signals that could be neglected. It confirms
earlier observations that RP are vulnerable to even the smallest changes in the input signal.

The positive results of this experiment were consistent with the results of other kind of
tests e.g. functional testing performed by a test team, automatic integration tests. It suggests
that RP could be used as a first level test, which could be run easily and quickly, before other
testing methods.

Fig. 7. Plots for the new and for the old component
Rys. 7. Wykres dla nowej i starej wersji komponentu

6. Summary

In this paper a new approach to analysis of logs of historic debuggers was proposed,
described and examined. The proposed method aggregates information from a log being
analysed and presents them in the graphical way. This kind of method of analysis is required
because logs of historic debuggers could contain GBs of data [11] and it makes its

Applying recurrence plots in analysis of computer programs 17

investigation difficult. It is also worth mentioning that RP can be generated easily and
quickly in order to facilitate analysis.

It was shown that RP will detect repeating/recurring states in a signal generated based on
logs of historic debuggers. It was also shown that RP are very vulnerable to changes in an
input signal. These changes could be related to a bug in a program or to users’ activity.
Besides it was observed that RP are additive for a signal consisting of methods identifiers. If
A is a signal of form A=a1a2...an, where ai is a set of items in this signal, then a plot
generated for a signal B of form B=a1a2...an+1 will contain a plot for the signal A. RP are
also to some extent insensitive to order of actions performed by a user in an application. If A
is a signal of form A=a1a2..., where ai is a set of items in this signal, then a plot generated for
a signal B of form B=permutation(a1a2...) will contain fragments of a plot generated for the
signal A.

Nonetheless, much more work is needed regarding this topic. The analysis of RP should
be automated. The manual analysis of plots turned out not to be easy. It is especially difficult
to map structures in a plot to what exactly happened in the program. Author thinks that RQA
might help in this case. It is also important to find out the way to generate RP, based on
historic debuggers logs, in such a way they would not be so vulnerable to changes in the input
signal. The solution may be the application of other types of signals, a different algorithm of
calculating distances or another approach to generation of plots. Finally, it is also necessary
to elaborate more work regarding generation of RP for very long time series. Experiments
showed that sampling is not a perfect solution. It seems that RP can also be used in the
analysis of other logs, e.g. system event and performance logs [8].

BIBLIOGRAPHY

1. Wang L., Liu X., Song A., Xu L., Liu T.: An Effective Reversible Debugger of Cross
Platform Based on Virtualization. International Conference on Embedded Software and
Systems, 2009, p. 448÷453.

2. Koju T., Takada S., Doi N.: An efficient and generic reversible debugger using the virtual
machine based approach. 1st ACM/USENIX International Conference on Virtual
execution environments, 2005, p. 79÷88.

3. Jeffrey H. Joel.: Chaos game representation of gene structure. Nucleic Acids Research,
1990, p. 2163÷2170.

4. Bautista-Thompson E., Brito-Guevara R.: Classification of Data Sequences by Similarity
Analysis of Recurrence Plot Patterns. Seventh Mexican International Conference on
Artificial Intelligence, 2008, p. 111÷116.

5. Commandline Recurrence Plots, http://tocsy.pikpotsdam. de/commandline-rp.php.

18 M. Komorowski

6. Rybak T., Mosdorf R.: Computer Users Activity Analysis Using Recurrence Plot.
International Conference on Biometrics and Kansei Engineering, 2009, p. 189÷194.

7. CRP Toolbox, http://tocsy.pik-potsdam.de/CRPtoolbox/.
8. Kubacki M., Sosnowski J.: Creating a knowledge database on system dependability and

resilience, Control and Cybernetics, Vol. 42, No. 1, 2013, p. 287÷307.
9. Kennel M., Brown R., Abarbanel H.: Determining embedding dimension for phase-space

reconstruction using a geometrical reconstruction. Physical Review A, Vol. 45, No. 6,
1992, p. 3403÷3411.

10. Lee J.: Dynamic Reverse Code Generation for Backward Execution. In: Proceedings of
the Workshop on Verification and Debugging, Vol. 174, 2006, p. 37÷54.

11. Komorowski M.: Enhancing and extending IntelliTrace debugging capabilities. Studia
Informatica, Vol. 33, No. 1, 2012.

12. Balzer R. M.: EXDAMS: extendable debugging and monitoring system. Proceedings of
the May 14-16, 1969, Spring Joint Computer Conference, 1969, p. 567÷580.

13. Fraser A. M., Swinney H. L.: Independent coordinates for strange attractors from mutual
information. Physical Review A, Vol. 33, No. 2, 1986, p. 1134÷1140.

14. IntelliTrace, http://msdn.microsoft.com/en-us/library/dd264915.aspx.
15. Recurrence Plots And Cross Recurrence Plots, http: //www.recurrence-plot.tk/.
16. Marwan N., Romano C., Thie M.l, Kurths J.: Recurrence plots for the analysis of complex

systems. In: Physics Reports, Vol. 438, Issues 5–6, January 2007, p. 237÷329.
17. Eckmann J.P., Kamphorst S.O., Ruelle D.: Recurrence plots of dynamical systems,

Europhys. Lett., Vol. 4, No. 9, 1987, p. 973÷977.
18. Chen S., Fuchs W. K., Chung J.: Reversible Debugging Using Program Instrumentation.

IEEE Transactions on Software Engineering, Vol. 27, 2001, p. 715÷727.
19. Zalewski M.: Strange Attractors and TCP/IP Sequence Number Analysis, 2001,

http://lcamtuf.coredump.cx/oldtcp/.
20. Saeed-Baginska A., Mosdorf R.: The recurrence plot as a tool in the analysis of network

traffic anomaly detection. International Conference on Computer Information Systems and
Industrial Management Applications, 2010, p. 289÷294.

21. Visual Recurrence Analysis, http://www.visualization-2002.org/VRA_
MAIN_PAGE_.html.

Omówienie

Wykres rekurencyjny to metoda analizy danych nieliniowych, polegająca na wytworzeniu
wykresu (obrazka) pokazującego, kiedy stany analizowanego systemu, w różnych punktach
czasowych, zbliżyły się do siebie.

Applying recurrence plots in analysis of computer programs 19

Podejście to zostało z powodzeniem zastosowane do analizy danych finansowych,
w geologii, w neurobiologii, a także w informatyce do analizowania ruchu sieciowego lub do
analizy zachowań użytkowników.

W tym artykule opisano serię eksperymentów, w których zbadano możliwość zastosowa-
nia wykresów rekurencyjnych do analizowania danych zebranych przez debugery historycz-
ne, np. do wykrywania błędów w aplikacji. W celu przeprowadzenia tych eksperymentów
zaprojektowano i zaimplementowano narzędzie o nazwie ExecutionTraceToolkit, które
wspomaga taką analizę.

Address

Michał KOMOROWSKI: Politechnika Warszawska, Instytut Informatyki, ul. Nowowiejska
15/19, 00-665 Warszawa, Polska, M.Komorowski@ii.pw.edu.pl/michalkomorowski@tlen.pl.

	1. Introduction
	2. Recurrence plots
	3. Historic debuggers
	4. Tools
	5. Experiments
	5.1. Fibonacci
	5.2. LanguageTrainer
	5.2.1. Patterns detection
	5.2.2. Vulnerability to changes in a signal
	5.2.3. Additivity of RP
	5.2.4. Errors detection

	5.3. Rafaello

	6. Summary

