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INTRODUCTION

Many modern digital instruments are designated for delivering suitably accurate
samples of varying in time measuring signals — they are called sampling instruments
[J14]. Such signals are deformed by the analog parts of the instruments [J14, M2]
because of both nonlinearities of converters and the dynamic properties of them.
For this reason, the samples of the signal obtained in the output of the analog part of
a sampling instrument can differ substantially from the suitable instantaneous values
of the input signal. The aim of the signal reconstruction is to process the output
samples of the analog part in such a way as to obtain enough accurate values of
the samples of in the instrument input [J14, M3, M4].

In a sampling instrument, an analog input signal is usually converted to a voltage,
which is sampled, and then the values of the samples are measured by an analog-to-
-digital (AD) converter [J14]. The obtained digital results are processed by
a microprocessor or a microcontroller accordingly with static and dynamic
reconstruction algorithms oriented to achieving minimum calculation times. This
enables real-time work of the instrument, which means that all calculations are
performed in the time between successive sampling instants. This causes a sampling
instrument to deliver in its output samples of the input signal with a frequency that
depends on the instrument sampling period.

We can point to two basic ways of building the reconstruction algorithms
dependently on mathematical tools used to model metrological properties of analog
converters of the instruments. The first way, called analytical, consists in determining
expressions that are directly coded as programs performed by a processor [J9, S3].
The parameters of the expressions are determined on the basis of measured data
obtained during an identification process of the analog conversion model. The second
way basis on properties of artificial neural networks, parameters of which are
determined in a learning process of them by using these data [C1l, C2, R5, R7].
The basic difference between these ways consists in obtaining the models: a neural
network builds them themselves, while parameters of expressions that create the model
are coded by a programmer.
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It should be noticed that both mentioned ways considered here are performed, in
the final stage, by a processor because activity of the neural networks is treated in this
book as execution of a suitable program. In the real-time mode, the execution time of
the reconstruction program should be as short as possible, which can be achieved in
practice by applying linear segmental approximations of nonlinear functions and using
look-up tables to store their parameters [R10, S4, W1]. This method is usable for both
considered types of reconstruction algorithms because it enables the neural
reconstruction by using microcontrollers.

The presented algorithms are limited to the simplest numerical forms, not only to
enable their realization in real-time. The second reason, even more important, is
connected with analysis of inaccuracy of the algorithms — simple forms of the algorithms
make error analyzing easier and more transparent from these error propagation points
of view [J9]. The method of the error description is independent of the forms of
the algorithms; therefore, conclusions from the error analysis carried out for a simple
reconstruction algorithm can be applied for every kind of it.

Reconstruction is carried out on signals in the digital form obtained as an effect of
sampling and quantization of analog signals [J14, M2]. It means that the properties of
the AD converter, being the measuring component of the sampling instrument, impose
a definition of a measurement error. The definition used for the error analysis is based
on the description of a measurement as a quantization process considered in
probabilistic categories [J7, J9]; thus, all errors of the reconstruction are treated as
random. The influence of errors on the inaccuracy of the sampling instrument is
described by an uncertainty considered here as the parameter of a set of error values
[J1, J10]. Based on the reconstructed value (estimate) of the input sample and
the uncertainty, representation of the sample (being a measurand [Y2], [M5]) in a form
of a numerical interval, called here an interval of a measurand, is proposed in Chapter 1.

The inaccuracy is interpreted as a property of a measuring instrument, which points
out that a measurement result differs from a true value of a measured quantity
(a measurand). Therefore, the inaccuracy characterizes the instrument qualitatively —
it measures better if its inaccuracy is lower. To describe the inaccuracy quantitatively,
one uses uncertainty [Y1] being a probabilistic measure of the error defined as
adifference between a true value of a measured quantity and its estimate obtainedas
a result of a suitable measurement process.



11

Due to the specificity of the errors that arise in the reconstruction process,
the general model of the analog conversion in the sampling instrument is decomposed
into two parts: static and dynamic, discussed in Chapter 2. In the same chapter, based
on the decomposed models, fundamentals of static and the dynamic reconstruction are
considered.

The static and dynamic reconstruction algorithms are presented in Chapters 3 and
4 for both analytical and neural forms of the algorithms. To discuss the metrological
properties of the algorithms, an exemplary sampling instrument is used, which is
dedicated to measuring instantaneous values of temperature that varies under time in
industrial conditions. Theoretical considerations are illustrated by examples that show
practical aspects of applications of sampling instruments. The results of probabilistic
experiments carried out using Monte Carlo method [K4] to determine error
distributions are the basis for analysis of factors that influence inaccuracy of
the exemplary sampling instrument.

The propagation of errors from the input to the output of the instrument is
described in Chapter 5 on the basis of the error propagation model, which enables
tracking changes in distributions of different kinds of errors during the processing of
measurement data by the reconstruction algorithms. The final effect of the application
of the error propagation model is its use in calculating the uncertainty of
the reconstructed signal samples obtained in the instrument output.

The last Chapter 6 is devoted to analysisof the execution time of the reconstruction
algorithms by microcontrollers that realize them both in the programmed and neural
forms. The analysis results make it possible to evaluate their usefulness for the real-
-time reconstruction for varying in time analog signals.






1. MEASUREMENT PROCESS IN SAMPLING INSTRUMENT

Generally, a signal reconstruction is that kind of the measurement process which
consists in determination of the signal at the input of an instrument on the basis of
the measurement results of the signal at the output of its analog part [J9, MA4].
The reconstruction performed by a sampling instrument is carried out in a digital way,
I.e. instantaneous values (samples) of the instrument input signal are calculated on
the basis of measurement results being indications of an AD converter, which
measures samples of the signal after its conversion by the analog part of
the instrument. The general structure of the sampling instrument is shown in Fig. 1.1.

y(t) R @ A
X(t) Sensor y(t) A N, (&) X(t,)
Conditioning | Sampler Digital processing
g~ Converter
Circuits J L
_/ —
Analog conversion Digitalization Reconstruction

Fig. 1.1. General structure of the sampling instrument

As presented in Fig. 1.1, the sampling instrument consists of three parts. The first part
performs the analog conversion of the input analog signal x(t), varying in time t, into
the electrical signal y(t) (usually a voltage or a current). For this purpose,
the appropriate sensor and signal conditioning circuits are used. In the second part,
digitalization of the signal y(t) is carried out, which consists in sampling the signal y(t)
and next, in quantization of the samples by an AD converter. The sampling is
performed at instants tx = kT, where k is the sample number, T the sampling period.
The quantization result of the sample y(tk) is obtained in the form of an indication
nq(ts), which determines the number of quanta assigned to the sample y(tk) [J5, J9].
In the last part of the sampling instrument, the estimate X(t ) of the instantaneous

value (sample) of the input signal at the instant tx is calculated by using areconstruction
algorithm, which uses one indication or a sequence of them to obtain one estimate.
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Asampling instrument can be used as an element of a measuring system and as an
individual device. In both applications, it can work in batch mode or in real-time
mode. In batch mode, a sequence of indications is collected at first and, at any time,
they are used to reconstruct a sequence of the input signal samples. In the real-time
mode, the instrument aims at current delivering accurate enough estimates of the input
signal samples on the basis of the measurement results of the samples [R7].
If asampling instrument works in real-time, it repeats its activity between succeeding
instants t« and tk+1, i.e. Iin the sampling period T. Independently of the mode,
the obtained estimates have to be treated as measurement results of the input samples.
This means that values of the estimates have to be close enough to the suitable true
values of the input signal samples, and this property should be described quantitatively
in categories of inaccuracy. In [Y1] a measurand is defined as “specific quantity
subject to measurement”. Accordingly with this definition, one input sample is treated
in this book as the measurand. The measured (input) quantity of the sampling
instrument is represented by a series of samples, the estimates of which are results of
the reconstruction. The inaccuracy of every reconstructed sample is described by its
uncertainty interval calculated on the basis of errors that burden the estimate [J10].
Avalue of the estimate and the uncertainty interval determine an interval of
the measurand, which is a probabilistic representation of the input sample after its
measurement on principle of the reconstruction.

1.1. Error of measurement result

A single realization of a reconstruction procedure results in obtaining one estimate
of the input signal sample. This estimate is defined as a number that is the closest
to true value of the input signal sample under the measurement conditions, in which
the sampling instrument works. Such a definition means that the errors that burden
the estimate take the lowest values possible to obtain under the assumption that all
errors described deterministically are corrected (eliminated). This correction causes
that the remaining errors of the estimate are of random nature. To make their values as
low as possible, it is necessary to remove the constant component from the set that
contains the error values. The set without this component is the basis of determination
of the uncertainty interval, which expresses quantitatively the inaccuracy of every
estimate obtained as a result of the signal reconstruction.
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As in Fig. 1.1, all measurement results used for the signal reconstruction are
obtained from an AD converter; thus, considerations dealing with a description of
the errors that arise during the reconstruction should be based on analysis of
the metrological properties of the AD conversion. The AD converter, considered as
a measuring instrument, compares the measured quantity with a standard, which is
built from quanta which are elementary standards with the same values considerably
less than the range of the converter [J9]. A simple way of the quantization analysis,
representative of all AD converters, can be presented on an example of the flash AD
converter shown in Fig. 1.2, which is often applied to measure high-frequency signals.

vy ]ref
o

Rq

Ry

7Y

Encoder f[——»

i i il
7YY

Fig. 1.2. General scheme of flash AD converter

The flash AD converter compares instantaneous valuesof the input voltage signal y
with the set of quanta obtained as drops of the voltages on the resistors connected in
the chain. The resistors with the same nominal values Rq are supplied by the accurate
current source lr. The state of set of the electronic comparators denoted as C is
determined at the output of the AD converter as the number nq of quanta assigned to
the instantaneous current value (sample) of y.

Generally, based on the presented example, one defines the quantization as
comparing the measured quantity with the standard composed of quanta that are a set
of elementary standards, the values of which are the same and significantly less than
the quantizer measuring range. The quantized signal is denoted here as y (see Fig. 1.2).
For varying in time signals, their physical carriers are, as a rule, voltages (as in
the exemplary AD converter) or currents [J9].
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The mathematical model of quantization, which describes the relationship between
the number nq obtained as the result at the output of the AD converter and the sample
value of the signal y (sampling instant is not taken into account), can be written as:

n, = ent[lj (1.1)
q

where the symbol “ent” denotes the function “entier”, the value of which is equal to
the integer part of its argument, g is the quantum value. Multiplying number nq by
the value of g, one obtains the row result of the quantization (measurement):

y=q-n, (1.2)

Example 1.1. Let us take that the standard of the exemplary AD converter consists of
Ng =28 =256 resistors having the same value Rq=100Q and supplied by
the reference current Ilef=100 pA. This means that the quantum value is:
q = lefRq = 100-100-10°° = 0.01 V and the voltage range of the converter is from 0 to
Ng'q =256-0.01 =2.56 V. If the true value of the sample is equal, for example,
y = 1.577 V, the number obtained as the quantization result is:

n, =ent| L |= em(@j ~157
q 0.01

In this case, the row measurement result takes the value:

y=q-n,=001-157 =157 V
Analyzing the scheme from Fig. 1.2, one can state that the quantization result points
out the maximum number of quanta, the sum of which is less than the value of

the measured quantity (sample). This means that the true value of the measured
quantity y meets the inequality:

na<y=<(n,+1)q (1.3)

The effect of the quantization process described by the expression (1.3) can be
graphically illustrated as shown in Fig. 1.3.

Fig. 1.3. Graphical interpretation of a quantization result
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Accordingly with inequality (1.3), the real (true) value y of the quantized quantity is in
the interval:

y = [nqq, (nc| +1)q] (1.4)

containing the real numbers ® It means that the quantization process assigns
the interval of real numbers (1.4) to the true value y of the measured quantity.
The number nq describes the row measurement result obtained by using an AD
converter; however, one should emphasize that the mathematical model of this result
takes the form of the interval (1.4). Based on Eqg. (1.2), this interval may be written as:

y=[y. y+a] =y+[0, d] (1.5)
Inequality (1.3) can be converted to the form:

O<y-ng<q (1.6)

and, after introducing Eq. (1.2) to it, written as:
O<y-y<q 1.7)

Inequality (1.7) is very important from error analysis point of view because, based
on it, the definition of the measurement error e can be obtained. Although this
definition is derived from the mathematical description of the quantization, it is of
universal character and can be used for every measurement result. From (1.7), we
have:

e=y-y (1.8)

which means that the measurement error in the considered case is defined as
the difference between a true value y of the measured quantity and the value y

obtained as a row measurement result of y.

The conception of error is commonly used in measurement practice to describe
inaccuracy of measurements both in the phase of planning measurement experiments
and in the analysis of metrological properties of the obtained results. One should
emphasize that the definition (1.8) can be used not only in the second case, i.e. after
a measurement realization but also for the error analysis as illustrated by Experiments
1and 2.

Accordingly with Egs. (1.7) and (1.8), the values of the quantization error are
somewhere between 0 and q; therefore, these values determine the limits of
the interval in the form of Eq. (1.5). It means that definition (1.8) suggests description
of a measurement result in the interval form, as it is presented in Section 1.2.
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Realizations of measurement error can be described in different ways depending on
their applications. A deterministic description is very useful in the case where
a relationship between the error and the measured quantity or another quantity being
a source of this error is considered. For example, properties of the quantization error,
which, accordingly with Egs. (1.1), (1.2) and (1.8), are described by the deterministic
equation:

eqzy—V=y—nqq=y—qent[%j (L9)

and, in the graphical form, can be presented as in Fig. 1.4.
€. A
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Fig. 1.4. Dependence of quantization error eq on the measured quantity y expressed in values of

guantum ¢ determined for 8 beginning values of the standard with the quantum structure
The relationship between y and eq presented in Fig. 1.4 shows that the values of
the quantization error are strictly connected to the quantum structure of the standard.
Such a deterministic description of the error as in Fig. 1.4 is useful for carrying out
analysis of the measurement process before its realization. To describe an error after
performing a measurement, the best way is to determine the dependence of
the frequency of the error occurrence in relation to the error values. One obtains a set
of possible values of the error in selected measurement conditions, which is here called
as the set of error values. It contains information about frequency of occurrence of an
error values that can burden a measurement result.

There are two ways of obtaining the set of error values: deterministic and
probabilistic (statistical). The basis of the first way is such a deterministic function as
presented in Fig. 1.4, which is a dependence of the error on the measured quantity.
The second way consists in carrying out a physical (measurement) or a simulation
experiment to obtain a representative set of error values. This way is usable if
deterministic characteristics of an error are difficult to obtain in real physical
conditions, which causes that the most effective tool to determine the set of error
values consists in carrying out a probabilistic simulation using Monte Carlo method.

Both ways are presented on examples described in the following experiments
performed for the exemplary AD converter.
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Experiment 1.1. Let us use the characteristic of Fig. 1.4 to determine the set of
quantization error valuesof the AD converter described in Example 1.1. Taking into
account that the error values change periodically (the period is equal to the quantum
value g =0.01 V) one can use only one period to achieve this aim. Determining, in
the interval from 0 to g, 100,000 points uniformly distributed and then, calculating
the error values for these points, one obtains the set of values which, in histogram
form, is shown in Fig. 1.5a with the assumption that the number of histogram classes
is equal to 100.

Experiment 1.2. Let us take the Monte Carlo method to determine the set of
the quantization error values. The experiment was carried out in 100 000 steps with
the assumption that the input voltage of the exemplary AD converter is sampled
randomly in the AD converter range from 0 to q'28 = 0.01:256 = 2.56 V. In every step,
first, a value of the input quantity y is taken from the ADC range with the assumption
that all values have the same probability, i.e., the population of these values is
described by the rectangular distribution. Every value of y is quantized accordingly
with Eqg. (1.1); next, the error value is calculated with using Eq. (1.9) and is located in
the set of the quantization error values. After the experiment, the obtained set of error
values is shown in Fig. 1.6b in the form of a histogram.

a) b)

Number of occurence Number of occurence
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Fig. 1.5. Histograms of the quantization error of the exemplary AD converter obtained: a) in the
deterministic way, b) by using the Monte Carlo method

The histograms, both this one from Fig. 1.5a and Fig. 1.5b, describe the same set

of error values, although these histograms have been obtained in different ways:

the first one in the deterministic way and the second in the probabilistic. From

the measurement practice point of view, these histograms differ in non-essential
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degree. Moreover, both histograms determine the frequency of the error occurrence;
therefore, they can be interpreted as discrete representations of probability density
functions. This means that a distribution of a set of error values can be described in
a discrete form by a histogram or in an analytical form by a probability density
function, which can be treated as an estimate of the suitable histogram.

The determination of a probability density function of an error can be performed on
the basis of the histogram, as this from Fig. 1.6, or in an analytical way. Every
probability density function g(e), i.e. of any error e, has to fulfill the normalizing
expression [P1], accordingly with which we have:

Tg(e)de =1 (1.10)

For the rectangular distribution, as results from Fig. 1.5, the probability density
function of the error eq is constant in the interval from 0 to g and equal to zero outside
these limits. Denoting this constant value as a, one obtains on the basis of (1.10) that:

q

[ade, =1 (1.11)
0
from which it is:
aq=1 (1.12)
Therefore, we have:
a= 1 (1.13)
q

The probability density function determined for the quantization error in the
presented analytical way is shown in Fig. 1.6.

‘ (’5( ?q)
lq
L )q
} —>

q
Fig. 1.6. Probability density function of the quantization error presented in Fig. 1.4

As result from Fig. 1.5a, the error can be treated as random, even if the basis of such
a perception comes from its primary description, which is deterministic. In
measurement practice, a quantization result is burdened by errors connected with
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several physical phenomena of random character, mainly by noise. It causes one to
assume that for further considerations all measurement errors are described in
probabilistic categories, which means that every error is expressed by its realizations
taken randomly from the set containing possible values of the error.

The row measurement result is not the best representation of the true value of

the measurand because the error burdening this result may contain systematic

components, which increases absolute values of the error [J12]. This component can be

eliminated from the row result by subtracting a correction from every value of the error.
From Eq. (1.8), which definesthe error of the row measurement result ¥, it results

that the measurand may be described in the form of the equation:
y=y+e,_. (1.14)
where, in place of the general error symbol e, the error erw Of the row result is used.
After introducing the correction c to Eqg. (1.14), we have:
y=y+c+e_, —C (1.15)
The expression:
e=e —cC (1.16)

that describes the error without the systematic component takes the least absolute
values. It means that the corrected measurement result y burdened by this error is

closest to the true value from all that are possible to obtain in selected measurement
conditions. Accordingly with Eq. (1.15), the corrected result § is such an estimate of

the measurement result, which is described as:
y=V+cC (1.17)

The systematic component ¢ of the random error erw is defined as the expected
value:

c=E(e,,) (1.18)

where the population of this error is represented by the set of the error values.
If the probability density function g(erow) is known, the expected value is defined as:

E(erow ) = ]O- g (erow )eTOW derow (1' 19)
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For the set with limited error values, the expected value is estimated by the average

value:
N

Ee,n) =1y 200 ) (1.20)

where erow(i) is a realization of the error, i is the number of the error values in the set,
N is the total number of the error values and N < oo.

Example 1.3. Calculating the expected value of the quantization error described by
the probability density function of Fig. 1.6, we have:

Ele,)=[ale, )e, de, ::"[e de, :% (1.21)

For the AD converter described in Example 1.1, the expected value (1.21) of
the quantization error is equal: g/2 = 0.01/2 = 5-1073 V. The same value one obtains on
the basis of Eq. (1.20) after using it for calculation of the average value of the error in
the form of the histogram presented in Figs. 1.6a or 1.6b.

Accordingly with Eq. (1.16), elimination of the systematic component from a set of
error values consist in subtraction the expected value from all realizations of the error.
Subtracting the value (1.21) from each value of the error with the distribution
described by Fig. 1.6, we obtain the symmetrical probability density function shown in
Fig. 1.7. The absolute values of this error are in the interval from — g/2 to g/2 and they
have minimal values among those that are possible to obtain if measurements using an
AD converter are performed for the quantum value equal to g.

A g(eq)
/g
—
—q/2 q/2

Fig. 1.7. Distribution of the quantization error after correction of the systematic component

Accordingly with Eqg. (1.21), the correction appropriate for the row quantization error
is ¢ = E(eq) = g/2, which means that the estimate (1.17) of a single quantization result
IS expressed as:
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y=y+c=q- ent(zj LA q{en{zj - l} (1.22)
q) 2 q) 2

Analysis of this expression leads to the conclusion that the correction of
the quantization results can be done both by adding 0.5 to an AD converter indication
and by introducing the correction c to the row quantization result.

From Egs. (1.15), (1.16) and (1.17), it results that the error of the corrected result is
defined as:

e=y-y (1.23)

I.e. as the difference between a true value of a measurand and its estimate devoid
systematic components. First of all, this definition is the basis for determining
the uncertainty of a single measurement result, which is presented in the next section.

The sampling instrument delivers in its output a sequence of the estimates
dedicated for sampling instants t, k is the number of the sample, k=0, 1, .... Based on
Eq. (1.23), the error burdening the estimate at instant tx is described as:

e(tk ) = y(tk ) - y(tk ) (1.24)

The probabilistic description of this error maybe the same for subsequent samples or
change if measurement conditions under which the sampling instrument works vary
over time.

The error definition (1.24) is widely used in the analysis of errors that burden
the estimate. But for the analysis of dynamic errors, it is necessary to describe
quantities as functions of time. In these cases, the error is defined in deterministic
categories in the analog form as:

e(t)=x(t)- y(t) (1.25)

where x(t) is the input signal of a converter and y(t) is its output signal. In this
definition, the input signal represents true values of the converted signal, while
the output signal represents the values that can be potentially measured. Every signal is
described as functions of time t.

The deterministic form (1.25) of the error can be the basis of its probabilistic
description. To obtain such a description, one uses the Monte Carlo method. The error
is randomly sampled in its period, and the obtained samples are located in the set of
error values, on the basis of which probabilistic parameters of the uncertainty interval
are calculated.
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1.2. Determination of measurand interval

Distribution of the total error contains complete probabilistic information about
inaccuracy of the measurand estimate; thus, it should be the basis of determination
such a kind of parameter which describes this inaccuracy quantitatively in probabilistic
categories. The commonly used parameter is defined in [Y1] as uncertainty of
measurement understood as ““a parameter, associated with the result of a measurement,
that characterizes the dispersion of the values that could reasonably be attributed to
the measurand”. In a sampling instrument, the measurand is a single sample of
the reconstructed signal, which is expressed by its estimate obtained as a result of
a single performance of a reconstruction process. The probabilistic properties of
the estimate are described by an uncertainty interval which is determined on the basis
of set of the total error values. This means that uncertainty of a reconstruction result is
treated in this book more widely than in the mentioned definition. Such an approach is
connected with the fact that characteristics of some elements of the sampling
instrument can be nonlinear which causes non-symmetrical distributions of some
errors. If nonlinearity is significant, the inaccuracy cannot be expressed by one
parameter of the error set.

In general, independently of the symmetricity of the error distribution, the error
influence on the inaccuracy of the estimate is described as the uncertainty interval
[J7, J10] that is defined as such a set of real numbers, which contains the true value of
the measured quantity y with a given probability determined by the confidence level p.
The uncertainty interval is built in relation to the known estimate, which means that
the definition of this interval may be formally written as follows:

Plus(y-y)<u]=p (1.26)
where P denotes probability, u and U are the limits of the uncertainty interval, low

and high, respectively. Accordingly with this definition, the probability of occurence
in the interval the difference between the mesurand value and its estimate is equal to p.

The difference in round brackets of the expression (1.26) defines the measurement
error (1.8), which means that the limits of the uncertainty interval can be determined as
parameters of the error distribution. Assuming that the error values outside
the uncertainty interval on the left and on the right are probable at the same level p/2,
one can calculate the lower limit of the interval as:
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Ig(e)de _1op (1.27)
and the upper one as:
Tg(e)de _i-p (1.28)

where g(e) is the probability density function of the error.
From expression (1.26), it results that inequality:

u<(y-y)<u (1.29)
is fulfilled with probability p. After conversion of inequality (1.29), one obtains
the expression:

U+y<y<u+y (1.30)
on the basis of which the measurand interval is defined as:

>7=[X, y|=[y+u, y+u] (1.31)
This interval contains the true value of y with probability p; thus, it can be treated as
the interval representation of the measurandy after performing its measurement and
calculating the estimate of the measurement result.

The interval (1.31) can be expressed as:
y=9-+[u, 0] (132)

which means that it is the sum of the estimate and the interval:

=u, U] (1.33)
called an uncertainty interval. Taking the above into account, expression (1.32) can be

interpreted as an interval model of a measurand after its measurement. In this model,
the uncertainty interval (1.33) describes inaccuracy of the estimate y.

Example 1.4. Let us determine the measurand interval of the voltage sample quantized
by the AD converter in the way described in Example 1.1. The exemplary row
measurement result is: y=157V and the quantum value q=0.01V. To obtain

the estimate of the measurand that is the true value of the voltage sample, one should
correct this result by adding to it the expected value of the quantization error which,
accordingly with Eq. (1.21), is equal: ¢ =q/2 =0.01/2 VV = 0.005 V. After the correction,
the estimate takes the value:

y=y+c=157+0.005=1.575 V (1.34)
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The probability density function of the quantization error, shown in Fig. 1.7, is
described as:

for —

N |Q

>q>4
2 (1.35)

in the other cases

The lower limit of the uncertainty interval, determined for the function (1.35)
accordingly with Eq. (1.27), is calculated from the equation:

1-p

de="—+ 1.36
5 (1.36)

| =
o |-

N

For the commonly used value of the confidence level p = 0,95 and the quantum value
equal to g =0.01V, one obtains from expression (1.35) that the value of the lower

limit is: u=—-4.75-10" V. The higher limit calculated in the same way on the basis of

expression (1.28) has the value: U =4.75-10"° V. Therefore, the uncertainty interval

is described as:
0=[u, 0]=[-4.75475]-10° Vv

thus, the measurement result expressed as the measurand interval has the form:
§ =9 +0=1575+[-4.75, 4.75]-10° V =[1.57025, 1.57975]V

In addition to the described limits, two other parameters can be used to characterize an
interval [N1]. The first one, called the middle of the interval, is defined as:

mid(y) = y ; ) (1.37)
and the second, the radius, as:
rad(V)= % (1.38)
Based on Eq. (1.31) and the definitions (1.35) and (1.36), one can write that:
mid (y):w: yﬂ%‘iz g+ mid (1) (1.39)
and:
rad(y) = 9+U;2_9:U;H:rad(ﬁ) (1.40)

From Eq. (1.40), it results that the measurand interval and the uncertainty interval have
the same radiuses.
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For the symmetrical distribution of the error as in Fig. (1.7), the absolute values of
the limits of the uncertainty interval are the same (see Example 1.4). Denoting these

values as:
u[=|al=u (1.41)
and taking into account that it is:
U=-u=u (1.42)
we have, from Eqg. (1.39), that the middle of such a symmetrical measurand interval is:
mid(y) = W — (1.43)
and, from Eq.(1.40), its radius is:
rad(y)= 74 ‘Z(V —u)_, (1.44)

This means that, for the symmetrical error, the middle of the measurand interval is

A

equal to the estimate § of the true value and the radius of this intervalis equal to u.

Thus, the measurand interval can be written as:

y=[y-u, §+u]=9+[-u, u (1.45)

The measurand interval (1.45) is described by two parameters: the estimate § and

the uncertainty u which, accordingly with [Y1] can be called an uncertainty of
a measurand. From Eq. (1.45), we see that the radius of the uncertainty interval is:

rad(if) = Ugg - _g_“) —u (1.46)

in the case considered. The middle of the interval takes the value:

u+U -u+u
2 2
For the symmetric error, the expression (1.26), which defines the uncertainty

mid({f) = =0 (1.47)

interval, can be written as the following expression:
Pl-u<(y-y)<u]=p (1.48)

which means that the uncertainty can be calculated on the basis of the probability
density function g(e) by solving the functional:

jg(e)de =p (1.49)
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Example 1.5. Using the functional (1.49) to determine the uncertainty for
the guantization error distribution presented in Fig. 1.7, one obtains the expression:

ide= p
%9

on the basis of which it is:

The confidence level most commonly used is p=0.95 [Y1, K3], for which
the uncertainty is called expanded and denoted as U. If we take q= 0.01V, this

uncertainty takes the value:

U= 0'7010.95 =4.75-10°V

The estimate of the exemplary mesurand is ¥ =1.575 V. Having given the uncertainty

value, one can write this measurand as the interval which can be presented in the form
shorter than in Example 1.2 as:

y=9+[-U, U]=9+U=1575+475.10°V

This means that for the symmetrical distribution of the error that burdens the estimate,
its inaccuracy can be described quantitatively by using only one parameter, i.e.
the measurement uncertainty.

1.3. Determination of total error distribution

In measurement practice, every obtained result is burdened by many errors, which
means that the total error should be treated as a composition of partial errors. Analyses
of the physical properties of errors arising in measurement chains that applied
quantization [J5, J9] let us treat these errors as additive; therefore, the total (combined)
error e can be described as the sum of partial errors e, €2, ..., €5

e=e +e,+...+¢€ (1.50)

where J is the number of all errors. In accordance to this equation, every realization of
the total error is the sum of suitable realizations of partial errors. For further
consideration, we assume that all partial errors are random and are devoid of
systematic components.
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Equation (1.50) is treated as the general error model. It is widely used in this book
in simulative experiments realized by using the Monte Carlo method because it
enables the composition of partial errors by adding its realizations at every step of
the experiment. The realization of the total error calculated on the basis of Eq. (1.50) is
located in the set of error values. The size of this set was assumed to be 100,000,
which is sufficient from the point of view of metrological experiments.This means that
after 100,000 steps, the obtained set is presented as a histogram that is treated as
a specific estimate of the probability density function of the total error. Based on this
histogram and using functionals (1.27) and (1.28), the parameters of the uncertainty
interval of the total error are calculated.

The Monte Carlo experiment is the most effective and simplest way for
the composition of errors in the measurement conditions which are analyzed in this
book. This is connected with the nonlinear properties of analog elements of
the exemplary sampling instrument considered in this book and the need for
a composition of different kind of errors such as static and dynamic errors. Analytical
description of nonlinear static errors is practically impossible, which causes
a simulative experiment to be the only way to obtain a distribution of the total error.

With the assumption that the partial errors are not correlated and they are described
by suitable probability density functions gi(e1), gz(€2), ..., 9i(es), the distribution of
the total error can be determined by using the expression:

g(e)=0,(6)®9,(,)®...®49,(e,) (1.51)

where ® denotes operation of the convolution [P1, J15]. Except for some simple
cases, the mathematical operations necessary to execute operations accordingly with
the expression (1.51) are sophisticated. Moreover, analytical descriptions of
distributions of errors arising in real measurement instruments are often very difficult
to obtain or even this is impossible. This property causes that the expression (1.51) is
used mainly in theoretical considerations because of its little usefulness in practice to
evaluate the inaccuracy of the measurement results.

Error analysis is often sufficient if one uses only standard deviations (or variances)
to describe relationships between error distributions. Accordingly with Eqg. (1.50),
the variance of the total error is the following sum of variances of the partial errors:

oc’=0’+0.+...+0° (1.52)
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in the case if the partial errors are uncorrelated. For correlated errors, the relationship
between variances can be generally described in the matrix form as follows [Y1, J6]:

o’ =0,Co, (1.53)
where:

6 =lo, o, ... of (1.54)

is the vector containing standard deviations of the partial errors. Matrix C is of
the form:

l Cl,2 ClJ
c 1 cee
c=| " . . . (1.55)
_CJ 1 Coo 1 |

where itis: cij =¢j,, I, ] = 1,..., J are correlation coefficients.

1.4. Random model of single measurement result in application to
algorithmic processing

The error definition (1.23) can be the basis for the determination of a random model of
a single measurement result. After transformation Eq. (1.23), we obtain the expression:

y=y+e (1.56)

accordingly with which a true value y of a measured quantity is the sum of its estimate
§ and a realization of a random error e which has no systematic component in

the sense of Eq.(1.16). Moreover, Eq. (1.56) means that the estimate contains
the same error value as error e but with the opposite sign; thus, a description of
probabilistic properties of the estimate can be obtained on the basis of a probability
density function of the error.

The model (1.56) is the basis for all algorithmic processing applied in
the reconstruction process that is performed in a sampling instrument. Let us denote as
R the arithmetical operations connected with a reconstruction algorithm, which
transform generally a series of n measurements results to one value of
the reconstructed sample. Based on the model (1.56), one can write for the linear
algorithms that it is:

R(y,)=R(¥, +&,)=R(9,)+R(,) (1.57)
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The expression R(yn) is a formula that describes the mathematical operations

performed by the algorithm on a series of n true values of the measured quantity. Thus,
if a sampling instrument is considered, this formulae describes one output result of
the reconstruction algorithm, i.e. the true value x(tk) of the reconstructed sample at
instant tx. Realization of the formulae results in obtaining this value which,
accordingly with Eq. (1.56), is the sum:

R(y,)=x(t)=%(t)+e (1.58)

where X(t,) is the estimate of the reconstructed sample, e denotes the error of this

estimate.
Based on Egs. (1.57) and (1.58), one obtains the equation:

Rt )+e=R(9,)+R(e,) (1.59)
which can be split into two expressions:

K(t,)=R(Y,) (1.60)
and
e=R(e,) (1.61)

The first expression generally describes mathematical operations carried out on
the series of estimates of measurement results to obtain one estimate of the reconstructed
sample. The second one (1.61) means that the same operations as in (1.60) are
performed on realizations en of the error that burden the estimates. These realizations
are taken from the same random population, which causes that the population of
resultant error depends both on the primary population and coefficients of
the algorithm.

In the case if the algorithm is a linear combination of constant coefficients and
none of the coefficients has an extremely high value, the Central Limit Theorem
[P1, Y1] is fulfilled, which means that the resultant population tends to a normal
distribution. Taking into account that the realizations of partial errors are from
the same distribution, the standard deviation of which is denoted as op, one can write
that it is:

a:\/(alap)2 +(a,0,) +...+(a,0,f =0,.Ja? +a +...+a’ (1.62)

where ¢ is the standard deviation of the resultant error that burdens the estimate of
the reconstructed sample, as, az,..., an are coefficients of the algorithm.
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The resultant error described by a normal distribution is symmetrical; thus,
the uncertainty interval can be characterized only by one parameter that is
the uncertainty u. In this case, the expanded uncertainty can be calculated on the basis
of the standard deviation by multiplying its value by the coverage factor k [Y1],
the value of which is equal to k=2 for the normal distribution. Taking this into
account and based on Eqg. (1.62), the expanded uncertainty of the estimate at the output
of the reconstruction algorithm in the form of linear combination of coefficients is
described as follows:

U=20=20p\/af+a§+...+a§ (1.63)

1.5. Final remarks

The concept of creating means of mathematical description of the inaccuracy of
the measurement result presented in this chapter is based on the definition of
measurement error determined in a deductive way, which is derived from the analysis
of the measurement process by quantization. This definition makes it possible to
express the inaccuracy of the result in the form of a measurand interval, which is
the sum of the measurand estimate and the uncertainty interval determined on the basis
of a probabilistic description of the total measurement error. The error definition is
also the starting point for obtaining a probabilistic model of the measurement result,
which enables determining the interval expression of the final inaccuracy of
algorithmic processing. The error model is a component of the model of
the measurement result and it determines the composition of random measurement
errors, thanks to which it is possible to analyze the propagation of various types of
errors during algorithmic processing.

The most effective way to obtain the distribution of the total error is the Monte
Carlo method, which can also be used when a non-linear processing of measurement
signals is performed. In the case of algorithmic processing of a series of measurement
data, the distribution of the total error is generally close to normal. Then
the uncertainty interval is determined by one parameter, i.e. uncertainty that can be
estimated from the standard deviation of the error distribution. If the total error
distribution is not normal, the uncertainty of the total error can be calculated from
the uncertainties of the partial errors using reductive interval arithmetic [J4, J6, J15],
which also allows correlations between partial errors to be taken into account.



2. MATHEMATICAL FUNDAMENTALS OF SIGNAL
RECONSTRUCTION

Generally, reconstruction, from the physical point of view, is treated as an inference
about a cause of a knowledge about its result [M2, S6]. Therefore, such an indirect
getting information about a physical reality is performed in two stages presented in
Fig. 2.1.

Processing y Reconstruction X

M M-

Fig. 2.1. The general structure ofreconstruction

Taking only physical quantities into account, the first stage from Fig. 2.1 is indirect
observation of the quantity x by using the measurable quantity y with the assumption
that the relation between y and x is known and generally described by a mathematical
model M. Thus, the first stage can be written as:

y =M(x) (2.1)

The second stage, that is the reconstruction, consists in solving the model M
inverse to M on the basis of measurement results of the quantity y. Operations
performed in this stage result in obtaining the output quantity X which is an estimate of
the observed quantity x. This stage can be described as:

x=M"(y) (2.2)
The composition of Egs. (2.1) and (2.2) leads to the expression:
% =M*[M(x)] = x (2.3)

according to which the output quantity X of the reconstruction chain from Fig. 2.1 is
equal to the input (being reconstructed) quantity x. If one takes the metrological point
of view into account, Eq. (2.3) means that the chain with reconstruction, as a whole,
realizes functionality of the ideal measuring converter, the output signal of which X is
equal to the input signal x in given measurement conditions.
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2.1. General description of reconstruction algorithm

A measurement conversion is always connected with arising of errors; therefore,
the reconstruction can be seen as elimination from the quantity y such errors which can
be deterministically described and contained by model M. Random errors that burden
the quantity y influence inaccuracy of the reconstruction. In the considerations
presented in this book, it is assumed that the influence of random errors is minimized,;
thus, the output quantity X is treated as the estimate of the input quantity x in this
sense.

Quantities x, y and X can be considered as signals, i.e., as varying over time t
quantities that are carriers of information about another quantity called a measurand.
Accordingly with the scheme of the sampling instrument presented in Fig.1.1, every
sample of the signal x(t) at the instant tk is the measurand. Its estimate X(t,) is

calculated using a reconstruction algorithm on the basis of one or more quantized
samples of the analog output signal y(t). The sequence of these samples necessary to
obtain one estimate X(t,) creates the measurement window shown in Fig. 2.2.

Lenght of window 7+

) |
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Fig. 2.2. Digital representation of a signal in the measurement window

Usually, the output signal y(t) is represented by a sequence of equally spaced samples,
which means that the distant between them is given by the sampling period Ts that is
constant and for K samples in the window its length is Tw = KTs. The window begins at
the instant k interpreted as the number of the first sample in the window as well as
the current number of the measurement window and it is: k=0,1,... . After
a realization of a single reconstruction, the index k is increased by 1 and the windowis
shifted one period Ts to the right. One should notice that in the case if
the reconstruction is performed in real-time, all the calculations have to be ended
before the window is shifted, i.e. in the time which is shorter than the sampling period Ts.
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Generally, a reconstruction algorithm denoted R is a series of calculations
performed on samples contained in the measurement window, which gives as
the result the single estimate X(t,) of the input signal sample, which is described as:

() =R{yt,,)i=01...,K-1 (2.4)

where Kk is the current number of the window, i =0, 1,..., K-1 is the current number of
the signal sample in the window.

The basic form of a reconstruction algorithm, resulting from expression (2.4),
consists in writing it as a linear combination of the output samples and coefficients.
The samples are measured on the principle of quatization, which results to obtaining
estimates of the output samples. This means that the reconstruction algorithm can be
written in the form of the equation:

R(k)=a,9k)+ak+1)+...+a 9k +K-1) (2.5)
in which the symbol t of time is omitted. In Eq. (2.5), %(k) denotes the estimate of
the reconstructed value of the input signal sample at the instant t, a,,a,...a,, are

coefficients of the algorithm and 9(k),9(k +1),...9(k + K —1) are estimates of

the quantized signal samples contained by the measurement window.
Describing the samples of the analog output signal as the vector:

Yo=[k) yk+1) ... gk+K-1)] (2.6)

and the vector of coefficient as:

A:[ao & ... aK—l]T (2.7)

where T denotes the transformation of the vector, one can write Eq. (2.5) in
the following matrix form:

(k)= Y A (2.8)
The vector of coefficients (2.7) of the reconstruction algorithm can be the same in
the succeeding reconstruction instants k, which means that the coefficients in this

vector are constant and the same for all succeeding windows. In this case, the number
k of the window can be omitted and algorithm (2.5) is written in the simpler form:

f=a,9(0)+ay@)+...+a_,9(K-1) (2.9)



36

The number K of samples in the window depends on the kind of reconstruction
algorithm. For a static reconstruction algorithm, the vector A reduces to one
coefficient ap (the window contains only one sample), which for a linear static
algorithm is constant. For a nonlinear static algorithm, values of a, depend on
a working point on astatic characteristics of an analog part in a sampling instrument.
If the characteristic is dependent on influence quantities, ap is a linear or nonlinear
function of them [L1, P2].

For a dynamic reconstruction algorithm, the window contains more than one
sample (for the simplest dynamic algorithms it is equal to 2) depending on that how
many samples is needed to calculate one input estimate with required accuracy.
The dynamic algorithm is linear if vector A is constant. If the coefficients change its
values depend on time or influence quantities, the reconstruction algorithm can be
considered as adaptive to actual measurement conditions [M7]. One can point to
further ways of the algorithm adaptation to the reconstruction requirements connected
with the fact that the number of samples in the window and the sampling period Ts can
change and in some cases the input signal can be sampled irregularly [G2]. Moreover,
a group of nonlinear algorithms one can be pointed that perform operations on
multiplicative forms of samples (for example, the algorithm used for calculation of
the effective value of a voltage processes squared samples) [J9].

Reconstruction algorithms can be realized by a processor or by an artificial neural
network [J16]. The algorithm in the form of a program needs a mathematical
description of the inverse model M (see Eqg. 1.2) as one or more equations, while
aneural network creates the algorithm itself on the basis of learning data.
Independently of the algorithm form, execution of a reconstruction process results in
the same estimate X(k) for the same input data, although its value and inaccuracy

depend on properties of the used algorithm.

The signal reconstruction can be carried out in batch mode if it is performed after
recording of a series of measurementresults or in real-time [R7, S1]. The algorithms
presented in the book are dedicated to realize them in real-time but the described
methods of analysis of reconstruction errors can be used in both modes of
the reconstruction realization.
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2.2. Decomposition of reconstruction process

Propagation of a signal from the input to the output of the sampling instrument is
connected to the arising errors in all elements of the reconstruction chain. Every error,
which can be described deterministically (often called the systematic error [J12, RS,
R10, Y2]) and contained by the analog conversion model M, can be eliminated from
the signal y(t) using the reconstruction. This means that signal reconstruction can be
seen as a correction process of systematic errors that burden the signal y(t) [J9].
The realization of a reconstruction algorithm consists in solving equations inverse to
the equations that describe the model M.

The general model M should contain mathematical descriptions of static and
dynamic properties of the analog conversion in the sampling instrument. Because of
nonlinearities, representation of this model by one equation is usually a very difficult
problem, so there is a need to present the model in a decomposed form to solve
the partial equations by a processor. But in some cases if one uses the neural
reconstruction, such a decomposition is not necessary [M10]. However, independently
of the reconstruction method, the decomposition is indispensable for analysis of
the errors that burden the output estimate. The decomposition enables the extraction of
partial errors and analysis of their propagation through the succeeding elements of
the sampling instrument. It means that the decomposition is the basis for the inaccuracy
evaluation of the reconstructed signal samples [J9].

The decomposition of the general model M consists in presenting this model as
a system of equations in a general case nonlinear. From the point of view of
the propagation of errors, every partial equation should describe only the static or
dynamic properties of the analog converter and represents one partial model. For
varying over time signals, the static properties are described by equations not
dependent on the signal variations, while the equations describing the dynamic
properties contain expressions which depend on the signal variations [J9].

After decomposition, the general model M of the analog conversion can be written
as a chain of | equations:

u, = fl(x)
u, = f2(u1) (2_10)
y="f ()

where: x and y are the input and output signals of partial conversions, us, Uz,..., Ui.1 are
the go-between signals introduced for the objectives of the decomposition.
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Carrying out the reconstruction needs to solve the inverse model M. In the case
where it is given as the chain of equations (2.10), the reconstruction consists of
the successful solution of the appropriate equations inverse to these in the chain (2.10)
[J9] and performed in the inverse order. These operations can be written as:

U, = fi_l(Y)

' (2.11)
lj1 = fz_l(az)
X = flil(u\l)

where X is the estimate of the input signal, U _,, ..., U, are estimates of go-between

signals in the system of equations (2.10).

After decomposition, the total analog conversion is presented as a chain of partial
analog converters, while the reconstruction as the chain of algorithms performing
partial reconstructions. The interdependence of the analog conversions and the suitable
algorithms of reconstruction is shown in Fig. 2.3 which is the graphical presentation of
Egs. (2.10) and (2.11). In this figure, the suitable analog converters and partial
reconstruction algorithms create couples in the mathematical sense resulting from
these equations. However, another interpretation of these couples is important.
Namely, from the error point of view, an analog conversion is a source of systematic
errors that are eliminated from the reconstructed signals by the suitable algorithms.
After the whole reconstruction process, all systematic errors that burden the signal
y are corrected.

X u,
Analog Analog o Analog _
converter 1 converter 2 converter i
y
X Reconstruction ljl Reconstruction lj2 Oi—l Reconstruction
algorithm 1 algorithm 2 algorithm i

Fig. 2.3. General structure of the decomposed reconstruction chain

The decomposed model from Fig. 2.3 consists of two kinds of partial model that
describe static or dynamic properties of the analog conversion, responsibly. Dynamic
partial models contain elements that depend on derivatives of the signal, which means
that their mathematical models have the forms of ordinary or partial differential
equations [L1]. The static partial models are devoid derivatives and describe relations
between the output and the input with taking into account all quantities that influence
conversion of the input signal.
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With assumption that the general model is given in the form of a non-linear
differential equation, the decomposition consists in separation of the analog
conversion model on two or more partial models that describe exclusively static or
dynamic properties. In the literature, the most common point of view on
the decomposition consists in using two kinds of elements: nonlinear static NS and
linear dynamic LD. The structure LD-NS is called the Wiener model [H2] and NS-LD
is known as the Hammerstein model [W2]. In some cases, to describe complex
dynamic systems, Wiener-Hammerstein models (LD-NS-LD) and Hammerstein-
-Wiener models (NS-LD-NS) are also used [G3, S7] and, in addition, multi-element
models built as the Volterra series [M11]. The general rules of error analysis are
independent of the kind of the decomposed model. Taking this into account,
the analysis method of the reconstruction errors described in this book is considered
for the Wiener model that is suitable for the sampling instrument taken as exemplary.

To begin detailed considerations on the decomposition procedure, let us assume
that the general properties of the analog conversion are described by the ordinary
differential equation:

ay®+a y" +. +ay+y=S(x) (2.12)

wherex is the input signal, y — is the output signal of the analog conversion (both are
varying over time), as, ..., an are constant coefficients, S(x) is the function that contains

expressions without derivatives denoted as y‘,...,y. The function S(x) describes

static properties of the analog conversion and in a general case is nonlinear, while
expressions with derivatives describe dynamic properties of the conversion.

The decomposition procedure used for the separation of static and dynamic
properties of the general model is performed in several steps. In the first step, one
should extract the static properties by zeroing all the derivatives in the general model.
After that, for Eq. (2.12), one obtains the following static equation:

y =S(x) (2.13)

The basic assumption of the decomposition procedure is that the equations

representing dynamic or static properties have to be ideal in the sense of Eqg. (1.3).

It means that, after zeroing derivatives, the dynamic equation has the form of

the equation, the static transfer function of which equals 1. To achieve this effect, one
should define the new auxiliary variable:

u=S(x) (2.14)
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After introduction Eqg. (2.14) to Eq. (2.12), we obtain the system of two equations:
u=S(x) (2.15)
ay”+a y"+..+ay+y=u (2.16)

where the first equation (2.15) is dynamically ideal (there are no derivatives in it) and
represents static properties, while the second is statically ideal (after zeroing
derivatives y = u) and describes dynamic properties of the analog conversion. For
the decomposed conversion model, the reconstruction of the input quantity consists in
solving equations inverse to partial equations (2.15) and (2.16) and in the inverse order
if the static equation (2.15) is nonlinear. Thus, the reconstruction process is described
in this case by the system of two equations:

i=ay” +a_ y"? +.+ay+y (2.17)
2 =S7(4) (2.18)

The whole processing, consisting of two partial analog conversions and suitable
reconstructions, is graphically presented in Fig. 2.4.

Static conversion Dynamic conversion
X ] . u : .
> (ideal dynamically) > (ideal statically)
u=S(x) ay"+a y" P+ +ay+y=u
vy
X Static reconstruction u Dynamic reconstruction
%=S7'(0) i=ay®+a, y" . +ay+y

Fig. 2.4. lllustration of partial conversions and reconstructions for the analog conversion modeled by
the equations from (2.15) to (2.18)
It should be noticed that the presented decomposition of the general model of
the analog conversion corresponds to the Hammerstein model that is used not only for
measuring chains but also for description of others systems such as control systems, in
which actuators characterizing nonlinear properties (servomechanisms, solenoid valves
etc.) are used.
In some cases, physical conditions of the analog conversion cause it should be
described by the system of equations:

au™+a u"+. . +alu+u=x (2.19)
y = S(u) (2.20)
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which are the same as expressions (2.15) and (2.16) but their order is inverse. In this
situation, the reconstruction consists in solving, at first, the static inverse equation:

U=S"(y) (2.21)

Next, the dynamic reconstruction is carried out, which consist in solving the
differential equation:

x=a i +a 0" +..+a0+0 (2.22)

The chain of operations (2.19) and (2.20) performed by the analog chain and
reconstruction algorithms described by equations (2.21) and (2.22) are presented in
Fig. 2.5.

Dynamic conversion Static conversion
X . . u ] .
) (ideal statically) > (ideal dynamically)
au®+a U+ +alu+u=x y =S(u)
vy
X Dynamic reconstruction u Static reconstruction
- . - A )
f=a0"+a 0"+ . +ad+0 G=S"(y)

Fig. 2.5. Scheme of the chain composed of partial analog conversions described by equations (2.19),
(2.20) and suitable reconstructions by (2.21), (2.22)
The structure of the analog conversion that is described first by a linear dynamic
equation and then by a nonlinear static one, corresponds to the Wiener model [G3].
Such a model can be used for a sensor working in dynamic conditions (the sensitive
element of the sensor is characterized by an inertia) described by a linear differential
equation, while the static characteristic of the sensor is nonlinear. It should be noticed
that in the most often cases the remaining elements of the analog converter, such as
measuring amplifiers, sample and hold circuits and AD converters are so fast that their
dynamic properties do not significantly affect on the dynamics of the whole
conversion [J14]. This applies to the exemplary instrument, in which the temperature
sensor Pt100, described by the Wiener model, is used.
In a general case, the static transfer function S(x) can be written in the form:

Y =S(X, W, W,,...,W,) (2.23)
which means that the output signal is dependent not only on the input signal x but also

on the influence quantities w1, wo, ..., Ws, where s is the number of all these quantities.
In many practical situations, Eq. (2.23) is nonlinear, which means that is a difficult
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problem to describe it in analytical form as one equation or even as a system of
equations [M10, P2]. One of the solutions that can be used of this case consists in
writing the inverse static transfer function:

X =S (y,W,W,,...,W,) (2.24)

as a system of linear equations obtained as an effect of the linear segmental
approximation. Coefficients of these equations can be stored in microprocessor
memory, which enablesa fast execution of the static reconstruction algorithm [R10].
The other solution consists in the application of artificial neural networks to realize
reconstruction [R5]. The network builds the reconstruction algorithm itself on the basis
of measuring data that must be delivered to its input during a teaching process.

All influence quantities must be measured, which means that their values used for
solving the inverse model (2.24) should be obtained as estimates by using suitable
measuring chains. The scheme of the static reconstruction in the case where only one
influence quantity is contained by the static transfer function is presented in Fig. 2.6.

X y
—> Sensor - .
Static .
reconstruction X
z >
STy, wy)
U W,
—Pp Sensor w ——

Fig. 2.6. Scheme of static reconstruction performed accordingly with Eq. (2.24) for the single
influence quantity w;

Usually, the influence quantities are static, which means that their measuring chains
are described by static equations. But some of these quantities can be dynamic so they
need more than one sample to perform reconstruction. In such cases, the reconstruction
process should be considered as a parallel multi-reconstruction, in which many
dynamic reconstructions are performed at the same time.

The decomposition does not always lead to obtaining linear dynamic equations
characteristic for Hammerstein and Wiener models. Such a case occurs if, for example,
the general model is given by the following 1st-order equation:

dy , dx 5
4y =—+X 2.25
dt y dt ( )
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Denoting the new variable as:
u, = x* (2.26)
and introducing it into Eq. (2.25), we obtain the following:

DAV (2.27)

at ) Tl dt

To make Eq. (2.27) statically ideal, we should introduce to it another variable:
which enables writing Eq. (2.27) in the following form:

1 du 1du

2.Ju, dt T 2.u, dt T

(2.29)

that is nonlinear.
Linking equations (2.26), (2.29), and (2.28) in a chain, one obtains the decomposed
model of the general equation (2.25) as the system of the following three equations:

u, = x° (2.30)

1 du, 1 du
+U, = +u 2.31
2Ju, dt 7 2fu dt (&31)
y=4u, (2.32)

Everyone of them is nonlinear and, accordingly with the basic assumption, statically or
dynamically ideal.

Taking into account that the signal reconstruction consist in calculation of the input
signal estimate based on the estimate of the output signal, the order of solving
the equations inverseto (2.30), (2.31) and (2.32) is as follows:

02:92 (2.33)
1 da, . 1 da,

+U, = +U 2.34
26, dt ' 2Ja, dt 7 (2:34)

X =/, (2.35)

The analysis of the reconstruction process from the error point of view let us to
draw the conclusion that solutions of Egs. (2.33) and (2.35) result in correction of
the systematic static errors introduced by the nonlinear analog conversion modeled
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by Egs. (2.30) and (2.32), respectively. Correction of the dynamic error caused by
the dynamic properties of the analog converter described by Eq. (2.31) is performed
by solving Eq. (2.34) in relation to the signal U, .

As result of the presented considerations, after the decomposition, the analog
conversions and the suitable partial reconstructions have to be treated jointly. For
the model described recently, the partial models of the analog conversions and
the suitable reconstruction algorithms create couples which are presented in Fig. 2.7.

X Static u, Dynamic u, Static
P conversion P conversion P converesion
Eqg. (2.30) Eqg. (2.31) Eg. (2.32)
Yy
X Static a, Dynamic a, Static
- reconstruction [« reconstruction | reconstruction
Eqg. (2.35) Eq. (2.34) Eg. (2.33)
Couple 1 Couple 2 Couple 3

Fig. 2.7. Relations between analog conversions and reconstructions for the general model (2.29)

Accordingly with Fig. 2.7, the systematic errors that arise during the partial analog
conversions are corrected by suitable reconstruction algorithms. If the reconstruction is
ideal, the errors are eliminated from the measurement results. In the real sampling
instrument these errors cannot be fully eliminated because on non-idealities both of
partial conversion models and the suitable reconstruction algorithms. These properties
of the reconstruction process cause the output estimate to be burden by rests of the not
corrected systematic errors that are called the reconstruction errors and can be seen as
resultant effects of partial analog conversions and suitable partial reconstructions. This
means that from the error propagation point of view, every couple in Fig. 2.7 can be
treated as one source of the specific error called the reconstruction error. Moreover, all
random error that arise during the analog conversion can be described suitably as input
error of the algorithm chain. Taking the above into account, one can conclude that
the error analysis of the signal reconstruction can be considered by the prism of
properties of the reconstruction algorithms that processes quantization results
burdened by the errors arising in the analog part of the sampling instrument and
the errors connected with non-ideal realization of the reconstruction algorithms.
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2.3. Final remarks

The signal reconstruction consist in solving the inverse mathematical model to this one
that describes the analog signal conversion in the sampling instrument. From the error
analysis point of view, the inverse model should be decomposed into partial models
describing static or dynamic properties of the analog conversion. The decomposition
enables identification of specific static and dynamic errors, as well as description of
the error propagation from the input to the output of the sampling instrument.

The sampling instrument is defined as the composition of tree parts performing
the analog conversion, the AD conversion and digital reconstruction of samples of
the input signal (see Chapter 1). It means that the output signal represents
the reconstructed input signal in the discrete form, i.e. as a series of estimates of
instantaneous values (samples) of the input signal. This book deals with the real-time
work of the instrument, which means that it delivers at its output the reconstructed
samples with a constant frequency. Such a work determines the necessity of
performing the reconstruction algorithms in the time between succeeding sampling
instants. This causes the reconstruction algorithms have to have as simpler form as
possible with the assumption that the uncertainty of the reconstructed samples is at an
acceptable level.



3. STATIC SIGNAL RECONSTRUCTION

Accordingly with considerations from Chapter 2, static reconstruction is defined as
solving equations that describe an inverse model of static properties of all analog
elements in the sampling instrument. Taking into account that all these elements are
treated here as one whole, called the analog converter, the static properties of it are
described by a static transfer function. It is one of two expressions creating the general
Wiener or Hammerstein model, which differ from each other only in succession of
occurrence static or dynamic partial transfer functions.

Independently of the general model, the static transfer function is generally
described by the multidimensional equation (2.23) that is considered in this chapter in
two forms: one-dimensional and two-dimensional.

The one-dimensional static characteristic is described by the equation:

y=S(x) (3.1)

which is nonlinear in a general case. The static reconstruction consists in solving
equation inverse to (3.1) on the basis of the measurement result of the output signal y.
This operation can be written as:

X=S7(Yy) (3.2)
where X and § are estimates of the input and output signals, respectively.
Interdependence of both stages of the input signal processing, described by Egs. (3.1)
and (3.2), is presented in Fig. 3.1.

. X
S(x) S7(y)

Analog conversion Static reconstruction

Fig. 3.1. Conception of static signal processing in the measuring chain with reconstruction
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Accordingly with the scheme from Fig. 3.1, in the first stage of the processing,
the analog input signal x is converted to the analog signal y that is measured. In
the second stage, the reconstruction of the input signal value is performed, which
consists in determining the estimate X of the input signal x on the basis of the inverse
static characteristic of the analog converter and the measurement result V.

The static characteristic of the analog converter has to be continuous, monotonic
and the first derivative of this characteristic has to be continuous, too, and not equal to
zero. For these properties, it is possible to determine the unequivocal inverse
characteristic S*(y) that is the basis of the determination of a static reconstruction
algorithm that is performed by a processor as a program or by a neural network.
Analytical form of the algorithm, consisting of calculations executed on measured data
and coefficients stored in the processor memory, has to be prepared by a programmer,
while a neural network builds the algorithm itself. It is done during a learning process
on the basis of measurement data obtained as an effect of an identification of the static
characteristic [R6, S7, O2, L4].

In practice, static characteristics of analog converters depend on quantities
influenced their measurement properties. In such cases, the static characteristics of
the analog converter are described by the multidimensional function, as a rule
nonlinear. In this chapter, a two-dimensional static characteristic is considered, which
can generally be described as:

y =S(X, ) (3.3)

where o denotes an influence quantity. In this case, the reconstruction consist in
solving the inverse function:

£ =Sy, 0) (3.4)

in which all dashed symbols are estimates (measurement results) of suitable quantities.
This means that both the output signal and the influence quantities have to be
measured with suitably low inaccuracy.

There are many mathematical tools which can be used to describe the inverse
nonlinear static characteristics [M4] but the considerations in this chapter focus only
on two methods of their approximation. The first one, analytical method, consist in
application of the segmental linear approximation which best of all fulfills
requirements specific for the signal reconstruction in real-time by using
microcontrollers. The second method applies an artificial neural network to perform
the reconstruction algorithm. The presented methods, selected as the numerically
simplest, can be also seen as representative for all approximation methods of inverse
static characteristics used for the reconstruction if one takes error analysis into account.
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Generally, to determine an approximation of a static inverse characteristic for
reconstruction purposes, one should first identify this characteristic. Next, based on
identification results, one calculates parameters of the inverse approximation, which
are stored in a microcontroller non-volatile memory. The quickest reconstruction
algorithms are based on linear approximations, the parameters of which are stored in
look-up tables [S4].

The inverse model can be given in an analytical form that is obtained as an effect
of inversion of the analog conversion model or can be determined as a result of an
identification process. Analytical or a neural approximation of the inverse model is
the basis of the static reconstruction algorithm. Another way of obtaining these
approximations consists in direct use of identification data to determine their
parameters. Both ways are considered in this book.

3.1. Exemplary sampling instrument
To make further considerations closer to problems which happen in practice,

the description and error analysis of the static reconstruction is presented on an
example of the sampling instrument presented in Fig. 3.2.

Lret Microcontroller
ADuC 386
16-bit AD g Processor ~
J =:>|:] A converter [ rocessot ~ 9
R
Pt100 L 37

Rref |;|;|

Fig. 3.2. Exemplary sampling instrument that applies the platinum sensor Pt100 and the micro-
controller ADuC386 to perform reconstruction of the temperature signal
The input temperature $ changing in the range from 0 to 100°C is converted to
the voltage Vr by the Pt100 sensor [Y4], the resistance of which is indicated as R.
The sensor is connected in series with the reference resistor R, the resistance of
which at the nominal environmental temperature Joenv = 25°C iS Roref = 5.1253 kQ.
Both resistors are supplied from the current source lref =400 pA that is a part of
the ADuC386 microcontroller [Y6]. The voltage drop across the resistor Rret is used as
the reference voltage Vv of the 16-bit analog-to-digital converter (ADC), which
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causes the drift of the ler does not influence the inaccuracy of the converter
indications. The Vg voltage drop is introduced to the input of amplifier A working with
the amplification coefficient kv = 32. The amplifier output voltage is sampled and
quantized by the AD converter which, together with the sensor and the amplifier,
forms the analog converter. On the basis of the quantization results nq and parameters
of the inverse static characteristic, the estimate 9 of the input temperature is
calculated accordingly with an one- or two-dimensional reconstruction algorithm.
In this second case, the environmental temperature is measured using the additive AD
converter of the microcontroller.

The characteristic of sensor Pt100 is nonlinear and it can be described by
the polynomial:

R=R [l+a(a9)+B(ASY] (3.5)

where R is the sensor resistance equal to Ro=100.0Q at the input temperature
90=0°C, A3=9—9, $ denotes the input temperature, o and S are constant
coefficients, the values of which are [Y5]:

a =3.9083-10°C"!, f=-5.775-107°C2 (3.6)

With assumption that all elements of the analog converter are stable, i.e. their
characteristics do not change in time, and they are not dependent on influence
quantities, the static reconstruction problem can be treated as one-dimensional.
It means that the reconstruction consists in solving the inverse model describing
the relations between the indication nq and the input temperature 9. The reconstruction
procedures considered here are based on two approximations of the inverse
characteristic: analytical and neural.

Properties of elements of real analog converters depend on influence quantities,
mainly on the environmental temperature in which a sampling instrument works.
In the case if only one influence quantity is taken into account, the reconstruction
problem can be investigated as two-dimensional, which means that the inverse model
must contain dependencies of the reconstructed quantity on the ADC indication and
the influence quantity. For the exemplary converter, we assume that the reference
resistor Rrer depends on the environmental temperature Jenv. In this case, the indication
ng and the temperature Jenv are the input quantities of the inverse model. Such
a reconstruction problem is considered in Sections 3.4 and 3.5 for the analytical and
the neural reconstruction, respectively.
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3.2. One-dimensional analytical static reconstruction

3.2.1. Linear segmental approximation of static inverse characteristic of sensor

Properties of the linear segmental approximation are considered in this chapter for
the Pt100 sensor applied in the exemplary instrument. The static characteristic (3.5) of
the sensor can generally be written as R = S(4); thus, the inverse characteristic of it is:

9=S"(R) (3.7)

where 9 is the reconstructed (input) temperature and R is the sensor resistance. After
expanding the function (3.7) into the Maclaurin series for the temperature 9, we
obtain the expression that for two initial terms takes the form:

-1
9=39 +88 (R)

p

dR= 9, +D(9, AR (3.8)

With assumption that the series is determined only in selected points called nodes, the
expression (3.8) describes the linear segment that approximates the inverse function
(3.7) in any node. For node number N, the segment can be described as:

3., =9(N)+D(N)-[R-R(N)] (3.9)
where $app IS the temperature calculated on the basis of the resistance value R.
Parameters 3(N), D(N) and R(N) of the approximation are calculated for every node N
on the basis of the static characteristic (3.5).
The exemplary characteristic inverse to (3.5) and approximated by 4 segments
linking 5 nodes numbered from N =0 to 4 is presented in Fig. 3.3.
2 C

100
1N=4

75

0 H H H
_T 109.73 119.39 128.98 138.50

Fig. 3.3. Graphical presentation of the linear segmental approximation of the inverse characteristic of
the Pt100 sensor
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Some forms of the static reconstruction algorithm can be performed in a relatively
short time if the distance between nodes is the same as it has been taken for
the approximation presented in Fig.3.3. For the distance A% equal to 25°C,
the temperature in the nodes takes the values described by the expression:

HN)=9(A8 N)=9(25-N) forN=0,1,..,N_,—1 (3.10)

nod

where Nnog is the total number of nodes and Nnog =5 in the case considered. As
the resistance in node N is:
R(N)=R[9(N)] (3.11)

the inclination coefficient of every segment is calculated as:

(N)= I(N +1)—9(N)

“[R(N +1)-R(N)] (342

The values of the approximation parameters, calculated on the basis of equations
from (3.10) to (3.12), are contained in the Tab. 3.1.
Table 3.1

Parameters of the segments calculated for the 5-node linear approximation determined
for the exemplary inverse characteristic of the sensor Pt100, N is the node number,
D(N) — the inclination coefficient (3.12)

N 0 1 2 3 4

9(N)°C 0 25 50 75 100

R(N) Q 100.0000 109.7347 119.3971 128.9874 138.5055

D(N)°C/Q 2.568144 2.587330 2.606806 2.626576

Experiment 3.1. Let us determine the distribution of the approximation error of
the first segment described by the parameters contained in the Tab. 3.1. This error is
defined as the difference between the input temperature $ and the temperature Japp
calculated on the basis of the equation (3.9). The histogram of the error values,
obtained by using Monte Carlo method with the assumption that every value of
the input temperature from 0 to 25°C is of the same probability, is shown in Fig. 3.4a.
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Fig. 3.4. Histograms of the approximation error of the first segment: a) the mean value of the error is
equal to u =-0.0154°C because it contains the systematic component, b) the systematic
component is eliminated by adding the correction ¢, = -0.0154°C to the reconstruction result,
in this case u = 0.0°C

1000 ‘ 1

The set of error values presented in Fig. 3.4a as the histogram contains the systematic
component u = - 0.0154°C that has been calculated as the mean value of the set. This
component can be reduced to zero by subtracting this value from every error value.
Accordingly with the error definition used in this book, this operation is equivalent to
addition of this mean value to every value of the reconstructed temperature as
a correction cs. The histogram of the error obtained in the same way as in Experiment
3.1 but with using such a correction is shown in the Fig. 3.4b.

The values of the corrections cs are different for all segments (nodes). They are
calculated in the same way as described above and presented in the Tab. 3.2.
Table 3.2

Corrections of the reconstruction temperature, which are calculated as the mean values
of the error distributions for the linear approximation of the exemplary sensor
characteristic, N — node number

N 0 1 2 3 4

c°C -0.0154 -0.0156 -0.0157 -0.0158 -

Adding the correction to the reconstructed result causes a suitable shifting of
the approximating segment. As it results from the histogram presented in Fig. 3.4b,
this operation decreases the error values about twice, which means that the shifting of
the segments is the effective and simple manner of decreasing values of
the approximation error. If all segments of the inverse characteristic are shifted
accordingly with the values contained in Tab. 3.2, the global approximation error has
a systematic component close to zero. This property is shown in Fig. 3.5 which
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presents the deterministic characteristic of the global approximation error (a) and its
distribution in the form of the histogram (b). This histogram has been obtained in
the same way as described in Experiment 3.1 with the difference that the input
temperature changes in the entire range from 0°C to 100°C.

a) b)

Number of occurence

0.01 3500

0.0051 4 3000
2500

2000+
° .0.005r .
A 1500+
-0.01 i
1000+
-0.015 500

-0.02
0

o

C

0
20 40 60 80 100 -0.02 -0015 -0.01 -0005 0 0005 001
g °C e °C

Fig. 3.5. a) Deterministic characteristic of the approximationerror of the inverse characteristic of
the sensor as the function of the inputtemperature, b) histogram of the global approximation
error, the standard deviation of which is gapp = 7.2:10%°C

3.2.2. One-dimensional static reconstruction algorithm

In the previous chapter, the principle of the linear segmental approximation considered
in this book has been presented as an example of the inverse characteristic of the Pt100
sensor. To perform the static reconstruction using the exemplary instrument, it is
necessary to approximate the inverse static characteristic of the whole analog
converter as the part of the instrument. The converter consists of the sensor,
the amplifier, and the AD converter; thus, the inverse characteristic is a relation
between the quantization result nq (the ADC indication) and the reconstructed input
temperature. In this case, the reconstruction equation in the analytical form based on
the linear segmental approximation (3.9) can generally be written as:

§=a(N)[n, —n,(N)]+b(N) (3.13)

where ¢ denotes the estimate of the input temperature determined with
the assumption that the mean value of the approximation error burdening the estimate
is equal to 0. The inverse static characteristic in the form of Eq. (3.13) is made up of
the set of Nsegg=Nnoa — 1 segments, Nnoa iS the number of all nodes, nq(N) is
the indication, a(N), b(N) are constant coefficients in node N, N =0, 1, ..., Nseg.
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The determination of a(N) and b(N) has to be carried out beginning from
the description of the indication nq which is equal to the number of quanta obtained in
the output of the AD converter. The value of the ADC quantum is generally given by
the equation:

q= "t (3.14)

where Nq is the maximum number of quanta which may occur in the ADC output, Vref
is the reference voltage obtained in the exemplary instrument using the reference
resistor Rrer. Based on the scheme from Fig. 3.1, we have the following:

\Y

ref

=1 _R (3.15)

ref * “ref

where les is the current delivered by the reference source built-up in the
microcontroller. Taking Eqg. (3.15) into account, one can write Eq. (3.14) in the form:

et et (3.16)

The voltage drop across the resistance R of the sensor is:

V. =1_R (3.17)

ref

This voltage is introduced to the input of the amplifier, the amplification coefficient of
which is denoted as kv. The output voltage kvVin of the amplifier is quantized by
the AD converter, which means that, accordingly with Eq. (1.22), the number of
quanta assigned to the quantized value is determined accordingly with the expression:

k,V.

n, = en{M + 0.5} (3.18)
q

where the symbol “ent” denotes the function entier which is equal to the integer value

of its argument. Based on Eqgs. (3.18) and (3.17), one can write that the indication of

the AD converter is described as:

k,Il RN k, N
n, =ent{w+0.5}=ent[R v +O.5} (3.19)

ref ' “ref

ref

which means that the input circuit of the instrument from Fig. 3.1 enables avoiding
the influence of changes of the current It on the quantization result.
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Eqg. (3.19) generally describes the dependence of the quantization result nq on
the resistance R of the sensor and the other parameters of the analog converter.

The amplification coefficient of the input amplifier is taken to be kv =32, the
reference resistor Rref = 5.1253 kQ and the maximum number of quanta for the 16-bit
ADC is Nq = 2%, For these values, Eq. (3.19) takes the form:

q

{R-BZ-Z”
nt

PRI 0.5} = ent[409.176R + 0.5] (3.20)

where R depends on the input temperature $ accordingly with Eq. (3.5).

Eq. (3.20), together with the sensor characteristic, create the analytical model of
analog and analog-to-digital conversions in the exemplary instrument. It is the basis
for the determination of the inverse static characteristic in the form of linear segments.
The node values of them are presented in Tab. 3.3 together with the mean values cs of
the approximation error, which are calculated separately for every segment in
the following way.

Experiment 3.2. This experiment aims to determine the mean values cs of
the approximation error separately for each approximation segment. The input
temperature is randomly changed in the ranges suitably for the nodes, the parameters
of which are taken from Tab. 3.1. The nodal values of the inverse approximation and
the obtained results are presented in Tab. 3.3.

Table 3.3

The nodal values of the linear approximation of the characteristic inverse to (3.20)
and mean values of distributions of the approximation error, N is the node number

N 0 1 2 3 4
$(N)°C 0 25 50 75 100
ng (N) 40918 44901 48854 52779 56673
cs(N)°C -0.0136 -0.0162 -0.0156 -0.0147 -

Based on the values from Tab. 3.3, one can determine the parameters of the approximating
segments. Accordingly with Eq. (3.12), the inclinations are calculated as:

()= SN +D)-8(N) _ 25
(N) n,(N+1)-n,(N) n,(N+1)-n,(N)

while the shift coefficients are obtained from the equation:

b(N)=9(N)+c,(N) (3.22)

(3.21)
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where cs(N) are the corrections taken from Tab. 3.3 equal to the mean values of
the approximation error. The values of the parameters calculated for all nodes,
accordingly with Egs. (3.21) and (3.22), are placed in Tab. 3.4.

Table 3.4

Nodal values of the linear segmental approximation of the static inverse function
of the exemplary analog converter, N is the node number

N 0 1 2 3 4
J(N)°C 0 25 50 75 100
ng (N) 40918 44901 48854 52779 56673
a(N)-103°C 6.2767 6.3243 6.3694 6.4201
b(N)°C -0.0136 24.9838 49.9844 74.9853

The values in Tab. 3.4 are stored in a look-up-table created in the microcontroller non-

-volatile memory as the parameters of the exemplary linear approximation. On the basis

of the AD converter indication and these parameters, the microcontroller performs

the reconstruction algorithm in the following steps:

e The AD indication nq is compared with all node values nqg(N), N =0, 1, ..., 4, which
allows the determination of a suitable node number N.

e On the basis of the determined number N, the values of a(N), b(N) and nq (N) are
read from the look-up table.

e Having known the parameters of the linear approximation, the estimate of
the measured temperature is calculated using the equation (3.13).

The physical properties of the analog converter need that its model (3.20) should

contain the random noise error enoi that represents the influence of noises arising in all

parts of the converter. In this case, Eq. (3.20) takes the form:

n, =ent[409.176R +e, +0.5] (3.23)

in which is the basis for the determination of the partial errors that burden
the indication. It is used in simulative experiments aimed at obtaining distributions of
the partial errors, such as the experiment described below.

Experiment 3.3. The input temperature of the exemplary instrument changes
randomly in the range from 0 to 100°C according to the rectangular distribution.
At every step of the experiment, first, the value of the suitable resistance R is
determined according to Eg. (3.5). Next, the indication of the AD converter is
calculated on the basis of Eq. (3.20) and the static reconstruction is performed by using
the described algorithm. Finally, the reconstruction error is calculated and placed in
the set, which after ending 100,000 steps of the experiment is presented as
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the histogram in Fig. 3.6a. The histogram from Fig. 3.6b is determined in the same
way, with this difference that the indications are calculated accordingly with Eq. (3.23)
for the normal noise error N(0O; 1).

a) b)

Number of occurence Number of occurence
1000 : x : 1200 . : :

800k 1000}

800
600
600
4001
4001

200 200k

0 ] 0 3
-0.04 -0.02 0 0.02 0.04 -0.04 -0.02 0 0.02 0.04
°C e °C

erec 1 (&Y
Fig. 3.6. Histograms of the reconstruction error composed: a) of the linear approximation error and the
quantization error, the standard deviation of the reconstruction error is orec = 7.4:10°°C,
b) of the same errors as previously, as well as of the noise error, orec = 9.8-103°C in this case
Knowledge about the standard deviations of the total error and the partial errors
enables the determination of the correlation coefficient between the partial errors. For
the total error et composed of two errors er and e, it results from Eq. (1.53) that this
coefficient is calculated from the expression:

_ w00 (3.24)
20,0,

cor

where otot, 01 and o2 are standard deviations of errors, respectively.

Example 3.1. The standard deviations, obtained as effects of the simulative
experiments for the errors presented in Figs. 3.5b and 3.6b, are: of the approximation
error gapp = 7.2:10°°C and of the total error orec = 9.8:10°%°C . The standard deviation
of the quantization error can be determined analytically based on the quantum value q.
Accordingly with Eq. (1.35), this error is of the rectangular distribution in the range
from -g/2 to g/2 where q is equal to 1 at the output of the AD converter. Therefore,
the standard deviation of the quantization error at the ADC output, the same as at
the input of the static reconstruction algorithm, has the value [M2]:

9> 1
o2 =9 = _0083 (3.25)
12 12
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The ADC indication is processed by the algorithm. It means that the errors which
burden the indication must be transferred to the algorithm output to express them in
values comparable with other errors of which the reconstruction error is composed.
The transfer consists in multiplication of the input values by the coefficient which can
be approximately determined as the inclination of the inverse static characteristic
connecting its ending points. It is determined as the quotient:

R 100-0

N —n_ 56673—40918

qmax gmin

S =6.35-10°°C (3.26)

stat —
the value of which is calculated accordingly with Tab. 3.3. Taking this into account,
the variation of the quantization error in the output of the algorithm is as follows:

2
o> =(0,Su) = (%6.35-101 ~3.36-10° °C> (3.27)

After introducing to Eq. (3.24) the standard deviations from Figs. 3.5b, 3.6b and
described by Eq. (3.27), the correlation coefficient between the approximation error
and the quantization error is obtained. It takes the value:

2 2 2 2 2
¢, =Jre " Om =%y T4 772 ~336_ 5.0 (3.28)
20,,,0, 2-7.2,/3.36

The result is close to zero, which means that these errors can be considered to be
uncorrelated.

The standard deviation of the noise error N(O; 1) is equal to 1 at the input of
the algorithm. Accordingly with Eq. (3.27), at the algorithm output, the variance of
this error takes the value:

02, =(0nSua ) =(1-6.35-10°f =40.3-10° °C? (3.29)

noi

Based on this value and the values from Figs. 3.6a and 3.6Db, the correlation coefficient
of the noise error in relation to the other errors contained in the reconstruction error
can be calculated. One obtains the same result as for the quantization error, which
means that the basis errors burdening the indication of the AD converter are
uncorrelated.
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3.2.3. Calibration of instrument with one-dimensional analytical static
reconstruction

The static characteristics of real analog converters change over time, which is called
the drift of the characteristic. This drift is caused by material changes occurring in
amplifiers and in other analog elements used for signal conversion as well as by
the influence of quantities such as the environmental temperature [J14, T1]. Errors
connected with the drift should be taken into account in the error budget of an
instrument if their values are within acceptable limits. If these limits are exceeded,
the drift errors have to be reduced by calibrating a measuring instrument.

As the drift error changes over time, it is necessary to periodically check an

instrument by introducing standards to its input and comparing the obtained
indications with nominal values, for which a considered approximation of a static
characteristic was determined [K1]. For the exemplary instrument, to check whether
a calibration is necessary, one connects a standard resistor to the instrument input and
the obtained indication is compared with this one suitable for the nominal
characteristic. Such a checking procedure is described using the following example.

Example 3.2. The resistance of the standard resistor Ri connected to input of
the exemplary instrument is R; =138.5055 Q. The indication of ADC obtained at
the instrument output is ﬁq(Rl):56689, while the appropriate indication in

the nominal conditions, that is for which the parameters of the linear approximation
were determined, is ng(R1) = 56673 (see Tab. 3.3 for N = 4)). The difference:

i, (R,)-n,(R,)=56689-56673=16

Is substantially greater than the acceptable value that is calculated as:

My~ Noin 56673—-40918
(Anq)acp = (nqdr — nq)m = r;f“I =0.01 00-0 > 1.5

with assumption that the required resolution of the instrument is equal to r = 0.01°C.
This means that calibration of the instrument is necessary in this case.

A calibration consists in correction of an approximation parameters of a static
characteristic on the basis of indications obtained for standards of an instrument input
quantity. The necessary number of standards depends on a nonlinearity degree of
the characteristic. The calibration of the exemplary instrument can be performed at
two points because the nonlinearity of its characteristic is not strong. With
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the assumption that the characteristic of the Pt100 sensor is stable [Y5], one can apply
two standard resistors to calibrate the instrument instead of using two reference values
of the input temperature. This is a much simpler method than using a reference
temperature, which must be known with suitable low inaccuracy. On the basis of
the indications and values of the resistors, one determines corrected parameters of
the linear approximation, which replace, if necessary, these ones stored in the look-up
table.

Let us apply the standard resistors R1 and R, the values of which correspond to
the input temperature values $1 and §», respectively. For resistor R1 connected to
the input, one obtains the ADC indication nq: and for Rz the indication is ng.
The nominal values of the indications, calculated for the resistances R: and R2 on
the basis of Eq. (3.20), are Nnginom and Ngznom, respectively. Therefore, the changes in
the indications at the selected points that are caused by the drift are:

Al = nql - nqlnom (330)

and

-n (3.31)

q2nom

Based on these values, one can determine the equation which enables calculations
of the corrections, which must be added to all nominal values of the indications. This
equation has the following form:

A=A +s-(9-9) (3.32)
where the inclination coefficient is defined as:

s=B27 0 (3.33)
‘92_‘91
The modified ADC indications in the nodes, corresponding to the shifted
characteristic, are determined as:

Na(N)=n(N)+A (3.34)

where N is the node number. On the basis of the indications calculated by using
Eq. (3.34), the corrected parameters of the segments are determined in the same way
as described in the previous chapter.

The application of the described calibration procedure is presented in the next
example.
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Example 3.3. Calibration at two points is the most accurate if it is performed in
extreme points of the characteristic. To carry out the calibration procedure for
the exemplary instrument, one uses two standard resistors: R1 = 100.0 Q corresponding
to the input temperature $ =0°C and R>=138.5055Q for 9, =100°C. After
completing the AD conversion for Ri connected to the input, the indication is
Nq1 = 40931 and for R2: ng2 = 56689. The next phases of the calibration are carried out
in the following way:

e Having known indications nqu and nq, one calculates the indication changes

accordingly with Egs. (3.30) and (3.31). One obtains:

A, =N, —n, . =40931-40918=13, A, =n,-n,  =56689-56673=16

qlnom q2nom

For these changes, the inclination coefficient (3.33) takes the value:

A, —-A, 16-13
9,-9 100-0

S =0.03°C"

e Using the calculated shift parameters, one corrects the nodal values of
the characteristic accordingly with the equations (3.32) and (3.34). For the first
node, the corrected indication is: Ngca(0) =Ng1 =40931 and for the last,
Ngcal(4) = Nq2 = 56689.

For the node number N = 1, one obtains:

N @)=, 1)+ A, +5-(I1)- 3 )=44901+13+0.03- (25— 0) = 44915
ForN=2:
N(2)=n,(2)+A, +s-(9(2)- &)= 48854+13+0.03- (50— 0) = 48869
and for N = 3:

Ny (3) =N, (3)+ A, +5-(9(3)— 4 )=52779 +13+0.03- (75— 0) = 52794

e Based on the corrected nodal values, the inclinations from Tab. 3.3 are modified
accordingly with Eq. (3.23), in which the nodal values from Tab. 3.3 are replaced
by the corrected ones. The obtained inclinations are contained in the Tab. 3.5.
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Table 3.5

Nodal values of the segmental linear approximation of the static inverse function,
which are calculated on the basis of the calibration results, N is the node number

N 0 1 2 3 4
9(N) °C 0 25 50 75 100
Nacal (N) 40931 44915 48869 52794 56689

a(N)-10%°C |  6.2751 6.3227 6.3694 6.4185 -
b(N) °C -0.0136 24.9838 49.9844 74.9853

The shift coefficients in Tab. 3.5 are the same as in Tab. 3.4, which can cause
the mean value of the approximation error to differ substantially from 0. In this case, it
IS necessary to correct them in the same way, which was performed for determining
these coefficient by using Eq. (3.24).

Based on the indications obtained during the calibration, one can determine
the mathematical model of the analog converter valid for the measurement conditions
under which the calibration is carried out. Generally, such a model is useful in error
analysis, and, for the considered converter, it has the form:

i, =ent[409.176-R-(1+A, )+ A, +0.5] (3.35)

obtained accordingly with Eqg. (3.20) where Ainc is the relative change in
the characteristic inclination and Ash is the characteristic shift. Accordingly with this
model and for the two considered results of the calibration, one obtains the system of
two equations:

n, =409.176-R -(1+A, )+ A,

ql — inc

n, =409.176:R, - (1+A, )+ A,

nc

(3.36)
(3.37)

After solving them, one obtains values of the characteristic changes as is shown in
the next example.

Example 3.4. For two calibration points: (R:=100.0Q, nq =40931) and
(R2 =138.5055 Q, nq. = 56689), from Egs. (3.36) and (3.37), we obtain the following
results:

N, =Ny 56689—-40931

A, = ~1= ~1=157-10" (3.38)
409.176-(R, —R,) 409.176(138.5055-100.0)

and
Ay, =N, —409.176 R, - (L+ A,.)= 40931 - 409.176 -100.0(L +157-10%)=7 (3.39)

Inc
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After introducing the values (3.38) and (3.39) into Eqg. (3.35) and taking the noise
into account, on obtains the model of the analog conversion that contains the drift
parameters in the considered measurement conditions. It is of the form:

N, =entf409.176-R-(L+157-10*)+7+e,, +0.5] (3.40)

where enoi is a realization of the normal noise error N(0; 1).

Experiment 3.4. This experiment is carried out in the same way as Experiment 3.2
with these differences, that the indications are determined on the basis of the model
(3.40), and the reconstruction is performed with using the parameters of the linear
approximation contained in Tab. 3.5. The reconstruction error calculated in the case if
the indications are determined accordingly with Eq. (3.40) is presented in Fig. 3.7b but
if the noise in this equation is omitted in Fig. 3.7a.

a) b)

Number of occurence Number of occurence
800 . 1200 .

1000
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800

400 600
400
2001
200+

0 0 ;
-0.05 0 0.05 -0.05 0 0.05
°C e °C

erec rec
Fig. 3.7. Histograms of the static reconstruction error for the linear approximation parameters obtained
as a result of the calibration: a) the reconstruction error is composed of the errors caused by
the linear approximation, the calibration, and the quantization, the standard deviation of this
error is orc =8.5:103°C, b) the reconstruction error also contains the noise error,
Orec =10.6" IO-SOC
Based on data calculated for the histograms in Fig. 3.7, one can determinate
the standard deviation of the calibration error. With the assumption that the partial
errors are not correlated and accordingly with Eqg. (1.53), the variance of

the reconstruction error is the sum:

2 2 2 2 2
o Opp TO, + 0+ 0, (3.41)

rec

where the partial standard deviations represent: oapp — the linear approximation
error shown in Fig. 3.5b, oq—the quantization error, onoi—the noise error,
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ocal — the calibration error. After rearranging the Eq. (3.41), we find that the standard
deviation of the calibration error is expressed as:

_ 2 2 2 2
Gcal - \/O-rec - Gapp - Gq — O (342)

noi

After introducing the values from Figs. 3.5b, 3.7b and these given by Egs. (3.27),
(3.29), we have:

o, =10°10.6> — 72 —3.36 — 40.3 =4.44-10° °C (3.43)

As it results from comparison of standard deviations of the considered partial
errors, their values are approximately at the same level. It means that such a simple
calibration is accurate enough for the analog conversion performed in the exemplary
instrument.

3.2.4. Identification of parameters of one-dimensional linear approximation

Generally, an identification of a static characteristic consists in measuring it in so
many points as necessary to obtain such an approximation which fulfils accuracy
requirements [G3, M8]. The number of points depends on the degree of nonlinearity of
the characteristic and measurement conditions of the identification. From
the reconstruction point of view, the identification should be carried out by direct
determination of such a form of approximation which is applied in the reconstruction.
It is possible to apply the other indirect way that is carried out in two stages. The first
one consist in using the measurement results to calculate parameters of an initial
analytical description of the static characteristic. The second stage aims to obtain
the final approximation adapted to the reconstruction requirements on the basis of this
initial description.

The direct identification of the static characteristic of the exemplary instrument
considered in this chapter consists in determination parameters of the applied linear
approximation on the basis of measurement results. Let us assume that every segment
of the characteristic is identified in | points. At first, standard | resistors are connected
to the instrument input instead of Ptl100 sensor one after the other and
the corresponding ADC indications ng, i=1,..,1, are recorded. According to
Egs. (3.21) and (3.22), the parameters of the segment for the node N are calculated
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with assumption that they minimize the following expression being the sum of
the squared errors [L1]:
| 2
SM..(N)=Y_[8(N) - (a(N)ng (N)+ (N )] (3.44)
i=1
where the reference input temperature $ corresponds to resistance R; according to
the equation (3.5), &(N), ¢(N) are the estimates of the parameters describing

the segment of node N. To determine these estimates, one equates to zero the first
derivative of expression (3.44) in relation to 4(N) and next to ¢(N). The obtained

system of two equations enables determining the estimate of the segment inclination
for node N as:

13 ()~ ()|

i=1

The estimate of the beginning point of the segment is calculated as the mean value:

[9.n)-a(nn, (V)]

8(N)-TaN)Yn,(N)  (3.46)

i=1

B(N):I1

|
i=1

|
i=1

Let us take for example that the parameters of the linear approximation are
identified in form of 4 segments the same as presented in Tab. 3.5. For every segment,
4 standard resistors, with nominal values Ri, i=1,..,4 are used. Introducing
the resistor R; into the instrument input is adequate to give the temperature 9i to
the sensor input accordingly with Eq. (3.5). The resolution of the resistors is 0.001 Q,
which corresponds to a temperature resolution equal to 0.001°C. The ADC indications
obtained for the used standard resistors are determined on the basis of the analog
conversion model (3.20). All values designated in the described identification process
are presented in Tab. 3.6.
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Table 3.6

ADC indications obtained for the selected standard resistors on the basis of Eq. (3.45),
N is the number of the node, 9i is the temperature responding the resistance R;

according to the characteristic (3.5) of the sensor, i =1, ..., I, | = 4 is the total number
of resistors used to identify the characteristic in one node
N 0 1 2 3
Ri(N) Q 100.000 109.856 119.424 129.035
$1(N)°C 0 25.313 50.070 75.125
Ng1(N) 40917 44949 48866 52797
R2(N) Q 102.454 112.130 121.651 131.435
$(N) °C 6.285 31.180 55.859 81.411
Ng2(N) 41920 45882 49777 53782
R3(N) Q 104.860 114.444 124.331 133.792
$(N)°C 12.458 37.161 62.838 87.596
Ng3(N) 42906 46829 50873 54744
Ra(N) Q 107.333 116.986 126.698 136.010
94(N) °C 18.815 43.744 69.015 93.427
Ng4a(N) 43918 47868 51843 55652

Based on the values contained in Tab. 3.6, one can calculate the parameters of
4 segments that approximate the exemplary inverse static characteristic. The segments
are generally described by the following linear equation:

9=a(N)-n +¢(N), N=0,...,3 (3.47)

where é(N) and ¢(N) are calculated accordingly with the equations (3.45) and (3.46),

respectively.

Example 3.5. Let us calculate the approximation parameters for the first node (N = 0)
on the basis of data from the first column of Tab. 3.6. Accordingly with Eqg. (3.45), we
obtain the estimate of the inclination equal to:

4(0)=6.2687-10" °C

The estimate of the shift coefficient from Eq. (3.47) is calculated as the mean value:

¢(0)=

4 A 4
%Zgi (0)- ago) > n,(0)= %(37.556 —6.2687 10" -169661)=—256.5°C
i=1 i=1
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The coefficient ¢(N) describes the point on the vertical axis § for ng=0. For
N =0, the nodal value of the temperature $(0) =0°C. Taking this into account,
the approximation segment begins from nq(o), which can be determined on the basis

of the equation (3.47) as:

n,(0)=— o) ___-265 = 40917.57
‘ 4(0)  6.2687-10

To obtain the estimate n, (0) of the indication in node 0, n,(0) should be rounded

as the indications take integer values. One obtains:
i, (0) = ent[, (0)+0.5] = ent(40917.57 +0.5) = 40918
Based on the calculated values, the shift coefficient of the first segment is:

6(0) = —a(0)[A, (0)— 1, (0)] = —6.2687-10° - (40918 — 40917.57)) = —0.003°C

q

The values of the parameters obtained in Example 3.5 for node O are presented in
the first column of Tab. 3.7. The remaining columns contain parameters of the other
nodes, which are calculated in the same way as used for the first node. Distributions of
the reconstruction errors are determined for the approximated parameters of Tab. 3.7
using Experiment 3.5.

Table 3.7

Node values of the segmental approximation of the inverse function identified
on the basis of | = 4 points for every segment according to the equations (3.45)
and (3.46), N is the node number

N 0 1 2 3 4
9(N) °C 0 25.313 50.070 75.125 93.427
A, (N) 40918 44950 48866 52799
a(N)-10°°C | 6.2687 6.3146 6.3643 6.4123
BN)'C -0.003 25.3147 50.0721 75.1270

Experiment 3.5. This experiment aims to determine histograms of the reconstruction
errors that contain the identification error. It is carried out in the same way as
Experiment 3.2 with this difference that the estimates of the input temperature are
calculated with using the parameters from Tab.3.7 obtained as a result of the direct
identification. The ADC indications used for the reconstruction are determined on
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the basis of Eq. (3.20) or (3.23) in the case if the indications are burdened by
the normal noise N(0; 1). The obtained histograms are presented in Figs. 3.8a and 3.8b,
respectively.

a) b)
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1200 . : : . 1200 . A .

10001 1000+
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Fig. 3.8. Histograms of the reconstruction errors which are calculated for the linear approximated
parameters from Tab. 3.7 obtained as a result of identification: a) the total error contains
the approximation, identification, and quantization errors, orc = 11.8:10%°C, b) the total
error additively contains the noise error, grec = 13.4:10%°C

Example 3.6. The reconstruction error from Fig. 3.8b is composed of the errors caused
by: eapp — the linear approximation, eq — the quantization, enoi — the noise, and eig — by
the identification. If these errors are uncorrelated, the standard deviation of

the identification error can be calculated in the same way as in Egs. (3.41) and (3.42).
One obtains:

. 2 2 2 2
Gid - \/Grec - Gapp - Jq - Gnoi (348)

where orec iS the standard deviation of the reconstruction error described by
the histogram in Fig. 3.8b, while the other standard deviations are the same as in
Eqg. (3.41). Based on these values, we have:

o,y =107113.42 72 ~3.36-40.3=9.32-107° °C (3.49)

which means that, in the considered case, the identification error takes values
comparable to the linear approximation error.

Identificationof a static characteristic of a sensor is generally a sophisticated problem
from measurement point of view because it is necessary to use as many standards of an
input quantity as identification points are chosen. For nonelectrical quantities,
constructing of standards with suitable accuracy is difficult, and identification
experiments need professional laboratory equipment. All these causes one strives to
limit a number of identification points to a minimum. Tab. 3.8 contains standard



69

deviation values of the reconstruction error, which are determined for the number of
identification points less than 4 for one segment. The parameters of the approximation
are calculated on the basis of Egs. (3.45) and (3.46).

Table 3.8

Standard deviations of the identification error in dependence
on the number Nj, of identification points for one approximation
segment, the number of segments Nseg = 4

Nip 2 3 4
oia103°C 10.4 10.0 9.32

The values in Tab. 3.8 show that decreasing the identification points does not
substantially influence the identification inaccuracy. This suggests that indirect
identification enables more reduction of identification points. In the first step of such
identification, one determines an inverse function as an analytical equation [A1].With
the assumption that one uses the polynomial $ = f(nq) of the second order determined

for 1 =16 all identification points taken from Tab. 3.5 (4 points for each of the
4 segments), the function has the following form:

9=-245.4200+5.7467-10 - n, +6.1444-10° - n? (3.50)

In the second step, one calculates the approximation coefficients in the same way
as for the exemplary static characteristic (3.5). The obtained node values are presented
in Table 3.9. Histograms of the reconstruction error determined in the case if this
approximation is used are shown in Fig. 3.9.

Table 3.9

Nodal values of the linear segmental approximation of the inverse function (3.52)
for the number of all identification points | = 16, N is the node number

N 0 1 2 3 4

A, (N) 40917 44949 48866 52797 55652
a(N)-10°°C | 6.2680 6.3171 6.3655 6.4130
B(N) C -0.0015 25.2967 50.0644 75.1107

Experiment 3.6. The reconstruction is performed using the parameters contained in
Tab. 3.9, which are determined indirectly on the basis of Eq. (3.50). The histograms of
the reconstruction errors obtained in the same way as used in Experiment 3.2 are
shown in Fig. 3.9.
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Fig. 3.9. Histograms of errors of the reconstruction performed indirectly using the linear
approximation parameters from Tab. 3.9, which are determined on the basis of Eqg. (3.50):
a) the error contains both the approximation and the identification errors, as well as
the quantization error, the standard deviation of the error is orc=10.9-10°°C,
b) the reconstruction error additively contains the noise error, orec = 12.6 -103°C

The standard deviation of the error due to indirect identification is determined from
the equation.(3.48), the same as used for direct identification. On the basis of
the histogram in Fig. 3.9b, one obtains:

04 =10°112.67 —7.2° ~3.36-40.3=7.95-10°°C (3.51)

where the other values are the same as in Eqg. (3.49). The values being calculated by
using Egs. (3.49) and (3.51) mean that the errors of direct and indirect identification
are comparable for the same number of identification points | equal to 16. The data in
Tab. 3.10 shows that decreasing the number of points used for indirect identification does
not increase its inaccuracy. It means that the indirect identification of the parameters of
the linear approximation enables using fever standards than the direct one. Therefore, it is
more effective if one takes into account the number of standards applied.

Table 3.10

The standard deviations of the identification error in dependence on
number | of identification points used for determination of the analytical
function in the form (3.50) which is the basis of calculation of
the segmental approximation parameters for N = 5 nodes

I 4 8 16
oig10%°C 7.33 7.5 8.13
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3.2.5. Influence of non-linearity degree of static characteristic on number of nodes

From the linear approximation point of view, the number of nodes necessary to obtain
the required accuracy is one of the basic properties of every class of approximated
functions. The characteristic (3.5) of the exemplary Pt100 sensor belongs to the class
of second-order polynomials. To consider the influence of the characteristic
non-linearity on the necessary number of nodes, one can use an expression similar to
Eq. (3.5) in the form:

R=R,l+a(A9)+ B(ASY ] , wheref=k-5,775-107 °C* k=1,10,10°,10°,10" (3.52)

where Ro=100Q, a=3.9083-107°C!, A9 changes from 0 to 100°C. For k=1,
Eq. (3.52) describes the static characteristic of the Pt100 sensor. Taking into account
that coefficient g forms the non-linearity degree of the sensor characteristic, the higher
values of k cause the stronger non-linearity.

To evaluate the influence of the non-linearity of the static characteristic on
the number of nodes N» needed to achieve the allowable inaccuracy of the segmental
linear approximation of the characteristic inverse to (3.52), the following experiment
has been carried out.

Experiment 3.7. This experiment consists in looking, for k =1, 10, 10?, 10, the least
number of nodes, for which the standard deviation of the approximation error is less
than capp,max = 10-10°°C. For every value of k, first, the parameters of the linear
segmental approximation are determined for the number of nodes N, =5 and then,
the approximation error is calculated in a simulative way. If the standard deviation of
the error is higher than the allowable value gappmax = 0.01°C, the number of nodes
increases by 1 and all the procedure is repeated so long until the standard deviation is
less than this value. The obtained minimal numbers of nodes are presented in
Table 3.11.

Table 3.11

The least number of nodes Nnmin Necessary to obtain the allowable standard
deviation of the approximation error oapp,max = 0.01°C for the static
characteristic (3.52) approximated by linear segments

K 1 10 102 10®
Nn,min 5 11 25 46
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The exemplary function (3.52) for k=102 is presented in Fig. 3.10a. The histogram
of the approximation error of this function that is approximated in Nn =11 nodes
by linear segments is shown in Fig. 3.10b.

a) b)
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Fig. 3.10. a) Exemplary function (3.52) for k = 102, b) histogram of the linear approximation error of
the function for the number of nodes N, = 11

The results which are contained in Tab. 3.11 show that the number of nodes necessary
to obtain allowable inaccuracy of the segmental linear approximation significantly
grows with non-linearity increasing of the linearized function. It causes the number of
coefficients which have to be stored in the non-volatile memory of the microcontroller
to perform static reconstruction to be suitable large but this is not a problem if modern
microcontrollers are applied [Y6].

3.3. Two-dimensional analytical static reconstruction

3.3.1. Two-dimensional static characteristic of exemplary sampling instrument

The output quantity y of the analog converter in a sampling instrument can be
dependent not only on its input quantity x but also on other quantities that influence
the analog conversion. Among the influence quantities, the environmental temperature,
at which the instrument works, is most often taken into account. The considerations in
this chapter focus on error analysis of the signal reconstruction of the exemplary
instrument in the case where the ADC indications depend not only on the measured
temperature but also on the environmental temperature.



73

The environmental temperature can influence many elements of the instrument but,
to make the considerations simpler, only the temperature changes of the reference
resistor Rrer (see Fig. 3.2) are considered. Denoting the environmental temperature as
Jenv, the dependence of the resistance of Rrer on it can be described by the expression:

R

ref

= Rref [1+ (lgenv - l9Oenv )8] = Rref [1+ Algenv ) 8] = R + R ’ Algenv &= Rref + ARref (353)

ref ref

where Jo.env = 25°C is the nominal environmental temperature and Rrer is the value of
the reference resistor at this temperature. The temperature drift coefficient ¢ is defined
as the relative change of the resistor Rrs for the increase in the environmental
temperature equal to 1°C. This resistor is a part of AD converter; therefore,
the temperature drift of the resistor causes that the quantum value of the converter
changes respectively. Denoting the fluent quantum as ¢ and based on Eq. (3.18), one

can describe the ADC indication in this case as:

n, = en{k\’—ym + 0.5} =ent w +05|= en‘{ilg) ky N, + 0.5} (3.54)
q Iref Rref Rref
L Nq _

where R(9) is the resistance of the Pt100 sensor, which depend on the input
temperature 4 accordingly with the equation (3.5). After introducing Eg. (3.53) to
Eq. (3.54), one obtains the expression:

0 —ent| ROk N 405 = en kN R o5 (3.55)
! R ! ! Rref (1+ Algenv ) 8)

ref

which is the analytical two-dimensional model composed of the analog and
analog-to-digital parts of the exemplary instrument.

For the analysis of the properties of the model (3.55), another form of it is more
usable. After rearranging the equation (3.53), this model takes the form:

R($)N R($)N
n, =ent kVL+O.5 = ent| K, (%) : l—AR“°'f +0.5 (3.56)
+ AR R R

ref ref ref ref

.+ We have: _ 1 =1- AR
l+ ARref R
R

ref

where it is taken into account that for AR ; << R

ref

ref
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Example 3.7. Let us assume that the drift coefficient of the resistor Rres is
¢ =30 ppm/°C and the environmental temperature varies from 5°C to 45°C. This
means that the maximum absolute value of the temperature deflection from its nominal
value Joenv = 25°C is: |AJenv|max = 20°C. Therefore, the maximum change of Rper is of
the value:

(ARref )m =R, -|A19mv =Ry -20-30-10°=R_-0.6-10°Q (3.57)
Omitting the quantization operation in Eq. (3.54), we can write it in the simplified
form:
R(Z)N
n =k, (9N, 1- ARy - n_ 11— ARy |- n__—An (3.58)
! chf chf ! chf ! !

where ngnom IS the indication at the nominal temperature 9o,env = 25°C.

Accordingly with Eqg. (3.58), one can determine the changes in the ADC
indications caused by the influence of the environmental temperature on the resistor
Rrer. The maximum value of these changes can be determined as:

(an,) =n,. —(ARF;“ ) (3.59)

ref

Based on this equation and taking into account the fact that the maximum number of
quanta (nq)max = 56673 (see Tab. 3.3), we have:

(an,) =56673-0.6-10° = 34 (3.60)

In Example 3.2 it is calculated that the maximum acceptable change of
the quantization result IS (Ang). If the input temperature resolution is r=0.01°C.
The change (3.60) is substantially higher than this acceptable, which means that it is
necessary to correct the error caused by changes of the environmental temperature by
applying a two-dimensional static reconstruction algorithm.

3.3.2. Algorithm of two-dimensional static reconstruction

As result of the analytical model (3.55), the indication of ADC depends on both
the input temperature 4 and the resistance of Rrr, which is influenced by
the environmental temperature $env. Taking this into account, this model can be
generally presented in the following form:

n,=S(% 9,,) (3.61)

env
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In this case, the reconstruction is performed by solving Eg. (3.61) in relation to
the input temperature $. This operation can be written as:

9=s7(n,, 9, (3.62)

where § is the estimate of the reconstructed input temperature, and & is

the environmental temperature. In the exemplary instrument, this temperature is
converted by the inside sensor and measured by using the additional AD converter that
is a part of the ADuC386 microcontroller [Y6].

By expanding the inverse function (3.62) in the Maclaurin series and taking only
the initial terms into account, one obtains the following expression:

g ) gy | Ol

s (3.63)

oS (n,, env) aS‘l(n ny) 0N
=+ — dd,,

on, on, 09,
Denoting:

oSt (n,, 3

$,(N)as b(N), % as a(N) (N) (3.64)

q env
where N is the node number, and with assumption that:
dn, =An =n_-n(N), d3, =A8, =9, -39

env nv Oenv

(3.65)

Eqg. (3.63) can be written as:

8 =b(N)+a(N)n, —n,(N)]+a(N)e(N Y3, — o) = (3.66)

=b(N)+ (N)[nq n( )+ SN Yy = o)

The coefficient c(N) is interpreted as the inclination, in node N, of the linearized
inverse characteristic in relation to the environmental temperature. Due to
the non-linearity of the static characteristic, the inclination generally takes two values
depending on the value of this temperature: c+ for the value higher or equal to
the nominal environmental temperature Joenv and c- if the value is lower. The values of
these inclinations are calculated as:

¢ (N)= nz,q(N)—nzm(N)’ ¢ (N)= n,, (N)-n,, (N)

AY AY

env,max env, min

(3.67)

where Adenv,min, Aenv,max are the minimum and maximum values of AJenv, N2g+ and nzg-
are the indications calculated for these extreme values, respectively.
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The determination of the coefficients of the two-dimensional linear approximation
is carried out on the basis of the nodal values. For the exemplary analog converter
working in the given range of environmental temperature, the parameters of the nodes
are the same as for the one-dimensional approximation. It means that the node number
takes values N =0, ..., 4, the amplification coefficient is kv =32 and the maximum
number of ADC quanta Nq = 2!¢. The nominal value of the reference resistor used in
the instrument is Rrer=5.1253-10° Q and its temperature coefficient ¢ = 30 ppm/°C.
The values of the environmental temperature change around its nominal value
Joenv = 25°C from the maximum Jenymax = 45°C to the minimum Jeny,min = 5°C.
On the basis of these values, one can calculate the dependencies of the ADC
indications from values of the sensor resistance R for the extreme values of
the environmental temperature. Taking into account the values of the described
parameters, the indication (3.55) of the instrument working at the environmental
temperature of 45°C is expressed as:

R(N)
5.1253-10°[1+20-30-10°° |

n,.(N)= en‘{32 .21 + 0.5} =ent[408.931R(N )+ 0.5] (3.68)

and at the temperature 5°C:

R(N)
5.1253-10°[L-20-30-10°°|

n, (N)= en{sz Vi + 0.5} —ent[409.422R(N )+ 0.5] (3.69)

The minimum and maximum indications calculated for all nodes accordingly with
Egs. (3.68) and (3.69) are presented in Tab. 3.12.

Table 3.12

ADC indications determined on the basis of Egs. (3.68), (3.69) and (3.5) in the nodes
of two-dimensional exemplary inverse static characteristic including the influence
of the environmental temperature, N is the node number, nq (N) — the indication
in the nominal environmental temperature Joenv = 25°C, ng+ (N) in the temperature
Jenvymax = 45°C, Ng- (N) In Feny,min= 5°C

N 0 1 2 3 4
9(N)°C 0 25 50 75 100
R(N) @ | 100.0000 | 109.7347 | 119.3971 | 128.9874 | 138.5055
ng (N) 40918 44901 48854 52779 56673
ng+ (N) 40893 44874 48825 52747 56639
ng- (N) 40942 44928 48884 52810 56707
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Accordingly with Eqg. (3.67), the inclinations c.(N) and c+(N), calculated for an
environmental temperature lower and higher than the nominal one, are:

nq(N);on%(N)%, C_(N)= nq(N)__qu-(N)%

c.(N)= (3.70)

Their values were obtained on the basis of data from Tab. 3.12 and they are presented
in Tab. 3.13.

Table 3.13
Inclinations calculated accordingly with expressions (3.67), N is the node number
N 0 1 2 3 4
c-(N)°C 1.2 1.35 15 1.55 —
c+(N)°C 1.25 1.35 1.45 1.6 —

The inclinations of Tab. 3.13 have similar values, which means that only one
inclination can be used for positive and negative variations of the Aenv. For further
considerations, the average value of the inclinations (3.70):

o(N)= C+(N);C—(N) (3.71)

Is used. Values calculated on the basis of data from Tab. 3.13 are presented in
the table 3.14 together with the rest of the parameters of the two-dimensional linear
approximation, which are the same as for one-dimensional approximation
(see Tab. 3.3).

Table 3.14

Parameters of the segments of the five-node two-dimensional linear approximation
of the exemplary inverse characteristic calculated for model (3.55) based
on the analytical description (3.5) of the sensor and Eqg. (3.71), N is the node number

N 0 1 2 3 4
R(N) @ | 100.0000 | 109.7347 | 119.3971 | 128.9874 | 138.5055
ng (N) 40918 44901 48854 52779 56673
a(N)-10%°C |  6.2767 6.3243 6.3694 6.4201
b(N)°C -0.0140 24.9782 49.9833 74.9888
c(N)°C 1.225 1.35 1.475 1575

The coefficients contained in Tab. 3.14 describe two-dimensional exemplary inverse
characteristic created with using the segmental linear approximation, which is shown
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in the graphical form in Fig. 3.11. The approximation coefficients are stored in

the look-up table and applied in the algorithm of the two-dimensional static
reconstruction described below.

100

g°C

50

A9 °c 4 -
envy

Fig. 3.11. Graphical view of the linear approximation of the exemplary two-dimensional inverse

function

The two-dimensional reconstruction algorithm is performed in the following steps:

The ADC indication nq is compared with the node values nq(N), N=0,1, ..., 4,
which allows the determination of suitable node number N.

Based on the determined node number N, the suitable value of c2(N) is read from
the look-up table and the correction ¢(N)- A4, is calculated, wheread, =3, -39, ,

env

9. is the result of the environmental temperature measurement, Joenv = 25°C.
The calculated correction is added to the row result ng, which enables obtaining
the corrected result 1 .

The other parameters a(N), b(N) and nq(N) for the determined node number N are
read from the look-up table.
Based on the result n_and read parameters, the input temperature estimate is

calculated accordingly with Eq. (3.23), the same as used for the one-dimensional
reconstruction equation.

Using the two-dimensional model (3.55), one can carry out experiments, which enable
the determination of errors specific to the reconstruction. In real measurement
conditions, the model should take noise errors into account, which causes the ADC
indications in this case to be expressed as:

n, = ent| 409.176- +e_+05 (3.72)
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where in the performed experiments enoi is the normal noise N(0; 1). Moreover, this
model has to be completed by the expression, which describes the result of
the environmental temperature measurement. With the assumption that this
temperature is measured with resolution 0.1°C, the estimate of its change is described
by the following equation:

A

=49

env

where 9

env

A

él -4 )

0,env?

=0.1-ent(10- 4, +0.5

env

(3.73)

nv

Experiment 3.8. Let us assume that the input temperature changes from 0 to 100°C
and the environmental temperature changes from 5 to 45°C. At the beginning of every
step of the experiment, two values are randomly taken: the input temperature and
the environmental temperature — both in their ranges accordingly with suitable
rectangular distributions. Next, two indications are determined. The first indication is
calculated on the basis of Eq. (3.55), which does not include the noise error, and
assuming that the environmental temperature is measured accurately. The second
indication is calculated using Egs. (3.72) and (3.73), i.e. for the indications containing
all considered errors. For both kinds of indication, the reconstruction is performed
accordingly with the described algorithm on the basis of the approximation parameters
presented in Tab. 3.14. The distributions of the reconstruction errors are presented in
the form of histograms in Fig. 3.12.

a) b)
Number of occurence Number of occurence
1000 L L 1200 ‘ L
800 - 1000+
800+
600"
600
400+
400+
200+ 2001
0 0
-0.06  -0.04 002 0 002 004 006  -004  -0.02 0 002 004
e °C e °C
rec rec
Fig. 3.12. Histograms of total errors of the two-dimensional static reconstruction: a) the reconstruction

is performed on the basis of ADC indications burdened by the approximation error and
the quantization error (values of the environmental temperatures are exactly known)
accordingly with Eg. (3.55), the standard deviation of the reconstruction error is
orec = 9.0°10°C, b) indications are calculated accordingly with equations (3.72) and (3.73),
which means that they are additively burdened by the noise errors and the measurement
errors of the environmental temperature, orec = 11.1:10°C
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The histogram of the reconstruction error from Fig. 3.12a enables the determination of
the standard deviation of the two-dimensional approximation error eapp because in this
case it is:

=\/On — O, (3.74)

app rec

where eq is the quantization error with variance (3.39). After introducing the suitable
values to Eq. (3.75), we obtain:

o =10°4/92 336 =8.8-10° °C (3.75)

Having known the standard deviation sapp, One can calculate the standard deviation cenv
of the error caused by the measurement of the environmental temperature, which is
described by Eqg. (3.74). For the histogram of Fig. 3.12b, we have:

. 2 2 2 2
o, = \/ Ore ~ Oy — 0y — O, (3.76)

noi

where 6noi IS the normal noise error N(0O; 1). Using these known values of the standard
deviations, we obtain the following:

o, =10711.1> ~8.82 —~3.36-40.3 =1.45-10 °C (3.77)

env

The value obtained is less than the other standard deviations, which means that
the measurement of environmental temperature with resolution 0.1°C is accurate
enough for the sampling instrument considered.

3.3.3. Calibration of instrument with two-dimensional analytical reconstruction

Taking into account that nonlinearity of the two-dimensional static characteristic of
the analog converter is not great, one can carry out the calibration in the same way as
applied for the one-dimensional characteristic, which is described in Section 3.2.3.
It means that the calibration consists in measurements of the characteristic in
the selected points and in modifying the approximation parameters on the basis of
the obtained indications. As the environmental temperature can be one of the causes
of the characteristic drift, the calibration must be performed at the nominal
environmental temperature Joenv = 25°C, which means that the indications obtained for
this temperature are the same as in Tab. 3.4. The calibration procedure is presented in
the following example.



81

Example 3.8. Two resistors: R =100.0 Q and R> = 138.505 Q are used to calibrate
the instrument that performs the exemplary two-dimensional linear approximation.
The resistor Ricorresponds to the input temperature 31 =0°C and R;— to
the temperature 9. = 100°C. The use of the resistor R: in the nominal environmental
temperature Joenv = 25°C gives the indication ngsh(0) = 40931 but, if the resistor Ry is
connected to the input, the indication for the node number 4 is ngsn(4) = 56689. These
indications are the same as in Example 3.6, which means that the constant component
(3.27) of the correction is A1 =13 and the inclination coefficient (3.30) is equal to
s =0.03°C™.
Based on the data presented, the other corrected indications in the nodes of
the inverse two-dimensional static characteristic are calculated in the following way.
For node N = 0 one obtains:
N (0)=n,_(0)+A, +s-(%(0)-3)=40942+13+0.03- (0—0) = 44955
N (0)=1,,(0)+A, +5-(%(0)- 3 )=40893+13+0.03- (0 0) = 40906
where the symbols ‘- and ‘+’ denote the indications at the environmental temperatures
Jenv = 5°C and Jenv = 45°C, respectively.
For N =1 we have:
N @)=n_(1)+A, +s-(9(1)- 3 )=44928+13+0.03- (25— 0) = 44942
N @)=n_@0)+A, +5s-(9(1)- 4 )=44874+13+0.03- (25— 0) = 44888
For N = 2:
N (2)=n_(2)+A, +5-(9(2)- 9 )=48884+13+0.03- (50— 0) = 48899
N (2)=1,,(2)+ A, +5-(9(2)- 3 ) = 48825+ 13+ 0.03- (50 — 0) = 48840
For N = 3:
N (3)=n,_(3)+A, +5s-(9(3)-4)=52810+13+0.03- (75— 0)=52825
nqsh+(3)

and for N = 4;

n,.(3)+ A, +s-(9(3)- % )=52747+13+0.03- (75— 0)= 52762

N (4)=n_(4)+A, +5s-(3(4)- 4)=56707+13+0.03-(100—0) = 56723

qsh—

Ny (4) =0, (4)+ A, +5-(H4)- 3 )=56639+13+0.03- (100 0) = 56655
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The node values of indications are presented in the table 3.15. The parameters of
he two-dimensional linear approximation, which are calculated on the basis of these
indications in the way described in the previous chapter, are contained in Tab. 3.16.

Table 3.15
ADC indications determined by the effect of calibration
N 0 1 2 3 4
$(N)°C 0 25 50 75 100
Ngsh (N) 40931 44915 48869 52794 56689
Ngsh- (N) 40955 44942 48899 52825 56723
Ngsh+ (N) 40906 44388 48840 52762 56655
Table 3.16

Parameters of the segments approximating the exemplary two-dimensional static
characteristic obtained as the results of calculations performed on indications from
Tab. 3.14, N is the node number

N 0 1 2 3 4

a(N)-103°C 6.2750 6.3227 6.3703 6.4176 _

b (N)°C -0.01533 24.98328 49.98341 74.98714 _
c(N)°C 1.2216 1.3441 1.4631 1.5785

The error caused by the considered calibration can be determined by using
the experiment in which the reconstruction error is calculated for the indications
burdened by all the considered errors. These indications are determined by using
the two-dimensional analytical model of the analog converter containing the influence
of the drift. This model has the form:

1+A8 ¢ e

env

n, = ent{409.176- )+ A, +e,, + 0.5} (3.78)
that is obtained on the basis of Egs. (3.35) and (3.75), where R(9) is the resistance of
the sensor dependent on the input temperature 3, Ainc — the drift coefficient of the static
characteristic inclination, Asn — the characteristic shift caused by the drift, AJenv—
the environmental temperature, ¢ — the coefficient describing the influence of
the environmental temperature on the characteristic, enoi is the noise error.

The parameters of the linear approximation contained in Tab. 3.16 has been
determined on the basis of the calibration results which enable calculation of values of
the drift parameters in the nominal environmental temperature. For A$en =0, one
obtains: Ainc = 1.57-10%, Ash = 7°C (see Egs. (3.37) and (3.38)). For these values and for

the environmental temperature coefficient ¢ = 30 ppm/°C, the model (3.78) takes the form:
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R(9)
1+Ag,,-30-10°

env

n, = en‘{409.176- (1+1.57-10*)+7+e,, + 0.5} (3.79)

where enoi is the error caused by the normal noise N(0O; 1).

Experiment 3.9. This experiment is aimed at determination of distributions of
the reconstruction error for the parameters of the linear approximation from Tab. 3.16
and indications calculated accordingly with Eg. (3.79). One assumes that the input
temperature $ varies randomly with the rectangular distribution in the range from 0 to
100°C changing the sensor resistance R accordingly with Eqg. (3.5). The environmental
temperature Jenv Varies in the range from 5 to 45°C accordingly with the same kind of
the distribution. The changes of this temperature are determined as: A3 =4 -9

env env Oenv

where 3 is a measurement result of the environmental temperature obtained with

the resolution 0.1°C as it is described by the equation (3.70). The reconstruction is
carried out on the basis of the parameters from Tab. 3.16 with using the calculated
values of both temperatures. The histogram of the reconstruction error is presented in
Fig. 3.15b. The same operations are performed for the indications obtained with
assumption that the noise does not occur and the environmental temperature is known
exactly. The histogram of this error is shown in Fig. 3.13a.

a) b)

Number of occurence Number of occurence
1000 A . : : 1200 . . .

800k 1000}
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4001
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200+ 200k

0 0 t
-0.06 -0.04 -0.02 0 0.02 0.04 -0.06 -0.04 -0.02 0 0.02 0.04
e °C e °C

rec rec

Fig. 3.13. Histograms of the reconstruction errors if the parameters of the two-dimensional static
inverse characteristic are results of the calibration: a) the indications are burdened only by
the quantization errors, oec = 9.3-10%°C, b) the indications are burdened both by
the quantization and the noise errors while the environmental temperature is measured with
resolution 0.1, grec = 11.3:10%C

The reconstruction error erc from Fig. 3.13b is composed of the approximation error

€app, the quantization error eq, the standard deviation of which is given by Eq. (3.39),

the noise error enoi With the standard deviation (3.40), the calibration error eca and

the measurement error of the environmental temperature een described by Eqg. (3.75).
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Having known the distribution of the reconstruction error shown in Fig. 3.13b, one can
calculate the standard deviation of the calibration error based on the expression:

- Geznv (3 - 80)

_ 2 2 2 2
Gcal - \/Grec - Gapp - Gq — O,

noi

After introducing the suitable values to Eq. (3.80), one obtains:

0., =10°111.3° ~8.8% —~3.36 - 40.3-1.57> =2.12-10° °C (3.81)

which means that this error is of minor importance. Thus, the described calibration in
two end points is relatively accurate in the measurement conditions for the exemplary
instrument with the considered two-dimensional linear approximation of the static
characteristic.

3.3.4. Identification of parameters of two-dimensional analytical reconstruction

In measurement practice, the key issue is to limit the number of an input quantity
standards which are used for an identification of the static characteristic. As result of
considerations in Section 3.2.4, the described indirect method requires the smallest
number of standards for the identification of the inverse one-dimensional static
characteristic approximated by linear segments. The results that are contained in
the table 3.9 suggest that even three standards could be enough to determine
the approximating polynomial with acceptable inaccuracy. The identification method
described in this chapter is based on conclusions drawn in Section 3.2.4.

Let us take that the experiment of the considered identification is carried out for
the environmental temperatures stabilized at Jenv- = 5°C, Joenv = 25°C and Jenv+ = 45°C.
At every temperature, the same 3 standard resistors are used: Rstd(lig), values of which
are known with resolution 0.001 Q, lig is the identification point number, liq = 1,...,3.
Using these values, the input temperature $(lid) is determined accordingly with
Eqg. (3.5) with the assumption that the connection of one of the resistors Rs(lia) to
the instrument input is the equivalent to the placement of the Pt100 sensor at
the corresponding temperature 9(liq).

The two-dimensional inverse characteristic of the exemplary instrument is
approximated by linear segments connecting Nnod = 5 nodes. The first stage of
the identification consists in carrying out the measurements for 3 values of
the temperature inside the instrument housing stabilized at the Jenv = 5°C, 25°C and
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45°C. For every temperature, the 3 standard resistors Rsw(lid), the values of which are
presented in Tab. 3.17, are connected in sequence to the instrument input.
Measurements are repeated 5 times for every resistor to decrease the influence of the
noise by averaging the obtained indications. The calculated average values: n (1,,).

q0

n,_(1,) and n, (1), where liq=1,..., 3, are located in the Tab. 3.17 as the final

0+
identification results.

One should notice that during all the measurement experiments the standard
resistors work in stable nominal temperature 25°C, while the instrument itself works in
the 3 described environmental temperatures.

Table 3.17

Averaged indications determined for 3 standard resistors Rst(lid),
lia =1, ..., 3, during the identification performed, respectively,
at 3 values of the environmental temperature: 5°C, 25°C and 45°C

lid 1 2 3
9(lig)°C 0.155 52.513 101.211
Rswa(lia) Q 100.061 120.364 138.965
M- (1) 40967 49280 56896
Mo(1ia) 40943 49250 56861
Mg (1) 40918 49221 56827

The second stage of the identification consists in the determination of 3 analytical
forms of the inverse characteristic as the second order polynomial, respectively, for
temperatures Jenv = 5, 25 and 45°C. The general form of this polynomial is as follows:

3=a,+an, +a,n (3.82)

where ap, a1 and az are constant coefficients determined on the basis of indications
from Tab. 3.17 and presented in the Tab. 3.18.

Table 3.18

Polynomial coefficients that approximate the exemplary two-dimensional
inverse static characteristic at environmental temperatures Jenv = 5, 25,
and 45°C accordingly with Eqg. (3.82)

ao a:-10° ax-10°
Jenv = 5°C -245.72148 5.755326 6.01684
Jenv = 25°C -245.80685 5.761800 5.999101
Jenv = 45°C -245.63312 5.758227 6.076019
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The third stage of the identification consists of calculation of the parameters of
the segments approximating the exemplary two-dimensional static characteristic
between equally distant 5 nodes in the same way as described in Chapter 3.2 for
the one-dimensional approximation. The final results are presented in Tab. 3.19.

Table 3.19

Parameters of the segments approximating in 5 nodes the exemplary two-dimensional
static characteristic obtained indirectly by using polynomials of the form (3.82),
parameters of which are contained in Tab. 3.17, N is the node number

N 0 1 2 3 4
Ng (N) 40918 44901 48854 52779 56673
a(N)-103°C 6.27664 6.32425 6.37151 6.41841 _
b (N)°C -0.01718 24.9829 49.9829 74.9913 _
c(N)°C 1.2194 1.3359 1.4570 1.5827

The reconstruction is performed on the basis of parameters from Tab. 3.19 accordingly
with the algorithm described in Section 3.3.2. The histograms of the reconstruction
errors obtained in the same way as described in Experiment 3.8 are presented in
Fig. 3.14.
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Fig. 3.14. Histograms of the reconstruction errors if the parameters of the two-dimensional static
inverse characteristic are obtained as the results of the identification, the indications are
burdened: a) by the identification, approximation, and quantization errors, orec = 9.5:10°°C,
b) additively by the noise error and error of the environmental temperature which is
measured with resolution 0.1°C, grec = 11.5:10%°C

The reconstruction error erec from Fig. 3.14b is the composition of the approximation
error eqpp, the quantization error eq, the noise error enci, the measurement error of
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the environmental temperature eenv and the identification error eig. Taking this into
account, the standard deviation of the identification error can be determined from
the following equation:

noi env

. 2 2 2 2 2
o, = \/Gm ~0,, ~ 0, — 0. —C (3.83)

The standard deviation erec is known from Fig. 3.14 and the values of the other
standard deviations are the same as in the equation (3.77). For these values, we obtain
the following:

O =10°y11.52 —~8.8° —~3.36 - 40.3-1.45> =3.0-10° °C (3.84)

which means that the identification error is comparable with the quantization error;
thus, such a relatively simple identification procedure is accurate enough in
the considered measurement conditions.

3.4. Basic properties of neural networks used for static reconstruction

Generally, neural static reconstruction can be considered as the task consisting in
solving the inverse static characteristic modeled by an artificial neural network that
approximates this characteristic [D1, H1]. The selected networks presented below
meet the accuracy requirements of the reconstruction to a degree comparable with this
achieved for the considered analytical algorithms.

An artificial neural network is composed of interconnected processing
elements called neurons [A2, L4]. The general structure of a single neuron is shown in
Fig. 3.15.

Fig. 3.15. General structure of an artificial neuron
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The neuron consists of the two main elements seriously connected. The task of the first
consists in summing of the signals obtained by multiplication of input signals x; by
suitably assigned weights w;, j =1, ..., N, N is the number of neuron inputs. Therefore,
the output signal & of this element is given as the following linear combination:

j=N
&= WX, + W, (3.85)
j=1

where Wy is the threshold coefficient (bias). The procedure to determine values of these
coefficients is called the learning process.

The weighted sum ¢ is processed by the second element of the neuron accordingly
with its transfer function f(¢), the form of which determines the properties of
the neuron. The transfer functions of the sigmoidal type: unipolar and bipolar are
the most commonly used in practice.

The unipolar transfer function is described by the relation:

f, (&)= 1+1 (3.86)

where £ is the parameter that shape the selected form of the function. In the learning
process, it is necessary to know the first derivative of the transfer function [A2, A3].
The derivative of the function (3.87) is given by the equation:

df, (&)

@@ =/, (6L~ 1.(9) (3.87)
The bipolar transfer function is usually described by the expression:
f, (&) = tgh(BS) (3.88)
and its derivative has the form:
df, (&)
s A1) (3.89)

Diagrams of the considered sigmoidal transfer functions and their derivatives are
shown in Fig. 3.16.

A set of neurons create an artificial neural network. The network composed of
neurons with the sigmoidal transfer function, connected in this way that the signals
propagate only in one direction from the input to the output of the network, is called
feedforward sigmoidal neural network. The simplest structure of it, shown in
Fig. 3.17a, consists of a single layer of neurons. It has small practical significance [A2]
and is used in particular cases.
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Fig. 3.16. Sigmoidal function diagrams for selected values of £ coefficient: a) unipolar, b) bipolar,
c) derivative of the unipolar function, d) derivative of the bipolar function
The feedforward multilayer network contains at least one hidden layer that
transforms signals from the input layer to the output layer. The scheme of this network
Is shown in Fig. 3.17b.

Input layer Output layer Input layer Hidden layers Output layer

Fig. 3.17. The general structure of the feedforward sigmoidal neural network: a) single layer network,
b) multilayer network, N is the number of network inputs, K — the number of neurons in
the first hidden layer, L — the number of neurons in the H-th hidden layer, M — number of
output neurons
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The function implemented by the network with one hidden layer is of the form:
y="1, [wo fu (wa + WH0)+ Woo (3.90)

where: X, y are vectors of the network input and output signals, respectively, wx, wo —
weight matrices of hidden and output layers, wro, Woo — bias vectors, fu, fo— sigmoidal
transfer functions.

The input layer is usually applied for a pre-treatment of the input signals
(e.g. normalization, coding) and their transfer to the first hidden layer. Neurons in
the hidden and output layers perform processing accordingly with the taken sigmoidal
functions. The connections between layers are formed in such a way that every neuron
of the preceding layer is connected to every neuron of the next layer.

The feedforward multilayer sigmoidal neural network is usually called a Multi-Layer
Perceptron or a Feed-Forward Neural Network as well as a Back-Propagation Neural
Network. Networks of this type are most often described in the literature [A2] and
used in practical applications. The main reason for this is the development of effective
methods of their learning, numerous modifications and improvements.

A feedforward neural network performs mathematical operations on the input
signals represented in discrete forms by numerical data. These operations depend on
both the structure of the network itself and the values of the weight coefficients of
the neurons. Taking this into account, we can treat the exemplary expression (3.93) as
an approximation of a real dependence between the output and the input data.
Assuming that the network structure and the neuron transfer functions do not change,
the approximation properties of the network are fixed by the weight coefficients.

The corresponding values of the network coefficients are determined in the process
of network learning which can generally be divided into supervised and unsupervised
learning [B3]. In this book only the first method is applied for learning networks that
perform static reconstruction. Using the supervised learning for the feedforward
sigmoidal networks, one assumes application of a network learning set which consists
of the input data vector and a corresponding output data vector. Elements of
the learning input data vector are processed by the network, and the results obtained in
the output of the network are compared with the output learning vector. The error,
which is the difference between the compared values, is the primary parameter used to
adjust the weights. It is the basis of the error backpropagation algorithm [L4], which is
a generalization of the so-called delta rule that allows learning of multilayer neural
networks. The operations performed accordingly with this algorithm consist of
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optimizing the cost function by using a gradient method. The gradient of the cost
function indicates the direction of the fastest growth and, by changing the sign,
the direction of steepest descent. Therefore, it is possible to minimize the cost function
by changing values of its variables, i.e. the weighting factors, in the direction of
the steepest descent function in proportion to the gradient.

Using a neural network for static reconstruction requires preparing an appropriate
set of learning patterns in the identification process, which consist of numbers
representing the input and output static signals, respectively. The size of this set can
influence, among others, on the network structure, and more specifically on the number
of neurons in the hidden layer. The results of the simulation studies, described in [R5],
show some regularity, which, in short, can be formulated in the following way:
the more numerous is the set of learning data the more neurons in the hidden layer may
be applied, providing, as a rule, a more accurate static reconstruction.

Evaluation of the neural approximation accuracy takes place in the process of
network testing, wherein the set of testing data should be much larger than the set
of learning data. This means that, in the simplest case, the identification results of
the static characteristic should be divided into two separable sets: learning and testing.
However, in practice, obtaining a suitably numerous set of measurement results of
the static characteristic is difficult to carry out, time-consuming and costly, especially
for nonelectrical quantities. Therefore, another approach is applied, which consists
first in determiningan analytical approximation of the static characteristic on the basis
of data obtained during the identification [M9]. Next, this approximation is used to
calculate as numerous learning and testing sets as necessary [A2, A4]. One should
emphasize that for the neural network working in the sampling instrument, testing
consists in determination and analysis of distributions of the reconstruction errors by
using Monte Carlo method [K4].

3.5. One-dimensional neural static reconstruction

3.5.1. One-dimensional neural approximation of the sensor inverse characteristic

As result of the analysis presented in [R5], a feedforward neural network with one
hidden layer performs static reconstruction with a good enough accuracy. For
the Pt100 sensor, the characteristic of which is nonlinear in a small degree,



92

the simplest structure 1-3-1 (one input, 3 neurons in hidden layer, one output) of this
kind of network can be applied. The scheme describing mathematical operations
performed by this network is shown in Fig. 3.20.

Fig. 3.18. Detailed structure of the 1-3-1 feedforward neural network applied for the static
reconstruction of the input signal of the exemplary Pt100 sensor
The scheme shown in Fig.3.18 can be interpreted as the graphical form of
the reconstruction algorithm implemented by the neural network. The coefficients of
this algorithm are determined on the basis of the analytical equation (3.5) that
describes the static characteristic of the sensor. The network process the input value,
which is the resistance R of the sensor, to the estimate ¢ of the reconstructed
temperature. Taking into account that the output layer is reduced to one neuron

realizing function ¢ = z, the general equation (3.91) is transformed into the expression:

n 3
$=>vf,(WR+b)+b, (3.91)
i=1

where fy is the sigmoidal transfer function (3.87) with g = 1.

The the network learning considered in this book is performed by using
Lavenberg-Marquard method [W3]. For the network in Fig. 3.18, the set of learning
data consists of two vectors: the input vector R =[R(1), R(2),..., R(P)], wherein P is

the number of the learning patterns, and the output vector 9=[9(),%(2)...., ¥P)].

The graphical illustration of the network learning process is presented in Fig. 3.19.
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Elements of the learning set

T

Input vector Output vector
R(p) ANN“ 1 d(p) + - %(p)
W,
AMSE
A

A(p) = 9(p)-9(p)

Fig. 3.19. Illustration of a supervised learning process of the exemplary neural network with one input
and one output, p is the current number of the learning stepp=1, ..., P

One learning cycle (epoch) consists in comparing successive responses 9(p) of

the network withthe values of the input vector to determine the difference:

A(p) = (p) - 9(p) (3.92)

where @(p) is the postulated true value (pattern) of the response, p=1, ..., P. After

realization of the whole cycle of learning, the differences obtained are used to
calculate the mean square error accordingly with the expression:

pf[A(p)]z

Ayse = D:T (3.93)

The value of the mean square error Amse IS interpreted as a current measure of
learning quality [B3] during the whole learning process and is used to modify
the weighting coefficients W of the network in a manner dependent on the applied
learning algorithm. After that, Amse is compared with the acceptable value and if it is
greater than this value, the described procedure is repeated. The learning process is
carried out until the calculated value of Amse is less than its taken value.

Example 3.9. The characteristic of the Pt100 sensor is described by Eqg. (3.5).
The neural network from Fig. 3.18 is dedicated to representing the inverse static
characteristic of this sensor, The network is learned by using data set {R(P), 9(P), P =5}
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which is created on the basis of the values from Tab. 3.1 and shown in Fig. 3.20. Every
pattern in the set consists of two values: the first value is the sensor resistance, while
the second is the input temperature.

1100.0 0f ,{109.7347 25} ,, {119.3971 50} ,,{128.9874 75} ,,{138.5055 100f

Fig. 3.20. Data set used for learning the exemplary network, p is the current number of the pattern

Values of the network coefficients obtained after the selected step numbers of
the learning process are presented in Tab. 3.19. At each step, all data from the set of
patterns are used successively.

Table 3.20

Dependence of values of the network coefficients shown in Fig. 3.20 on the number
of cycles used to learn the network by using the set from Fig. 3.22

Learning Wi by Vi
cycles W2 b2 V2 ba Awmse
W3 bs V3
8.027609 -60.3751 11.87466
3 6.571468 52.08052 11.31855 12.22235 1093.97
0.367789 -43.6316 12.4188
4.766387 -60.3952 43.41665
16 18.00239 52.15988 36.02665 51.4009 2.44343
-0.0736 8.798834 -160.671
-2.90368 -60.462 -0.56514
32 -6.75304 -51.9444 36.27894 -88.5475 0.194
0.038204 -4.60223 282.8482
-1.80717 -60.4609 -0.73434
64 17.81642 52.1508 -121.974 -56.5376 0.023
0.022277 -2.72876 473.3286
-4.8623 -60.4709 -0.3695
178 13.83558 52.11928 -163.086 -149.416 0.0033
0.01363 -1.74102 768.6503
-2.59298 -60.4605 -0.6474
1000 7.645763 -52.1179 759.7593 725.1683 4.23E-05
-0.0044 0.882913 -2438.51
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The exemplary learning progress is graphically presented in Fig. 3.21. The values of
the learning quality measure Awmse, which determines the inaccuracy of the learning
process, are shown in this figure as a function of the number of the learning cycles.
The process is stopped after reaching the taken value of Amse equal to 10°°. The final
values of the coefficients are shown in the scheme of the neural network presented in
Fig. 3.22.

10 T T T T T T T T

107 +

10" +

MSE

102

107

10°

1 [ 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Epochs

Fig. 3.21. Dependence of the learning quality measure Amse from the number of learning cycles
(Epochs) in the case if the set from Fig. 3.20 is used to learn the network from Fig. 3.19

As in from Fig. 3.21, the learning process can be ended much earlier if one takes

Awmse = 10 for example. But one should notice that this value could not be acceptable

because the final decision about ending this process must be made on the basis of

knowledge about the reconstruction error distribution.

60.3911

Fig. 3.22. Values of the weight coefficients of the neural network, which are obtained as a result of
the learning process performed on the basis of data presented in Fig. 3.20
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The scheme in Fig. 3.22 presents the structure of the neural network approximating
the inverse characteristic of the Pt100 sensor and the values of its parameters.
The approximation error of this network is presented in analytical form in Fig. 5.23a.
From another point of view, the scheme from Fig. 3.22 can be treated as a specific
neural description of the algorithm which performs the static reconstruction of
the sensor input signal on the basis of values of its resistance.

After the learning process, it is necessary to evaluate the final inaccuracy of
the network as the performer of the static reconstruction. This is done by testing
the network with using a suitable numerous set of the input data and a corresponding
set of the output data, both have to be known with a suitable accuracy. One should
notice that the testing in the case if a network is used for realizing the signal
reconstruction consists in determining the reconstruction error distribution by using
the Monte Carlo method in the same way as for the analytical reconstruction.

Experiment 3.10. After learning, the network of Fig. 3.22 is tested in the simulative
way in 100,000 steps. At each step, the true values of the input temperature 4 are taken
randomly from the range 0 to 100°C according to the rectangular distribution. After
introducing this value into Eq. (3.5), one obtains the resistance R, on the basis of
which the estimate of the input temperature is determined by using the considered
network. Both values are subtracted and the resultis treated as the value of
the approximation error, which is located at the set of error values. After finishing all
steps, the approximation error is presented in the form of histogram shown in
Fig. 3.23b. The standard deviations of this error and other errors that influence
inaccuracy of the reconstruction are compared to evaluate whether the reconstruction
error takes values comparable to the other errors.

a) b)
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Fig. 3.23. a) Dependence of the approximation error on the input temperature for the neural network of
Fig. 3.22, which is learned in 5 points accordingly with the set from Fig. 3.20, b) histogram
of this error obtained by using Experiment 3.10, gapp = 1.71-102°C



97

As it results from comparing figures 3.5b and 3.23b, the error of the neural
approximation is less than that of the approximation composed of the linear segments,
despite the fact that the network from Fig. 3.22 is of the very simple structure.
This feature is connected with a relatively low nonlinearity of the sensor characteristic.
For stronger nonlinearities, one can suppose that more neurons in the hidden layer
should be used. To check how the approximation error depends on the number of
neurons in the hidden layer and the number of points in the learning set, the simulation
experiments were carried out in the same way as described in Experiment 3.10.
The results are presented in the Tab. 3.21.
Table 3.21

Standard deviations of the approximation error in dependence
of the parameters of neural network from Fig. 3.22

o 10° °C Number P of elements in learning set
5 8 12 16
3 1.71 1.40 1.32 1.28
Number
of 5 1.71 1.40 0.0224 0.0320
neurons in 7 1.71 1.40 0.0190 0.0372
the hidden 9 1.71 1.41 0.0119 | 0.0408
layer

11 1.75 1.40 0.00373 0.0127

The basic conclusion which one can draw from the results contained in Tab. 3.21 is
that the approximation error of the network with one hidden layer can be significantly
less than the error of the linear segmental approximation determined under comparable
conditions. The error decreases with increasing the number of learning points, but only
if one uses a suitable number of neurons in the hidden layer. This property may be
important for the static characteristics of sensors with relatively strong nonlinearity,
while 3 neurons in this layer are a sufficient number for the considered characteristic.

3.5.2. One-dimensional static neural reconstruction in exemplary instrument

As considered in Section 3.2, the static reconstruction of the input signal of
the exemplary instrument is performed on the basis of the inverse model of the analog
converter and the ADC indication. Such a model is obtained as an approximation of
the static characteristic inverse to Eg.(3.20). In the case of the analytical
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reconstruction, the model takes the form of linear segments, while for the neural
reconstruction, it is approximated by a structure and coefficients of the neural network,
which is created as effect of the learning process.

Let us use the same nodal values for determination of the neural network
parameters as applied in the case of the linear approximation of the inverse static
characteristic. Based on the data from Tab. 3.3, one obtains the learning set presented
in Fig. 3.24. The scheme of the exemplary neural network, parameters of which are
obtained after learning the network with using this set, is shown in Fig. 3.25.

{40918 0} _, {44901 25} ,, {48854 50} ., {52779 75} ,, {56673 100} .

Fig. 3.24. Data set used for learning the exemplary network from Fig. 3.25, where p is the current
number of the learning pattern

Fig. 3.25. Values of the weight coefficients of the exemplary neural network obtained as a result of

the learning process using the set from Fig. 3.24
Determination of metrological properties of the neural reconstruction is carried out by
testing the network with using two sets: the first one contains the true values of
the input quantity, the second — the reconstruction results obtained on the basis of
indications suitable for these values. In practice, the indications are burdened at least
by the quantization errors, and usually by the noise errors, too. The next experiment is
devoted to determination of the reconstruction errors if the network from Fig. 3.25 is
applied.

Experiment 3.11. The input temperature value is randomly taken from the range 0 to
100°C with the rectangular distribution; after that the sensor resistance is calculated
accordingly with the equation (3.5). On the basis of the obtained resistance value, two
indications are calculated: accordingly with Eq. (3.20) and Eq. (3.22). The indications
obtained are processed by the network from Fig. 3.25, which results in determining
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the suitable estimates of the input temperature. The differences between the true value
of the temperature and its estimatesare located in two sets of the reconstruction error
values, which are presented in the form of histograms in Fig. 3.26 after the end of
the experiment.

a) b)

Number of occurence Number of occurence
700 T T T T T 1200 T T T T
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0 0 t
-0.03 -0.02 -0.01 0 0.01 0.02 0.03 -0.03 -0.02 -0.01 0 0.01 0.02 0.03
°C e °C

erec rec
Fig. 3.26. Histograms of the reconstruction error of the network shown in Fig. 3.25 if the indications
are burdened by: a) the quantization error, orc = 2.87-10°°C, b) the quantization error and
the noise error, grec = 6.97-10°°C
The histograms obtained allow for the determination of the standard deviation of
the neural approximation error ospp. Using the relationship between the standard

deviations of uncorrelated errors, one can write that:

Ty = \/Grzcc -0, —o,, (3.94)

where orec IS the standard deviation of the reconstruction error given by Fig. 3.30b and
oq, onoi are given by Egs. (3.39) and (3.40), respectively. Based on these values, we
have:

o,, =10°16.972 ~3.36-40.3 =2.22.10°°C (3.95)

Thus, this error takes values less than the approximation error of the linear
approximation. This means that the considered neural approximation of the static
characteristic is more accurate under the same conditions than the one composed of
the linear segments.

The occurrence of noises in an analog converter allows us to suppose that errors
caused by them could be filtered during the learning process. To verify this hypothesis,
5 standard resistors connected sequentially to the instrument input are used. For every
resistor, 4 indications are determined accordingly with Eq. (3.22), which means that
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they are burdened both by the quantization and the noise errors. The input temperature
values corresponding to the selected values of the resistors are presented in Fig. 3.27 in
4 rows.

p=5

{40917 0.000} _,, {43917 18.815}, {47869 43.744}, {51842 69.015}, {55650 93.427}
{40919 0.000 _,, {43919 18.815}, {47866 43.744} {51841 69.015} {55652 93.427|
{40917  0.000} _,, {43918 18.815} {47868 43.744}, {51843 69.015}, {55651 93.427}
{40917 0.000} _,, {43917 18.815}, {47868 43.744}, {51843 69.015 {55654 93.427

p=10
p=15

p=20

Fig. 3.27. Data set used for learning the 1-3-1 exemplary network obtained for the same 5 standard
resistors, on the basis of which the corresponding input temperatures are calculated and
pointed as the second element in brackets, all indications are burdened by the quantization
and noise errors

The 1-3-1 network shown in Fig. 3.25 is learned successively by using the data from
Fig. 3.27 starting from first row. After every learning process, the standard deviation
of the reconstruction error is determined in the simulation way by using the Monte
Carlo method, and the results are presented in the table 3.22.

Table 3.22

Dependence of the standard deviations of the reconstruction error
for the number Nrep Of rows from Fig. 3.31 used for the network learning

Nrep 1 2 3 4
6rec-1073°C 5.27 3.29 2.84 1.53

It results from values contained in Tab. 3.22, an increasing number of ADC indications
used for the network learning enables a decrease in the reconstruction error, which
means that noise errors are filtered in the learning process.

Based on the histogram presented in Fig. 3.26, one can draw the conclusion that
the simple network 1-3-1 that is learned by using 5 patterns approximates accurately
enough the inverse static characteristic of the exemplary analog converter. This feature
enables us to take the fact that the considered neural approximation is acceptable for
further considerations.

3.5.3. Identification of a network for one-dimensional neural reconstruction

The neural network from Fig. 3.25 has been determined on the basis of the analytical
description (3.20) of the exemplary analog converter. In practice, such knowledge of
a static characteristic is relatively seldom; thus, it is identified in a measurement
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process using standards of the sensor input quantity, the number of which should be
minimized. As it results from the table 3.10, the indirect identification using
the polynomial (3.49) can be performed with application of 4 standards only.

To compare properties of the analytical and neural approximations determined
indirectly in this way, the learning set composed of 5 patterns is determined on
the basis of the polynomial (3.49) and presented in Fig. 3.28. The parameters of
the exemplary network 1-3-1 obtained for this set are shown in Fig. 3.29.
The histograms of the errors of the reconstruction performed using the network are
presented in Fig. 3.30.

{0.00468 40917} ,, {25.3026 44949} ,, {50.0704 48866} .,
{75.1162 52797} ,, {93.4254 55652}

Fig. 3.28. Learning set obtained on the basis of the polynomial (3.49)

Fig. 3.29. Scheme and values of the weight coefficients of the exemplary neural network obtained as
a result of the learning process by using the data from Fig. 3.28

Experiment 3.12. This experiment is carried out in the same way as Experiment 3.11.
It is aimed at determining the distribution of the reconstruction errors in the case if
the network is learned on the basis of the set that is obtained indirectly accordingly
with the polynomial (3.49) and presented in Fig. 3.28. The histogram shown in
Fig. 3.30a is determined for the indications calculated based on Eq. (3.20), while this
from Fig. 3.30b on the basis of Eqg. (3.22).
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Fig. 3.30. Histograms of the reconstruction error of the network from Fig. 3.29, the parameters of
which are obtained on the basis of the data presented in Fig. 3.28, which are determined
accordingly with the polynomial (3.49); the ADC indications are burdened by:
a) the quantization errors, owc =3.16:10°3°C, b) by the quantization and noise errors,
Orec — 71110_3 OC

The reconstruction error erc from Fig. 3.30b is composed of the approximation error

eapp, the identification error eiq, the quantization error eq, and the noise error enoi.

Knowledge of the suitable standard deviation of these errors allows calculation of

the standard deviation of the approximation error as:

_ 2 2 2 2
oy = \/O'rec — 0,y — 0, O (3.96)

noi

where orec IS the standard deviation of the reconstruction error with distribution
presented in Fig. 3.30b, oapp is calculated using Eq. (3.92) and oq, onoi are given by
Egs. (3.39) and (3.40), respectively. Using these values, we have:

oy =107Y7.11% - 2.22* ~3.36-40.3 =1.4-107 °C (3.97)

Having known the polynomial (3.49), one can calculate as many patterns in
the learning set as necessary. In Tab. 3.23, dependencies of the standard deviations of
the reconstruction errors are presented on the number of patterns determined indirectly
on the basis of polynomial (3.49).

Table 3.23

Standard deviations of the reconstruction errors of the neural reconstruction
that is performed by the 1-3-1 network in relation to number P of elements
in the learning set obtained on the basis of Eq. (3.49), o1 is the standard
deviation obtained if indications are burdened by the quantization error only,
o2 — I they are burdened both by quantization error and the noise error N(0; 1)

P S 8 12 16
01103 °C 3.16 3.33 3.34 3.31
027103 °C 711 7.18 7.18 7.17
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As it results from values presented in Tab. 3.23, the reconstruction errors do not
depend on the number of patterns obtained indirectly. It means that one can take, for
the described kind of identification, the same number of identification points as used
for the linear approximation, i.e.: 5. One may notice that the identification error in
the case if the neural network approximates one-dimensional inverse static
characteristic is suitably less than this error for the analytical approximation.

3.5.4. Calibration of instrument with one-dimensional neural reconstruction

As is analyzed in Section 3.2.3, the changes in time of the static characteristic cause its
approximation should be periodically modified by using the calibration. In the case of
a neural network, the network coefficients cannot be modified as is done for
the analytical approximation. Therefore, the calibration consists in identifying, i.e. in
determining these coefficients for the changed operating conditions of the sampling
instrument, which requires the use of a sufficiently large number of the input quantity
standards. However, it is possible to indicate another method, which requires only two
standards for a characteristic with a small nonlinearity. It consists in modifying
the segmental linear approximation coefficients as shown in Section 3.2.3, and then
the modified nodal values should be determined, which become learning patterns for
the modified network.

To present properties of such a kind of calibration, the determined nodal values of
the linear approximation contained in Tab. 3.5 are used to learn the network.
The learning set is presented in Fig. 3.31, and the parameters obtained for the 1-3-1
exemplary network are shown in Fig. 3.32. The execution of Experiment 3.13 enables
the determination of the distributions of the reconstruction errors for the instrument
after the calibration.

{40931 0} ,, {44915 25 ,, {48869 50} ,, {52794 75} ,, {56689 100}

p=3’ p=4

Fig. 3.31. The learning set obtained on the basis of the calibration results from Tab. 3.4



Fig. 3.32. Weight coefficients of the exemplary neural network being learned up using the data from

Experiment 3.13. This experiment is aimed at the determination of distributions of
the reconstruction errors in the case if the exemplary network is learned on the basis of
data from Fig. 3.31 obtained as a result of the exemplary instrument calibration at two
points. The course of the experiment is the same as in Experiment 3.11. The histogram
shown in Fig. 3.33a is determined for the indications calculated based on of Eq. (3.20),
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Fig. 3.31, which are obtained on the basis of the calibration results from Tab. 3.4

while this from Fig. 3.33b one the basis of Eq. (3.22).
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Fig. 3.33. Histograms of the reconstruction error of the network from Fig. 3.32, the parameters of
which are obtained as the results of the two-point calibration, the ADC indications are
burdened by: a) the quantization errors, cap =4.69-10°°C, b) by the quantization and
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Knowledge of the standard deviation orec Of the reconstruction error presented in
Fig. 3.33b enables the determination of the standard deviation oca of the error caused
by the considered calibration of the exemplary instrument. It is:

_ 2 2 2 2
Gcal - \/Grec - Gapp - O-q - Gnoi (398)

where oqpp is calculated using Eq. (3.92) and oq, onoi are given by Egs. (3.39) and
(3.40), respectively. Based on these values, we have:

o, =10°/7.91 —2.22> ~3.36 - 40.3 =3.74-10° °C (3.99)

which means that the calibration error takes values comparable with the other errors of
the sampling instrument in the considered measurement conditions.

3.6. Two-dimensional neural static reconstruction

3.6.1. Structure of neural network used for two-dimensional static reconstruction

As it results from consideration presented in Section 3.3, the linear approximation of
the inverse one-dimensional static characteristic may be enhanced in the simple way to
the two-dimensional one. The same approach can be used if the neural approximation
is applied. For further considerations, a neural network with 3 neurons in the hidden
layer and two inputs, shown in Fig. 3.34, is used.The detailed structure of the network
is shown in Fig. 3.35.

Fig. 3.34. General scheme of the neural network applied for the two-dimensional static reconstruction
of the exemplary instrument, nq is the indication in the AD converter output, Aémv -
the estimate of the environmental temperature change in relation to the reference
temperature, 3 — the reconstructed input temperature
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+Wpy- N, +b,

Fig. 3.35. Detailed structure of the neural network 2-3-1 from Fig. 3.34 applied for two-dimensional
static reconstruction of the exemplary instrument

From Fig. 3.35, it results that the static reconstruction algorithm performed by

the network can be written in the analytical form as:

2i''q

A 3
9= fO(Zvi f,(W,AQ,, +w,n, +b )+ b4) (3.100)
i=1

where: wij, vi are appropriately weight coefficients of the hidden and the output layers,
bi are the biases, fn, fo — are the transfer functions, respectively, of the hidden and
the output layers.

For this type of neural network, the learning data set consists of P elements, each
of them is composed of 3 values, as shown in Fig. 3.36.

A l§env (1) A lgenv (2) A lgenv ( P)
9 ¢, 92)+, ..., 9(P)
n, (1) n,(2) n,(P)

Fig. 3.36. General structure of the data set used for learning of the neural network from Fig. 3.35

In Table 3.12, indications are contained calculated accordingly with the analytical
model of the exemplary two-dimensional static characteristic, on the basis of which
the learning set shown in Fig. 3.37 is created. The parameters of the exemplary neural
network obtained by using the set from this figure are presented in Fig. 3.38.
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- 20 - 20 - 20 - 20 - 20
0 25 50 75 100
40942 | | (44928 | , (48884 | (52810 | , (56707 | .

0 0 0 0 0

0 25 50 75 100
40918 | , (44901 | . (48854 | (52779 | , (56673 |
20 20 20 20 20

0 25 50 75 100
40893 |, (44874 | . (48825 | . (52747 | . (56639 |

Fig. 3.37. The data used to learn the neural network from Fig. 3.39, p is the current number of
the element in the learning set,p=1, ...,P,P =15

Fig. 3.38. The values of the weight coefficients of the exemplary network from Fig. 3.35, which are
obtained on the basis of the learning data from Fig. 3.37 for the network performing neural
approximation of the exemplary two-dimensional inverse static characteristic

Experiment 3.14. This experiment aims at determination of distributions of errors

burdening the two-dimensional reconstruction performed by the network from

Fig. 3.38 with the assumption that the input and the environmental temperatures

change randomly with the rectangular distributions: the input temperature varies in

the range from 0 to 100°C and the environmental temperature in the range from 5 to
45°C. The histogram of the reconstruction error shown in Fig. 3.39a is determined for
the indications burdened only by the quantization errors and with the assumption that
values of the environmental temperature are known accurately. The histogram from
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Fig. 3.39b is obtained for indications burdened additively by noise and for
the environmental temperature measured with resolution 0.1°C accordingly with
Eq. (3.76).
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Fig. 3.39. Histograms of the two-dimensional static reconstruction errors for the network in Fig. 3.38
that is created by using the learning data obtained analytically: a) the reconstruction is
performed based on the indications of the ADC with assumption that the indications are
burdened by the quantization errors, the values of the environmental temperature are exactly
known; the standard deviation of static reconstruction errors is orec = 10.2:103°C,
b) the indications are additively burdened by the noise errors, moreover, the environmental
temperature values contain errors connected with the measurement resolution equal to
0.1°C, Grec = 12:10°°C

The histograms from Fig. 3.39 enable determining the standard deviation of

the approximation error. The reconstruction error shown in Fig. 3.39a contains

the approximation and the quantization errors. Therefore, the standard deviation 6app Of

the two-dimensional neural approximation error can be calculated as:

Ty = Oree — O (3.101)

app rec

in which orec is the standard deviation of the reconstruction error, the value of which is
taken from Fig. 3.39a, 6q — the standard deviationof the quantization error given by
Eq. (3.39). After introducing the suitable values to Eqg. (3.101), we obtain:

Canp =10"°+10.2° -3.36 =10-10° °C (3.102)

The value (3.102) is comparable to the approximation error of the two-dimensional
linear approximation (see Eqg. (3.75). It means that the considered structure 2-3-1 of
the neural network is accurate enough for the assumed level. If necessary, this error
can be reduced by extending the network with additional neurons in the hidden layer.
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3.6.2. Calibration of instrument with two-dimensional neural reconstruction

The assumptions taken for the calibration of the instrument performing the static two-
dimensional neural reconstruction can be the same as for the calibration described in
Section 3.4.4. As result from the considerations presented there, the calibration can be
carried out in two endpoints of the static characteristic with the use of two resistor
standards. The indications obtained are applied to determine the shifted values of
the static characteristic, which are used to create the learning set. Such a set composed
of the same nodal values as used to determine the parameters of the two-dimensional
linear approximation is presented in Fig. 3.40. The network obtained on the basis of
this learning set is shown in Fig. 3.41 while the histograms of the reconstruction errors
determined for this network using the Experiment 3.15 in Fig. 3.42.

- 20 ~20 - 20 ~20 ~20
0 25 50 75 100
40955 | (44942 | (48899 | . (52825 | , (56723 | .

0 0 0 0 0

0 25 50 75 100
40931 |, (44915 | (48869 |, (52794 |, . (56723 |, .
20 20 20 20 20

0 25 50 75 100
40906 |, (44888 |, (48840 | . (52762 |, (56655 |, .

Fig. 3.40. The learning set obtained on the basis of nodal values from Tab. 3.14, which is used to
calibrate the exemplary instrument performing the two-dimensional neural static
reconstruction

Fig. 3.41. Values of the weight coefficients of the 2-3-1 exemplary neural network determined by

0.53412

using the learning set from Fig. 3.40
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Experiment 3.15. This experiment is carried out with the same assumptions as
Experiment 3.14 with this difference that the exemplary neural network has been
learned by using the data obtained as results of the two-point calibration described in
Section 3.3.3. The histograms obtained for the reconstruction errors are presented in
Fig. 3.42 a) and b).

a) b)
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Fig. 3.42. Histograms of the two-dimensional static reconstruction error for the network in Fig. 3.41
obtained after calibration: a) the reconstruction is performed based on the indications (3.49)
of the ADC, which are burdened by the quantization error, moreover, the values of
the environmental temperature are exactly known, oiec = 10.54 -102°C, b) the indications
are burdened additively by the noise errors, and the values of the environmental
temperature contain errors connected with the resolution of this temperature equal to 0.1°C,
Orec = 12.31 '10%°C

The standard deviations of the errors presented in Fig. 3.42 enable determining
the standard deviation ocal Of the error connected with the calibration of the instrument

performing the static neural approximation. For the partial errors forming the total
reconstruction error from Fig. 3.51a, we have the following:

o, = \/ ol - Gjpp — Gj (3.103)

where oreciS the standard deviation of the reconstruction error, ospp — oOf
the approximation error given by Eq. (3.102) and oq by Eq. (3.39). On the basis
of these values, one obtains:

0 =107410.54% ~10.3? ~3.36 =1.28-107° °C (3.104)

which means that such a simple calibration does not introduce a significant error to
the error budget of the instrument.
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3.6.3. Identification of a neural network for two-dimensional static reconstruction

As shown in Section 3.2.2, the most effective way of an identification of the
parameters of the two-dimensional linear approximation is carried out indirectly in two
stages. At first, the polynomials are determined for three standards, respectively,
which correspond to the extreme values of the environmental temperatures: 5°C, 45°C,
and to the nominal temperature 25°C. If the neural reconstruction is applied,
the second stage consists in calculating elements of the learning set and determination
of the network weighs in the learning process. The set from Fig. 3.43 is determined on
the basis of the polynomials, the coefficients of which are contained in Tab. 3.17.
The weights of the obtained neural network are shown in Fig. 3.44, while the errors
burdened the reconstruction results in the output of the exemplary instrument, which
applies this neural network, are presented in Fig. 3.45.

P=11

20 20 20 ~20 20
0.155 26.233 52513 76.776 101.211
40967 o, 45124 ., 149280 .., (53088 ., 56896
0 0 0 0 0
0.155 26.233 52.513 76.776 101.211
40943 |, 45007 ., (49250 o, 53056 . 56861
20 20 20 20 20
0.155 26.233 52.513 76.776 101.211
40918 45070 ., (49211 ., 53024 ., (56827

P=5

P=10

P=15

Fig. 3.43. The learning set obtained on the basis of the polynomials determined in the first stage of the
identification described in Section 3.2.3

Fig. 3.44. Values of the weight coefficients of the 2-3-1 exemplary neural network determined for

the learning data from Fig. 3.43
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Experiment 3.16. This experiment is carried out to determine histograms of
the reconstruction errors of the network, the weights of which are determined
indirectly in the identification process on the basis of polynomials approximating
the inverse static characteristic for three values of the environmental temperature: 5°C,
25°C and 45°C. The course of this experiment is the same as in Experiment 3.9. The
histograms obtained for the reconstruction errors are presented in Fig. 3.45.

a) b)
Number of occurence Number of occurence
1400 . 1400 .

12001 1200

1000 1000
800 800
600 600
400 400

200r 200

0 : 0 :
-0.05 0 0.05 -0.05 0 0.05
e °C e °C

rec 1 (&Y

Fig. 3.45. Histograms of the two-dimensional static reconstruction error for the network from Fig. 3.44
obtained as a result of the identification: a) the reconstruction is performed on the basis of
the ADC indications burdened by the quantization errors (Eg. 3.71) with the assumption that
the environmental temperature is exactly known, ocwc =10.5-10°°C, b) indications are
burdened by both quantization errors and the noise errors (Eq. 3.72), plus, the estimates of
the environmental temperature contain errors connected with the measurement resolution

equal to 0.1°C (Eq. 3.73), Grec = 12.3°103°C
Using the standard deviations of the reconstruction error from Fig. 3.45 one can
determine the standard deviation of the identification error. Based on the error from
Fig. 3.45b, one can write that the standard deviation of the error connected with
the identification can be calculated as

Ou = \/O'rzec —0, —0, —0p— O, (3.105)

noi env

Having given the standard deviation orec Of the error from Fig. 3.45a and the standard
deviation eapp Of the neural approximation given by Eg. (3.102), we obtain
the following value:

o4 =103112.5% 102 —3.36 — 40.3-1.45> =3.24-10° °C (3.106)

which is approximately the same as the identification error of the linear
approximation.
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3.7. Final remarks

The basis of the static reconstruction is knowledge about the inverse characteristic of
the analog converter being the beginning part of a sampling instrument. In order to
perform the reconstruction in the real-time by a microcontroller, it is necessary to use
an approximation of the characteristic, the form of which enables minimizing of
necessary arithmetical operations. In this chapter, two ways of obtaining such an
approximation were considered. The first one consists in using analytical description
in the form of the segmental linear approximation, the parameters of which have to be
calculated and introduced to a non-volatile microcontroller memory as a look-up table.
The second method applies artificial neural networks that can create the approximation
themselves on the basis of learning data.

The considered analytical approximation needs very numerically simple algorithms
for both one-dimensional and two-dimensional signal reconstruction independently of
nonlinearity degree of the static characteristic. If the nonlinearity is stronger,
the number of parameters necessary to store in a microcontroller memory increases,
but it is not a problem for the modern microcontrollers. In the case of neural
approximation, the stronger nonlinearity may implies using a network with a larger
number of neurons in the hidden layer, but the general structure of the network does
not change, and it is still very simple.

The inverse static characteristic can be approximated on the basis of known static
characteristic of the analog converter and the analog-to-digital converter or it can be
identified as the effect of the identification process, which consists in determining
the characteristic in selected points by using standards of the reconstructed input
quantity. The approximation can be done directly by using identification results or
indirectly by determining a polynomial describing the inverse characteristic. This
second way consists in calculating on the basis of this polynomial either parameters of
the linear approximation or the learning data. As it results from the presented
investigations, indirect identification is more effective than direct because it needs less
number of standards to be used.

The static characteristic changes in time, which causes the sampling instrument
have to be periodically calibrated. The calibration consists in modification of
parameters of the linear approximation stored in a microcontroller memory on
the basis of measurements in selected point of the characteristic. In the case of a neural
network performing the reconstruction, the calibration needs learning up it by using
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the data obtained on the basis of the measurements. For the considered exemplary
sampling instrument, the calibration needs only measurements at two end points of
the characteristic both in the case of the one- and two-dimensional approximation.

The inaccuracy of the static reconstruction is described in this chapter by standard
deviations of the reconstruction errors, which are at the level of 0.01°C for
the exemplary instrument. These errors can be decreased if one increases the number
of nodes of the linear approximation or the number of neurons in the case of the neural
approximation. The main limitation of this is the level of noise appearing in analog
converters of sampling instruments.



4. DYNAMIC SIGNAL RECONSTRUCTION

The dynamic properties of the analog converter cause its output signal to depend on
time variations of the input signal [L1, Z2]. The output signal component that occurs
for vary over time input signal can be considered as a dynamic error [J1, J16, M10,
R2, R7]. For this reason, the dynamic reconstruction consists in elimination of
the dynamic error from the output signal of the converter. Taking into account that
the basic dynamic model of an analog converter is a differential equation, the dynamic
reconstruction is performed by solving the inverse dynamic model, that is by solving
the differential equation in relation to the input signal.

The dynamic reconstruction algorithm is an element of the chain of partial
algorithms, which, as a whole, perform the input signal reconstruction. Partial
algorithms are obtained as the effect of the decomposition described in Chapter 1. One
of the fundamental models from the decomposition point of view is known as
the Wiener model, which is treated as the basis for further considerations. The first
element in this model is a linear differential equation, which describes dynamic
properties of the analog converter, while the second is a static equation. Taking into
account that the partial reconstructions are performed in inverse order to this one in
which the partial models are situated, the dynamic reconstruction makes calculation on
the results of the static reconstruction. These results are burdened by errors propagated
from the instrument input, errors related to the static properties of the converter and
errors caused by the static reconstruction. This chapter is devoted to the description of
these errors and analyzing their influence on accuracy of the result of the dynamic
reconstruction.

4.1. Significance of dynamic error for accuracy of analog conversion

The dynamic error of an analog converter depends both on the variability of the input
signal and the dynamic properties of the converter; therefore, the analysis of this error
must be carried out for standard signals. Among them, the sinusoidal signal is
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commonly used because the analytical description of the dynamic errors is relatively
simple for this signal. For changes of its frequency, one can analyse dynamic
properties of the converter and compare dynamic errors with other errors from
the point of view of its influence on the accuracy of the signal processing.
The essentiality of this analysis is presented graphically in Fig. 4.1.

0 fs[ fd

| | | >
>

! negligible dynamic error |acceptable dynamic error I excessive dynamic error

f

Fig. 4.1. General relation between errors of an analog converter in dependence on the frequency of its
input signal

Three ranges of the input signal frequency f can be separated. In the first, for

the frequency from O to fs, the dynamic error is negligible small in relation to the static

errors, which means that the signal is processed accordingly with the converter static

transfer function. Therefore, this frequency range can be called static for the converter

considered.

In the second range, for the frequency from fs to fq, the dynamic error is
comparable to other errors of the converter; thus, it must be contained by the error
budget of the converter. For the frequency greater than fq, values of the dynamic error
become essentially big and it is necessary to decrease them to an acceptable level.
Elimination of excessive dynamic error from measurement results is called dynamic
correction [J9, J12, R2, R9,] that can be performed on principle of the signal
reconstruction.

The simplest form of description of dynamic properties of the analog converter is
the 1-st order linear differential equation:

Tdtc‘l_f) u(t)=Sx(t) 1)

where 7 is the time constant, x and u are the input and output signals, respectively,
t denotes time, S is the static transfer function that describes the properties of
the converter if the input signal does not change, that is, for the signal frequency
f — 0. If the input signal is sinusoidal, Eg. (4.1) can be written in the frequency

domain as [L2]:

zjel(jo)+U(jo)=SX(jo) (4.2)



117

where X(jw), U(jw) are transforms of the input and output signals, o = 2xn/f. For
the sinusoidal signal, the dynamic properties of the converter are given by the transfer
function:

U(jo) S

X(jo) :1+ja)r (4.3)

S(jo) -

The dynamic error is defined as the difference between the output signal of the real
converter and the reference converter with transmittance Srt, the output signal of
which is taken as dynamically ideal. As the reference, the converter working in
the static state is used [M1, J12], the transmittance of which is equal to S. Taking this
into account, the dynamic error of the converter that is described by Eq. (4.3) may be
written as :

} sX(jo) A2 (44)

1+ jor

ean(i0) = X (1), —S(je)] - x(m{s _

1+ jor

For the purpose of error analysis, the dynamic transfer function (4.3) can often be
expressed in the following form:

S(jow)=—— (4.5)
1+

fb

where f = w/(2n), fo = 1/(2n7) is the cutoff frequency [M2] of the converter bandwidth

defined as the frequency for which we have:
|S(ja))| = (4.6)
f=f, /_2

Based on Eq. (4.5) and taking into account that the module of the signal spectral
transform is equal to the signal amplitude, we may describe the amplitude of the error
(4.4) using the expression:

‘edyn(jw)(:S|X(ja)) Tb :S|X(ja)]L (4.7)

For the f << f,, the expression (4.7) can be written as:
: .oy f f
esnli@) = SX (jo)— = A, — (4.8)
b b

where Aout = S|X(jw) is the amplitude of the output signal.
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Example 4.1. The static transfer function S of an amplifier is called the amplification
coefficient and is denoted as kv. The dynamic properties of the amplifier applied in
the exemplary microcontroller presented in Section 3.1 are described by the 1-st order
equation (4.5), and, for kv=1, its bandwidth is f,=1MHz. To evaluate
the significance of the dynamic error in relation to other errors of the analog converter,
one can compare the Aout amplitude of this error in the amplifier output with the total
error described by the uncertainty U. If we want the dynamic error to be significantly
less than the total error, the dynamic error amplitude must be at least 3 times less than
U (such a relation causes the ariance of the dynamic error to be about
10 times less than the variance of the total error, which means that it can be omitted in
the error budget). Taking this into account, one can determine the limit of the static
working range fstdefined in Fig. 4.1. Based on Eq. (4.8), we have:

‘edyn (J a)X = Aout ;_Sbt = %

If we take: U/Aou: = 1073, the range calculated from this expression take the value:

6
= U 10055 aa3py
3 Ay 3

which means that the dynamic error introduced by the amplifier can be neglected for
the signal frequency f in the range from 0 to 333 Hz,.

In the bandwidth from fs to fq, the dynamic error takes the values acceptable from
the total uncertainty point of view, which means that the uncertainty of this error
cannot significantly exceed U. For this assumption, the limit fq is determined on
the basis of the expression:

f

i f
‘edyn (J Cl)j = Aout f_d < U
b

from which we have:
U

f, = f,— =10°-10"° =1 kHz

ut

As in Fig. 4.1, for the frequency f>fs=1kHz, the dynamic error exceeds
the acceptable values and should be corrected.

Example 4.2. For the concrete construction of the measuring amplifier, the product of
its amplification coefficients and the bandwidth takes a constant value [M1]; thus, it is:

kv1' fbl = I(vz ) sz
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where fp1 is the bandwidth for the coefficient kvi and fn2 for kv2. For kvi = 1,we have:

f —_b
b2 kV2

which means that the bandwidth decreases as many times as the amplification
coefficients increases. The amplifier in the exemplary microcontroller works with
kv2 = 32, which causes the limit values of frequencies that determine the bandwidths of

the amplifier to be:

fszzizﬁgmHz, fd2=£=@231H2
32 32 32 32

From the above calculations, it results that the amplifier works in the static state for
the input signal frequencies from 0 to 10 Hz. If the frequency is greater than 31 Hz,
the dynamic error of the exemplary amplifier should be corrected, which can be
performed using the dynamic reconstruction algorithm.

Example 4.3. Let us assume that the dynamic properties of the exemplary
Pt100 sensor, if it measures the temperature of the air flowing in a ventilation duct
with a constant speed, can be described by the 1-st order equation (3.11). In these
measurement conditions, the sensor time constant is =25, which means that
the sensor bandwidth is: f, = 1/(2n2) = 0.08 Hz. Moreover, let us take the air
temperature should be measured with uncertainty not greater than U = 0.1°C. This
temperature varies from 0°C at night to 40°C at day, and can be described as sinusoidal
signal with the amplitude Ain = (40 — 0)/2 = 20°C. If we want the dynamic error to be
significantly less than the total error described by the uncertainty U, its amplitude (4.6)
must be at least three times less than U. Taking this into account and based on
Eq. (4.8), one can determine the limit frequency fst of the static bandwidth from
expression:

stgg
3

because, for a relatively small dynamic error, the amplitudes of the input and
the output signals are approximately equal for the dynamic model used as the basis of
the dynamic reconstruction (see Eq. (2.16)). Therefore, one obtains the following:

oYt 01008 440 0,
3A, 3 20
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The maximum frequency of the bandwidth, in which the dynamic error is
acceptable, is calculated as:

f,=U o _ 01998 _04.10% 1z
20

An

The obtained values mean that, for the frequency from f = 0 to fs = 0.27-10 Hz, the
dynamic error of the sensor is negligible small, thus the sensor works in the static
state. From f;=0.27-10° Hz to fs = 0.4-10° Hz, the values of the dynamic error are
comparable with other sensor errors and this error should be taken into account in the
error budget. For f>fq=0.4102 Hz the dynamic error exceeds the acceptable value
and it should be decreased by using a dynamic reconstruction algorithm.

As resultof the presented examples, the amplifier used in the exemplary instrument
works in a static state because its limit of static bandwidth fs> = 10 Hz is significantly
greater than the frequency fqs = 0.4:10° Hz of the sensor. Therefore, there is no need
for the general dynamic model of the exemplary analog converter to include
the amplifier description.

4.2. Dynamic models of analog conversion

4.2.1. Analog model of conversion

The analog model describes the relations between analog signals at the output and
the input of the considered conversion. A signal is called analog if it is represented by
a continuous function of the continuous time [L1]. In this book, it is taken that all
elements of the measuring chain that perform the conversion are treated as a whole,
i.e.,, as a single analog converter, the dynamic properties of which are generally
described by the analog model being n-order linear ordinary differential equation:

au™+a u"+  +au+u=x (4.9)

where x and u are varying over the time input and output signals of the dynamic model
(4.9), an, ..., a1 are constant coefficients. For further considerations, two basic forms of
the model (4.9), most often used in measurement practice [L1], are taken into account.
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These are:
e The 1-st order model described by the equation:

au+u=x (4.10)

where az is equal to the time constant 7 of the converter (see Eq. 4.1).
e The 2-nd order model given by the expression:

2
azwg+alu+u:x (4.11)

which is often presented in the form [H3, R9, Z2]:

@+2ba)03—l:+a)§u = Wi X (4.12)
where wo is the natural frequency of the converter, b is its dumping coefficient.

Most frequently for analysis of dynamic properties of the converter, one uses two
kinds of the input signal: the step-change signal and the sinusoidal signal. To simplify
considerations, the expressions presented below are determined for unitary step change
signal occurring at time t = 0. For this assumption, the output signal of the 1-st order
converter has the form:

t

ut)=1-e - (4.13)

The response of the 2-nd order converter to the unitary step change signal depends
on the value of the damping coefficient b [H3]. For:
e Db <1, the output signal is given by the equation:

—bagt M1 _h2
u(t)=1- i o7 Sin[\/lbza)otJrarctg 1bb J (4.14)
e b=1,itis:
ut)=1- 1+ wpt)e™" (4.15)

e The value of b > 1 occurs in the case if the converter can be described as two 1-st
order elements connected one after the other. Therefore, as a whole, they can be
described by the two equation system. The first equation is the following:

du,(®) oy
TlT+U1(t)— X(t) (416)
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and the second:
90 0=, ) (4.17)
dt
where 71 and 72 are the time constants of the selected converters, respectively.

Combining Egs. (4.16) and (4.17), we obtain the equation:

2
£, T )0 ) ) (4.18)
dt dt
that describes the both converters as one whole.
The response of the conversion that is modeled by Eq. (4.18) to the unitary step
change of the input signal at t = 0 has the form:

t t
u(t)=1- L (rle’lrze”] (4.19)
=1

For sinusoidal signals, the dynamic properties of the converter in the frequency

domain are described as a spectral transmittance. In this case, the output signal of

a dynamic converter for the input signal with amplitude equal to 1, i.e., x(t) = sinwt,
Is expressed as:

u(t) =[S(je) sin(et + ) (4.20)

The spectral transmittance S(jw) of the 1-st order converter (4.10) is given by Eq. (4.3)
with S = 1. According to this, the module of its transmittance is:

S(jw) = 1 (4.21)
1+ (et )
and the phase shift:
@ =—arctan wr (4.22)

The transmittance of the 2-nd order converter (4.12) is given by the expression:

. 2
S(ja)):U(J_w)z_ % = 1 . (4.23)
X(Ja’) (Ja’) +J2ba’+0)oz 1 '2bw @
Ko

Thus, its module is described as:

S(jw) = (4.24)
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and the phase shift takes the form:

¢ = arctan (4.25)

@y

w, o

4.2.2. Discrete model of analog conversion

The basis of a dynamic reconstruction algorithm that is considered in this book is such
a discrete model of the conversion, which enables solving differential equation (4.9) in
real time. This model can be built using the transformation of this equation to the form
of state equations [M12, O1]. In the beginning, we need write Eqg. (4.9) as:

u +d_u™ 4+ +du+du=d,x (4.26)

where it is: do = 1/an-1), di=a@/ap-yand so on. In the next step, Eq. (4.26) is
transformed to the form of n state equations after introducing new variables that are
succeeding derivatives of the output signal:

u, =u,
u, =u,
: (4.27)
l']n—l =un
u, =-d, ,u, —...—dyu, +d,X

where uy, ..., Uy are state variables and u; = u, which means that the output signal u is
treated as one of the state variables.
The system of equations (4.27) can be written in matrix form:

u=Fu+Gx (4.28)
where:
[y, ] 0 1 0 0 ] (0]
u, 0 0 1 ... 0 0
u=| ¢ | F=[ ¢ it L G=| (4.29)
u,, o 0 0 ° 1 0
L, | -d, -d, —d, ~d,, | dy
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After solving Eq. (4.28) for the time between instants tx and tx+1, k is the current
number of the instant, k =0, 1, ..., one obtains [M12]:

tk +1

u(t,,)=eu(t, )+ ™ Ie'FTGX(r)dT (4.30)
ty

where: tk+1 — t IS the time distance between the instants at which the state variables are
discretized. This time distance is equal to the sampling period Ts, since, at
the discretization instants, the described signal is sampled, and therefore, it is: tx = KTs.
Because Ts=const.,, one can simplify the notation of the variables by putting
u(tx) = u(k) and so on. Taking this into account and assuming that the state variables
change only in the discretization instants, which means that the state variables are
taken as constant between them [M12], Eq. (4.28) can be written in discrete form:

u(k +1) = @u(k )+ Px(k) (4.31)
where:
Y1(k) R T 4
yk)=| @ [@e=] . | ¥=|: (4.32)
yn (k) P " Dnp ¥,

For constant sampling period Ts, the elements of the matrixes ® and ¥ have
constant values and can be calculated on the basis of Eq. (4.30) as:

®=c", (4.33)
Y= ﬁe'F(T’“_’)d(r)}G (4.34)

For the 1-st order converter, the matrix equation (4.31) takes the scalar form:

u(k +1)=pu(k)+w x(k) (4.35)
for which the matrices (4.32) reduce to the coefficients determined accordingly with
Egs. (4.33) and (4.34). They are expressed as:

T, T
¢):eFTS :e-doTs =e r, (//Zl—e T :1_¢ (436)

where 7 is the time constant of the analog converter.
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Example 4.4. The time constant of the 1-st order sensor Pt100 from Example 4.3 is
equal z=2s. For the discretization period Ts = 0.2 s, the parameters of the dynamic
discrete sensor model, according to Eq. (4.36), take the following values:

T o2
T

p=e7=e 2 =09048, y=1—¢=1—0.9048=0.0952

Moreover, let us assume that at the instant number k = 0 the step change of the input
temperature from 0 to $ran = 100°C occurs, which means that $(k) = 100°C for instants
k=0,1,.. . The discrete model enables the calculation of the of the sensor wire
temperature at the succeeding discretization instants. Taking into account that
the sensor output signal u(0) = 0°C and based on Eq. (4.35), one obtains:

9(1) = pu(0)+y x(0)=0.9048-0+0.0952-100 = 9.52 °C
H(2)= pu(l)+y x(1)=0.9048-9.52 +0.0952-100 =18.13°C

and so on for the succeeding instants. On should notice that this model has
the recurrent form because, to calculate the output temperature at any instant, one
should know the previous one.

The values of the output temperature, calculated in the described way for 10
succeeding instants, are presented in Tab. 4.1 and Fig. 4.2b.

Table 4.1

The output signal values of the 1-st order exemplary converter calculated
in Example 4.4 for the step change of the input signal on the basis
of the discrete model, k is the number of the discretization instant

k 0 1 2 3 4 5 6 7 8 9

u(k)°C 0 9.52 | 18.13 | 25.92 | 32.98 | 39.36 | 45.13 | 50.35 | 55.08 | 59.35

In Fig. 4.2a, one can see the response of the converter in the analytical form described
by the expression:

t

ut)= 94, [1— e_TJ ~100(1—¢ %) °C (4.37)

which is the solution of the differential equation (4.10) for the step change of the input
signal 3 from 0 to $ran = 100°C at t = 0.
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Fig. 4.2. Step response of the exemplary converter described by 1-st order differential equation (4.10)
obtained on the basis of: (a) the analog model, (b) the discrete model for 10 beginning
instants

For converters described by differential equations of the order higher than the first,

the matrix equation (4.31) can be written in the form of the system of n discrete state

equations:

ul(k +1) = ¢11u1(k)+ et ¢1nun(k)+ Wlx(k)

: (4.38)
un(k +1) = qpnlul(k)—i_ et wnnun(k)-i_ l//nx(k)

where x(k) is the input signal sample, ui(k), ..., un(k) are the values of the state
variables at k instant, k=0, 1, ..., and it is ui(k) = u(k), because, accordingly with
Eq. (4.27), the output signal u is treated as the state variable us.

The dynamic model in the general discrete form (4.38) is of recurrent form
because, for the determination of the output signal u(k+1), it is necessary to know both
the input signal and the state variables of the previous instant k. It means that at every
step of the calculations, the determined values of the state variables must be stored to
use them in the next step. Moreover, to start the calculations, the beginning values of
the state variables should be known. If these values cannot be determined,
the calculation algorithm begins its activity in a transient state that ends after a number
of the steps dependently on parameters of the model and properties of the input signal
[M12].

The 2-nd order dynamic converter is described generally by differential equation
(4.11), which, based on Egs. (4.12) and (4.13), can be written as two state equations:

u=u

2 (4.39)
. 2 2
U, =—-2bw,u, — wyu + oy X
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Presenting Eqg. (4.39) in the matrix notation (4.28), we obtain the following forms of

the matrices:
0 1 0
UZ[U}F{ 2 },G{ 2} (4.40)
u, -w, —2bo, @y

After discretization of the state equations (4.39) in the described way, one obtains
the discrete matrix equation: u(k +1) = ®u(k)+ Px(k) where it is:

y(k){y(k)] (D{% %] T{”’l} (4.41)

¥, (k) P Pr v,

This means that the discrete state equations take in this case the following form of two
equations:

u(k +1) = (P11u(k)+ (012u2(k)+ V/lx(k) (4.42)

uz(k +1): ¢21u(k)+¢)22u2(k)+‘//zx(k) (4.43)

Elements of the matrix ® can be calculated on the basis of Eq. (4.33) as ® =¢™",
while elements of ¥ can be obtained on the basis of them if one takes static properties
of the converter into account. In the converter static state, i.e. when the state variables

are not changing over time, it is:
u(k +1)=u(k) (4.44)

and the values of the first derivative of the output signal take the value:
u,(k+1)=u,(k)=0 (4.45)

Moreover, the static properties of the converter dynamic model are ideal (see
Section 2.2), which means that at every instant of the static state x(k)=u(k). Taking

above into account, one obtains from Eq. (4.42) that:

y,=1-¢y (4.46)
From Eq. (4.43), we have the following:
Wy, =—0xn (4.47)

To start calculations of the output signal values, it is necessary to know
the beginning values of the input signal x(k), the output signal u(k), and the state
variable ux(k) that is the first derivative of the output signal. Having given them,
the values of the output signal u(k+1) are calculated for the subsequent instant k+1
accordingly with Egs. (4.42), (4.43). After that, the value of the state variable ux(k+1)
Is determined to be stored and used in next step of calculations, that is, for the instant
k+2. Next, all this procedure is repeated for the subsequent instants k+2, k+3,... .
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Example 4.5. Let us assume that the parameters of the 2-nd order converter described
by Eg. (4.11) have values: wo =1 and b = 0.7, which means that this equation takes
the form:

2
d—lj+1.4d—u+u =X
dt dt

According to Eq. (4.31), this expression can be written as two state equations:

u=u,
u, =-1.4u, —u+x

This means that the matrix F has the form:

0 1
F=
{—1 —1.4}

Based on this matrix, the matrix @ is calculated. According to Eq. (4.33) @ =™,

which means that one can use Maclaurin’s sequence to determine the values of this
matrix [M12]. One obtains the following sequence:

®=1+FT, +%[FTS]2 +...

For the determined matrix F and the sampling period Ts = 0.5 s, we have:

® = Pn @ | | 09017 0.3449
B Po1 Par 1-0.3449 0.4188

Based on Eqgs. (4.46) and (4.47), values of the coefficients of the matrix W can be
calculated according to Egs. (4.46) and (4.47) as follows:

v, =1-¢,, =0.0983, y, = —¢,; =0.3449

To start the calculations accordingly with the discrete model (4.42), (4.43) of
the converter, one can take the starting values u(k) =0 and uz(k) = 0. Taking into
account that, for the unitary step change, x(0) = 1, one can calculate the discrete values
of the output signal at the succeeding instants in the following recurrent way
(the values of u, are determined to use them in the next step of the calculations):

u(l) = @,u(0)+ ¢,u,(0)+,x(0)= 0.9017-0 +0.3449-0 + 0.0983-1 = 0.0983

u, (1) = @,,u(0)+ ,,u,(0)+y,x(0) = —0.3449-0 + 0.4188- 0 + 0.3449-1 = 0.3449
u(2)= g,u(1)+ @,u, (1) + w;,x(1)=0.9017 - 0.0983 + 0.3449 - 0.3449 + 0.0983 1= 0.3059
U,(2)= @,,u(l)+ @,,u, (1) +y,x(1) = —0.3449-0.0983+0.4188 - 0.3449 + 0.3449 -1 = 0.4554
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The obtained values were placed in Tab. 4.2 and presented in Fig. 4.3b. In Fig. 4.3a,
the output signal of the converter is shown in the analog form as the expression:

e [ V1-0.7 :
u(t)=1- ——=——sin| v1-0.7°t +arctg =1-1.4e"*" sin(0.714t + arctgl. 02
V=77 ( 0.7 J ( )

determined on the basis of Eq. (4.14) for the exemplary values of the 2-nd order
converter, the parameters of which are: for wo =1 and b =0.7.

Table 4.2

The output signal values of the exemplary 2-nd order converter calculated on the basis
of the discrete model for unitary step change of the input signal, sampling period
Ts = 0.5, k is the number of the instant for which the values are determined

k 0 1 2 3 4 5 6 7 8 9

u(k) 0 0.0983 | 0.3059 | 0.5313 | 0.7257 | 0.8706 | 0.9653 | 1.0185 | 1.0416 | 1.0458

a) b)
1 o ©60-065-6-0-0-0-00
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0 2 4 6 8 10 % 5 10 15 20
t k

Fig. 4.3. Step responses of the 2-nd order converter from Example 3.5, which are obtained on the basis
of the analog (a) and discrete (b) models

Example 4.6. Let us assume that the input signal of the 2-nd order converter from
Example 4.5 has the form: x(t) = sinwt, @ = 1 s*. For the beginning values u(k) = uz(k) =0
of the state variables, the use of the discrete model in the form of equations (4.42) and
(4.42) to calculate the output signal values of the exemplary converter causes
the appearance of transient state shown in Fig. 4.4b. The duration of this state depends on
the properties of the input signal and parameters of the discrete model. In Fig. 4.4a,
the analog form of the signal calculated for correct beginning values is presented.
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Fig. 4.4. Exemplary responses of the 2-nd order converter from Example (4.6) to the sinusoidal signal:
in the analog form (a) obtained on the basis of Egs. (4.20), (4.24) and (4.25), in the discrete
form (b) calculated for zeroed beginning values of the state variables

4.2.3. Discretization error

Coefficients of the discrete model of the converter are calculated with the assumption
that the input signal does not change between discretization (sampling) instants, which
IS necessary to present Eq. (4.26) in its discrete form (4.31). This assumption is
fulfilled only for step change input signals. For other signals, the discrete model gives
results which differs from these exact ones. These differences are described by
the discretization error:

e,.(k)=u(k)-uy, (k) (4.48)

where u(k) is the instantaneous value of the analog output signal determined for
the instant k and uqis(k) is the response of the discrete model calculated for the same
instant.

The discretization error describes generally imperfection of the discrete dynamic
model in its representation of the analog dynamic model, as it is illustrated by the next
example.

Example 4.7. Let us determine the waveform of the discretization error of the
exemplary 1-st order converter from Example 4.4 for the input signal
X(t) = 50+50sinwt°C. Accordingly with Egs. (4.48) and (4.20), the error value at
instant k is described as:

e0 )= X|Siolsin 3% 4o |-, )|
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where k=0, 1, ..., Ts= 0.2 s is the sampling (discretization) period,w = 2xf, the signal
amplitude is X = 50°C, its frequency f = 0.01 Hz, udis(k) is the sample in the converter
output calculated using the discrete model in the way described in Example 4.4 for
the given samples x(k) of the converter input signal.

a) b)
2
Or\_/-\_/\_/
O 2 ] Q
o) (o)
i) 2
o 4 v
-6
_8 r r _0.4 r r
0 500 1000 1500 500 1000 1500
k k

Fig. 4.5. Waveforms of the discretization error determined for the sinusoidal input signal of the 1-st
order converter with amplitude X = 50°C and frequency f = 0.01 Hz calculated for the initial
values equal to 0 (a), and for accurate initial values (b)
As in Fig. 4.5, the discretization error changes sinusoidal for the sinusoidal input
signal (excluding the transient state in Fig. 4.5a). The amplitude Egis of the error
depends on the number of discretization points (samples) in the signal period. In
Tab. 4.3, there are presented values of the discretization error in relation to the number
of samples for the exemplary converter described in Example 4.4.
Table 4.3

The amplitude Eaqis of the discretization error of the exemplary 1-st order converter
in relation to the number of samples Nsam in the period T of the input signal,
Nsam = T/Ts, Ts Is the sampling period, Egis is calculated for the amplitude
of the input signal X = 50°C

Nsam 20 50 100 200 500

Eqis’C 2.4208 1.9876 1.3523 0.7618 0.3169

It results from Tab. 4.3 that the discretization error increases if the number Nsam
decreases. Taking this into account that this number is related to the signal period,
the assumption of the maximum acceptable value of this error imposes a maximum
value of the signal frequency.

Comparing the results from Tab. 4.2, obtained on the basis of the discrete
converter model, with the results calculated for the analog model, one can find that
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they are the same at the sampling instants. Thus, that the discrete model is accurate for
the step input signal, which means that it enables the calculation of accurate output
signal samples for this signal.

For the step change of the input signal, the zeroed beginning values of the state
variables are correct, and the transient state does not appear in the response of
the converter as can be seen in Fig. 4.5b. For other input signals, a transient state
occurs in the output signal as shown in Fig. 4.5a for the sinusoidal signal.

4.3. Analytical dynamic reconstruction

4.3.1. Recurrent form of reconstruction algorithm

The dynamic reconstruction algorithm is constructed on the basis of the dynamic
discrete model of the analog converter. According to the general consideration
presented in Chapter 2, the reconstruction algorithm is a specific solution of an inverse
model. Taking into account that the considered dynamic model of the converter has
the form of n discrete state equations (4.38), the dynamic reconstruction consists in
solving these equations in relation to the input signal. Based on the first equation from
the system (4.38), the instantaneous value x(k) of this signal is calculated accordingly
with equation:

5 1 . N 5 .
X(k) = l//_[_ (Dllu(k)_ ¢12u2(k)_---_ ¢1nun(k)+ u(k +1)] (4.49)
1
All quantities in this equation are estimates of the quantities, being state variables of
the dynamic model (4.38) in this sense that all errors that burden the estimates, are
random and are deprived of systematic components, as it is discussed in Chapter 1.
The input signal is one of these variables, the rest are determined by using the system
of the following n - 1 equations as:
02(k+1): ¢210(k)+(Pzzaz(k)"'“-"'@znan(k)"'V/z)A((k)
: (4.50)
ljn(k +1) = gpnln(k)_'_ ¢n202(k)+ et ¢nn0n(k)+ ‘//n )’Z(k)
The estimates obtained accordingly with equations (4.50) are used in Eqgs. (4.49)

and (4.50) in the next step of algorithm realization, which means that the algorithm is
performed recurrently.
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One can point a substantial difference between the estimates d(k), d(k +1), which

are given directly since they are quantized samples of the converter output signal,
or they are obtained as results of the static reconstruction algorithm performed
previously, while the other estimates 4,(k),..., G, (k) are calculated indirectly on

the basis of other estimates using equations (4.50).

From the measurement point of view, the current instant number k =0, 1,... is
interpreted as the pointer of the beginning of the measurement window shown in
Fig. 2.1 that contains all measurement results necessary to calculate one reconstruction
result. For the recurrent form of the dynamic reconstruction algorithm, the width of
the window is equal to 2 because two measurement (quantization) results
G(k), d(k +1)are used.

As it results from the above considerations, the dynamic reconstruction algorithm
is performed in two steps. At each current instant k one must dispose 2 samples
u(k), a(k+1) of the output signal and n-1 values of the state variables

U,(k),..., a,(k) which are calculated in the previous instant k - 1 and stored to use

them in the current instant k. The first step consists in calculating the estimate of
the input signal (k) accordingly with Eq. (4.49), while, during the second step,

estimates of the state variables d,(k),..., G, (k) are determined and stored to use them

in the next step of the algorithm realization.
To start the algorithm, it is necessary to have given 2 samples of the output signal
and the beginning values of the rest state equations, i.e. 4,(0),..., 4, (0). They can be

taken as equal to 0, which causes the transient state of the algorithm (the real values
usually differ from 0) but after several steps all values of the state variables take the
values close enough to the real ones. This is a general property of stable dynamic
models [O1], which is illustrated in Example 4.6.

The dynamic model of the 1-storder converter is given by Eq. (4.35),
the coefficients of which are described by expressions (4.36). Solving Eq. (4.35) in
relation to the input quantity, one obtains the reconstruction algorithm in the form:

N 1. . 1 . .
x(k):;[u(k +1)—(pu(k)]:g[u(k +1)— (k)] (4.51)
This algorithm has not recurrent form because to calculate the sample of the input
signal x, only 2 samples of the output signal u are needed. The specificity of
calculations performed accordingly with this algorithm is illustrated in the following
example.
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Example 4.8. As it results from expressions (4.36), to perform 1-st order dynamic
reconstruction algorithm, it is necessary to know one parameter ¢ of the discrete
model. Its value, calculated in Example 4.4 for the exemplary analog converter, is:
¢ =0.9048. Based on the samples of the converter response to the step change of
the input signal contained in Tab. 4.1, we obtain the following input signal samples
reconstructed on the basis of Eq. (4.51):

1
O
0) 1-0.9048
%(1) =10.50[t(2)— 0.9048(1)]=10.50[18.13 — 0.9048 -9.52]=100.0 °C

[4(1)-0.9048(0)]=10.50-(9.52 — 0.9048 - 0)=100.0 °C

The reconstruction results for 10 beginning samples are shown in Fig. 4.6.
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Fig. 4.6. Exemplary reconstruction results of the 1-st order exemplary converter, which are calculated
for the step change of the input signal, u(k) denotes samples of the output signal of
the dynamic converter

For the 2-nd order converter, the first part of the reconstruction algorithm, described

by Eq. (4.49), takes the form:

#(6)= 1 falk 1) -p.0() 0,0, k)] @52)

while the second part, obtained on the basis of the first equation of the system (4.50),
is described by the expression:

0, (K +1) = 9,,0(k ) + 9,0, (k) — 2, %(k) (4.53)
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which aimes at calculation of the estimate of the state variable 4,, the value of which

is stored to use it in the next step of calculations. Both parts of the algorithm create
the loop, characteristic for the recurrent form of the reconstruction algorithm, shown
in Fig. 4.7.

Gk+) ——»
G(K) —e—» (4Fg-2 > (k)
u,(k) ¢ -
Eq. 0, (k +1)
e

Fig. 4.7. Block diagram of the algorithm performing the dynamic reconstruction of the 2-nd order
converter, “delay” denotes the operation of storing the value for one sampling period

To start activity of the reconstruction algorithm in the form of the equations (4.52) and
(4.53), the beginning value of the state variable 4, (0) is necessary. If the reconstructed

signal is step-changed at the instant k = 0, the beginning value is equal to O; therefore,
starting the algorithm with this value does not cause appearance of the transient state.
Exemplary reconstruction of the step change input signal using 2-nd order algorithm is
described in the following example.

Example 4.9. Let us apply the algorithm in the form of Egs. (4.52) and (4.53) for
the reconstruction of the input signal based on the samples of its output signal that are
contained in Tab. 4.2. The algorithm has the same coefficients values as calculated in
Example 4.5:

p11=0.9017, ¢12=0.3449, ¢21=-0.3449, ¢2,=0.4188
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The estimates obtained for the following instants take the values:

%(0)= 1
1-9,
0,(2) = ¢,,u(0)+ ¢,,0,(0) - »,,2(0)= —0.3449- 0 + 0.4188- 0+ 0.3449-1.000 = 0.3449
(1)= n L [4(2)— ,,0(1) - @,,0,(1)]=10.173-(0.3059 - 0.9017 - 0.0983 — 0.09316 - 0.3449) = 1.0001
— Py
0,(2) = ¢,,0(1) + @,,0,(1) - @,,X(1)= —0.3449 - 0.0983 + 0.4188 - 0.3449 + 0.3449 -1.0000 = 0.4555

[4(1) - ¢,,0(0)— ¢,0,(0)]=10.173-(0.0983-0.9017 -0 — 0.3449-0) = 1.0000

x>

The calculated values are presented in the graphical form in Fig. 4.8.

Estimates of the input and output signals
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Fig. 4.8. Beginning 10 reconstructed samples (k) of the unitary step change input signal of
the exemplary 2-nd order converter, (k) is the estimate of the output signal, kis
the current number of the reconstruction instant

Application of the algorithm to the sinusoidal signal reconstruction causes it to be
necessary to know the beginning value 4, (0) to start the calculations. If this value is

not correct, the transient state occurs as illustrated by the next example.

Example 4.10. The input signal of the exemplary 2-nd order converter from Example
4.6 is: x(t) = sinwt, @ =1 s1. On the basis of the samples of the output signal, which
are calculated accordingly with Eqgs. (4.20), (4.24) and (4.25), the input signal
estimates reconstructed by using Eq. (4.52) and (4.53) are presented in Fig. 4.9 for
the correct and not-correct beginning value 4, (0).
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Fig. 4.9. Reconstruction of a sinusoidal input signal of the exemplary 2-nd order converter for:
a) correct beginning value az(k)z 0.346,b) incorrect beginning value 4,(k)= 0

The recurrent form of the reconstruction algorithm enables its realization in minimally

short time, which is necessary if the algorithm is applied in a measuring and control

system working in real-time. The current window contains only 2 samples of

the output signal, however, one should point out that many previous samples have

their participation in the value of the state variable G, and, therefore, in

the reconstructed sample. Although, as it results from Eq. (4.51), the algorithm for
the 1-st order converter is not recurrent, it also needs 2 samples.

4.3.2. Non-recurrent form of algorithm

Signal reconstruction can be performed in batch mode on the basis of recorded
measuring data by using a non-recurrent form of the reconstruction algorithm, such as
described in [B4]. For the considered algorithm, the non-recurrent form can be
obtained on the basis of Egs. (4.49) and (4.50). This form is very usable for analysis of
the error propagation, since it enables the determination of the influence of errors
burdening the succeeding samples of the output signal on the reconstructed samples
of the input signal. The method of transformation of the recurrent form to its
non-recurrent form is presented on an example of the reconstruction algorithm
determined for 2-nd order converter as the system of equations (4.52) and (4.53).
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The recurrent form of the algorithm can be transformed to a sequence in
succeeding steps consisting in decreasing by 1 the number of the running instant and
introducing the obtained expressions suitably to the previous equations. Based on
(4.52), the estimate of the state variable at the instant k takes the form:

0, (k)= @,,0(k =1)+ ¢,,0, (k —1)+y,%(k —1) (4.54)
Introducing (4.53) into (4.52) yields the following:
1

)A((k) = [O(k + 1)_ @110(k)_ (ZP) [§0210(k _1)"‘ P50, (k _1)+ V/z)z(k _1)]] =
V1 (4.55)

1. R R . .
=— [U(k + 1)_ (Dllu(k)_ @12‘/’21“(k _1)_ P1,P2,U, (k _1)_ PRV, X(k _1)]

1

Moreover, from Eq. (4.53), it results that:

R(k ~1) =~ [a(k)- g,0(k ~2)- p,,0, (k ~1)] (4.56)

v,

Based on Eq. (4.54), we can write Eq. (4.56) as:

. 1. R R R
X(k) = l//_{u(k +1)_ (pllu(k)_ ¢12¢21U(k _1)_¢12§022U2(k _1) -
1

_M[“(k)_%lg(k _1)_ (/71202(k _1)]} =

¥,
1 (4.57)
= _{00( + l)_ {(/’11 + M}G(k)— {(/)12?21 - M}G(k _1)_
Vi 1 1
2
- {¢12¢22 N }02 (k _1)}
L4
Using relations (4.46), (4.47) and denoting:
H = PP (4.58)

1-¢,

one can write Eq. (4.57) in the following form:

)= 0+ 2)+ (4 - )0~ Hilk 1) s + WXk -1] (459
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After applying of the presented procedure for the previous moments: k-1,
k—2 ..., k—m using the relations (4.56) and (4.57), one obtains the reconstruction
algorithm in the form of the sequence:

R(k) = ——[a(k +1)+ (H — g, Ji(k) +

1_¢11
+H(H +¢,, -Di(k -1) +

+HH +¢,, -D)(H +¢,,)u(k—2) + (4.60)

+H (H + @y, _1)(H + (Pzz)mila(k - m) +

which is the linear combination of constant coefficients and estimates of the samples at
instants k +1, k, k-1, ..., k—m, ... . Denoting the coefficients in Eq. (4.60) as:

1

An=—"—

1-¢y,
Ak — H _q)ll

1-¢,
A - H(H + ¢, -1) (4.61)

1
1-¢,

A ._ H(H + 0y _1)(

K-m — H+ o, )m_l
1-op,

expression (4.60) can be written as the sequence:
R(k)=A_ 0k +1)+ Adk)+A_dKk-D+..+A_dk-m)+... (4.62)

which describes the reconstruction algorithm in the non-recurrent form.

Example 4.11. The coefficients of the discrete model of the 2-nd order converter from
Example 4.5 have values:

p11=0.9017, ¢12=0.3449, ¢@21=-0.3449, ¢22=0.4188
which causes, accordingly with Eq.(4.58), that we have:

H = PP _ 0.3449 - (—0.3449)
1-¢, 1-0.0917

=-121
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Based on these values, one obtains the following values of the coefficients (4.61):

1 1

= = =10.17
Ao 1-¢, 1-0.9017
A - H-gy _-121-09017 _ , 0
1-¢, 1-0.9017
A= H(H + ¢, -1) _-121(-121+0.4188-1) _ 2205

1-g, 1-0.9017

Ten starting values of the coefficients obtained in this way are presented in Tab. 4.4.

Table 4.4

Ten starting values of the coefficients (4.61) of the sequence (4.62) determined
for the exemplary 2-nd order converter

Ak+1 Ax Ak-1 Ax-2 Ax-3 Ax-a Ax-s Ax-6 Ax-7 Ax-g

10.17 | -21.48 | 22.05 | -17.45 | 13.80 | -10.92 | 8.64 | -6.84 | 541 | -4.28

As it results from Eq. (4.61), the coefficients of the sequence (4.62), beginning from
the third element, create the geometrical sequence with the quotient:

qA = H +¢22 (463)
which causes that the sum:

B _ HMH+¢,-1)  H 464
S_(Akil+'..+Ak7m)m_m _(l_%l)(l_H _(022)_%1_1 (469

Taking Eq. (4.64) into account, one obtains that the sum of all coefficients (4.61) is:

H<H+¢22_1) — 1 +H_¢ll+ - H
_(pll)(l_H_(pzz) 1—(P11 1—(011 1—(P11

A,+A +S= i =1 (4.65)
if the number of sequence terms (4.61) comes to infinity. It means that the 2-nd
recurrent algorithm in the general form of equations (4.52) and (4.53) is stable,
because it can be described as the sequence with elements having finite sum
(the measurement results have always finite values).

The finite sum of the geometrical sequence means that the quotient \qA\ <1, which

results in decreasing the values of the coefficients (4.61) with increasing of m. This
causes the participations of succeeding measurements in the reconstruction result to
decrease, too, and for some value of m = miim the remaining elements can be neglected
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from the reconstruction accuracy point of view. This means that the reconstruction
algorithm can be considered in the form of the sequence (4.62) containing finite
Miim = Mmin + 2 elements.

The properties of the algorithm described above in the form of the sequence can be
generalized for all dynamic reconstruction algorithms that are stable. It means that
every recurrent algorithm may be analyzed in two manners from the measurement
window point of view. The window determines the number of measurement data
(estimates of the output samples), which are used to obtain one estimate of the input
signal sample and, for the current window, this number is equal to 2 (see beginning
considerations in Section 4.3.1). But, for the algorithm in the form of the described
sequence, the number of measurements necessary to calculate one output sample is at
least equal to K = mmin. Therefore, from the reconstruction accuracy point of view,
the length of the algorithm measurement window is equal to KTs = MminTs, Ts IS
the sampling period.

Let us analyze how many elements of the reconstruction algorithm in the form of
sequence (4.62) are necessary for calculation of the input signal sample with error less
than emax. The sum of all omitted terms of sequence (4.62) must be equal or less than
emax, dependently on the acceptable inaccuracy of the reconstruction. As it results from
Tab. 4.5, the terms of the sequence take positive and negative values alternately. Thus,
to determine mmin, Sequence (4.62) should be replaced by sequence the terms of which
are the sum of two successive terms described by expressions (4.61). The quotient of
this sequence is positive and equal: —H — ¢,,, which means that the i-th term of it is

expressed as:

H(H 1'5022 _1)[(_ H-p,) —(-H _%z)m]:
L= ou (4.66)
_ H(H +(p221—_1(/))(1];+ H +¢22)(_ H )

Beginning from mmin, the sum of the terms have to fulfil the condition:

> H(H + —1H + +1 M i
Z ( ¢221 ()D( Paz )(_ H _(/722) " (_ H _§022) < €ax (4.67)
=M +1 — %1

The expression in (4.67) creates the geometrical sequence, which means that it is:

H(H + ¢, —1(H + @, +1[H + @,,)"™™ 1 e (4.68)
(l_¢’11) 1_(_ H _(/’22)
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From Eq. (4.68), we obtain the following:

€ rex (1_(/’11)
H (H + @y _1) 4.69
log (_ H - (022) ( )

log

mn —

Example 4.12. Let us take emax = 0.001. For the exemplary 2-nd order algorithm from
Example 4.11, it is: H = -1.21. Based on the expression (4.66), we have:
0.001-(1-0.9017)

~1.21-(-1.21+0.4188-1) -4.34
e log(1.21-0.4188) © -0.102
This means that the number K of samples in the measurement window, which is
the minimum number of terms representing the reconstruction algorithm in the form of
the sequence, is:

log

m =425

K=m,, +2=43+2=45

As it results from Eq. (4.51), the reconstruction algorithm of the 1-st order converter
has only the non-recurrent form:

k(k):ﬁ[a(k +1)- gk +1)]:ﬁ0(k +1)+%0(k) (4.70)

Accordingly with Eq. (4.62), the general form of the sequence (4.51) reduces in this
case to 2 elements:

R(k)=A_0(k +1)+ Ad(k) (4.71)

The coefficients of this expression have the forms:
Aw=i—1 A=—2 (4.72)
The sum of both coefficients is:

AL +A=— 4P 1 (4.73)
1-9 1-9¢
which means that static sensitivity of the dynamic algorithm is equal 1, the same as
obtained for the 2-nd order reconstruction algorithm accordingly with Eq. (4.65). This
property is the same as results from the basic decomposition assumptions described in
Chapter 2.
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Example 4.13. The coefficient ¢ of the discrete model of the 1-st order converter from
Example 4.2 has the value: ¢=0,9048. On the basis of expressions (4.72),

the coefficients of the sequence (4.71), calculated for this value, are:

1 1 —p  -09048

= =10.50, A = = =-9.50
1-¢ 1-0.9048 1-¢ 1-0.9048

Ak+l =

4.3.3. Description of dynamic reconstruction in frequency domain

From an error analysis point of view, every reconstruction algorithm can be presented
as such an element of the sampling instrument, which both introduces inside errors and
propagates the input errors to the output. Inside errors are connected with the fact that
the basis of the dynamic reconstruction algorithm is the discrete model of the analog
converter described in Section 4.2.2. The use of this model causes the samples of
the reconstructed signal to be burdened by the discretization error that is immanently
connected with the mathematical conditions of the discretization of the analog model.
One can say that the discretization error is the same kind of error as the approximation
error of the static reconstruction, because both errors describe imperfection of
the reconstruction, static and dynamic, respectively.

The reconstruction consists in realizing mathematical operations on the samples
that are burdened by errors. It means that the same operations are performed on
the input samples as on their errors, which causes that the output samples contain error
dependent on properties both of the input errors and the mathematical operation
specific for the algorithm. Transmission of an error from the algorithm input to its
output is generally called an error propagation and described by a propagation
equation that consist of relations between realizations of the output and the input
errors. The propagation is described in the following chapters for two basic input
errors that arise during the physical realization of digitalization of the input signal,
which is made up of the signal sampling and the quantization of the obtained samples.

The parameters of the discrete state equation (4.31) are determined with
the assumption that the input signal does not vary between discretization instants,
which is not true. This assumption causes that dynamic reconstruction algorithm to be
inaccurate because it is the inverse solution of the inaccurate discrete model of
the analog converter. This results in the appearance of the error in the output of
the reconstruction algorithm, which is called the dynamic discretization error.
The nature of this error is connected with nonideality of the reconstruction caused by
application of the discrete model.
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The dynamic discretization error depends on both the parameters of the model and
the properties of the reconstructed signal. Taking this into account, the error analysis
should be carried out for selected signals. The sinusoidal signal is commonly used
because for it, the analysis of the reconstruction algorithm gives essential information
and is relatively simple.

For the sinusoidal signal, the dynamic properties of the algorithm are described by
the spectral transmittance that is its transfer function in the frequency domain w [L2].
Based on the sequence form (4.62) of the algorithm and taking into account that
the estimates d(k +1),4(k),...,da(k +m)+... represent samples of the algorithm input

signal, we can write the spectral form X(jo) of the reconstructed signal as

the expression:

X(jo)=(Ae"™ + A + AL + .+ A_e™ +_ )0(jo) (4.74)

where U(jo) denotes the spectral form of the output signal of the analog converter, and

Ts is the sampling (discretization) period. To obtain this equation, the theorem is used,
according to which rotation of the vector by the angle mw7s on the complex plane
corresponds to the sample shift in the time domain by m sampling periods Ts [L2].
Based on Eq. (4.74), we obtain the spectral transfer function (transmittance) of
the dynamic algorithm in the form of the sequence:

Aljo)= )S(Jw) =A &+ A +A T+ A e (4.75)
U(jo)

From the dynamic error analysis point of view, the reconstruction algorithm should
be considered as the second of two elements from the couple shown in Fig. 4.10. One
can interpret the dependence between these elements in this manner so that
the dynamic error arising during the analog signal conversion is eliminated (decreased)
by the dynamic reconstruction, which works as the dynamic error corrector.
The transfer function of the reconstruction algorithm is the basis of determination of
its efficiency as the corrector of the dynamic error.

x(t) : y(t) i - R(t
Analog S|_gnal Digital dyna'mlc (t)
conversion reconstruction

Fig. 4.10. Dynamic reconstruction chain composed of the analog conversion and the digital
reconstruction described in the time domain
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The dynamic properties of the analog converter, being the first element of the chain of
Fig. 4.10, are modeled by the transfer function S(jw), while the dynamic reconstruction
algorithm by the transmittance A(jw) described by Eq. (4.75). Based on the scheme
from Fig. 4.10, the relation between the input signal X(jw), and its reconstructed form
X (jw) can be written as follows:

5. X(jo)U(jo . . . .

X(j0) = 2U2VU)y (56) - p(jo)s o)X (o) (@.76)

U(] a)) X(] a))

with the assumption that the estimation errors of the signal U(jw) is neglected;
therefore, u(jo)=U(jw). Based on Eq. (4.76), one can describe the transmittance of the

chain from Fig. 4.10 as the whole:

5. (i) = XU _ aju)s(io) @)

X(jo)

presented graphically in Fig. 4.11.

| " .
O sie P e

Fig. 4.11. Dynamic reconstruction chain described in the frequency domain

Accordingly with Eqg. (4.51), the transmittance the reconstruction algorithm for the 1-st
order converter consists of two terms, which means that the sequence (4.75)
is described in this case by the expression:

Aljo)= A "™ + A, (4.78)

The transmittance S(jw) of the 1-st order converter is described by Eq. (4.3).
Taking into account that the static sensitivity of the converter S=1 and based on
Egs. (4.77) and (4.78), one can write the transmittance of the 1-st order reconstruction
chain in the form:

S (j0) = Aj@)S(j0) = (A" +A)— (4.79)
1+jor
After introducing the expressions (4.72) to (4.79), one obtains the following:
S, (jo)= 1 1 gen @ |1 cosdl — o+ jsin oT, (4.80)
1+ jor\1-¢ 1-¢9p) 1-9¢ 1+ jor

The transmittance of the reconstruction chain generally describes the relation
between the complex forms of the input and the reconstructed signals. Accordingly
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with Eqgs. (4.80) and (4.77), the relation between amplitudes of these signals for
the 1-st order reconstruction chain can be written as:

‘X(ja)jﬂs ' )_| 1 cosal, —p+jsinl,| 1 |(cosaT, —p)° +sin® o, (4.81)
e _‘1—(/) 1+ jor |_1—q0 1+ (wz) .

One can point to another way of determining the module of the reconstruction
chain transmittance. Accordingly with Eq. (4.77), this transmittance can be described
in the following form:

|Srec (J COX =

%\=|A<jw>s<,-a,1:|A(jw]|s(jw] (4.82)

Considering the 1-st order algorithm, one obtains that the module of its
transmittance accordingly with Eq. (4.78) is described by the expression:

o | J(cosaT, — @) +sin o,

H _ jooTy _ j(uTs_ —
Ajo)=|A €’ +Ak‘ = gpe I - (4.83)

The module of the 1-st order converter is described by Eq. (4.21); therefore, based on
Egs. (4.82) and (4.83), the expression (4.83) takes the form:

\/(coszs — ) +sin® oT,

. 1
R

(4.84)

the same as (4.80).

Example 4.14. The time constant of the 1-st order converter from Example 4.4 is
t=2s. The frequency of the sinusoidal input signal is f=0.01 Hz. The signal is
sampled with the period Ts = 0.2 s, which means that the coefficient ¢ = 0.9048 and
oTs=27nfTs=2m0.01'0.2=12.56'103. For these assumptions, the module of
the converter transmittance (4.3) takes the following value:

. 1 1
S(jo) = = =0.9922
Slio) W+ (o) 1+(27-001-2)

The module of the 1-st order reconstruction algorithm (4.83) is:

IAjoo) = \/cosz — @) +sin? @, _\/1—2(/)C03a)Ts+g02

1-¢ B 1-¢ B
_ \1-2-0.9048-cos(L2.56 -10% )+ 0.9048
- 1-0.9048

=1.00784
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Thus, the module of transmittance of the reconstruction chain has the value:
1S (i) =|Ajw)|S(je) =0.9922 -1.00784 = 0.99998
which means that it is close to the ideal one equal to 1.

As in Example 4.14, the efficiency of the dynamic reconstruction can be considered on
the basis of the transmittances of the reconstruction chain. But the better way to do
such considerations seems to be an analysis of dynamic errors, which enables to
compare these errors with other reconstruction errors. According to the general
definition (1.50), the dynamic error of the sinusoidal output signal of the converter
described by the statically ideal transmittance S(jw) (its static transfer function S =1)
is defined as:

e i0)=X(0)-Y(i0)= X0 1302 |- sGoxGo) (a5
X(jw)
where X(jw) and Y(jw) are spectral transforms of the input and output signal,
respectively.

The reconstruction chain can be considered as such a converter which aims at
minimalization of the dynamic error at its output by using a suitable reconstruction
algorithm. The basic error of this chain is connected with the discrete form of the
reconstruction algorithm. This error is called the discretization error and, accordingly
with Eq. (4.85), it is described in the frequency domain as:

e, (1) = X (j0)— X (j0) x@w{ %} _h-s.(oX(e)  @86)

where X (jw) is the spectral form of the reconstructed signal.

The transmittance of the 1-st order reconstruction chain is described by Eqg. (4.79),
thus, the discretization error (4.86) takes the following form:

1+ jor

eulio)-B-Suolio)-{ 1 L (a e s a)xio) e
from which one obtains that the amplitude of the error is:

L+ jor— A" - A
1+ jeor|

1

5 (4.88)
1+ jor

|edis(ja)xz|x(ja)1‘l_ (Akﬂejm“ +AJ=|X(](0]
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where X|(jw)| is the amplitude of the input signal. Based on Eg. (4.80), the numerator
of expression (4.88) can be written as:

i - i JolTs 1-coswTl. . sin T,
1+ jor— A &' — A :1+ja)r—e +—2 - AL +J(a)2'— @ Sj
1-9p 1-9¢ 1-¢ 1-¢

(4.89) which means that the amplitude of the discretization error (4.88) is expressed in

the form:
2 . 2
1-coswl, sin T,
SR NG
4 ¢ (4.90)

1+(wr )

Eqis = |edis(j a)x = |X (le

Reconstruction reduces the dynamic error introduced by the analog converter to
the discretization error. Taking this into account, the discretization error can be
interpreted as the effect of non-ideal elimination of the dynamic error by
the reconstruction algorithm. The degree of this reduction may be determined by using
the reduction coefficient generally defined as:

Korea = San (4.91)
dis
where Egyn IS amplitude of the dynamic error in the input of the reconstruction
algorithm and Egis is the amplitude of the output error resulting from non-ideal
reconstruction of the input signal by the discrete algorithm.
The transmittance of the 1-st order converter is given by Eq. (4.3) (with S=1).
In this case, the dynamic error (4.85) takes the form:

eyn(i®)=[1-S(jo)X(jw)= { —_

1+ jor

}x(jw)= : j‘jw X(jo)  (4.92)

which means that the amplitude of this error is:

Edyn ‘edyn JCUX \/1+7|X Jw

Therefore, on the basis on Egs.(4.91) and (4.93), the reduction coefficient (4.91) for
the 1-st order converter is described by the expression:

(4.93)

K = Eayn _ d (4.94)

Dred
Eqis 1-coswl, ‘ sin T, ’
— | +|or—
1-¢ 1-¢
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The considered errors calculated for the exemplary 1-st order converter in
dependence of the input signal frequency are shown in Fig. 4.12, while the selected
values of these errors and the reduction coefficient are presented in Tab. 4.5.

a) b)
14 . . . 1.4
12k 1.2¢
10~ . 1r
Q @)
o sl ° 0.8
~ ~
= £ 06
' 6r
€3] K
4r 0.4
2r 0.2
0 : : : 0 : : :
0 0.005 0.01 0.015 0.02 0 0.005 0.01 0.015 0.02
S Hz f Hz

Fig. 4.12. Dependences of the amplitudes: a) of the dynamic error, b) of the discretization error as the
function of frequency f = w/2xn of the input temperature signal 3(t) = x(t) = 50+50sinwt°C
determined for the exemplary 1-st order converter, both amplitudes are expressed in relation
to the signal amplitude equal to 50°C

Table 4.5

Values of amplitudes of the dynamic errors of the exemplary 1-st order converter
in dependence of the frequency f of the sinusoidal signal 9(t) = x(t) = 50+50sinwt°C,
Eayn is the amplitude of the converter dynamic error, and Egis is the amplitude
of the discretization error, both amplitudes are expressed in relation to the signal
amplitude equal to 50°C

f Hz 0.001 0.002 0.005 0.01 0.02
Edyn1 0.628 1.256 3.135 6.234 12.19
Edis1 0.0317 0.0634 0.158 0.317 0.634
Kored1 19.8 19.8 19.8 19.7 19.2

On the basis of results presented in Tab. 4.5, one can state that for the exemplary 1-st
order converter the dynamic error is reduced about 20 times in result of application of
the dynamic reconstruction although, starting of some signal frequency, the efficiency
of the reconstruction diminishes.

The transmittance of the reconstruction algorithm of the 2-nd order converter can
be written as the expression:

+leijs +Ak + Ak—l

A(J a)) - 1-q g e
A

(4.95)
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which is obtained basing on the fact that, beginning from 3-rd element, the terms in
Eq. (4.75) create the geometrical complex sequence with the quotient q,e’”, where
the coefficient ga is given by Eq. (4.63). Introducing the algorithm coefficients (4.61)
to Eq. (4.95), we have:

. 1 [ H(H 1
A(J a)) = 7|:6'l Ts + H — (Dll + 1_ ((H :zzz)e'jw)Ts :| (496)
11 22

where H is given by Eq. (4.58).
The module |A(jw) of the transmittance of the 2-nd order reconstruction algorithm

can be determined on the basis of Eq. (4.86) but the numerically simpler way consists
in calculation of the real and imaginary parts of the transmittance in the form of
the sequence (4.75). Eq. (4.96) as the sequence is of the form:

Aljo)= A, ,(cos T, + jsin @T, )+ A+ A_,(cos T, — jsin &T,)+...

- (4.97)
+ A, (cosmaT, — jsin maT, )+...

After splitting expression (4.97), one obtains its real part as:

Re{A(jo)} = A, cosa@T, + A + A _, COS@T, +...+ A_, cosmaT, +... (4.98)

while the imaginary part is:
IM{A(jo)} = A, sin &T, — A_, sin @T, +... + A_, sin maT, +... (4.99)

Generally, the algorithm transmittance can be written in the form:

Ajo)=|A(jo)e™ (4.100)
where the module is expressed as:
Ao) = Re{Ao)f + m{AGo)f (4.101)
and the phase shift is:
Im{A(jo);
= arctan —— 1/ 4,102
@, = arctan Re(A(jo)] ( )

Having calculated the algorithm transmittance accordingly with the presented
equations, one can determine the amplitude of the reconstructed signal on the basis of
Eq. (4.76) as:

X (jo) = [ (i0)X(jo) =[s(jo)Alio) X (jo (4.103)
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Example 4.15. Let us take that the parameters of the 2-nd order converter are the same
as in Example 4.5, and the coefficients of the reconstruction algorithms are taken from
Example 4.11. The sinusoidal input signal: x(t) = sinwt, @ =2xaf, f=0.1Hz, is
sampled with period Ts=0.5s. For these parameters, the module of the converter
transmittance (4.24) is as follows:

S(jo) = L = ! — 0.93656

)T T

In Example 4.12, 45 elements of the sequence (4.97) are calculated to be necessary to
obtain the inaccuracy at the level of 0.001. In this case, accordingly with Egs. (4.98) and
(4.99), the real and imaginary parts of the reconstruction algorithm have the values:

Re{A(jw)} =0.46226 and Im{A(jw)} =0.96685
Based on these values, the module of the reconstruction is calculated as:

|A(jo) = \Re{A(jo)? + Im{A(jo)}* = /0.46226 > +0.96685° =1.0717
Thus, on the basis of Eq. (4.103), the amplitude of the reconstructed signal takes the value:

X (jo) =[8,(jo) A, (j@) X (jo) = 0.936561.0717-1=1.0037

The errors calculated in the way presented in Example 4.15 for this exemplary 2-nd
order converter in dependence of the input signal frequency are shown in Fig. 4.13.
The selected values of these errors and the reduction coefficient kpreq are presented in
Tab. 4.6.

a) b)
1 1
0.8 0.8
<§0.6— fg 0.6
) =
4 Rl ]
0 : ' 0 : : ;
0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
f Hz f Hz

Fig. 4.13. Dependences of the dynamic error (a) and the discretization error (b) determined for
the exemplary 2-nd order converter as a function of the frequency f =w/2n of
the sinusoidal input signal with the amplitude equal to 1, both amplitudes are expressed in
relation to the signal amplitude
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Table 4.6

Values of the amplitudes of the dynamic errors of the exemplary 2-nd order converter
in dependence of the frequency f of the sinusoidal signal with the amplitude equal to 1,
Eayn is the amplitude of the converter dynamic error while Egis is the amplitude
of the discretization error, Kored IS the reduction coefficient defined by Eq. (4.91)

f Hz 0.01 0.02 0.05 0.1 0.2
Edyn 0.0881 0.1767 0.4495 0.9030 0.9767
Edis 0.0152 0.0313 0.0781 0.1568 0.3153
Kbred 5.7921 5.6400 5.7517 5.7580 3.0974

Based on results presented in Tab. 4.6, one can state that, for the exemplary 2-nd order
converter, the dynamic error is reduced about 6 times as a result of application of
the dynamic reconstruction algorithm although, starting of some signal frequency,
the efficiency of the reconstruction diminishes.

4.4. ldentification of parameters of dynamic algorithms

4.4.1. ldentification of first-order algorithm

In practice, the coefficients of the dynamic model are determined in a measurement
experiment, which means that they are identified on the basis of measurement data
burdened by errors. This causes the obtained values of the model coefficients to be
inaccurate, which results in occurrence of a specific error of the reconstruction
algorithm called the identification error.

One of the simplest ways of the dynamic model identification consists in
stimulation of the converter input by a well-determined reference signal and carrying
out measurements of the response at the converter output [K2]. To obtain a satisfactory
identification accuracy, it is necessary to reduce errors that burden the measured
results. Such a reduction can be achieved if one uses step-changing reference signal
[M8], because for this signal, the discretization error is equal to zero (see Fig. (4.6)).

For 1-st order converter, the relation between samples of the input and output
signal is described by Eq. (4.35). Based on Eq. (4.36), one can write that, for
the unitary step change of the input signal, that is, for x(k) =1,k =0, 1, ..., it is:

- fik-+1)-pu(k)] - x) -1 (4.104)
-Q
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According to this equation, the estimate of the reconstruction algorithm coefficient that
is determined for k instant is obtained as:

Loy 1-a(k +1)
o(k) = i) (4.105)
Expression (4.105) enables the calculation of coefficient ¢ basing on 2 subsequent
samples of the output signal. Taking into account that the samples are burdened by
random errors, inaccuracy of the identified coefficient can be decreased if we
determine its estimate as the average value of partial identification results. If one uses
K beginning samples of the same response, the estimate is calculated as:

ey 18 1 -k +1)
§0(K)_ K ;(p(k)_ K kZ:(; 1—0(k) (4106)

In measurement practice, the sensor input signal is converted both by its static and
dynamic part, which means that the output signal used for the identification is
burdened by static and dynamic errors. The sensor applied in the exemplary instrument
Is described by the Wiener model; therefore, the dynamic input signal is converted at
first by the dynamic linear part of the sensor; and then, by the static nonlinear part.
This means that, before performing the identification of the dynamic properties of
the sensor, it is necessary to correct static nonlinearity errors, i.e., to perform the static
reconstruction.

Example 4.16. Let us determine the coefficient ¢ of the 1-storder dynamic
reconstruction algorithm applied in the exemplary sampling instrument for the step
input temperature signal changed from $ = 0°C to 100°C at time instant t =0 (k = 0).
The sensor output signal is sampled with the period Ts = 0.2 s and statically corrected
using the algorithm (3.13). According to Fig. 3.6b, the total static reconstruction error
can be described as normal noise N(0O; 0.01)°C (its standard deviation is equal to
0.01°C). Taking this into account, the estimates u(k), k=0, 1, ..., can be determined in

a simulative way as samples of the output signal of the dynamic sensor with the time
constant =2 s, which are burdened by the noise error N(0; 0.01)°C. The beginning
9 output samples are presented in the table 4.7.

Table 4.7

Beginning samples of the response of the 1-st order sensor applied
in the exemplary instrument to the step input signal from 9 = 0°C to 100°C,
k is the number of the sample

k 0 1 2 3 4 5 6 7 8

lj(k)°C 0.015 9.509 18.131 25.916 32.979 39.336 45.119 50.347 55.078
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Based on the results from Tab. 4.7, the estimates ¢ are calculated accordingly with

Eq. (4.106) with such a difference that the estimate for the instant k is calculated as:

A(k)zloo—u(Ak+l) (4.107)

100-1(k)
because the step change of the input signal is 100°C in the case considered.
The obtained estimates are contained in Tab. 4.8 together with the Ew: amplitude of

the total dynamic error calculated for every estimate ¢(k) accordingly with the

expression:

(l—coszstJ{m_ sin T, jz
E,.(k)=|X(jo) 1=9(k) (o) 1-9lk) (4.108)

obtained on the basis of Eq. (4.90) for:
IX(jo) =50°C, w=2-7-f, f =0.02Hz, T, =0.2s, r =25

Table 4.8

Estimates of the coefficient ¢ of the 1-st order dynamic reconstruction algorithm used
in the exemplary instrument, which are calculated on the basis of Egs. (4.106)
and (4.107), K is the number of samples used to obtain a single estimate, Etot

is the amplitude of the error at the output of the dynamic reconstruction algorithm for

the input sinusoidal signal with the amplitude 50°C, the exact value of ¢ is 0.90484

K 2 3 4 5 6 7 8 9 10

@(K) 0.90489 | 0.90489 | 0.90483 | 0.90490 | 0.90486 | 0.90484 | 0.90483 | 0.90481 | 0.90484

Ewt(K)°C 0.645 0.646 0.638 0.647 0.642 0.640 0.637 0.636 0.639

The error ewt, the amplitude of which is denoted as Eiwt, is determined as
the discretization error in the case if the coefficient ¢ is calculated by effect of its
identification as the estimate ¢. It means that the error ewt is a composition of
the discretization error egis calculated for the exact value of ¢ and the additive error
connected with the difference between ¢ and its estimate ¢. The amplitude of the error
edis 1S Edis =0.639°C in the considered conditions. Ewt(K) valuesdo not differ
essentially from Egis, which means that the coefficient ¢ determined on the basis of
2 samples of the step response is accurate enough in the experimental conditions.
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4.4.2. ldentification of the second-order algorithm in the analytical form

The reconstruction algorithm for the 2-nd order analog converter consists of
2 equations (4.52) and (4.53). The simplest way to identify the algorithm coefficients
consists in measuring beginning values of the converter response u to unitary step
change and in calculating estimates of the coefficient on the basis of the description of
the algorithm [M8].

For the step change of the input signal, the beginning values of the state variables are:

u(0)=u,(0)=0 (4.109)

of the input signal x from 0 to 1. The instantaneous values of the input signal that
change from 0 to 1 at instant k=0 are: x(k) =1 for k=0,1,..., which means that
Eq. (4.53) for k = 0 takes the form:

(0=l 0.00-0000- "1 @)

from which one obtains:

P =1-0() (4.111)
Having known ¢,,, one can calculate ¢, on the basis of Eq. (4.53). For k=1, we
have:
I ; ,
X(l) = 1-6 [U(Z)— (011U(1)— (Dlzuz(l)]: 1 (4.112)
%

from which, it is:

@12 _ 0(2)_14:(511[1_0(1)] _ l](2);1‘*‘(5121 (4.113)
0, (1) 0, (1)

As it results from Eq. (4.113), to identify the coefficient ¢, it is necessary to

know the value of the state variable ux(1) that is the first derivative of the output signal
(see EQq.(4.27)). This variable can be approximated by samples of the output signal u as
the mean value of its two successive estimates:

a(k +1)-a(k) s Gk +2)—d(k +1)

0, (k+1)= T, T, _ Uk +2)-u(k)
2 2T

S

(4.114)
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where Ts is the sampling period. According to this equation, the value ux(1) of the state
variable may be determined as:

,(1)= i(2)-u(0) _ u(2) (4.115)

where it is taken into account that, accordingly with (4.108), u(0)=0. After
introducing Eq. (4.115) to (4.113), one obtains the following:

0(2)-1+ @2 U(2)-1+ ¢}

- =27 4.116

(012 0(2) s 0(2) ( )
2T

S

As result of Example 4.5, we have:
Py =0, (4.117)

This relation can be used to calculate the last coefficient. For k=1 and x(k) =1,
Eq. (4.53) takes the form:

lj2(2): (27210(1)"'@2202(1)_@21 (4.118)
on the basis of which and Eq. (4.117), we obtain the following:

_u, (2) — Py [1_ lj(:I-)] u, (2) — PPy (4.119)

TR0 6,0

4,(2) = u(3)-ua@) (4.120)

Based on Eqgs. (4.115) and (4.119), Eq.(4.120) can be written in the following form:

a(3)-a@) . .
— PPy R A A
2T U(3) - u(l) — 2T, 01,
= s = s 4121
Ve i(2) a(2) @120
2T,

S

The main problem connected with the determination of the estimate of the state
variable uy is that it is physically the first derivative of the output signal of the analog
converter. Using Egs. (4.114) and (4.119) causes u to be calculated as the inclination
of the straight line connecting two points of the converter response, which differs
significantly from the real value of the derivative. This causes the errors that burden
the estimates of the coefficients to be determined on the basis of the equations (4.115),
(4.116) and (4.118). Application of such inaccurate coefficients in the reconstruction
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algorithm entails that its results differ significantly from these obtained using the exact
values of the coefficient determined on the basis of the definition (4.33). The next
example illustrates this problem.

Example 4.17. The beginning four samples of the output response to the step input
signal in Tab. 4.2 are: u(k) =0, u(1) =0.0983, u(2) =0.3059, u(3) =0.5313. These
values were obtained for the 2-nd order exemplary converter, the output signal of
which is sampled with the period Ts = 0.5 s. Using them to calculate the coefficients of
the dynamic reconstruction algorithm according to Egs. (4.111), 4.116), (4.117) and
(4.121), respectively, gives the results:

@, =1-u(1)=1-0.0983 =0.9017

. 2)=1+ 2 3059 —1 4 0.90172

b, —or U@-1+9h ) 5 0.3050-1+0.9017
u(2) 0.3059

@21 = _élz =-0.3889

4, = u(3)-u@)- 2T, ¢,y _ 05313-0.0983-2-05-0.3889-0.9017 _ .o,
u(2) 0.3059

=0.3889

To compare the calculated values with these exact, they are located together with
the other coefficients in Tab. 4.9.
Table 4.9

Exact and estimated values of the coefficients of the exemplary
2-nd order dynamic reconstruction algorithm

Coefficient P11 P12 ¢ 21 ¢ 22
Estimated values | 0.9017 | 0.3889 | -0.3889 | 0.2691
Exact values 0.9017 | 0.3449 | -0.3449 | 0.4188

The amplitude of the discretization error calculated for the sinusoidal signal frequency
f=0.02 Hz by using the exact values is Egis = 0.0313, while for the estimated values
this error substantially exceeds 1. This means that the simple method applied to
identify the coefficients is useless in practice.

As it results from the presented example, the key issue in the coefficient
identification is an accurate enough calculation of the first derivative of the output
signal. One can do it determining the analytical form of the step response (4.14) on
the basis of known discrete samples of it and then calculating the derivatives in
the suitable points. Such a way is mathematically complicated, so, in practice, simpler
methods should be taken into account. In the following example, the results of
application of polynomials to approximate the step response are presented in order to
calculate the derivative of this signal.
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Example 4.18. To measure samples of the step response of the exemplary 2-nd order
converter, the 16-bit AD converter is used, which works in the range from 0 to 1. It is
assumed that the quantized signal is disturbed by the normal noise N(O; q), q is
the quantum value. The 5 beginning samples of the response measured with
the sampling period Ts=0.5 s are presented in the table 4.10. They are calculated
accordingly with the equation:

2

—bapkT, 1 _
u(k)=q- ent{l{l © sin(\/l b? w kT, + arctg 1 . b )] +€e,,+ 0.5} (4.122)

q V1-b?

obtained on the basis of Eq. (4.14), with the assumption that b = 0.7 and wo = 1, and
the number k of the sample takes values: k=0, ..., 4.
Table 4.10

Beginning samples of the response to the unitary step change of the input signal
of the exemplary 2-nd order converter obtained on the basis of Eq. (4.122)

K 0 1 2 3 4

a(k) 0 0.098312 0.305954 0.531265 0.725708

In the following table, there are presented values of the coefficients calculated on
the basis of the results from Tab. 4.10 with the assumption that the state variable uz is
determined using polynomials of the order 3 and 4. The last column contains values of
the amplitude of the discretization error calculated for the suitable values of
the coefficients.

Table 4.11

Results of identification of the coefficients of the exemplary 2-nd order algorithm
on the basis of the samples of the step response from Tab. 4.10 using polynomials
of 3-rd and 4-th order to calculate the state variable uz, the exact values,
determined from definition, are taken from Example 4.5

Polynomial 1 ¢ 12 ¢ 21 ¢ 22 Eais
3 order 0.9017 0.3647 -0.3647 0.3909 0.73
4" order 0.9017 0.3462 -0.3462 0.4195 0.030

Exact values 0.9017 0.3449 -0.3449 0.4188 0.031

The amplitudes of the discretization error Egis presented in the last column show that
using the polynomial of the forth order gives approximately the same results as
obtained for the exact values of the coefficient. This means that the identification using
this polynomial does not introduce a significant error.
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In practice, the identification of the parameters of the dynamic model is realized on
the basis of measurement results that are obtained at the output of the analog
converter. These results are burdened by several errors; among them is the static error
connected with nonlinearity of the sensor characteristic, which occurs dependently on
the general model of the analog converter. In the Hammerstein model (see Chapter 1),
the first element is static and nonlinear, while the second is dynamic and linear. This
means that the step input signal changes its value after propagation through the first
static element, which must be taken into account during the identification. If
the Wiener model is used, the first element is dynamic, while the second is static,
which causes the nonlinearity error introduced by it to be corrected before making
the identification of the dynamic parameters. This means that the static reconstruction
error must be taken into account in the budget of identification errors.

4.5. Neural dynamic reconstruction

Accordingly with Egs. (4.49) and (4.50), the estimate of the reconstructed sample (k)

is the linear combination of the estimates of the state variables and the constant
coefficients. This means that the neural implementation of these equations takes
the form of network composed of the linear neurons that consists of n neurons
described generally as the system of the recurrent equations, which can be written in
the following form:

(k) = iwliai (k) +w,, (k) +w, G(k +1) (4.123)

and

Gy (k+2) = 3 w0, (K) + Wyt (K) + W (K)
i=2

(4.124)

Gy (K +2) = > Wiyt (k) + Wiy (K) w0 %(K)
i=2

where (k) and d(k +1) are estimates of samples of the output signal, G (k),i=2,..,n are

estimates of the state variables, and wij; are constant coefficients.
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The network composed of neurons performing operations described by equations
(4.123) and (4.124) is graphically presented in Fig. 4.14.

Uk +2 N
k) Wiy
; 2 O ~ (k)
0, (k) Wi,
Y !
a, (k)

delay [

delay [«

Fig. 4.14. The scheme of the neural network that perform dynamic reconstruction according to
equations (4.123) and (4.124), “delay” denotes the operation of storing the sample for one
sampling period of the reconstructed signal

The arithmetical operations performed by the network from Fig. 4.14 are repeated at

every cycle of the reconstruction between two succeeding sampling instants k and k+1,

k=0,1,...To carry out the reconstruction, the two measurement results t(k),d(k +1)

of the output signal should be known, which means that the reconstruction is realized
with the delay equal to the sampling period Ts. Moreover, it is necessary to give in the
network input the state variables d,(k),...,d4,(k), which are calculated in the previous

cycle and stored to use them in the next cycle. This causes that to start activity the
network, the initial values 0a,(0),...,0 (0) of the state variables are required. These

values can be estimated or taken as zero. Assuming the initial values to be different
from the real ones results in appearance of a transient state of the same kind as shown
in Fig. 4.9b. This state disappears after a certain number of cycles from the beginning
of the reconstruction.
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4.5.1. Identification of coefficients of first-order network

For the 1-st order dynamic converter, the system of equations (4.123) and (4.124)
reduces to the one expression that is the linear combination of the two measuring
results G(k) and UG(k+1) multiplied by constant coefficients wi and wz. Thus,

the input sample estimate is determinedby one linear neuron that realizes the following
equation:
R(k) = wa(k) + w,a(k +1) (4.125)

in which, accordingly with Eq. (4.72), the coefficients take the forms:
Y Ly W (4.126)
@ 1-9

where ¢ is given by Eq. (4.36).
The neuron described by expression (4.124) is graphically presented in Fig. 4.15.

(k)
G(k)

Fig. 4.15. Linear neuron realizing the dynamic reconstruction of one input signal sample of a first-
order dynamic converter

Gk+1) — w.

Wy

The simplest way of determining the coefficients of the neuron from Fig. 4.15 consist
in calculating them by using Eq. (4.126). Such values are named in the Table 4.12 as
“exact values” because they are determined from the definition on the basis of
the known parameters of the dynamic analog converter. Another way can be applied
if the responses of the converter to the step input signal are known [S5]. This way is
described in the next example.

Example 4.19. Let us consider the sampling instrument presented in Example 4.16,
which works under the described conditions. Two beginning samples of the responses
to the step input signal are measured in three cases: for the input step from 9 = 0°C to
100°C, from 9 = 0°C to 50°C and from 9 = 100°C to 0°C. The estimates of the output
samples, obtained with the assumption that they are burdened by the normal noise
N(0; 0.01)°C, are presented in Fig. 4.16. The learning data presented in Fig. 4.17,
the same as in Fig. 4.16, were used to learn the 1-st order neural network from
Fig. 4.15.
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_______________________
-----------------

Fig. 4.16. The results used to obtain the learning set presented in Fig. 4.17

i), =0 G(0), =0 G(0), =100
x(0), =100+, x(0), =50¢, X(@), =0
G(1), =9.5163 G(y), =4.7581 (1), =90.4837

Fig. 4.17. The learning set used to learn the neuron from Fig. 4.15

The values of the neuron coefficients obtained after 3 learning steps using the set from
Fig. 4.17 are presented in the table 4.12. They are the same as the exact values that are
calculated on the basis of parameters of the exemplary 1-st order dynamic converter.

Table 4.12
Exact and estimated values of the weight coefficients of the neuron from Fig. 4.15
Coefficients W1 W2 Bias
Exact values -9.5083 10.5083 0
Estimated values -9.5083 10.5083 3.6858-10°1°

4.5.2. ldentification of coefficients of second-order network

For the 2-nd order converter, the reconstruction algorithm in the form of
the expressions (4.122) and (4.123) is deribed as two recurrent equations:

R(K) = Wik +1) + w,u (k) + wyt, (K) (4.127)
0, (K +1) =v,0(K) +v,0, (k) + V,R(K) (4.128)
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wherein the coefficients w;,W,,wW; and Vv,,V,,V; have constant values. Accordingly with

the scheme of Fig. (4.14), the structure of the neural network that performs
the operations described by the equations (4.127) and (4.128) can be presented
as in Fig. 4.18.

lj(k-i—l)*w N1

1

a(k) _.._wzi(k)
W3 Ve O k 1
s B

Vi N2

delay |-

Fig. 4.18. The scheme of the network described by the recurrent equations (4.127) and (4.128),

‘S‘%e;g” denotes operation of storing the sample for 1 sampling period of the reconstructed
The coefficients of the network from Fig. 4.18 can be calculated on the basis of
parameters of the equations (4.52) and (4.53), which describe the analytical form of
the dynamic reconstruction algorithm of the 2-nd order. Taking into account that
accordingly with Eqgs. (4.46) and (4.47) we have: w1=1—- @11 and w2 = —@21, One
obtains the following expressions describing the coefficients of Eg. (4.127) and
(4.128) in relation to the parameters of Egs. (4.52) and (4.53):

W=t w gy P (4.129)
1-¢p, 1-9, 1-¢,

Vi=@ps Vo =@, V3=—0p (4.130)

The values that are calculated accordingly with Egs. (4.129) and (4.130) on
the basis of the parameters of the exemplary 2-nd order converter taken in Example
45 are called here as “exact values”. They are contained in Tables 4.13 and
4.14 together with the values estimated as the results of the identification that is
considered in the following sections of the text.

Table 4.13

Exact and estimated values of the weight coefficients of the N1 neuron of the network
shown in Fig. 4.18

Coefficients W1 W2 W3 Bias

Exact values 10.1701 -9.1701 -3.5077 0

Estimated values 10.1506 -9.1514 -3.4982 2.8675-10*4
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Table 4.14

Exact and estimated values of the weight coefficients of the N2 neuron of the network
presented in Fig. 4.18

Coefficients 1 V2 V3 Bias
Exact values 0.3449 0.4188 -0.3449 0
Estimated values 0.3452 0.4184 -0.3451 -6.0937-10°

The identification needs the measurement data of the output responses to 3 different
step input signals. The estimates of the output samples used to identify the parameters
of the exemplary 2-nd order converter are described by the following expressions:

a(k), = q-ent {%(1—u(k))+ €noi +O.5} (4.131)
(k) = q-ent {% L-u(k) e, + 0.5} (4.132)
k), = q-ent {%u(k)+ €ho + 0.5} (4.133)

where k=0, 1, ..., enoi is the normal noise N(0; 1), and accordingly with Eq. (4.14),
itis:

e —b kT,

V1-b?

The learning data includes the values of the first derivative uz(k) of the response.

u(k)=1-

/ 2
sin{\/l— b? @ KT, + arctg 1; b J (4.134)

These values can be calculated on the basis of the derivative of the expression (4.134),
but the numerically simpler way seems to be to use a polynomial for this purpose.
As considered in Section 4.4.2, use of the 5-th order polynomial leads to obtaining
exact enough values of estimated parameters. In Fig. 4.19a, 6 discrete values of
3 responses to the step input signals are presented, which are calculated using
Egs. (4.131), (4.132), and (4.133). On the basis of these values, the polynomial is
determined and the discrete values of its derivatives are calculated in the points
presented in Fig. 4.19b.



165

a) b)
1 o .
,,,,,,,, N
13
0.8} 1
—— 06 [ ’_"‘
T 04 . o i =
o
‘._g' '''' L ) e
0.2¢ e T .,;] "h.,_ .......... o
o o i
%8 1 2 3 4 5 ™0 1 2 3 4 5

k k
Fig. 4.19. a) Samples of the responses to the step input signals (4.31), (4.132), and (4.133), b) the first
derivatives of the these responses

The learning data consist of the elements that, according to the scheme of the network
in Fig. 4.18, have the general form presented in Fig. 4.20.

x(k)
x(k) 0, (k)
u(k)
Fig. 4.20. The general form of the elements of the data used to learn the network from Fig. 4.18,

k=0,1,... is the number of the output sample, n =1, 2, 3 is the number of the response,
N1 and N2 denote the learning data of neurons from this figure

N1 N2

u(k +1)
d,(k +1)

k,n k.,n

As in Fig. 4.18, both neurons are learned separately. For the N1 neuron, the learning
data containing 4 samples from Fig. 4.19 are presented in Fig. 4.21. After 4 steps of
the learning process, the obtained coefficients of the neuron do not substantially

change their values as presented in Tab. 4.15.

0.0983 0.3059 0.5313 0.7257

0 1. 400983 1 0.3059 1 05313 1
~0.0005 0.3450 ., |0.4554 .. (04301 .
0.0492 0.1530 0.2656 0.3629

0 05; 100492 05 {01530 05, 0.2656 05
~0.0004 102725 ,, 10.2277 ., 102150 y
0.9017 0.6941 0.4687 0.2743

1 0 09017  0f {06941 0 104687 0
0.0005 . -0.3450 ., |-0.4554 ~0.4301

Fig. 4.21. The data used to learn the N1 neuron from Fig. 4.18

2,3

33
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Table 4.15
Values of the coefficients of the N1 neuron from Fig. 4.18, which are obtained
in dependence of the number of the learning steps Nis

Nis 1 2 3 4
MSE 0.00383 6.7e-006 1.4e-007 1.4e-007
W1 6.9257 10.0166 10.1501 10.1506
W2 -6.3727 -9.0359 -9.1510 -9.1514
W3 -2.0993 -3.4401 -3.4980 -3.4982
Bias 0.1922 0.0083 3.2e-004 2.9e-004

The data used to learn the N2 neuron from Fig. 4.18, are presented in Fig. 4.22.

The values of the coefficients obtained in the

processare presented in the table 4.16.

1

1

2,3

Fig. 4.22. Data used for learning the neuron N2 from Fig. 4.18.

1 1

~0.0005 03450} {0.3450 0.3450 0.4554 0.4301 0.4301 0.3419

0 ., 10.0983 . 03059 . (05313 .
0.5 0.5 0.5 0.5

~0.0004 0.1725; {0.1725 0.2277 0.2277 0.2150 0.2150 0.1710

0 ., 10.0492 L 01530 ., 02656 g
0 0 0 0

0.005 —0.3450} 1-0.3450 —0.4554\ {-0.4554 —04301, {-0.4301 —0.3419
1 L, 10,9017 L, 10.6941 0.4687

succeeding steps of the learning

3,3

Table 4.16
Values of coefficients of the N2 neuron from Fig. 4.18 in dependence of the number
of the learning steps Nis

Nis 1 2 3
MSE 1.2e-007 6.3e-009 6.3e-009
V1 0.3437 0.3452 0.3452
V2 0.4197 0.4184 0.4184
V3 -0.3462 -0.3451 -0.3451
Bias 0.0011 -6.0e-005 -6.1e-005

As it results from Tabs. 4.13 and 4.14, the values of the coefficients estimated in
the learning process are very close to these calculated as the exact values. To evaluate
the accuracy of the estimated values, the amplitudes of the reconstruction error
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composed of the discretization error and the identification error are determined
depending on the frequency of reconstructed signal. They are presented in Tab. 4.17
together with the discretization error. Comparing these values leads to the conclusion
that the identification error is negligibly small in relation to the discretization error,
which means that the considered method of identification is effective from accuracy of
the reconstruction point of view.

Table 4.17

Values of amplitudes of the dynamic errors of the exemplary 2-nd order converter
in dependence of the frequency f of the sinusoidal signal with the amplitude equal to 1,
Erec is the amplitude of the reconstruction error obtained for the network from
Fig. 4.18, Edis is the amplitude of the discretization error determined for the exact
values of the coefficients

f Hz 0.01 0.02 0.05 0.1 0.2
Erec 0.0159 0.0315 0.0786 0.1574 1.9675
Edis 0.0158 0.0315 0.0787 0.1571 1.9682

4.6. Final remarks

Summing up the considerations presented in this chapter, one can state that realization
of the dynamic reconstruction algorithm is an effective way of the correction of
the error which arises when a varying over time signal is converted by the sensor
modeled by a differential equation. As result of the presented examples, the correction
effectiveness depends on relationships between parameters of the sensor model and
the frequency of the input signal, as well as on the discretization (sampling) period.
This means that the choice of these relationships should be preceded by
the metrological analysis of the applied algorithm.

The characterized relationships result from the fact that the signal conversion and
the suitable reconstruction create the couple, the property of which should be
considered together. In particular, this couple has to be treated as one specific error
source connected with non-ideal realization of the reconstruction. For the dynamic
algorithm, this error is caused by the step approximation of the varying in time signal,
and it is called the discretization error. It should be noticed that for the step-changing
signal this approximation is made exactly; therefore, the dynamic algorithm does not
introduce any error in this case (see Example 5.9).
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Such a coupling of the analog conversion and the digital reconstruction causes that
description of the error propagation through the sampling instrument can be limited to
the algorithms since its elements performing analog and analog-to-digital conversions
can be treated as sources of errors conveyed at the input of the first algorithm. This
enables treating the error propagation in the instrument entirely from the considered
algorithms point of view.

The main advantage of neural network applications to signal reconstruction is self-
-building of the inverse model based directly on the measurement results obtained
during the identification. In the case of dynamic reconstruction, this advantage is not
important because it is necessary to use polynomials to obtain learning patterns, and
the complexity of the learning process means that the easiest way is to obtain network
coefficients based on the parameters of the analytical algorithm.



5. PROPAGATION OF ERRORS IN SAMPLING INSTRUMENT

A sampling instrument delivers estimates, which are sufficiently accurate
instantaneous values (digital samples) of its input signal representing a varying over
time measured quantity. Samples occur in the instrument output periodically with
frequency determined by the sampling frequency. An inaccuracy of this instrument is
described by the uncertainty of the error burdening the reconstructed samples. This
erroris a combination of many partial errors that arise in elements of the instrument
and propagate to its output. Arising and propagation of errors are strictly connected
with specificity of the signal processing that is performed by three main parts
of the instrument shown in Fig.1.1, which realize the analog conversion,
the digitalization and the digital reconstruction.

As it results from the scheme presented in Fig. 2.3, the reconstruction is realized by
the chain of partial reconstruction algorithms created as the effect of
the decomposition of the analog conversion. According to Fig. 2.2, every algorithm
processes samples from its measurement window that contains K samples of the input
signal. With the assumption that the algorithm realizes operation on true values of
samples, its output result, according to the model of the measurement result (1.18), can
be generally written as:

f(k)+e,, (K)=a,[yk)+e, (K)]+...+a [k +K-1)+e (k+K-1)] (5.1

where ao, ..., ak1 are coefficients of the algorithm, §(k) and (k) are estimates of

the samples in its input and output, respectively, ein(k), eout(K) are realizations of input
and output errors, k is interpreted both as the number of the first sampling instant in
the window and the number of the current measurement window, k=0, 1, ....

According to the considerations presented in Section 1.4, two expressions can be
extracted from Eq. (5.1). The first one:

Rk)=a,9(k)+...+a, 9k +K-1) (5.2)
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describes numerical operations performed by a reconstruction algorithm on estimates
of the input samples to obtain the estimate of the output sample. The second
expression:

e, (k)=ae, (k)+...+a e, (k+K-1) (5.3)

determines propagation of the input errors to the algorithm output.

In Egs. (5.2) and (5.3), the arithmetical operation performed on the estimates and
the errors are the same, but, in the case of the errors, a value of the output error
depends on both the coefficients of the applied algorithm and the properties of
the input errors. It causes the error propagation should be described in at least three
categories: separately for static, dynamic, and random errors.

Every algorithm performs its task only approximately, which causes that Eq. (5.3)
should be supplemented by the inside error of the algorithm, which is the difference
between the results obtained at the outputs: of the ideal model and the real form of
the algorithm. Taking this into account, one can write Eqg. (5.3) in the form:

e, (k)=ae (k)+...+a._e (k+K-1)+e_(k) (5.4)

where erec(K) is the inside error of the algorithm caused by non-ideal realization of
the reconstruction.

The decomposition of the general model of the analog conversion causes
the reconstruction to be realized as a chain of algorithms performed in series.
In the case where the chain of the algorithm consists of | elements, the general model
of the error propagation takes the form presented in Fig. 5.1.

el, rec %,rec eI rec

e1,in 1,out

Algorithm
1

Algorithm Algorithm
2 ™ |

Fig. 5.1. General scheme of error propagation in the sampling instrument

As in Fig. 5.1, every algorithm transforms a realization of the input error ej, into
the output and introduces its inside reconstruction error erec. The error at the output of
the last algorithm is the total error of the sampling instrument, and it is a composition
of all errors which propagate from the input to the output of the algorithm chain.
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5.1. General error model of exemplary sampling instrument

5.1.1. Signal processing in exemplary instrument

The further considerations are carried out for the exemplary instrument, for which
the Wiener model is applied suitable for physical properties of the converters used in
the instrument described in Section 3.1. One should emphasize that although
the presented error analysis is focused on the reconstruction using the Wiener model,
the applied methods are of universal character and can be used for whichever model of
the sampling instrument, the input signal of which is reconstructed.

Accordingly with the Wiener model presented in Fig. 2.5, the signal processingin
the exemplary sampling instrument may be presented, from the reconstruction point of
view, in the graphical form, as in Fig. 5.2.

e R e K
9(t) .| Dynamic Fa (t) o Staticic R(k)
conversion " | conversion +
Digitalization
Q(k) Dynamic | _ G (k) staticic | | N, (k) |
- reconstruction reconstruction
1-st couple 2-nd couple
\_ J N J

Fig. 5.2. Scheme of signal processing in the exemplary instrument, k is the number of the reconstructed
sample (number of the measurement window)

According to the physical properties of the Pt100 sensor, the reconstructed temperature

9(t) varying over time is converted to the temperature Jr(t) of the sensor wire causing

changes of its resistance R(t). This resistance is converted to the voltage, which is

sampled at instant k, and the sample is quantized by the AD converter.

The quantization result n, (k) is the estimate of the quantized voltage sample expressed

as a number of quanta hat is assigned to the sample value. On the basis of
the quantization result, the estimate of the temperature sample 3, (k) of the wire is

calculated accordingly with the static reconstruction algorithm. Finally, based on
the results of the static reconstruction, the estimate of the input temperature (k) is
determined using the dynamic reconstruction algorithm.

As result of considerations presented in Chapter 2, the partial analog conversions
and the suitable digital reconstructions can be described as couples. On the basis of
this property, one can state that the error propagation model of the sampling
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instrument can be constructed taking into account only properties of the reconstruction
algorithms, which are performed in series. The result of this is that all input errors of
the instrument and errors arising in the analog conversion as well as during
the digitalization are contained by the quantization result. Thus, these errors can be
modeled as the input errors of the first element of chain of the algorithms, which is
the static algorithm in the case considered. This means that, for the exemplary
instrument and from the error propagation point of view, the scheme from Fig. 5.2 can
be reduced to two elements shown in Fig. 5.3.

eSrec eDrec

Esin Nonlinear 1 Coout Linear 1 Coout

—> static —»(H)—  dynamic
reconstruction reconstruction

Fig. 5.3. General form of the error propagation model in the exemplary instrument

The scheme from Fig. 5.3 is universal in this sense that it can be used for all sampling
instruments, the analog part of which is described by the Wiener model. In the case
where the Hammerstein model is applied, the order of the static and the dynamic
reconstruction is reverse to that in this figure.

The error propagation model from Fig. 5.3 consists of two elements. The first
represents numerical operations performed on the input error esin accordingly with
equations that describe the static reconstruction. Realization of these operations causes
the propagation of the error esin to the algorithm output, which results in the occurrence
of the error esprop. The second element models properties of the dynamic algorithm
performing calculations on the static output error esout, Which is the sum of the error
esprop and esrec that is the error introduced by the static algorithm itself. The output error
epout OF the dynamic algorithm is also the total error etwt in the output of the sampling
instrument. This error is a composition of the errors which propagate throughout
the chain, as well as the errors esrec and eprec arising as effects of non-ideal realizations
of the reconstruction algorithms, static and dynamic, respectively. As it is proved in
this chapter, all composed errors can be described as the sum of uncorrelated and
correlated partial errors.

The input error esin is the composition of the errors introduced to the input of
the instrument, the errors arising during the analog conversion and the errors caused by
digitalization of the analog signal, i.e., connected with sampling of the signal and
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quantization of the obtained samples. All these errors burden the digital data processed
by the algorithms, which means that all errors must be transformed to the input of
the chain of algorithms and expressed in quanta.

5.1.2. Mathematical description of error propagation

Dependently on the algorithm kind, the reconstruction of one input sample needs one
or more quantization results, the number of which is determined by the suitable
measurement window. If the static algorithm is applied, a single quantization result is
used to obtain the reconstruction result. Accordingly with Eq. (3.13), the temperature

estimate 4, (k) that is obtained at the output of the static reconstruction algorithm is

described as the following linear approximation:
8. (k)=a(N)[n, (k)-n, (N)]+b(N) (5.5)

where a(N) and b(N) are coefficients dependent on the working point in the inverse

A

static characteristic, N is the number of the approximation node, 1 (k) is the estimate

of the indication of the ADC and nq(N) is the indication suitable for node N. Based on
the taken error definition (1.23), one can describe the input error as:

€sin = nq (k)_ rA]q (k) (5-6)

where nq(k) denotes the accurate (ideal) quantization result that could be obtained if
q— 0. According to Fig. 5.3, the output error of the static algorithm is the sum of two

€rrors.

€sout :‘9R(k)_9R(k)_e +€

~ “Sprop

(5.7)

Srec

where g, (k) is the instantaneous true value of the temperature of the sensor wire.
Connection of equations (5.5), (5.6) and (5.7) yields:

Csout = ‘9R (k)_ a(N )[nq (k)_ €sin — nq(N )] - b(N ) = eSprop + € (5-8)

After splitting Eq. (5.8) to two parts, one obtains description of the error that
propagate from the input to the output of the static algorithm as:

eSprop (k) = a(N )eSin (k) (59)
and the expression describing the static reconstruction error:

& = % (k)—a(N)[n,(k)-n,(N)] -b(N)=e,, (5.10)
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which is identical to the error espp Of the linear segmental approximation described by
Eqg. (5.5) and used to calculate the estimate 4,(k) of the temperature of the wire. If

the neural network is applied for the static reconstruction, espp is the error connected
with the neural approximation described in Section 3.4.

The inclination a(N) in Eq. (5.9) depends on the value of the quantization result,
but it is possible using one constant coefficient ks to describe the transfer of errors
from the input to the output of the static algorithm. This coefficient is determined as
the mean value of the inclinations of the segments approximating the inverse static
characteristic. For the number Nnoge Of the nodes, the relation between the input and
the output errors may be written as:

1 Npoge
€sout (k) = ksesm (k)’ ks = N— a(N) (5.11)

=1

=z

node

According to Eq. (3.26), the static transfer coefficient can be approximately
calculated as the inclination of the segment linking the endpoints of the inverse static
characteristic:

l9m<1x B IE;min
Ny — Mo

qg,max

k. =

S

(5.12)

n

This approximation is universal in this sense that it can be applied both for
the programmed and the neural static reconstruction. As shown in Chapter 3,
the coefficient (5.12) enables the description of relations between errors accurately
enough.

Introducing Eq. (5.9) into (5.7), we obtain the general error model of the static
algorithm in the form:

Csout (k) = €5rec (k) + ksesm (k) (5.13)

For the exemplary instrument, the distribution of the total static input error esin is
the same in the successive sampling instants. Whereas, the static reconstruction error
depends on the working point in the nonlinear static characteristic, which means that
its values change in the sampling instants for signals varying over time.

Example 5.1. The inverse static characteristic of the exemplary instrument is
approximated by using 4 segments. Based on the values of Tab. 3.4, the transfer
coefficient (5.11) takes the value:

3
ks ==>a(N)= %(6.2767 +6.3243 +6.3694 + 6.4201)-10° = 6.35-10° °C

N=0

Nl
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The second way of determination of this coefficient is based on the data from Tab. 3.4.
According to them, the range of the input temperature is from 9min=0°C to
Imax = 100°C, and the extreme indications are: ngmin = 40918, Ngmax = 56673. For these
values, we have:

100-0

o= =6.35-10"° °C
56673 — 40918

The second algorithm in the chain presented in Fig. 5.3 realizes dynamic
reconstruction. As result of the considerations presented in Section 4.3.2, this
algorithm must be written for the analysis of errors in the non-recurrent form
(4.61).Taking into account that the measurand, for the dynamic algorithm, is the single
sample of sensor resistance Jr(k) and basing on considerations presented in Chapter
1.4, one can present the algorithm in the form of two equations. The first:

30)= A3k +1)] + AL 0] +...+ A3 (k—m)] (5.14)

is the linear combination of constant coefficients Ax+1, Ax, ..., Akm and estimates of
the samples 9, (k +1), 8,(k)...., % (k —m) Which are the results of the static algorithm

realization (see Fig. 5.3). The second equation:
errop(k) = Ak+leDin (k + 1) + AkeDin(k) +.o..t AK—meDin (k - m) (5-15)

describes the same arithmetical operations as in Eq. (5.14) but on realizations of
the input error epin(K), the result of which is the realization of the input error epprop(K).
Eq. (5.15) can be written in matrix form as:

€ oK) = ATep (k) (5.16)

where T is the symbol of the vector transposition, and it is denoted:

_Ak+1— i eDin(k +1)_
A= Af (k)= eDir‘;(k) (5.17)
_Ak—m_ _eDin(k - m)_

Accordingly with Fig. (5.3), the error at the output of the dynamic algorithm is
the sum of the dynamic reconstruction error eprec(k) and the propagated error epprop(K):

oo (K) = (k) + €5, (K) (5.18)
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After introducing Eqg. (5.16) into it, Eq.(5.18) takes the form:

eDout(k) = ATeDin (k)+ €prec (k) (5.19)

As in Fig. (5.3), every output error of the static algorithm is introduced to the input
of the dynamic algorithm; therefore, taking Eg. (5.13) into account, we have:

€pin (k) = Csout (k) = kSeSin + €grec (k) (5.20)

Based on this relation, one can present the vector of the input error described by
expressions (5.17) as:

o (kK+D+eg (k+1) ]

ke, (K)+eg.. (K
eDin(k): ; Sm( ): SrCC( ) :kSeSin(k)+eSrec(k) (521)

_kSeSin (k - m)+ eSrec (k - m)

[ ke

Srec

where it is:
I eSrec (k + 1) ]

€. (K) = es“’i(k) (5.22)

_eSrec (k - m)_

Combining Egs. (5.19) and (5.21), one obtains the general error model that
describes the error propagation from the input to the output for the chain of
the algorithms presented in Fig. 5.3. This model has the matrix form:

€ pour (K) = AT (ke (k) + g (k)] +€prec (K) (5.23)

For the 1-st order dynamic converter, the dynamic reconstruction algorithm is
reduced to 2 beginning terms (see Eqg. 4.71). In this case, the equation (5.23) of
the error propagation takes the scalar form:

eDout (k) = Ak+1 [kSeSin (k + l) + eSrec (k + 1)] + Ak [kSeSin (k) + eSrec (k)] + eDrec (k) (524)

5.1.3. Decomposition of general error model

In general, the following three types of input errors can be distinguished if
the physical properties of errors are taken into account:
e static errors, values of which do not change in the measurement window,
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e dynamic errors that have sinusoidal values for the form of the input signal taken in
this book,

e random — values of these errors are described in the probabilistic categories.
According to the general error model (1.50), the input error can be written as

the sum of partial errors:

€. =€ +€e +€

Sstat,in Sdyn,in Sran,in

(5.25)
where esstat,in, €sdynin and esran,in are static, dynamic and random errors, respectively.
Moreover, every algorithm can introduce its inside errors of the described kinds. This

means that the total reconstruction error of the static algorithmis:

eSrec = eSstatJec + eden,rec + eSran,rec (526)
and, for the dynamic algorithm, we have:
eDrec = eDstat,rec + eDdyn,rec + eDran,rec (527)

Introducing Egs. (5.26), (5.27) and (5.22) in (5.24), one obtains the general error
model in the form:

€ Dout(k ) = AT [ksestat,in (k ) + kSedyn,in (k ) + kseran,in (k ) + eSstat,rec (k ) + eden,rec (k ) + eSran,rec (k )]+ (5 28)
+ eDstat,rec (k ) + eDdyn;ec (k ) + eDran,rec (k)

Describing the output error as the sum of three partial errors of the considered
kinds, we have the following:

€ =€ +€ +€

Ddyngput Dran,out

(5.29)

Dout Dstatout

After introducing Eq. (5.29) in (5.28) and splitting the obtained expression into three
parts, one obtains the equations that describe the propagation of the extracted errors. Itis:
o for the static error:

€ (€)= AT [k (k) + € ()] + i () (5.30)
e for the dynamic error:

Cotpnnn (K) = AT [k () + 5 (K)] + 00y () (5.31)
e and for the random error:

€ (€)= AT [ () + €5 (k)] + () (5.32)

The static algorithm does not introduce dynamic errors as well as the dynamic
algorithm the static errors. Moreover, one can omit the random errors generated by
the static and dynamic algorithms. These errors arise as effects of rounding of numbers
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during arithmetical operations. The reconstruction algorithms considered here, both
the static and the dynamic, are numerically simple, which means that the errors caused
by rounding take values much less than the quantization errors even if 16-bit
representation of numbers is used as in the exemplary sampling instrument. Analysis
of the rounding errors can be carried out using Monte Carlo method [K4].

If errors discussed above are omitted in Egs. (5.30), (5.31) and (5.32), they take
the forms of the following expressions:

eDstatput (k) = AT [kSeSstat,in (k) + eSstat,rec (k )] (5 . 33)
eDdynput (k) = AT kSeden,in (k) + eDdyn,rec (k) (5 ' 34)
eDran,out (k) = AT kSeSran,in (k) (5 35)

The equations (5.33), (5.34) and (5.35) can be written in more clear forms if one
takes into account the sequence of the algorithms in the chain presented in Fig. 5.3.
The first algorithm is static, which means that errors at its input are the input errors of
the chain; thus, the symbol S in their indexes can be omitted. Similar principle can be
used for the errors in the output of the dynamic algorithm, which are the errors in
the output of the chain. This means that all symbols S and D that denote the kind of
the algorithm in the symbols of errors can be omitted. Thus, Egs. (5.33), (5.34) and
(5.35) can be written in the more communicative forms as:

estat,out (k) = AT [kSestat,in (k) + estat,rec (k )] (5 * 36)
edyn,out (k) = kS/A\Tedyn,in (k) + edyn,rec (k) (537)
edran,out (k) = kSATeran,in (k) (538)

The presented above equations describe three kinds of errors that together compose
to the output error eou at the output of the chain of algorithms, which is also the total
error eyt Of the estimate delivered by the sampling instrument. Therefore, Eq. (5.29)
may be written in the form:

etot (k) = eout (k) = estat,out (k) + edynput (k) + eran,out(k) (539)

Egs. (5.36), (5.37), (5.38) and (5.39) describe the partial errors of a single
reconstructed sample at the instant k. These equations create together the model of
error propagation in the chain of the reconstruction algorithms used in the exemplary
sampling instrument accordingly with the Wiener model. This error model, shown in
the graphical form in Fig. 5.4, has the decomposed form, which enables separate
analysis of the propagation of different kinds of error and linking the obtained partial
errors to determine descriptions of all kinds of errors at every stage of the propagation.
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Fig. 5.4. Decomposed general model of error propagation in the exemplary sampling instrument

To compare the results of the error analysis that is carried out using the general error
model, it is necessary to take two basic assumptions. The first is related to the fact that
many of the errors depend on changes in the input signal. For the further
considerations, it is taken that the input signal changes sinusoidal in the suitable
temperature range with the frequency dependent on properties of the analysed errors.
The second assumption is connected with using probabilistic descriptions of all
analysed errors in the form of probability density functions that are mainly described
by histograms. The histograms are obtained as the effect of realization of probabilistic
experiments by using Monte Carlo method with assumption that the measurement
window is selected randomly in the signal period with rectangular distribution. On
the basis of obtained histograms, the probabilistic parameters of errors are determined,
mainly standard deviations and uncertainties, which are applied in comparison of
the analyzed errors.

The analysis is carried out in the same way for both kinds of reconstruction
algorithms: analytical and neural, because the differences between errors specific for
these algorithms are of minor importance. In these cases, for which these differences
are important, the errors are analysed using suitable examples.
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5.2. Propagation of static errors

5.2.1. Propagation of input static errors by reconstruction chain

From the definition, the static error does not change its values in the measurement
window, which means that estatin(k+1) = €statin(K) = ... = estat,in(k-m). Taking this into
account, one may write the static propagation equation (5.36) in the form:

estat,out(k) = kS (A<+1 + A( +...t+ A<—m )estat,in (k) + ATestat,rec (k) (540)

Accordingly with Eq. (4.65), the sum of the coefficients of the dynamic algorithm is
equal to 1; thus, Eq. (5.40) takes the following form:

estat,out (k) = kSestat,in (k) + ATestat,rec (k) (541)

The propagation of the static reconstruction error esatrec IS described in Section
5.2.2. After omitting this error in Eq. (5.41), one obtains the expression:

estat,out (k ) = kS estat,in (k ) (5 42)

which means that every realization of the output static error is calculated by
multiplying the input error value by the constant coefficient ks defined in Example 5.1.
The graphical description of the propagation of the static errors from the input to
the output of the reconstruction chain is presented in Fig. 5.5.

estat,in (k) estat'out (k)
—> K, —> 1 —
Static Dynamic
reconstruction reconstruction

Fig. 5.5. Propagation of the input static errors by the reconstruction chain

The basic input static errors are connected with the thermal and temperature drift of
the characteristic of the static conversion [J14,V1]. These factors influence on the shift
and the inclination of the characteristic, which means that the total input static error
can be described as the sum of these two partial errors:

estat,in (k) = esh,in (k) + einc,in (k) (543)

where eshin is the input error caused by the shift of the characteristic, while €inc,in by
changes in the characteristic inclination.
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Accordingly with Egs. (5.42) and (5.43), the static output error is in this case
the sum of partial errors described as:

estat,out (k) = kSesh,in (k) + kSeinc,in (k) = esh,out (k) + einc,out (k) (544)

The following experiment is aimed at determination of histograms both of
the considered partial errors and their total error in the output of the reconstruction
chain.

Experiment 5.1. Let us take that the shift error esn,in Of the static characteristic, which
arises in the exemplary instrument is described as random in the range from -2 to 2
with the rectangular distribution.The inclination error is expressed as: €incin = Ng &inc,
wherein nq IS the quantization result and the inclination coefficient &inc changes
accordingly with the rectangular distribution in the range from -5-10° to 5107
The input signal of the instrument changes sinusoidal in the input range from 0 to
100°C, that is, it is described as: x(t) = 50sinwt+50°C, w = 2'7'f, f is frequency and it is
taken that f = 0.01 Hz. This signal is converted by the sensor Pt100 to the resistance R
in accordance with Eg. (3.5) and; next, to the voltage. To avoid the influence of
the quantization error on the analyzed errors, it is assumed that the quantization is
ideal, which means that it is performed with the quantum value g — 0. This

assumption causes that Eq. (3.20) describing the quantization result takes the form:

n, = 409.176R (5.45)

At every step, after random determination of the sampling instant in the signal
period T = 1/f accordingly with the rectangular distribution, the voltage value is
calculated in three cases, i.e., for the voltage burdened by:

o the input shift error esh,in,
e the input inclination error €incin,
¢ Dboth the input shift error and the inclination error.

The obtained values of the errors are multiplied by the coefficient ks accordingly
with the propagation model from Fig. 5.5 and the output values of these errors are
located in the suitable sets. The histograms of the partial errors are presented in
Figs. 5.6a and 5.6b, whereas the error that is composition of them in Fig. 5.7. For
every set of the error, the suitable standard deviation is calculated.
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Fig. 5.6. Histograms of the static errors in the output of the reconstruction chain: a) the shift error, its
standard deviation is osou=7.3:10°°C, b) the inclination error, the standard deviation
Oinc,out = 9 10%°C
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Fig. 5.7. Histogram of the output error composed of the shift error and the inclination error,
the distributions of which are presented in Fig. 5.6 as histograms, the standard deviation
Ostat,out — 11.610°°C

For the total error is described as a sum of partial errors, it is necessary, from the error
propagation point of view, to determine the correlation coefficients describing
codependences between the partial errors. In Experiment 5.1, the standard deviations
of the drift errors are calculated, which are: ashout = 7.3°10°%°C, ginc,out = 9-1073°C for the
partial errors, and ostatout = 11.6:10°3°C for the error composed of them. On
the bases of these values and accordingly with Eq. (3.24), we obtain the following
correlation coefficient of the partial drift errors:

Gsztat,out - Gszh,out - Giznc,out _ 1162 - 732 - 92
2-7.3-9

C

cordr — 1073 =0.002=0 (546)
20,

sh,outa

incout

which means that they are not correlated. Therefore, their standard deviations can be
composed with others accordingly with Eq. (1.52).
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5.2.2. Propagation of static reconstruction errors by dynamic algorithm

The static reconstruction error arises as the effect of both the approximation of the real
static characteristic and the identification of the parameters of the inverse model. Thus,
this error can be described as the sum of the error esapp connected with the linear or
neural approximation of the inverse static characteristic and the identification error
esid. It is:

estat,rcc (k) = eSapp (k) + eSid (k) (547)

The approximation errors depend on the working point in the static characteristic,
which means that, for the sinusoidal input signals, values of these errors change in
time. Processing such errors by the dynamic reconstruction algorithm causes
the output error depends both on the frequency and the amplitude of the signal. On
the basis of Egs. (5.41) and (5.47), the propagation of the static approximation error by
the dynamic algorithm can be described as:

estat,out (k) = ATestat,rec (k) = AT [eSapp (k) + eSid (k )] = eSapp,out (k) + eSid,out (k) (548)

For the 1-st order dynamic reconstruction algorithm, the partial output errors in
Eq. (5.48) take the following forms:

eSapp,out (k) = ATeSapp (k) = +1eSapp (k + 1) + A(eSapp (k) (549)
Csidout (k) = ATeSid (k) = AcaBsia (k + 1) + Akg, (k) (5.50)

The succeeding experiments are intended to show the relation between the input
and the output errors described by Egs. (5.49) and (5.50) for the programmed and
neural realization of the static reconstruction in the case if the dynamic reconstruction
is performed by using the exemplary the 1-st order algorithm.

Experiment 5.2. This experiment aims to determine the histograms of the input and
output errors connected with linearization for the sinusoidal input signal with
the amplitude X = 50°C and the frequency f = 0.01 Hz, which is sampled with period
Ts = 0.2 s. The propagation of the linearization error esapp to the output of the dynamic
algorithm is described by Eq. (5.49). The experiment is carried out in the same way
and with the same assumptions as taken in Experiment 5.1 with this difference that
the ideal indications are processed by the static reconstruction algorithm (3.13) and;
next, by the of the 1-st order dynamic algorithm (4.51).The value of the error esapp In
the input of the dynamic algorithm is calculated as the difference between the true
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value 9, (k) of the sensor resistance (see Fig. 5.2), while the output error on the basis of
Eq. (5.49). The obtained histograms are presented in Figs. 5.8a and 5.8b, respectively.
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Fig. 5.8. Histograms of the linear approximation error ess;p, obtained for the sinusoidal signal under
the measurement conditions described in Experiment 5.2: a) at the input of the of the 1-st
order dynamic algorithm, osapp = 8.2:10°%°C, b) at its output, osapp,out = 14:10°%°C

As it results from Fig. 5.8, propagation of the approximation error by the dynamic

algorithm changes the distribution of this error, which can be expressed as the error
propagation coefficient. It is generally defined as the ratio of the standard deviations:

o
p = 2o (5.51)
(o)

K
Din

where opout IS determined for the same error at the output of the dynamic algorithm and
opin at the algorithm input. For the approximation error esapp that propagatesby the 1-st
order dynamic algorithm, this coefficient takes the value:

Oppon 14107

k _ Sapp,out

pswr - 82-10°

JSapp

=171 (5.52)

obtained on the basis of histograms presented in Fig. 5.8.

Experiment 5.3. This experiment aims to show properties of the error caused by
neural approximation of the static inverse characteristic if this error propagates
throughout the dynamic algorithm. The way of carrying out the experiment is the same
as described in Example 5.2. The parameters of the exemplary neural network as in
Fig. 3.25 used for the static reconstruction are taken from Fig. 3.24.
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Fig. 5.9. Histograms of the neural approximation error ess;p, obtained for the sinusoidal signal under
the measurement condition described in Experiment 5.3: a) at the input of the 1-st
order exemplary dynamic algorithm, osspp=2.01'10%°C, b) at the algorithm output,
sappout = 2.10°103°C

On the basis of Fig. 5.9, the value of the coefficient (5.52) that describes propagation
of the neural static approximation error by the 1-st order dynamic algorithm is:

_ O-Sapp,out _ 2101073
o 2.01-10°

Sapp

k =1.04 (5.53)

The second source error of the static algorithmis connected with inaccurate
identification of the parameters of the static characteristic approximation.
The histograms of the identification error at the output and at the input of the dynamic
algorithm are determined using Experiments 5.4 and 5.5 for the analytical and neural
realizations of the static reconstruction algorithms, respectively.

Experiment 5.4. The calculations are carried out in the same way as Experiment 5.2;
however, the error is defined in this case as the difference between two errors
connected with the linear approximation. The values of the error are calculated for
the parameters contained in Tab. 3.4, which are determined on the basis on the known
static characteristic (3.5). The second error is calculated for the identified parameters
presented in Tab. 3.9. The obtained histograms are presented in Figs. 5.10a and b,
respectively.
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Fig. 5.10. Histograms of the static identification error esig obtained for the sinusoidal signal if the static
reconstruction is performed by the exemplary analytical algorithm: a) at the input of the 1-st
order dynamic algorithm, asis = 11.5:10°%°C, b) at its output, osig.eut = 27-10°°C

The propagation coefficient (5.51) for the errors presented in Fig. 5.10 takes the value:

kD'id — O-Sid,out — 1 =235 (554)
oqy 115

Experiment 5.5. It is aimed at obtaining the histograms of the errors that are
connected with identification of the exemplary neural network at the input and
the output of the dynamic algorithm. The parameters of the network are presented in
Fig. 3.29. This experiment is carried out in the same way as the Experiment 5.4, and
the obtained histograms are presented in Fig. 5.11.
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Fig. 5.11. Histograms of the static identification error esiq obtained for the sinusoidal signal if the static
reconstruction is performed by the exemplary neural network, a) at the input of the exemplary
1-st order dynamic algorithm, osiq = 4.64:107°C, b) at its output, osig.out = 4.71:1073°C
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The propagation coefficient calculated for the error characterized by Fig. 5.11 takes
the value:

_ Osigout 4.71-10°°

Kpsia = = =1.02 5.95
M oy 4.64:107° (5:55)

As it results from Egs. (4.52), (4.53), (4,54) and (4.55), the values of the propagation
coefficient (5.51) are greater for the linear approximation error than for the neural
approximation error. Moreover, the values of these errors are substantially greater for
the linear approximation than for the neural one. To evaluate these differences in
the output of the 1-st order exemplary dynamic algorithm, the following experiment is
carried out.

Experiment 5.6. This experiment is aimed at obtaining histograms of the static
reconstruction error after its propagation by the exemplary 1-st order dynamic
reconstruction algorithm. The analytical static reconstruction is performed using
the approximation parameters of Tab. 3.4, while the neural reconstruction on the basis
of parameters from Fig. 3.29. This experiment is carried out in the same way as
Experiments 5.2, and the obtained histograms are presented in Fig. 5.12.
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Fig. 5.12. Histograms of the output static reconstruction error esecou that is composed of
the approximation and the identification errors after propagation by the exemplary 1-st
order dynamic algorithm obtained for: a) the exemplary analytical static reconstruction,
Osrec.out = 30.7°1073°C, b) the exemplary neural reconstruction, osrecout = 3.84:10°%°C

The standard deviations calculated for the errors from Figs. 5.9, 5.10, 511, 5.12 and
5.12 enable determination of the correlation coefficients between the approximation

and identification errors. For the analytical static reconstruction, one obtains
the following:
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2 2 2 2 2 2
_ Osrec,out — Osapp,out — Fsid,out 30.7° -14.1° - 27

Ceorsrec = = —0.02 (556)
' 20-Sa\pp,outasid,out 2 141 29
and for the neural form of the static algorithm, we have:
2 2 2
Coorsrec = 381 ~21 ~471 =-0.69 (557)
' 2:2.1-4.71

The calculated values of the correlation coefficient mean that the approximation
and identification errors at the output of the exemplary dynamic algorithm may be
correlated. This fact and the different amplification of these errors during
the propagation by the dynamic algorithm (see Egs. 5.52, 5.53, 5.54 and 5.55) cause
that, in the process of composition of standard deviations at the output of the sampling
instrument, the reconstruction error should be considered instead of the partial,
(i.e. approximation and identification) errors.

The coefficient describing propagation of the static reconstruction error by
the dynamic algorithm depends on both the signal frequency and its amplitude as well
on the parameters of the static, linear and neural, approximations. For the exemplary
instrument, the most essential is the dependence of this coefficient on the frequency,
which is presented below in Tabs. 5.1 and 5.2.

Table 5.1

Dependence of the propagation coefficient (5.51) of the static reconstruction error
on the signal frequency f for the analytical form of the static algorithm, the standard
deviation of the error is osrec = 12.4:1073°C

f Hz 0.001 0.005 0.01 0.05

O'Srec,out'lo-goc 152 234 307 719

Kp,srec 1.23 1.89 2.48 5.80
Table 5.2

Dependence of the propagation coefficient (5.51) of the static reconstruction error
on the signal frequency f for the neural form of the static algorithm, the standard
deviation of the error is osrec = 3.7:10°°C

f Hz 0.001 0.005 0.01 0.05
O'Srec,out'lo_soc 3.72 3.73 3.84 5.83
Kp.srec 1.005 1.008 1.038 1.576

As it results from Tabs. 5.1 and 5.2, the static reconstruction error is amplified by
the dynamic algorithm in dependence of the frequency of the input signal, however,
the propagation coefficient takes significantly greater values for the analytical form of
the static algorithm. Making the suitable experiments one can prove that



189

the propagation coefficient depends on the amplitude of the signal. These properties
cause that the propagation of the static reconstruction error by the dynamic algorithm
should be analyzed dependently on the mentioned measurement conditions and
represented separately in the error model.

5.2.3. Probabilistic description of static error propagation

As it results from the presented considerations, the most effective way of the error
analysis consists in comparing standard deviations as basing parameters of the error
distributions, which allows identifying the dominant sources of errors. Standard
deviations of partial non-correlated errors can be composed in any point of the error
propagation model on the principle of summing up the variances accordingly with
Eq. (1.52). To do this, it is necessary to describe the relations between the standard
deviations at the output and the input of the reconstruction chain.

It results from Fig. 5.5 that every sampling instant realization of the input static
errors differs from the realization of the output error by the constant coefficient ks that
describes properties of the static reconstruction algorithm. This means that
the propagation of standard deviations of every static error may be described as in
Fig. 5.13.

O-stat, in O-stat,out
K, —> 1
Static Dynamic
reconstruction reconstruction

Fig. 5.13. Propagation of the standard deviation of the static error from the input to the output of the
reconstruction chain

From the considerations presented in the previous chapter, it results that the static
reconstruction errors propagate by the dynamic algorithm dependently on
the amplitude and frequency of the input signal. This dependence is described together
for the approximation and identification error by the propagation coefficient Ko srec,
the values of which are presented in Tabs. 5.1 and 5.2. Taking this into account,
the propagation of the standard deviation of the static reconstruction error to the output
of the reconstruction chain may be graphically presented as shown in Fig. 5.14.
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Fig. 5.14. Propagation of the standard deviation of static reconstruction error osec to the output of
the reconstruction chain, X is the amplitude, and f the frequency of the input signal

According to Eq. (5.44), realizations of the output static errors are summing up in
the output reconstruction chain, which means that we have the dependency:

estat,out (k) = esh,out (k) + einc,out (k) + eSrec,out (k) (5 ' 58)

where eshout and eincout are the errors caused by the drift of the static characteristic,
esrecout IS the error composed of the static approximation error and the error connected
with inaccurate identification of the static characteristic. All these errors are not
correlated, which results from Eqgs. (5.46), (5.56) and (5.57). This means that
the relation between standard deviations of the errors from Eq. (5.58) may be written as:

_ 2 2 2
Ustat,out - \/O_sh,out + Ginc,out + O-Srec,out (559)

Eqg. (5.59) can be used for analysis of the influence of the partial errors on
the standard deviation ostatout OF the total static error. Based on values of the standard
deviations given in Figs. 5.6, 5.8b and 5.12a, the value of the standard deviation of
the total static error at the output of the exemplary instrument is calculated in
accordance with Eq. (5.59). We have:

O o = /(7,32 +9% +332)-10° =35.107° °C (5.60)

As it results from Eq. (5.60), the reconstruction error dominates, which means that
decreasing of this error leads to decreasing the total static error.

5.3. Propagation of dynamic errors

In the decomposed model of propagation of the errors shown in Fig. 5.4,
the propagation of dynamic errors from the input to the output of the sampling
instrument is described the time domain by Eq. (5.34) that may be written as:

edyn,out (k) = kS [Ak+ledyn,in (k + 1) + Akedyn,in (k) t...t Ak—m edyn,in (k - m)] + edyn,rec (k) (561)
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where k is the current number of the measurement window, as well as it denotes
the time instant for which the specified error value is determined. The constant
coefficient ks describes the propagation of errors by the static algorithm, Ak+1,..., Akm
are coefficients of the dynamic reconstruction algorithm in the form of
the sequence (4.62), €dyn,in(k+1),..., €daynin(k-m) are realizations of the dynamic input
error in the window, eayn rec(K) is the value of the dynamic reconstruction error.

The 1-st order algorithm in the form of the sequence (4.62) consists of two terms.
In this case, the expression (5.61) takes the following form:

edyn,out(k) = kS [Ak +1edyn,in (k + 1) + Akedyn,in (k )] + edyn,rec (k) (5 62)

Equations (5.61) and (5.62) are mainly useful in simulative experiments, in which
the arithmetical operations are performed on realizations of dynamic errors or in
the error analysis that is carried out on error values changing over time.

As it is considered in Section 4.3.3, the effective error analyze for changing over
time signals is performed if the input signal of the instrument is described as
sinusoidal. Such an approach enables analytical description of errors in the frequency
domain as spectrum forms, the effect of which is obtaining amplitudes of the analysed
error that may be transformed to the probabilistic forms.

From Eq. (4.74), it results the relation between spectral forms of the errors at
the input and the output of the dynamic reconstruction algorithm is to be represented
by the algorithm transmittance that has the general form:

Aljo)= E—(Ja’) =A T +A+A T+ +A ™+ (5.63)
Ep.(i@)
where Ep,in(jw), Epout(jw) are the spectral forms of errors in the input and output of
the algorithm, respectively, Ax+1, Ax, ..., Akm are constant coefficients, Ts is
the sampling period. Based on this equation, the error propagation model (5.61) can be
expressed in the frequency domain as:

Edyn,out (J a)) = kS A(J a))Edyn,in (.] 0)) + EDrec (.] a)) (564)

where Eprec(jo) is the spectral form of the error introduced by the dynamic
reconstruction algorithm. Graphical equivalent of Eq. (5.64) is shown in Fig. 5.15.
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EDrec (J 0))
E,  (jo) Eynou (J @)
dyn,in ks A(J a)) dyn,out
Static Dynamic
reconstruction reconstruction

Fig. 5.15. Propagation scheme of dynamic errors

5.3.1. Propagation of input disturbances

The analysis presented in the next example is devoted to the influence of the input
electromagnetic disturbance on the inaccuracy of the sampling instrument. The base of
this analysis is Eq. (5.62), with the assumption that the dynamic reconstruction error
Ebrec IS Omitted.

Example 5.2. The frequency of the industrial electromagnetic disturbance, generated
as the voltage directly (bypassing the sensor) in the input circuit of the amplifier
implemented in the exemplary instrument shown in Fig. 3.2, is f=50 Hz and
the amplitude of the disturbing voltage is Edgis = 0.1 V. The common mode rejection
ratio CMRR [J14, M2, T1] of the amplifier is equal to 100 dB, which means that this
voltage amplitude in the amplifier output is equal ka"0.1/10° = 32 uV, where ka = 32 is
the amplification coefficient. This voltage at the ADC input corresponds to about 1
(1 quantum) at its output. The sampling period is Ts=0.2s, which means that
the disturbance voltage is sampled once per 10 periods of the disturbances (for
T = 1/f = 1/50 = 20 ms, the relative sampling frequency is Ts¢/T =0.2/0.02 = 10). In this
case, i.e., if Ts/T is a positive integer, two succeeding ADC results are burdened by
the error with the same value eqgis that changes from 0 to 1 dependently on the phase
shift of the first sample in the window in relation to the disturbance signal. If
the exemplary 1-st order dynamic algorithm is applied, according to Eq.(5.62),
the error at the algorithm output is described as:

1
1-¢

€disout (k) =Ksg [Ak+ledis,in (k +1)+ A Lyisin (k)] = ks|: €ais — 120(p edisj| =kseys  (5.65)

The output error is expressed as the number of quanta. For its maximum value, this
number is equal to 1; thus, it is:

e =kE, =6.35-10°-1=6.35-10"°°C (5.66)

dis,out max

where the value of the static propagation coefficient ks is calculated in Example 5.1.
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A more sophisticated case occurs if T/T is not an integer, which causes the values
edis,in(k+1) and egis,in(K) of the disturbance error to be different. The worst situation is if
we have: edis,in(K+1) = edis and eqis,in(K) = —€dis . After introducing this values to the first
expression in Eqg. (5.63), we obtain the output error in the following form:

1 1+
€isout (k) = ksL_ 0 €ais — 1£0¢ (_ edis):| = ks 1_¢edis (5-67)

If eqis takes the value equal to the error amplitude, one obtains the maximum value of
the output error, which is:

1+¢ E _635.10° 1+0.9048

dis '1: 0127 OC (568)
1-¢ 1-0.9048

ey =k
‘ disout Tax S

This value is relatively big, which means that it is necessary to take actions to reduce
this error, for example by changing the sampling period.

5.3.2. Description of dynamic error propagation in frequency domain

The basic dynamic errors in the sampling instrument arise during analog conversion in
elements described by differential equations. For sinusoidal signals, these elements are
expressed in the frequency domain as transmittances, as it is shown in Fig. 5.16.

The dynamic input error occurs if the inverse dynamic model that is the basis of
the dynamic reconstruction algorithm does not contain the dynamic properties of any
element that is a component of the analog conversion. In such a case, the input error
Eaynin(Jow) should contain a description of all dynamic errors that arise during
the analog conversion of the instrument input signal. To obtain this description, one
should use the model another than this presented in Fig. 5.15. With assumption that
the static reconstruction is not taken into account, the chain of the dynamic
reconstruction that contains the additive source of the dynamic input error can be
described in the frequency domain as presented in Fig. 5.16.

X. XA.
WD sio) 1] sulio) = AGe) |07

Fig. 5.16. Structure of the reconstruction chain composed of dynamic components described
by transmittances: S(jw) is the transmittance of the component, the dynamic error of
which is corrected by the reconstruction algorithm with the transmittance A(jw), Sadd(jo)
is the transmittance of the component not contained by the reconstruction algorithm



194

The spectral transform of the output signal X(Jw) of the chain from Fig. 5.16 is
described as:

X(jo)= X(jo)S(jo)s,,(jo)Ajjm) (5.69)

where X(jw) is the transform of the input signal. Accordingly with the definition
(4.85), the dynamic error in the output of the chain from Fig. 5.16 takes the form:

Eynaui®)=X(jo) = X (jo)= X (jo)L - S(jo)S i (jo)Ajo)] (5.70)

With the assumption that only the dynamic error of the component S(jw) is
corrected by the reconstruction algorithm with transmittance A(jw), Eq. (5.70) may be
transformed in the following way:

Edyn out(j a)) (J a))[l S (J a)) add (J a))A(J a’) + S (J a)) = S (J a))]:
= X(J a))[l Sadd (J a))"' Sad (J a))(l S(J a’)A(J a)))]: (5.71)
=X (J a))[ Cadd (J a))+ Sadd (ja))(l S( )A Ja’))]

As it results from this expression, the additional element Sai(jew) introduces the error
that is described as:

E (J a)) =X (J a))[l — S (J a))] (5.72)

Based on the same definition (4.85) as used in Eq. (5.66), the dynamic
reconstruction error is expressed as:

Epe.(jo) = X (jo)L-S(je)Ajo)] (5.73)
Introducing this expression into Eq. (5.71),we have:
Edyn,out (J a)): Eadd (J 0))+ Sadd (J a))EDrec (J 60) (574)

which means that the output dynamic error is the sum of the additional dynamic error
Ead and the dynamic reconstruction error after its propagation by the additional
component Saqq. If the additional component does not introduce the dynamic error, its
transmittance is equal to 1. In this case, accordingly with Eq. (5.74), the output dynamic
error reduces to the dynamic reconstruction error Eprec.

Eqg. (5.74) enables determination of the dynamic output error in the analytical
spectral form, and, using the inverse Fourier transform, as the suitable time waveform.

To simplify further considerations, we define the transmittance of the source of
the dynamic error Egyn(jw) as:

ESy.(jo)= Eqn () (5.75)
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where X(jw) is the spectral transform of the input signal. Introducing Eq. (5.74) to
(5.75), we have:

ES _ Edyn,OUt (J 60) _ Eadd (J w) + Sadd (J w) EDrec (J a)) _
e X(je) X(jo) (5.76)

= ESadd (J C()) + Sadd (J a)) ESDrec (J CO)

The transmittance of the output error source can be expressed using
the transmittances of the elements of the reconstruction chain. Based on Egs. (5.72)
and (5.73), Eq. (5.76) may be written as:

ES :X(jw)[l—sadd(jw)hS(add<;w)[1—8(iw)/*(ia’>] =1-5,,(i0)S(jo)A(jo) (5.77)
dyn.out X _]a) e

To obtain the transmittance of the output error source according to Eq. (5.76), it is
necessary to determine the transmittance of the reconstruction chain from Fig. 5.22.
This transmittance is the product of three transmittances, which is expressed as
follows:

Srec = Sadd (J a))S (J a))A(J w) (5-78)

The module of the source transmittance is described as the following product of the
modules :

S

rec

=[S.(jo)|S(i)]Aljo) (5.79)

and its phase is the sum:
(Drec = (Dadd + (08 + gDA (580)

The transmittance (5.78) can be written as:
Srec (j a)) =

where the module of it is described by Eqg. (5.79) and the phase by Eq. (5.80). Taking
these expressions into account, the transmittance of the output error source (5.77) takes
the form:

S..(jo)e (5.81)

Eden,out ==1_|Srec (J a)Xej(/)rec =1_|Srec (J a)] Cosq)rec - j|Srec (J O)XSin ¢rec (582)
The module of the transmittance (5.82) is expressed as:

- \/Re {ES dyn,ut (-] a))}z + Im {ES dyn,out (J a))}z =

Se(jw)cosg,. | +{S..(jo)sing,. |

‘ ES dynout

_ i

(5.83)
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and its phase as:

Im{EdenDUt (J a))} — _arctan |Srec (J a)l sin Drec (584)
Re {Esdyn,out (J a))} 1- |S rec (J a’] COS e

As it results from Egs. (5.62) and (5.63), the transmittance of the 1-st order
reconstruction algorithm is described as the sequence reduced to two terms; thus, we
have in this case:

P = arctan

Aljo)= A" + A (5.85)

The coefficients of this equationare calculated according to Eq. (4.72) as:
1 —
A,=— A=—2 (5.86)

where the value of ¢ is determined on the basis of parameters of the analog converter
and the reconstructed signal, as it shown in example 5.3.

Introducing expressions (5.86) into Eg. (5.85), we obtain the following expression:

. i . coswl — S
A(Jw)=ie‘“’“ —L=L(c05aﬂS +jsin T, )— -2 =222 7¢ | 5N ol (5.87)
l1-¢ l1-9 1-¢ 1-¢ 1-¢ 1-¢

from which we have that the real part of the transmittance is:

Re{A(jo)}= Cosl“’ﬂ (5.89)
—Q
and its imaginary part:
Im{A(jo)) = ST o, (5.89)
4

The module of the algorithm transmittance is expressed as:

o) =R o Ao = 5T e,

o A
~ \/cosz wT, —2pcoswT, +@* +sin wl, J1-2¢pcosaT, + ¢’
L-p) 1-¢
while its phase as:
sin @T
@, =arctan Im{A(J_a))} _arctan— =2 _arctan " 2T (5.91)
e{A(J a))} coswl, — coS a)Ts -
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Example 5.3. The dynamic properties of the Pt100 sensor placed in a jacked are
described by the series connection of two 1-st order converters with the time constant
71 = 20 s of the first converter and 7> = 2 s of the second. The dynamic error of the first
converter dominates; therefore, it has to be corrected using the dynamic reconstruction
algorithm, while the correction of the error introduced by the second converter is not
necessary if this error is negligible. To resolve this issue, the transmittance of
the reconstruction error source should be determined.

Let us take the reconstructed temperature signal to change sinusoidal in the input
range of 0 to 100°C, which means that it is described as: x(t) = 50sinwt+50°C,
w =2wf, fis the frequency and f=0.002 Hz. The signal is sampled with the period
Ts=2s. For these parameters, the coefficient ¢ in the expressions (5.82) takes
the value (see Example 4.4):

T 2

p=e " =e 2 =0.9048
Moreover, it is:

T, = 2nfT. = 277-0.002-2 = 0.02513, sin T, = 0.02513, cos T, = 0.99968,
wr, =2nfr, = 2n-0.002- 20 = 0.2513, wr, = 2afr, = 2n-0.002-2 = 0.02513

On the basis of these values, one can calculate the transmittances of
the reconstruction chain. The module of the transmittance of the reconstruction
algorithm has the following value:

1-2pcoswT. + @? _9. ) 2
|A(jw)|=\/ poosaT, +¢* _ 1-2.0.9048-0.99968 +0.9048 10315 (5.92)
1-¢ 1-0.9048

and the phase is:

SNt rctan— 992913 _ o tan 0.26486 = 0.2589 (5.93)

coswl, —¢@ 0.99968 — 0.9048

@, = arctan

The module of the transmittance of the 1-st order converter is described by
Eqg. (4.21). According to this equation, the module of the first dynamic converter,
contained by the reconstruction algorithm, is:

1

1
S(jw) = - — 0.96985 (5.94)
sli) i+ (wr,)  N1+0.2513

and its phase:

@s =—arctan wr, =—arctan 0.2513 = —0.2462 (5.95)
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The module of the second additive converter takes the value:

1 1
S, o) = = =0.99968 (5.96)
(i) V+(or,  1+0.02513
and its phase is:
@44 =—arctan oz, =—arctan 0.02513 =-0.02513 (5.97)

According to the values obtained using Egs. (5.92), (5.94) and (5.96), the product
(5.78) of the considered modules has the value:

1S e (i) =|A(j)|S(j)|S e (i) =1.0315-0.96985-0.99968 = 0.99966  (5.98)

The phase shift obtained as the sum of values calculated using expressions (5.93),
(5.95) and (5.97) is:

Do = Pp + Ps + Py = 0.2589-0.2462-0.02513=-0.01243  (5.99)

For the calculated values of module (5.98) and the phase (5.99), the module of
the output error source (5.82) takes the value:

= \/{1_ |Srec (J 0)1 Cos ¢rec }2 + ﬂsrec (J C()lSin ¢rec }2 =
= /[(1-0.99966 - cos(—0.01243)[? + [0.99966 - sin( —0.01243) = 0.0124

‘Esdynput

(5.100)

Based on Eq. (5.74), one can describe the dynamic error connected to the output
error source as:

Edyn,out(j a)) = X(J a))Eden (.] (!)) (5101)
The amplitude of this error is equal to its module that, according to Eq. (5.101),
IS expressed as:

‘Edyn,out(j 0)1 = |X (J a)mEden(J COX (5102)

The amplitude of the input signal is: [X (jw) =50 °C; therefore, the amplitude (5.102)
of the output dynamic error takes the following value:

Egynont = |Eaynou(i@)] =X (io)|ESq,q(jo) = 50-0.0124 = 0.620°C (5.103)

The assumption that the additive converter Saia does not exist in the analog

conversion chain is equivalent to the description of its properties as ideal, which means

that its transmittance Sadd(jo) = 1 and the phase paqd = 0. For these values, the module
(5.98) is:

S

(jo) =|A(j®)|S(j@)S,.(jw) =1.0315-0.96985-1=1.0001  (5.104)

rec
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and the phase:
Do = Pp + 05 + 0,5y = 0.2589—0.2462 +0 = 0.0127 (5.105)

In this case, the amplitude (5.100) of the dynamic output error is of the following
value:

= \/{1_ |Srec (J a)l Cos (orec }2 + ﬂsrec (Ja)l Sin q)rec }2 =
= J(1-1.0001- c0s0.0127)? +(L.0001-sin 0.0127)° = 0.0127

‘Esdyn,out

(5.106)

This means that the amplitude of the error Eayn,out = 50°0.0127 = 0.635°C is comparable
to the value (5.103) that is calculated for the case if all dynamic elements are taken
into account in the signal reconstruction.

5.3.3. Analytical and probabilistic description of dynamic reconstruction error

The dynamic reconstruction error is described analytically in the same way as
presented in the previous chapter, i.e., with using the transmittance of error source.
The starting point of determination of this transmittance is the description of
the reconstruction chain in the frequency domain presented graphically in Fig. 5.17.

WAL sy | Ao =

Fig. 5.17. Structure of the reconstruction chain made up of the transmittance S(jw) of the converter,
the dynamic error of which is corrected by the reconstruction algorithm with the
transmittance A(jw)

According to Fig. 5.17, the transform of the output signal is as follows:

X(jo)=X(jw)s(jo)Ajo) (5.107)

where X(jw) is the transform of the input signal. Based on the definition (4.85),
the error in the output of the chain, that is, the dynamic reconstruction error in this case
takes the form:

Epee(j@)= X (jo) - X (jo) = X (jo L - S(jo)A(jo)] (5.108)
From Egs. (5.75) and (5.108), we find that the source of the dynamic reconstruction

error is described as:

es. (jo)=Eo=U?) 1 s(imaGm)=1-5,.(jo) (5.100)

X (i)
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According to this equation, the amplitude of the dynamic reconstruction error is of
the form:

E e = |[Eayure (@) =X (j0)[ES,y, (j0) (5.110)

where:
ESy] =[5 (@)cosp, | +{s.(jw)sing,. (5.111)

and it is:
S| =S(iw)Ajo), o¢.=0+0, (5.112)

Example 5.4. The dynamic properties of the sensor are described by the 1-st order
converter with the time constant z = 2 s. The reconstructed temperature signal change
sinusoidal in the input range from 0 to 100°C, which means that it is described as:
X(t) = 50sinwt+50°C, w =2'nf, f is the frequency and f=0.01 Hz. The signal is
sampled with the period Ts = 0.2 s.

For these parameters, the coefficient ¢ of the exemplary algorithm of 1-st order has
the value (see Example 4.4). ¢=0.9048. Furthermore, we have:
wt=2nfr=270.01'2=0.1257, oTs =2 af Ts=270.01-0.2 = 0.01257.

According to the taken assumptions and Eq. (5.19), the module of the transmittance
of the reconstruction algorithm has the value:

1-2¢cos T, _9. . 2
Aljo) = J1-2pcosal, +¢* _ 1-2.0.9048-0.99992 + 0.9048 1008 (5.013)

1-¢ 1-0.9048
and its phase is:
@, = arctan _snol, = arctan 0.01257 =arctan 0.1321=0.1314 (5.114)
cos T, — @ 0.99992 - 0.9048

Based on Eq. (4.21), we have the following value of the transmittance module of
the 1-st order converter:

|S(ja))|=\/ L . 1 =0.9922 (5.115)

1+(wr) V1+0.1257°

and the phase of the transmittance is:

@5 =—arctan oz =—arctan 0.1257 = —-.0.1250 (5.116)

Using results (5.113) and (5.115), we obtain the following value of the product of
the transmittance module from Eq. (112):

1S (i®) =|A(jo)||S(je) =1.008-0.9922 =1.00014 (5.117)
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The transmittance phase calculated as the sum of values (5.114) and (5.116)is:

D = Pp + s =0.1314-0.1250 = 0.0064 (5.118)

According to these values, the transmittance module of the error source (5.111)
takes the following value:

. 2 . . 2
|ESDrec| - \/{1_|Srec (Ja)lcos¢rec} + ﬂsrec (ja))|5|n ¢rec} - (5119)
= /[1-1.00014 - c0s(0.0064)] +[1.00014 -sin( 0.0064) = 0.0064

Thus, the amplitude of reconstruction dynamic error calculated for the amplitude of
the input signal |X (jw) =50°C on the basis of Eq. (5.110) is as follows:

Epree = |Eorec(i@) =|X (10)|ESprec (i) =50-0.0064 = 0.32°C (5.120)

The analytical description of dynamic errors as transmittances enables detailed
analysis of the error sources and determining relations between them, but combining
of the dynamic errors with other errors needs consistent description of all errors in
the probabilistic categories. Complete information about the distribution of
the dynamic error is given by its histogram that is determined using Monte Carlo
method as shown in the Experiment 5.7. However, the standard deviation ogyn Of
the sinusoidal error may be calculated on the basis of its amplitude Eayn [J15, M2] as:

E
Oayn = % (5.121)
According to this expression and Eq. (5.110), the standard deviation of the dynamic
output error may be determined as:

o — EDrec — X |ES Drec (-] a)x
dynpout \/E \/E

where X denotes the amplitude of the input signal. Based on this equation, we can
present the dynamic reconstruction algorithm as the source of the random error shown
in Fig. 5.18a, the standard deviation of which is described by Eq. (5.122).

The amplitude of the reconstruction dynamic error calculated in Example 5.4 is:
Eprec = 0.32°C. Thus, the standard deviation of this error takes the value:

(5.122)

o _Epe_032
Drec \/E \/5

The same value we obtain performing Experiment 5.7.

=0.226°C (5.123)
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Experiment 5.7. This experiment aims to determine of the histogram of the dynamic
error in output of the exemplary algorithm (5.85) used to correct the dynamic error of
the 1-st order converter with time constant z = 2 s. The input signal of the instrument
changes sinusoidal in the input range of 0 to 100°C, i.e., it is described as:
X(t) = 50sinwt+50°C, w =2'w'f, the frequency is f= 0.01 Hz. At every step of
the experiment, the input signal is sampled, first at the random instant tx located in
the signal period T and, next, in the instant tx + Ts, where the sampling period
s = 0.2 s. At the same instants the output signal of the analog converter is sampled,
too, and the obtained samples are processed by the reconstruction algorithm.
The reconstruction result is subtracted from the input signal at the instant t« to obtain
the reconstruction error, the value of which is located in the set of error values. After
100 000 steps, the standard deviation of the error is calculated and the error
distribution is determined in the form of the histogram presented in Fig. 5.18b.

a) b)
Number of occurence
5000 x : :
l f 4000+
3000F
X ES Drec GDre»c
_>
/2 2000+
1000 i ' .
0
0.4 0.2 0 0.2 0.4
e o]
Drec

Fig. 5.18. a) Scheme of the dynamic reconstruction error as the source of the random error,
b) histogram of the dynamic reconstruction error determined in Experiment 5.7,
ODrec — 0226OC

5.4. Propagation of random errors

There are two main kinds of random errors in the sampling instruments. The errors of
the first kind are connected with random disturbances introduced to the input of
the instrument and the noises generated in its analog and analog-to-digital converters.
These errors may be modelled together as an additive noise at the input of the AD
converter [M2]. The second kind of random error is connected with digitalization of
the analog signal performed by sample-and-hold circuits and AD converters [J5, J14].
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Both these kinds of errors are modelled at the output of the AD converter, which
causes that values of them are expressed as numbers at the input of the chain of
the reconstruction algorithms.

The input random error ermnin iS composition of the partial errors that are
characterized above. The propagation of this error is described in the general model by
Eq. (5.30) that may be presented in the form of the linear combination of realizations
of the input error and constant coefficients Ax+1, Ak ... Axm Of the dynamic
reconstruction algorithm. Thus, we have the following:

eran,out (k) = kS [Ak+1eran,in (k + 1) + Axeran,in (k) +...+ Ax—meran,in (k - m)] (5124)

where ks is the propagation coefficient of the static algorithm, k is the number of
the current measurement window. Denoting the random error at the input of
the dynamic algorithm at every sampling instant as:

—ke (5.125)

eDran,in ran,in

and introducing this expression to Eq. (5.124), one obtains a description of
the propagation of the random error by the dynamic algorithm in the form of
the following equation:

eran,out (k) = Ak+leDran,in (k + 1) + A(eDran,in (k) +...+ AkfmeDran,in (k - m) (5126)
For the 1-st order algorithm, Eq. (5.126) takes the form:
eran,out(k) = A<+1eDran,in(k +1)+ AkeDran,in(k) (5127)

Taking into account that realizations epran,in(k+1), €pran,in(K),..., €pranin(k-m) of
the error at the algorithm input are taken from the same population with the standard
deviation opran,in, their linear combination (5.126) fulfils requirements of the Central
Limit Theorem. This means that the propagation of the random error may be described
as the following relation between variances of the input and output errors:

62 () =[Auoomi f +[AComn o Ao | (5.128)

Based on this equation, we can obtain a description of the standard deviation of
the output error as the expression:

O-ran,out (k) = GDran,in\/A<2+1 + A<2 +... A<2—m (5 129)

For the 1-st order reconstruction algorithm, this expression takes the form:

O-ran,out (k) = O-Dran,in \ A<2+l + A(Z (5130)
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Generally, the propagation of different kinds of error by the dynamic algorithm is
described by the propagation coefficient defined as expression (5.51) that is the ratio
of standard deviations of the error considered at the output and input of this algorithm.
According to Eq. (5.129), the propagation coefficient of the random error is described as:

K = 2t = [A2 A2+ AL (5.131)

Dran,in

The coefficients of the dynamic reconstruction algorithm are constant if
the sampling instrument works under stable measurement conditions. This means that,
in such conditions, the random propagation coefficient has a constant value the same
for every kind of random error, although it depends on the form of the reconstruction
algorithm.

Example 5.5. The values of the coefficients of the exemplary algorithm of the 1-st
order, calculated in Example 4.13, are: Ax+1 =10.5 and Ax = -9.5. For these values,
the coefficient (5.114) has the following value:

Ko =+ Al + AL =41057 +(-9.5) =14.2 (5.132)

As it is calculated in Example 4.11, to represent the exemplary 2-nd order
algorithm accurately enough, it is necessary to take 45 initial terms of the algorithm in
the form of the series. For the purpose of calculating the random propagation
coefficient, it is enough to take 10 values presented in Tab. 4.4. According to
Eqg. (5.114), we have:

Koy =10.22 +(—21.5)% +22° +(—17.4) +13.8% +(~10.9)* +... =42.8 (5.133)

From the values calculated using the equations (5.132) and (5.133), it results that
the dynamic reconstruction algorithm significantly amplifies the random errors.
The coefficient kpran that quantitatively describes this amplification has the constant
value, which means that influence of stable random error sources on inaccuracy of
the sampling instrument does not change in time.

According to Eq. (5.35), the input random errors are multiplied by constant coefficient
ks during their propagation by the static algorithm. This means that this coefficient can
be used to describe the relationship between the standard deviations of the random
errors at the output and the input of the static algorithm. If one takes into account that
the propagation of the standard deviation by the dynamic algorithm is described by
the coefficient kpran, propagation of random errors by the reconstruction chain of
the sampling instrument can be presented as in Fig. 5.19.
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GDran,in O

k —> kDran

ran,in ran,out

Fig. 5.19. Propagation of the standard deviation of the input random error by the chain of reconstruction
algorithms, ks is the static propagation coefficient, koran the dynamic propagation coefficient

The scheme from Fig. 5.19 is enough to compare standard deviations of the errors in
the output of the chain of algorithms. But, if we want to know how the distributions of
the random errors change during their propagation, there is necessary to use probabilistic
experiments. To carry out them, the random errors must be defined in the input of
the reconstruction chain. The determination of error values needs knowledge about
the true value of the input quantity. In the case if the reconstruction chain is
considered, it is necessary to know the number representing the exact quantization
result. Accordingly to Eq. (5.45), this result is obtained for the exemplary sampling
instrument if we take the quantum value q— 0. For this assumption we obtain

the expression:
n, (t, )=409.176R(t,) (5.134)

where R(t,) is the resistance value of the sensor at the nominal sampling instant tx, K is

the number of the current measurement window.

In the further considerations, three random input errors are taken into account:
the noise error, the quantization error and the error caused by the jitter [Z1]. For these
errors, the analytical description of the quantization result takes the form:

A, (t, ) = ent[409.176R(E ) +e,,,(t, )+ 0.5] (5.135)
where enoi(tk) is the normal noise, which models composition of all noises generated in
the analog and analog-to-digital parts of the instrument, R('t'k) IS the sensor resistance
at the instant:

t =t +A,() (5.136)
that is disturbed by the jitter A ,(t,).
Based on the error definition (1.24) and the equations (5.134) and (5.135), the total
error composed of the considered errors is expressed as:

€anin(t ) = Ng (t, )- 1, (t, ) = 409.176R(t, ) - ent[409.176R(f, )+ €, (£ )+ 0.5]  (5.137)

Eg. (5.137) describes the total random error at the input of the chain of
the algorithms. During propagation of this error by the static algorithm, every
realization of the error is multiplied by the constant coefficient ks. This means that
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the total random error at the input of the dynamic algorithm is described by
the following equation:

(t,)+05]} (5.138)

The experiments presented below are aimed at determination of histograms for
the considered partial errors which propagate by the 1-st order exemplary dynamic
algorithm.

Coranin (t ) = Ke€ranin (ti ) = ks {409.176R(t, ) - ent[409.176R(E, )+ e

noi.in

Experiment 5.8. The first experiment deals with calculations of the jitter error that,
accordingly with Eq. (5.138), is defined by the expression:

€ojiuin (t ) = ks [409.176R(t, ) - 409.176R(T, )] (5.139)

The input temperature signal: $(t) = 50sinwt+50°C, w =2 7'f, f = 0.01 Hz is converted
at the sampling instants to the sensor resistance R accordingly with the equation (3.5).
At every step of the experiment, two nominal sampling instants t« and tx+1 are
determined as random with the rectangular distribution in the signal period T = 1/f.
Next, two instants disturbed by the jitter are determined on the basis of Eq. (5.136) as:

ﬁ: =1, + Ajit(tk) and t~1<+1 =t + Ajit(tk+1)

with the assumption that the jitter takes values accordingly with the rectangular
distribution in the range from Ajmin t0 Ajmax and |Ajminl = IAjmax = 1:10® s. The input error
(5.139) is processed by the exemplary 1-st order dynamic algorithm using the equation:

ejit,out = +leDjit,in(tk+l )+ Ak eDjit,in(tk) (5-140)

where Awx+1=10.5 and A«= -9.5. The histograms contained 100,000 values of
the output and input error are presented in Figs. 5.20a and 5.20b, respectively.
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Fig. 5.20. Histograms of the jitter error: a) at the input of the exemplary dynamic algorithm of the 1-st
order, opjitin = 7.6:102°C, b) at the algorithm output, gjiteut = 108°10°C
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Experiment 5.9. Histograms of the noise error at the input and output of the dynamic
algorithm, presented in Fig. 5.21, are determined in the same way as described in
Experiment 5.8, but with this difference that only noise error is taken into account.
According to Eq. (5.138), the noise input error is described as:

eDnoi,in(tk ) = kSenoi,in (tk ) (5141)

where enoiin(tk) is a realization of the normal error N(0O, 1), which burdens the number
that is the result of the quantization of the sample at instant t«. The realization of
the noise output error is calculated by multiplying the dynamic algorithm coefficients
by realizations of the input error as is performed for the jitter error.
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Fig. 5.21. Histograms of the noise error: a) at the input of the exemplaryl-st order dynamic algorithm,
opnoiin = 6.3:1073°C, b) at the algorithm output, onoieut = 89.4:10%°C

Experiment 5.10. This experiment aims to obtain histograms of the errors caused by

the quantization for the sinusoidal signal in the same way as in Experiment 5.9.

The quantization error in the input of the dynamic algorithm is described by

the expression:

€ (L) = ks 1409.176R(t, ) - ent[409.176R(t, ) + 0.5]} (5.142)

obtained on the basis of Eq. (5.138). The error at the output of the exemplary dynamic
algorithm is calculated in the same way as in previous experiments. The distributions
of these errors in the form of histograms are shown in Fig. 5.22.
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Fig. 5.22. Histograms of the quantization error for the sinusoidal input signal: a) at the input of the

dynamic algorithm, opgin = 1.8°10-%°C, b) at the algorithm output, opgout = 25.6:10°°C
Composition of standard deviation is possible if the partial errors are not correlated.
The jitter error is not correlated with the other random errors because the phenomena
responsible for their arising are quite different. However, it can be assumed that the noise
error and the quantization error are correlated because the noise disturbs the quantized
voltage. To check this, the correlation coefficient between them is calculated in the way
presented in Experiment 5.6. To perform these calculations, it is necessary to determine
the standard deviation of the total error using the following experiment.

Experiment 5.11. The total error that is composed of the noise error and
the quantization error is described in the input of the dynamic algorithm by the expression:

€on (t ) = ks {409.176R(t, ) - ent[409.176R(t, )+, (t, )+ 0.5]} (5.143)

obtained from Eq. (5.121). The histogram of this error determined as described in
Experiment 5.8 is shown in Fig. 5.23.
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Fig. 5.23. Histogram of the error composed of noise and quantization errors at the input of the 1-st
order dynamic algorithm, opranin = 6.6:10°°C
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The estimate of the standard deviation of the error from Fig.5.23 is

obranin = 6.6:10%°C. The estimates of the standard deviations of the noise error from

Fig. 5.21a is oonoijn = 6.3:10%°C and of the quantization error from Fig. 5.22a is

opg,in = 1.8°10°°C. The correlation coefficient calculated for these values is as follows:
G]iran,in - O-]inoi,in - G]iq,in (662 - 632 _1.82)'10_6

c. = = S =0.028=0 (5.144)
20 2.6.3-0.1.8-10

Dnoijin O-Dq,in

which means that the partial errors are not correlated.

The total random input error of the static algorithm is composed of three partial errors,
realizations of which at instant t create the sum:

eran,in (tk ) = ejit,in (tk )+ enoi,in (tk ) + eq,in (tk ) (5145)

where ejitin IS the error caused by the jitter, enoiin — caused by the noise and eq,in that is
connected with the quantization. Based on the fact that partial random errors are not
correlated, propagation of the standard deviation of the total random error by the chain
of the reconstruction algorithm may by calculated using the scheme from Fig. 5.18.

According to Eqg. (5.128), the standard deviation of the total random error at
the input of the static algorithm can be calculated using the equation:

Gran,in = \/o-jzit,in + 02 + 62' (5146)

noi,in q,in
At the input of the dynamic algorithm, it is:

GDran,in = kSG (5147)

ran,in

where ks is the propagation coefficient of the static algorithm the same for all kinds of
errors. The standard deviation of the random error propagate by the dynamic algorithm
with the coefficient kpran, SO We have:

=k, o (5.148)

ran,out Dran ™~ Dran,in

Example 5.6. The standard deviation of the quantization error with the rectangular
distribution in the range of -0.5 to 0.5 takes the value [J14, M2]:

. =92 _0289 (5.149)

q.in E
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According to the value of the static coefficient ks that is calculated in Example 5.1,
propagation of this error by the static algorithm causes its standard deviation in
the input of the dynamic algorithm input to be:

Cogin = KsOqin =6.35-107°-0.289=1.8-10° °C (5.150)
Comparing this calculated analytically value with the standard deviation value from
Fig. 5.22a that is determined in the probabilistic experiment, one conclude that
the quantization error does not depend on the input sinusoidal signal.

The standard deviation of the noise error is taken as onoiin = 1, Which means that at

the input of the dynamic algorithm it takes the value:

Oonoiin = KsOrpoiin = 6.35-107°-1=6.35-10°°C (5.151)

noi,in

The jitter error in the input of the dynamic algorithm presented in Fig. 5.20a is of
the standard deviation equal to opjitin = 7.6:10°°C. Taking this value and the values
calculated in Egs.(5.150) and (5.151) into account, one obtains the standard deviation
of the total random error in the input of the dynamic algorithm as:

oranin =T itin + Tnaiin + Tiqin =107°/7.62 +6.35? +1.8% =10-107 °C  (5.152)

The value of the propagation coefficient kpran Of the exemplary 1-st order dynamic
algorithm is calculated in Example 5.5. Multiplying this value by the standard
deviation (5.152) at the input of the algorithm gives the standard deviation of total
random error at the algorithm output:

o =k o =142-10-10° =0.14-10°°C (5.153)

ran,out Dran " Dran,in

Complete knowledge of the distribution of the output random error may be obtained
on the basis of the set of error values that is determined using the probabilistic
experiment described in the following.

Experiment 5.12. Two random nominal instants and two instants burdened by jitter
are determined according to the measurement conditions described in Experiment 5.8.
For these instants, two realizations of the input error are determined on the basis of
Eq. (5.121), and then, they are processed by the exemplary 1% order algorithm.
The obtained values of the input and the output errors are located in the suitable sets of
error values and after ending the experiment presented in Fig. 5.24.
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Fig. 5.24. Histograms of the total random error composed of the jitter error, noise error and
guantization error, a) at the input of the exemplary 1-st order dynamic algorithm,
ooranin = 10.1-10%°C, b) at the algorithm output, ovan,cut = 142:10°°C

The dynamic reconstruction algorithm that is performed by the neural network has
the same form of linear equations as the analytical algorithm. The only difference is
related to obtaining values of the algorithm coefficients, which, for the neutral
network, are obtained in the learning process, while, for the analytical form, they are
determined using calculations. This means that all considerations presented in this
chapter deals with both the analytical and the neural dynamic reconstruction.

5.5. Propagation model of standard deviations of sampling instrument

The considerations presented in Sections 5.2, 5.3 and 5.4 make it possible creation of
the general propagation model of the standard deviations that describe the errors
typical for the sampling instrument. This instrument measures, on the principle of
the reconstruction, samples of the input signal that, for the purposes of the error
analysis, is considered as sinusoidal. The model, presented in the graphical form in
Fig. 5.25, is created for the exemplary instrument, but the structure of the model is of
universal character for the analog converter described by the Wiener model. For stable
measurement conditions, the parameters of the model are constant.
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Fig. 5.25. The structure of general propagation model of standard deviations in the exemplary
instrument for sinusoidal input signal, SRA — static reconstruction algorithm, DRA —
dynamic reconstruction algorithm, X, f — the amplitude and frequency of the signal

The errors modelled in the input of the chain of the reconstruction algorithms arise
during the analog and analog-to-digital conversions, and they are expressed as
numbers burdening the number of quanta obtained in the output of the AD converter.
The input errors are divided into two groups: the static errors and the random errors
because of their specificity of the propagation. The third group of errors depend on
the amplitude X and the frequency f of the input signal. This group includes
the dynamic reconstruction error and the static reconstruction error processed by
the dynamic algorithm. All these errors are represented in Fig. 5.25 by their standard
deviations. The standard deviation of the total output error is calculated as
the geometrical sum of standard deviations of the suitable partial errors, i.e., as
the square root of the sum of squares. The considered partial errors are not correlated
as is proved in Sections 5.2, 5.3 and 5.4, in which detailed analysis of the propagation
of these errors is carried out.

The basic application of the model from Fig. 5.25 is used in the analysis of
participations of the errors in the total output error. Knowledge about these
participations enables selection of dominating errors and takes measures to reduce
their values, which leads to increased accuracy of the output results. This kind
the model is illustrated by the following examples. The table containing the standard
deviations of the partial output errors is called the error budget. The complete
description of every error should include, except for the standard deviation, its type of
distribution, although in the case of the exemplary instrument it may be impossible



213

because many of the partial errors are characterized by non-standard distributions.
If the knowledge about the concrete error distribution is needed, one can find this
information in the chapter, in which this error is considered.

Example 5.7. Let us take that the amplitude of the input signal of the exemplary
instrument is X = 50°C and its frequency f = 0.01 Hz. The time constant of the sensor
iIs 7=2 s and the sampling period is equal to Ts=0.2s. The standard deviations of
the output errors presented in the Tab. 5.4 are taken for the analytical reconstruction
from Figs. 5.6a, 5.6b, 5.12a, 5.18b, 5.20b, 5.21b and 5.22b. The table 5.3 contains
the appropriate standard deviations determined for the neural reconstruction, which
differ from the values contained in Tab. 5.4 in one position, i.e.in the value from
Fig. 12b, that describes the static reconstruction error after its propagation by
the dynamic algorithm.

Table 5.3

Budget of errors, represented by their standard deviations, of the exemplary instrument
with analytical reconstruction for sinusoidal input signal changing in the range from
0 to 100°C with the frequency f = 0.01 Hz and the amplitude X = 50°C

Standard deviation | osh,out Oinc,out | OSrec,out ODrec Ojit,out Ogq,out Onoi, ,out
Value 10%°C 7.3 9 30.7 226 108 25.6 89.4
Table 5.4

Budget of errors, represented by their standard deviations, of the exemplary instrument
with neural reconstruction for sinusoidal input signal changing in the range from
0 to 100°C with the frequency f = 0.01 Hz and the amplitude X = 50°C

Standard deviation | osh,out Oincout | OSrec,out ODrec Ojit,out 0Ogq,out Onoi, ,out

Value ' 1073°C 7.3 9 3.84 226 108 25,6 89.4

The standard deviation of the total error in the output of the exemplary instruments for
the considered partial errors is calculated using the expression:

_ 2 2 2 2 2 2 2
Uout - \/Gsh,out + O-inc,out + 0, + 0 +0 +0 + O (5154)

Srec,out dynjec jitout noiout q,out

Introducing the values from Tab. 5.3 into Eq. (5.154) gives:

oo =107°/7.32 + 92 +30.72 + 2262 +108% + 25.6% +89.4% =0.269°C  (5.155)

while, for the values from Tab. 5.4, we have:

0, =10°/7.32 192 +3.84% + 2267 +108° + 25.6> +89.4> =0.267°C  (5.156)
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Comparison of the values (5.155) and (5.156) comes to the conclusion that different
kinds of the static reconstruction have the minor meaning in the budget of the output
errors in the considered measurement conditions. Analysis of the values presented in
Tabs. 5.3 and 5.4 shows that there is no single dominant error, which means that
reducing the value of any error does not significantly reduce the total error.
The opposite kind of situation is considered in the next example.

Example 5.8. Let us take that the input signal frequency is f =0.05 Hz, while
the others parameters of the signal reconstruction are the same as described in
Example 5.7. The standard deviations of the partial error in the output of
the exemplary instrument working under these conditions are presented in Tab. 5.5. In
this table, two standard deviations differ from these in Tab. 5.3 because the suitable
errors depend on the signal frequency that is 5 times greater than in Example 5.7.
The dependencies of the standard deviations osrecout and oprec Of these errors on
the signal frequency are described in Sections 5.2.3 and 5.3, respectively.

Table 5.5

Error budget of the exemplary instrument for the frequency f = 0.05
of the sinusoidal input signal with amplitude X = 50°C

Standard deviation Osh,out | Oinc,out | OSrec,out ODrec Ojit,out Oq,out Onoi, ,out

Value'10%°C 7.3 9 71.9 1129 108 25,6 89.4

In this case, the dynamic reconstruction error eprec dominates. The analysis of
the impact of this error on inaccuracy of the instrument may be performed analytically
by comparison of standard deviations of the total error under different measurement
conditions. Introducing the values from Tab. 5.5 in Eq. (5.154), we have:

O out =103+/7.32 + 9% + 71.9% +1129° +108? + 25.6° +89.42 =1140-10"° °C =1.14 °C
(5.157)
The standard deviation determined by Eq. (5.157) is substantially greater than
calculated in Eq. (5.155), which is caused by the dominance of the dynamic

reconstruction error. Such a situation inspires seeking some means to decrease this
error if the values of the total error is greater than the allowable one.

5.6. Reduction of total error

The total error is a composition of several partial errors. As in the results from
Fig. 5.25, some of the errors do not depend on the reconstructed signal, but the others
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are dependent on the signal parameters that influence properties of the dynamic
algorithm. This causes the problem of reduction of the total error by the actions that
lead to decreasing values of the partial errors to be complex.

As arule, the error, the values of which are the most significant in the error budget,

are connected with the frequency of the reconstructed signal. In this chapter, two ways
to decrease such a kind of errors are considered.

In the case if the error caused by the dynamic reconstruction dominates, one can
reduce it by decreasing the sampling period (see Section 5.3). However, this way is
connected with increasing the output random error, because the dynamic coefficient
Kpran increases with grow of the sampling period. Dependencies of these errors from
the sampling period for the exemplary instrument working with the signal frequency
f =0.05 Hz are presented in Fig. 5.26.
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Fig. 5.26. Dependencies of standard deviations of the selected errors on the sampling period in
the output of the exemplary instrument with the 1-st order dynamic reconstruction for
the input signal frequency f = 0.05 Hz: a) the dynamic reconstruction error, b) the random
error, ¢) the error composed of these errors



216

As in Fig. 5.26, the standard deviation of the error composed of the discussed two
partial errors reaches a minimum if the partial standard deviations have the same
values. This minimum is obtained for the optimal sampling period Tsept that is about
0.07 s. The values of the standard deviations read from this figure is about 0.4°C, but
they also can be determined analytically in the way presented below.

For the optimal sampling period Tsept = 0.07 s, the parameter ¢ of the discrete
dynamic model takes the value:

Ts‘opt 0.07

p=e * =e ? =0.9656 (5.158)

for which the coefficients of the dynamic reconstruction algorithm are:

1 L - ¢ _ 09656

_ 1 _ - =28 (5.159)
1-p 1-0.9656 1-¢  1-0.9656

Ak+l

On the basis of these values, one obtains that the dynamic coefficient describing
amplification of random error by the 1-st order dynamic algorithm is:

Ko =+ A2y + AZ = /297 +(—28)° =40.4 (5.160)

The standard deviation of the total input random errors is calculated in Eq. (5.152)
as oranjin = 10-107°C. Taking into account this value and the result of Eq. (5.160), we
obtain the standard deviation of the output error that is determined according to
Eq. (5.48) as:

o. =k o . =403-10-10°=404-10°°C=0.4°C (5.161)

ran,out Dran ~ ran,in

From Fig. 5.26c, it results the standard deviation of the dynamic reconstruction
error to be of the same value as the value of the standard deviation calculated above;
thus, it is:

o,. =0 ~0.4°C (5.162)

Drec ran,out ~—

The values of standard deviations of the partial errors at the output of the
exemplary instrument working with the optimum sampling period are presented in
Tab. 5.6. One should notice that the value of the standard deviation of the static
reconstruction error differs of the value from Tab. 5.5. These differences are connected
with changes of coefficients of the dynamic algorithm, which depend on the sampling
period, and this in turn causes that the dynamic algorithm processed the error of
the static reconstruction differently.
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Table 5.6

Error budget of the exemplary instrument for sinusoidal input signal
with the frequency f = 0.05 Hz and the amplitude X = 50°C determined
for the optimal sampling period Tsopt = 0.07 s

Standard deviation Osh,out Oinc,out OSrec,out ODrec Oran,out
Value 103°C 7.3 9 109 400 400

For the values from Tab. 5.6, the standard deviation of the total output error takes
the value:

oy =107°4/7.3% + 9% +109° + 4002 + 400% = 0.576 °C (5.163)

This value is significantly less than the value calculated in Eq. (5.157), but, in some
applications of the sampling instrument, it may be too big. In such cases, the other
method of reducing the dynamic reconstruction error, even more effective than
the described above, may be used. This method consists in changing the point in
the measurement window to which the output result is assigned.

Suppose that the output result is not assigned to the first sampling point in
the window but to the point shifted by half the sampling period h = Ts/2. This causes
that all terms of the transmittance (4.75) of the dynamic algorithm are multiplied by —
joh [L1], so we have:

LT
A, (Ja)): A(ja))eijwz _ Ak+leo.5ja)Ts + Ake—o.Sjst +Ak_le-l.5j(uTs +“.+Ak_me-(m—0.5)ja)Ts v
(5.164)
For the 1-st order algorithm, this expression takes the form:

Ash (ja))= Ak+1eo.5jst + Ake*0-5jw-|—s (5165)

The transmittance of the 1-st order dynamic converter is described by Eq. (4.3).
Based on these equations, the transmittance (5.109) of the reconstruction error source
for the algorithm transmittance (5.148) is expressed as:

0.5jwT; -0.5jwTy
_Aw® — :w/ike (5.166)

ESDrec,sh (J a)) =1- A‘sh (J C())Sl(J 60) =1

After transformation of this equation, we obtain the following expression:

B l+(0)2')2 _ Ak+le0.5jw1 _Ake-o.sj'am. +(Ak+1e°'5j“’1 n Ake—(lsjaﬂ; )Ja)T

P (5.167)

ESDrec,sh (J C())

The real part of the transmittance (5.167) is:

RelES, 1= 1+(wr) +or[(A - Am)ir: (()C;)STc;)ZTS]—(A( +A,,)c0s0.50T, (5.169)
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and the imaginary part:

im{Es, 1= wt(A, + A ,)cos0.50T, + (A — A _,)sin0.50T, 5.160)

1+ (wr)

Example 5.9. The measurement conditions are the same as in Example 5.7 with this
difference that the input signal frequency is f = 0.05 Hz. According to Egs. (5.168) and
(5.169), the real part of the transmittance of the dynamic error source has the value:

Re{ES,,.., | =1.64-10" (5.170)

and the imaginary part is:
IM{ESp. op | =—5.23-10" (5.171)

Based on these values, we obtain the module of the error source transmittance as:

ESp (i) = yREIES ey |+ IMZ{ES, . | =10%/1.642 + (~ 5.23) =5.49-10"*
[ESomean(i@) = , ,

(5.172)
Having given this transmittance, one can calculate the amplitude of the output

dynamic error accordingly with Eg. (5.105). For the amplitude X of the input signal
equal to 50°C, the standard deviation of the error takes the value:

X 549-10-50

Oorecsh = \ESDreC,sh(jw)lﬁ - =19.4-10° °C (5.173)

The error budget for the shifted reconstruction instant is presented in Tab. 5.7.

Table 5.7

Error budget of the exemplary instrument for sinusoidal input signal with f =0.05 Hz
and amplitude X = 50°C if the reconstruction instant is shifted by Ts/2, Ts
is the sampling period

Standard deviation Osh,out | Oincout | OSrecout | ODrecsh Ojit,out Og,out | Onoi,out

Value'10°°C 7.3 9 73.6 194 105 25 87.6

Introducing values from Tab. 5.7 into expression (5.154), one obtains the following
standard deviation:

G =1072/(7.37 +97 + 73.67 + 272 +105% + 257 +-87.6?) =160-10° °C=0.16 °C  (5.174)

that is substantially less than the standard deviations of the other discussed total errors.
This means that this method is effective in decreasing the total reconstruction error.
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5.7. Uncertainty evaluation of reconstruction results

As discussed in Chapter 1, the inaccuracy of every measurement instrument must be
described quantitatively, which enables comparison of basic metrological properties of
the same kind of instruments. The most commonly used measure of the inaccuracy is
the uncertainty [B1, B2, G1, J1, J2, K3, M6, S2] treated in this book as the parameter
of the uncertainty interval that is calculated on the basis of distribution of total error
burdening the estimate of reconstructed sample. If the measurement conditions, in
which the instrument works, are stable, the uncertainty is the same for all estimates,
which means that the inaccuracy of instrument may be described by one number. In
this case, every reconstructed sample can be written in the interval form (1.45):

out?

%(k)=[%(k)-u,,, *(k)+u,] =rk)xu,, (5.175)

where (k) is the estimate of the input sample x(k), k is the instant, for which

the estimate is determined, uout IS the uncertainty, the value of which is the same for
every sample.

If the measurement conditions change, uncertainties of individual samples depends
on time variations of the parameters that describes these conditions. This means that
every change of the measurement conditions should result in determination of
the suitable value of the uncertainty. In this case, the reconstructed sample is described as:

X(k) = [%(k) =y, (k). K(k)+u,, (k)] =%(K)+u,, (k) (5.176)

Determination of the current uncertainty uout(k), requires keeping track of changes of
the measurement conditions and the knowledge about relations between quantities that
describe these conditions is necessary.

Calculation of the uncertainty is the simplest if partial output errors take
comparable values. In this case, the Central Limit Theorem may be used [P1,Y1],
accordingly with which the distribution of the sum of random uncorrelated errors tends
to the normal distribution if no one error dominates. Having given standard deviations
of the partial errors, one can calculate in this case the standard deviation oout Of
the total output error accordingly with Eq. (1.52). Denoting the expanded uncertainty
for the confidence level p = 0.95 as U, we have [K3, Y1]:

U=20,, (5.177)

One should notice that qualification of the total error distribution as normal do not
have to be carried out statistically strictly because the inaccuracy of uncertainty itself
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equal to about 10% can be treated as good enough for industrial conditions. If there is
any doubt about normality of the error distribution, one may carry out the simulative
probabilistic experiment [M6] assuming the suitable measurement conditions in
the way described below.

The reconstruction chain in the exemplary sampling instrument consists of
the static and the dynamic algorithms. The coefficients of static algorithm in
the analytical form are presented in Tab. 3.9, while of the neural form in Fig. 3.29.
These coefficients are calculated as the effect of the identification, which means that
the algorithms introduce both the approximation and the identification errors.
The exemplary dynamic algorithm is of 1-st order; thus, it is composed of two terms
the values of which are determined with assumption that the time constant z of
the sensor is known, and 7z =2 s. In this case, the measurement window contains two
quantization results, which are described as:

A, (t, ) = ent[409.176R(E ) + e, (t, ) + €, (t, ) + €110 (t )+ 0.5] (5.178)

and
A, (t,..) = ent[409.176R(E, ., )+ €, (t, ) + €, (t )+ €, (t,.)+ 0.5]  (5.179)

mc

where t« and tw+1 are the nominal sampling instants distant in time by the sampling
period Ts.

The quantization results are burdened by the errors connected with: jitter, drift of
the shift and of inclination of the static characteristic, noise, and caused by
the quantization. The standard deviations of these errors are contained by the error
budget presented in Tabs. 5.4 and 5.5. One should notice that the shift error esn and
the inclination error einc are static in the window, which means that they have the same
values in these two sampling instants. It is assumed that the value of the drift error is
taken, for every window, from the population described as random in the range from
-2 to 2 with the rectangular distribution. The inclination error is expressed as:
€inc = Ng'einc, Wherein nq is the quantization result, and the inclination coefficient &inc
changes accordingly with the rectangular distribution in the range from -5-10°to 5:107.

The sampling instant is burdened by the jitter, which means that they are
determined as:

E-k =1 +Ajit(tk) and fk+1 :tk+1+Ajit(tk+l) (5.180)

where the jitter takes values Ajit(tc) and Ajit(tk+1) accordingly with the rectangular
distribution in the range from Ajmin t0 Ajmax and |Ajminl = |Ajmaxl = 110 s. Except of
the jitter error, the quantization result is burdened by the normal noise error N(0,1)
and by the quantization error that is presented in Fig. 5.22a.
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The experiments described below are performed for the temperature sinusoidal
signal 9(t) = 50sinwt°C, wherein w = 2xf, fis the frequency. For every measurement
window, the input signal is sampled two times in the signal period T = 1/f: first, at
the instant tx that is determined randomly accordingly with the rectangular distribution,
next, at the instant tk+1 = tx + Ts, Ts is the sampling period. The number of measurement
windows used in the experiment presented below is K = 100,000.

Experiment 5.13. This experiment is aimed at obtaining two histograms of the total
error in the output of the exemplary sampling instrument for the signal frequency
f=0.01 Hz, which is sampled with the period Ts=0.2s. The first histogram is
determined for the analytical static reconstruction, and presented in Fig. 5.27a.
The second, shown in Fig. 5.27b, is obtained with assumption that the neural static
reconstruction is performed.

a) b)
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Fig. 5.27. Histograms of the total error of the samples reconstructed using the exemplary instrument
for the input signal frequency f=0.01Hz: a) if the analytical static reconstruction
is performed, oout = 0.268°C, the uncertainty obtained from definition (1.49) is U = 0.56°C,
b) for the neural static reconstruction, oo = 0.266°C, U = 0.55°C

Based on the standard deviation from Fig. 5.27a, the expanded uncertaintythat is

calculated using Eq. (5.177) with assumption that the error distribution is normal has

the value:

U =20,, =2-0.268=0.54°C (5.181)

If we calculate the uncertainty on the basis of the set of error values presented as
the histogram in Fig. 5.27a, the obtained value is U = 0.56°C. Both values differ
insignificantly from accuracy requirement point of view, which means that
the distribution of the total error presented in Fig. 5.27a may be treated as close
enough to the normal in the considered measurement conditions.
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Experiment 5.14. This experiment is aimed at obtaining two histograms of the total
error at the output of the exemplary sampling instrument for the signal frequency
fi =0.05 Hz, which is sampled with the period Ts=0.2s. The first histogram is
determined for the analytical static reconstruction, and presented in Fig. 5.28a.
The second, shown in Fig. 5.28b, is obtained if the neural static reconstruction is
performed by the sampling instrument.

a) b)
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Fig. 5.28. Histograms of the total error of the samples reconstructed using the exemplary instrument
for the input signal frequency f=0.05Hz: a) the analytical static reconstruction is
performed, oot = 1.12°C, b) the neural static reconstruction is performed, ooy = 1.14°C

The distributions of the errors shown in Fig. 5.28 are significantly different from
the normal distribution, which means that the uncertainties of these errors must be
calculated from the definition on the basis of the histograms. Accordingly with
Egs. (1.30) and (1.31), we may determine the lower bound of the uncertainty interval as:

(e, )de,, = =2 (5.182)

é —ic

and the upper bound as:

g (eout )deout = ]-_Tp (5 183)

S| =y 8

where the confidence level p=0.95 and §(e,,,) is the probability density function of

the error eout, Which is obtained by the normalization of its histogram in this way that
every value of the histogram bar is divided by the number of occurrence equal to 10°.
For the histogram from Fig. 5.28a, we obtain that:

u=-17°C and 0=17°C (5.184)
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which means that, according to Eq. (1.50), the uncertainty takes the value:

u-4-8_= ) _17°C (5.185)

Based on this uncertainty, one can describe the value of every reconstructed
sample in the interval form (1.34) as:

3(k)=|8(k)-17, d(k)+1.7] °C = (K)+1.7°C (5.186)

The same values as (5.184) can be obtained on the basis of the histogram from
Fig. 5.28b. It means that the output values of the sampling instrument using
the exemplary neural static reconstruction are described by the same interval (5.186)
as determined for the exemplary analytical algorithm.

One can point one more analytical method of calculation of the uncertainty.
It consists in application of the reductive interval arithmetic [J13, J15] to determinate
the uncertainty of the total error on the basis of uncertainties of the partial errors.
However, this method, as well as the other methods considered here, are numerically
sophisticated and they can be used only for stable measurement conditions, in which
all partial errors does not change their parameters. In such conditions, the uncertainty
can be calculated one times before the sampling instrument is used and next every
sample is characterized by the same uncertainty. In this the case, the time necessary to
calculate the uncertainty is not important. But the calculation time is critical for
the sampling instrument working in real-time if the parameters of the input signals,
i.e., its amplitude and frequency, change significantly in time. In this situation,
the uncertainty may have different values for successive samples, which causes that all
calculations connected with the uncertainty determination must be performed between
the sampling instants. In practice, the only way possible to obtain the current
uncertainty consists in using a look-up table to store selected values of the uncertainty
as a function of the measurement conditions. Calculation of the intermediate values is
performed using the linear approximation as it is illustrated by the next example.

Example 5.10. Let us take that the frequency of the input signal of the exemplary
sampling instrument varies from fmin =103 Hz to fmax = 0.1 Hz, which means that
the signal period T changes from 10 s to 1000 s. The others quantities, which influence
the measurement conditions, are stable. In Tab. 5.8, there are presented values of
the uncertainty determined in the way described above for the selected values of
the signal period.
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Table 5.8

Uncertainties of the reconstructed samples in relation to the signal period T calculated
for the exemplary sampling instrument

Ts 10 20 50 100 500 1000

Uncertainty °C 3.3 1.7 0.81 0.54 0.43 0.39

Let us take that the measured value of the period is T=72s. Using the linear
approximation of values lying between these contained in Tab. 5.8, we obtain
the uncertainty value as:
U(100)-U (50
), U(00)-U(s0),
100-50

0.54-0.81

U(72)=U(50 72-50)=0.81+ 22=0.69°C (5.187)

The value of the uncertainty determined for this period in the same way as
described in Experiment 5.13 is U = 0.67°C, which means that estimated value (5.187)
is close enough to this one obtained experimentally. The time necessary to calculate
the uncertainty accordingly with Eq. (5.187) is the same as for performing the static
reconstruction using the linear approximation.

5.8. Final remarks

As it results from Example 5.10, the method of the uncertainty determination based on
the look-up table needs only few arithmetical operations and may be performed in
real-time by a microcontroller. One should notice that these operations may be reduced
to seeking the suitable value of the uncertainty in the memory if the data stored in
the look-up table are so close that this value is read as the closest to this one that
corresponds to the measured value of signal period. In this case, other calculation are
not needed. Capacities of EEPROM memories in modern microcontrollers are so big
that there is no problem with storing many values of uncertainties in them [Y6].

If the total uncertainty is dependent both on the period of signal and its amplitude,
one may use the two-dimensional linearization method described in Chapter 3. Much
more complicated problem occurs if the signal is poliharmonic because, in this case,
the total uncertainty depends both on the amplitudes of harmonics and their beginning
phases; and, what is more, these dependencies are non-linear. This problem of
evaluation of the uncertainty can be solved by using the reductive interval arithmetic
[J15], although the calculations are numerically complex, which means that this
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method can’t be used in the real-time. However, one may use in this case the same
means as described above to make the calculations quickly enough.

The decomposed general model of error propagation presented in Fig. 5.4 can be
extended to include other errors than those described in this chapter. For example,
when a sampling instrument is used in a measurement system, additional errors may
occur due to delays in data transmission [J11]. The probabilistic description of these
errors allows them to be included in the output of the model in Fig. 5.4 and included in
the error budget of the sampling device.



6. REAL-TIME EXECUTION OF RECONSTRUCTION
BY MICROCONTROLLERS

The presented analytical forms of the reconstruction algorithms characterize very
small number of arithmetical operations, which means that they may be performed
efficiently by microcontrollers. This property also applies to neural reconstruction if
one takes into account that the transfer functions of the neurons may be approximated
by linear segments, which enables rapid realization of these functions with
the acceptable inaccuracy. Short execution times of the presented algorithms cause that
they may be performed in the real-time mode, that is, all arithmetic operations
connected with the signal reconstruction are executed between the succeeding
sampling instants. The basic question is how often the input signal may be sampled if
microcontrollers are applied to the signal reconstruction in this mode.

To evaluate the reconstruction execution time, it is useful to define a unit
arithmetic operation as the number of instructions necessary to perform one operation
by a microprocessor. This definition requires some assumptions. At first, it is assumed
that 16-bit microcontrollers are used and all operations are performed using the fixed-
-point arithmetic. This kind of arithmetic is computationally effective, and moreover, it
Is possible to use it because the coefficients of the algorithm may be stored in look-up
tables in such a form that enables obtaining accurate enough results expressed in units
of the sampled quantity. In second, results of the A/D conversion are positive integer
numbers in the binary code and arithmetic operations are performed in this code.
It enables one to evaluate the execution time of the arithmetic instructions as
approximately equal to the time of moving data. Based on these assumptions, it is
defined a unit of arithmetic operation as the sequence of three processor instructions:
move + operation + move, for which one takes that two transfers of data are needed
per one arithmetic operations. To simplify the considerations, one assumes that all
instructions are executed in the same time that is equal to one cycle of
the microcontroller.
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6.1. Execution time of static reconstruction

6.1.1. Execution time of analytical static reconstruction

Accordingly with Eq. (3.13), three arithmetical operations are necessary to obtain
the result of the analytical static reconstruction: one to determine the distance of
the working point from the node, one to multiply the distance by the inclination and
one to add the obtained result to the shift coefficient. These operations must be
preceded by two activities. The first one concerns obtaining a measurement result from
the AD converter. Taking into account that the AD converter handling can be carried
out by using an interrupt, one can evaluate it execution time as approximately equal to
one unit. The second activity consists in the determination of the node number, and it
is performed by comparing the AD indication with the nodal values, which causes
the number of comparisons to depend on the total number of nodes. One can point
the more efficient method of determination of the node number than described.
It requires a different look-up table structure than this one used in this work, namely
the even distribution of nodes along the axis of indications is necessary. In this case,
the AD converter result may be split into two parts: higher, which is used to determine
addresses of three nodal values and lower, which represents the distance from
the node. Such a splitting can be carried out by using two logical operations, so
it needs about two units. The addresses are determined in about three units.

Taking the presented analysis into account, on can set together all units necessary
to obtain one estimate of the input sample that reconstructed by using the static
algorithm. One obtains the following list:

e measurement of a value of the input signal sample by using AD converter — 1 unit,

e splitting the ADC result into the bits that represent the node number and
the distance from the node — 2 units,

e the determination of addresses of 3 node values — 3 units,

e calculation of the estimate of the reconstructed sample by using the static
algorithm according to Eq. (3.13) — 3 units.

Summing up the values of units, one obtains 9 units. Adding 1 unit to perform
other operations, we find that the number of unit necessary to reconstruct one sample
using the static algorithm is about 10. Taking into account that one unit consists of
3 instructions, and with assumption that the execution time of each instruction is 1 ps,
one obtains that the static reconstruction is performed in 3-10°1 us =30 ps, which
means that the maximum sampling frequency for the exemplary sampling instrument
performing in the real-time only the static reconstruction is about 1/30-10°° = 33 kHz.
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If the two-dimensional static reconstruction is applied, the influence quantity have
to be measured. In the exemplary sampling instrument, this quantity is measured by
the second AD converter of the microcontroller, which means that measurements of
both the input and the influence quantities are performed in parallel at the same time.
In this case, the static reconstruction requires 3 units more than the one-dimensional
reconstruction: one for determining the address of the coefficient, one for calculating
the correction and one for correcting the AD indication. Therefore, if the two-
-dimensional reconstructionis performed accordingly with the algorithm described in
Section 3.3.2, it requires 13 calculation units, which means that its execution time is
3:13'1 ps = 39 ps, i.e., the maximum sampling frequency is about 25 kHz.

6.1.2. Execution time of neural static reconstruction

Neurons in layers of artificial neural networks perform operations in parallel. It means
that to obtain a minimum execution time of the static reconstruction, we must use as
many microcontrollers as the number of neurons is applied in the hidden layer. For
the exemplary network of Fig. 3.18, 3 microcontrollers should be used. They execute
the same kinds of operation except the last that consists in addition of the output data
of the neurons. This operation is carried out by the microcontroller selected as
the main on the basis of the partial results obtained from the remaining
microcontrollers.

The main problem that must be solved if microcontrollers are used to perform
operations suitable for a neuron is caused by non-linearity of the transfer function.
The most time-efficient solution consists in using the linear approximation of
the transfer function, which requires the same calculation units as the one-dimensional
static reconstruction. As it results from considerations presented in Section 3.2.5, this
approximation requires many nodes if the nonlinearity is strong, but the number of
arithmetical operations do not depend on the number of nodes.

Based on Fig. 3.18 and taking the above into account, one may state that
the operations that perform the exemplary static reconstruction in parallel are:

e measurement of a value of the input signal sample by using ADC converter — 1 unit,

o multiplication of the indication by the suitable coefficient and addition of the result
to the bias — 2 units,

e processing this result by the transfer function using the linear approximation —

9 units,
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e multiplication of transfer function output result by the coefficient suitable for
the neuron — 1 unit,

e summing up output results of 3 neurons by the main microcontroller and connected
with addition of the bias — 4 units.

Summing up the presented above numbers of units, one obtains 15 units, which
means that the parallel execution of the one-dimensional reconstruction algorithm
using the neural network is about 50 % longer than of the analytical algorithm.

As it results from Fig. 3.38, each neuron in the hidden layer of the network that
performs two-dimensional neural reconstruction processes two measurement results.
If as many microcontrollers as the neurons are used, 2 more arithmetical units are
necessary to multiply the indication obtained for the influence quantity by the suitable
coefficient and to add the result the second input value. This means that the total
number of units is equal to 17, 4 units more than for the two-dimensional analytical
reconstruction.

6.2. Execution time of signal reconstruction

The signal reconstruction based on the Wiener model is performed in series: the static
reconstruction algorithm is executed as first, and next, the dynamic algorithm is
performed on the basis of the estimates obtained from the static reconstruction. Thus,
the execution time of the signal reconstruction is the sum of the times at which
the static and dynamic algorithms are executed.

Accordingly with Eq. (4.51), the first-order dynamic reconstruction requires
3 units: 2 for making the multiplications plus 1 for the addition. If the reconstruction is
realized accordingly with the second-order dynamic algorithm described by
Egs. (4.52) and (4.53) — 6 operations of addition and 4 of multiplication are required,
which gives 10 arithmetic units.

Summing up the presented considerations, we obtain that the different
combinations of the exemplary signal reconstruction algorithms require the following
number of units:

o the analytical one-dimensional static algorithm + 1-st order dynamic algorithm —
9+ 3= 12 units,
o the analytical two-dimensional static algorithm + 1-st order dynamic algorithm —

12 + 3 = 15 units,



230

o the analytical one-dimensional static algorithm + 2-nd order dynamic algorithm —
9+ 10 = 19 units,
¢ the analytical two-dimensional static algorithm + 2-nd order dynamic algorithm

12 +10 = 22 units,

e the neural one-dimensional static algorithm + 1-st order dynamic algorithm

15 + 3 = 18 units,

e the neural two-dimensional static algorithm + 1-st order dynamic algorithm

17 + 3 = 20 units,

o the neural one-dimensional static algorithm + 2-nd order dynamic algorithm —
15+ 10 = 25 units,
o the neural two-dimensional static algorithm + 2-nd order dynamic algorithm —

17 +10 = 27 units.

As it results from the presented list, the number of the units required to perform
the signal reconstruction in the conditions considered in this book does not exceed 27.
Taking into account that the execution time of the unit takes 3 instructions, this
number of units needs 27-3 1 us = 81 ps. Taking other operations needed into account,
one can evaluate the execution time as about 100 ps. This means that the maximum
sampling frequency of the instrument working in real-time mode o is about
1/(100-10%) = 10 kHz. This frequency is limited exclusively by the execution time of
mathematical operations necessary to obtain the estimate of the input sample for
the execution time of one instruction by the exemplary microcontroller. However, if
we take into account that the instrument processes varying over time signals, the
suitable number of samples per one period must be performed to obtain the required
uncertainty of the estimate, which is connected with property of the discretization
error. As resulted from the considerations presented in Chapter 4, for the first order
dynamic converter, about 100 samples per the period is needed to obtain about 1 %
uncertainty related to the measurement range. In this case, the maximum frequency of
the sinusoidal signal is about 10°10%100 = 100 Hz. This frequency is limited
exclusively by properties of the mathematical tools used to perform the reconstruction
in the considered conditions.

6.3. Real-time calculation of uncertainty

A single sample of the instrument input signal is treated as the measurand, which
means that the result of the reconstruction is expressed in the form of the interval,



231

which is presented in Chapter 1. The radius of this interval is described by the defined
uncertainty. If the sampling instrument works in stable measurement conditions,
the uncertainty is the same for each sample, thus, the uncertainty can determined only
once as the result of the error analysis. However, for changing conditions,
the uncertainty must be calculated dependently of the their actual state. Quantities that
substantially affect measurement results are contained in the measurement model as
influence quantities. Embracing these quantities by the model means that the suitable
errors that burden the results are eliminated from them as an effect of
the reconstruction. However, there are parameters of the measurement conditions
which do not affect measurement results, but they influence on the instrument
inaccuracy. In this situation, the uncertainties of the reconstructed samples should
be calculated based on values of these parameters.

It results from considerations presented in Chapter 5 that two parameters of
the reconstructed signal mainly influence the uncertainty of the estimates obtained:
the frequency and the amplitude of the signal. Both parameters can be calculated based
on the samples reconstructed for at least one signal period. These calculations are
performed with assumption that these parameters change in time relatively slowly,
therefore, a value of the parameter determined for the current period may be used in
the next. Taking this into account, one can state that the calculations of these
parameters may be performed in background of the reconstruction execution.
The signal period may be determined by countering the samples, while the amplitude
as the maximum value of them in the period, which means that these calculations do
not consume essential part of the microcontroller time.

The basic way of the sampling instrument adjustment to the signal amplitude
variations consists in suitable changes of the amplification coefficient of the amplifier
working in the analog part of this instrument. It causes the parameters of the linear
approximation of the static characteristic to be changed dependently on the coefficient
value. The fastest way of obtaining the suitable parameters is to store them in a look-up
table for every values of the amplification coefficient and use the actual parameters to
perform the reconstruction.

Variations of the signal frequency are important from properties of the dynamic
algorithm point of view because, for the constant sampling frequency, the number of
samples in the signal period changes. This causes in turn the discretization error to
change, which may influence significantly the uncertainty of the reconstructed
samples. We have two ways to proceed in this situation. The first consists in using
a look-up table to store the selected values of uncertainty dependently on
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the frequency values to use them as in Example 5.7 to calculate the current value of
the uncertainty. The essence of the second way is to change the sampling frequency so
that the uncertainty is constant. This way needs suitable changes of parameters of
the dynamic algorithm, the current values of which may be determined with using
look-up tables. Such a working mode of the sampling instrument can be considered as
adaptive [G2].
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ERROR ANALYSIS OF ANALYTICAL AND NEURAL REAL-TIME
RECONSTRUCTION OF ANALOG SIGNALS

Summary

This monography is devoted to signal reconstruction by a sampling instrument, which
can operate autonomously or be an element of a measurement and control system.
The reconstruction consists in calculation of the input signal sample values based on
quantized signal samples at the output of the analog part of the device, assuming that
this signal is burdened by dynamic errors and errors caused by the nonlinearity of
analog processing. The book considers the reconstruction algorithms that can be
implemented in real time by microcontrollers, which means that all calculations are
performed in the period between successive sampling instants. Two types of
the algorithms are analyzed: analytical, whose parameters are specyfied as
programming constants, and neural, implemented using artificial neural networks and
learned during the identification of analog processing parameters. The reconstructed
samples must have the required accuracy, which in the book is expressed
quantitatively by the uncertainty interval of the sample estimate of the input signal.
The main goal of the book is to analyze errors in the reconstruction process, on
the basis of which a model of error propagation in the sampling instrument is created.
The uncertainty interval is determined based on the distribution of the instrument
output error using the proposed mathematical apparatus adapted to the algorithmic
processing of measurement data.



ANALIZA BLEDOW ANALITYCZNEGO I NEURONOWEGO
ODTWARZANIA SYGNALOW ANALOGOWYCH W CZASIE
RZECZYWISTYM

Streszczenie

Monografia ta poswigcona jest odtwarzaniu sygnatu przez przyrzad probkujacy, ktory
moze dziala¢ autonomicznie lub by¢ elementem systemu pomiarowo-sterujgcego.
Odtwarzanie to polega na obliczaniu warto$ci probek sygnatu wejsciowego na
podstawie skwantowanych probek sygnalu na wyjsciu czesci analogowej przyrzadu,
przy zatozeniu ze sygnal ten obarczony jest bledami dynamicznymi 1 bledami
powodowanymi nieliniowo$cig przetwarzania analogowego. W monografii rozpatry-
wane sg takiego rodzaju algorytmy, ktore mogg by¢ realizowane w czasie rzeczy-
wistym przez mikrokontrolery, co oznacza, ze wszystkie obliczenia wykonywane sg
w okresie migdzy kolejnymi chwilami probkowania. Analizowane s3 wlasciwosci
dwojakiego rodzaju algorytméw: analitycznych, ktérych parametry okreslane sg jako
state programistyczne, oraz neuronowych, realizowanych przy uzyciu sztucznych sieci
neuronowych i uczonych w trakcie identyfikacji parametréw przetwarzania analogo-
wego. Odtwarzane probki musza cechowaé si¢ wymagang doktadnoscig, ktora
w monografii wyrazana jest iloSciowo za pomoca przedziatlu niepewnosci estymaty
probki sygnatu wejSciowego. Gléwnym celem pracy jest analiza btedéw procesu
odtwarzania, na podstawie ktorej tworzony jest model propagacji btedu w przyrzadzie
probkujacym. Wyznaczanie przedziatu niepewnosci realizowane jest na podstawie
rozktadu btedu wyjsciowego przyrzadu przy uzyciu zaproponowanego aparatu
matematycznego dostosowanego do algorytmicznego przetwarzania danych
pomiarowych.
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