STUDIA INFORMATICA 2014

Volume 35 Number 2 (116)

Artur OPALINSKI
Politechnika Gdanska, Wydzial Elektrotechniki i Automatyki

CONSOLIDATING LOGS IN VARYING FORMATS INTO
A STRUCTURED REPOSITORY

Abstract. During multi-agent systems development, testing and research, possibly
voluminous logs are created at distributed agent locations. These logs describe indi-
vidual agents’ behavior and state changes. To get the complete picture of the multi-
agent system working, it is necessary to consolidate these logs and to store them in
a format appropriate for diverse analyzes. Specific issues arise during consolidation if
the log formats are not uniform. This paper presents an approach to consolidate logs
in various formats into a single repository suitable for further analyzes.

Keywords: data consolidation, data extraction, meta-data management

KONSOLIDACJA LOGOW W ZMIENNYCH FORMATACH DO
STRUKTURALNEGO REPOZYTORIUM

Streszczenie. Podczas rozwijania, testowania i badania systeméw wieloagento-
wych tworzone sg obszerne logi w rozproszonych lokalizacjach, w ktorych dziataja
agenty. Logi opisuja zachowania poszczego6lnych agentdéw oraz zmiany ich stanow.
Zeby uzyska¢ kompletny obraz dzialania systemu wieloagentowego, konieczna jest
konsolidacja tych logéw do postaci przydatnej dla roznorodnych analiz. Niejednolity
format logow roznych agentow tworzy specyficzne wyzwania. Artykut opisuje pode;j-
Scie do konsolidacji logdbw w zmiennych formatach do postaci jednego repozytorium,
przydatnego do prowadzenia dalszych analiz.

Stowa kluczowe: konsolidacja danych, ekstrakcja danych, zarzadzanie meta-
danymi

56 A. Opalinski

1. Introduction

The problem considered in this paper is to consolidate multiple voluminous logs in vari-
ous formats into a single repository, suitable for further analysis. This problem is especially
valid for multi-agent systems. Multi-agent systems constitute a fast-growing domain of soft-
ware agent-oriented technology, which deals with knowledge management and autonomous
decision taking. During research of multi-agent systems, individual agents are producing logs
of their activities. These logs can be voluminous, depending on the number and activity of
agents at play, as the system is usually under development in the research phase, and different
kinds of decisions, state and state changes, debugging, and other information gets logged.
Discovering sequences of agents decisions, or agents communication, or other related events
is crucial to track and match causes and their effects, and to understand and explain system
behavior. Particularly debugging and understanding multi-agent systems is a challenging task
due to the number of agents involved and the complex communication patterns that they may
exhibit. To research the features and behavior of a multi-agent system as a whole, a unified
analysis of the logs is valuable. For this, it is necessary to select the useful content from sepa-
rate agents’ logs and to consolidate it into a single repository. Unfortunately the logs are usu-
ally produced at distributed places. Agents in the system may not be homogeneous, so the log
formats and logging mechanisms can differ. Also log formats in development are usually not
uniform even for a single agent’s run. Therefore it is not obvious how to consolidate these
multiple logs while limiting human involvement.

The goal of this paper is to describe a centralized, relational log database with the capabil-
ity of importing logs despite their varying formats and unspecified field types.

The thesis is that by working in concert on the agent and on the repository side it is possi-
ble to recognize log format and assume a sufficient data type representation to store multi-
agent system text logs in relational-database format suitable for later queries. Querying the

database 1s out of the scope of this paper.

2. State of the Art

Considerations of load of information on humans in relation to software agents has a rela-
tively long history, starting with [1] and [2]. Current research in mutli-agent systems which
relies heavily on logging includes [3], which documents research on execution patterns in
multi-agent systems. [4] and [5] attempt to semantically interpret distributed agents system

logs, to reconstruct a detailed view of agents' decisions during incident management in indus-

Consolidating logs in varying formats into a structured repository 57

trial facilities. [6] exploits logs to improve multi-agent system stability and robustness. Au-
thors describe logging-based infrastructure methodology for analysis of agent problem-
handling. Analyzing past agents behavior allows to recover from errors and thus to repair al-
ready-completed as well as current goals. The infrastructure is based on domain-specific
knowledge related to changes in goal status and semantic compensations. There are similar
solutions to increase multi-agent systems reliability [7] which also require logs consolidation
for analysis of components or transaction failures. Monitoring remains an obvious application
for log consolidation, too [8]. [9], [10] and [11] deal with extracting information from event
logs in multi-agent and other systems. The audit trails of a system workflow is used to dis-
cover models describing processes. AgentScope tool described in [12] implements measure-
ment and analysis interface for developing multi-agent systems. It uses a logbook abstraction
to collect data and a backend adaptor implementation of a Logger interface to route the indi-
vidual, distributed logbooks to a central logbook location. Processing the logs is crucial for
measurements and analysis in this work.

To take advantage of the aforementioned AgentScope tool, it is necessary to use its set of
programming interfaces. Therefore it is not easily available for creating agents in different
programming languages, nor in multi-agent systems where source code is not available for all
agents. In contrast, the solution presented in this paper is agnostic to the technologies and
languages in which agents are built.

There is a recent attempt to consolidate logging by employing a single log agent [13], but
this does not solve the development phase challenges, where every agent has to do and does
some logging. Using a dedicated log agent introduces some dependencies, which may not be
met at early stages of development: communication path must exist, agents must be identifia-
ble and perhaps registered for communication, agents must implement specific protocols for
log expediting, etc. Nevertheless even at the early stages agents may need be run for debug-
ging or testing.

[14] proposes visualization of agents communication and tasks. The visualization can be
performed offline, i.e. based on logs, but is aimed at tracking only predefined events, e.g.
agent’s start, communication, movement, action, end. The events can be defined at will, but
requires logging in XML format, defined in a Document Type Definition file, this again cre-
ates an additional work when applied in the development phase.

Logs happen to be stored in databases, either in relational databases [15] or in so called
NoSQL databases [16, 17], like Apache Hadoop [18], Apache Cassandra [19], Hive [20], or
Hbase [21]. Log entries are sometimes stored without parsing, e.g. as BLOBS [15], and then
the problem of preparing data for analysis remains open. Other solutions bear the assumption

that dedicated parsing code has to be created during database setup, like writing [22] func-

58 A. Opalinski

tions to parse each type of input data for aforementioned Hadoop. The latter is acceptable in
production or otherwise stable environments, but it is awkward during development and re-
search phase, when the format and logical contents of the logs changes frequently. Yet other
solutions force to use dedicated logging API [23]. This excludes direct of agents for which
source code is not available, without introducing intermediate translation layers. There are
multi-agent systems possible, where agents are not homogeneous, e.g. when agents are devel-
oped for very different platforms, including resource-constrained ones (e.g. microcontroller-
based sensors) where an API library is not an option.

All the existing approaches assume that format of log entries remain constant over time.
This is generally not true when developing software to research resulting multi-agent systems:
multiple parts of the software usually outputs different state and action information, which
may influence not only future actions and state changes of the same agent, but also the state

changes of and actions taken by other agents.

3. Solution

The basic assumption in the presented solution is that creating logs should not attract
much attention when developing and researching multi-agent systems. The usual text logs are
therefore used. It is also assumed that numerous changes to the multi-agent system should not
entail changes in the logging subsystem. Typical changes in the multi-agent system, related to
logging, include:

e subset of internal state variables reported,

e order in which variables from the selected subset are reported,

e type of the logged values.

Hence it is not evident which data is actually stored in a log field for such temporary, ad-
hoc changes. Additional information on the side of the agent is therefore needed. The mini-
mal change on the side of the agent code is to ensure that:

e log lines contain fields which are delimited by separators. This is necessary anyway when
coding logging, because usually many values describe agent’s state and need to be logged
together.

e when log format changes, e.g. due to following a different execution path of agent’s code
— a description of the currently used log format is provided, in the form of a header line.
A header line must start with a prefix. The header line should contain log field names, de-
limited by separators. Header lines must be coded anyway in more complex logging;

a feasible solution is then to precede each log line with a header line. Starting with the

Consolidating logs in varying formats into a structured repository 59

header line, the new log format is used for parsing log lines, up to the next header line or
to the end of input.

Agents can be heterogeneous, but their exact capabilities do not play any role as long as

they allow to save their logs to files, and use delimited fields in log lines. To provide for the

above requirements:

if agent source is available, agent’s logging behavior must be modified by adding a header
line at least at the points when log output changes; alternatively, corresponding header
line may precede each log line.

if agent’s source is unavailable, its log line format must be stable. If the agent does not
provide a preceding header line by itself, one must be fed from a separate, manually cre-
ated file.

The complete assumptions of the solution proposed in this paper are:

Multi-agent systems research requires many changes both in agent code, as well as in their
environment.

During runs, each agent generates its own log; agents may all run locally, or may be dis-
tributed.

Logs contain numerous text lines, with many simple value fields delimited by character
sequences predefined for the consolidation process. These fields reflect agent state or de-
cisions.

The fields of the log line can be integer numbers, floating point numbers, or strings.

The type of fields is not specified and may change between runs. This accommodates for
the fact that different aspects of agent state or working are important during development
and research in separate runs. The type of fields must be automatically detected during
consolidation. As a result of the auto-detection, previous assumptions about value types
may be invalidated.

Log format is unstable during development. The number of fields and their order in log
lines may change during run, depending on the code path being executed.

The names of the fields in the log line must be given in a preceding header line.

The logs are read line per line (Fig. 1), and log lines get parsed according to description

provided by header lines. Comment lines are skipped.

60

A. Opalinski

Fig. 1. High-level Nassi—Shneiderman diagram of log processing algorithm

while line read in

check line prefix

comment header

line no line

prefix prefix prefix
skip process process
line log line | header line

Rys. 1. Ogolny diagram Nassi—Shneidermana algorytmu przetwarzania logow

It has been decided to store the values of the log line fields in relational database table

named log_table (see Fig. 2). This table stores log fields as separate attributes. Therefore the

complete structure of this table is not known in advance: the number of attributes related to

the number of log fields is initially unknown. As header lines with previously unseen fields

are encountered during consolidation, this table is extended by adding the appropriate number

of attributes.

log_table

timestamp

FK

agent_table

PK id

name

agentID

FK

attr1

attr2

attr...

4,—»
sourcelD

source_table

PK id

name

header_table

PK| field_name

attr_type

attr_name

Fig. 2. Database diagram
Rys. 2. Diagram bazy danych

Names of fields are only presented in header lines, but are necessary for describing log

line fields during analysis of the consolidated logs. Thus at encountering a header line

(Fig. 3), the newly-generated attribute name of the log_table is recorded in the header table,

alongside the corresponding name of the field given in the header line. The attribute head-

er_table.field name must be unique to identify the same log field even when the order of

fields changes. This also allows to query for a given log field across all the agents. Of course,

Consolidating logs in varying formats into a structured repository 61

the validity of such queries depends on ensuring unique log field names in use by all agent

types, for the fields with the same meaning.

parse
header line

Generate new

New fields attribute name

added ? Add attribute

to log_table

Y

Register new

reorder internal attribute name
structures and field name
to header_table

i
¥

'
Fig. 3. Control flow diagram for header line processing
Rys. 3. Diagram sterowania podczas przetwarzania linii nagldowkowych

Types of the field values are unknown in advance, and are not specified by the header
lines. As only three types of field values are permitted, the type of the field values is auto-
detected. By default any field value is initially treated as integer number. Promotions to real
number or to character string are possible. No other field value types are taken into account in
the processed log lines. Only promotion to higher-ranked type is possible. The automatic
check is performed for every value in every log line at the time it is read in, in the form of
character string.

When a field value is detected to not comply with integer number format, it is treated as
floating-point number. When a floating-point field value is detected to not comply with float-
ing-point number format, it is treated as character string and no further checks are conducted
with this field. It is assume that the character representation N of integer numbers is a subset
of character representation R of real numbers, which is in turn a subset of character string S,
Le.

NcRcS (1)

62 A. Opalinski

The currently assumed field value type is recorded in header table. When changing the
assumption about value type of a log field, the type of the corresponding attribute of the
log table must be changed. This is time-consuming and consists of three tasks:

e header table must be updated with new type,
e this attribute’s definition in the log table must be altered,
e previously stored values of this attribute must be converted to the new type.

Agent’s identifier and source of the log get recorded in the database, in the agent table
and source table, respectively. For the sake of later analysis, each log line should contains
a timestamp allowing to order events by timeline. The timestamp is recorded in the log_table.

The usage scenario is as follows:

e Logs from agents’ run are saved to separate text files during runs, and used offline.

e After agents’ run, their text log files are one by one consolidated into a database (this is
currently automated by a shell script).

e It is up to the user to select which logs to consolidate. This is the responsibility of the user
to only analyze logs from comparable runs, and to avoid importing logs which contain un-
related information, especially unrelated fields in log files, which would otherwise unnec-

essarily clog the database. Generally separate databases should be created per each run.

4. Verification

During verification SQLite [24] has been employed to provide an embedded relational da-
tabase. SQLite is a public domain software library that implements a self-contained,
serverless, transactional SQL database engine. The library has many language bindings, either
native or through third-party wrappers. The native C language bindings have been used to
code a proof-of-concept program, which implements the algorithms and database structure as
depicted in Fig. 2.

The proof-of-concept program [25] allows to configure comment line and header line pre-
fixes, field separators, and case sensitivity, as well as the name of the output database to cre-
ate or update.

The proof-of-concept program and verification results confirmed that by working in con-
cert on the agent and on the repository side it is possible to recognize log format and assume
a sufficient data type representation to store multi-agent system text logs in relational-

database format suitable for later queries.

Consolidating logs in varying formats into a structured repository

63

Table 1

Verification results. IF: total number of input files, FO: number of times field order has
been reversed, FN: change in number of fields, FT: number of fields requiring promotion

Case |Parameters Initial lines |Initial fields |Run time [s] Fields per sec
A IF=1 10000 100 27917 35820
A IF=1 10000 1000 401.975 24877
A IF=1 100000 100 279.889 35728
A IF=5 100000 100 279.879 35730
A IF=10 100000 100 279.885 35792
A IF=1 100000 1000 3982.545 25110
B FO=1 100000 100 279.874 35730
B FO=99999 100000 100 281.004 35578
C FN=-1 100000 100 279.881 35729
C FN=-99 100000 100 231.519 43193
C FN=1 100000 100 279.919 35725
C FN=99 100000 100 389.791 25655
D FT=1 100000 100 283.583 35263
D FT=50 100000 100 384.348 26018
D FT=100 100000 100 489.791 10417

The results from parametrized verification cases are presented in table 1. Functionality in

each case has been proved by using simple SQL SELECT queries. Additionally time of the

runs was measured with millisecond accuracy, using high-resolution time provider in Mi-

crosoft Windows [26]. An average run time from tree runs is given in the table. The cases

were as follows:

Case A: loading to the database log files with stable formats. Each input file contains the
same number of lines. The total number of input files is /F.

Case B: loading to the database a log file with varying format. Field number was constant.
Field order changed FO times.

Case C: loading to the database a log file with varying format. Change in number of fields
by FN. Positive FN values mean stepwise increase by that number of fields. Negative FN
values mean stepwise decrease by that number of fields.

Case D: loading to the database a log file with varying format. Promotion of type of FT
fields from integer to character string in the last log line, i.e. when all lines except the last
one have already been loaded.

Verification case A demonstrates that the consolidation time does not depend on the

number of input files, which are accessed sequentially. For constant log format, consolidation

time depends linearly on the number of log lines and the number of fields in each log line.

Verification case B shows that changes in field order do not influence consolidation time.

This is due to the fact that mapping between log field names and database attributes is stored

64 A. Opalinski

in memory and reordered according to the last header processed. Changes in field order in log
file do not result in changes to the database schema.

Changing log file format in verification case C by decreasing the number of fields does
not result in changes to the database schema. The processing time drops, because less fields
are to be processed. When (FN=-99) average number of fields decreases to 50% of the initial
value, processing time drops proportionally. Increasing the number of fields in contrast re-
quires adding new tuples to the header table and - more important - adding new attributes to
the log table. Additionally more fields are to be processed. Thus the processing time increases
significantly.

From verification case D it can be seen that the processing time increases significantly
when many field value types need to be updated when processing the last column. Updating
field value types requires lightweight changes in the header table, but also converting all the
values already existing in the table, which is time-consuming. Currently a new table column
is added with the desired type, but the previous column is not removed when assumption
about field value type changes, because deleting columns is not supported by SQLite. SQLite
also does not allow to alter exiting table column definition. The previous column could be
used for promotions of other attributes — but currently it is not, so it remains unused after

promotion.

5. Verification

Creating the proof-of-concept program and results of verification process confirmed that
by working in concert on the agent and on the repository side it is possible to recognize log
format and assume a sufficient data type representation to store multi-agent system text logs
in relational-database format suitable for later queries. It has been achieved with only two re-
quirements on the agent’s side. These requirements are easy to fulfill when coding logging:

e fields in the log lines must be delimited with a field separator,
e whenever log format changes, a header line must precede and explain the forthcoming log
lines.

Fulfilling the above two easy assumptions allows for adapting to changes in log format,
including auto-detecting and auto-correcting data types in repository.

No modification is necessary for agents with a single, stable log format. If they do not
provide header line explaining log columns, the header line can be provided from a separate,
manually created file.

Agents do not need to be homogeneous in regards to logging mechanisms or formats —

field separator can be set individually for any log file consolidated with the database.

Consolidating logs in varying formats into a structured repository 65

While initially not planned for real-time log consolidation, the performance allows to
store logs at the rate of up to approximately 35.000 fields per second when log format is sta-
ble, and over 20.000 fields per second when it is not. From author’s experience an agent usu-
ally produces 100 to 1000 fields per second, depending on the number of agents, agent algo-
rithm complexity, amount of inter-agent communication and its performance, and logging
verbosity level. Te achieved performance does not preclude real-time application

Future work may include performance enhancements by either utilizing database table
columns freed by previously type-promoted fields, or by utilizing other database architec-

tures, including NoSQL [17] architectures.

BIBLIOGRAPHY

1. Sheth B., Maes P.: Evolving Agents for Personalized Information Filtering. Proc. of the
9th Conference on Artificial Intelligence for Applications, IEEE Computer Society
Press, 1993.

2. Maes P.: Agents that reduce work and information overload. Communications of the
ACM, Vol. 37, 1994, p. 31+40.

3. Gutiérrez C., Garcia-Magarifio I.: Extraction of Execution Patterns In Multi-Agent Sys-
tems. IEEE LA Transactions, Vol. 8, No. 3, 2010.

4. Tlie S., Scafes M., Badica C., Neidhart T., Pinchuk R.: Semantic logging in a distributed
multi-agent system. Proc. of International Joint Conference on Computational Cyber-
netics and Technical Informatics (ICCC-CONTI), 2010, p. 265+270.

5. Pavlin G., Kamermans M., Scafej M.: Dynamic process integration framework: Toward
efficient information processing in complex distributed systems. Proc. of 3rd Interna-
tional Symposium on Intelligent Distributed Computing (IDC2009), Springer Verlag,
Studies in Computational Intelligence, Vol. 237, 2009, p. 161+174.

6. Unruh A., Bailey J., Ramamohanarao K.: Building More Robust Multi-Agent Systems
Using a Log-based Approach. Web Intelligence and Agent Systems, Vol. 7, Issue 1,
IOS Press Amsterdam, 2009, p. 65+87.

7. Varakantham P. R., Gangwani S. K., Karlapalem K.: On Handling Component and
Transaction Failures in Multi Agent Systems. ACM SIGecom Exchanges-Chains of
commitment, Vol. 3, Issue 1, 2002, p. 32+43.

8. Figueiredo J., Lau N., Pereira A.: Multi-Agent Debugging and monitoring framework.
Proc. Of First IFAC Workshop on Multivehicle Systems (MVS), 2006.

66

A. Opalinski

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.
20.

21.
22.

Rozinat A., Zickler S., Veloso M., van der Aalst W. M. P., McMillen C.: Analyzing
multi-agent activity logs using process mining techniques. [in:] Asama H., Kurokawa
H., OtaJ., Sekiyama K. (eds.): Distributed Autonomous Robotic Systems 8 (9th Inter-
national Symposium, Tsukuba, Ibaraki, Japan, November 17-19, 2008), part IV,
Springer, 2009, p. 251+260.

Reijers H. A., Song M., Jung B.: Analysis of a Collaborative Workflow Process with
Distributed Actors. Information Systems Frontiers, 2008.

Process Mining tool home page, http://processmining.org/ (DOA: 15.12.2013).

Ogston E., Brazier F.: AgentScope: Multi-Agent Systems Development in Focus. Proc.
of 10th Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS), 2011,
p. 389+396.

Bhat S., Wahid A.: Log Agent for Knowledge Management Based on Multi-Agent Sys-
tem. International Journal of Emerging Technology and Advanced Engineering, Vol. 2,
Issue 7, 2012.

Marri S., Serrano J. L., Mena E., Trillo R.: 3D Monitoring Of Distributed Multiagent
Systems. International Conference on Web Information Systems and Technologies
(WEBIST), available online: http://sid.cps.unizar.es/PUBLICATIONS/POSTSCRIPTS/
webist07-agents.pdf, 2007 (DOA: 15.12.2013).

Product documentation: WebSphere Application Server (IBM 1), Version 8.5, Chapter:
Storing logs in a relational database for high availability, available online:
http://pic.dhe.ibm.com (DOA: 15.12.2013).

Marcus A.: The NoSQL Ecosystem. [in:] Brown E., Wilson G. (eds.): The Architecture
of Open Source Applications. Available online: http://www.aosabook.org/en/
nosql.html, (DOA:15.12.2013).

Kovacs K.: A technical comparison of NoSQL products. Available online:
http://kkovacs.eu/cassandra-vs-mongodb-vs-couchdb-vs-redis, (DOA: 15.12.2013).
White T.: Hadoop: The Definitive Guide. 2009.

Capriolo E.: Cassandra High Performance Cookbook. 2011.

Facebook White Paper, Facebook's Petabyte Scale Data Warehouse using Hive and
Hadoop, 2010, available online: http://www.sfbayacm.org/wp/wp-
content/uploads/2010/ 01/sig_2010_v21.pdf, (DOA: 15.12.2013).

Dimiduk N., Khurana A.: HBase in Action. 2012.

Dean J., Ghemawat S.: MapReduce: Simplified Data Processing on Large Clusters.
Proc. of Sixth Symposium on Operating System Design and Implementation (OSDI),
2004.

Consolidating logs in varying formats into a structured repository 67

23. MongoDB Ecosystem, part of MongoDB Manual, Chapter Storing Log Data. Available

online: http://docs.mongodb.org/ecosystem/use-cases/storing-log-data/ (DOA:
15.12.2013).

24. SQLite library project home page. Available online: http://www.sqlite.org/ (DOA:
15.12.2013).

25. The proof-of-concept program, as set of Code::Blocks projects in C. Available online:
https://sites.google.com/site/flecabinet/downloads/BDAS2014.zip (DOA:15.12.2013).

26. Nilsson J.: Implement a Continuously Updating, High-Resolution Time Provider for
Windows. MSDN Magazine 2004, available online: http://msdn.microsoft.com/en-us/
magazine/cc163996.aspx (DOA: 15.12.2013).

Wptyneto do Redakceji 23 grudnia 2013 r.

Omowienie

Problem, ktorego rozwigzanie opisano w artykule, polega na konsolidacji wielu obszer-
nych logow w odmiennych formatach do jednego repozytorium. Takie repozytorium stuzy
nastepnie do analizy logow, ktéra pozostaje poza tematyka artykutu. Potrzebe konsolidacji
rozwazono szczegblnie w $wietle tworzenia, testowania i badania cech systemoéw wieloagen-
towych. Generuja one potencjalnie obszerne logi, szczegolnie gdy system sklada si¢ z wielu
aktywnych agentow, a tworzenie, testowanie czy badanie wymaga zapisywana roznych rodza-
jow decyzji, stanow czy zmian stanu. W tak duzej ilosci informacji, rozproszonych w odreb-
nych logach, trudne jest §ledzenie sekwencji decyzji podejmowanych przez agenty, schema-
tow komunikacji czy innych zdarzen istotnych dla zrozumienia dziatania systemu.

Problematyka zalewu informacji w agentach programowych ma dos$¢ dtugg historie, roz-
poczynajaca si¢ od [1] oraz [2]. Aktualnie prowadzone badania systemow wieloagetowych
1ich logébw sa opisane np. w [3], gdzie udokumentowano odtwarzanie wzorcow dziatania
(execution patterns) w systemach wieloagentowych.

Podstawowym zatozeniem proponowanego rozwigzana jest to, zeby nie wnosi¢ istotnych
zmian do metod generowania logow ze wzgledu na to, ze w heterogenicznych systemach wie-
loagentowych niektore platformy sprzetowe moga mie¢ bardzo ograniczone zasoby, w przy-
padku innych za§ moze nie by¢ dostepu do kodu zrodlowego. Przyjmuje sie, ze na etapie te-
stowania format logow moze dodatkowo zmienia¢ si¢ czesto, a nawet moze nie pozostawac

staly w trakcie jednego uruchomienia. Zdefiniowano jednak pewne podstawowe informacje,

68 A. Opalinski

ktore musza by¢ przekazane przez agenta, zeby umozliwi¢ taczenie logdw o réznych i zmien-

nych formatach.

e Linie logéw muszg sktadac si¢ z pol rozdzielonych separatorami. Jest to typowe, ponie-
waz stan agenta jest czesto opisany wieloma zmiennymi, ktérych warto$ci musza by¢ ra-
portowane jednoczesnie.

e Przy kazdej zmianie formatu logowania, np. w wyniku wykonania innej $ciezki w kodzie
agenta, agent musi dostarczy¢ opis aktualnego formatu w postaci linii nagldéwkowe;j, roz-
poczynajacej sie charakterystyczng sekwencja znakow. Linia nagldéwkowa powinna
wymienia¢ nazwy pol logu, oddzielone separatorami. Realistycznym rozwigzaniem
w przypadku zmiennego formatu logu bytoby po prostu poprzedzanie nagtowkiem kazde;j
linii logu. Poczynajac od linii nagléwkowej, kolejne linie logu beda analizowane zgodnie
z opisem w naglowku az do napotkania innego nagtéwka.

Rozwigzanie dopuszcza agenty heterogeniczne, w tym agenty bez dostepnego kodu Zro-
dlowego, o ile tylko pozwalaja zapisywaé log do pliku i stosuja w nim linie zlozone z poél
rozdzielonych separatorami.

Logi sa odczytywane linia po linii (rys. 1), a nast¢pnie analizowane zgodnie z separatora-
mi z aktualng definicja z ostatnio napotkanego nagtéwka. Dopuszczalne sg linie komentarza
rozpoczynajace si¢ od predefiniowanej sekwencji znakow, ktore nie sg analizowane.

Warto$ci pdl odczytanych z logu sa przechowywane w tablicy relacyjnej bazy danych
o nazwie log table (rys. 2). Tablica ta przechowuje poszczegolne pola logow jako poszcze-
golne atrybuty. Struktura tej tablicy nie jest znana z gory: liczba i nazwy atrybutéw odnoszace
si¢ do pol logdw sg poczatkowo nieznane. Podczas konsolidacji, w miarg napotykania no-
wych pol, ta tablica jest rozszerzana przez dodawanie stosownej liczby atrybutow. Nazwy
atrybutdéw 1 ich typy sa przechowywane w tabeli header table. Typ atrybutu moze przyjmo-
wac jedng z trzech wartosci: liczby catkowitej, liczby rzeczywistej lub tancucha. Reprezenta-
cje te to zbiory opisane relacjg 1.

Cho¢ poczatkowo nie bylo to planowane, uzyskana wydajno$¢ pozwala rozwazaé konso-
lidacje logobw w czasie rzeczywistym, gdyz osiggnieto wartosci okoto 35 000 pdl na sekunde
przy statym formacie logu oraz ponad 20 000 p6l na sekund¢ przy zmiennym formacie. Nie-
mniej przyszte wersje oprogramowania beda prawdopodobnie wykorzystywaty bazy inne niz

SQL [17] ze wzgledu na ich wigksza przydatno$¢ podczas modyfikowania tabel 1 atrybutow.

Address

Artur OPALINSKI: Politechnika Gdanska, Wydziat Elektrotechniki i Automatyki,
ul. Narutowicza 11/12, 80-233 Gdansk, Polska, Artur.Opalinski@pg.gda.pl.

	1. Introduction
	2. State of the Art
	3. Solution
	4. Verification
	5. Verification

