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ON THE CONNECTION BETWEEN FIELDS 
AND PARTICLES

By Jan  BZEWUSKI, Physical Institute, Nicholas Copernicus
University, Toruii

(received D ecem ber 2 2 , 1951)

In  th e  presen t paper th e  connection betw een field equations and  equations 
of m otion of particles is studied for th e  case of classical electrodynam ics. T he eq u a 
tions of m otion and  th e  energy an d  m om entum  of th e  particles are derived from  
th e  corresponding notions for th e  field. T he m ass of th e  particle  is pu rely  electro
m agnetic and is uniquely determ ined e ither by  th e  self-force or by  th e  self-energy 
and  self-m om entum . Most of th e  results are independent of th e  s tru c tu re  of th e  
particles.

Introduction. The problem of deriving equations of motion of 
the particles from the field equations is a very old one. Its  solution, 
however, was hindered by the appearance of infinite — and there
fore meaningless — quantities on the one hand and by the difficul
ties in formulating the problem in a relativistieally invariant way 
on the other hand.

Nowadays the formalism of the field theory seems to be deve
loped far enough to enable us to surmount both hindrances.

In  a theory where all properties of particles are deducible from the 
properties of the fields there is no place for the notion of a mecha
nical mass. This is a point which is used widely against the possibi
lity  of such a theory. For example, it is impossible to explain the 
mass of the neutron as its electromagnetic mass. However, it seems 
tha t these arguments do not exclude the notion of mass as origi
nating solely in the fields if one takes into account all fields contribu
ting to this mass as e. g. the meson fields. Besides we are not at 
all sure whether all fields and all kinds of particles are already 
known.

On the other hand an unambigous theory, free of infinities, 
demands an extended source model of some kind which, alter
natively, may be viewed as a point source model with action at
Acta Physica Polonica 14:



204 Jan  Rzewuski

a distance. In  such a model certain functions must be introduced 
corresponding to the dimensions of the particle or to the distance 
a t which action between a point particle and the field takes place. 
These functions are to a large extent arbitrary and they certainly 
may be assumed to be different not only for different particles but 
also for interactions of the same particle with different fields. The 
amount of arbitrariness introduced hereby seems to be sufficient to 
fit the field-masses with experimental data.

I t  is generally felt nowadays that the problem of elementary 
masses is that one which will forward the future development of 
the theory. Prom this point of view it seems interesting to study 
the connection of the structure of elementary particles with their 
masses.

There are other points which make the notion of a field mass 
very attractive. One of them is the fact pointed out by Feynman
(1948) that only in the framwork of a pure field theory it is pos
sible to explain classically pair creation and annihilation. Introduc
tion of a mechanical mass would spoil this possibility. Another 
important point is that there are no free particles in a pure field, 
theory. As the notion of a free particle seems to have no physical 
meaning (unless as a limiting case), this seems to speak in favour 
of a field-mass.

§ 1. G eneral rem arks. In  this paper we consider only those 
types of field equations which are deducible from a variational prin
ciple. We restrict ourselves to Lagrangians containing first order 
derivatives of the fields since higher order derivatives would bring 
nothing physically new into the theory as pointed out elsewhere 
(Rzewuski 1951). There seem to be two general types of Lagrangians 
describing fields interacting with particles. One type gives account 
of particles by means of inhomogeneities, the other by means of 
nonlinearities. In  this paper only the first type will be discussed. 
However, the considerations of this paragraph apply also to the 
second one.

An im portant demand on the theory is that its equations are 
free of divergent and therefore meaningless terms. We shall, there
fore, consider a theory of the McManus (1948) type which may be 
viewed either as a theory of extended source or a theory of action 
a t a distance.

The principle of least action has the general form

(1 ,1 )
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and the field equations are the correspondent Euler - Lagrange 
equations

d dL dL
-A aT- =  °- M
9xv

To make a complete transition from the field picture to the
particle picture it is necessary to consider not only the field equa
tions but also the conceptions of energy-momentum and angular 
momentum densities. They follow, as is well known, from the action 
principle (1 ,1 ) if 'we study its change due to translations and rota
tions of space-time. The energy-momentum tensor Thv and the angu
lar momentum tensor

M ah v ~ x^ T vx xvT^x (1j3)

are not conserved if the Lagrangian depends explicitly on the coor
dinates of space-time. Indeed in this case

dTftv  ^9L^
dxv U X p , . ’ (i,4)

the subscript indicating differentiation with respect to the variable x 
contained explicitly in L,

SMzftv —y  _ rj\ , 3 T VX   STftX ( 1 5 )
Sxx ~  Vfl ,IV +  Xfl4xx v 9xx '

This accounts for the fact tha t there is exchange of energy and 
momentum with the sources.

To the densities ThV and MxhV there correspond the usual in
tegral quantities: the energy-momentum four-vector

Tv = j ndOfiTpv (a spacelike) (1,6)

and the angular momentum tensor

To make the transition to the particle picture it is necessary 
to have solutions of the field equations corresponding in some way 
to particles. Denoting the world lines of the particles by |£(t„), 
n  =  1 , 2,..., with the proper time rn as parameter, we shall demand, 
therefore, the solutions A ^ x )  of the field equations (1 ,2) to be func
tionals of the functions and possibly also higher order deri-

14*



206 Jan Rzewuski

vatives. There is a large amount of arbitrariness in the choice of 
these functionals. However, if one form is chosen, the equations of 
motion for the particles follow from the action principle (1 ,1 ) ex
pressed by means of the particle coordinates and its derivatives. 
The energy-momentum and angular momentum are similarly dedu- 
cible from the corresponding quantities (1,6) and (1,7) for the field.

An example of a functional representation for A ^ x )  is

the only restriction on Bfl being that (1 ,8) satisfies as a function 
of x  the field equations (1,2). In  (1,8) the assumption has been made 
tha t is a sum of functionals each depending on the world line 
of one particle only.
In  the next paragraphs we shall study in some detail the connection 
case between the field picture and the particle picture for the simple 
of electrodynamics. We hope to give a corresponding study for other 
fields, e. g. a non linear, in subsequent papers.

§ 2. E lectrodynam ics. The equations of m otion. The field 
equations of electrodynamics are obtained from the action (1 ,1 ) with 
the specific Lagrangian

is the rotation of the field A fl and s/t(x) is supposed to represent its 
sources. The Lagrangian (2,1) depends explicitly on x and belongs 
therefore to the first type discussed in § 1 . The field equations fol
lowing from (1 ,1 ) and (2,1 ) are

To obtain herefrom the Maxwell equations it is necessary to add the 
subsidiary condition

which changes (2,3) into

( 2 , 1 )

where
3A„ dAp 

J,"’ ~  3xfl 3xv

(2,5)
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The solution of this equation has the general form

A v[x) — j  G (x -x ' )  dx'sv{x') (2 ,6 )

where G{x—x') is a Green function of the equation (2,5) determined

According to § 1 we have now to choose such a functional form for 
the field si which would describe particles. Point particles are described 
by the well known formula

Por relativistic reasons F  must be a function of the invariant (ify—1£)2. 
To account for the small dimensions of electrons F  must be diffe
rent from zero in the neighbourhood of only. This seems to con
tradict te fact that F  depends on {xh—^ ) 2 which is small in the 
neighbourhood of the whole light cone through ££.' McManus (1948) 
has shown the very important fact that for a certain class of func
tions the contributions from points on the light cone distant from 

cancel and the electron is smeared over a finite space-time region 
only. However, for the considerations to follow the function F  may 
be kept quite arbitrary. Only in the interpretation of the results 
we shall sometimes be forced to restrict it in a convenient manner.

Now, following the general method described in § 1 , we may 
express the action principle in terms of the coordinates of the par
ticles. For this end it is usefull to rewrite (2,1) using (2,5) and neglect
ing a four-divergence which would contribute an unimportant con
stant term to the action principle

partially by the inhomogeneous equation

□ G(x-x ' )  — ô ( x - x ’). (2,7)

+°°

extended particles by

+°°

n — oo

(2 ,10 )
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Introducing here (2,6) and (2,9), we get

J 'Ldx = i ^ ^ e n emJ '  d t n j ' 'drm^ S ( | n- | m) $  (2,1 1 )
n m

which is Fokkers action integral without the term proportional to 
the mechanical mass of the particle. G stands here for

8 (® -» ')= y * J 'F { x - x " ) d x " G { x " - x ' " ) d x ' " F ( x " ' - x ' ) .  (2,12) 

Denoting

A v(x) =  J F { x —x')dx 'Av[x') en J 'dxn^ { x — fn)|*  (2,13)
n

and using again (2,6) and (2,9) the action (2,11) may be written 
as follows

J '  L d x = \  en J '  dx„ L„ = 0  (2,14)
n

with

L n =  2 CmJ  ̂ % S [ k n- r ) ^  =  ^ 2 ^ n). (2,15)
m

The variational principle
•5 ■J Git J'dXnLn (2,16)

n

yields immediately the equations of motion of the particle

0 n  = 1 , 2, ..,. (2,17)
m

These are the Lorentz equations of motion with the inertia term 
hidden in the force exerted by the n-th particle on itself

/ “ lf(rn) =  enJ % U n) t . (2,18)

To exhibit this inertia term it is necessary to make some assump
tions concerning the F-function. If F . belongs to that class of func
tions which extend the electron over a finite space-time domain 
only, then the world line of the particle has a certain width (instead 
of filling out the whole space-time). According to the properties;vof 
the (7-function, interactions occur along the light cone. For the



Connection between Fields and Particles 209

action of a not to fast electron on itself this means tha t charge 
elements interact only when they are close to each other, the distance 
being of the order of magnitude of the electron radius. How leaving 
out the irrelevant index n  we may write (2,18) with help of (2 ,2),
(2,6) and (2,9) in the form

=  e2f  ■dr'  (? '[(£ — f T ]  • 2 [(f„  -  f„) & - ( £ . - & )  £'„] ,

Q fv
(2,19)

where f(r') and <?' means differentiation with respect to the ar
gument. According to our assumptions about F,  r ' is close to r

r '— T — r (2,20)

and we may expand (2,19) in powers of this difference, getting for 
the first two terms of the expansion

to* d r - i p — J G ' ( - r * ) 2 r * d r .  ( ^  ^  £ + £ , ) + . . .

=  ~  £ /  ̂ - r 2)d r  • ’% ( -  r*) r d r -  (£„ 1 1  +  * & )+ . . . .

(2 ,2 1 )

In  the limit F -+ 6  of a point source, $[(£,,-—i,,)2]-*-(?[(£),—£^)2] 
which has the character of a ¿[(I,,—I,',)2]-function. Thus

J '  ir(— r2) dr —>-oo, ^  S(—r2) r dr— const,

j ' f y —r2) rn dr ->-0. (» >  2)
(2 ,22 )

For processes in which the particles do not come to close to each 
other the first two terms in (2,2 1) are already a very good approxi
mation.

Tj- J >G(—r2)dr =  m (2,23)

is the electromagnetic mass of the particle.

- e *  f f i i - r ^ r  dr-(¿h U v+ ' &  + ..■ = f h (2,24)



210 Jan Bzeicuski

is the damping force, so tha t equation (2,17) may now be written 

=  n = l,2 ,. . .  (2,25)
m^n

In  the case where the rapidly varying motion of the particles 
or the structure of the function F  do not allow the expansion (2,21), 
the correct equations (2,17) have to he used.

§ 3. E lectrodynam ics. The en ergy-m om entu m  and an
gular m om entum . I t  is necessary for consistency of the theory 
tha t the notion of energy-momentum of the particles follows from 
the corresponding quantity for fields and that the definition of mass 
obtained hereby is identical with that obtained from the equations 
of motion.

The energy-momentum tensor T ^  corresponding to the-Lagran- 
gian (2,1 )

T f l v  =  T ' f l v  +  ¿ ( 7 * « ^ )  ( 3 , 1 )

contains a divergence of a tensor antisymmetrical. in the indices v 
and a. Thus

9Tflv _  dT (3,2)dxv 3xv ’

where T'MV is the conventional energy-momentum tensor
/  a /V* . rv

T pt) =  /pafv (t <5/* v -Act “f* jLfiSp, (3?3)

For this tensor we have

cJT'iitt cïSit rsj c) . rŝ> d r*->
i s r  =  ~ A v w ^ ff ,vSv+^ : (AiiSv) ~ s ^ XAvSv) 

^  =  4> + Sv) ~  ¿ :  {A<* ̂

(3,4)

The particle momentum P„ is not given directly by the field 
momentum Tv as would be the case for point sources. As there is 
action at a distance the particle momentum is, so to speak, shifted 
in respect to the field momentum. I t  is easy, however, to find the 
expression for P v if one considers two conditions it has to fulfill. 
F irst it must go over into — T v in the limiting case of point par
ticles (F(x — x ’)-+d[x — x')). Secondly the totality of sources defined 
by P„ must cancel out the totality of sources defined by the first
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equation (3,4). These two conditions fix the form of P v uniquely. 
Apart from irrelevant constant terms

a

P v — f vu S/a • (3 j5)
—  CO

The first condition is fulfilled since we may rewrite — T v in the 
following way

a
'ST'

a  — o o
a

/* f ç) ~ c) rv<
=  - J  V>

(3,6)

again leaving out irrelevant constant contributions from infinitely 
remote surfaces. How for F(x — x) -+ô(x—x') the first term in (3,6) 
becomes identical with (3,5). The contribution from the two other 
terms is

^J^(dov dofiSv)-^-fi* (6,7)
a

Here the factor s^x)  contains ô(x — £") (cf. (2,8)) so th a t only these 
points of a contribute in which the world lines of the particles hit 
the surface. Since other points do not affect the value of (3,7) we 
may always choose a to be orthogonal to the world lines. In  this 
case (3,7) may be written

dov(Sf, 5^)^!^= 0. (6 ,8)
a

To prove the second condition we let a move towards infinity
+ oo +0° ~ ~

P „  (oo) =  -  J j v(i Sfl dx =  - f Sfl ~ d ^ ) dx
—  CO

+  oo

r r  i m x - v ' )
= ~ J  J  ' A " — s ^ — A ’r * 1

—  OO

==~ f ( ~ l i vAti +  ^ Av) dX
—  OO

= ~ f  [fv/iSfi + d ^ (AvSf,)~ ^ {Aft S/i)] dx==~  f  - § £ ; d x ■

(3,9)
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In  order to express Pv in terms of the coordinates and veloci
ties of the particles we insert (2,8) into (3,5) and get

P v  =  /  d r « /  dxU  ^ x ~  &
n  — o o  — o o

= ~ 2 en f  dT*7vAtn) t i -

(3,10)

n  —  o o

Here xcn is that value of t„ for which the world line of the ii-th 
particle intersects the surface a.

First we notice that due to the equations of motion (2,17) Pv 
is independent of the proper times xan. In  fact its value is zero for 
all xh. Thus P v is conserved. In  the field picture the energy-momen- 
tum  density tensor had a non vanishing divergence according to 
local exchanges of energy-momentum between field and sources. In  
the particle picture the total momentum of the particles is con
served in time since all contributions from local exchanges of energy 
with the field vanish.

(3,10) consists of two parts. The self-momentum of the particles

n

P l* " = J g e n f  dxnJ nVfl( n iu  (3,11)
72 —OO

and the momentum due to interactions with other particles

n

Plnt=  2 2 e" J  dT«J?P(& ) f t  (3,12)
n=t=m —oo

(Because of P v =  0 we may arbitrarily choose the sign in (3,10)). 
As already mentioned, for consistency of the theory it is necessary 
tha t the definition of mass following from the equation of motion 
is the same as that which may be obtained from th e j expression for 
the momentum. That it is so follows immediately from the fact
tha t for the self-force (2,18) and the self-momentum of the n-th par
ticle (w-th term of (3,11)) the relation

self
= fT'(r°n) 3,13)dPl' .self

holds.
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(3 ,10 ) may be rewritten so as to contain only particle coordi
nates and velocities, Using for this purpose equation (2,13) we get

P v =  2  2  en em dr„ J  drm |  ~n  ^
n m  —co —co

t.n f mdG(kn — km) imi tn 
kv

H I
CO

=  2  2 en 6m j ~ f dTm ®ttn(r°n) ~

(3,14)

r  r  d & u n- k m) ■ ■ 1 
+  J  dr n j  drm — ^ -------

—  CO — o o

Assuming G to be symmetric in ijn and | m we get (cf. Feynman 
1948)

J  t o J S U g r i w
- O O  — o o

n m
(3,15)

—  o o  — o o

and

( +c°
P v = 2 2 en<im\ ~ f  dX m § [ r ( T " ] ~ n ^

n o o

9 G { £ * - n ; n j

it f  ^
+ f  d*nf  * ■'■ftlfZl

—  c o  a
m

(3,16)

Similar considerations yield for the total angular momentum of 
the particles the expression

a

N V[x z=:‘ ^  {^vj^ia^a f va Sa)
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going over into

'°n

Nvft= 2 ! e- f  d^ U "U a^n) - i nJ va( n ]  t .  (3,18)
n —co

We notice the important fact that most of the considerations 
of this paper are quite ingependent of the form of the function F. 
Special assumptions were needed to exhibit the inertia term. In  this 
case F(x) had to be large only for small values of the variables. This 
assumption is admissible for processes in which we may regard the 
particles as moving at large distances from each other. For close 
collisions we shall have F-functions which do not have this prop
erty. The possibility of a transition from the field picture to the 
particle picture, however, is not influenced by this fact.
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p-SPECTRUM OF RaE IN THE LOW ENERGY REGION*

by J. PNIEW SKI, Institute of Experimental Physics, University of
Warsaw

(received Jan u ary  6, 1952)

Electron sensitive nuclear research emulsion was used as an electron detector 
in  a m agnetic lens spectrograph for the investigation of the ^-spectrum  of RaE 
in  th e  low energy region. The intensities were found by counting of some 35 000 
seperate electron tracks. Very th in  sources were prepared by a volatilization method. 
The images obtained in  th e  spectrograph were checked by a special m ethod to  prove 
the uniform ity of the  specific surface ac tiv ity  of the sources used. The spectrum  
was investigated w ith in  the energy band from 100 keV down to 4.6 keV. The results 
show th a t the  energy d istribu tion  corresponding to  th is  forbidden transition  cannot 
be expressed sim ply in term s of (E — U0)4. I t  seems th a t the  energy distribution 
curve cuts th e  P (7?) coordinate.

Introduction. The /5-decay of Ea E  is classed as a j-for
bidden transition. This is confirmed by a half-life (5 days) long 
in comparison with, the high upper energy limit (1.17 MeV) and 
by a particular shape of the energy distribution curve which ob
viously differs from the Fermi allowed form. On the other hand 
/3-emission is unaccompanied by y-rays and therefore the /3-spec
trum  cannot be complex. Konopinski has pointed out that a com
bination of two types of interaction can explain the observed 
distribution at least in a certain energy region. The corresponding 
term in the F e rm i allowed distribution formula has to be replaced 
by ( E - E 0)*.

Many papers have been published about the shape of the energy 
distribution curve of the /3-spectrum of Ea E  especially in the low 
energy region. Some authors (Waltner and Eoggers 1948, 1949) sug
gested that this curve falls down to zero at zero energy which would 
be in strong contradiction to the F e rm i theory applied to an element

* A p a r t of th is  w ork was presented a t  the  X l l l t l i  Conference of Polish P hy 
sicists a t Cracow, December 6, 1950.
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of high .Z-value, and would be difficult to understand even in the 
case of a forbidden transition.

There are many effects which can distort the spectrum in this 
region: the straggling effect in the source, the electron scattering in 
the spectrometer and the distortion introduced by the detector. Wal- 
tner and Eoggers used a cloud chamber. They introduced the radio
active source in vapour form and so they could avoid the straggling 
effect. Their results were supported by rather poor statistics of the 
tracks. Langer and his co-workers (1950) used a window-less Geiger 
counter to avoid other disturbing effects.

The author tried to solve this problem by using electron sen
sitive nuclear research emulsions and very carefully prepared thin 
sources. In  this way be hoped to check the results by Waltner and 
Eoggers and on the other hand to test the usefullness of the emulsion 
as an electron detector in general.

This problem consists mainly of:
(a) the construction of a spectrograph for the recording of elec

trons in emulsions,
(b) working out of the best conditions for the emulsion proces

sing to get very well defined low energy tracks at the emulsion surface,
(c) the choice of a proper method for the preparation of very 

thin Ea E  sources,
(d) the checking of the efficiency of the emulsion as a detector 

for electrons of very low energies.
All these points but the last one were succesfully dealt with.

The /3-spectrograph. One can easly obtain high luminosity 
and a well defined image using a magnetic lens spectrograph with 
uniform field. In  designing the spectrograph advantage was taken of 
some calculations given by E. P é rs ico  and Du M ond (1949). The 
resolving power was about 1.8°/0. The emission angle was equal to 
27°20' ±  2°20'. 2.2°/0 of the total spherical emission of the source 
could pass through the solid angle defining diaphragm, but due to 
the geometry of the detector plate it had to be reduced to 1/4 of this 
value. The distance between the source and the plate was about 30 cm. 
The lead stop protecting the plate from y-radiation of Th B + C + G ",  
which was used for preliminary experiments, was more than 10 cm 
thick.

The source diameter could not be larger than 1,6 mm and actu
ally was ca 1,1 mm. I t  was prepared on a zapon film which was coated 
with an extremely thin layer of gold to increase its conductivity. 
The whole thickness of the source, zapon and gold taken together,
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was not greater than 4 —4-̂  /<g/cm2. The film was suspended on a spe
cial Al-ring fastened to a support similar to a microscopic stage. An 
empty space deep enough (20 cm) to eliminate the back-scattering 
was left behind the source. I t  was not possible for a scattered electron 
to. get through all the diaphragms unless it were scattered at least 
twice or three times. Moreover the scattered electrons which could 
eventually reach the plate produced tracks of different lengths,

Fig. 1. (/}) spectrograph; (S ) source and its  support; (B) solid angle defining d ia 
phragm ; (C) energy defining d iaphragm , „ring-shaped focus"; ((3), (FI) baffles;

(T ) „line-shaped focus", plateholder and p la te; (1— 7) m agnetic coils.

whereas the electrons running directly from the source all gave more or 
less identical tracks. During an exposure taken for 24 hours without 
any magnetic field no tracks were recorded.

The plate was placed along the axis of the spectrograph, the 
line-shaped focus lying in the plane of the emulsion (Fig. 1, 2). I t  was 
possible to take ten exposures on the same plate not getting in the 
air. To avoid electron dissipation all over the plate electrons which 
could reach its surface at very small angles had to be eliminated. 
Hence it proved necessary to reduce the utilized solid angle in the 
plane perpendicular to the axis to one fourth of its original value. 
All the diaphragms were partly closed and the opening of the energy 
defining diaphragm was just reduced to 1/4. All the openings were 
twisted to suit the helical form of the electron trajectories. Eventually 
the electrons reached the surface of the emulsion at angles between 
18° and 30° inside the contour of a rectangular image 12 mm x 2.3 mm 
(1.5 mm only when the source diameter was reduced to 1.1 mm).

The main parts of the spectrograph can be seen on the photo
graph. (Fig. 2).



218 J . Pnieivski

The magnetic field was produced by 7 coils. Its  uniformity was 
controlled in numerous points by means of several rotating coils. After 
some corrections had been made the axial symmetry of the field was 
very good but the intensity of the field was dropping slightly along

Fig. 2. The inner p a rts  of the  spectrograph.

the axis towards the ends; at the beginning of the electron trajectories 
it was ca 0.7°/0 smaller than in the centre of the coil. Some small cor
rections in the position and size of the diaphragms were introduced 
in connection with this non-uniformity.

The proper position of the source which should be exactly on 
the axis of the spectrograph could be found by using a special rotating 
coil. In  this way one could fix the best position of the microscopic 
stage supporting the Al-ring and the source. Therefore the source 
could be easily replaced by a new one.

The whole, spectrograph was shielded by lead walls. Under these 
conditions exposures could be taken for many hours without increasing 
the number of background tracks.
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The current flowing through the coils was supplied by a battery 
and stabilized to 0.1°/„. I t  was controlled continuously by the usual 
compensation method with a standard cell. The spectrograph was 
placed 2 meters away from any iron objects and 4 meters away from 
the rheostats. The spectrograph axis was directed parallel to the earth’s 
magnetic field.

In ten sity  d istribution  w ith in  th e  Im age and sou rce  
control. The diagram, Fig. 3, shows the calculated intensity distri

bution across the image when the openings of the diaphragms were 
reduced to (a) 180°, (b) 120°, (c) 90°, uniform activity of the source 
being assumed. In  case (c) the limits of the image are well defined. 
Some intensity distributions calculated for different assumptions con
cerning the source uniformity are shown in other diagrams (Fig. 4).

Fig. 4.

The curve Gy corresponds to the case of a circular source active only 
on the periphery of the circle and 02 is a superposition of C and Gx. 
I t  should be a rather usual distribution for sources prepared by or
dinary methods when a drop of radioactive substance is dried by 
evaporation. The author’s experimental points lie rather close to a curve 
calculated for an uniform source. The wings of the experimental dis
tribution curve show that the contamination of the zapon film out
side the radioactive spot was negligible.
Acta Physica Polonica. 15
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These tests of the source are very useful although they cannot 
detect all irregularities of the source. They give a record of the source 
behaviour during the exposure without running any risk of destroying 
the zapon film, as often happens when autoradiographs are taken. 
I t  is an exclusive method for the control of the results obtained when 
the source is destroyed during the exposure by a-particles. Sometimes 
there is no need to count seperate tracks, one could easily obtain the 
whole intensity distribution curve from plate blackenings using a mi
crophotometer.

Some other details about source preparation were published pre
viously (M. D an y sz  and J. P n iew sk i 1952).

P rocessin g  of th e  em ulsion . The electron sensitive Ilford 
nuclear research emulsions G5 were used to record the electrons. The

spectrum was investigated in the low energy region only, hence the 
emulsion thickness could be reduced to 25 /«. This facilitated the pro
cessing of the emulsions. I t  was important to have the surface of the

Fig. 5. 57 keV — electron traoks.



emulsion very clear, otherwise very short tracks could be confused 
or even lost among the background grains.

I t  proved to be advisable not to agitate the developer dish. 
Development at 18°C: azol — 18 ml, KBr — 930 mg, H 20  — 
500 ml, for 20 min. no agitation;
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Fig. 6. 15 kfcV —  electron tracks.

Stop bath: jSTaHS03 — 25 g, tap water 500 ml for 10 min; 
fixation: plain hypo solution for 15 min. (Dainton 1951).

The photographs (Figures 5 and 6) show some electron tracks 
for different energies.

M icroscopy of ind ividual tracks. Six well exposed plates 
were obtained, but after a very careful examination only four of 
them were scanded to get the /9-spectrum of Ra E  between 4,6 and 
100 keV. All electron images obtained on different plates corresponded

15*
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to 11 energy values. The images had the shape of rectangular stripes 
12 mm x 1,5 mm. The tracks in these images were examined through 
a Cooke microscope at magnification exceeding 1200 x .

At first the counting was extended over all fields of view in 
a zone 50 /i wide perpendicular to the long side of the stripe. The 
numbers of tracks obtained for each field were used to get the inten
sity distribution across the stripe. From the points similar to those 
shown in Fig. 1 the symmetry line of the stripe could be found, and 
only those tracks were taken into account which belonged to a well 
defined region — the same for all images. This region was always 
chosen symmetrically in the centre of the stripe. In  this region the 
average number of tracks in every field was much higher than in the 
wings and the influence of the background was comparatively smaller. 
Moreover their number did not differ appreciably from one field to 
another. The whole number of tracks in the chosen region corrected 
for the decay, different times of exposures, and different value of 
absolute resolving power of the spectrograph was a measure of the 
intensity in the /hspectrum on the momentum scale.

In  Table 1 are given the results concerning the distribution of 
energy P'(E) and momentum P(p); n represents the total number 
of electron tracks counted for the different energies, N  is the number

T a b l e  1.

E keV llQ P(V) P '(E ) n N Â max X

4.6 251 28.5 59 6003 5 300 90
7.1 286 42.5 71 6217 9 92.8

12.9 386 63 80 3336 16 95.1
15.4 422 80 93 1443 23 98.6
16.8 441 80 90 2483 24 200 97.6
21.2 496 100 100 6720 34 150 100.0
28.4 578 121 105 1075 50 101
37.1 661 145 112 2090 69 100 102
56.9 826 180 115 737 106 50 101.5
72.1 936 211 122 1247 141 102.1
97.6 1102 240 123 718 188 20 96

of tracks per hour recorded on the plate in this spectrograph in a field 
of view 100 ft x 100 /.i when the activity of the Ra E source was
0.1 mC, IVma* — shows the maximal number of recorded tracks which
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could be still easily identified on that area. To test the purity of the 
Ra E  sources exposures were repeated at long time intervals while 
the /9-decay was in progress. Their comparison was especially useful

p(p)

Fig. 7. M omentum d istribu tion  in ^-spectrum  of RaE.

at the energy point where the maximum of Ra D /9-spectrum was to 
be expected.

The electron tracks at the lowest energy were composed of 1 
or 2 grains and even the size of these grains could not serve as a proper 
criterion for distinction from the surface grains. Hence they were 
counted together with the background grains. The necessary correction

Fig. 8. Energy d istribu tion  in /?-spectrum of RaE.

could be easily made by subtracting the background grain number 
as counted outside the image.

In Pigs 7 and 8 are shown the graphs of the momentum and 
energy distributions and also a plot obtained by Waltner and Rogers
(1949). The present results differ from those obtained by these authors 
in a cloud chamber. The intercept of energy plot at the zero energy 
point is different from 0. One should expect this result for an element 
with a high Z value.
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The last column of Table 1 shows the values o i X —\P{p)l'piF(Z,E).  
If the suggestion of a combination of two interactions made by Ko
nopiński is correct and the approximation given by him is valid 
down to lower energies, X  should be a linearly decreasing function 
of E. The present results seem to be in contradiction with this view 
a t least below 50 keV.

A Fermi plot for the forbidden /9-transition in Ra E  with a co
ordinate where rj—fjmc, is shown in Fig. 9.
The author’s results are compared with those given by Wu (1949).

energy
Pig. 9. The F erm i plot.

As to factors which possibly may affect the true shape of the 
^-spectrum one can expect that the correction due to the electron 
screening effect is not very essential. J . R. Reitz (1950) has calculated 
this correction using an electronic calculator. His results show that the 
reduction due to screening does not change very much with the energy 
and probably increases more steeply somewhere below 10 or even 
5 keY.

Maybe some low energy electrons were not recorded due to back- 
scattering at the surface of the emulsion or due to non-uniform sen
sitivity of the emulsion. This problem is discussed separately (J. Pniew - 
sk i 1952) but one can expect that this error is not serious above 5 keV.

S um m ary

I t  was proved tha t the nuclear research emulsions can be used 
as a detector in /9-spectrography and that this method has certain 
advantages at the low energy end of the /9-spectrum.
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The Ra E  /5-spectrum was obtained for energies from 100 keV 
down to 4,6 keV.

The intercept of the energy distribution curve at źero energy 
point seems to be different from zero.

The energy distribution function below 50 keV cannot be inter
preted simply in terms of (E—E 0)i.

The F e rm i plot is given and compared with previous results.
A method has been described for analyzing of spectrographic 

images. In  this way the behaviour and the uniformity of the sources 
were controlled.

The work described in this paper was made in the George Holt 
Physics Laboratories at thé University of Liverpool. The Author 
wishes to express his gratitude to Professors S. P ień k o w sk i, J . R ot- 
b la t  and W. H. B. S k in n e r  for their encouragement and kind in
terest. He is indebted to Messrs M. D an y sz  and D. G. B. M a rtin  
for their valuable help and many discussions. He is also much obliged 
to the Komisja Popierania Twórczości Naukowej i Artystycznej przy 
Prezydium Rady Ministrów for granting of the scholarship which 
enabled him to carry out this research in Liverpool.
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A METHOD OF PREPARATION OF VERY THIN RaE 
SOURCES

by M. DANYSZ and J. PNIEW SKI
Institute of Experimental Physics, University of Warsaw *

(received Ja n u ary  6, 1952)

A volatilization m ethod of p reparation  of com paratively strong b u t extrem ely 
th in  R aE  sources for ¿s-spectroscopy is described. A source 50 p C per 1 mm 2, 
supported  by  a conductive film , th e  whole less th a n  4 ¿¿g/cm2 th ick  was prepared. 
The au thors believe th a t  th e  m ethod described is new  in m any details.

Introduction. I t  has been recognized for a long time that the 
usual method of evaporation of a small drop containing a solution 
of radioactive substance has some disadvantages. The active deposit 
which is formed by the evaporation process does not exhibit the re
quired uniformity. At the periphery of the spot some crystals are 
formed and the radioactivity at the centre is much weaker. Hence 
the effective thickness of the source at the periphery is much greater 
than the average value calculated over the whole spot. Such a source 
cannot be used for investigations of the /9-spectrum in the low energy 
region. To avoid distortion of the /3-spectrum caused by straggling in 
the supporting film and in the source itself at 5kev sources should 
be used not thicker than 4—5 /¿g/cm2.

Langer and his co-workers (1948, 1950) suggest to wet the sup
porting film with a solution of insulin in water. I t  facilitates the uni
form spreading of the radioactive substance over the entire region 
covered by the insulin solution. I t  seemed to the authors that this 
method is not applicable if the source is very small.

The supporting film must be made of a material which is not 
a very poor conductor, otherwise it would not be possible to keep 
the source a t the constant zero potential.

The authors were able overcome these difficulties by applying 
the volatilization method. They were successfull in getting a uni

* P resented a t th e  X U I th  Conference of Polish P hysicists of Cracow, D e
cem ber 6, 1950.
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form Ea E spot source slightly larger than 1 mm in diameter as strong 
as 80 ¡jlG  supported on a zapon film 2—3 ^g/cm2 thick. The film was 
covered with ca 1 | ug/cm2 gold coating. The increase of the conduc
tivity of the surface was sufficient to remove the charging effects 
caused by the leaking out of negative charge in +he ^-emission of Ea E 
or a-emission of Polonium.

V olatilization  of Ra E. The authors collected E a E a t the 
end of a rounded nickel rod by the usual electrochemical method. 
I t  was important to protect the whole rod except the end against 
any contamination. The whole activated area was probably not much

AaflAivcrMfht foA Volatilization O* £

P ig . I-

larger than 5 mm2. The other end of the rod was thicker (10 mm) 
and drilled inside. The hollow was provided for the placing of a tung
sten heater. All the other parts of the special arrangement for vola
tilization, the position of the film and the diaphragm can be clearly 
seen on the drawing, Pig. 1. The diaphragm was supported and spaced 
from the nickel rod by two quartz tubes.

The whole apparatus was placed in high vacuum (the external 
vacuum bell is not shown in the diagram). One can notice that 
E a E atoms which leave the nickel rod and do not condense directly 
on the zapon film cannot contaminate it on any other place beyond 
the spot unless they are scattered many times on their way. All the 
parts of the apparatus could be quickly evacuated through the open
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ings markfed on the diagram by dashed lines. I t  was proved to be im
portant to keep the air pressure at a low level — less than 10-3 mm Hg. 
In  this way it is possible to avoid the oxydation of the EaE  layer 
(bizmuth) which makes the volatilization more difficult. I t  also di
minishes the scattering of Ra E atoms. The scattered atoms stuck to 
the walls of the apparatus only when its surface was carefully washed.

The zapon film was composed of two layers each 14 /¿g/em2 thick, 
supported on a thin Al-ring which was stuck on a firm brass support.

At first the nickel rod with the Ra E deposit was heated up to 
500—550°C and held at this temperature in high vacuum for ten mi
nutes in order to remove more volatile impurities of Ra E. After this 
preliminary heating the zapon film was suspended above the rod and 
volatilization of Ra E took place at 650°0. The temperature was in
creased slowly for 10 min. and then gradually lowered.

I t  was rather difficult to find the best conditions under which 
the zapon could stand the thermal radiation of the nickel rod placed 
very near to it (ca 2 mm).

Since the vapour pressure of lead is about 10 times lower than 
tha t of bizmuth at the same temperature we hoped this method might 
serve to purify Ra E from traces of Ra D. (The temperature was con
trolled by an optical pyrometer).

T he sou rce . Many autoradiograms were taken to prove the 
uniformity of the source. The whole activity of the substance spread 
over the A1 — ring and on the film outside the spot was less than
0.3°/0 of the activity of the source itself, although their surface was 
100 times greater. The images of the best sources were reproduced 
on electron sensitive nuclear plate emulsions by means of a magnetic 
lens spectrograph. In  this way they could be investigated without 
running any risk of breaking the zapon film.

Each zapon film after being activated was thinly coated with 
gold by evaporation in vacuum of a small gold leaf placed 25 cm away 
from the film. The authors found that the resistance of the film under 
the conditions of their experiments was about 1012f2 and after drying 
the film for many hours in high vacuum it increased to about lO14!?. 
A coating of gold 10 fig/cm2 thick would be sufficient for metallic 
conductivity but even 1\  /ug/cm2 could reduce the resistance at least 
to the previous value (1012i2) which was low enough to keep the po
tential difference between the source and the earth below 10 volts.

I t  proved to be more convenient not to coat the side of the zapon 
film which was stuck to the Al-ring but the opposite one. A very small 
potential difference was adequate to obtain the connection between
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aluminium on one side of the film and gold on the other. I t  would 
he also better to collect the Ra E and gold deposits on opposite sides 
of the zapon film.

I t  was not possible to use any strong source prepared in this 
way for a time longer than 10—14 days. They always cracked under 
the influence of the a-particles of polonium produced by the /9-decay 
of Ra E.

This work has been done in George Holt Physics Laboratories 
at the University of Liverpool. The authors take pleasure in tkanking 
Professor W. H. B. S k in n e r for his kind interest. They wish to thank 
Mr D. G. E. M artin  for valuable help and many discussions and are 
also indebted to the Staff of the Radiochemical Centre for collabora
tion in collecting of the Ra E deposit. They are also greatly obliged 
to the Komisja Popierania Twórczości Naukowej i Artystycznej przy 
Prezydium Rady Ministrów for the granting of foreign scholarships 
which enabled them to carry out this work in Liverpool.
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ON THE RELATION BETWEEN THE ENERGY AND THE 
NUMBER OF GRAINS FOR LOW ENERGY TRACKS 

IN PHOTOGRAPHIC EMULSIONS

By J. PNIEW SKI, Institute of Experimental Physics, University
of Warsaw

(received Jan u ary  6, 1952)

The relation  between th e  energy and th e  num ber of grains a t  low energies 
for I l f o r d  electron sensitive emulsion G5 was investigated. The observations were 
extended over energies from  37,1 keV down to  4,2 keV. A good separation  of joined 
o r overlapping grains was achieved by  resoaking the  emulsion before microscopic 
exam ination.

In  some cases it may be more advantageous to apply electron 
sensitive photographic emulsion for the study of /3-spectra instead of 
using other methods, in particular for measurements in the low energy 
region. Hence it would be important to extend the determination of 
the range-energy relation down to very low energy. Unfortunately 
such measurements are very difficult due to very large straggling. 
Moreover the tracks are usually curled so tha t the measurements of 
ranges are unfeasible. Grain counting is more practicable, nevertheless 
fluctuations remain as a source of troubles. The author has found 
tha t the results are more consistent if one can separate the grains 
in these parts of the track which are going steeply down or up in the 
emulsion.

The thickness of the emulsion after processing and drying is 
usually shrinked by a factor of 2,7. One can plump the emulsion by 
resoaking it in water. A coverglass gives a good protection from drying. 
In  this work the soaked emulsion was covered with a large coverglass 
170 ju thick. To make it tight the edges and the uncovered parts of 
the emulsion outside the glass were coated with paraffin. Under these 
conditions the thickness of the emulsion increases enormously. An un
processed emulsion 25 ¡u thick shrinked after processing to 9 /u and 
when resoaked increased its thickness to 50 p.. The virtual thickness
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of the emulsion observed through the microscope with immersion oil 
was equal to 60 ¡u.. Limited depth of focus at large magnification, 
e. g. 1500 x , helps to separate the grains of curled tracks. Many tracks 
which seemed plane in a dry emulsion appeared to be skew after the 
emulsion had been soaked, i. e. their grains were found at different 
depths. The counting of single tracks is very laborious in a plumped 
emulsion but on the other hand their identification is rendered easier.

Ilford G 5 electron sensitive emulsions exposed in a magnetic 
lens /3-spectrograph were used for the observations. Processing condi
tions: azol-developer (Dainton 1951, Pniewski 1952).

The diagrams shown in Fig. 1 give the distributions of the grain 
number in the tracks of /3-particles for a given energy; the number

of surface or background grains was previously subtracted. In  this 
way the average number of grains was found for several energy values. 
By extrapolation of the distribution curves one obtains a basis for 
estimation of an important factor: the ratio of electrons which 
owing to backscattering at the surface of the emulsion are not re
corded. The shape of the distribution curves for 21,2 kev and 11 kev 
shows that in these two cases the percentage of backscattered elec
trons is negligible. This is not so clear at lower energies but even at 
7 kev the majority of the electrons produce two-grains tracks and 
most of the remaining — single-grain „tracks” Three-grain tracks are 
rare. The effect of background is more pronounced, but the numbe 
of unrecorded „zero-grain tracks” should not be large and probably 
can be disregarded as well.

The author noticed tha t even at 3—4 kev electrons are easily 
recorded by one-grain „tracks”. I t  seems that above 5 kev the number

background.
çrcuns
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Fig. la . F ig. lb .
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of unrecorded electrons could not appreciably change the results based 
on the counting of tracks.

T a b l e  of the  average num ber of grains in  th e  electron tracks for different energies.

keV 4,2 7,5 11 21,2 28,4 30 37,1 40 50 60

B. Zając 
M. Ross

11
± 0 ,4

13,8
± 0 ,5

20,4
± 0 ,8

22,4
± 0 ,6

A uthor’s
1 1,5— 2 3

± 0 ,5
5

± 0 ,5
8

± 0 ,5
12,5

± 1

In  this table the number of grains is given for different energy 
values and the results obtained are compared with those of Miss B. 
Z a ją c  and Miss M. B oss (1949).

energy

Fig. 2.

I t  should be emphasized th a t- the number of grains in a twisted 
track may be reduced when the electron leaves the emulsion before 
being stopped.
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DIRECTIONAL CORRELATION FOR TWO-QUANTA 
EMISSION

By W. KRÓLIKOWSKI, Institute of Theoretical Physics III , 
University of Warsaw, Warsaw

(received Ja n u a ry  23, 1952)

T he present paper contains correlation form ulae for directions of two pho 
tons em itted  sim ultaneously in a single ac t of tw o-quan ta emission. The form ulae 
app ly  to  electric double-dipole rad ia tion , i. e. w here bo th  photons are of electric d i
pole type. Especially in teresting  is th e  transition  j '= 0  -*■ j = 0 forbidden for one- 
quantum  emission. T he forms of m atrix  elem ents obtained in th e  course of the  
calculations are useful n o t only for th e  electric dipole m om ent b u t also for a w i
der class of vectors, including i . a .  th e  m agnetic dipole m om ent. M easurem ents of 
directional correlations of photons are adm itted ly  possible for y  rad ia tion . T here
fore th e  presen t paper refers to  two q uan ta  emission from the  nucleus, although 
th e  argum ents equally  apply  to  any  system  of charged particles. M oreover th e  
results are applicable afte r a slight and obvious change of coefficients to  other 
sim ultaneous processes of second order (in double-dipole approxim ation) such as 
for instance th e  R am an effect.

1. Introductory Note

Kramers and Heisenberg were the first to indicate the possibi
lity of an induced two-quanta emission (1925). On the correspond
ence principle they evaluated the possibility of this process. On the 
basis of the Dirac theory of radiation M. Goppcrt-Maycr (1931) has 
given the general formula of probability of the two-quanta emission. 
The probability of the two-quanta emission from the metastable 
state 2s of hydrogen and from the metastable states (Is 2s)1S 0, 
(Is 2s)3$1 of helium was obtained by G. Breit and E. Teller (1940). 
The probability of the two-quanta emission for the transition 
j' =  0 —> j = 0 was estimated by R. G. Sachs (1940). J. A. Wheeler 
(1947) investigated the process of the two-quanta emission by means 
of the correspondence principle.

The initial idea of the present paper is due to Professor W. Rubi- 
nowicz, to whom I am indebted for his kind interest in my work.
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2. Starting Form ulae

The subject of our consideration will be the interacting system 
composed of the nucleus and the electromagnetic radiation. The 
nucleus is taken as a system of particles, while the radiation is pre
sented by means of a (vector) field quantized in accordance with 
the Bose-Einstein statistics (Dirac Radiation Theory).

The Schrodinger equation for our system in the interaction 
picture has the form

ik 'P,  =  H'ly 1, (2.1)
where

XV,=G i Xl> i (2 .2)
r  EH - -  EH

# ;  =  eh H ’e h

Operators and state-functions without an index sign are given in 
the Schrodinger picture. In  these expressions H° denotes the Hamil
tonian of the unperturbed system and H'  is the Hamiltonian of the 
interaction.

We shall now consider the matrix representation given by the
orthonormal set of eigenvectors of the operator H°. Denoting these
by | yi) and the eigenvalues by En we have

H° | «> =  En | »>
and

E ,  = 2 1 n > bn , W here bn =  < n  | ^ ,> .
n

In  the above representation equation (2.1) takes the form

E ( E n— E n.)i
■ihbn = 2  ( n \ K ' \ n " > e ii bn, .  (2.3)

n‘

Below we introduce notations giving more specific characteristic 
of the system nucleus-radiation, without considering their interaction:

| m> =  | aj m N 1N 2...y =  | aj m> | N lN 2...y
En= E aJm+ £  N?, kw, co = clc, k = k°k,

—kl

where j  is the quantum number of the total angular momentum J  of 
the nucleus: J '  = \  j(j +  1 ) h, m is the magnetic quantum number de



fining J t : J'x =  mk, a represents all other labels of the states of the 
nucleus, and finally N 1, N 2, . . . ,N  t i ,••• respectively are occupation num
bers of oscillators representing the numbers of photons (contained
in the field) with given wave vectors k and linear polarizations de
fined by unit vectors eti,  so that

h t i-k  =  0 (1=1,2). (2.5)

Let us consider the transition of the nucleus from the state 
I a'j' m'y am. at the time i =  0 to the state \ a j m > with the simul-

rtv
taneous emission of two photons having wave vectors k2 and
linear polarization given by eT>it, Dropping from our notation
all unchanging N-[t) viz.

|« > =  \ a jm N % itNT,t,'>,
bn =  baym{NTittt

we have the following states

initial: £  \ a'j’m ’ N N  > am.
m  '

intermediate:' | a " j " m "N  Titl +  1 or | a ' j "  N  t,i, + 1>

final: | a jm N % h + l  N  t j , + 1 >•

We have therefore in our case the initial conditions

for t =  0, ba,j.m. ( N i #;$,,)== a*. other 6's  =  0.

The intermediate states appearing here are of a virtual character,
i. e. the energy conservation law does not apply in the transitions
to these states — the transitions to these states are virtual tran 
sitions:

Ea'J'm' 4=-®a”J"m" +  ka>f (S =  1, 2).

In  particular if all initial N t i  =  0, we shall have a spontaneous 
two-quanta emission, in other cases we shall have a two-quanta 
emission induced by radiation.

In  our calculation we shall use the non-relativistic form of the 
interaction Hamiltonian E ’. This approximation is justified by small 
velocities ascribed to nucleons in the nucleus. We have therefore

+  (2’6)
Acta Physica Polonica. 16
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where the operator of the vector potential has the following expan
sion in Fourier series:

-*■-*■ 1 /he v  w  1 -*■ .-t -*■ * -*•
=  y~G 2 j  Vfc 6 *>(a « e‘ +  «*■/«“ )• (2.7)

t  '- 1 c
■*

G is here the volume of the period cube. Quantities a?t and a?t are 
the emission and absorption operators of the photon characterized
by k and e with well known calculation properties.

Substituting (2.7) into (2.6), we see that the interaction Hamil
tonian takes the form

kill As/j

+  « aï:k H X-x  /,/, +  « t,,,a  t , , +  a m ,« ?/,#-7,-?,/,/,)

where

B :
' Gc\k i ¿2

,,2
_L
TO,

(2 .8 )

Solving the system of differential equations (2.3) in a formal 
way through the successive aproximation method, we get the follow
ing formulae for the amplitudes of the transitions between .the 
previously mentioned initial and final states (cf. e. g. Heitler 1944, 
Chap. I l l ,  § 14)

bajm{ 27 *7,, +  1, -A7 *7/2 + 1  )

E a“J"m"  E a,j,m, +  ^«2

4 “
(a jm  \U t,h\ a" j"  to ") <n " j " m " | E ? ilt \

E a " j » m "  E n . ' I ' m '  +  h c / q  /

i
jjT (KaJm E a'j'mi +  h ^ i +  k^ah

(2.9)
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We can now determine in precise terms the aim of the present 
paper, which is: to find the probability of the two-quanta emission
of photons with directions given by unit vectors fej and k\, in the 
transition of the nuclei (in the given ensemble) from all states with 
determined a ' j '  to all states with determined a j .  These probabili
ties will be found from the formula (2.9) when the following opera
tion will be carried out on the quantités \baym( N + 1, N  kjlt +  1 ) 1*:

(1) Averaging over the initial states of nuclei ap-
m*

pearing in the investigated ensemble.
(2) Summing over the final magnetic states m of the nucleus.
(3) ¿Summing over the frequencies (lengths of k vectors) and

over the two directions of polarization for each photon.
In  this way we get the following correlation formula

2

W a.r ; a j( k u ~ k l)  =  2 2 2
kik\ m'

In  averaging over initial states of the nuclei, we shall assume 
that the initial distribution am. of the nuclei among the magnetic 
states is random, viz.

1 I2 =  ^  ,

where N  is the normalizing factor. Therefore

and consequently

®m'2av

—  e,d* 
\ N

1 v Mm> ")
^m'm"

On this assumption we get from (2.9) the relation:
+  h  N S/, +  l)p>„

V  1 H TxI, I a"j"'m"> [ Ht31i \ a' j 'm'y
■¿—1 \ —-Ea.y.m-+  h<U2

E a " J "  m "  ----- A 1,a f j '  m ‘

X 2
1 — cos (E^m —Ea.j.m. +  hwl +  h w2) g 

(EaJm—Ea.ym. +  kwj.+ ha)2)2

(2 .10a)

1G*
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The strong maximum for Eajm — Ea,J,m. + h.co1+h.co2 = 0 expres
ses the energy conservation law. Since P 0,/y«/m,< — E a,Jlm. +  kcos7^0 
(s = 1 ,2), for the two-quanta emission we have a continuous spectrum 
of frequencies.

We shall now consider the matrix elements appearing in (2.10a). 
In  calculating them we shall assume that the dimensions of fhe 
nucleus are small in comparison with the y wave lengths. Using
X  as the symbol of the position of the mass center of the nucleus

■> •> —
(for t =  0) and writing xi —X- \ -x i, we have

Breaking the series after the first term we get the electric dipole 
approximation for each of the two photons, and we shall speak 
hereafter of electric double-dipole radiation. In  the above approxi
mation the matrix elements, after making use of (2.8) will take the 
following form

e‘

=  0

as I ajmy  4= I a'j'vi'y, and

(a jm \H ? , \  a'j 'm'y

where
P  = ^ e , x l

i
(2 .11)

is the electric dipole moment of the nucleus.
The second expansion term of the m atrix element

*
<a)w IH Xkt/,/, I a'j'm'y

has the form



Its  order of magnitude for the nucleus (contrariwise to the case of 
the atom) might be compared with that of the first expansion 
term of

<ajm | H %,, 1 1 g f r ,  1 a7 j' « O  .
" j "  m "  — E a ' j ' m '  +  k  2

However for the electric double-dipole radiation the states | ajmy
and | a’j 'm 'y  have the same parity and <^ajm\P\a'j'm'y = 0 con- 
formly to the generalized Laporte rule. We will deal with this case 
on the following pages.

In  our approximation the probability function (2.10) takes the 
form (cf. the differences with Goppert-Mayer 1931)

w  (to  a .) _  y  y
^  G c - k . k ,  , 9 1 9 ,

*,*. A/,-1 2 (2 -1 2 )

2  • <ajm \pp \a ' j 'm '> an- e*k +  « i 4 *< ajm \PP\a’j 'm ’\ r  e ^ h
m m*

1 — cos (EaJm—Ea.rm. +  h Wl+  hco2) I  
x 2  -(^ajm — E a,j,m. kaq-}- haj2)2

in which we introduce the following notation:
(2.13)

i tC?; i /■/ X1 (a jm  IP \ a " j "m "y  ( a ' j " m "  \ P  I a’ j 'm'y
<a,m P P  « ') '» '> ,=  ^  V 1 '----•-------------------, ¿ 0 '  ~-
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{ E a j t n  — E a "  j " m " )  { P a " j " m "  E a ' j ’ m ' )

The multiplication of the vectors here is the dyadic multiplication 
for which we shall not use the point sign, reserving it for the scalar 
multiplication.

From (2.12) and (2.13) we draw an interesting conclusion th a t 
there is a probability of the two-quanta double-dipole emission only 
when the nucleus has at least one state different from the initial 
and final states.

In  further calculations we shall assume that the states of the 
nuclei | ajmy  are degenerate with regard to m

Eajm —  E aj - (2.14)
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3. The M atrix E lem en ts

In  the present chapter we shall calculate matrix elements de
fined by (2.13). We shall do this by calculating elements of a more 
general form, namely

{a  " J " m "  n
Eg"J" +  &ft)

(EaJ E a„r ,) —E a.j.)

where 1\  and Tz are arbitrary vectors satisfying the following com
m utation relations (Condon and Shortley 1935, 83)

[T,J] = - i h T x ï .  (3.2)
■> V-

J  is here the vector of the total angular momentum, I  is the identity 
dyadic

1 — t t  +  j j + k k .  (3 .3 )

The cap sign will be used to denote dyadics.
-►

The class of vectors of T  type contains among other vectors,
also vectors J,  x,, pt, as well as any linear combination and the
vector product of T  type vectors (Condon and Shortley 1. c.). This 
class includes therefore electric and magnetic dipole moments:

J> = Z e ,x t, M = - ^ - x ix V,
i

The matrix elements of a T  vector have the following form 
( Condon and Shortley 1. c)

<+7 to I T\ a j ' m ' y  =  D ( A m ) ( a j \ T \ a j y f d(jm] i'm'), 

{A j — j '—j, A to — to '—to)

where
3(0) = k

D ( ± l ) = ^ ( i ± i J ) ,

(3.4)

(3.5)

jm) = TO

fä(jm j m ±  1 ) = ]/(jTm)(j  +TO +  1)
1d()m 7 + 1  to) = \{j +  1 )2 — TO2

fd(jm-, 7 + 1  m ±  1 ) = +  \  (i ±  w + 1  ) (7 +  to +  2)
fdijm 7 — 1 to) = |/j2 — m2

fdijm 7 — 1 TO +  1 ) = i  K/ ~F m)(j +  to —1 )
other U  s 0.

(3.6)
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Expressions ( a j  • T \ a'j'y in (3.4) are factors dependent on the T  
vector and the unknown set of eigenfunctions | a jm>. They form 
a Hermitian matrix, which transforms with the change of the set of 
eigenvectors like the m atrix of an observable,

Using (3.4) we may calculate the elements (3.1).
Defining

B M ,  r ,  ° ' f )
"17 h 2 a<*"]" hft)

( B a/ — E a,n„) (E a„j.. —  E a.j.) 

we have by substituting (3.4) into (3.1):

(3.7)

( a j m \ T 1T 2\ a'j'm'y ̂ (3.8)
= ] £  B(m "—m)D(m'—m")B(aji j"- ,a ' j ' ) fd(jm-, j "m") fd(j"m" j'm').

i" m "

Irksome calculations carried out separately for distinct Aj  and 
Am  give the following formula

( a j m \ T T \ a  K  (Am) < .a j \ l \T 2\ a j ’> J q(jm-,fm')

+ 1 1 (a jm \  T -T \a ' j 'm 'y b) (3.9)

+  £ (A j)D  (A\n)(a j  i T ^ x T 2: a ' j ' y j d( jm ; j'm').

The new notations used above are defined as follows 

¿ (0 )  = \ \ ( k k  ^ l  i \ j  j)

¿ ( ± 1 ) =  ^ [ k l + ' i k ± i ( k j + j k ) ]  (3-1°)
K ( ± 2 ) =  j[T T— f f ± i ( 7 ? A - J  i)],

D(0) =  l ( t H * J  =  —1^( 0 )x i
-0 ( ± 1 ) =  ± \ i i k — k 7 ± i ( J k —lc~i)] =  i D ( ± l ) x ï ,

e(0) =  ~

e ( ± l ) =  + i ]

< aj \T1T 2\a'jya 
— — B(aj  ; j — 1 ; a j )  + B ( a j ; ?; a j )  —B(aj\ j + 1 ; a j)

<a j :T1T2\ a ' j ± i y a = B(aj- , j; a j ± l ) + B a j ]  ¿± 1 ; a 'j±  1 ) 

<aj i T~T2 j a'j ±  2>0 =  B(aj  ; j ± 1  ; a'j ±  2),

(3.11)

(3.12)

(3.13)



242 W. Królikowski

< a j m \ T 1- T 2 \ a j ' m ' > a =  ( a j  \ T X- T 2\ a' j> 8jj. dmm.
— l ) B ( a j )  j —1 ; a ' j ) + j { j  +  l ) B ( a j - ,  ?; a ? )  (3 -14 )

+  (? + 1 )  (2?,-|-3) _B(a?; ? + l ;  a'?)] djj> 8mm>,

< a j : i 1x J ’2 : a ' i > u 
=  (2 j— 1)-B(a?; J —1; a’j ) + B ( a j ; j ; a ' ; ) — (2j  + 3 ) ;  B ( a j ] j  + 1; a j

<aj  \ T x x T 2\ a j  1_>U 15

=  (3— 1) B ( a j  5 j — 15 a’j —  1) — (? + 1 )  -B(a j;  ?; a j —  1)

< a j : T 1x T 2: a j + 1>U 
=  j B ( a j > j )  a ' j + 1 )  — (j +  2 ) B ( a j ) j + l - ,  a ' j + 1 ) ,

1„( jm; j m )  =  pL [3m2—? (?-+ 1)]

/ , ( ? m ;  ? m ± l )  =  | ( 2 m ±  1) K (?Tw ) ( ? ± m + l )

f „ ( j m ; j m ± 2 )  =  \ \ { j + m ) ( j + m — l )  ( j ± m + l )  { j ± m + 2 )

f a( j m ) j + l m )  — Y \ m] / ( j — m + 1 )  ( ? '+ m + i )

= | ( ? T 2 m ) ( / ( ? '± m + l ) ( ? ± m + 2 )

/ f ( ? m ; j  +  l m ± 2 )  =  T l [ /(?:Fm )(?;i=m + l ) ( ? ± m + 2 ) ( ? '± m + 3 )

ro )(?+ m )

/,(? 'm; l m ± l )  =  ¿ ( ? ' ± 2 m + l ) f t j + m ) ( j T m - 1)

j - l » » ± 2 )  =  i i K i / T w i O ' T m —2 ) ( ? '± m + l )  (3.16)

fq{jm  > ? + 2  m) =  F IF O —m + l ) ( j + m + l ) ( j —m + 2 ) ( ? '+ m + 2 )

/ * ( W  j + 2 m ± l )  =  w + l ) ( ? + m + l ) ( ? ± m + 2 ) ( j ± m + 3 )

/ , ( j ' f f l i j + 2 m ± 2 )  =  i P ( ? ± m + 1 )  ( ? '± m + 2 ) l ? '± m + 3 )  ( ? ± m + 4 )  

f „( jm;  j — 2 m )  =  J [j— m ) { j + m ) ( j —m — 1 )(j + m—1)

/ , ( ? m ; j — 2 m ±  1) =  ±  |^(j—to) (j +m )(?=Fm —l)(?=F«i—2)

/ ?(?'m; j — 2 m ± 2 )  =  \ \ ( j + m ) ( j + m — l )( j + m — 2 ) ( j + m —3 ) 

other f9s =  0.

Proceeding for the vector product in the way above indicated 
for the dyadic product, we have:

(3.17)
> X < a " j " m " \ T 2\a' j ' m ' >  
' ■— B a,r  -j- hoi

=  D( A  to) ( a j  i 1 \  x  T 2 i a ' j ' >j d( j m ; ? 'm').

h 2 E g". 
( B ^ — E,
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I t  is interesting to compare the forms (3.9) with the matrix ele
ments of the dyadic Tx 1\.  The electric quadripole moment

the formulae obtained (for quadripole moments) by W. Rubinowicz 
(1930):

b y  B(aj ; j"  ; a'j'). However, the expressions < a );T 1 X T 2;'a )'>  disappear:

0 =  (a jm \Tx X T2\a j 'm ’> = D(A m) ( a j \ T x X T2\a j ’y fd(jm; j'm'). (3.19)

(3.9) is evident. In  our case, however, since expressions (3.15) gener
ally speaking do not disappear, the transition elements (3.9) contain 
a „quadripole p a rt“ with the coefficient (3.13) as well as a „dipole 
p a rt“ with the coefficient (3.15).

I t  should se emphasized that the assumption of degeneracy ef 
the energy levels EaJm—E aJ played a useful part in our procedure 
enabling us to assemble unknown quantities into factors independent 
of m. B. Milianczuk (1931) used analogous procedure for calculating 
the intensity of forced dipole lines in the ordinary emission.

i

is a dyadic of the 1\ 1\  type, where T1x T 2 =  0, for which we get

<o>jm \T x T2\ a' j 'm,y  = K( Am) <aj \ T XT2\ a'j 'yf ,( jm  ; j ’m') 

+ ± l < a j m \ T 1-T2\a'j 'm'y.
(3.18)

Here the factors(oj\Tx T2\a'j'y,(ajm\Tx-T2\a j'm'y,<^aj\Txx T 2\a j'y
are defined by the expressions

just like the factors (aj\Tx T2\a'j'y, (ajm\Tx- T2\a j ’m’y, <aj\Tx X T^a'j'y

X T 2\a j 'y  == 0 (3.18a)

when Txx T2 =  0, as in this case

Obviously formula (3.18a) applies in the case when Tx = T 2 = P,  
because P x P  — 0.

Similarity of the quadripole elements (3.18) and our expressions



4. C orrelation  Form ulae

Correlation formulae are obtained by insertion of the matrix 
elements (3.9) into formula (2.12). We shall keep in mind that the 
dyadics K(Am)  and 1 are symmetric and D(Am)  antisymmetric:

v —► —► v —
a-K(Am)-b  = k - K ( A m ) - a ,
— v —► — v -+■
a • I  • b = b • I  • a ,
•+■ v ■+ "+■ V ->■
a-D(Am)-b  = —b -D ( A m ) - a .

This fact will prove useful. We have

w a, j , M X )  (4.1)

y  y ^ v , + l ) ( ^ + l )  o l - e o s ( ^ B/- g B̂ +L«o1+ li0> ,)l
G2c2k1k2 (Egj—E aiji-\-h j-j-haig)2

x  2  \ e x ^ [ K ( A m ) ^ a j \ P P \ a  <,aj\PP\a f y ai)f , ,{jm)f m')
m m '

+  i  I  K a j :P ~ P \a ' f> J  + < a j : P ~ P : a j ' y j  djj. dmm. +

+  e ( A j ) D ( A m ) « a j \ P x P \a j '  >m— <.aj\P x P ' :a j'>ol)fd(jm; j'm')]-<}%,,{* 

— J  i(aj) a' f)  % ( £ 1'e-j;,,. K{A m) • e?,lt |2)/,0'm; j ' m ' f  +
m m '  /j/j

+  J 2(aj) a j ) £  (]£ | e X,i, • I  • e |2) -g djy 6mm' +
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m  m ' lxl%

+  J 3(aj-, a ' j ' ) 2  ( 2 '|1 t i/i •D{Am)-et,ll\2)fd(jm-,j'm')2 +
m m '  /j /j

+ J 12{aj;aj') £  (2  K{Am) • I* . ,Ą i/t) ffjm-, fm ') \6 j j .  6mm, +
m m  lxl\

+  conj. +

+ J  13(aj; a'f)  2 ( % e  X,, ’¿(A  m) ■ e x,t, e T,it 'D {A m * •mm1 lxl%

+ J 23(aj; a f ) £  ( T ex,, • I  ■ e Xt, e Xt, • D (A m)*
mm' ltli

e?,r, f , { jm ) fm ') fd(jm-,j'm')+ conj. +

A m)* •
—►
eXh)$fyj'&inm'1a(jm\j'm') +  conj.,



where 

J-L(«?; a j ' )

a'Y)

J n (a?; aT  )

J 13(a j; a'?")

^ 23(0?; « '/)

y ft.2( i ^ + l ) ( A T? , + 3 )  1 COi?(^  +
^  evA jfcj (Æ ^ -Æ ^  +  hcüi+h^ ) 2 :“ ?>“‘+ < a^  : a *>ÄiÄg

'„*'\ 12«21

x - <  l i H N — -i-lW-Zv'' -* -4 -1 ) ^  G0 Si p aj  -®di'j' +  ^ W i +  kcu2) u  _  „

= 2  -  ■ g U b r  2 ( E . , - E . . , .+ h  , + ^ ) °  1 < < .^ ;« r > „ + < « i iP - P :« T > j -
*,*!

1—cos(Æ?„y—ÆaV, +  h ■'14-hco2)r- _  _
= 2  V c 2* !^  ’ 2 (EaJ- E a.r  +  h -J+  ha,a)* I <ah-p x p :« 'f>u-<a?:p x p :a'i > J 2

*1*2

x-T h 2( N - +  + lH .Z V r ‘+ 4 - 1 )  G 0S (P *J ^ a j , J r  k w j  +  hco2) j7  ( 4 .2 )
y n  -_  1.) I r \  t , +  X )2  - « a j - P P - a ' j ' y  +  <aj'- PP'-a’j " >  )

¿ J  (Eaj—Ea,j, +  h x +  hco2)2 K 1 ‘ * 1 K ] ’ ’ 1
« a ?- i P ^ : a r > M+ < a / iP > :a y > J *

x~t h2(JST-’- 4 - 1 )  (2VT-* -4 -1 )  ^  c o s ^ “> ^ av  + k " i + ^ w 2 )jr  „  _ _

= ~ 2  V c 2^ * ’ 2 {Eaj— Ea,J, + \iMl + \ioj2T « ai'.p p :a'i >m+<ni : p p :a'j >*.)
A-l kt

K a j : P x P : a ' f X r < ' j : p x p \ a ' y > j *

X~I h 2( N ^  -L Diiy-*- 4-1) ^ COii[P aJ -EaV'+k ' l  +  ̂ lW 2 ) j r  „  _
= _  y  A (iV *.±.è !2 ________________________ - « a j ’p - P u / r y  + < < j - p - p - a,j ' y  )Z j G2c2k1 k2 {Eaj- E aj . p  h Wl+ha)2)2 K .« 7 A ,," iW . . 1

kyki ,—.. -—*
Kaj\PxP\a'j 'ymri , j \ P x P \ a ' f y j * .
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We assumed above th a t the initial distribution of radiation among 
the polarizations will be random, i. e.

N~Z’,= N -£ ,  (t.3)

where N t  does not depend on the direction of polarization (e. g. 
for the spontaneous two-quanta emission we have N ?,  =  0).

How we come to the calculation of the parts of expressions (4.1) 
which depend on the direction of the photons. We shall base our cal-

Pig. l

culation on the following formula for an arbitrary dyadic A  and 
a symmetric or antisymmetric dyadic B ( a B b  — ±  b B  a)

et i , • A - ' e % ll- B*

/x-1

Here we made use of the orthogonality of the system of unit vec
tors iT*?!, e%2, K :

I  = i i + ~ j j + k k  = ett i e t 2i +  W kl-

Chosing the axis versors of the coordinate system in the directions 
of the propagation and of the two polarizations of the first quanta 
(see Fig. 1)
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(here fc does not designate the wave vector!) our formula is written:

(4.4)
=  (i • A ) ■ (i • £*) +  [j ■ A ) ■ [j • B*) — t • A ■ 14 i • B*• lc?i— j- A  ■ 1$ j ■ B*-k\.

When A = B  (4.4), is modified, as follows

2  I eTl/l-I-'e^,1|2=  \T-A\2+ \f-A\2 — \ i -A A$|2— \f-A-Jcl\2. (4.4a)/i/a=l

By the application of formulae (4,4) or (4.4a) to dyadice appea
ring in (4.1) we obtain the following expressions:

2  \e?^ -K(Am) -6%,^ =

2  | e t ^  ■ D {Am)ex,t \2

| ( 1 +  cos2 0) for OII~

4 d - cos2 0) for Am = ± 1

4(1+ cos2 0) for Am = ± 2

4 (1 +  cos2 0) for A m = 0
4 ( 1 - cos2 6) for A m =  + 1

2 \ h khh-i h%li 1 +  cos2 0

2  eifc--^(0 1 +  co&O)VS

2  e%h-1 • e%,,e 7;,.-^(O) • e ^ 4=0.
hh-1

0 for /lm =0

± 4(1 “  cos20) for zb?i=±l

(4.5)

Inserting formulae (4.5) into (4.1), making use of the definition 
of the quantities and fd jm \  and carrying out
tedious summing over m and m', we arrive at the correlation formu
lae (4.7). In  the second summation of the two we use the following 
identities

2 1  = 2 j + l  2 ™ 2 =  Ht i  +  l ) ( 2 j + l )
(4.6)

2  =  tV Hi + 1) (2 j +1) (3 f  + 3 j + 1).
m

During the calculations it will be observed that all mixed expres
sions in (4.1) disappear. These expressions would have given dipole- 
quadripole interference in double-dipole two-quanta emission.
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Finally we obtain the following correlation formulae, dropping 
time factors which are independent of the directions of the photons,

= 1 +  -^COS^
J 3(aj] a'j—1) 15

(1-W £ l ^ _ l + TVcos2tf , t/i(a;-. 13 ( / - !  )( /+ !)

W râ i \  = l _ A COS2/}

W ^ aJ = 1 +  Ącos +  i  J77T2T (1 i  cos20)
for/40 « / i ( « ? ,  a  ? + l )  1 3  7(7+ 2)

= 1—4-cos20

•|cos20)

’Wa%a) = 1 + tV COs2° +for/40. </«

+

«'7)13 4 ( / - I )  (j +  f) 
J 2(aj;aj) 15 1  1

-Vcos20)( 1 - T  

(1 +  cos20)

= l - | c o s 20 +  

= 1 +  cos2fl.
^s(ał; fl/i) 9 7(7+1)

( l+ c o s 20)

(4.7)

Here TF$,.^(fci, fc§) =WJ,'}.,($  signify the relative probability for two- 
quanta emission accompanying the transition a' f  —> aj. The quantities 
J s(aj‘,a'j ')  (s =  l ,2 ,3 )  defined in (4.2) are generally unknown. For 
their evaluation it  is necessary to know the eigenfunctions of the gi
ven nucleus.

Especially interesting is the transition «'()-> «0 forbidden in the 
one-quantum emission. Investigation of the directional correlations of 
the y rays in this case may lead to the experimental discovery of the 
(double-dipole) two-quanta emission. Our formulae give in this instance 
the angular relation

l^ a 'o fa o  =  1  +  COS2 0 .

As the formulae of D. B. Hamilton (1940) for (dipole-dipole) succes
sive emission of two quanta give for the transition a '0 -> -a"l-> -a0 
the same angular relation: l+ c o s 20, the possible difficulty of deciding 
whether in such an instance simultaneous (double-dipole) transition 
or a successive (dipole-dipole) transition is taking place — cannot be 
solved merely by measuring correlations of y rays.

In  all other instances where formulae (4.7) do not contain un
known quantities I s(aj-, aj ')  (s= l,2 ,3 )  — directional correlations for 
(double-dipole) simultaneous two-quanta emissson and (dipole-dipole)
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successive emissions of two quanta (10) are identical. These are the 
instances

The above identity is the consequence of the fact that in these in
stances, as the result of the selection rules for dipole radiation (see
(3.4) and (3.6)), there exist virtual intermediate states of the only 
one value j"  (with generally different a").

However, it seems possible to find out experimentally whether 
in such transitions (as e. g. in the transition a '0 -> a 0) in a particular 
case a two-quanta emission or a successive emission of two quanta is 
taking place. The following characteristic differences between the two 
types of emission are to be considered:

(1 ) for successive emission — an actual intermediate state of the 
nucleus, whose energy satisfies

for simultaneous emission — virtual intermediate states of the nuc
leus, whose energies satisfy

(2 ) for successive emission — a discrete spectrum with two 
distinct frequencies; for simultaneous emission — a continuous 
spectrum.

How in cases covered by formulae (4.7) containing unknown factors 
I s{aj,a'j') ( s = l ,2 ,3 )  there exists, as a rule, virtual intermediate 
states with various j" values. In these cases it may be expected that 
our correlation formulae should differ from the Hamilton formulae. 
To inquire into this possibility we shall try in the next section to 
evaluate the order of magnitude of the unknown factors in the for
mulae (4.7).

When the initial and final states have different parity, the elec
tric double-dipole transitions for which our calculations apply, are 
forbidden by the generalized Laporte rule. In  this case we must con
sider further expansion terms of the matrices (ajm\H.*Xk’,iltl \a' i 'm'y 
and (a jm  \H*T,\a j'm'> appearing in (2.10). We get in this way the

of successive emissions: of simultaneous emissions:

a j a j  
a' 0 - v a " l  -> a 1
a 'l  —>-a"l —> a 0

a j  ±  2 aj 
a ' 0 —> a .1

a 'l  —> «0.

E a - j , > E a "  j "  >  E a j  ;

Ea"j">Eaij> or Eqj >E a"j" ;
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transition probabilities for electric and magnetic double-multipole ra
diations of various orders.

I t  is not difficult to prove by means of (3.9), that the same 
correlation formula:

W a ' O ; a o ( 0 ) = I + C O S 2 0  ( 4 . 8 )

as for electric double-dipole a '0 ->-aO transitions applies also for 
magnetic double-dipole a '0 ->-a0 transition (both photons are of 
magnetic dipole type) and electric-magnetic double-dipole a '0 -> a 0 
transition (one photon is of electric dipole-, the other of magnetic 
dipole type). To prove it we make use of the following formulae

U l e X i x ' t f x t y ) ' eT1/,i2==l+cos20 ( s = l , 2),M-i
(4.9)

Ê I ett, • (ft? X ZX ft?) et,,, |2 = 1 +  cos20./, w

The ratios of the orders of magnitude of the electric, electric-magnetic 
and magnetic double-dipole two-quanta emission probabilities are

1 : 2jiRV I‘2tz R
A \ A

where R  ~.L0~13 is the radius of the nucleus. E. g., for y rays of IM ev 
energy we have

R  3
— - —  ~  5  1 0  3.

5. E stim ation  of C oefficients

We shall now evaluate the order of magnitude of the unknown 
factors appearing in the correlation formulae (4.7).

First we shall write formulae (3.13), (3-.14), (3.15) in a slightly 
modified form:
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where

ai (hi ± 1 > j ) = — 1 «2 (it j ~ h i )=J( 2J—1) o»( h ?—1 > J—1 )= j— '1
o2(j , j , j)=j(j+l) a3(j,j,j—l ) = —{j + l)

a1( j , j ± l , j ± l ) = l  a3( j , j+ l , j )= ( j+ l) (2 j+3)  a3( j , j - l , j ) = 2 j - l
1 )==1 other a ,s = 0  a3(;,j ,? )= l

ai(j; ?±1; j±2)=l C'30 ',?+ Ij?)= —(2?+3
other a is= 0  a3(j , j , j+ l )= j

« 3 ( ? i ? + 1 . 7 + 1 ) = — ( ? '+ 2 )  

other a3s= 0

Next we shall transform the expressions (4.2) which define the 
factors I s{aj-,a'j') ( s =  1,2,3) by making use of the fact that the 
function:

1—cos(2?o/— hco1-f-h(«2)p  
O^.a'Aco 1+ co2) = 2 (EaJ- E ar + hoh +hco2r~ (,x3)

has a strong maximum for:

CO^~\~CV2 ( / i a V'  G a j )  (O q j.Q tj’ ) ( 5 . 4 )

while the other parts of the integrands in (4.2) are slowly varying 
with cox and co2 — as a consequence of the fact that in the simul
taneous processes

Ea."j" Ea'j -f- hco* 0 (s =  l ,  2)

Instead of the sums over kl and 7c2 we write integrals with respect 
to co1 — clc1 co2 =  ci;2 keeping in mind that the density (on the interval 
unit of co) of oscillators of radiation field having the frequency co 
and the direction of propagation contained in the solid angle (IQ is

<5-6)

where G is the volume of the cube of periodicity.
Assuming then that the initial radiation distribution is random:

(5.2)

Acta Physica Polonica

N t = N (5 6)
17
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(e. g. N t  =  0 as for the spontaneous emission), we have
Wa/; a'J' ^

J i ( a j )  a '? )  =  t G f ( ( 0 aj-a r  — a>2) w21 <a? j P P  • a '/> Wl

+  <.aj: P P : a j 'yaaj-,ar-.a, \2dco2
UaJ] a J' ^

J 2{ajj a j ' )  = tc  f ( 0jaJ;o<j, — (02) w21 <a; • P-P • a j '>M,

+  <aj : P-P : a’j'y^a/; a'/'-c* |2 ̂ «>2
<*>ay; a V'

Jaiaf; a j ' )  =  tc  J (a )afiar  ~  "2) " 2 1 <a?: P X P  • a '/> ut

— <aj j P  X P  - a j ' ) yaaJ■ a7._M | d(w2, 

where we have assembled all constants into one quantity

(2tt 3( t f +  ])2dQ1 <LQ2 
~  (2,-ro)6

(5.7)

(5.7a)

iSTow we come to the estimation of I s(aj, a j ' )  (s — 1 ,2,3). For 
this purpose we assume that the nuclei under consideration apart

|cdj'm> 

W j m )

r  \  

! !
1
1 , A u i
1

\
Fig 2

c« r

•«/

\ d

from the initial energy level FaY and the final energy level have 
only one intermediate energy level F 0.,,.., and that all energy levels 
are degenerate with respect to m(cl. E . G. Sachs (1940)). The situation 
is represented in Fig. 2.

In this case the formulae (5.1) are reduced to the following:

<aj\ T~T2 j a ' f y a = Ul (j, j " , f )  B (ar ,a 'T i  a'}') 
< aj \T^T2\ a ' f y u = ( a2j, j"  f )  B(ay, a" )"■,,/f ) (5 .8)
<ct j i Ty X T2 j d j ' y a =  a3 ( ' )  B a’,j')

where

r ' n "  j  h  0 )\i2
(Buj Ba"j") (Ea"j" — Ba'j')
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Integrals (5.7), after the introduction of the following notations

Ea'j'—  E * J  —  L̂wal-,a'l' —  a i E a " j "  —  7?a j =  b,
E a..j.,—E a.j =  d, hw 2 =  x

(5.10)

assume the form given below 

G ̂ a \̂<-aj ’:P':a"j"y<^a"j" \P\dj 'y  |2 b2d2(b-\-d)2 J '
—x) x

: dX
- x f  (d + æ )2

- 4 a|1<a?' ;Pia,,r><a,,j/,iPia/?'/>1262d2(&+d)2/ ( ^ T 4 ^ 2^  ( 5 ' u )n
-2æ)2( a — x ) x  

(b—x)2(d - \ -xf
dx.

Through integration we get

J  ( b -
a —x) x dx ■
■X)2(d-i-x)2 [b+d)*

b2+ d 2 b ..In j  — (b—d)
b -\-d d

(a—2x)2(a—x ) x  
■x)2{ d + x ) 2

f ( a - 2
J  lô ~

b2± i b d + ^ in ! i - 3  ( b - d )  
b +  d d

(5.12)

Finally, in our approximation, we have the following expressions 
for the factors in (4.7)

J 3(aj', a j ) _  2( •
T I A. > A>\ — a3 \h j  > J >

«7a(q?> a'i')
'Ji(aj) a'j')

2 In -a
1 + 2 -h i (5.13)

where

u =  * =  f a"y" f c ( >  0).d Ea,.j.. — Ea>j'

In  particular for « =  2 and w =  4 have respectively

(5.14)

~i 2 af and ^  «  a3.i i
Jx

I t  can be seen that the coefficients in (4.7) are of the order of 
magnitude of one. I t  follows indeed that in certain cases the Hamilton

1 7 *
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formulae differ from ours, e. g. for the transition a '2 —>- a"l -> a2 
the former give (1 0 )

1331 +  rzK cos2 0,

while ours, according to the above estimation, give

.1 + XV cos2 0 + 1  —-J-cos2 0 + 1  +  cos2 0 ~ 1 +-£• cos2 0.

We will now estimate the order of magnitude of the absolute 
probability for the electric double-dipole two-quanta emission, e. g. 
for the transition a'0-^-a0. Formula (4.1) takes now the form (we
write Wa.j.ia/(kl,%°2) = W a.riaj<e))

Wa.0;o0<e)= | J 2(aO ;a '0 )( l+  cos20)]. (5.15)

Making use of the approximation formulae (5.11), we have

Tra'o; ao(fl) =  *- -2 ? 3 f a y i)S I <a J : P : « 'T >  I21 < « 'T : P i «'?'> I2

2 b*d* b'- +  d * b
b f d l ü d ~ ^ (1 +  cos20).

(5.16)

The probability per unit of time for two-quanta emission in all 
directions is given by

0
where dQ2 =  sin OdO dq> (if Tt\ points in the direction of the «-axis).
So we have

(5.18)

1 <a?‘ : p ; a" i"  I21 :-p 5a' j '>I2bH2
b2+ d \  b ,,I n - —(b—d)
b+d d

We estimate the expressions <aj • P • a'?'> as follows
| (a j  • P ; aj'>\  ~  |<a jm  \ P  \ a cR,

where i2 ~ 1 0 ~’3 is the radius of the nucleus. According to this esti
mation formula (5.18) gives e. g. for 5 =  lMev, d =  0,5Mev and JV=0 
(spontaneous emission) the following order of magnitude for the elec
tric double-dipole emission probability

Wa'n;a0 1 ' 10* sec-1 .
In. our case, for electric-magnetic double-dipole emission we have 
wa-o;ao~ 10“ 1 sec_land for magnetic double-dipole emission,

«Vo;ao~ l 0-° se c -’.
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THERMAL PSEUDOHYSTERESIS OF THE DIELECTRIC 
CONSTANT OF FERROELECTRIC TITANATES*

by A. PIEKARA and Z. PAJĄK, Physical Laboratory I  of the Gdańsk 
Institu te of Technology, Gdańsk

(received Ja n u ary  1, 1952)

M easurem ents of th e  dielectric constant of barium  tita n a te  and barium -stron- 
tium  tita n a te  were m ade in  various tem peratures w ith  an a lte rna ting  curren t of 
2 and 5 kH z frequency and  a d is tin c t anom aly in  th e  dependence of th e  dielectric 
constan t on tem peratu re  was discovered: th e  curve e = j(t)  is different during the  
heating  and the cooling of a sample. Values of the  d ielectric constant during 
cooling (above as well as below the  Curio point) are higher than  those m easured 
a t  th e  sam e tem peratures during heating. In  th e  direct v ic in ity  of th e  Curie po in t 
th e  value of the  dielectric constant is higher by  over 10 per cent during cooling 
th an  the  m axim um  value observed during  heating . W e have called th is  phenomenon 
th e  therm al pseudohysteresis of th e  dielectric constant because of th e  characteristic 
appearance of th e  residue a fte r th e  form er therm al state.

Ferroelectrics of the titanate group possess an unusually large 
dielectric constant which is to a great extent dependent on tempera
ture. The maximum value occurs in the Curie temperature. Other 
physical properties of the ferroelectrics also present at this point 
a number of anomalies. Examining the dielectric constant of titanates 
in various temperatures we observed in the vicinity of the Curie point 
an anomaly of the dielectric constant, consisting in the phenomenon 
th a t the dielectric constant depended not only on temperature but 
also on the former thermal state of the examined sample.

E xperim en tal procedure

Measurements of the dielectric constant in various temperatures 
were made by means of a Sullivan bridge fed by an oscillator of acous
tic frequencies. The examined samples consisted of polycrystalline

* S upported  by  th e  Sekcja Naukowa Kom isji Popieran ia Twórczości N auko
wej i  A rtystycznej p rzy  P rezydium  R ady M inistrów.
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barium titanate or barium-strontium titanate composed in 21,4 per 
cent of SrTi03 and in 78,6 per cent of BaTiOg, produced by the 
Institute of Inorganic Chemistry of Wrocław Institute of Technology1.

The samples were sintered in 1300°C during 2 hours. They had 
the shape of disks of the following dimensions: BaTi03 — diameter 
11,50 mm, thickness 3,72 mm; BaTi03—SrTi03 — diameter 11,54 mm 
thickness 2,80 mm. The measuring condenser consisted of the sample 
with silvered plates. The silver plating was done by the thermo- 
genetic method (Partington et al., 1949) by heating the sample 
painted with Ag20  — paste in an electric furnace at 700°C. The 
condenser with soldered copper wires was placed in an empty 
metal container with a precise thermometer and three thermo
couples. This container, was placed in an ultrathermostat for in
vestigations up to 100°C, and in a special electric furnace for higher 
temperatures. The temperature was held constant within the li
mits of ±  0,1°C. The temperature was controlled by means of the 
thermo-couples. The thermo-couples of copper (0,18 mm diameter) 
and Eureka resistance wire (0,12 mm diameter) had a thermoelectric 
efficiency of 40 /.iV/l°C; a difference of temperature of 0,05°C could 
be detected by employing a galvanometer with the sensivity of 2 *10-9A 
per division of the scale. The junctions were placed so tha t the fol
lowing differences of temperature could be established: between the 
wall of the container and the plate of the condenser, the plate of the 
condenser and the bulb of the thermometer, and between the bulb 
of the thermometer and the interior of the condenser. In  the last case 
a small hole was drilled with a thin needle in the sample in order 
to introduce into it the junction of the thermo-couple.

E xperim ental resu lts

Measurements of the dielectric constant were made by employing 
an alternating current, the frequency being 2 kHz and 5 kHz. The 
measuring potential difference amounts to 7,8 V maximum. The 
temperature range was 20—150°C for barium titanate and 20—75°0 
for barium-strontium titanate. Eig. 1 represents the curve of the 
dielectric constant plotted against temperature in the vicinity of the 
Curie point. Curves I, II , I I I  represent consecutive cycles of heating 
and cooling for the same sample of barium-strontium titanate. Each 
cycle lasted 1 to 5 hours. I t  is obvious from the curves that changes 
of the dielectric constant are different during the rise and during the

1 The A uthors wish to  express th e ir  thanks to  Professor W . Trzebiatow ski 
fo r providing the  samples for the  investigation.
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fall of temperature. Corresponding curves were obtained for the ba
rium titanate. I t  was observed tha t changes in the speed of heating 
did not essentially change the curve of heating (Ila, I l ia ,  apart 
from the curve la , which was the curve of a first heating), but

35 40 50 60 70 CO
—  t

Pig. 1. The dependence of th e  dielectric constan t of barium -stron tium  tita n a te  on 
tem peratu re  for th ree consecutive cycles of heating  and cooling.

changes in the speed of cooling markedly affected the curve of 
cooling (lb, l ib , Illb ). I t  was observed that the shape of the curve 
depends not only on the speed of cooling but also on the previous 
temperature of the sample. The dielectric constant of the sample has 
a higher value during cooling than during heating; sometimes the dif
ferences exceed 10 per cent.

The temperature in which the maximum of the dielectric con
stant occurs depends on the direction of changes of temperature: 
during cooling the maximum occurs at a somewhat lower temperature 
than during heating. For barium titanate the maximum is observed 
at 127°0 during the heating and at 125°C during the cooling: for ba
rium-strontium titanate a t 56°C during the heating and at 54°C dur-
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ing the cooling. The different course of curves during the heating and 
the cooling processes is also distinct in closed thermal cycles not 
enclosing the Curie point, but lying above or below it. Pig. 2 repre
sents typical curves s—f{t) for barium-strontium titanate below the 
Curie point (curve I) and for barium titanate above the Curie point 
(curve II). The figure shows that the closed cycle of heating and cool-

(II)
120 130 140(°C) —  t

(l)E
f

2700

2400

2100

1300 

1500
30 40 50 (°C) —  t

(D

Fig. 2. Pseudohysteresis curves: I  —  B aT i0 3— S rT i0 3 below the  Curie point;
I I  —  B aT i0 3 above the  Curie point

ing below the Curie point resembles the hysteresis loop; it is com
posed of two parts: the ascending one and the descending one, and 
the descending one lies above the ascending one. How above the Curie 
point the situation is different: the descending curve lies below the 
ascending one. The „residue” after the former thermal state appears 
here in a singular way: a high temperature in the past causes an in
crease of the dielectric constant, even if the dielectric constant in 
higher temperature is lower as is the case above the Curie point. For 
this reason we have called this phenomenon the thermal pseudohyste
resis of the dielectric constant. This peculiar occurence takes place 
in a still more striking way in the direct vicinity of the Curie point, 
where the dielectric constant measured during cooling has a higher 
value than in the whole process of heating. In  points A  of Figs. 1 
and 2 it is obvious tha t stopping the process of cooling causes a spon
taneous falling of the value of the dielectric constant. These facts 
were corroborated by experiments, the results of which are repre
sented by Fig. 3.
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A sample of barium-strontium titanate, which was kept at room 
temperature, was heated in an ultrathermostat to 45°C and its di
electric constant was measured2: e46=2133. This value did not change

in time. The sample was next heated to 63°C and cooled back to 45°C. 
The measured value of the dielectric constant after the temperature 
had become stable exceeded considerably the initial value £45 and

2 e w ith an index below denotes the  value of the d ielectric constant measured 
when th e  tem perature had been recently lo w e r  than  th e  tem perature a t  which 
th e  m easurem ent was taken; w ith an index above —  when the  tem perature had 
been h i g h e r .
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amounted to £45=2346. This value diminished in the course of time 
as shown by the curve on Fig. 3. After a series of measurements which 
lasted one hour the sample was cooled to room temperature and after 
15 hours was again heated to 45°C. The value on the constant £45=2169 
is now much lower than the former £45 and only slightly higher than 
the initial value £45. I t  is noteworthy tha t this value does not dimi
nish visibly in the course of time. Cooling of the sample again to 20° C 
for a period of 22 hours and heating it again to 45°C changes but 
slightly the value of the dielectric constant, which now amounts to 
£45 =  2145 and is quite near the initial value of £4 5 , and does not change

F ig . 4. D iagram  of th e  dependence of e of titan  ates on tem perature after several 
thermic cycles. The th ick  curve —  heating; an alm ost uniform  dependence. Thin 
curve —  cooling; the  shape of these curves depends on the in itia l tem peratures

and on th e  speed of cooling.

in the course of time. Thus a change of the dielectric constant in the 
course of time occurs only if the sample before measuring was in 
a higher temperature, but it does not occur if the sample before the 
measuring was in a lower temperature. In  this latter case an influence 
of a still more remote thermal past of the sample may appear only 
in a small degree, if then it had been in a higher temperature. Pro
bably for this reason the value of £¡5 is somewhat higher than those 
of £ 4 5  and £4 5 .

The results obtained may be represented on a general diagram, on 
Fig. 4, where one can see the shapes of curves e=f(t) during heating 
of the condenser with the dielectric, and during cooling from various 
initial temperatures. The dotted lines show the direction of the spon
taneous change of the dielectric constant when the process of cooling 
is stopped at a certain temperature. In  that case the value of the 
dielectric constant always diminishes. The curves A  and B  on Fig. 4
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represent individual thermic cycles for temperatures above and below 
the Curie point.

The above mentioned observations may be interpreted as follows. 
The dielectric constant changes its value without any delay in heating 
process, nevertheless in cooling process the delay-effect takes placed. 
This effect appears as an excess of dielectric constant as regards to 
the value observed in heating process a t the, same temperature. This 
excess vanishes with time and proves about previous tennal state of 
the sample, if there was a state of higher temperature than meas
uring one. This phenomenon may be called a „high temperature 
memory“ of the sample. The „low temperature memory“, if existing, 
was in our measuring conditious unobservable.

The results of the above work were presented at a scientifi, 
meeting of the Gdansk Institute of Technology on June 8, 1951. Si
milar results were presented on October 3, 1951 by N. A. Roy (1951) 
to the Academy of Science of the U. S. S. R. The fact that Roy did 
not observe the difference between the shapes of the cooling and 
heating curves above the Curie point is due to slower changes of tem
perature in his experiments.
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ON THE DEPENDENCE OF THE CROSS-SECTION FOR 
PAIR PRODUCTION ON THE ATOMIC NUMBER Z

By A. Z. HRYUKIEWICZ, Institute of Experimental Physics, 
Jagellonian University, Krakow

(received. F eb ruary  18, 1952)

The ra tio  of the  cross-section for production of electron pairs by gam ma TliC" 
rays (2,02 MeV) in Al, Cu and Ag to  the cross-section in P b  was measured. F or 
th is  purpose the  G.-M. counter m ethod was employed, using counters for beta 
rays w orking in  coincidence. Possible sources of errors, the  m ost im portan t among 
which are due to  Compton coincidences caused by a Compton electron and a  sca t
tered  gam m a photon, were carefully considered and discussed. The ratio  of the 
cross-sections in  Al and P b  was found to be much larger th an  th e  ra tio  theoretically  
calculated from  B ethe and H eitler’s and Jaeger and Hulm e’s theories.

Introduction
The aim of the measurements was to obtain the ratio of the 

cross-section for the production of electron pairs in Al, Cu, and Ag 
by gamma rays of ThC", to the cross-section in Pb. The results of these 
measurements were compared tvith values calculated on the basis of 
Bethe and Heitler’s and Jaeger and Hulme’s theories.

According to Bethe and Heitler (1934) who employed in their 
calculations Born’s approximation, the cross-section for pair pro
duction is proportional to Z2. According to Jaeger and Hulme (1936) 
whose calculations were more exact (they did not employ the above 
mentioned approximation), the dependence on Z  of the cross-section 
for pair production is expressed by the formula

<r=a(Z/137)2-f-6(Z/137)4

in which the first term gives the value of the cross-section for Born’s 
approximation; the constants a and 6 for hv—5,2 me2 (2,62 MeV) 
calculated from experimental data for leacf amount to a =6,95 barns, 
6=4,62 barns.

The dependence of the cross-section for pair production on the 
atomic number was measured by the cloud chamber method by
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Chadwick, Blackett and Occhialini (1933, 1934) and by Bencke (1935). 
The results obtained point approximately to a quadratic dependence 
of the cross-section on Z , but the small amount of statistical material 
and errors due to the thickness of employed plates do not permit to 
choose between the two theories. Benedetti’s (1935, 1936) and Boc- 
ciarelli’s (1937) measurements, in which the number of positons pro
duced by gamma rays in plates of various materials was measured 
with G.-M. counters, indicated certain deviations from the quadratic 
dependence on Z  for light elements. These deviations were explained 
by Franchetti (1938) to be due to the background of Compton elec
trons. Groshev (1945) by means of the cloud chamber method ob
tained a quadratic dependence on Z  of the cross-section for pair pro
duction by gamma rays of ThC" in the chamber gas (nitrogen, krypton 
and xenon), but the precision of his measurements does not yet per
mit to decide between the two theories. Measurements of absorption 
in various materials, of gamma rays of large energies: 11,04 MeV, 
13,73 MeV, 19,10 MeV (Adams 1948) and 88 MeV (Lawson 1949), for 
which the production of electron pairs is the main cause of absorption, 
proved inconsistent with theoretical calculations: for heavy elements 
(Pb and U) the cross section was too small, for light ones (Be and Al) 
too large. These deviations had a different sign than Jaeger and Hul
me’s correction, and were larger for gamma rays of greater energy, 
which is also inconsistent with Jaeger and Hulme’s theoretical cal
culations. Recently there appeared a paper by Hahn, Baldinger and 
Huber (1951) who, by way of registering annihilation radiation by 
means of scintillation counters, counted the positons produced by 
gamma rays in various materials. Some deviations from the quadratic 
dependence on Z  obtained by them for elements heavier than Fe were 
consistent with Jaeger and Hulme’s theory. They did not investigate 
elements lighter than Fe, because Hulme and Jaeger’s theory does 
not expect in those materials measurable deviations from the quad
ratic dependence.

A pparatus

The apparatus used in the present work was similar, except for 
slight modifications, to this of a former work (Hrynkiewicz 1950).

A sample of MsTh equivalent to about 40 mg of Ra was placed 
in a lead block. The gamma rays filtered through 25 mm of lead were 
practically monoenergetic with energy of 2,62 MeV. A beam of these 
rays, was collimated by means of a channel 30 cm long and directed 
towards a metal foil in which the pairs were produced. The foils were
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set in a light aluminium, frame in order to diminish the background 
due to the external layers of the lead block in which the collimating 
channel was bored. The G.-M. counters for beta rays with mica

windows (5 mg/cm2), working in coincidence, were placed in a distance 
of about 5 cm from the foil. The mouth of the collimating channel, the 
foil frame and the setting of the counters are represented on Fig. 1.

Proper coincidences, i. e. coincidences caused by electron pairs 
produced in the foil may belong to two types:

1. /¡-/5+-caused by a negaton entering one counter and a positon 
entering the other.

2 . />+y-caused by a positon registered in one counter and the 
annihilation photon of this positon producing an impulse in the se
cond counter.

Of course the first type happens much more frequently.

Besides these the apparatus could register the following undes
irable coincidences:

1 . /3_ y-„Compton coincidences” caused by a Compton electron 
entering one counter, and a scattered gamma photon producing an 
impulse in the second counter;

2 . yy-caused by registering in one counter a scattered photon 
registered previously in the other one;

3. Accidental coincidences.

o

Pig. 1. Position  of th e  counters.

M easurem ents and resu lts
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The number of accidental coincidences did not exceed 0,05 per 
hour thanks to the good resolving time of the coincidence circuit; 
and they could be neglected as -well as those of the yy type which 
could be neglected because of the geometry of the apparatus and 
the small efficiency of the counters for gamma rays.

As the main source of possible errors remain the Compton co
incidences of the fi~y type. The Compton electron may originate in 
the foil, in the frame in which the foil is set or in the layer of air be
tween the foil and the counters. Errors due to the last two sources 
are eliminated by subtracting the background. For eliminating the

Fig. 2. The dependence of the  angle between tho directions of the incident and tho 
scattered  photon on the angle between the directions of the incident photon and 

th e  Compton electron for gam m a rays of 2,62 MeV energy.

foil as a source of numerous Compton coincidences it is necessary to 
set the counters at a proper angle. I t  is obvious from Fig. 2 tha t for 
gamma rays of the energy of 2.62 MeV the angle between the direc
tions of the negaton and of the scattered photon (0 + 0 ) is never 
smaller than 60° and tha t for angles 0  smaller than 30° the corres
ponding angles 0  are larger than 30° and vice versa. If we set both 
counters symmetrically in such a way', that their effective volumes 
lie totally in a cone whose angle at the vertex is equal to 60°, or out
side such a cone, coincidences of the fi~y type will not be registered. 
Setting of the counters inside this cone is not convenient due to a large 
background of gamma rays. In  our measurements the external setting
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was employed, as represented by Mg. lA . Conformity of obta
ined ratios of coincidences for A1 (-13,6 mg/cm2) and Pb
(42,4 mg/cm2) foils for tliree settings of counters A, B  and G (see 
Table 1 and Pig. 1) proves that the Compton coincidences fi~y (except 
those caused by Compton electrons scattered in the foil) are not 
registered and that the effect of differences of angular distribution 
of pair electrons on final results is small. If the differences of angular 
distribution of pair electrons for various materials are taken into

T a b l e  1

Positions 
of counters

A’ PbfS Al

A 2,42 ±0,10
B 2,10 ±0,41
C 2 ,IS ±0,37

consideration, a small correction would result, which would enlarge 
the observed deviation for A1 from theoretical calculations.

The ratios of the numbers of coincidences for Al, Cu and Ag 
foils to the number of coincidences for the lead foil were extrapola
ted to zero thickness in order to eliminate possible errors arising 
from the differences of absorption of produced electrons for the same 
surface density of various materials, and the scattering in . the foil 
of Compton electrons from a 60° cone. The extrapolation to zero 
thickness eliminates these errors, as both effects mentioned above 
are proportional to the square of the thickness of the foil, while the 
number of pairs produced in the foil is linearly proportional to the 
thickness. This can be proved by the following simplified reasoning. 
The number of Compton electrons produced in a layer of the foil 
of thickness dh, lying in the distance h from the surface, is propor
tional to the thickness of this layer:

dn0—a-dh.
The number of electrons produced in this layer, which will be scat
tered while passing through the remaining part of the foil is pro
portional to dn0 and to the distance which they must still pass in the 
foil, i. e. to H —h, where II is the total thickness of the foil,

dn=b-dn0(H—h),
whence H

n = f  a-b- (H—h)dh=(abH2)/2.
0

Acta Physica Polonica 18
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Therefore the number of scattered Compton electrons is proportional 
to IP.

In the case of absorption in the foil of produced pair electrons 
a similar reasoning may be completed.

By passing to the limit (II—>-0) with the ratio of coincidences 
for the given element and for lead, the effects proportional to H 2 are 
eliminated.

The measurements consisted in registering the number of co
incidences N  for Al, Cu, Ag and Pb foils in dependence on surface den
sity s. The results after substracting the background, are presented in 
Table 2 and on diagrams in Fig. 3. The ratio of coincidences Npb/N,

T a b l e  2

Fram e w ithout 
foils

t ( h )
107,3

(im p/hour) 
8,8 ±0,19

Elem ent s (mg/em2) i(h) N  (im p/hour)

Al 11,01 74,8 3,3 ±0,33
22,02 53,1 6,7 ±0,42
32,74 50,2 8,5 ±0,44
43,56 47,0 12,2 ±0,49

Cu 11,68 56,2 5,0 ±0,38
23,01 85,8 8,9 ±0,36
29,92 72,2 11,4 ±0,40
41,60 55,5 15,0 ±0,48

Ag 12,63 67,3 8,0 ±0,39
20,14 69,7 11,2 ±0,41
25,51 63,3 14,3 ±0,45
32,77 47,5 17,9 ±0,54
37,66 51,9 19,4 ±0,54

Pb 9,91 76,2 9,9±0 ,38
20.94 63,4 17,5 ±0,47
30.85 57,8 23,3 ±0,54
42,36 36,7 29,5 ±0,71

as a function of s, was then evaluated. The obtained values were graph
ically extrapolated to zero thickness (Fig. I). In Fig. 4 there are 
also represented the values of the ratio Apb/iV calculated from Bethe 
and Heitler’s (o) and Jaeger and Hulme’s (X) theories. These values 
are compared with experimental values in Table 3. The ratio of the
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T a b l e  3

Elem ent Z A
N pj/N

theoretical experim ental
H .— B. J .— H.

Al 13 27,0 5,2 6,6 3,7 ± 0 ,4
Cu 29 63,6 2,4 2,9 2,55 ±0*2

H 47 107,9 1,6 1,8 1,7 ±0,1
Pb 82 207,2 1,0 1,0 1,0

F ig . 3. The dependence of th e  num ber of coincidences on the surface density  of
th e  Al, Cu, Ag and  P b  foils.

cross sections o/crpb calculated from experimental values of N jN Ph are 
represented in Table 4; for comparison the theoretically calculated

18*



270 A . Z . Hrynkiewicz 

T a b l e  4

Elem ent
al°Pb

theoretical experim en tal
H .— B. J .— H.

A1 0,025 0,020 0,035 ±0,003
Cu 0,125 0,104 0,121 ±0,009
Ag 0,328 0,286 0,306 ±0,018
P b 1,0 1,0 1,0

ratios are also given in this table. Values of the expression

,5 —  ( a l a Pb ) ~  ( g / ° rP b ) B.U.

W^Pb^B.H.
where cr/crpb represents the measured ratio of the cross sections, and

F ig . 4. The ratio  of th e  num ber of coincidences N/Npb as a function of the  surface
density s.

(<T/crpb)B h. represents the ratio calculated from Bethe and Heitler’s 
theory, were calculated in order to make visible on a diagram the 
deviations from Bethe and Heitler’s theory. The values <5 are repre-
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seiited in Table 5 and .compared with deviations expected by Jaeger 
and Hulme’s theory, and presented on a diagram (Fig. 5) as a func
tion of Z.

T a b l e  5

Elem ent J .— H. experim ental

A1 — 0,20 +  {0,40±0,12)
Cu — 0,17 — (0,03 ±0,07)
Ag — 0,13 — (0,07 ±0,05)
Pb 0 0

The results obtained, in present work may be interpreted in 
such a way tha t the dependence of the cross-section on Z  is weaker 
than a quadratic one,- Avhieh is inconsistent with Jaeger and Hulme’s

Fig. 5. A com parison of the  experim ental results w ith  theoretical calculations.

theory. This conclusion would, however, be contradictory to the re
sults obtained by Hahn and coworkers, who stated conformance with 
this theory for elements heavier than Fe. Another possible explanation 
would be to assume, that inconsistencies with the theory take place 
especially for the lighter elements.

The Author expresses his thanks to Komisja Popierania Twór
czości Naukowej i Artystycznej przy Prezydium Rady Ministrów for 
the award of a scholarship and wishes to express his deep gratitude 
to Professor H. Niewodniczański for the interest in this work and the 
valuable discussions during its course.
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ON THE MICROSTRUCTURE OF THE WORLD. I. THE 
ELEMENTARY LENGTH*

By Jan  WEYSSENHOFF, Institute of Theoretical Physics, Jagellonian
University, Krakow

(received Ju n e  10, 1952)**

The m ain causes of the difficulties encountered by present day physics in 
the theory  of elem entary particles is a t tr ib u ted  to (i) the indiscrim inate use of 
E uclidean (or pseudo-Euclidean) m etric bo th  in m icrophysics and macrophysics 
an d  (ii) th e  recognition of th e  p o in t (or the  point-event) no t only as th e  p rim itive 
notion of m acrophysics b u t also of m icrophysics. An a ttem p t is. made to  construct 
such a scheme of m acro-m icro-m acrophysical space-tim e m easurem ents which leads 
to  Euclidean geom etry only in  m acrophysics, th is  geom etry ceasing to  be even 
approx im ate ly  valid  in  microphysics. This can be achieved by  changing the  p rim 
itive  elem ent of physical geom etry f rom th e  point- to  th a t of „directed wave fron t“ 
and  by  adopting  the  „concordant contact" of two wave fronts as th e ir  unique p r i
m itive  relation. If  the  proposed theory  proves to be true , th an  all laws of m icro
physics w ill have to  be in v a rian t under the  15-param eter group of w ave-front tra n s
form ations, w hich is isom orphic w ith  the  15-param eter group of L ie’s sphere tra n s
form ations in  three-dim ensional space (or th e  Mobius group of conformai point- 
transfo rm ation  in  four-dim ensional space). A t the  same tim e th e  concept of ele
m en tary  length  is au tom atica lly  introduced in  the  foundations of physics.

§ 1. Introduction

1.0. The difficulties encountered in present day microphysics led 
many eminent physicists to express the view that the changes that 
have to be done in the foundations of quantum physics must neces
sarily be of a very drastic nature. I t  seems, however, that all the in
novations introduced so far in this direction were not deep enough. 
The present paper is the first part of an attem pt to formulate the 
foundations of physics in such a way as to take into consideration 
from the very beginning the essential difference between microphysics

* P resen ted  a t  two sessions of th e  Cracow Section of the Polish Physica 
Society, M ay 26 and 29, 1952.

** Revised m anuscrip t received A ugust 30, 1952.
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and macrophysics. The main idea is to choose as the primitive notion 
of the geometry on which the whole structure of physics has to rely the 
concept of wave rather than tha t of point (or point-event)1. I t  turns 
out tha t at the same time the concept of elementary length is built 
in in the foundations of physics, so to say, automatically.

1 .1 . We begin with a general remark of a rather vague nature. 
The fact that the dimensions of the atoms and the periods of light 
which they emit cannot be determined without knowledge of Planck’s 
constant h suggest that the metric of physical space might be inti
mately connected with the process of quantization. The suspicion 
arises tha t after the introduction of Euclidean metric as background 
both for macroscopic and microscopic phenomena it might be already 
too late for a consistent quantization; in other words, it might be 
too late to build in the third, dynamical, universal constant h (con
sidering the universal length as the first, static or geometrical, and 
the velocity of light c as the second, kinematical, universal constant.

§ 2. T he m acroscopic stand p oin t

2.0. On the other hand, it is well known that purely micro
physical measurements do not exist but only macro-micro-macro
physical ones, and that — on the microphysical scale —• all these 
measurements are performed from a very large distance (practically 
from infinity). The nearest distances from which we can observe an 
electi’on is of the order of magnitude of the grains of photographic 
emulsions (c. 1  y); therefore, if we imagine the electron to be a sphere 
of 1  mm diameter, the nearest distance from which we could observe 
it would be some 1000 km from the 1 mm sphere. Many experiments 
with Geiger-Müller counters are comparable with the observation from 
the earth of a sphere of 1  mm diameter located at the distance of the 
sun (corresponding to a distance of the counters of c. 15 cm).

2.1. Let us then adapt the starting point of the new theory to 
this situation. We imagine a microscopically very large sphere Sr of 
radius JR. Our measuring instruments are situated on this sphere and 
outside of it. I t  is well known that their functioning can be described 
by macroscopic concepts. This implies that on the sphere and out
side of it ordinary Euclidean geometry prevails with an accuracy sur
passing by far the possibilities of our detecting any discrepancies from 
its laws (at least as far as points and figures consisting of points are

1 T h is view was already expressed by the au thor in  his conference on W ave 
M echanics and  K elativ ity  Theory a t  th e  7th Meeting of Polish Physicists a t  C ra
cow, Septem ber 1931 (Weyssenhoff 1935).
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concerned). But from the interior of S r  different „signals” arrive to 
us and we must find means to interpret them. Putting it more pre
cisely, we may describe the situation, as follows. Hear A  on or outside 
of Sr  we perform some experiments and then a short while afterwards 
we observe in, other points B,G,... on or outside of Sr  phenomena 
which ditl not occur before. Moreover, we can ascertain that the phe
nomena in were not caused by any action propagated from A
around or even through the interior of the sphere S r  by any known 
macroscopic process. We speak then of microscopic phenomena and 
we are just looking for a theory to describe them all in a consistent 
way. W hat right do we have to assume that Euclidean geometry pre
vailing on- our „macroscopic standpoint” outside of Sr  will also bo 
adequate to describe all microscopic phenomena inside of Sr?

2.2. The general situation sketched above was often considered2 
or at least conceived by many physicists and it was also the starting 
point of Heisenberg’s considerations leading to his ^-matrix formalism. 
However, provided the theory advocated here should prove to be true, 
Heisenberg did not make the decisive step of discarding Euclidean 
geometry as background of quantum theory.

§ 3. T he w ave  fronts and th eir  g eom etry .

3.0. The task before us is to find such a geometry which will 
in a certain sense, yet to be specified, cease to be Euclidean towards 
the inside, and not towards the outside as Riemannian geometry and 
all sorts of kindred geometries do. At first this could seem impossible 
as none of the very different kinds of non-Riemannian geometries 
created by mathematicians and physicists of the 20th century show 
this peculiarity. On the contrary, all these geometries have the com
mon property of becoming „linearized by passage to the infinitely 
small”, they all become simpler in smaller and smaller regions, with 
decreasing dimensions most of them tend to become Euclidean. How
ever, our doubts would be well-founded only if we were compelled 
to stick to the concept of point (in the sense of „ordinary” geometry) 
as basic element. But the whole situation turns to our favour if we 
are free to choose — following the great geometers of the 19-th century, 
beginning with Plueker — another primitive element.

3.01. There is still another reason for the abandoning of the 
primitive notion of four-dimensional point. I t  cannot be denied that 
this notion, the demonstrative act „here-now”, is an essentially macro-

2 See, e. g., W eyssenkoff (1928).
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scopie concept and its transplantation to microphysics is a hypothesis 
which can be justified only by success. The leading idea of the present 
investigation is just the conviction that this success has proved to 
be lacking.

3.1. The question arises now what sort of geometric, or rather 
physico-geometric, entities have to take over the role of the discarded 
points in the foundations of physics. Undoubtedly, we cannot throw 
away the whole of contemporary physics and begin the whole struc
ture anew, but we must take over from modern physics as much as 
we can, leaving away only those notions whose transfer from macro
physics to microphysics seems impermissible. In  particular, we must 
thoroughly consider the leading ideas of modern natural philosophy 
and find out their most characteristic feature. As such we regard here 
the fundamental part played by the notion of wave and adopt there
fore the wave (in a possibly simple form) as the primitive' element 
out of which the whole edifice of physics has to be constructed. I t  will 
appear presently tha t in its most simple form this wave has to be 
understood as wave front (wave surface, surface of equal phase of 
a monochromatic wave, ...), which becomes a point in the particular 
case of a spherical wave front of vanishing radius.

3.2. The characteristic property of waves is that they comply 
with Huygens’ principle. How, this principle may be expressed without 
making any use of metric whatever and most probably also without 
the concept of point, but certainly not without that of contact be
tween wave fronts. We take, therefore, this contact as characteristic 
relation between our wave fronts and we shall consider as having 
an objective meaning in microphysics only what is invariant under 
the group of wave-front transformations, i. e. transformations carry
ing over spherical wave fronts into spherical wave fronts without 
destroying their mutual contacts. This is in very few words our pro
gramme and we must now work it out in greater detail.

3.3. After having decided to choose the wave as the primitive 
notion of physical geometry, we must try to take it (at first) in its 
most simple form, at any rate not as a progressive wave, consisting 
of an infinity of wave fronts, but just as one wave front. As these 
wave fronts, however, have to play the role of elements out of which 
afterwards progressive waves will have to be formed, we will take 
them at once as directed wave fronts (whose one side is considered as 
positive, the other as negative, the direction of the front being from 
the negative side to the positive one). On a drawing we can indicate 
the direction of a wave front by an arrow of any direction as long 
as it is not tangent to the surface which represents the wave front



Microslruclure of the World. I . 277

on th a t particular drawing. (Henceforth we shall assign positive values 
of the radii to divergent spherical wave fronts and negative to con
vergent ones).

3.4. On the other hand, the simplest waves with which we have 
to do in physics are plane waves and spherical waves, and it is clear 
tha t plane waves can never be wholly realized in nature as their fronts 
had then to extend to infinity. They may be considered, however, 
as limiting cases of spherical waves (emanating from infinitely remote 
sources) and as such they must also be included in our wave fronts. 
Moreover, our wave fronts must also include points as special cases 
of spherical wave fronts with vanishing radii. Thus finally our wave 
front manifold will consist of directed spheres, directed planes, and 
points, the difference between these three geometrical entities existing 
only with respect to the particular Euclidean mapping used. Objectively 
all wave fronts must be considered as equivalent as any of them can 
be carried over into any other by a suitably chosen wave-front trans
formation.

3.5. I t  is obvious that the wave fronts being directed we must 
attribute an objective meaning only to their concordant contact3. For 
instance, two spherical divergent wave fronts which are tangent in 
the ordinary sense (in a given Euclidean mapping) will be considered 
as being in concordant contact only when one of them lies within 
the other. This formulation of the question agrees evidently with the 
physical significance of the wave fronts. The contact of two wave 
fronts progressing in opposite directions is something accidental, ex
isting only in the given Euclidean mapping, it does not constitute any 
objective relation between these wave fronts, and may be removed 
by a wave-front transformation. As an extreme case two overlapping 
spheres may be mentioned, one directed outwards, the other inwards; 
these spheres are not „properly tangent” (not in concordant contact, 
not tangent in the sense of Lie’s geometry of spheres), by a suitably 
chosen wave-front transformation they may be carried over into two 
arbitrarily chosen spheres, planes, or points.

3.6. Of course, all the above considerations have only a pre
liminary character, they may help to form a mental picture of the 
situation but strictly speaking the concept of a wave front — similarly 
to all primitive notions in natural science — acquires only gradually its 
full meaning as the theory of which it is a part progresses. In  our case 
in particular one of the essential points which did not appear till now

8 On continu ity  grounds a po in t m ust be considered as tangen t to  a  directed 
sphere or plane if i t  lies on it.
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clearly enough is tha t the spheres, planes, and points we are speaking 
of may he only considered as illustrations of the wave fronts (in a par
ticular mapping of the wave-front manifold upon an auxiliary Eucli
dean space), hut we must always keep in mind that they differ sub
stantially from the wave fronts, as they consist of points, whereas 
the wave fronts, as primitive notions, have only a meaning as a tvhole, 
they are indivisible entities and do not consist of anything else. This 
property they share with the de Broglie waves. Our task is not to 
construct the wave fronts out of points, but to define points — or 
rather surface elements — in terms of the wave fronts.

§ 4. L ie’s geo m etry  of sp h eres

4.0. I t  happened, as it often does in history, tha t the mathemati
cal formalism needed for the handling of a new physical theory has 
been created by mathematicians long before it could find imme
diate application. Indeed, mathematically our wave fronts are no
thing else as the so called Lie spheres which play the role of primitive 
elements in an interesting kind of geometry created by Sophus Lie 
(1872) in the 19th century. As Lie’s geometry of spheres — or, in Fe
lix Klein’s terminology, the higher geometry of spheres — is little 
known among physicists, we shall give here some information about it; 
this we shall do in a somewhat modified form adapted to the needs 
of physicists. More details can be found in Felix Klein’s Vorlesungen 
über höhere Geometrie (1926) or in Wilhelm Blasclike’s Vorlesungen 
über Differentialgeometrie Vol. III . Differentialgeometrie der Kreise 
und Kugeln, edited by Gerhard Thomsen (1929)4

4.1. The reader will remark th a t what follows now is to a great 
extent only a recapitulation in a little more precise form of what has 
been already said about wave fronts and their interrelations. Let us 
consider a three-dimensional Euclidean space, which we shall call 
henceforth the auxiliary Euclidean space, and in it the ensemble of 
all the „Lie spheres”, that is, all the points, directed spheres, and 
directed planes. As every directed sphere may be characterized by 
the three coordinates of its center and the value of its radius (taken 
positive or negative according to whether the sphere is directed out
wards or inwards), this ensemble forms a four-dimensional manifold. 
One calls region of this manifold every ensemble of Lie spheres which 
can be brought into one-to-one continuous correspondence with a re
gion o f  points in a four-dimensional space.

4 The au thor is not aware of any  other text-book trea tin g  th is  subject a little  
more in detail.
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4.2. The Lie spheres play the rôle of the elements of Lie’s geo
metry and the concordant contact of these elements — a point being 
in contact with a sphere or plane when it lies respectively on this 
sphere or plane — the rôle of the unique, fundamental relation be
tween them. On these two concepts one could surely base an axiomatic 
formulation of the whole higher geometry of spheres in a similar man
ner as, for instance, projective geometry has been evolved from the 
primitive notions of points, planes, and incidence; this — so far as 
the author is aware — has not yet been done, which must be con
sidered rather as a pity from the physicists point of view.

4.3. Alternatively one can, however, define the same geometry 
in the sense of Klein’s Erlanger Programm by its fundamental group, 
the rôle of this group being played by all the transformations which 
carry the Lie spheres one into another leaving undisturbed all their 
concordant contacts. The „Lie spheres” themselves can at the same 
time be also defined analytically as ordered sets of six hexaspherical 
coordinates (defined in § 6 below). There it will also be shown that 
the fundamental group of Lie’s geometry of spheres depends on 15 
independent parameters.

4.4. I t  is interesting th a t already Lie, the founder of the higher 
geometry of spheres, found it indicated to replace, on continuity grounds, 
ordinary spheres by directed spheres. For instance5 if there are given 
two regions of the sphere manifold standing in a one-to-one continuous 
correspondence and we try  to extend this correspondence to larger 
regions including the given ones, then it appears that this can be done 
only if we are concerned with directed spheres. W ith ordinary spheres 
the extended correspondence would in general be bi-univoque. More
over, to secure continuity in the whole manifold of Lie spheres one 
must add a „point at infinity”, corresponding in a certain sense to 
the plane at infinity of projective geometry (see § 6.7).

4.5. We have seen already that physical considerations also lead 
to the adoption of directed wave fronts. This may be vividly illustrated 
on the following example. Let us imagine a contracting spherical wave 
front whose radius becomes smaller and smaller till it vanishes al
together. If r could only assume non-negative values this would be 
a limiting process. But as it is, with directed spheres and negative as 
well as positive values of r, the process may proceed further. The 
values of r which initially have been negative pass through zero and 
become positive. The propagation of the convergent wave continues 
as a divergent wave. I t  is to be noticed that the particular Lie sphere

5 Cf. B l a s c l i k e  (1929), § 2.
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which appeared thereby as a point does it only in the chosen Euclidean 
mapping of the wave-front manifold. In  another mapping another 
sphere may play the same rôle; every sphere may be made to appear 
as a point in a suitably chosen mapping.

4.51. At the same time the difference between divergent and 
convergent waves — and thus also between retarded and advanced 
potentials — loses its objective meaning in microphysics. I t  becomes 
only a m atter of choice of the Euclidean mapping whether a given 
spherical wave front plays the part of a divergent or convergent wave.

4.52. The situation may be compared to a well-known example 
in special relativity theory: the relativistically uniformly accelerated 
motion of a particle. Departing from the common practice of physi
cists Born (1909), who first described it, called it hyperbolic motion 
as its world line is a hyperbola6. But in ordinary three-dimensional 
space it is a rectilinear motion with constant proper acceleration. 
Viewed from a fixed inertial frame of reference, the particle appro
ches from infinity with the velocity of light (for t = —oo), gradually 
it slows down till it comes to rest and then the motion proceeds fur
ther in a  reversed direction and growing speed, till for i =  +  oo the 
velocity becomes again equal to e. At first glance it could seem that 
one point-event is singled out by the described motion, namely that 
one in which the particle reverses its direction of motion. But ob
viously every point of the trajectory has the same property in a suit
ably chosen inertial frame of reference. The analogy with the con
tracting and then expanding sphere is obvious.

4.6. Let us draw from the above comparison one more important 
conclusion. We notice that the equivalent of the Lorentz transfor
mation of coordinates in relativity theory consists here in the change 
of the Euclidean mapping, rather than in the change of coordinates, 
and — as will become clearer in the sequel — this mapping itself de
pends on the geometrical configuration of the measuring apparatus.

§ 5. T he pentaspherical coord in ates

5.0. At first, one could fear that all calculations in the new theory 
based on the transformations of spheres into spheres might prove to 
be far more difficult than those we meet in present-day physics. I t  ap
pears, however, that this is not quite the case, as the geometers of 
the 19th century have already found suitable coordinates, so called 
hexaspherical coordinates, in which Lie’s transformations of spheres

6 In the  sam e term inology th e  uniform ly accelerated m otion of ordinary, 
non-relativistic, dynam ics -would have to  be called parabolic motion.
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into spheres (our wave-front transformations) become linear, and the 
determination of the invariants of the new group of transformations 
may proceed on similar lines as in relativity theory. There remain, 
it is true, some additive inconveniences caused by the new coordinates 
being homogeneous and not independent but fulfilling a quadratic 
condition, they may, however, be overcome without serious difficulties.

5.01. Before defining the hexaspherical coordinates, we must first 
of all introduce the so called pentaspherical coordinates7. The idea 
is to find such coordinates in which the equations of spheres become 
linear. In other words, we are going to „linearize the equation ofa sphere” 
though in a quite different manner as Dirac has done it with the wave 
equation 8. At the same time we shall also make our coordinates homo
geneous. I t  is well known that ordinary, unhomogeneous coordinates 
are the adequate tool.for handling „local problems”, but when trans
formations of whole spaces into themselves play a predominant role 
than the homogeneous coordinates become more expedient. This situ
ation presents itself often in geometry and practically always in 
quantum physics.

5.1. Let us now denote ordinary rectangular coordinates in an
auxiliary Euclidean space by x m (w = l,2 ,3 ) and the coordinates of
the center of a sphere of radius r by x m, then the equation of the sphere
will read

(a?1-—a;1)2-]- (x2—x2)2 + (x3—x3) = r2 (5,1)
or

2xmx m—x mx m —(xx) =  0 (5,2)

Avhere the sum over m is understood and we have put

(xx)  ^ x mxm — r2. (5,3)

In  (5,2) only the second term destroys the linearity in the ¿ ’s; we re
establish it simply by introducing x mx m as a fourth coordinate, at the

7 The denom inations pentaspherical and hexaspherical coordinates are not 
general enough, as they  apply  only to spheres in  th ree dim ensions. I t  would be 
be tte r to  call them  respectively lower and higher s-pherical coordinates, as they  are 
chiefly used (in F e lix  K lein’s term inology) in  th e  lower (Mobius) and h igher (Lie) 
geom etry of spheres. Then every sphere in an  n-dim ensional Euclidean (or pseudo- 
Euclidean) space would be characterized by n + 2 lower and n -f 3 higher spherical 
coordinates.

8 The procedure of D irac could also be used in our case and  th e  com parison 
of th e  two m ethods m ight provide ano ther proof of th e  close connection between 
spinors and geom etry of spheres.
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same time making the coordinates homogeneous, which raises their 
number up to five. Thus, we p u t9

rp T71 /yi/n
y 1.^2 —¿l.Q.i.gjZ.    .£ (5,4)

L
Mathematicians have done it till now in a very similar manner writing 
only 1  instead of our I, a constant with the dimensions of length10. This 
is obviously permitted, but by so doing one fixes once for all the unit 
of length and hampers the insight into the physical meaning of the 
formulae. To retain the possibility of arbitrary changes of the units 
of measurements, I has been inserted in such a manner as to preserve 
dimensional homogeneity of the five terms on the right-hand side 
of (5,4).

An equivalent mode of writing the definition formulae (5,4) of 
the pentaspherical point-eoordinates rj is

r}m = Qxn rjs = o x mx r
I rje = Ql, (5,5)

where q is an arbitrary factor subject only to the restriction of being 
different from zero (and being the same in all five equations (5,5)).

The five coordinates rj are not independent as they fulfil iden
tically the quadratic relation

rjmrjm — rj6rj6^  (I)'1)2 +  (?p)2+  {rj3)2 — ip ?)6 =  0. (5,6)

The bars above the tj's serve to remind us tha t we have to do with 
pentaspherical poi?tf-coordinates. These coordinates will turn out to 
be a special case of pentaspherical sp/tere-coordinates which we are 
going now to introduce.

5.2. With pentaspherical point-coordinates the equation of the 
sphere (5,2) reads

2xm rjm — I rjs — (¿'■¿') — 6_  q  ̂ (5,7)
v

an equation which may be given the form 11

_ 2((ryp)) =  2 rlmrjm— (?;6rp +  ?)sp6) =  0 (5,8)

8 We o in it in tentionally  th e  index 4 in order no t to  be compelled afterw ards 
to  change the  m eaning of some y's, while in troducing hexaspherical coordinates;

10 W e do n o t se ttle  in  advance the  question w hether I is a  universal con
s ta n t o r w hether i t  has different values for d ifferent particles, th is  being y e t i r 
relevant in  th e  presen t stage of our investigation.

11 (.(Vl)) i’1 (5,8) is th e  po lar form  of (5,6).
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(5,9)

The ratios of the five r\ in (5,9) define uniquely the given sphere, and
the five independent variables r] — as 'well as each of their five in
dependent combinations — are called therefore the pentaspherical spliere- 
coordinates. In  contradistinction to pentaspherical point-coordinates 
they are independent. Instead of (5,6) we have now

{{w))— Q2>'2 (5,10)
or _____

r==[((vv)) h  (5>1(y)

5.3. In  the above considerations rf has been different from zero. 
For ??6=  0 we get planes instead of spheres. This may be directly seen 
by inserting (5,9) into our initial equation (5.2):

A« m rp m
2 rjmccm — r f —- ?f l=  0. (5.11)i

TJ^ Z
For rf =  0 this is an equation of a plane, j?1, p2, ??3, and — — playing
the role of homogeneous plane coordinates.

5.4. I t  is easy to introduce a new sort of pentaspherical coor*
dinates in such a way as to make ((...)) in (5.8) an algebraic sum of
squares. I t  suffices to put, for instance,

=  £, =  ito® +  »?#) (5,12)
or equivalently

rj 5= | 6—I5, r,6= | 6-f£5. (5,12')

The same equations may be used for the point-coordinates f and rj. 
Then (5,10) becomes

( ( f f ) ) - l ml m +  ( l5)2- ( i 6)2^ ( i 1)2+(st2)2+ ( a 2+ ( f 5)2- ( i 6)2= 22''*2 (5,13)

and instead of (5,10') we get
(5,13')£5 -f- |6 \ /

The pentaspherical point-coordinates £ are subject to the equation

(l??)) =  0 (5,14)

which takes over the role of equation (5,6).
Acta Physiea Polonica 19
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Finally, equations (5,9) defining the relations between penta- 
spherical sphere-coordinates and rectangular coordinates of the centres 
and the radii of the spheres become

(5,15)

Both sorts of pentaspherical coordinates defined above, the 
r\- and the ^-coordinates, are called by different authors simply penta
spherical coordinates. We shall use them alternatively as sometimes 
one sort sometimes the other proves to be more convenient.

5.5 . Non-singular linear point-transformations carrying over sphe
res into spheres are called Möbius transformations. Liouville has shown 
more than one hundred years ago tha t all conformai point-transfor
mations of a Euclidean space of more than two dimensions on to itself 
carry over spheres into spheres, and are thus Möbius, or conformai, 
transformations. In three dimensions they, can be represented by non- 
singular linear transformations of the pentaspherical point-coordinates 
leaving invariant the quadratic condition (5,6) for ^-coordinates or 
(5,14) for f-coordinates. They form therefore a 10-parameter group. 
More generally in a Euclidean (or pseudo-Euclidean) space of n di
mensions there are n +  2 „lower spherical point-coordinates” and it 
may be easily seen tha t the number of essential parameters of the 
corresponding Möbius group i s 12

[(n +  2)2- l ] - [ i ( »  +  2)(tt +  3 ) - l ] = 4 ( n + l ) ( « + 2 )  (5.16)

In  particular the group of conformai point-transformations in 
four-dimensional Minkowski space has 15 essential parameters (see 
§ 8.0 below).

5.6. The Möbius transformations as point-to-point transformations 
cannot yet play the part of the wave-front transformations we are 
after. They are, it is true, linear in pentaspherical point-coordinates 
and transform spheres into spheres and tangent spheres into tangent 
spheres, but in addition they leave all angles invariant and, what is 
worse, they make no distinction between divergent and convergent 
spheres and never change points into spheres or vice versa. All that 
we know already about wave-front transformations suffices to foresee

12 The transform ation  m atrix  has (m+ 2)2 elements, the  num ber of the ir in 
dependent ra tio s is one less. The num ber of coefficients of a  quadratic  form  in «-|-2  
variables is (îi-j-2)(ft+3)/2, b u t as no t th is  form  itself b u t only its  vanishing is in 
v a ria n t th is  num ber m ust be dim inished by one.
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tha t to define these transformation in a simple manner we must use 
sphere coordinates rather than point coordinates. But even then the 
pentaspherical sphere-coordinhtes will not do and we are obliged to 
go over to hexaspherical coordinates.

§ 6. The h exasp h erica l coord inates

6.0. Without doubt the pentaspherical sphere-coordinates are not 
yet the coordinates best adapted to our purposes; they may be cha
racterized as coordinates of undirected spheres as they do not discri
minate between two spheres differing only in the sign of r and we 
are in search of coordinates of directed spheres.

6.1. We introduce therefore (on the fourth, yet unoccupied place) 
a sixth coordinate proportional to r itself, namely

rji =  gr. (6,1 )

Thus, from (5,9), we get

( 6 ,2 )

where (xx) is given by (5>3). The six hexaspherical coordinates r]A 
(A = 1 ,...,6 ) are not independent as they fulfil identically the quadratic 
relation

(rjrfy ssz(rjr]) — rj5i f  =  (»71)2 -f- (if)2-}- (Vs)2— i7?4)2— r f r f=  0. (6,3)

They are thus twice superabundant coordinates of directed spheres 
in a three-dimensional Euclidean space; there are co4 spheres in this 
space but each sphere is characterized by six coordinates as these 
coordinates (i) are related by the quadratic relation (6,3) and (ii) 
are homogeneous, so that only their ratios matter.

Equations (6,2) solved for x 1, x2, x 3, and r are
„ _ c4xn V ,  >'=-*•rj6 r/6 (6,4)

The third equation (6,2) gives nothing new, due to (6,3).
6.2 . Hexaspherical ^-coordinates may be defined similarly to the 

pentaspherical ^-coordinates by their connection with the ^-coordinates. 
An obvious generalization of (5,12) yields

£m =  i]m, !4=?74, — £6 =  i(j?e+ 775) (6,5)
or equivalently

Tj : £m T?4^ 4, T]5= £ e- £ 5, 71*=t6+£5- (6,5')
19*
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72----- ( 7.2 _J_ (/*»
( 6 ,6 )

Instead of (6,2) we get

The hexaspherical ^-coordinates fulfil identically the quadratic 
relation

<fl> =  ( li)  +  (ls)2- ( f 6)2^ ( l 1)2+ ( i 2)2+ ( a 2- ( l 4)2+ ( l 5)2- ( i 6)2= 0. (6,7)

Instead of (6,4) we have now

xm = ? r r j J ’ r =  £ r r j e L ^

There are plainly no barred hexaspherical coordinates as (in three- 
dimensional space) there are no hexaspherical pcmii-eoordinates but 
only hexaspherical sp/iere-co.ordinatcs.

6.3. Formulae (6,2) or (6,6) may be considered as defining a map
ping of the wave-front manifold on the points, directed spheres, and 
directed planes of an auxiliary Euclidean x 1, x3, x 3 space (supplemented 
by an improper point — see § 6.7 below). This mapping does not treat, 
however, all the Lie spheres (points, directed spheres, and directed 
planes) on equal footing but singles out the planes, as every set of 
finite values of x 1, x2, x 3, and r (together with an arbitrary value of g =4= 0) 
represents a directed sphere or a point, whereas the planes appear 
only as limiting cases of spheres for r->00.

6.4. We may, however, reverse, so to say, the situation by ex
pressing the same mode of Euclidean mapping in another way, in 
which points instead of planes play an exceptional role. Instead of 
characterizing a sphere by the coordinates ¡rm(w=:l,2,3) of its centre 
and its radius r, we shall do it by means of its curvature %—l¡r and 
three parameters defining its tangent plane in A  (see Fig. 1). As we 
are concerned with directed spheres and concordant contacts, the tan
gent plane n must be also a (suitably) directed plane. We can 
write, for instance, the equation of this plane in the form

nmx m -\-d— 0, (6,9)

where the unit vector nm is the (appropriately chosen) normal to n, 
a unit vector pointing from its negative to its positive side. Then d will 
be the distance of the origin of coordinates O from n — or, what amounts, 
to the same, from the sphere — taken positive when O lies on the  posi-
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tive side of n (as in Fig. 1, Avhere d>0  and also r> 0 ) . From Fig. 1 
we see that the coordinates xm of G may be written in the form

xm = — (r+d)nm (6,10)

and hence, availing oneself of the arbitrariness, of q, we replace o by 
qxI and get from (6,2)

r]m= — qI(1 + xd)nm, 
r f= p l ,

( 6 ,11 )
rf = gd{2-\- xd), 
rf — gl2x.

We may also write the equation of the plane n  in the follow
ing form

umx m-1-1 =  0, (6,12 )

(6,13)
whence, by comparison with (6,9),

Tim =  Tim d,

and vm are the ordinary (non-homogeneous) plane coordinates of n. 
(6,1 1 ) becomes

rfn=  — Qld(l-\-xd)um, 
i f  = o I,
r f— od(2-\- xd), 
rf — Q l3x,

(6,14)
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where, from (6,13),

d= , \ru~~J,' (G’15'±:\ u mum

and the positive or negative sign has to be taken according as O lies 
respectively on the positive or negative side of the sphere.

6.5. In  particular, the hexaspherical coordinates of a plane (in 
the Euclidean mapping considered) will have the form

r]m——Qlnm = Ql) r]i =Ql, r}5— q2d, i f =  0. (6,16)

The same expression can be obtained directly from (6,2) by 
a limiting process in which r becomes infinite and O flies off to infinity 
in such a manner as to leave in place the tangent plane n.

6.6. From our point of view we must consider all the wave fronts 
(Lie spheres) as objectively equivalent. They may be defined analyt
ically as ordered sets of six (real) numbers called hexaspherical co
ordinates, (i) determined to within an arbitrary factor, (ii) subject to 
the quadratic relation (6,3) or (6,7) and (iii) non-vanishing simulta
neously. Every one of thèm can be brought into coincidence with 
any other by a suitably chosen wave-front transformation (Lie sphere 
transformation), i. e., a non-singular linear transformation of the 
hexaspherical coordinates leaving invariant relation (6,3) or (6,7). 
Consequently in principle all the six hexaspherical coordinates play 
the same rôle.

6.7. In  our Euclidean mappings, however, defined by means of 
formulae (6,2) or (6,6), different rj- (and £-) coordinates get rôles of 
their own. In  particular the spheres correspond then to sets of hexa
spherical coordinate with

the points to
>?4 =  f4 =1=0 and (6,17)

^==14=0 and ry6 =  £5-f- ç64= 0, (6,18)
and the planes to

jy« =3 £* =}= 0 and (6,19)

There remains still the alternative
r/4^ f 4=  0 and »y6 =  |5 + |6==0 (6,20)

which corresponds in our case to one wave front (Lie sphere) only, 
as (6,3) and (6,20) involve

(’?1)2+ (^ 2)2+ ( i?3)2= 0  (6,2 1)
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and hence =  0. This improper wave-front of the given
Euclidean mapping:

(0, 0, 0, 0, 1 , 0) (6,2 2 )

may be called with equal right improper point or improper plane.
With another signature of the quadratic forms in (6,3) and (6,7), 

or even with these forms unaltered if one takes into consideration 
not only real but also imaginary elements, there exists a two-dimen
sional infinity of improper elements.

6.8 . How, to end this section, we have only to give the analytic 
expressions for the wave-front transformations (Lie sphere trans
formations) defined in § 6.6. We shall write them in tensor notation,
as follows

£’A = a*SB (A ,B = 1 , . . , 6 ) (6,23)

for hexaspherical ^-coordinates, and

V = % V B (6,24)
for hexaspherical ^-coordinates. These linear transformations are wave- 
front transformations when they leave respectively invariant equations
(6,3) and (6,7) (not the corresponding quadratic forms!). To do it, 
each set of the 36 coefficients a or ¡3 must fulfil 21 conditions with 
one arbitrary parameter, see Appendix A.

6.9. The same reasoning that led us directly from the definition 
of the Mobius transformations in pentaspherical coordinates to formula
(5,16) can be applied to hexaspherical coordinates and wave-front 
transformations. I t  suffices to replace in (5,16) n by » + 1 . Thus we 
get the number of essential parameters of the group of Lie’s sphere 
transformations in an %-dimensional Euclidean (or pseudo-Euclidean) 
space, viz.

fo.+ .2V*t + 3\  (6,25)
2

e. g., 15 for n — 3.

§ 7. T he rela tion  b e tw e en  E uclidean  g eo m etry  and w ave-  
front transform ation s

7.0. We have now to find out in what sense Euclidean geometry 
ceases to be valid towards the inside, i. e. in the interior of our sphere Sr 
of Section 2. On this sphere and outside of it lies our macroscopic 
standpoint, the standpoint of our measuring instruments. There, we 
can be sure of the prevailing of Euclidean geometry (in the ordinary 
sense of physical or „school” geometry). I t  does not follow, however, 
that Euclidean geometry must be also valid in the interior of S r .
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On the contrary, we shall show th a t a wave-front transformation 
which is practically indistinguishable from a Euclidean motion outside 
of Sn does not, in general, coincide with it even approximately within 
S r . This will in no sense exhaust what might be said on the impor
tance of wave-front transformations in physics but, at any rate, it 
may serve as a first introduction.

7.1. At first we shall prove tha t when R  is very large in compari
son to I every wave-front transformation carrying approximately points 
outside of S r  into points outside of it is for these points approximately 
an equiform Euclidean transformation, i. e., a combination of a Eucli
dean displacement with a change of scale (a dilatation)13. One could 
be tempted to say shortly tha t Euclidean geometry may be used with 
sufficient approximation in all regions of the wave-front manifold 
in which I may be neglected, but this would make no sense as (i) I does 
not play any role either in „wave-front geometry” or in Euclidean 
geometry, it appears only in the relation between them defined by 
a „Euclidean mapping”, (ii) the same is true of „points”: by itself 
a wave front is never a point and it can only appear as such in a gi
ven Euclidean mapping.

7.2. A more precise formulation of the above theorem would, 
therefore, read somewhat as follows. If there are given two Euclidean 
mappings connecting respectively the ordinary rectangular coordinates
and the radii xm,r  and x m,r ’ of directed spheres in two auxiliary Eucli
dean spaces Ez and E\  with two systems of hexaspherical coordinates
r]A and rjA in the wave-front manifold, and a wave-front transformation

i A = P i v B, (7,1)
then x m and r' are functions of xn and r

x m = x m(xn,r), r’ =  r’(xn,r). (7,2)

In  general these functions are not linear, our theorem states, however, 
tha t for

)■= 0, xnxn'^R2')yi2, xnxn of the order of R 2 (7,3)

x m in (7,2) will be approximately given by linear functions of xn:
x m = b™xn + am, (7,4)

13 The group of all Euclidean displacem ents and d ila ta tions was called bei 
Felix  K le in  in  h is  famous Erlanger Programm, the  m ain group (R auptgruppe). 
In  h is la te r w orks he calls i t  th e  equiform al group (Gr-u.ppe der aquiformen Trans- 
formationen, cL, e. g., K lein 1910), a denom ination introduced by Heffter and 
Koehler. W e prefer to  say  equiform  Euclidean as we shall have also to  do w ith 
equiform  Lorentz groups, consisting of Lorentz transform ations and  dilatations.
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where the matrix of the coefficients b™ is proportional to an ortho
gonal matrix.

7.3. We begin the proof by inserting in (6,24) the expressions 
(6,2) for r)A and similar expressions with primes for r]A:

(7.5)

(7.6)

(7.7)

Here /t, v =1, ...,4 and xi =r.  Dividing (7,6) by (7,7) and then both 
numerator and denominator on the right-hand side by (xx)jl, we obtain

j2
. . r v l  72 >

1 P^ Pv(XX)± P e (XX)

and similarly from (7,5) and (7,7)

Outside of S  for r = 0  (or sufficiently small r)

( x x ) ^ R 2»l°-

and l2/(xx) has to be considered as infinitely small of the second order, 
whereas xvl/(xx) are infinitely small of the fist order at least. We as
sume that in general all BA are of the same order of magnitude, though 
some of them may vanisn or become infinitely small in comparison 
to other d’s.

In  order tha t the left-hand side of (7,8) should be also infinitely 
small of the second order, we must have

4= 0, >86=0(1), /Jf=0(2). (7,10)

The assumption concerning the order of magnitude of the /S’s may 
be now stated more precisely: fi\ does not vanish and all other /?’s are 
of the same order of magnitude as /S® or smaller. fi—0{n) signifies 
tha t >5//3| has to be infinitely small of the n-tli order.

(7,9)

(7 9')

q’ x^=  q 

, (xx)
I ' I— Q

p’ l =  o
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A similar reasoning as applied to (7,8) yields with (7,9), whose 
left-hand member has to be infinitely small of the first order,

^ = 0 ( 1).

7.4. At first, let us assume

The fix matrix has then the form

(7.11)

(7.12)

0

f t
O 

O f t
0

d ft ft
0 0 0 0 0 «

(7,13)

In  passing, /S£=0 follows from =  0 with /3g#= 0 due to (A.7)
for (A ,B)= (ju,6), but at the moment at least this is of no importance 
for us.

From (7,13) we see that

det 0* = & Æ det 0%

7.5. If we put now
BA

=  On
fit

and divide (7,9) by (7,8), we obtain

x 1* =  bt xv +  bf61
or

» m  , m n  , j m _ , ,m  7 
X  —  b n  X  -f -  ¿>4 1 -f -  Uq I

(7,.14)

(7.15)

(7.16)

(7.17)

and an equation for r which does not interest us for the moment.
If we now restrict ourselves to point-to-point transformations, 

we can leave out the term with r in (7,17) and in conditions (A.7) 
and (A.8) all the ^-coefficients which vanish according to the lemma 
of Appendix B.

7.6. As shown in Appendix A, we can assume without loss of 
generality that

I det # 1 = 1 .  17,18)

Then the coefficients 0 will fulfil the conditions (A.7) and (A.8) with 
0 = 1 . Writing these conditions in full and crossing out all the terms
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containing any coefficient enumerated in (7,12), we can find all the 
restrictions imposed on the /S’s in consequence of (7,12). Thus we find 
among others

P™Pna = àmn, (7,19)

M  =  l. (7,20)

The first of these relations shows that the nine (iff form, due
to (7,18), an orthogonal matrix, hence its determinant is equal to ±1.
This is confirmed by (7,20) together with (7,14) and (7,18). There are 
no restrictions for /3® and All that we can say therefore of the co
efficients bff — is that they are proportional to the (if1 which form
an orthogonal matrix (so long as the ¿ m’s do not increase so much 
as to invalidate the initial assumptions of our problem), and of the 
coefficients =  that they are quite arbitrary (with the same 
proviso as for bff) as is quite arbitrary. We can put therefore

b™l — aw (7,21)

and the three coefficients am will be also quite arbitrary (with the 
same proviso). Finally, as r has already been put equal to zero, (7,17) 
goes over into (7,4) with the  same significance of the coefficients.

7.7. We have yet to free ourselves from the too restrictive as
sumption (7,12), which is sufficient but not necessary for the validity 
of conditions (7,10) and (7,11). Instead of (7,12), we write therefore

P î = ^ y î ,  <7>22)

and consider the coefficients y as of the same (or a smaller) order of 
magnitude as /9jj Thus we could obtain more general formula than (7,4), 
but the difference between them and the old formulae would dis
appear with 1 /R  tending to zero. We do not write them down here, 
as they stand in near connection with a general formula which will 
be obtained in Part II.

8. Conclusion

8.0. Many of the foregoing formulae invite us, so to say. to put
r=ot,  (8,1 )

where c is the velocity of light in vacuo, and thus to pass to four
dimensional space and to „progressive wave fronts”. This has been 
often done before by mathematicians, for instance in both textbooks
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mentioned in § 4.0 and also by Cunningham (1910) and Bateman 
(1910) when they demonstrated for the first time tha t Maxwell’é equa
tions are not only invariant under the 10-parameter Lorentz group 
but also under the wider 15-parameter Môbius group of conformai 
point-transformations in four-dimensional space. This group is known 
to be isomorphic with Lie’s group of sphere transformations in three- 
dimensional space, i. e. with our group of wave-front transformations. 
Equation (8,1) stands just in connection with the so-called isotropic 
projection which establishes a one-to-one correspondence between the 
points of a four-dimensional space and the directed spheres of a three- 
dimensional space.

But from the point of view of the physicist it is not so sure that 
by considering c in (8,1 ) as the velocity of light we do not restrict 
our theory to photons (and the electromagnetic field). I t  is hoped 
tha t the question of the relation of the present theory with four-di
mensional (and five-dimensional) space will be more thoroughly in
vestigated in the forthcoming Part I I I  of this intended series of papers.

8.1. To conclude the present Part I it may be claimed tha t in 
it the elementary length has been built in in principle into the founda
tions of physics. The working out of the details will undoubtedly be 
possible only conjointly with the building in of the two remaining 
fundamental constants of microphysics, c and h. I t  is true that the 
physical significance of these constants seems to be already known, 
but their building in must surely undergo essential modifications if 
it has to be done on the background of the wave-front manifold. In 
this connection it may be noticed that already the first step of our 
theory has introduced some features of the relation between micro
physics and macrophysics which are generally considered to-day as 
typical quantum effects. I t  is hoped that this aspect of the question 
will be dealt with in greater detail in the forthcoming Part II.

A ppendix A

Let us first consider equation (6,23) of the text with given values 
of the 36 coefficients a as representing a coordinate transformation.

|A =  aAtB . (AJL)

As the I ’d on both sides of this equation are homogeneous coordina
tes, we can multiply all the a* by an arbitrary non-vanishing factor, 
getting thus anoter coordinate transformation representing the same 
wave-front transformation. No loss in generality arises by fixing the 
arbitrary factor in the a’s, e. g. by postulating that the absolute



Microstrueture 0/  the World. I . 295

value of the transformation determinant of (A.l), which must be 
obviously different from zero, he equal to u n ity 14:

| let aj* | =  1 (A.2)

Then, the coordinate transformation becomes a (six-dimensional)
pseudo-orthogonal transformation (with 4 plus signs a 2 minus signs). 
Indeed, instead of immediately postulating (A.2), we can start with 
an arbitrary wave-front coordinate-transformation. By its very de
finition it leaves undisturbed equation (6,7):

< ^ >  =  (fl)2+ ( i 2)2 +  ( i3)2- ( f 4)2+ ( l 5)z- ( l 6)2 (A.3)

and therefore, being a non-singular linear homogeneous transformation, 
it  carries over <(?£> into

=  (A.4)

where A is a non-vanishing constant factor (depending on the trans
formation in question).

I t  is easily seen that in our case A is always positive. This fol
lows from the fact tha t is an algebraic sum of 4 squares with 
plus signs and 2 with minus signs. Just so the quadratic form in iA
obtained from <£’£’> by expressing the f ’s in terms of the f ’s by (A.l) 
will consist of 6 linear combinations of the f ’s, 4 of them being pre
ceded by plus signs and 2 by minus signs. I t  follows by the well-known 
law of inertia of real quadratic forms tha t A must be positivel5. 
If we divide now all the a-coefficients by ±Ka we get a new coordi
nate transformation for which < 1 0  =  inv. and hence (A.2) is satisfied. 
The 15 relations fulfilled then by the a’s are well-known and we 
shall not repeat them here. They become ordinary relations of ortho
gonality by considering i f 4 and t | fl as fourth and sixth coordinates 
respectively.

W ithout fixing the arbitrary factor in the a-coefficients, we can 
characterize the wave-front transformation matrix a for hexaspherical 
f-coordinates by stating tha t it is proportional to a pseudo-ortho
gonal matrix.

14 As we are considering only real transform ations, the  sign of th is determ i
n an t characterizes the  transform ation. I t  cannot be changed by m ultiplying all 
th e  coefficients a by  an ap p ro p ria te  factor, say C, as the  determ inant gets thereby 
th e  factor C6 w hich is always positive.

15 The argum ent breaks down only in  th e  case when the re  are as m any plus 
signs as m inus signs, as for instance for Pliickers line coordinates in three-dim en
sional space.
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All the above considerations apply mutatis mutandis to the hexa- 
spherical ^-coordinates, whose transformation formulae we write in 
the form

V1* — Pb 7!3 i ( A . 5 )

but the conditions to be fulfilled by the /5’s are a little more com
plicated. As the ^-coordinates are connected with the f-coordinates 
by formulae (6,5) of the text, we could use these formulae to compute 
the /?’s in terms of the a’s and get the required relations from the 
pseudo-orthogonality relations of the a’s. But it will be still easier 
to take them directly from Weyl’s Analyse des Raumproblems (1923, 
Appendix 1 ). Weyl deals with hexaspherical coordinates (as „lower 
spherical coordinates”) in a four-dimensional Minkowski world, but 
analytically their transformations are identical with the wave-front 
transformations of our hexaspherical coordinates. The connection be
tween Weyl’s u0)...,us coordinates and our yl ,...,??6 coordinates are

«0,1,2,3 =  >71,2,3,4, «5 =  |/Î2?]8, «6=  —][%'>?• (A.6)

Taking this into consideration, we get for the „modified con
ditions of orthogonality”

K  K  -  iK ft? - 2 ! «  i>‘ + «  f D 1 ( a.7)

- m m + w = (a. 8)

(the sum over w = l,2 ,3  is understood), where all the non-vanishing 
components of 6AB and ôAb are

¿11 z= Ô22=  Ô33— — ÔH =  1, ¿56z=’ô65==_ 2 ,  (A.9)

<5n =  ¿22=  3̂3=  4̂4==1; 5̂6== 6̂5 ~  è- (A.10)

G is the factor by which the coefficients (i have to be divided 
in order to reduce the absolute value of their determinant to unity.

The correctness of the values (A.9) and (A.10) may be directly 
seen from (A.7) and (A.8) by inserting there /?£= ôA, where <5£ is the 
ordinary Kronecker symbol; ffA represent then the identical trans
formation which must evidently verify (A.7) and (A.8) with (7=1.

A ppendix  B

Lemma. The coefficients of a wave-front transformation (7,1) 
connected with two Euclidean spaces È3 and E ’3 as in § 7.2, and car



Microstructure of the World. I . 297

rying oyer points of Es into points of El and vice versa fulfil the 
relations

ßn = ß\== % ß 1  = f i  = ßl =  0 (B-l)
(B.2)

Proof. (7,1) for fi — 4 reads

e V* = Q(ßt +  ß\ 64 -f- ß\ r,5 +  ß\ rh- (B.3)

In  order tha t i f =  0 implies for arbitrary values of , rf> and rj0,
we must have

ßn = ß t - ß t  =  (B-4)

I t  follows then from (A 7) for

(A ,B) =  (4,4) . . .  /?4 — ± G,
( A ,B ) = ( n ,4) . . .  /?» =  <),
(A,J3) =  (5,4) . . .  f l  =  0, (B‘5)
(A ,B) =  (6,4) . . .  /SJ =  0.
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The present paper contains a  sketch of an analy tic  m ethod of solving com 
b ina to ry  problem s concerning the  d istribution of particles into cells, the particles 
being either distinguishable or n o t and the  different possibilities of filling the 
cells being possibly subject to  a priori given restrictions. This m ethod rests upon 
th e  use of so called L aplace’s generating  functions. T he fundam ental generating 
function  as well as th e  characteristic function of a generating function have been 
defined and N ew ton’s polynom ial expansion applied to  th e  generating functions. 
D istributions of probabilities as well as th e ir  sta tistica l m om ents have been ob
ta ined . Also application of th e  above m ethod to problem s in cosmic rad ia tion , th e  
theo ry  of con trast in  photographic emulsions, an d  th e  theory  of num ber have 
been given.

1. Form ulation  of th e  problem

Let us consider K  cells consisting each of 1c elementary cells, i. e., 
regions which may be considered from the point of view of quantum 
mechanics as homogeneous and indivisible (e. g., one of the quan
tum  levels in the case of a discrete spectrum of an operator or an 
infinitesimal interval in the case of a continuous spectrum). Let N  
particles be falling on these K k  cells. The possibilities of occupying 
particular cells by the particles may be restricted by a priori given

* P resented  a t  th e  55th session of the W roclaw Section of th e  Polish P hys
ical Society, A pril 3, 1952. A t th a t  m om ent the au th o r did no t know the  paper 
of C. Domb (Proc. Phys. Soc. A, 65, 305 (1952)), containing a p a r t  of th e  results 
of th e  present paper, in  particu la r th e  m ethod of th e  generating function — 
a nam e which Domb does no t u se  — as well as its application to  classical s ta 
tistics. However, the  m ethod given in th e  present paper is more general and 
the  present paper includes also problem s connected w ith  quan tum  sta tistics an d  
applications.-
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exclusion rules. One particle may occupy at most one cell. We assign 
the same statistical weight to each cell.

Problem I.  What is the probability of hitting by the N  particles 
to out of the K  cells in a given manner consistent with the given 
exclusion rules ? For instance, each of the to cells has to be hit once 
(if there are no restrictions concerning the initial state) or each of 
them an even number of times, etc.

Problem I I .  W hat is the probability that n particles will fall on 
a given group of 7c cells?

Add to this a convention fixing the kind of statistics to be 
applied to the incident particles and each problem will split into 
three subproblems:

(a) classical (distinguishable) particles . . .  Maxwell-Boltzmann
statistics (abbrevia
ted M. B.)

(b) quantum (indistinguishable) particles . . .  Bose-Einstein statis
tics (abbreviated 
B. E.)

(c) quantum particles with Pauli’s exclusion principle . . .
Fermi-Dirac statistics 
(abbreviated F. D.).

2. The so lu tion  of problem  I
To avoid complicated expressions of combinatory analysis as 

well as loose intuitive reasonings we shall use the method of genera
ting functions introduced by Laplace. As the expression „generating 
function“ is used in different senses by different authors, we begin 
by giving a definition of this function as we shall use it together 
with some of its properties.

The method of the generating functions is a special, discrete, 
case of Mellin’s transformation based on the use of the complete set 
of functions 1 , z, z2, z3,... (i. e. on the use of power series)

-fco
/(«) = >2 V (s)2!S

c

where z —x-\-iy, G is a closed curve in the Gaussian plane surround
ing the point z°=0, f{z) is called the generating function (abbreviated
Acta Physica Polonica 20
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gen. f.) and cp(s) the determining function. The correspondence be
tween these functions one-to-one as the set of function zn is closed 
and complete.

An important property of this transformation is that for

/(2) = I > ( s).s3; 9(z )= Z y{s )z s 
8  8

we have

/(*) • g&) j) ■ y{i))zn
n J=0

f(z) +  g(z) = £  (<p(n)+y{n)) zn
n

so tha t multiplication goes over in convolution and addition in addi
tion. Due to these properties a great many complicated operations 
on determining functions can be performed on generating function's 
in a far simpler manner.

In  our case the determining functions are given by combinatory 
expressions for the number of events, hence we get the required ex
pressions by expanding gen. f. cp{z) in a power series in z: 2j Cn zn

N
and picking out tha t term of the series whose index is equal to the 
number N  of incident particles. In  the case of classical statistics the 
number of events (the thermodynamic probability) is given by A! Gy, 
and in the case of quantum statistics — by Gy, the latter result 
being the consequence of the indistinguishability of the particles. 

Putting

{/(»)}«■ =  ¿ 1  / * K z)z -N~' dz 
c

where G is a closed curve in the Gaussian plane around the point
z0=  0, we get for the number of events

for M. B. statistics . . .  A!{/(z)}^
for B. E. and F. D. statistics . . .  {/(z)}jv.

Let us now introduce the fundamental generating function giv
ing the distribution of the number of particles per one cell without 
any a priori exclusion rules (the determining function is then equal 
to one). The fundamental gen. f. equals

for M. B. statistics . . .  ez
for B. E. statistics . . .  (1—z)—1 where |^ | < 1 .



We obtain the distributions of an arbitrary number of particles 
into a greater amount, say s, of cells by making use of the multipli
cative property of the gen. functions. Thus we get
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v i zNfor M. B. statistics . . .  (ez)s= ^  number of events sN,
N =  0

number of
for B. E. statistics . . .  (1—2) - « =  1\

=̂0 ( s—1 j.

To find out those distributions which admit only of certain
occupations of the cells (exclusion rules), we set in the expansion of 
the gen. f. all the terms with the r-th powers of z equal to zero,
where r  runs over all forbidden numbers of occupation, the deter
mining function vanishes then for all values of the variable which 
are equal to r. Thus, for instance, in the case of the occupation of 
one cell by at least one particle the gen. f. is given by

for M. B. statistics . . .  ez— .1
1 *for B. E. statistics . . .    1 =1—z 1—z

The gen. f. of an occupation of m cells by at least one particle 
•per cell in the case of M. B. statistics is

00 00 m  00

«i—l nm ~ l N = m  rij... i

But on the other hand 

f dN

I
hence the number of the distribution in question is given by the 
formula

m

2 1 1 % - M M <’ >
rif... i=  1 

2ni~N /i/>0

The gen. f. for particles which may occupy eajh cell once or 
not at all (Pauli’s exclusion principle) is for K  cells given by

for M. B. and B. E. statistics . . .  { l+ z )K= ^
N

,N

20 *
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for 31. B. statistics . . .  Nl  number of variations of K  over N  

for B. E. statistics . . .  number of combinations of K  over N.

The gen. f. (1 +  z) is the fundamental gen. f. for the F. D. dis
tribution. I t  may be noticed that in the case of Pauli’s exclusion 
principle both the M. B. and B. E. distributions have the same gen. f. 
but due to the indistinguishability of the particles the numbers of 
events differ by the factor IV! which plays a rôle only of thermo
dynamic probabilities and cancels out in the calculation of ordinary 
probabilitiesx.

The gen. functions may also serve to investigate mixed distribu
tion, e. g., distributions of N  particles into m -\-n cells, n  cells being 
hit and the remaining m cells filled at random. We get

/(*) =  «*»{«*-].)», <p(N)=J£ (2)
i

I t  may be shown without trouble that, similarly to the power 
of a sum, expressions (1 ) and (2) may be expanded respectively into 
Newton's binomial and polynomial. For instance

/
For real z «  1

e2 ~ ( 1  +  z)+i ~  (1—z)-1.

We proceed now to the solution of our problem. The gen. func
tions giving the number of all the distributions into K  cells with 
a ;priori given restrictions are of the form {f(z)}K where f(s) is the 
fundamental gen. f. subject to the given restrictions or its power.

1 O rdinary, n o t therm odynam ic, probabilities have to  be used for the  com 
p u ta tio n  of distributions. I t  can be shown th a t  „overdistinguishability '' of the 
particles, i. e. d istinguishability  of particles occupying the  sam e elem entary cell, 
is equivalent to  indistinguishability. F or bosons bo th  „overdistinguishable“ as 
indistinguishable sta tistics m ay be used, fo r fermions the re  are th ree possibilities: 
„overdistinguishability", d istinguishability  and indistinguishability. This problem 
will be dealt w ith  in a forthcom ing note.

and the corresponding number of events are
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The gen. functions for the number of these distributions into to cells 
subject not only to the a priori given restrictions concerning the 
occupation numbers but also to the interdictions contained in the 
formulation of our problem are of the form {g{z)}"‘. As

(/(*))* — ̂  (to) 9 W "

we can interpret the terms of this binomial expansion as gen. f. of 
the events in which to out of the K  cells are filled in conformity 
with the requirements resulting from the gen. f. g(z). At given N  
and K  the probability for to is given by the ratio of the number of 
favourable events to tha t of all possible events, namely

p { m , K , N ; g(z)) = {f(z)K} ^  ( J )  {g(z)m [/(«)—g{z)]K~m}N.

To find the moments we may apply the method of characteris
tic functions, called also often generating functions or. Laplace’s ad
juncts as they were also first introduced by Laplace (cf. Gniedienko 
1950). We obtain the characteristic function of a given distribution 
by subjecting the probability P(to; K,N-, g{z)) to the Fourier trans
formation

CO
^ e ^ P ( m - ,K ,N - ,g { z ) )  (3)
772=0

As the distribution of probability differs from the value of the de
termining function for a given N  by the factor {/(z)}^1 which is in
dependent of to, we may consider the characteristic function (3) as 
the characteristic function of the determining function. Subjecting 
the gen. f. to a discrete Fourier transformation, we get the charac
teristic function of the gen. f.

ct>{z,C,K) = [ f(z )-g(z)+g(z).e ‘̂  

and consequently the momenta

For example the gen. f. of the first moment: M1=KgfK~1 and of the 
second moment: M i = K { K — l)g2f K~2+ M 1. From the properties of 
the characteristic function and from the gen. f. itself one can draw 
conclusions concerning the asymptotic behaviour of the.moments and 
the distributions (e. g., Hadamard’s radius of convergence, and the 
criteria of convergence of power series).
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The above method may be simply generalized to the case of 
multidimensional probabilities N ,K )  gj(z)', where m;
is the number of cells occupied in conformity with the initial ex
clusions rules and the exigencies arising from gen. f. gj(z). In  order 
to find the gen. f. for our problem, we substitute Newton’s poly
nomial for Newton’s binomial and get

f(z)K -in- 9t{*)
s

K —2  mi 
1=1 .

t=l
The characteristic function of the gen. f. is in this case 

Cj,j =  1 =  [/(*) —19]{z) + Ê 9A*)/=i y=i

3. The so lu tion  of problem  II
This problem does not concern the number of cells subject to 

certain conditions — as in Problem I — , but the number of parti
cles incident on a chosen set of k cells. Consequently the formalism 
of the gen. functions must undergo some modifications and instead 
of the polynomial expansions of gen. functions we shall consider 
gen. functions as products of other gen. functions.

For classical particles (case I I  a) we get the binomial expansion

m " K C
and in the limit when N , K - y  oo at constant N E ~ l — a =  const., 
we get the Posisson distribution

«—  P —a

m

In  the case of quantum particles (cases l i b  and lie )  the gen. f. 
has the form

for B. E. statistics ... (1—z)~Ki =  ( l — zJ-C*'-1)* 
for F. D. statistics ... ( l - f s ) irA =  (l +  s)('K'- , )A(i-|-2:)A

Expanded in power series in z these functions are 

for B .E . statistics ... 2 ( r + f - y  = i u r ” " _ 1 ) ( » + r 1)] ,

for F .D . statistics ... 2 [ ™ V = 2 [ 2 [ * k~!;) (£ ) ] -*



Distributions of Bosons and Fermions 305

for B. E. statistics ... 1)_1 fc“ 1)

for P. D. statistics ... (“ f ‘ ( j £ ? )  g ) .

Whereas for classical distributions, due to their infinite divisibility, 
the numbers of elementary cells in a group are irrelevant (Gnie- 
dienko 1950), these numbers play an essential part for quantum 
distributions.

Applying Fowler and Darwin’s method (1936) to the gen. func
tions (4) for N , K ^ r o o  at N K ~ X — a =  const., we get the quantum
analogue of the Poisson distribution

for B. E. statistics ... 1 j ( l—■ft)k'dn where ■& =  | l - f y j

for F. D. statistics ... ^ j ( l+ t? ) -A-i9« where # = | l — .

We see tha t for finite k's these distributions differ widely from 
th a t of Poisson and go over into it only for oo at a — const.
Whereas quantum distributions depend on 1c not only through a, 
their average values and their dispersions depend on k in the same 
manner as Poisson’s distributions:

for B. E. statistics ... E(n\k,d) = a

a{n-, k, ■&) = a ^1 +  >  a Lexis’ coefficient >  1

for F. D. statistics ... E(n-,k,&) = a

a(n-, k,&) =  a | l — <  a Lexis’ coefficient <1 .

Let us now return to Problem I  and assume that N  conforms 
in the classical case to the Poisson distribution with an average of zK~ l 
per group of k observational cells, and in the quantum theoretical 
case to the quantum analogue of Poisson’s distribution. Let us further 
assume in this case tha t § = z. Then the gen. f. multiplied by e~z in 
the classical case and by ( l T # ) ±,rt: in the quantum theoretical case 
gives the probability of m cells being occupied according to the 
gen. f. g(z) when z or a particles fall on the average on K  cells. 
Thus we have defined the physical meaning of the gen. f. for a real 
positive value of z (which must be smaller than 1  in the quantum 
theoretical case).

and the distributions read
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4. A pplications

The main fields application of the above theory lie in the 
theory of cosmic radiation, the theory of photographic plates par
ticularly the theory of contrast, and in the theory of numbers.

In  cosmic radiation one measures the distribution of showers 
by means of G. M.-counters at a given instant of time. These meas
urements and their theory constitute a complement to the theory 
of stochastic processes. Just as in statistical mechanics one either 
considers the system at a given instant of time or follows the par
ticle in its motion using-the ergodic properties of the system.

We shall consider now a special case of Problem I  which play 
an im portant role in the theory of measurements of cosmic radia
tion, namely: without restrictions concerning the occupation of the 
cells, what is the probability tha t m groups of cells consisting each 
of 7c elementary cells will be hit each at least 7 times. We put 7c = 1  
in Problem la ,  the question is: what is the probability of m  cells 
being hit (7=1). The gen. f. giving the distribution is then

This formula was given by Schrödinger (1951); it was also ob
tained independently of one another in two different ways by K. Florek 
and the author in spring 19512>3. I t  concerns cosmic particles but it 
is based on classical statistics.

3 P resen ted  a t  tiie 37th session of the  W roclaw Section of the  Polish Physical 
Society, A pril 12, 1951.

3 F orm ula (5) m ay be also obtained in  ano ther way w ithou t the  use of gen. 
functions. N  classical particles fall on K  cells. One p artic le  can h it only one cell. 
W hat is th e  p robab ility  th a t  m  cells will be h it?  I t  is obviously given by  th e  
ra tio  of th e  num ber of all possible d istributions of N  particles into m  a rb itra ry  
chosen cells out of th e  given K  cells, each of th e  m cells being h it, to  th e  num 
ber of all possible d istributions of N  particles into K  cells. The num ber of all 
possible d istributions is K N. W e choose a certain  group of m  cells. N  particles 
can be d istribu ted  in to  these m  cells in such a m anner th a t  no cell rem ain 
em pty in

and the probability, due to formula (1 ), is

P(m; K, N) 2  {~ lY  (? ) (5)

m m

r>. 1 1 1
nt=N, nt >0



Distributions oj Bosons and Fermions 307

For the expectation we get

This is the Nutting-Bomer formula (cf. Ingarden and Mikusinski 1952) 

of the theory of photographic emulsions. For

E,  N  -> oo at N E - 1 = b — const, 

it goes over into N utting’s formula (1913)

If N  is subject to the Poisson distribution, we obtain from 
our gen. f.

p(m; E ,  z) =  (^ )  (1 — e~i)m{e-i)K~m

where z is the average number of particles per observational cell. 
For m = E  this formula goes over into Auger’s formula (Cocconi, 
Loverdo and Tongiorgi 1946). I t  is also based on classical statistics 
and in particular it implies the Poisson distribution for N,  which 
do not seems legitimate. In  the above formulae E  is the number 
of the G. M.-eounters, N  — the number of incident cosmic particles 
and m — the number of counters hit.

For quantum particles problems lb, c yield the gen. functions
/ — I  CO

fashions. The choice of m  out of K  cells can be brought abou t in fashions. 

Hence th e  num ber of d istribu tions m  w hich N  particles cover exactly  m  cells is

I
and  the  required p robab ility  is

V(m; K, N) = X ~ N(n )2 !  < -1)1 (?) (»-*>"
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where K  is again the number of Geiger-Miiller or scintillation coun
ters, k — the number of possible positions of the particles in a coun
ter (which is infinite due to the continuity of the position spectrum), 
z may be interpreted as the average number of particles in an ele
mentary cell. For k-+co  at zk — a =  const., we get both for B. E. 
‘and F. D. statistics

that is the gen. f. of Problem l a  (for M. B. particles) in which 7c = 1  
and a — z. Thus it has been shown how the quantum problem for 
G. M.-counters passes into the classical one. For i = l  formula (6) 
goes over in (5).

The above formulae can be applied to measurements of distribu
tions of cosmic particles, as follows4. We have

where a is a parameter defining the distribution of the particles 
(e.g ., the mean value for one cell). The quantity P(m-,l,a,K),  
(m>  0), is measured experimentally, P ( m f l ,N ,K )  is found theoret
ically in the present work. There remains P(iT; a) to be found, 
which is equivalent to the solving of a system of linear equa
tions. As the case ra =  0 is not measured, the distribution is deter
mined but for an arbitrary factor. The parameter a depends evi
dently on the domain of measurement, which may be varied in 
different ways. In  small domains in comparison with the dimen
sions of the shower (r- -̂>200m) the distribution P(W; a) must lie 
close to an infinitely divisible distribution with the Kolmogorow 
characteristic function

the integral being extended to the whole range of variability of the 
stochastic variable.

We proceed now to the theory of photographic plates and in 
particular to the problems of contrast. We shall consider grains of 
different sensibility, the sensibility being characterized by the aver

P(w; I, a ,K ) — £  P{m; I, N , K) P{N-, a)

y>(t) =  exp |ita +  - i t x ) ^ d G ( x )  ; G(+co) =  a(N)

*) Incidentally , th e  sam e is tru e  for all „generalized Schrödinger form ulae" 
giving the  probability  of to cells being h it each exactly  I tim es.
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age number I of light quanta needed to blacken a grain. Let the 
•whole emulsion be uniformly illuminated. The grains being macrosco
pic entities are subject to classical statistics, the photons — to 
quantum statistics. Let us divide the domain of observation into 2f 
cells of equal surface which is also equal to the cross section of the 
grains. Let the grains be distributed over these K  cells on the plate 
according to a PoissOn distribution, af(s) being the average number

00

per cell of the grains whose sensibility is s, where j? / ( s ) = l ;  hence a
S=1

is the average number of grains of all sensibilities per cell (s decreases 
with increasing sensibility of the grains). The position spectrum being 
continuous the distribution of the photons is also of the Poisson 
type with the mean value b.

We shall calculate the blackening caused by an illumination b 
when the sensibility distribution of the grains is f(s). This problem 
was treated by Selwyn (1935), Silberstein (1941), Webb (1941), and 
others. I t  is to be noticed tha t b is the average number of photons 
per cell and not per grain as in the paper of Silberstein.

Let us consider grains of sensibility I falling at random on K  
cells; they hit cells which are already occupied by more sensitive 
grains (s < 1), as well as «; yet unoccupied cells. The probability 

/-1
tha t out of ( K —£ n r) cells which were not yet hit % cells will be 
hit is r

1—1 1
1-1 f X — Vn \ K~2nr

P ( n r ,2 n r,af(l ) ,K) =  ^  f  n' j  (l-e-«rt0)»i (e-AO) '  .

The probability that n8 new cells will be occupied by grains of sen
sibility s, for s = 1 ,2 ,3 ,... is

03 ( - S '— J > r ) l  K - 2 n r

P(ns-,af(s),K, s = l ,2 , . . . )  = J J  r—-------(1 - C-«/«>)»i («"“'«>) r '
T=i nl\ { K - ' Z n r)\

r

The probability tha t not less than I photons will fall on mi out of 
the n t cells is

00 1 i-i

i=t j=0 ;=o

Combining the distribution probabilities of photons and grains, we 
obtain for the probability of blackening of m out of K  cells at



given  a /(s ) a n d  b

P ( m - , b , a f ( s ) , K ] S = l , 2 , . . . )  =  2  2  P ( m s-,n„,b)P('ns; a f ( s ) , K - , s = 1, 2 , . .  )
mi-.- ni —

2 m i = m

22Ó—
* ,...  z=i 2 n r) l (n i—mz)! i=j ’ (7)

2 m /= m  r

J=0

w here i t  h as  b een  a lre ad y  ta k e n  in to  acco u n t th a t

i-i
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-  : - J 7 -  ";= m i l { K —£ n r)l (ni—vh)\ ;=i m ;! ( i f —¿ ’w,)! («¿—m;) !
r  r

S u m m in g  u p  (7) over m  we g e t j ? P = l .
I l l

L e t u s c a lcu la te  now  th e  ex p e c ta tio n  of th e  b lack en in g  
2  m P  =  E{m)
m

00 00

S u b s ti tu tin g  2  2  2 ms fo r  2 m  2 , a n d th e n  f j  2
5 = 1  in  m i . . .  m  m j . . .  1=1 n q

Snii—m 2 m i=m Z=j=s

fo r 2  2  n  we Se t :
m  m i ... Z=1 

Idps

00 s — 1 s — 1

* » >  -  ^  2  ^ ” «{(:.) k * a n
S=1 /Ij... 771 s j = 0  j =  0

°° 77- ^  '-¡-r i ¡ K —2  nr\ K~2 nr\
X I I \ \  r J ^ —e~am)ni(G~am) r )•

1=1

D u e  to  th e  eq u a lity

S — 1  6 — 1

2 ^ h - 2 W [ e- 2 W ~ m' = < 1- e- 2 p
7 = 0  7 = 0  7 = 0



7 1 Z
OO S— 1 CO oo K*—2nr

5=1 y=0 rt/... 1=1 n ‘

We substitute now
S CO s—1 oo2'2n n 2-2- 2 nni

n n^...ns 1=1 l=s-\-l n i n n[...n8 j Z=1 l=s rij
3 S—i
2  n f = n 2  n  / —n

i=i Z=1

for 2^n and making use of the relation n{ TK)n>=h
n/... 1=1 1=1 1 1=1

we obtain
i

oo s—1 s K—2  nr

*<-> -  2 {̂ -‘2n) [2» (n) 2 1 ; <«-■*>> '
s = l  j= 0 n nj... l—l

8
2  ni =  n i

I
s 1 K—2  nr-2"{n)2n̂ -‘-‘m̂--m' '
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we have

nl ... 1=1
s—1 
2 n/ =  n 

i=1
As

,  r  K—2 nr /  JT „  =  «/(0 —Ka2 f{{)/ / ( 1—e - “A0)n; (e-o/ii)) r =  / /  [(1_ e-«M)et  ]"i e /
i=i i=i

and
5 S

/ A ' \  x -  m ! „ „  a ' / a .  - K . i m  (k \  - K . 2 m . s m
[ „ ] 2 n m ) e ‘ ] ,e ‘ = U ) e ' <<!' _ 1 )"

/*/... z=i
s
2 ni = n

we get finally
OO s—1 s s s—l s—1

_  /  C T  f r / \  a-S'AO —a2f{0 a2f(i) — «-£/(/)
^ ( w )  =  ^  ( l — e- 6 ^ ,  — J i r  [ ( e i= i  — l ) e  i=i — ( e i = i  — 1)  e i=i  ]

5=1 1=0 ^



312 J . Lopuszanski

C O  s  — 1  s — 1

E(m) =  1̂ - e ~ bJ> {l—er«M) e~*i=™ (8)
s = l  7 = 0

whereas Silberstein got for the average blackening
oo s — 1

E(m) =  K ^  ( ^ - e~ b2  J~!) <9)
S=1 7 = 0

a different formula from ours.

—oc2 f(0The difference e i=i of (8) and (9) ascribes a predominant

influence on the blackening to grains of greater sensibility, which 
seems to explain the fact tha t the average number of photons needed 
for blackening is low.

From the expression for the dispersion the influence of the 
configuration factor on the granularity of the emulsion has been 
calculated, but the formula is to intricate to be worth while to be 
given here.

The applications to the theory of numbers will be given on 
two examples only.

E x am p le  1. The distribution of an arbitrary number of bosons 
in one cell may be realized in one way only. Their distribution over 
an infinite number of cells, the first of which may be occupied once 
or not at all, the second twice or not at all,... the j-th 2̂ _1 times 
or not at all, etc. can be also realized in one way only. Hence the 
two corresponding generating functions must be equal and

OO

(l—x ) - l = J J ( I  + x‘il) for |2 |< 1  
7 = 0

giving an expansion in an infinite product.
E x am p le  2. Every integral number a > l  can be represented in

oo
a unique way in the canonical form a = []rfi, where r, are prime

/=i
numbers and at — positive integral numbers or zero. Taking into 
account the equality

OO

Ina =  2  atlnr t
i=i

which may he written in the form
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and applying a similar reasoning as in Example 1 , we get
00 00

z'nj = J J  {1— z,nrl )~ł for I 2 I <  1
J=1 ;= 1

or
OO OO

for Re(%) < 0.
j=i 1=1

One can also give a general form to the Distribution Func
tion of McMahon (1916) introduced in his „Combinatory Analysis“ 
and find a uniform analytic treatm ent of that analysis.

The subject of this work was suggested to me by Dr B. S. In 
garden in the Avinter 1950/51; it grew considerably during its exe
cution.

The autor would like to take this opportunity te thank Profes
sor E. S. Ingarden for valuable help, suggestions and discussions 
throughout the course of the work. In addition, lie would like to 
thank Professor W. Bomer and Mgr A. Jaśkiewicz for helpful dis
cussions.
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ON A REGULAR FIELD THEORY I (CLASSICAL)

By Jerzy RAYSKI, Department of Physics, Nicholas Copernicus
University, Torun

(received June  16, 1952)*

Regular field equations are derived from  a varia tional principle in a  finite 
space-time domain. The existence and uniqueness of the solutions in th e  form  of 
a power series expansion is proved. Conservation laws are inferred.

§ 1. Introduction  and Sum m ary
From the mathematical viewpoint, the possible reasons for the 

convergence difficulties encountered throughout the modern quantum 
field theory are threefold: (i) The point model of the interacting 
particles, i. e., the singular character of the Green functions of the 
field equations, (ii) An infinite space-time domain and improper ini
tial conditions a t minus or plus infinity (used in most of the recent 
investigations), (iii) Singular commutation relations between the field 
variables (connected with the Jordan-Pauli function).

In  the opinion of the author it is the point model of interac
tion that is chiefly responsible for the convergence difficulties, while 
the second quantization has nothing to do with the well-known di
vergences (except for trivial ones like an infinite zero-point energy 
of a field). Thus, the convergence difficulties seem to be classical in 
character.

The singular character of the interaction may be avoided by 
introducing a new physical assumption; a non-point-interaction. This 
may be achieved by introducing a relativistic form-factor discussed 
previously by the author (Ravski 1951a,b), by C. Bloch (1952), and 
by Kristensen and Miller (1952). In  consequence of the appearance 
of a form factor, the integral field equations (being a substitute for 
the traditional differential field equations) possess regular kernels.

The second possible reason for the convergence difficulties (ii) 
may be avoided by taking a well defined, finite domain Q where 
the system of fields propagates under proper initial conditions. The

* Reviseh m anuscrip t received M arch 5, (1953).
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existence and uniqueness of regular solutions of the integral field 
equations is then easily demonstrated by means of a (somewhat ex
tended) method due to Picard. The solutions are integer functions 
of the coupling parameter and may be computed by means of iter
ation.

The regular field equations may be quantized directly without 
any reference to the canonical formalism. The problem of quantiza
tion and the proof of the existence of expectation values of obser
vable densities will be dealt with in P art II .

1. Stationary A ction  P rin cip le. Let us consider a set of 
field components 1 with given transformation properties (scalars,
vectors, tensors, spinors, etc....) a denoting in short any one of the 
suffixes of the field components. These field components are func
tions of the variables xf( in a finite domain Q of the fourdimensional 
continuum. We assume that Q is limited by two space-like 
hypersurfaces ax and cr2 sufficient regularity and with a common 
edge B. We assume further that the set of fields forms an isolated 
system in Q (without interaction with our measuring apparatus 
except on tq and <r2). The fields in D are characterized by an action 
functional W which is Lorentz invariant and invariant under trans
formations of phase by constant values (gauge invariance of the first 
kind). We assume further that the action functional may be split 
into two parts

W = W M + W ,  (1 .1 )

where T7(0) is the well known bilinear form in the field components 
(Pa and their first derivatives #>“ which, in the absence of W ', yields 
the Schrodinger-Gordon-Klein equations for the tensor components, 
and the Dirac equations for the spinor components of the fields. 
The other term 17' describes interaction between different fields. 
Let us consider the typical case where 17' is formed of products of 
three field components, i. e. is a homogeneous bilinear form in the 
complex field functions and linear in the components of the real 
fields. Let us assume for simplicity that 17' does not contain the 
derivatives of the field components. Sometimes it will be convenient 
to illustrate the general arguments by a simple (though purely aca
demic) example of two coupled scalar fields: a complex y, and 
a real <p. In  the frames of the local field theory the interaction part

1 W e follow in general the  notations of Schwinger (1948, 1949, 1951) b u t 
use natu ra l un its h  =  c =  1-
Acta Physica Polonica -1



of the action functional may be assumed simply as

W'=(j  j  dxyj*(x)<p(x)yj(x),

where g is the coupling parameter. In  order to build up a regular 
field theory we shall introduce a non-localized interaction by taking 
the field components appearing in ~W' at different points x’, x" x'" 
respectively and multiplying their product by a suitable foim-faetor 
F{x'. x", x'"-, L>) which in general may depend upon the domain Q.

TF=TPW +  TT.= f  dxLW(x) + J f f  dx'dx" d x " ' L \ x \  x", x"'- Q). (1.2)
a n

In  the ease of two scalar fields L'  assumes the form

_£'= gF(x\ x", x'"-Q) y*(x') cp(x”) xp{x'”). (1.3)

In  order to preserve the hermitian character of 17' the form-factor 
must satisfy the condition

F*(x', x", x '"-Q) =F(x'",  x", x'-, Q). (1.4)

Of course, F  must be invariant under inhomogeneous Lorentz trans
formations. Further restrictions upon the form of the form-factor 
will be imposed later.

The variations of the field components by <50“ introduce a change 
<5i.Tr of the action functional:

d,j, W — f  dx l3L^ ' x) ,)<K (x) +  —  <30“ (a))
J  \9(P“{x) d'Pa(x) 7

(1.4')
C C C 7 ,  7 „  7 ,„3L'(x',x",x"':Q)  ,  , «  v+ dx'dx" d x " '---- — — I----  — -M> (x),

J  J  J  9Pa(x)

where x  in the last term denotes this one of the points x ' ,x" ,x '"  
which appears as argument of the function 0 “. An integration by 
parts yields

31G Jerzy R ay ski

a * * - »

where y and s denote the other two of the points x', x", x"' of the 
fourdimensional continuum.
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The stationary action principle demands that the variations of 
the action functional should depend merely on the surface of the 
domain Q , or, the variation ¿T7 should vanish if 60“ vanish on the 
fixed surfaces and a 2. This yields the Euler-Lagrange equations

2Xp {x) 9 0 “(x) J nJ  d&c‘(x) 1 1

where x  denotes again this one of the points x ' ,x" ,x ' "  that appears 
as argument of the function 0 “ and y, z denote the other two po
ints. We notice that the field equations depend upon the domain Q 
where the system of fields is considered (and is assumed as isolated 
from other systems and measuring apparatus). Hence the solutions 
must depend as well on Q

0 a =  0 a(x-,Q). (1.7)

This is an essentially new feature of the field theory brought about 
by the non-local interaction. In  the simple case of two coupled 
scalar fields equations (6) are

(□  —m2)y)(x) =  —g j f  dx"dx"'F(x,x",x"'-,  Q)cp(x")xp(x"'),

(□  -  x2)t(x) =  -  o f f  dx' dx"'F(x' x, x"’-Q) w*(x’) y,(x"'), (1 8)
O

(□  — m2)i/j*(x) — — g f  f  dx' dx"F(x ' ,x",x; Q) \p*(x')cp(x").
* n

2. F ield  equations. Equations (l.G) and (1.8) are integro- 
diffcrential equations. We replace them by pure integral equa
tions. Let us introduce the Green function G°U)(x,y), connected with 
the field 0 “, with the properties

(a  — W2) Glu)(x, y) =  — 6(x — y), j )
G(u)(xlaty) =  0, )i/t 9ft &(Cg(x/o, y) — I),

(2.1) applies to the case where 0 “ denotes a tensor component. In 
the case of spinors Ga(xry) is defined by

(- / 9„ ±  m ) GU&, . ' / ) = -  'X®- y ) ,  Gfc(x/<J, y) =  0 (2.2 )

where ±  apply to the case of a spinor field or its conjugate 0* y*.
The symbol xja denotes a point x  lying on a surface n which is 
situated in LI with a common edge, B ,  with the surfaces ax anti a 2.



Denoting by ax another surface of the same type on which the po
int xfl is lying, we have e. g. in the case of bosons

318 Jerzij Rayski

GU(x,y)  =
— A(x — y) for ax> y > a

A(x — y) for a > y > a x (2.3 )
0 elsewhere,

where A is the well-known Jordan-Pauli function. In  the case of 
fermions we have a similar expression in terms of the well-known 
function

S(x — y) = (yf* 9fi — m) A(x — y). (2.1)

Let us introduce the kernel

K(a){x, y, g; Q) — f  du G°a)[x, u)F{x', x " , x'"-Q), (2.5 )
Q

where u denotes this one of the points x', x", x '"  that appears as 
argument of the function 0 “ while y, z denote the remaining two 
points. In  view of the properties (2.1) or (2.2) of the Green func
tions, we see tha t K°a) vanishes (together with its normal derivative 
in the case of bosons) for points x  on the surface a and satisfies 
the following equation

(□  — m2)K°a) = — F  or (yf‘ 5^ +  m) J i(„) = —F  (2.6)

in the cases of bosons or fermions respectively. In the case of two
scalar fields equations (2 .6 ) are

(□  —vi-) Ky* (x, x" x " ' ) =  —F(x, x", x'") Q)
(□  -  *2)Jt" (x,x',.r'") ^ - F [ x ' x , x ' " - Q )  (2.6')
( □ - w 2) jq , ix ,x 'x")  = - F ( x ' , x " , x Q ) .

Let us assume now that the function F  is continuous and limi
ted in the domain Q. Consequently, the solutions K a of the inho- 
mogeneous equations (2.6 ) or (2.6 ') are limited

| -̂fa) [ < -3/ in Q for any a (2.7 )

and the Lagrange equation (1 .6 ) are equivalent to the  integral
equations

0 » ==0 a»  +  J J  j  dx' dx" dx'" G ^ x ,  u) — Q) (2.8)
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which may be written also in terms of the kernels I Ia. <£“ denotes 
a solution of the interaction-free Schrodinger-Gordon-Klein (or Dirac) 
equation, denotes the complex conjugate of <ba (in the case of 
spinors the corresponding equation is somewhat more complicated). 
u denotes again this one of the points x', x", x'"  that appears as 
argument of the function 0 9. From the properties (2.1) or (2.2) it 
is seen tha t &a coincides with the free wave (together with the 
normal derivative in the case of bosons) on the surface a. W ith the 
aid of (2.5) the integral equation (2.8) may be written in the case 
of two coupled scalar fields, as follows

y>(x) =rpa{x) + g f  f  dydzKy'{x,y,z,(p(y)y>{z),
Q

(f{x) =(pa(x) + g f  f  d y d zK av {x,y,z)y*(y)y>(z), (2.8')
O

y*(x) =  y*a{x) + g J f  dydz K%[x, y,z)y*(y)(f(z).
c

A proof of the existence of the solution of the set of integral 
eqations is given in the Appeudix.

3. C onservation  law s and corresp on d ence. The conserva
tion laws follow from the invariance of the action functional W with 
respect either to infinitesimal phase transformations or to infinites
imal rigid displacements and rotations of the domain Q. The general 
variation of the action functional is

<5W =  S$W +  $oW, (3.1)
where (So>TF is the variation produced by the variations of the field 
comqonents d0<t>a at fixed space-time points, and d„W is the varia
tion produced by the infinitesimal variations of the boundaries cq 
and ct2 of the domain Q. Taking account of the Lagrange equations 
we have from (1.5)

óáíTF =  <5tf>TF(0> =  dap— da^j-^-^6o0 a. (3.2)
a, a, fi

We notice tha t the variations of the field components affect only 
the interaction-free part of the action functional which is identical 
with that in the local field theory. Therefore we obtain the same 
expression for the charge as in the traditional theory. Perfoming 
infinitesimal variations of the phase of the complex field compo
nents we find as usually

3L(0> v  r .  dL(0)\  -a i si~
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where t “ = ± l ,  or 0 for complex field components their complex 
conjugates, ane the real field components respectively. Thus^ apart 
from a constant factor, we may call the conserved quantity

the charge and current density four-vector. The charge is conserved 
on the boundaries and cr2 of the domain Q . The analogy with 
the local field theory is merely formal owing to the fact that the 
Lagrange equations (1.6) and their solutions (1.7) depend upon the 
domain of integration. This domain may be taken arbitrarily small 
so tha t we may write formally

but this „continuity equation” is an empty statement since the whole 
field formalism becomes meaningles in the limit Q-+0.

In  order to infer the energy-momentum and the angular momen
tum  conservation laws we carry out an infinitesimal rigid displace
ment and rotation of the domain Q by

where efi, eftv are small arbitrary quantities. The change of the 
action functional- under the displacement (3.6) is

(3.4)

the charge or the system, and

(3.5)

lim da jfi =  o 
£>->0

ôxfl =  efl — e,lvxv (3.6)

(5,17= <5,T7W +  <5,17' (3.7)
where

d x m  (x) =  £ dap èXpm  (%) (3.7')

(3 .7")
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At the same time we perform the variations d0& in such a way 
th a t the new field components assume the same values on the sur
faces (Tg -f- (5 cr2 and a1 +  dax as the old ones did on the surfaces cr2 
and The action functional is invariant under translations and 
rotations of the boundaries together with the field components whence 
the whole variation vanishes

dW =  <5TF(°) +  <5TT= StWW +  d„W® +  daW'. =  0 (3.8)

where is given by (3.2). By taking Eh arbitrary and ehV=  0,
we infer from (3.8) a tensor

m    71(0) 1 m '
f iV  ---- f i v  i -*• fiv

with the property

P v { o i )  —  J  P f iv  =  J ' 1  ftv — P v (o%i ,
0,

so that. P v may be interpreted as the energy and momentum four- 
vector. In  the same way, by taking ehV arbitrary and efl =  0, we 
find a tensor

Miftv= M ^ v +  MxhV (3.11)
with the property

— J  d o ^ A I x f i v — J '  Ho?. M-Xfu, =  I f tv{(J2)f (3 .12 )
a, a2

where I (tv may be interpreted as the angular momentum.
We notice that the variations <5<pIF(0) and <5<tTP(0> are (formally) 

identical with those of the local field theory so tha t we may refer 
the reader to the literature (W. Pauli 1941, J. Schwinger 1951) for 
details of the construction of the interaction-free part of the energy- 
momentum and angular momentum tensors T^l and Mf^v• Iu  the 
following we shall limit ourselves to the construction of the interac
tion parts Tf,v and M'xhV which will follow from a discussion of (3.7")- 

In  order to compute T'flv and M ’xliV, we must know the depen
dence of L'  on the domain 12, that is, the dependence of the form- 
factor F{x ' ,x",x"’; 12) on 12. This dependence m ay.be fixed unam
biguously by invoking the requirement of correspondence with the 
local field theory. In  order to secure the correspondence let us in
troduce a parameter A (with the dimension of a length) into the 
form-factor F  in such a way tha t the form-factor goes over into 
a product of two Dirac delta functions in the limit A->-0:

lim F(x' ,x”,x'"-, 12) = d{x'-x")b(.x"— x"'). (3.13)
A->0

(3.9) 

(3 10)
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The form-factor must be invariant under displacement of the origin 
of the coordinate system, and therefore it is natural to introduce 
first a Lorentz invariant distribution function R x, y z\ X) indepen
dent of Q , with the properties

R(x,y,z-,X) = R*(z,y,x-,X), lim R(x, y , z; X) =  ô(x)ô(y) ô(z). (3.14)
Z-ïO

W ith the aid of this distribution function (which should be regarded 
as more fundamental than F) we may define the form-factor F  
either by

F^x' ,  x”,x"') =  J  dxR{x'— x, x"— x, x'"— x- X) (3.15')

which is independent of Q, or by

F 2(x' ,x", x"';Q) = J d x R  x'—x,x"—x,x"'—x-, X) (3
Q

which refers directly to the domain Û. More generally, we may 
consider a linear combination

F(x’, x”, x"'-,Q) =  dyF^x', x”, x'") +  a2F 2'x', x", x"'; Q). (3.16)

With (3.15) or (3.16) the invariance of the form-factor under transla
tions is automatically secured in contradistinction to the paper of 
Kristensen and Miller. I t  is easily seen tha t for X—>-0 the Lagrange 
equations go over into the local ones if the coefficients of (3.16) 
satisfy the condition

On+  02 =  1 . (3.17)

We shall show that the requirement of correspondence of the energy- 
momentum density tensor and of the angular momentum density 
tensor with the local ones yields another condition for the coeffi
cients of (3.16), namely

3 + +  4i?2 =  :i, (3.18)

so that ax nad a2 are fixed unambiguously

+  =  3, a2 =  — 2 (3.19)

and we have no other choice for the form-factor F. Thus, the two 
requirements of correspondence (that of the field equations and that 
of the conserved quantities) are independent. In  order to satisfy 
both requirements a simple form-factor (3.15') or (3.15") is not suffi
cient but we have to take their linear combination (3.16). In  the 
limit of the domain Q being the whole space-time F x and F 2 become 
identical and the formalism simplifies considerably.



In  order to determine T'hV and M'XfiV, we compute (3.7")

«3aW  = f  da'^dx^ f  f  dx" dx '"L’ (x',x", x'")Q)
Q

+  f  da“ dx” f  f  dx'dx’"L'(x', x",x"'-,Q)
Q (3.20)

+  f d a ' ”6x ' ; f  f  dx' dx" L' (x', x " ,x" '; Q)
Q

+  f f f  dx'dx'.'dx'" daL'(x',x",x'"-,Q).  
a

In  order to avoid non-essential complications, we restrict ourselves 
again to the simple case of two coupled scalar fields, where L'  is
given by (1.3) with F  given by (3.16). The last term in (3.20)
becomes

a2g j  da^dx^J  J  J  dx' dx" dx"' R[x’— x, x"— x, x'"— x) yi*)x’) <p{x")y{x‘") 
<2

so th a t daW' may be written as

daW' = f  dah 6 x ^ f  f  dx" dx'"L'(x, x”, x'"-, Q)
O

+ f f  dx'dx'"L'(x',x,x'"-,Q)
S (3.21)

+  J f  dx' dx"L'(x', x", X", Q)
Q

+  a2g J  J  f  dx' dx" dx"' R(x'— x, x"—x ,x" ’— x)y)*{x')cp{x")y){x'")^.
¡2

If, for example, we consider a variation ^ „ = 0  and +  arbitrary 
then we may write

j d a h (5a+.. =  J  dah ev

whence the interaction part of the energy-momentum tensor follows:

T'hV(x) = 9 dftv{ f f  dx" dx'" F(x, x", x'"-Q) y>*(x) <p(x")y>(x'") 
o

+  f f  dx'dx'"F(x',x,x'"-,Q)y>*(x')(p(x)y>(x"')
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Q (3.22)
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whore, e. g.,

F{x,x",x'"-, Q) = ax J  dx' B(x — x ' , x " ~ x ' ,  x'"— x')

+ a2 f  dx' B(x — x ’,x"—x',x'"—x') (3.2-, )
Q

and so on...
By taking =  0 and e^v arbitrary we find the angular mo

mentum density tensor M y/iV connected with T'^v in the usual way:

Mtyyix) = xh T \v( x ) - x v T'Xu{x). (3.23)

The interaction part of the energy-momentum density tensor 
is symmetrical. The interaction-free part may be symmetrized
in the usual way so tha t the whole T^v =  T^l +  T'fiv is symmetrical 
T = TflV v p  •

We see that expression (3.22) is rather complicated, since it 
contains seven terms altogether, three of which appear multiplied 
by ax and four by a2. In  the limit of localizability (A =  0) each of 
those seven terms goes over into the usual expression for T'  of 
the local theory. Thus we find

lim T' (x) = {3a1 + ia2)gd y>*{x)(p{x)yj{x) (3.24)
A -+ 0

wherefrom the condition (3.18) follows.
Going over to the limit of the whole space-time manifold (as 

the domain Q) F 2 becomes identical with F x so tha t the form-factor 
as well as the Lagrange equations and the expressions for the energy- 
momentum density tensor simplify considerably. For example, 
T'uv becomes

lim T ’ (x)
Oi-*-—oo 
O i ~ +  + O 0

=  gd/ivf  f  f  dx' dx" dx'" {B(x — x', x”— x',x"'—x')ip*(x)(p(x")y)(x"')
+  B{x'— x", x —x" ,x '"—x") yi*{cp')<p(x) y>{x'") (3.25)
+  B(x'—x'", x"—x'", x  — x'") y)*yX')qo{x") y)(x)
— 2B(x'—x, x"— x, x'"—x y>*(x') <p(x")ip(x"')}.

I t  may be added th a t the particular position assumed by the free 
variable x  in the separate terms in (3.25) is not essential. This fol
lows from the fact that the variations are identical in the case of 
rigid displacements- However, the special form (3.22) or (3.25) with 
respect to the positions assumed by x  appears the most natural if 
one regards the common domain Q as a special case of four inde
pendent domains Q, Q', Q", Q"' of the variables x, x', x", x'".
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The results of this section may be summarized as follows. The 
regular field theory satisfies the conservation laws of quantities 
which may be interpreted as charge, energy and momentum, and 
angular momentum. The conservation laws refer to, and only to, 
the surfaces cq and a2 enclosing the domain Q. The two require
ments: (i) tha t the field equations should go over into the local 
ones, and (ii) tha t the conserved quantities should become identical 
with the usual ones in the limit X->0 (X is a fundamental length) 
are independent from each other. Only a special form of the form- 
factor (3.16) with F x and F 2 given by (3.15) and cq and a2 given by 
(3.19) secures the correspondence with the local field theory, The 
form-factor (3.16), the Lagrange equations (1.6), and the expression 
for the energy-momentum tensor density simplify considerably in 
the limiting case of the surfaces oq and a2 tending respectively to 
minus and plus infinity.

The author is much obliged to Professor 0. Miller for the 
opportunity of studying his paper before publication.

A ppendix. An in vestiga tion  of th e  problem  of ex isten ce  of
regu lar so lu tion s.

Let us introduce the natural units c =  h =  X =  1 whereby all 
the field quantities become dimeusionless. We assume g> 0. In  
order to simplify the notations we omit the arguments x ,y , z  of the 
field quantities and of the kernels, and omit the symbols dx dy dz. 
The integral field equations (2.8) may be written simply

V =y<r + 9 f  f  f  K*(pv>, <P =<Po + 9 f  J f  K<p%p*y>. (A.l)

We assume that the following (limited) integrals exist

}Jf\KK I ,  J J { \ K V. \ ^ M ,  . ( A o )

K  y>* To | ^  M ,

where K  stands either for Eg, or K v .
We try  to solve equations (A.l) by means of iteration. We

form the sequences y>n, yn for « =  0, 1 , 2,... with y0 = ya, <p0==(P'r ^e-
fined by

V'n = Wo + d f f f  KyVn-lVn-l, <Pn~ To +  9 f  f  J ■ (A.3)

•Putting
A„y> ~ y n —  fo  (A-4)



(A.5'

we get
d ny = g f f f  E ^ ( A n- i<p + v 0)(An-iyj -f y0) (A.5)

or
y +  9 f  f  f  Kg/Vo^n-iy 

+ 9 f  f  f  K y A n-t<p -y0 + 9 f f f K ^ T o V o -  

On account of A0y> = A0<p =  0, we have

\ d i f \ < 9  f  f  f  \Ky<Poyo\<9M  (A.6)

and, in the same way,
I A1q>\<9M. (A.6')

Introducing a number IV > M  we have also

\A1y \ < g N ,  \A1<p\< gN.  (A.7)

From (A.5') and (A.7) we find

| zl2y | <  g3 M N 2 + W  M N  + gM =  gM( 1 +  gN)2. (A.8)

Now, it  is also
\A2rp\<gN (A.9)

if
M ( l + g N ) 2^ N .  (A.10)

Inequality (A. 10) is a restriction upon the value of the coupling 
constant g

_1_ N —M  (2.1 1 )
J ^  M N 2 K '

I t  may be easily seen tha t the same procedure applies to all higher 
terms, so that we have quite generally

\Any \ < g N ) \Ancp\<gN (A.12)
if g satisfies (A.11).

Let us compute the differences

y n+ i — y n = 9  / / / E,,,{rpnyin — <pn- i  f n - l )
r r r  (A.13)

— 9 j J J  Ky[((p„ — <p„-i)y„ +<pn-i[y„ —

In  particular, we have

W z - v i K W  f f f  \Zy(yi  +  y0) \ < g 2N  f f f  \E(A i y  + y0 + y0)\
< g2N 2(g N 2),
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1 V»3 — Vs I < g3N2{gN+ 2 ) JJJ\K(xp2+(px)\

< g 3N2(gN +  2) J J J \K{A2y> + A 1<p + y 0 +  <Pol

<  g3N2(gN 2) (2gNM -f 2M) < g2N 2(gN+ 2) • 2gN(gN +  1).

By repeating this procedure we find

I V'n+i—Vn | <  g2N 2(gN +  2)[2gN~(gN -f- I)]"-“1, (A. 14)

from where a sufficient condition for the convergence of the itera
tion procedure to a solution of the field equations follows:

2 g N ( g N + l ) <1 .  (A.15)

From (A. 11) we find that the maximum permissible value of g 
is obtained for N=2M.  By introducing this value into (A.15), we find

« < —  M<A-1C>

Thus, the following theorem has been proved:
If the conditions (A.2) are satisfied, then the integral field 

equations (2.8) possess solutions which may be represented in the 
form of a power series of the coupling constant <7 >  0 for sufficiently 
small values of g (given by (A.16)).

The first of conditions (A.2) constitutes a condition upon the 
form function regularizing the kernels. Further conditions (A.2) would 
be satisfied automatically if the „initial waves” , i. e. the solutions 
of the interaction free field equations rp„ and <pa, were limited. For 
the sake of a subsequent quantization we cannot assume a limited 
y„ and (pa but have to consider the general solutions of the inter
action-free equations. I t  seems to be sufficient and necessary to require
th a t (A.2) is satisfied if y>„ and <pa are replaced by the two funda
mental solutions of the interaction-free equations, namely A and d (1) 
or A+ and A~.
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Battery Pulse-Supply for G-M counters
S t e f a n  W ę g r z y n , C z e s ł a w  O s t r o w s k i  a n d  W it o l d  P a c z e ś n io w s k i

Electrotechnical In stitu te , Silesian Technical U niversity, Gliwice

February 15, 1952

A b a tte ry  pulse-supply for G— M counters is presented allowing to  obtain 
small overall dimensions and w eight of the apparatus. W orking conditions for 
m easurem ents w ith  th e  G— M counters often require th a t  th e  whole apparatus, 
including high voltage supply, pulse am plifier and reg istrator, should he tran sp o r
table, light, an d  of small dimensions. The circuit shown on fig. 1 has such p ro 
perties. All th e  tubes are of th e  popular type  D-series. The high tension is ob 
ta in ed  on th e  coil (80 H) by  pulse-breaking of the anode current of th e  tube D L 21 ,

DF 21

Fig. 1

which w orks in conjunction w ith  th e  tube DAC 21 as a relaxation  circuit (fre
quency of relaxations about 60 c/s). The detection occurs on the diodic p a r t o f 
th e  tube  DAC 21. The po ten tiom eter 1 MS2 enables a  linear change of DC voltage 
between the electrodes of th e  counter. The G— M counter is of the  type  used in 
the  laboratory  of P rof. M. Miqsowiez, w orking on the  voltage range’ from 960 to  
1260 volts. To cover th is wide working range of the  counter, th e  potentiom eter 
( lM fl)  gives the  change of voltage from 800 to 1400 volts. Changing the fre-'
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quency of th e  relaxation, or by  using a coil haying a higher relation of .the in 
ductance to  its  self-capacity, i t  is possible to  ob ta in  in onr circuit a much higher 
DC voltage (up to  3000 volts).

The ap p a ra tu s  is independent of line voltage and  easily transportab le 
owing to  the  use of th e  b a tte ry  supply, which a t  th e  sam e tim e gives steady  
w ork of th e  apparatus.

Sur lès spectres ramaniens des mélanges de pyridine et de 
l’acide acétique

E o m a n  M i e r z e c k i  

L ’In s titu t do Physique E xpérim entale de l’U niversité de Varsovie

Juin 13, 1952

P a r  l’étude des spectres ram aniens des mélanges de pyridine e t de l ’acide 
acétique on a mis en évidence les changem ent des fréquences propres des m olé
cules aussi que l’apparition  des fréquences nouvelles. Cette m éthode m e tta n t en 
évidence les m odifications des fréquences perm et d’étud ier p lus profondem ent les 
effets des associations moléculaires. Les m éthodes usuelles, u tilisan t les mesures 
de tension de vapeur, de parachore, de réfraction moléculaire ne donnent que les 
.effets globaux.

De ce po in t de vue on a étudié les spectres ram aniens des mélanges de 
pyridine et de l’acide acétique contenant 61,0, 48,3, 41,4, 30.4, et 22,3°/o de P yri
dine p a r mole. Le fa it le plus m arquant aparaissan t dans les spectres ram aniens 
de ces mélanges est la  présence d ’une raie nouvelle Av  =  1005 cm- *. Même dans 
e m élange con tenan t 61,0°/o de pyrid ine la raie nouvelle es plus intense que les 
raies plus intenses de pyridine Av =  990,5 e t 1030,7 cm -1. D ans les solutions de 
pyridine p lus diluées l’intensité de ces deux raies dim inue tandis que la  raie nou
velle reste la  plus intense du spectre. En outre  dans les spectres ram aniens de 
ces mélanges on observe une raie nouvelle de fréquence di>=881 cm—1.

En com parant les spectres ram aniens de pyridine, de l’acide acétique et 
des mélanges on observe aussi les déplacem ent suivants des raies:

Les raies de p y r id in e . d v = 6 5 0 ,9, 990,5, 1030,7 cm-1  et la raie nouvelle 
Av  =  1005 cm-1  ont dans les mélanges des fréquences augm entées. L ’augm entations 
passe p ar un m axim um  dans un mélange de concentration voisine de 40°/o de 
pyridine.

D ans les mélanges la  fréquence de la  raie de pyridine Av — 3056,4 augm ente 
d ’une façon m anifeste e t celles des raies Av  =  1217,6 et 1594,4 cm-1 sont diminuées.

L a fréquence de la raie de l’acide acétique Av — 2943,5 cm-1  est diminuée 
dans les solutions e t celles des raies Av  =  3046,9 e t 3126,3 cm-1  sont augm entées.

U ne publication plus étendue va apparaitre  dans A cta Physica Polonica.
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The Existence of two OH-groups in H 2S 0 4 Molecules Verified

The scattering of slow neutrons by m olecular gases is well accounted for 
by  the  theory of Sachs and T e lle r1. This theory  sta tes th a t a neutron being 
scattered  by  a p ro ton  bound in  a molecule m ay cause a ro ta tion  of th e  whole 
molecule. The cross section for th e  scattering  of a neutron by  th is  bound proton is

where u00=4ffH(cH is the cross section for th e  scattering  of slow neutrons by free 
p ro tons; cH= 2 0 .1 0 ~ 24 cm2), T a, are term s depending on the energy of the
neutrons an d  the molecules as well as th e  Maxwellian velocity distribution of 
th e  neutrons, / * =  + i“ 2+ : “ ))> a n ( l  ," i>  fh< <"3 are the  characteristic values of
a tensor constructed in the following m anner:

W e define a so called mass tensor of a molecule (M ) by

where i , j , k =  1 ,2 ,3 ; r , , r 2, r 3 are the coordinates of the  proton as referred to  the 
principal axes of in te rtia : J 1( J 2, 1 3 are the characteristic values of the inertia 
tensor of th e  molecule, M n is th e  mass of th e  molecule.

W e define the  dimensionless tensor n  = m M ~ x, where to is the mass of the 
proton. The characteristic values of th is tensor are % . n 2. « s.

Now, we define fiv  p 2, <k3 by

Comparison w ith  experim ent shows th a t th e  theory  of Sachs and  Teller 
m ay be also applied to the  scattering  of slow neutrons by some liquids. In  this 
case, however, one m ust replace {T0+  T x + ...) in the  equation of Sachs and 
Teller by  1, so th a t

an d  th e  value obtained by C arro l2 is ^  =  4 8 . 10 24 cm2. 

Sim ilarly for H 20  molecules: ■?!1 =  0 , « 2 =  0,535, » 3 =  1

ctH,0= • 10~24°m2

1 R. G. S a c h s  and E. T e l le r ,  Phys. Rev. 60, 18 (1941).
2 H . C a r ro l ,  Phys. Rev. 60, 702 (1941).

by the Scattering of Thermal Neutrons
J . A . J a n ik

Physical L aboratory , Jagellonian U niversity, Kraków

August 15, 1952

a =  (7co(l«] ft2 Hsft)'1' (T 0 + T x + ...) ,

1 1 1

t'  =  /t 00( lK  1 t*Yh '

F or the II2 molecules for exam ple: n 1= 0 ,5 ,  n 2 =  l ,  « 3 =  1

^ = 4 8 , 6 .  10-24 cm 2



Leiters to the Editor 331

and  th e  value obtained by R ossel3 is vjj2o = 8 5 ,5 .  10 24 cm2, and  by th e  a u th o r 4 

<rHjQ =  81,9 . 10~ 24 cm2.
In  his w ork on the influence of the  electrolytic dissociation and the hy d ra

ta tio n  of I I 2S 0 4 molecules for the  scattering  of therm al nentrons the  au thor 
obtained th e  value (1,26 ±  0,03) cm- 1  for th e  absorption coefficient of therm al 
neutrons in th e  pure H 2S 0 4 4. I t  seems to  be possib le to obtain  th is value theore ti
cally from  the theory  of Sachs and Teller.

The structu ra l form ula for the  H 2S 0 4 molecule is

H-°W °
H -0  ^  0

T here are m any chem ical reasons for the  existence of two OH groups in the 
H 2S 0 4 molecule. The hydrogen atom s of these OH groups have probably  the 
possibility of ro tation  arround  the  SO axis and  the therm al nc'utron scattered
by  these hydrogen nuclei m ay produce th is ro tation .

The characteristic values of th e  tensor n  belonging to  these OH group are 
n 1 =  0, n t — 0, «3 =  1 . therefore

o =  51,2 . 10“ 24/proton.

The theoretically  obtained cross section for the  whole molecule is then 

°H,S04 =  (5 1 ,2 + 5 1 ,2 + 1 ,5 + 4  . 3,8) . 10-24 cm2 =  119,1 . lO“ 24 cm 2 

as o-g =  1,5 . 10“ 24 cm2 and  o0 =  3,8 . 1 0~ 24 cm2.

The absorption coefficient is
OQ

where q is the  density of H 2S 0 4 and M  th e  mass of the H2S 0 4 molecule.

Inserting  a = 0 ,H1so1’ we get
fi — 1,29 cm- 1

in agreem ent w ith th e  experim entally  obtained value.

A Remark on the Dependence of the Cross-section for Pair 
Production by Photons on the Atomic Number

B r o n is l a w  Ś r e d n i  a  wa  

I n stitu te  of Theoretical Physics, Jagellonian U niversity , Kraków
October 10, 1952

In  allmost all papers concerning electron pair creation by photons in th e  
Coulomb field of th e  nucleus only term s proportional to  the  square of the  atom ic 
num ber Z  are calculated. I t  seems th a t  only Jäg er and Hulme 1 proceeded fu rth e r

3 J .  R o s s e l,  Helv. Phys. A cta 20, 105 (1947).
4 J .  A. J a n ik ,  Acta Pliys. Polonica 11, 146 (1952).
x J ä g e r  J . C, and  H u lm e  H. R., Proc. Roy. Soc., 153, 443(1936) see also 

G ro s h e v  L. V., T rud. Piz. In st. I l l ,  118 (1945).
Acta Physica Polonica 2 2
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and  got also th e  £ 4-term . Their form ula for the to ta l cross-section for pa ir 
creation has the form

■where a and  b are constants.
The au tho r tried  to  calculate th e  term s proportional to  higher powers of Z  

th a n  th e  second one using Dysons 2 formalism of quantum  electrodynam ics, and 
neglecting rad ia tion  reaction and screening. The ¿ '-m atrix  for th is process in 
cluding term s p roportional to Z  and Z 2 is

and ev is the polarization vector, b * —  the  annihilation  operator of photons of 
m om entum  k and

are th e  com ponents of th e  ex ternal Coulomb potential.
F eynm an graphs for U1 are given in  Fig. l . a , b ,  and for U2 in  Fig. l , c ,  d, e.

where

E \ x )  — — ie  ip(x) y f‘ y(x ) A ^(x ), H e=  —• ie  i)i(x) tf>(x) Agn {x) 

A ‘*{x) =  A vi e  , A v£ = e v bk

j ' xt= 0 ,  A

/ I /
c 'k a  'k e

/ /
• k a 'k 6 ' k

Fig. 1

Com puting U 1 +  Ut , one gets in th e  extrem e rela tiv istic case

Ux +  Ut =  e, {A (p i -  k x)yp+ y xl y p-

+ n>P+ rlXi fp- + C(p+~ b * yP+ yxilxi yP-
+  D (px - k x ) DK v P+ y ^ ,xl y p-  +  E F xx w +  yWfi i  W -

(1)

2 D y s o n  J .  P ., Phys. Rev. 75, 486 (1949) and  75, 173'6 (1949).
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■wliere y*li =  y ^ y  yK etc. i , k  — 1 , 2, 3; X, p,=  1, 2, 3, 4, y ^ . ,  q>p-  are creation and 
annihilation operators for electrons w ith the  corresponding m om enta p + , p _  and

in  eZ Z b £  . E  4 n e * Z b j
(p+ + P - —k f  k^pit ’ (p+ +  p^—ihfkP p$ 1 ’

2 n Z 2es b i  . ^  : 2 n Z 2e5b i  . „  4rc2Z V .
O  =  — ---------------------------- I f  D  —  - f -  --------------------- - 1 y Jej =   -------------------  i ,

p - k ^ p t f .  p+kPptL p+

/ s'* 1
d Q — — — —= — — =P----- —2 2 . s'“ =  (S , ip - ) ,  I s I =  p

(s +  p - f  +  x2 ( s — p + + k , 2 +  r2 P~

D^* d itto  changing p+  P  p _ ,

2̂ V = f d Q    j ■ 7T 1 ~ 2---- 2 (- t ~ f )q\  | g | = p,
J  ( q— p + f  +  « ( q - ~ p + k l2 +  x2 \ k  —  q \ p + l ? l . P+’

where d £> =  sin e d d -d fi .  Here an  auxiliary  mass x has been added to  m ake the  
integrals convergent. The in tegrals B /* and can be reduced to  ellipti cand ele
m entary  integrals.

Squaring (1) and sum m ing over both directions of polarization of the pho
tons one gets term s proportional to  Z 2 an d  Z i , whereas th e  term s proportional to 
Z s vanish. The term s proportional to  Z 2 give exactly  the  B ethe-H eitler form ula 3.

8 B e th e  H . A. and H e i t l e r  W ., Proc. Eoy. Soc. 146, 83 (1934).
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