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Summary. This paper describes a method of predicting the secondary structure of 
proteins, based on dictionaries of subsequences. These subsequences are derived from 
records available in the PDB database. Depending on the construction of the learning 
set, accuracies of up to 79% have been achieved. Dictionaries use hashing functions, 
which make them fast and capable of storing large sets of substrings. 
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PRZEWIDYWANIE STRUKTURY DRUGORZĘDOWEJ BIAŁEK 
METODĄ SŁOWNIKOWĄ 

Streszczenie. W artykule opisano sposób przewidywania struktury drugorzędowej 
białek, oparty na słownikach podciągów. Sekwencje te są pobierane z danych 
dostępnych w bazie danych PDB. W zależności od konstrukcji zestawu uczącego, 
osiągnięto dokładność do 79%. Do szybkiego dostępu do słowników zawierających 
dużą liczbę podciągów zastosowano funkcje mieszające. 

Słowa kluczowe: białka, przewidywanie struktury drugorzędowej 

Introduction 

Proteins are biochemical compounds consisting of one or more polypeptides which are 
single linear polymer chain of amino acids bonded together by peptide bonds between the 
carboxyl and amino groups of adjacent amino acid residues. To characterize the structural 
topology of proteins, the concept of protein structure hierarchy with four levels: primary, 
secondary, tertiary, and quaternary structures have been proposed [17]. 
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The protein secondary structure (pss) is the characterization of a protein with respect to 
certain local structural conformations of amino acid sequence (primary structure) - like α -
helices (H), β -sheets (E) and others known together as coils (C). Protein secondary structure 
plays an important role in characterizing protein structures as it provides a basis for tertiary 
structure and function prediction, and many other [17].  

The usual goal of protein secondary structure prediction (pssp) is to classify a pattern 
of residues in amino acid sequences to one of the predefined protein secondary structures, 
usually the above mentioned three: H, E or C. In some applications, more classes of 
secondary structures are defined - e.g. eight in DSSP [6]. Define Secondary Structure of 
Proteins is a program developed by Kabsch and Sander to standardize secondary structure 
assignment. The DSSP algorithm takes as input coordinates of all atoms in a protein. Then, it 
analyzes the 3-dimensional structure of the compound and assigns a class to each element of 
the protein chain. The rules used in this assignment are arbitrary (e.g. they should decide, 
what is the maximum allowed angle in a "sheet" and when to begin treating it as a "helix"). 
But as DSSP became a standard, we use results of it as our input data, reduced to three 
classes. Protein secondary structure prediction is now one of the most important problems in 
structural biology. 

Since the 1970s many researchers have developed varieties of approaches. Early methods 
of secondary structure prediction were based on making predictions only on the basis of 
information coming from a single residue, either in the form of the statistical tendency to 
appear in an α-helix, β-strand or coil region [1, 3] or in the form of the explicit biological 
expert rules [8]. However, the accuracy of these methods is much below 70%. Second 
generation methods apply the connection architecture, taking into account local interactions 
by means of an input sliding window with encoding. It is generally assumed that 65% (being 
the average accuracy here) of a secondary structure depends on local interactions [14]. Third 
generation methods started exploiting the information coming from homologous sequences. 
Jones [4] first proposed incorporating position-specific scoring matrices (PSSM) obtained 
using PSI-BLAST program into neural networks. The basic observation is that the secondary 
structure within a family of evolutionary related proteins is more conserved than the 
sequences. As a result, most of the state-of-the-art methods, including PHDpsi [12], Porter 
[11], SVM [18, 10], etc., are all based on PSSM matrix and machine learning methods 
(classification methods) (see for example [16] for an introduction of classification 
algorithms). The Q3 accuracy of the newest methods remains at approximately 80% and 
further improvements are very difficult. The estimated theoretical limit of the accuracy of 
secondary structure assignment from the experimentally determined 3D structure is 88% of 
the Q3 accuracy [13] which is deemed the upper bound for secondary structure prediction. 
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The Q3 measure is a simple measure of similarity of two strings. A more sophisticated 
measure is SOV, defined by Zemla [19], described later. We use both measures. 

This article describes a new approach to predict the secondary structure of proteins, using 
a dictionary of known structures. In general, dictionary methods use a (large) set of items, 
which may be words, words with translation, sequences of symbols etc. These methods are 
used in many domains: text translation (the dictionary contains a number of phrases with 
translations), speech synthesis, cryptography (the dictionary contains a set of patterns to test 
as potential passwords etc.). Dictionary methods use a large set of solved problems and try to 
find a solution in this set. Even if the problem to be solved is not present in the dictionary, the 
algorithm may find similar problems and use their solutions to generate the answer. 

In our method of prediction, we do not analyze neither physical or chemical properties of 
the compound. The secondary structure prediction is based on similarities to known proteins 
only. It is assumed, that the local primary structure determines the secondary structure and 
the influence of more distant amino acids may be ignored. In fact, this property is satisfied 
only for very long chains of amino acids. And even in such cases there are derogations from 
this rule. However, taking into account the entire primary structure would be very complex 
and time consuming and most methods predicting the secondary structure make a similar 
assumption - only amino acids close to the predicted position are analyzed. 

For the dictionary method we assume, that a sufficiently long substring of the primary 
structure also leads to the same secondary structure subsequence. Therefore, in order to 
predict the secondary structure, we build a dictionary of primary structure substrings and 
their corresponding secondary structures. The size of the dictionary depends on the available 
training set. We choose a maximum length lmax of subsequences and fill the dictionary with 
strings of this fixed maximum length and shorter. In our solution, we have used lmax=13 and 
lmax=11. The implementation supports strings of arbitrary length. But introducing longer 
strings does not improve prediction results. Even a string composed of 11 amino acids is 
usually found in one protein only in the whole PDB database. A longer string would occur in 
the same protein only and would not change the result of prediction. 

We have solved the problem of storing all such substrings from the whole PDB database 
and retrieving the information about secondary structure in a reasonable time. Lengths of 
chains of amino acids making up proteins are expressed in hundreds, and in some cases even 
thousands. The PDB database contains about 85000 proteins. So, dictionaries are created for 
tens of millions of subsequences. 

Dictionaries contain records composed of two elements: the primary subsequence and 
corresponding secondary structure for the middle element of the subsequence. If there are 
many identical subsequences, the information about the number of occurrences of all possible 
secondary structure classes is stored.  
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The prediction algorithm tries to match the examined protein against all subsequences in 
the dictionary, starting with longest strings. If an exact, longest match is found, the 
corresponding, most frequently occurring secondary structure element is selected. If not, the 
search continues in shorter strings and in similar strings. Similarity means, that one primary 
structure element may remain unmatched. Because the dictionary contains strings of the 
lengths down to one element, the algorithm always finds a matching string. At two ends of 
the sequence, a padding pattern is added to complete the desired length of strings. 

Our implementation was collecting substrings up to 13 elements long. Memory usage for 
lmax=13 is less than 1 GB. We use a string matching function, which finds exact matches and 
matches with one differing pair of amino acids. 

2. Methods and algorithms 

Our assumptions are (of course) simplifying the reality and we may encounter several 
problems applying them to real data. In general, we try to decompose an unknown amino acid 
sequence into shorter sequences, which possibly may be found in available databases. Then 
we check secondary structure patterns for these short sequences and build a solution for the 
whole protein.  

Following problems may occur: 
1. We assume, that a protein is composed of up to 20 different amino acids, for which 

standard symbols are used (A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y). 
However, the PDB database contains proteins with undefined elements - not matching any of 
these 20. In these cases, we use an additional symbol (X) for these undefined elements. 
Unfortunately, these undefined elements sometimes create longer chains. An extreme case is 
the protein 1D8S, composed of 3082 undefined amino acids in the primary sequence but 
having an observed secondary structure. Other proteins may contain shorter, but still 
unacceptable long sequences of undefined elements. In these cases, we break the sequence, 
leave out the undefined part of it and create two subsequences from the remaining parts.  

2. This problem is related to the previous one. After leaving out a part of the chain, we of 
course leave out the corresponding secondary structure too. But this "cutting" does not reflect 
the true shape of the created subchains. Especially, when there was a helix at the removed 
subsequence, it may be continued in the second subsequence (that we take into our 
dictionary). A problem occurs, when there is only one position left with the class "H" 
assigned. I.e., the second string begins in this case its secondary structure with a helix (at the 
first position) and then it is changing to another class. It is not possible - the helix is at least 
three elements long.  
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3. Short substrings (shorter than about 7 amino acids), often correspond to different 
secondary structures. So, a dictionary record for a given primary structure subsequence 
should contain multiple versions of the secondary structure. In practice, we use only three 
classes for the secondary structure (H, E and C) and it is enough to count, how many times 
each of these three classes occurred for a given substring.  

4. Due to the limited size of the training set, the dictionary of substrings does not contain 
all possible combinations of amino acids. After limiting the maximum length of the substring 
to lmax, the total number of different substrings of this length is still 20lmax, and with added 
shorter sequences approximately 20 times bigger. For example, for six-elements and shorter 
substrings, the size of the dictionary would be about a billion (109) of records. But even using 
all known proteins from the PDB database, we get only less than 108 different six-element 
substrings. For longer sequences, our dictionary is much smaller than the number of possible 
sequences. Because of that, it is very probable, that we will not match a substring of a desired 
length from the analyzed protein in our dictionary. In this case, we try to find shorter matches 
and agree to non-exact matches.  

5. As we do not analyze chemical or physical properties of amino acids, we treat them as 
"equally different". It means, that in our algorithm a difference at a given position of the 
primary structure is always treated in the same way with no regard which amino acid is at 
this position.  

Following sections describe all steps of the method we have used. 

2.1. The method 

The general method for predicting the secondary structure consists of two stages: building 
the dictionary, shown in Fig. 1 and the prediction stage, shown in Fig. 3. Details are 
described in subsections. 

2.2. Building the dictionary 

The dictionary is built on the basis of selected proteins from the PDB database. The entire 
database contains about 85 thousands of proteins with known spatial structure. Our algorithm 
may use even the whole database to build the dictionary. In some cases, it results in a 
dictionary created from about 50 million individual entries. 
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Fig. 1. The learning stage – building the dictionary

Input data: 
• ProtSet, a set of records (prim. str., sec. str) 

Output data: 
• D, a set of subdictionaries D1, D3, …, D13 with subsequences 

Algorithm: 
1. Slide a window of the length 13 through the primary sequence 
2. Add a pair (substring of the primary sequence and a corresponding 

element of the secondary sequence) to D13 
3. Store all entries in a hash tables 
4 R 1 3 f D D ( i h h i d )

Rys. 1. Faza uczenia – budowanie słownika 
 

The dictionary uses a family of hash functions to place all strings in a number of hash 
tables. Each hash table creates one subdictionary Di, i = 1, 3, 5, …, lmax. The subdictionary Di 
contains strings of the length i. The size of hash tables depends on i. For i = 1 it may be even 
as small as 20; for i > 3 we have used hash tables with 1.5 millions entries. Each record 
placed in a dictionary is composed of two elements: the primary string and a set of three 
counters counting occurrences of three possible secondary structure classes (H, E, C) for the 
middle element of the primary string. We have used only odd values for the length of strings; 
this makes selecting the middle element obvious. 

The hash function does not provide unique values and each element of the hash table is 
capable of holding multiple records, stored in lists. The average number of records in these 
lists depends on the subdictionary. For shorter strings, lists are shorter. The total number of 
records stored finally in hash tables is less than the number of strings available in the learning 
set – repetitions are stored in counters mentioned earlier.  

Substrings are generated from the training set using a sliding window. Each chain of the 
length n generates n pairs (substring, secondary structure class). For a given length l of the 
window, ⌊l/2⌋ additional neutral symbols "X" are added at the beginning and at the end of 
the chain. Then, the sliding window is moved from left to right generating pairs. The 
secondary structure class applies to the middle element in the window. An example is shown 
in the fig. 2. 
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Fig. 2. A sliding window applied to the primary sequence 
Rys. 2. Okno przesuwane nad sekwencją pierwszorzędową 
  

2.3. The hash table 

The method uses 6 (for lmax = 11) or 7 (for lmax = 13) hash tables of the size depending on 
the length of subsequences. For subsequences longer than 3 elements, we use about 1.5 
million of entries in the hash table. When filled with the whole PDB database, this gives a 
load factor of up to 99.2% and average list lengths up to 5. These values are acceptable and 
provide a short time both for searching and updating the tables. The total amount of memory 
used for all dictionaries is below 1 GB. In some systems it may be crucial to keep the 
memory usage below 2 GB, as they don’t let to allocate more memory for a single process 
(e.g. 32-bits versions of MS Windows). 

2.4. The prediction stage 

The prediction of secondary structure uses information from the dictionary built in the 
first stage. The general idea is shown in the Fig. 3. Each position of the structure ps is 
analyzed. For each position, subdictionaries Di, i = 13, 11, …, 1 are used to match a substring 
extracted from ps, from the position ps[k−2i] to ps[k+2i]. If a match is found, the 
corresponding best secondary structure class is retrieved from the dictionary. If an exact 
match is not found, another try is made to find an approximate match with one non-matching 
position. If not successful, a smaller value of i is taken. The last subdictionary D1 contains all 
twenty possible elements, so this algorithm always finds a match. The sequence ps is 
additionally padded with a sequence of ⌊i/2⌋ elements "X" at the beginning and the end, 
which is not shown in the code. 
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Fig. 3. The prediction stage of the method 

Input data:  
• D, a dictionary of subsequences and secondary structures; this dictionary 

consists of many subdictionaries D1, D3, …, D13 created for subsequences 
of  different lengths 

• ps, the primary structure to be analyzed or the structural code 
Output data: 

• ss, the secondary structure for ps 
Algorithm: 

1. Take the subdictionary for longest subsequences (D13) 
2. Slide a window of the length equal to the length of entries in the 

subdictionary, through the ps 
3. For each alignment of the window, check if such a subsequence exists in 

the subdictionary 
4. If a match was found, take as a result for the ss the corresponding element 

from the dictionary 
5. If a match was not found, try again with one “wild character” (one non-

matching position in the substring) 
6. Repeat steps 2-5 with subdictionaries for shorter subsequences 

Rys. 3. Faza przewidywania opisywanej metody 
  

2.5. Measures for evaluation of results 

The traditional measure of the prediction quality is called Q3, which is defined as the 
number of correctly predicted residues divided by the length of the chain. However, it was 
shown, that the evaluation should be more specific. The SOV measure has been introduced 
by Rost and Sander [15], modified and described by Zemla in [19]. SOV stands for Segment 
Overlap Measure. SOV takes into account segments of elements in the same conformation. It 
compares such segments in the observed structure (which we assume to be true) and the 
predicted structure (which we evaluate). SOV measures the extent to which two segments 
overlap and allow to have non-matching residues at end of these segments, without 
worsening the result. The SOV measure for a single secondary structure class is defined as 
(1): 
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where s1 and s2  are the observed and predicted secondary structure segments in state i (i.e. H, 
E or C), len(s1) is the number of residues in the segment s1, minov(s1, s2) is the length of 
actual overlap of s1 and s2 (the extent for which both segments have residues in state i, e.g. H, 
maxov(s1, s2)  is the length of the total extent for which either of the segments s1 or s2  has a 
residue in state i, ),( 21 ssδ  is an integer value defined as being equal to (2): 
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The sum in equation (1) is taken over S, all the pairs of segments s1; s2, where s1 and s2 

have at least one residue in state i in common. N(i) is the number of residues in state i defined 
as in the equation (3): 
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These two sums are taken over S and S’; S(i) is the number of all the pairs of segments s1, 
s , where s  and s2 1 2 have at least one residue in state i; in common S’(i) is the number of 
segments s  that do not produce any segment pair. 1

3. Experiments and results 

We have used the dictionary method on several training and testing sets: 
• a set of almost all proteins from the PDB database; the input was the primary structure, 

output: secondary structure, 
• the B302 set, containing 302 selected proteins; input and output – as above, 
• the same set B302, but the input was so called structural code, output: secondary 

structure. 
We have used data from the PDB database, processed by the DSSP algorithm and made 

available as a set of records with additional DSSP information [5, 6] to train and test the 
method. It was necessary to adapt this data for our needs. DSSP contains analyzed protein 
chains with regard to the position of single atoms. Depending on the relative configuration of 
atoms, eight classes for the secondary structure are defined in DSSP. These eight classes (G, 
H, I, E, B, S, T, -) are mapped into three (H, E, C): G, H, I into H (helix), E, B into E (beta 
turn), S, T, - into C. We have retrieved all available records: about 85000 proteins described 
in this number of text files (Q3 2012), occupying about 8 GB. The set has been compacted 
into a 100 MB long file containing primary and secondary structures along with symbols of 
the proteins and the date of adding the proteins to the database. The set B302 is a set of 302 
proteins selected from the whole PDB set to perform tests on secondary structure prediction. 
The B302 set contains proteins, that are pairwise not similar. 

Experiments with the whole PDB database with about 85000 proteins (primary 
structure → secondary structure): in experiments involving the whole PDB set, we have 
divided it into a training and testing part, performing a part of a k-fold experiment. We also 
divided the set into two parts according to the date when proteins were added to the database. 
This simulated a real situation, when an unknown sequence is analyzed using all known 
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proteins. The best Q3 value in these experiments was 79.1%. We expected to get better 
results when the size of the learning set grows. This trend was visible when proteins from one 
year were analyzed using all "older" proteins. When the testing set was bigger, results were 
more random. 

Experiments with B302 (primary structure → secondary structure): The next test 
used the B302 set. In this case we got much worse results (SOV: 33.5%,  Q3: 49.9%). This 
may be caused by the fact, that the dictionary was too small – with too little examples. 
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Omówienie 

W artykule przedstawiono słownikową metodę przewidywania struktury drugorzędowej 
białek. Struktura drugorzędowa opisuje lokalną, przestrzenną konfigurację łańcucha 
aminokwasów. Ze względu na dużą złożoność obliczeniową wyznaczania tej konfiguracji 
bezpośrednio z fizycznych własności cząstek (np. minimalizacji energii całej cząstki), 
stosowane są metody heurystyczne bazujące na danych uzyskanych doświadczalnie. Opisana 
tu metoda słownikowa polega na zebraniu najczęściej występujących struktur 
drugorzędowych dla krótkich ciągów aminokwasów, a następnie zastosowaniu tych danych 
do wygenerowania struktury drugorzędowej dla nieznanego białka. Słownik zawiera podciągi 
o różnych długościach, aż do 13 elementów. Wybór konkretnego podciągu jako biorącego 
udział w generacji ostatecznego wyniku zależy m.in. od częstości występowania tego 
podciągu w bazie wejściowej. W eksperymentach zastosowano bazę zawierającą około 
85000 protein. Przeprowadzono eksperymenty z różnymi podzbiorami protein, uzyskując 
wyniki do 79% poprawnie przewidzianych elementów struktury drugorzędowej.  
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