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INTRODUCTION 

Many modern digital instruments are designated for delivering suitably accurate 

samples of varying in time measuring signals – they are called sampling instruments 

[J14]. Such signals are deformed by the analog parts of the instruments [J14, M2] 

because of both nonlinearities of converters and the dynamic properties of them.  

For this reason, the samples of the signal obtained in the output of the analog part of  

a sampling instrument can differ substantially from the suitable instantaneous values 

of the input signal. The aim of the signal reconstruction is to process the output 

samples of the analog part in such a way as to obtain enough accurate values of  

the samples of in the instrument input [J14, M3, M4]. 

In a sampling instrument, an analog input signal is usually converted to a voltage, 

which is sampled, and then the values of the samples are measured by an analog-to- 

-digital (AD) converter [J14]. The obtained digital results are processed by  

a microprocessor or a microcontroller accordingly with static and dynamic 

reconstruction algorithms oriented to achieving minimum calculation times. This 

enables real-time work of the instrument, which means that all calculations are 

performed in the time between successive sampling instants. This causes a sampling 

instrument to deliver in its output samples of the input signal with a frequency that 

depends on the instrument sampling period.  

We can point to two basic ways of building the reconstruction algorithms 

dependently on mathematical tools used to model metrological properties of analog 

converters of the instruments. The first way, called analytical, consists in determining 

expressions that are directly coded as programs performed by a processor [J9, S3].  

The parameters of the expressions are determined on the basis of measured data 

obtained during an identification process of the analog conversion model. The second 

way basis on properties of artificial neural networks, parameters of which are 

determined in a learning process of them by using these data [C1, C2, R5, R7].  

The basic difference between these ways consists in obtaining the models: a neural 

network builds them themselves, while parameters of expressions that create the model 

are coded by a programmer.  
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It should be noticed that both mentioned ways considered here are performed, in 

the final stage, by a processor because activity of the neural networks is treated in this 

book as execution of a suitable program. In the real-time mode, the execution time of 

the reconstruction program should be as short as possible, which can be achieved in 

practice by applying linear segmental approximations of nonlinear functions and using 

look-up tables to store their parameters [R10, S4, W1]. This method is usable for both 

considered types of reconstruction algorithms because it enables the neural 

reconstruction by using microcontrollers. 

The presented algorithms are limited to the simplest numerical forms, not only to 

enable their realization in real-time. The second reason, even more important, is 

connected with analysis of inaccuracy of the algorithms – simple forms of the algorithms 

make error analyzing easier and more transparent from these error propagation points 

of view [J9]. The method of the error description is independent of the forms of  

the algorithms; therefore, conclusions from the error analysis carried out for a simple 

reconstruction algorithm can be applied for every kind of it.   

Reconstruction is carried out on signals in the digital form obtained as an effect of 

sampling and quantization of analog signals [J14, M2]. It means that the properties of 

the AD converter, being the measuring component of the sampling instrument, impose 

a definition of a measurement error. The definition used for the error analysis is based 

on the description of a measurement as a quantization process considered in 

probabilistic categories [J7, J9]; thus, all errors of the reconstruction are treated as 

random. The influence of errors on the inaccuracy of the sampling instrument is 

described by an uncertainty considered here as the parameter of a set of error values 

[J1, J10]. Based on the reconstructed value (estimate) of the input sample and  

the uncertainty, representation of the sample (being a measurand [Y2], [M5]) in a form 

of a numerical interval, called here an interval of a measurand, is proposed in Chapter 1. 

The inaccuracy is interpreted as a property of a measuring instrument, which points 

out that a measurement result differs from a true value of a measured quantity  

(a measurand). Therefore, the inaccuracy characterizes the instrument qualitatively –  

it measures better if its inaccuracy is lower. To describe the inaccuracy quantitatively, 

one uses uncertainty [Y1] being a probabilistic measure of the error defined as 

adifference between a true value of a measured quantity and its estimate obtainedas  

a result of a suitable measurement process. 
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Due to the specificity of the errors that arise in the reconstruction process,  

the general model of the analog conversion in the sampling instrument is decomposed 

into two parts: static and dynamic, discussed in Chapter 2. In the same chapter, based 

on the decomposed models, fundamentals of static and the dynamic reconstruction are 

considered.  

The static and dynamic reconstruction algorithms are presented in Chapters 3 and  

4 for both analytical and neural forms of the algorithms. To discuss the metrological 

properties of the algorithms, an exemplary sampling instrument is used, which is 

dedicated to measuring instantaneous values of temperature that varies under time in 

industrial conditions. Theoretical considerations are illustrated by examples that show 

practical aspects of applications of sampling instruments. The results of probabilistic 

experiments carried out using Monte Carlo method [K4] to determine error 

distributions are the basis for analysis of factors that influence inaccuracy of  

the exemplary sampling instrument.  

The propagation of errors from the input to the output of the instrument is 

described in Chapter 5 on the basis of the error propagation model, which enables 

tracking changes in distributions of different kinds of errors during the processing of 

measurement data by the reconstruction algorithms. The final effect of the application 

of the error propagation model is its use in calculating the uncertainty of  

the reconstructed signal samples obtained in the instrument output. 

The last Chapter 6 is devoted to analysisof the execution time of the reconstruction 

algorithms by microcontrollers that realize them both in the programmed and neural 

forms. The analysis results make it possible to evaluate their usefulness for the real- 

-time reconstruction for varying in time analog signals. 



 



 

1. MEASUREMENT PROCESS IN SAMPLING INSTRUMENT 

Generally, a signal reconstruction is that kind of the measurement process which 

consists in determination of the signal at the input of an instrument on the basis of  

the measurement results of the signal at the output of its analog part [J9, M4].  

The reconstruction performed by a sampling instrument is carried out in a digital way,  

i.e. instantaneous values (samples) of the instrument input signal are calculated on  

the basis of measurement results being indications of an AD converter, which 

measures samples of the signal after its conversion by the analog part of  

the instrument. The general structure of the sampling instrument is shown in Fig. 1.1.  

Sampler
AD 

Converter
 

Sensor 

Conditioning 

Circuits

Digital processing 

Analog conversion Digitalization Reconstruction

)( kty
)(ty)(tx )(ˆ

ktx)( kq tn

 

Fig. 1.1. General structure of the sampling instrument 

As presented in Fig. 1.1, the sampling instrument consists of three parts. The first part 

performs the analog conversion of the input analog signal x(t), varying in time t, into 

the electrical signal y(t) (usually a voltage or a current). For this purpose,  

the appropriate sensor and signal conditioning circuits are used. In the second part, 

digitalization of the signal y(t) is carried out, which consists in sampling the signal y(t) 

and next, in quantization of the samples by an AD converter. The sampling is 

performed at instants tk = kT, where k is the sample number, T the sampling period. 

The quantization result of the sample y(tk) is obtained in the form of an indication 

nq(tk), which determines the number of quanta assigned to the sample y(tk) [J5, J9].  

In the last part of the sampling instrument, the estimate )(ˆ
k

tx  of the instantaneous 

value (sample) of the input signal at the instant tk is calculated by using areconstruction 

algorithm, which uses one indication or a sequence of them to obtain one estimate. 



14 

Asampling instrument can be used as an element of a measuring system and as an 

individual device. In both applications, it can work in batch mode or in real-time 

mode. In batch mode, a sequence of indications is collected at first and, at any time, 

they are used to reconstruct a sequence of the input signal samples. In the real-time 

mode, the instrument aims at current delivering accurate enough estimates of the input 

signal samples on the basis of the measurement results of the samples [R7].  

If asampling instrument works in real-time, it repeats its activity between succeeding 

instants tk and tk+1, i.e. in the sampling period T. Independently of the mode,  

the obtained estimates have to be treated as measurement results of the input samples. 

This means that values of the estimates have to be close enough to the suitable true 

values of the input signal samples, and this property should be described quantitatively 

in categories of inaccuracy. In [Y1] a measurand is defined as “specific quantity 

subject to measurement”. Accordingly with this definition, one input sample is treated 

in this book as the measurand. The measured (input) quantity of the sampling 

instrument is represented by a series of samples, the estimates of which are results of 

the reconstruction. The inaccuracy of every reconstructed sample is described by its 

uncertainty interval calculated on the basis of errors that burden the estimate [J10]. 

A value of the estimate and the uncertainty interval determine an interval of  

the measurand, which is a probabilistic representation of the input sample after its 

measurement on principle of the reconstruction.  

1.1. Error of measurement result 

A single realization of a reconstruction procedure results in obtaining one estimate  

of the input signal sample. This estimate is defined as a number that is the closest  

to true value of the input signal sample under the measurement conditions, in which  

the sampling instrument works. Such a definition means that the errors that burden  

the estimate take the lowest values possible to obtain under the assumption that all 

errors described deterministically are corrected (eliminated). This correction causes 

that the remaining errors of the estimate are of random nature. To make their values as 

low as possible, it is necessary to remove the constant component from the set that 

contains the error values. The set without this component is the basis of determination 

of the uncertainty interval, which expresses quantitatively the inaccuracy of every 

estimate obtained as a result of the signal reconstruction.  
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As in Fig. 1.1, all measurement results used for the signal reconstruction are 

obtained from an AD converter; thus, considerations dealing with a description of  

the errors that arise during the reconstruction should be based on analysis of  

the metrological properties of the AD conversion. The AD converter, considered as  

a measuring instrument, compares the measured quantity with a standard, which is 

built from quanta which are elementary standards with the same values considerably 

less than the range of the converter [J9]. A simple way of the quantization analysis, 

representative of all AD converters, can be presented on an example of the flash AD 

converter shown in Fig. 1.2, which is often applied to measure high-frequency signals.  

q

q

q

q

q

q

 

Fig. 1.2. General scheme of flash AD converter  

The flash AD converter compares instantaneous valuesof the input voltage signal y 

with the set of quanta obtained as drops of the voltages on the resistors connected in  

the chain. The resistors with the same nominal values Rq are supplied by the accurate 

current source Iref. The state of set of the electronic comparators denoted as C is 

determined at the output of the AD converter as the number nq of quanta assigned to 

the instantaneous current value (sample) of y. 

Generally, based on the presented example, one defines the quantization as 

comparing the measured quantity with the standard composed of quanta that are a set 

of elementary standards, the values of which are the same and significantly less than 

the quantizer measuring range. The quantized signal is denoted here as y (see Fig. 1.2). 

For varying in time signals, their physical carriers are, as a rule, voltages (as in  

the exemplary AD converter) or currents [J9]. 
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The mathematical model of quantization, which describes the relationship between 

the number nq obtained as the result at the output of the AD converter and the sample 

value of the signal y (sampling instant is not taken into account), can be written as: 









=

q

y
n

q
ent              (1.1) 

where the symbol “ent” denotes the function “entier”, the value of which is equal to 

the integer part of its argument, q is the quantum value. Multiplying number nq by  

the value of q, one obtains the row result of the quantization (measurement): 

qnqy =


           (1.2) 

Example 1.1. Let us take that the standard of the exemplary AD converter consists of 

Nq = 28 = 256 resistors having the same value Rq = 100 Ω and supplied by  

the reference current Iref = 100 μA. This means that the quantum value is: 

q = IrefRq = 100·100·10−6 = 0.01 V and the voltage range of the converter is from 0 to 

Nq·q = 256·0.01 = 2.56 V. If the true value of the sample is equal, for example, 

y = 1.577 V, the number obtained as the quantization result is: 

157
01.0

1.577
entent =








=








=

q

y
nq  

In this case, the row measurement result takes the value: 

V57.115701.0 === qnqy


 

Analyzing the scheme from Fig. 1.2, one can state that the quantization result points 

out the maximum number of quanta, the sum of which is less than the value of  

the measured quantity (sample). This means that the true value of the measured 

quantity y meets the inequality: 

 ( )qnyqn
qq

1+  (1.3) 

The effect of the quantization process described by the expression (1.3) can be 

graphically illustrated as shown in Fig. 1.3. 

 

Fig. 1.3. Graphical interpretation of a quantization result 

y 

0            q           2q      …        nq             nq+1 

R 
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Accordingly with inequality (1.3), the real (true) value y of the quantized quantity is in 

the interval: 

 ( ) qnqny
qq

1, +=


 (1.4) 

containing the real numbers R. It means that the quantization process assigns  

the interval of real numbers (1.4) to the true value y of the measured quantity.  

The number nq describes the row measurement result obtained by using an AD 

converter; however, one should emphasize that the mathematical model of this result 

takes the form of the interval (1.4). Based on Eq. (1.2), this interval may be written as: 

    qyqyyy ,0, +=+=


 (1.5) 

Inequality (1.3) can be converted to the form:  

 qqny
q
−0  (1.6) 

and, after introducing Eq. (1.2) to it, written as: 

 qyy −


0  (1.7) 

Inequality (1.7) is very important from error analysis point of view because, based 

on it, the definition of the measurement error e can be obtained. Although this 

definition is derived from the mathematical description of the quantization, it is of 

universal character and can be used for every measurement result. From (1.7), we 

have:  

 yye


−=  (1.8) 

which means that the measurement error in the considered case is defined as  

the difference between a true value y of the measured quantity and the value y


 

obtained as a row measurement result of y. 

The conception of error is commonly used in measurement practice to describe 

inaccuracy of measurements both in the phase of planning measurement experiments 

and in the analysis of metrological properties of the obtained results. One should 

emphasize that the definition (1.8) can be used not only in the second case, i.e. after  

a measurement realization but also for the error analysis as illustrated by Experiments 

1 and 2. 

Accordingly with Eqs. (1.7) and (1.8), the values of the quantization error are 

somewhere between 0 and q; therefore, these values determine the limits of  

the interval in the form of Eq. (1.5). It means that definition (1.8) suggests description 

of a measurement result in the interval form, as it is presented in Section 1.2. 



18 

Realizations of measurement error can be described in different ways depending on 

their applications. A deterministic description is very useful in the case where  

a relationship between the error and the measured quantity or another quantity being  

a source of this error is considered. For example, properties of the quantization error, 

which, accordingly with Eqs. (1.1), (1.2) and (1.8), are described by the deterministic 

equation: 









−=−=−=

q

y
qyqnyyye

q
ent

q


   (1.9) 

and, in the graphical form, can be presented as in Fig. 1.4. 

 

Fig. 1.4. Dependence of quantization error eq on the measured quantity y expressed in values of 

quantum q determined for 8 beginning values of the standard with the quantum structure  

The relationship between y and eq presented in Fig. 1.4 shows that the values of  

the quantization error are strictly connected to the quantum structure of the standard. 

Such a deterministic description of the error as in Fig. 1.4 is useful for carrying out 

analysis of the measurement process before its realization. To describe an error after 

performing a measurement, the best way is to determine the dependence of  

the frequency of the error occurrence in relation to the error values. One obtains a set 

of possible values of the error in selected measurement conditions, which is here called 

as the set of error values. It contains information about frequency of occurrence of an 

error values that can burden a measurement result. 

There are two ways of obtaining the set of error values: deterministic and 

probabilistic (statistical). The basis of the first way is such a deterministic function as 

presented in Fig. 1.4, which is a dependence of the error on the measured quantity.  

The second way consists in carrying out a physical (measurement) or a simulation 

experiment to obtain a representative set of error values. This way is usable if 

deterministic characteristics of an error are difficult to obtain in real physical 

conditions, which causes that the most effective tool to determine the set of error 

values consists in carrying out a probabilistic simulation using Monte Carlo method.  

Both ways are presented on examples described in the following experiments 

performed for the exemplary AD converter. 
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Experiment 1.1. Let us use the characteristic of Fig. 1.4 to determine the set of 

quantization error valuesof the AD converter described in Example 1.1. Taking into 

account that the error values change periodically (the period is equal to the quantum 

value q = 0.01 V) one can use only one period to achieve this aim. Determining, in  

the interval from 0 to q, 100,000 points uniformly distributed and then, calculating  

the error values for these points, one obtains the set of values which, in histogram 

form, is shown in Fig. 1.5a with the assumption that the number of histogram classes 

is equal to 100. 

Experiment 1.2. Let us take the Monte Carlo method to determine the set of  

the quantization error values. The experiment was carried out in 100 000 steps with  

the assumption that the input voltage of the exemplary AD converter is sampled 

randomly in the AD converter range from 0 to qˑ28 = 0.01ˑ256 = 2.56 V. In every step, 

first, a value of the input quantity y is taken from the ADC range with the assumption 

that all values have the same probability, i.e., the population of these values is 

described by the rectangular distribution. Every value of y is quantized accordingly 

with Eq. (1.1); next, the error value is calculated with using Eq. (1.9) and is located in 

the set of  the quantization error values. After the experiment, the obtained set of error 

values is shown in Fig. 1.6b in the form of a histogram. 

a)       b) 

 

Fig. 1.5. Histograms of the quantization error of the exemplary AD converter obtained: a) in the 

deterministic way, b) by using the Monte Carlo method 

The histograms, both this one from Fig. 1.5a and Fig. 1.5b, describe the same set  

of error values, although these histograms have been obtained in different ways:  

the first one in the deterministic way and the second in the probabilistic. From  

the measurement practice point of view, these histograms differ in non-essential 
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degree. Moreover, both histograms determine the frequency of the error occurrence; 

therefore, they can be interpreted as discrete representations of probability density 

functions. This means that a distribution of a set of error values can be described in  

a discrete form by a histogram or in an analytical form by a probability density 

function, which can be treated as an estimate of the suitable histogram. 

The determination of a probability density function of an error can be performed on 

the basis of the histogram, as this from Fig. 1.6, or in an analytical way. Every 

probability density function g(e), i.e. of any error e, has to fulfill the normalizing 

expression [P1], accordingly with which we have: 

 ( ) 1=


−

eeg d  (1.10) 

For the rectangular distribution, as results from Fig. 1.5, the probability density 

function of the error eq is constant in the interval from 0 to q and equal to zero outside 

these limits. Denoting this constant value as a, one obtains on the basis of (1.10) that: 

 1
0

=
q

ea
q

d  (1.11) 

from which it is: 

 1=aq  (1.12) 

Therefore, we have:  

 
q

a
1

=  (1.13) 

The probability density function determined for the quantization error in the 

presented analytical way is shown in Fig. 1.6. 

 

Fig. 1.6. Probability density function of  the quantization error presented in Fig. 1.4 

As result from Fig. 1.5a, the error can be treated as random, even if the basis of such  

a perception comes from its primary description, which is deterministic. In 

measurement practice, a quantization result is burdened by errors connected with 
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several physical phenomena of random character, mainly by noise. It causes one to 

assume that for further considerations all measurement errors are described in 

probabilistic categories, which means that every error is expressed by its realizations 

taken randomly from the set containing possible values of the error. 

The row measurement result is not the best representation of the true value of  

the measurand because the error burdening this result may contain systematic 

components, which increases absolute values of the error [J12]. This component can be 

eliminated from the row result by subtracting a correction from every value of the error. 

From Eq. (1.8), which definesthe error of the row measurement result ŷ , it results 

that the measurand may be described in the form of the equation: 

 
row

eyy +=


 (1.14) 

where, in place of the general error symbol e, the error erow of the row result is used. 

After introducing the correction c to Eq. (1.14), we have: 

 cecyy −++=
row


 (1.15) 

The expression: 

 cee −=
row

 (1.16) 

that describes the error without the systematic component takes the least absolute 

values. It means that the corrected measurement result ŷ  burdened by this error is 

closest to the true value from all that are possible to obtain in selected measurement 

conditions. Accordingly with Eq. (1.15), the corrected result ŷ  is such an estimate of 

the measurement result, which is described as: 

 cyy +=


ˆ  (1.17) 

The systematic component c of the random error erow is defined as the expected 

value: 

 ( )
row

eEc =  (1.18) 

where the population of this error is represented by the set of the error values.  

If the probability density function g(erow) is known, the expected value is defined as: 

 ( ) ( )


−

=
rowrowrowrow

deeegeE  (1.19) 
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For the set with limited error values, the expected value is estimated by the average 

value: 

 ( ) ( )
=

=
N

i

ie
N

eE
1

1ˆ
rowrow

 (1.20) 

where erow(i) is a realization of the error, i is the number of the error values in the set,  

N is the total number of the error values and N . 

Example 1.3. Calculating the expected value of the quantization error described by  

the probability density function of Fig. 1.6, we have: 

 ( ) ( )
20

q
e

q

e
eeegeE

q

=== 


−

q

q

qqqq
dd  (1.21) 

For the AD converter described in Example 1.1, the expected value (1.21) of  

the quantization error is equal: q/2 = 0.01/2 = 5·10−3 V. The same value one obtains on 

the basis of Eq. (1.20) after using it for calculation of the average value of the error in 

the form of the histogram presented in Figs. 1.6a or 1.6b.  

Accordingly with Eq. (1.16), elimination of the systematic component from a set of 

error values consist in subtraction the expected value from all realizations of the error. 

Subtracting the value (1.21) from each value of the error with the distribution 

described by Fig. 1.6, we obtain the symmetrical probability density function shown in 

Fig. 1.7. The absolute values of this error are in the interval from – q/2 to q/2 and they 

have minimal values among those that are possible to obtain if measurements using an 

AD converter are performed for the quantum value equal to q.  

 

Fig. 1.7. Distribution of the quantization error after correction of the systematic component 

Accordingly with Eq. (1.21), the correction appropriate for the row quantization error 

is c  = E(eq) = q/2, which means that the estimate (1.17) of a single quantization result 

is expressed as: 
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 (1.22) 

Analysis of this expression leads to the conclusion that the correction of  

the quantization results can be done both by adding 0.5 to an AD converter indication 

and by introducing the correction c to the row quantization result. 

From Eqs. (1.15), (1.16) and (1.17), it results that the error of the corrected result is 

defined as: 

 yye ˆ−=  (1.23) 

i.e. as the difference between a true value of a measurand and its estimate devoid 

systematic components. First of all, this definition is the basis for determining  

the uncertainty of a single measurement result, which is presented in the next section.  

The sampling instrument delivers in its output a sequence of the estimates 

dedicated for sampling instants tk, k is the number of the sample, k = 0, 1, .... Based on 

Eq. (1.23), the error burdening the estimate at instant tk is described as: 

 ( ) ( ) ( )
kkk

tytyte ˆ−=  (1.24) 

The probabilistic description of this error maybe the same for subsequent samples or 

change if measurement conditions under which the sampling instrument works vary 

over time. 

The error definition (1.24) is widely used in the analysis of errors that burden  

the estimate. But for the analysis of dynamic errors, it is necessary to describe 

quantities as functions of time. In these cases, the error is defined in deterministic 

categories in the analog form as:  

 ( ) ( ) ( )tytxte −=  (1.25) 

where x(t) is the input signal of a converter and y(t) is its output signal. In this 

definition, the input signal represents true values of the converted signal, while  

the output signal represents the values that can be potentially measured. Every signal is 

described as functions of time t. 

The deterministic form (1.25) of the error can be the basis of its probabilistic 

description. To obtain such a description, one uses the Monte Carlo method. The error 

is randomly sampled in its period, and the obtained samples are located in the set of 

error values, on the basis of which probabilistic parameters of the uncertainty interval 

are calculated.  
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1.2. Determination of measurand interval 

Distribution of the total error contains complete probabilistic information about 

inaccuracy of the measurand estimate; thus, it should be the basis of determination 

such a kind of parameter which describes this inaccuracy quantitatively in probabilistic 

categories. The commonly used parameter is defined in [Y1] as uncertainty of 

measurement understood as “a parameter, associated with the result of a measurement, 

that characterizes the dispersion of the values that could reasonably be attributed to  

the measurand”. In a sampling instrument, the measurand is a single sample of  

the reconstructed signal, which is expressed by its estimate obtained as a result of  

a single performance of a reconstruction process. The probabilistic properties of  

the estimate are described by an uncertainty interval which is determined on the basis 

of set of the total error values. This means that uncertainty of a reconstruction result is 

treated in this book more widely than in the mentioned definition. Such an approach is 

connected with the fact that characteristics of some elements of the sampling 

instrument can be nonlinear which causes non-symmetrical distributions of some 

errors. If nonlinearity is significant, the inaccuracy cannot be expressed by one 

parameter of the error set.  

In general, independently of the symmetricity of the error distribution, the error 

influence on the inaccuracy of the estimate is described as the uncertainty interval 

[J7, J10] that is defined as such a set of real numbers, which contains the true value of 

the measured quantity y with a given probability determined by the confidence level p. 

The uncertainty interval is built in relation to the known estimate, which means that 

the definition of this interval may be formally written as follows: 

 ( )  puyyu =− ˆP  (1.26) 

where P denotes probability, uu and  are the limits of the uncertainty interval, low 

and high, respectively. Accordingly with this definition, the probability of occurence 

in the interval the difference between the mesurand value and its estimate is equal to p.  

The difference in round brackets of the expression (1.26) defines the measurement 

error (1.8), which means that the limits of the uncertainty interval can be determined as 

parameters of the error distribution. Assuming that the error values outside  

the uncertainty interval on the left and on the right are probable at the same level p/2, 

one can calculate the lower limit of the interval as: 
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 ( )
2

1 p
eeg

u
−

=
−

d  (1.27) 

and the upper one as: 

 ( )
2

1 p
eeg

u

−
=



d  (1.28) 

where g(e) is the probability density function of the error. 

From expression (1.26), it results that inequality: 

 ( ) uyyu − ˆ  (1.29) 

is fulfilled with probability p. After conversion of inequality (1.29), one obtains  

the expression: 

 yuyyu ˆˆ ++  (1.30) 

on the basis of which the measurand interval is defined as:  

    uyuyyyy ++== ˆ,ˆ,


 (1.31) 

This interval contains the true value of y with probability p; thus, it can be treated as 

the interval representation of the measurandy after performing its measurement and 

calculating the estimate of the measurement result. 

The interval (1.31) can be expressed as: 

  uuyy ,ˆ +=


 (1.32) 

which means that it is the sum of the estimate and the interval: 

  uuu ,=


 (1.33) 

called an uncertainty interval. Taking the above into account, expression (1.32) can be 

interpreted as an interval model of a measurand after its measurement. In this model, 

the uncertainty interval (1.33) describes inaccuracy of the estimate .ŷ  

Example 1.4. Let us determine the measurand interval of the voltage sample quantized 

by the AD converter in the way described in Example 1.1. The exemplary row 

measurement result is: V57.1=y


 and the quantum value q = 0.01 V. To obtain  

the estimate of the measurand that is the true value of the voltage sample, one should 

correct this result by adding to it the expected value of the quantization error which, 

accordingly with Eq. (1.21), is equal: c = q/2 = 0.01/2 V = 0.005 V. After the correction, 

the estimate takes the value: 

V575.1005.057.1ˆ =+=+= cyy
                                 (1.34) 
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The probability density function of the quantization error, shown in Fig. 1.7, is 

described as: 

( )







−

=

casesother  in the0

22
for        

1 q
q

q

qeg

                                  

(1.35) 

The lower limit of the uncertainty interval, determined for the function (1.35) 

accordingly with Eq. (1.27), is calculated from the equation: 

2

11

2

p
e

q

u

q

−
=

−

d                                                (1.36) 

For the commonly used value of the confidence level p = 0,95 and the quantum value 

equal to q = 0.01 V, one obtains from expression (1.35) that the value of the lower 

limit is: .V31075.4 −−=u  The higher limit calculated in the same way on the basis of 

expression (1.28) has the value: .V31075.4 −=u  Therefore, the uncertainty interval 

is described as:  

    V31075.4,75.4, −−== uuu


 

thus, the measurement result expressed as the measurand interval has the form: 

   V57975.1,57025.1V1075.4,75.4575.1ˆ 3 =−+=+= −uyy


 

In addition to the described limits, two other parameters can be used to characterize an 

interval [N1]. The first one, called the middle of the interval, is defined as: 

 ( )
2

yy
y

+
=


mid  (1.37) 

and the second, the radius, as: 

 ( )
2

yy
y

−
=


rad  (1.38) 

Based on Eq. (1.31) and the definitions (1.35) and (1.36), one can write that: 

 ( ) ( )uy
uu

y
uyuy

y


midˆ
2

ˆ
2

ˆˆ
mid +=

+
+=

+++
=  (1.39) 

and: 

 ( ) ( )u
uuuyuy

y


rad
22

ˆˆ
rad =

−
=

−−+
=  (1.40) 

From Eq. (1.40), it results that the measurand interval and the uncertainty interval have 

the same radiuses.  
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For the symmetrical distribution of the error as in Fig. (1.7), the absolute values of 

the limits of the uncertainty interval are the same (see Example 1.4). Denoting these 

values as: 

 uuu ==  (1.41) 

and taking into account that it is:  

 uuu =−=  (1.42) 

we have, from Eq. (1.39), that the middle of such a symmetrical measurand interval is: 

 ( ) y
uyuy

y ˆ
2

ˆˆ
=

−++
=


mid  (1.43) 

and, from Eq.(1.40), its radius is: 

 ( )
( )

u
uyuy

y =
−−+

=
2

ˆˆ
rad  (1.44) 

This means that, for the symmetrical error, the middle of the measurand interval is 

equal to the estimate ŷ  of the true value and the radius of this intervalis equal to u. 

Thus, the measurand interval can be written as: 

    uuyuyuyy ,ˆˆ,ˆ −+=+−=


 (1.45) 

The measurand interval (1.45) is described by two parameters: the estimate ŷ  and 

the uncertainty u which, accordingly with [Y1] can be called an uncertainty of  

a measurand. From Eq. (1.45), we see that the radius of the uncertainty interval is: 

 ( )
( )

u
uuuu

u =
−−

=
−

=
22


rad  (1.46) 

in the case considered. The middle of the interval takes the value: 

 ( ) 0
22

=
+−

=
+

=
uuuu

u


mid  (1.47) 

For the symmetric error, the expression (1.26), which defines the uncertainty 

interval, can be written as the following expression: 

 ( )  puyyu =−− ˆP  (1.48) 

which means that the uncertainty can be calculated on the basis of the probability 

density function g(e) by solving the functional:  

 ( ) peeg
u

u

=
−

d  (1.49) 
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Example 1.5. Using the functional (1.49) to determine the uncertainty for  

the quantization error distribution presented in Fig. 1.7, one obtains the expression: 

pe
q

u

u

=
−

d
1

 

on the basis of which it is: 

p
q

u
2

=  

The confidence level most commonly used is p = 0.95 [Y1, K3], for which  

the uncertainty is called expanded and denoted as U. If we take q =  0.01 V, this 

uncertainty takes the value: 

V1075.495.0
2

01.0 3−==U  

The estimate of the exemplary mesurand is .575.1ˆ V=y  Having given the uncertainty 

value, one can write this measurand as the interval which can be presented in the form 

shorter than in Example 1.2 as: 

  V1075.4575.1ˆ,ˆ 3−==−+= UyUUyy


 

This means that for the symmetrical distribution of the error that burdens the estimate, 

its inaccuracy can be described quantitatively by using only one parameter, i.e.  

the measurement uncertainty. 

1.3. Determination of total error distribution 

In measurement practice, every obtained result is burdened by many errors, which 

means that the total error should be treated as a composition of partial errors. Analyses 

of the physical properties of errors arising in measurement chains that applied 

quantization [J5, J9] let us treat these errors as additive; therefore, the total (combined) 

error e can be described as the sum of partial errors e1, e2, …, eJ : 

 
J

eeee +++= 
21

 (1.50) 

where J is the number of all errors. In accordance to this equation, every realization of 

the total error is the sum of suitable realizations of partial errors. For further 

consideration, we assume that all partial errors are random and are devoid of 

systematic components.  
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Equation (1.50) is treated as the general error model. It is widely used in this book 

in simulative experiments realized by using the Monte Carlo method because it 

enables the composition of partial errors by adding its realizations at every step of  

the experiment. The realization of the total error calculated on the basis of Eq. (1.50) is 

located in the set of error values. The size of this set was assumed to be 100,000, 

which is sufficient from the point of view of metrological experiments.This means that 

after 100,000 steps, the obtained set is presented as a histogram that is treated as  

a specific estimate of the probability density function of the total error. Based on this 

histogram and using functionals (1.27) and (1.28), the parameters of the uncertainty 

interval of the total error are calculated.  

The Monte Carlo experiment is the most effective and simplest way for  

the composition of errors in the measurement conditions which are analyzed in this 

book. This is connected with the nonlinear properties of analog elements of  

the exemplary sampling instrument considered in this book and the need for  

a composition of different kind of errors such as static and dynamic errors. Analytical 

description of nonlinear static errors is practically impossible, which causes  

a simulative experiment to be the only way to obtain a distribution of the total error. 

With the assumption that the partial errors are not correlated and they are described 

by suitable probability density functions g1(e1), g2(e2), …, gJ(eJ), the distribution of  

the total error can be determined by using the expression:  

 ( ) ( ) ( ) ( )
JJ

egegegeg = 
2211

 (1.51) 

where   denotes operation of the convolution [P1, J15]. Except for some simple 

cases, the mathematical operations necessary to execute operations accordingly with 

the expression (1.51) are sophisticated. Moreover, analytical descriptions of 

distributions of errors arising in real measurement instruments are often very difficult 

to obtain or even this is impossible. This property causes that the expression (1.51) is 

used mainly in theoretical considerations because of its little usefulness in practice to 

evaluate the inaccuracy of the measurement results.  

Error analysis is often sufficient if one uses only standard deviations (or variances) 

to describe relationships between error distributions. Accordingly with Eq. (1.50),  

the variance of the total error is the following sum of variances of the partial errors: 
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J
 +++=   (1.52) 
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in the case if the partial errors are uncorrelated. For correlated errors, the relationship 

between variances can be generally described in the matrix form as follows [Y1, J6]: 

 p

T

p
Cσσ=2  (1.53) 

where: 

  T
p J

 
21

=σ  (1.54) 

is the vector containing standard deviations of the partial errors. Matrix C is of  

the form:  
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where it is: ci,j = cj,i, i, j = 1,…, J are correlation coefficients. 

1.4. Random model of single measurement result in application to 

algorithmic processing 

The error definition (1.23) can be the basis for the determination of a random model of 

a single measurement result. After transformation Eq. (1.23), we obtain the expression: 

 eyy += ˆ  (1.56) 

accordingly with which a true value y of a measured quantity is the sum of its estimate 

ŷ  and a realization of a random error e which has no systematic component in  

the sense of Eq. (1.16). Moreover, Eq. (1.56) means that the estimate contains  

the same error value as error e but with the opposite sign; thus, a description of 

probabilistic properties of the estimate can be obtained on the basis of a probability 

density function of the error.  

The model (1.56) is the basis for all algorithmic processing applied in  

the reconstruction process that is performed in a sampling instrument. Let us denote as 

R the arithmetical operations connected with a reconstruction algorithm, which 

transform generally a series of n measurements results to one value of  

the reconstructed sample. Based on the model (1.56), one can write for the linear 

algorithms that it is: 

 ( ) ( ) ( ) ( )
nnnnn

eyeyy RRRR +=+= ˆˆ  (1.57) 
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The expression ( )
n

yR
 

is a formula that describes the mathematical operations 

performed by the algorithm on a series of n true values of the measured quantity. Thus, 

if a sampling instrument is considered, this formulae describes one output result of  

the reconstruction algorithm, i.e. the true value x(tk) of the reconstructed sample at 

instant tk. Realization of the formulae results in obtaining this value which, 

accordingly with Eq. (1.56), is the sum:  

 ( ) ( ) ( ) etxtxy
kkn
+== ˆR  (1.58) 

where ( )
k

tx̂
 
is the estimate of the reconstructed sample, e denotes the error of this 

estimate.  

Based on Eqs. (1.57) and (1.58), one obtains the equation: 

 ( ) ( ) ( )
nnk

eyetx RR +=+ ˆˆ  (1.59) 

which can be split into two expressions: 

 ( ) ( )
nk

ytx ˆˆ R=  (1.60) 

and 

 ( )
n

ee R=  (1.61) 

The first expression generally describes mathematical operations carried out on  

the series of estimates of measurement results to obtain one estimate of the reconstructed 

sample. The second one (1.61) means that the same operations as in (1.60) are 

performed on realizations en of the error that burden the estimates. These realizations 

are taken from the same random population, which causes that the population of 

resultant error depends both on the primary population and coefficients of  

the algorithm.  

In the case if the algorithm is a linear combination of constant coefficients and 

none of the coefficients has an extremely high value, the Central Limit Theorem 

[P1, Y1] is fulfilled, which means that the resultant population tends to a normal 

distribution. Taking into account that the realizations of partial errors are from  

the same distribution, the standard deviation of which is denoted as σp, one can write 

that it is: 

 ( ) ( ) ( ) 22

2

2

1

22

2

2

1 nn
aaaaaa +++=+++= 

pppp
  (1.62) 

where σ is the standard deviation of the resultant error that burdens the estimate of  

the reconstructed sample, a1, a2,..., an are coefficients of the algorithm.  
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The resultant error described by a normal distribution is symmetrical; thus,  

the uncertainty interval can be characterized only by one parameter that is  

the uncertainty u. In this case, the expanded uncertainty can be calculated on the basis 

of the standard deviation by multiplying its value by the coverage factor k [Y1],  

the value of which is equal to k = 2 for the normal distribution. Taking this into 

account and based on Eq. (1.62), the expanded uncertainty of the estimate at the output 

of the reconstruction algorithm in the form of linear combination of coefficients is 

described as follows: 

 22

2

2

1p22 naaaU +++==   (1.63) 

1.5. Final remarks 

The concept of creating means of mathematical description of the inaccuracy of  

the measurement result presented in this chapter is based on the definition of 

measurement error determined in a deductive way, which is derived from the analysis 

of the measurement process by quantization. This definition makes it possible to 

express the inaccuracy of the result in the form of a measurand interval, which is  

the sum of the measurand estimate and the uncertainty interval determined on the basis 

of a probabilistic description of the total measurement error. The error definition is 

also the starting point for obtaining a probabilistic model of the measurement result, 

which enables determining the interval expression of the final inaccuracy of 

algorithmic processing. The error model is a component of the model of  

the measurement result and it determines the composition of random measurement 

errors, thanks to which it is possible to analyze the propagation of various types of 

errors during algorithmic processing. 

The most effective way to obtain the distribution of the total error is the Monte 

Carlo method, which can also be used when a non-linear processing of measurement 

signals is performed. In the case of algorithmic processing of a series of measurement 

data, the distribution of the total error is generally close to normal. Then  

the uncertainty interval is determined by one parameter, i.e. uncertainty that can be 

estimated from the standard deviation of the error distribution. If the total error 

distribution is not normal, the uncertainty of the total error can be calculated from  

the uncertainties of the partial errors using reductive interval arithmetic [J4, J6, J15], 

which also allows correlations between partial errors to be taken into account. 



 

2. MATHEMATICAL FUNDAMENTALS OF SIGNAL 

RECONSTRUCTION 

Generally, reconstruction, from the physical point of view, is treated as an inference 

about a cause of a knowledge about its result [M2, S6]. Therefore, such an indirect 

getting information about a physical reality is performed in two stages presented in 

Fig. 2.1. 

x y x̂Processing Reconstruction

M 1−M
 

Fig. 2.1. The general structure ofreconstruction  

Taking only physical quantities into account, the first stage from Fig. 2.1 is indirect 

observation of the quantity x by using the measurable quantity y with the assumption 

that the relation between y and x is known and generally described by a mathematical 

model M. Thus, the first stage can be written as: 

)(xy M=           (2.1) 

The second stage, that is the reconstruction, consists in solving the model M-1 

inverse to M on the basis of measurement results of the quantity y. Operations 

performed in this stage result in obtaining the output quantity x̂  which is an estimate of 

the observed quantity x. This stage can be described as:  

)(ˆ 1 yx -
M=           (2.2) 

The composition of Eqs. (2.1) and (2.2) leads to the expression: 

  xxx - == )(MM
1ˆ                (2.3) 

according to which the output quantity x̂  of the reconstruction chain from Fig. 2.1 is 

equal to the input (being reconstructed) quantity x. If one takes the metrological point 

of view into account, Eq. (2.3) means that the chain with reconstruction, as a whole, 

realizes functionality of the ideal measuring converter, the output signal of which x̂  is 

equal to the input signal x in given measurement conditions.  

M M-1 
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2.1. General description of reconstruction algorithm  

A measurement conversion is always connected with arising of errors; therefore,  

the reconstruction can be seen as elimination from the quantity y such errors which can 

be deterministically described and contained by model M. Random errors that burden 

the quantity y influence inaccuracy of the reconstruction. In the considerations 

presented in this book, it is assumed that the influence of random errors is minimized; 

thus, the output quantity x̂  is treated as the estimate of the input quantity x in this 

sense. 

Quantities x, y and x̂  can be considered as signals, i.e., as varying over time t 

quantities that are carriers of information about another quantity called a measurand. 

Accordingly with the scheme of the sampling instrument presented in Fig.1.1, every 

sample of the signal x(t) at the instant tk is the measurand. Its estimate )(ˆ
k

tx
 
is 

calculated using a reconstruction algorithm on the basis of one or more quantized 

samples of the analog output signal y(t). The sequence of these samples necessary to 

obtain one estimate )(ˆ
k

tx
 
creates the measurement window shown in Fig. 2.2. 

 

 

Fig. 2.2. Digital representation of a signal in the measurement window  

Usually, the output signal y(t) is represented by a sequence of equally spaced samples, 

which means that the distant between them is given by the sampling period Ts that is 

constant and for K samples in the window its length is Tw = KTs. The window begins at 

the instant k interpreted as the number of the first sample in the window as well as  

the current number of the measurement window and it is: k = 0,1,… . After  

a realization of a single reconstruction, the index k is increased by 1 and the windowis 

shifted one period Ts to the right. One should notice that in the case if  

the reconstruction is performed in real-time, all the calculations have to be ended 

before the window is shifted, i.e. in the time which is shorter than the sampling period Ts. 



35 

Generally, a reconstruction algorithm denoted R is a series of calculations 

performed on samples contained in the measurement window, which gives as  

the result the single estimate )(ˆ
k

tx
 
of the input signal sample, which is described as:  

( ) 1,,1,0,)(ˆ −==
+

Kitytx
ikk

R    (2.4) 

where k is the current number of the window, i = 0, 1,..., K-1 is the current number of 

the signal sample in the window. 

The basic form of a reconstruction algorithm, resulting from expression (2.4), 

consists in writing it as a linear combination of the output samples and coefficients. 

The samples are measured on the principle of quatization, which results to obtaining 

estimates of the output samples. This means that the reconstruction algorithm can be 

written in the form of the equation:  

( ) ( ) ( ) ( )1ˆ1ˆˆˆ
110 −+++++= − Kkyakyakyakx K

                      
(2.5) 

in which the symbol t of time is omitted. In Eq. (2.5), ( )kx̂  denotes the estimate of  

the reconstructed value of the input signal sample at the instant tk, 110
,,

−K
aaa   are 

coefficients of the algorithm and ( ) ( ) ( )1ˆ,1ˆ,ˆ −++ Kkykyky   are estimates of  

the quantized signal samples contained by the measurement window. 

Describing the samples of the analog output signal as the vector: 

( ) ( ) ( ) T
1ˆ1ˆˆˆ −++= Kkykykyk Y                                 (2.6) 

and the vector of coefficient as: 

 T

110 −
=

K
aaa A                                      (2.7) 

where T denotes the transformation of the vector, one can write Eq. (2.5) in  

the following matrix form: 

( ) AY
T

k
kx ˆˆ =                 (2.8) 

The vector of coefficients (2.7) of the reconstruction algorithm can be the same in 

the succeeding reconstruction instants k, which means that the coefficients in this 

vector are constant and the same for all succeeding windows. In this case, the number 

k of the window can be omitted and algorithm (2.5) is written in the simpler form: 

( ) ( ) ( )1ˆ1ˆ0ˆˆ
110 −+++= − Kyayayax K

                                 
(2.9) 
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The number K of samples in the window depends on the kind of reconstruction 

algorithm. For a static reconstruction algorithm, the vector A reduces to one 

coefficient a0 (the window contains only one sample), which for a linear static 

algorithm is constant. For a nonlinear static algorithm, values of a0 depend on  

a working point on astatic characteristics of an analog part in a sampling instrument.  

If the characteristic is dependent on influence quantities, a0 is a linear or nonlinear 

function of them [L1, P2]. 

For a dynamic reconstruction algorithm, the window contains more than one 

sample (for the simplest dynamic algorithms it is equal to 2) depending on that how 

many samples is needed to calculate one input estimate with required accuracy.  

The dynamic algorithm is linear if vector A is constant. If the coefficients change its 

values depend on time or influence quantities, the reconstruction algorithm can be 

considered as adaptive to actual measurement conditions [M7]. One can point to 

further ways of the algorithm adaptation to the reconstruction requirements connected 

with the fact that the number of samples in the window and the sampling period Ts can 

change and in some cases the input signal can be sampled irregularly [G2]. Moreover, 

a group of nonlinear algorithms one can be pointed that perform operations on 

multiplicative forms of samples (for example, the algorithm used for calculation of  

the effective value of a voltage processes squared samples) [J9]. 

Reconstruction algorithms can be realized by a processor or by an artificial neural 

network [J16]. The algorithm in the form of a program needs a mathematical 

description of the inverse model M-1 (see Eq. 1.2) as one or more equations, while 

a neural network creates the algorithm itself on the basis of learning data. 

Independently of the algorithm form, execution of a reconstruction process results in 

the same estimate )(ˆ kx  for the same input data, although its value and inaccuracy 

depend on properties of the used algorithm.  

The signal reconstruction can be carried out in batch mode if it is performed after 

recording of a series of measurementresults or in real-time [R7, S1]. The algorithms 

presented in the book are dedicated to realize them in real-time but the described 

methods of analysis of reconstruction errors can be used in both modes of  

the reconstruction realization.  
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2.2. Decomposition of reconstruction process  

Propagation of a signal from the input to the output of the sampling instrument is 

connected to the arising errors in all elements of the reconstruction chain. Every error, 

which can be described deterministically (often called the systematic error [J12, R8, 

R10, Y2]) and contained by the analog conversion model M, can be eliminated from 

the signal y(t) using the reconstruction. This means that signal reconstruction can be 

seen as a correction process of systematic errors that burden the signal y(t) [J9].  

The realization of a reconstruction algorithm consists in solving equations inverse to 

the equations that describe the model M.  

The general model M should contain mathematical descriptions of static and 

dynamic properties of the analog conversion in the sampling instrument. Because of 

nonlinearities, representation of this model by one equation is usually a very difficult 

problem, so there is a need to present the model in a decomposed form to solve  

the partial equations by a processor. But in some cases if one uses the neural 

reconstruction, such a decomposition is not necessary [M10]. However, independently 

of the reconstruction method, the decomposition is indispensable for analysis of  

the errors that burden the output estimate. The decomposition enables the extraction of 

partial errors and analysis of their propagation through the succeeding elements of  

the sampling instrument. It means that the decomposition is the basis for the inaccuracy 

evaluation of the reconstructed signal samples [J9].  

The decomposition of the general model M consists in presenting this model as  

a system of equations in a general case nonlinear. From the point of view of  

the propagation of errors, every partial equation should describe only the static or 

dynamic properties of the analog converter and represents one partial model. For 

varying over time signals, the static properties are described by equations not 

dependent on the signal variations, while the equations describing the dynamic 

properties contain expressions which depend on the signal variations [J9].  

After decomposition, the general model M of the analog conversion can be written 

as a chain of I equations:  
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ii ufy

ufu

xfu


       (2.10) 

where: x and y are the input and output signals of partial conversions, u1, u2,…, ui-1 are 

the go-between signals introduced for the objectives of the decomposition.  
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Carrying out the reconstruction needs to solve the inverse model M-1. In the case 

where it is given as the chain of equations (2.10), the reconstruction consists of  

the successful solution of the appropriate equations inverse to these in the chain (2.10) 

[J9] and performed in the inverse order. These operations can be written as: 

)ˆ(ˆ

)ˆ(ˆ
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
         (2.11) 

where x̂  is the estimate of the input signal, 
11
ˆ...,,ˆ uu

i−
 are estimates of go-between 

signals in the system of equations (2.10). 

After decomposition, the total analog conversion is presented as a chain of partial 

analog converters, while the reconstruction as the chain of algorithms performing 

partial reconstructions. The interdependence of the analog conversions and the suitable 

algorithms of reconstruction is shown in Fig. 2.3 which is the graphical presentation of 

Eqs. (2.10) and (2.11). In this figure, the suitable analog converters and partial 

reconstruction algorithms create couples in the mathematical sense resulting from 

these equations. However, another interpretation of these couples is important. 

Namely, from the error point of view, an analog conversion is a source of systematic 

errors that are eliminated from the reconstructed signals by the suitable algorithms. 

After the whole reconstruction process, all systematic errors that burden the signal  

y are corrected. 

Analog 
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converter i
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Fig. 2.3. General structure of the decomposed reconstruction chain  

The decomposed model from Fig. 2.3 consists of two kinds of partial model that 

describe static or dynamic properties of the analog conversion, responsibly. Dynamic 

partial models contain elements that depend on derivatives of the signal, which means 

that their mathematical models have the forms of ordinary or partial differential 

equations [L1]. The static partial models are devoid derivatives and describe relations 

between the output and the input with taking into account all quantities that influence 

conversion of the input signal. 
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With assumption that the general model is given in the form of a non-linear 

differential equation, the decomposition consists in separation of the analog 

conversion model on two or more partial models that describe exclusively static or 

dynamic properties. In the literature, the most common point of view on  

the decomposition consists in using two kinds of elements: nonlinear static NS and 

linear dynamic LD. The structure LD-NS is called the Wiener model [H2] and NS-LD 

is known as the Hammerstein model [W2]. In some cases, to describe complex 

dynamic systems, Wiener-Hammerstein models (LD-NS-LD) and Hammerstein- 

-Wiener models (NS-LD-NS) are also used [G3, S7] and, in addition, multi-element 

models built as the Volterra series [M11]. The general rules of error analysis are 

independent of the kind of the decomposed model. Taking this into account,  

the analysis method of the reconstruction errors described in this book is considered 

for the Wiener model that is suitable for the sampling instrument taken as exemplary.  

To begin detailed considerations on the decomposition procedure, let us assume 

that the general properties of the analog conversion are described by the ordinary 

differential equation:  

)(...
1

)1(

1

)( xSyyayaya n

n

n

n
=++++ −

−
    (2.12) 

wherex is the input signal, y – is the output signal of the analog conversion (both are 

varying over time), a1, ..., an are constant coefficients, S(x) is the function that contains 

expressions without derivatives denoted as .,...,)( yy n   The function S(x) describes 

static properties of the analog conversion and in a general case is nonlinear, while 

expressions with derivatives describe dynamic properties of the conversion. 

The decomposition procedure used for the separation of static and dynamic 

properties of the general model is performed in several steps. In the first step, one 

should extract the static properties by zeroing all the derivatives in the general model. 

After that, for Eq. (2.12), one obtains the following static equation: 

)(xSy =      (2.13) 

The basic assumption of the decomposition procedure is that the equations 

representing dynamic or static properties have to be ideal in the sense of Eq. (1.3).  

It means that, after zeroing derivatives, the dynamic equation has the form of  

the equation, the static transfer function of which equals 1. To achieve this effect, one 

should define the new auxiliary variable: 

)(xSu =                (2.14) 



40 

After introduction Eq. (2.14) to Eq. (2.12), we obtain the system of two equations: 

)(xSu =                (2.15) 

uyyayaya n
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)( ...    (2.16) 

where the first equation (2.15) is dynamically ideal (there are no derivatives in it) and 

represents static properties, while the second is statically ideal (after zeroing 

derivatives y = u) and describes dynamic properties of the analog conversion. For  

the decomposed conversion model, the reconstruction of the input quantity consists in 

solving equations inverse to partial equations (2.15) and (2.16) and in the inverse order 

if the static equation (2.15) is nonlinear. Thus, the reconstruction process is described 

in this case by the system of two equations:  

yyayayau n

n

n

n
++++= −

−


1

)1(

1

)( ...ˆ    (2.17) 

)ˆ(ˆ 1 uSx −=      (2.18) 

The whole processing, consisting of two partial analog conversions and suitable 

reconstructions, is graphically presented in Fig. 2.4.  

Static conversion

(ideal dynamically)

)(xSu =

Dynamic conversion

(ideal statically)

uyyayaya n

n

n

n =++++ −

−


1

)1(

1

)( ...

Static reconstruction Dynamic reconstruction

yyayayau n

n

n

n ++++= −

−


1

)1(

1

)( ...ˆ)ˆ(ˆ 1 uSx −=

x u

y
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Fig. 2.4. Illustration of partial conversions and reconstructions for the analog conversion modeled by 

the equations from (2.15) to (2.18) 

It should be noticed that the presented decomposition of the general model of  

the analog conversion corresponds to the Hammerstein model that is used not only for 

measuring chains but also for description of others systems such as control systems, in 

which actuators characterizing nonlinear properties (servomechanisms, solenoid valves 

etc.) are used. 

In some cases, physical conditions of the analog conversion cause it should be 

described by the system of equations: 
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)(uSy =      (2.20) 
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which are the same as expressions (2.15) and (2.16) but their order is inverse. In this 

situation, the reconstruction consists in solving, at first, the static inverse equation: 

)(ˆ 1 ySu −=      (2.21) 

Next, the dynamic reconstruction is carried out, which consist in solving the 

differential equation: 
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The chain of operations (2.19) and (2.20) performed by the analog chain and 

reconstruction algorithms described by equations (2.21) and (2.22) are presented in 

Fig. 2.5. 
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Fig. 2.5. Scheme of the chain composed of partial analog conversions described by equations (2.19), 

(2.20) and suitable reconstructions by (2.21), (2.22) 

The structure of the analog conversion that is described first by a linear dynamic 

equation and then by a nonlinear static one, corresponds to the Wiener model [G3]. 

Such a model can be used for a sensor working in dynamic conditions (the sensitive 

element of the sensor is characterized by an inertia) described by a linear differential 

equation, while the static characteristic of the sensor is nonlinear. It should be noticed 

that in the most often cases the remaining elements of the analog converter, such as 

measuring amplifiers, sample and hold circuits and AD converters are so fast that their 

dynamic properties do not significantly affect on the dynamics of the whole 

conversion [J14]. This applies to the exemplary instrument, in which the temperature 

sensor Pt100, described by the Wiener model, is used.  

In a general case, the static transfer function S(x) can be written in the form: 

),,,,(
21 s

wwwxSy =     (2.23) 

which means that the output signal is dependent not only on the input signal x but also 

on the influence quantities w1, w2, …, ws, where s is the number of all these quantities. 

In many practical situations, Eq. (2.23) is nonlinear, which means that is a difficult 
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problem to describe it in analytical form as one equation or even as a system of 

equations [M10, P2]. One of the solutions that can be used of this case consists in 

writing the inverse static transfer function: 

),,,,(
21

1

s
wwwySx −=     (2.24) 

as a system of linear equations obtained as an effect of the linear segmental 

approximation. Coefficients of these equations can be stored in microprocessor 

memory, which enablesa fast execution of the static reconstruction algorithm [R10]. 

The other solution consists in the application of artificial neural networks to realize 

reconstruction [R5]. The network builds the reconstruction algorithm itself on the basis 

of measuring data that must be delivered to its input during a teaching process. 

All influence quantities must be measured, which means that their values used for 

solving the inverse model (2.24) should be obtained as estimates by using suitable 

measuring chains. The scheme of the static reconstruction in the case where only one 

influence quantity is contained by the static transfer function is presented in Fig. 2.6.  
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Fig. 2.6. Scheme of static reconstruction performed accordingly with Eq. (2.24) for the single 

influence quantity w1 

Usually, the influence quantities are static, which means that their measuring chains 

are described by static equations. But some of these quantities can be dynamic so they 

need more than one sample to perform reconstruction. In such cases, the reconstruction 

process should be considered as a parallel multi-reconstruction, in which many 

dynamic reconstructions are performed at the same time.   

The decomposition does not always lead to obtaining linear dynamic equations 

characteristic for Hammerstein and Wiener models. Such a case occurs if, for example, 

the general model is given by the following 1st-order equation: 
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Denoting the new variable as: 

2

1
xu =                                                      (2.26) 

and introducing it into Eq. (2.25), we obtain the following: 
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To make Eq. (2.27) statically ideal, we should introduce to it another variable: 

2
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yu =                                                  (2.28) 

which enables writing Eq. (2.27) in the following form: 
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that is nonlinear. 

Linking equations (2.26), (2.29), and (2.28) in a chain, one obtains the decomposed 

model of the general equation (2.25) as the system of the following three equations: 
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(2.31) 

2
uy =                                                    (2.32) 

Everyone of them is nonlinear and, accordingly with the basic assumption, statically or 

dynamically ideal. 

Taking into account that the signal reconstruction consist in calculation of the input 

signal estimate based on the estimate of the output signal, the order of solving  

the equations inverseto (2.30), (2.31) and (2.32) is as follows:  
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(2.34) 

1
ˆˆ ux =

                                                   
(2.35) 

The analysis of the reconstruction process from the error point of view let us to 

draw the conclusion that solutions of Eqs. (2.33) and (2.35) result in correction of  

the systematic static errors introduced by the nonlinear analog conversion modeled  
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by Eqs. (2.30) and (2.32), respectively. Correction of the dynamic error caused by  

the dynamic properties of the analog converter described by Eq. (2.31) is performed  

by solving Eq. (2.34) in relation to the signal 
1

û . 

As result of the presented considerations, after the decomposition, the analog 

conversions and the suitable partial reconstructions have to be treated jointly. For  

the model described recently, the partial models of the analog conversions and  

the suitable reconstruction algorithms create couples which are presented in Fig. 2.7. 
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Fig. 2.7. Relations between analog conversions and reconstructions for the general model (2.29)  

Accordingly with Fig. 2.7, the systematic errors that arise during the partial analog 

conversions are corrected by suitable reconstruction algorithms. If the reconstruction is 

ideal, the errors are eliminated from the measurement results. In the real sampling 

instrument these errors cannot be fully eliminated because on non-idealities both of 

partial conversion models and the suitable reconstruction algorithms. These properties 

of the reconstruction process cause the output estimate to be burden by rests of the not 

corrected systematic errors that are called the reconstruction errors and can be seen as 

resultant effects of partial analog conversions and suitable partial reconstructions. This 

means that from the error propagation point of view, every couple in Fig. 2.7 can be 

treated as one source of the specific error called the reconstruction error. Moreover, all 

random error that arise during the analog conversion can be described suitably as input 

error of the algorithm chain. Taking the above into account, one can conclude that  

the error analysis of the signal reconstruction can be considered by the prism of 

properties of the reconstruction algorithms that processes quantization results 

burdened by the errors arising in the analog part of the sampling instrument and  

the errors connected with non-ideal realization of the reconstruction algorithms. 
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2.3. Final remarks 

The signal reconstruction consist in solving the inverse mathematical model to this one 

that describes the analog signal conversion in the sampling instrument. From the error 

analysis point of view, the inverse model should be decomposed into partial models 

describing static or dynamic properties of the analog conversion. The decomposition 

enables identification of specific static and dynamic errors, as well as description of 

the error propagation from the input to the output of the sampling instrument. 

The sampling instrument is defined as the composition of tree parts performing  

the analog conversion, the AD conversion and digital reconstruction of samples of  

the input signal (see Chapter 1). It means that the output signal represents  

the reconstructed input signal in the discrete form, i.e. as a series of estimates of 

instantaneous values (samples) of the input signal. This book deals with the real-time 

work of the instrument, which means that it delivers at its output the reconstructed 

samples with a constant frequency. Such a work determines the necessity of 

performing the reconstruction algorithms in the time between succeeding sampling 

instants. This causes the reconstruction algorithms have to have as simpler form as 

possible with the assumption that the uncertainty of the reconstructed samples is at an 

acceptable level. 



 

3. STATIC SIGNAL RECONSTRUCTION 

Accordingly with considerations from Chapter 2, static reconstruction is defined as 

solving equations that describe an inverse model of static properties of all analog 

elements in the sampling instrument. Taking into account that all these elements are 

treated here as one whole, called the analog converter, the static properties of it are 

described by a static transfer function. It is one of two expressions creating the general 

Wiener or Hammerstein model, which differ from each other only in succession of 

occurrence static or dynamic partial transfer functions.  

Independently of the general model, the static transfer function is generally 

described by the multidimensional equation (2.23) that is considered in this chapter in 

two forms: one-dimensional and two-dimensional. 

The one-dimensional static characteristic is described by the equation:  

)(xSy =        (3.1) 

which is nonlinear in a general case. The static reconstruction consists in solving 

equation inverse to (3.1) on the basis of the measurement result of the output signal y. 

This operation can be written as: 

)ˆ(ˆ 1 ySx −=         (3.2) 

where x̂  and ŷ  are estimates of the input and output signals, respectively. 

Interdependence of both stages of the input signal processing, described by Eqs. (3.1) 

and (3.2), is presented in Fig. 3.1. 

x y x̂

)(xS )(1 yS −

Analog conversion Static reconstruction

 

Fig. 3.1. Conception of static signal processing in the measuring chain with reconstruction 
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Accordingly with the scheme from Fig. 3.1, in the first stage of the processing,  

the analog input signal x is converted to the analog signal y that is measured. In  

the second stage, the reconstruction of the input signal value is performed, which 

consists in determining the estimate x̂  of the input signal x on the basis of the inverse 

static characteristic of the analog converter and the measurement result ŷ . 

The static characteristic of the analog converter has to be continuous, monotonic 

and the first derivative of this characteristic has to be continuous, too, and not equal to 

zero. For these properties, it is possible to determine the unequivocal inverse 

characteristic S-1(y) that is the basis of the determination of a static reconstruction 

algorithm that is performed by a processor as a program or by a neural network. 

Analytical form of the algorithm, consisting of calculations executed on measured data 

and coefficients stored in the processor memory, has to be prepared by a programmer, 

while a neural network builds the algorithm itself. It is done during a learning process 

on the basis of measurement data obtained as an effect of an identification of the static 

characteristic [R6, S7, O2, L4].  

In practice, static characteristics of analog converters depend on quantities 

influenced their measurement properties. In such cases, the static characteristics of  

the analog converter are described by the multidimensional function, as a rule 

nonlinear. In this chapter, a two-dimensional static characteristic is considered, which 

can generally be described as:  

),( xSy =           (3.3) 

where   denotes an influence quantity. In this case, the reconstruction consist in 

solving the inverse function: 

)ˆ,ˆ(ˆ 1 ySx −=           (3.4) 

in which all dashed symbols are estimates (measurement results) of suitable quantities. 

This means that both the output signal and the influence quantities have to be 

measured with suitably low inaccuracy. 

There are many mathematical tools which can be used to describe the inverse 

nonlinear static characteristics [M4] but the considerations in this chapter focus only 

on two methods of their approximation. The first one, analytical method, consist in 

application of the segmental linear approximation which best of all fulfills 

requirements specific for the signal reconstruction in real-time by using 

microcontrollers. The second method applies an artificial neural network to perform 

the reconstruction algorithm. The presented methods, selected as the numerically 

simplest, can be also seen as representative for all approximation methods of inverse 

static characteristics used for the reconstruction if one takes error analysis into account. 
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Generally, to determine an approximation of a static inverse characteristic for 

reconstruction purposes, one should first identify this characteristic. Next, based on 

identification results, one calculates parameters of the inverse approximation, which 

are stored in a microcontroller non-volatile memory. The quickest reconstruction 

algorithms are based on linear approximations, the parameters of which are stored in 

look-up tables [S4]. 

The inverse model can be given in an analytical form that is obtained as an effect 

of inversion of the analog conversion model or can be determined as a result of an 

identification process. Analytical or a neural approximation of the inverse model is  

the basis of the static reconstruction algorithm. Another way of obtaining these 

approximations consists in direct use of identification data to determine their 

parameters. Both ways are considered in this book. 

3.1. Exemplary sampling instrument 

To make further considerations closer to problems which happen in practice,  

the description and error analysis of the static reconstruction is presented on an 

example of the sampling instrument presented in Fig. 3.2. 

 
Fig. 3.2. Exemplary sampling instrument that applies the platinum sensor Pt100 and the micro-

controller ADuC386 to perform reconstruction of the temperature signal 

The input temperature ϑ changing in the range from 0 to 100oC is converted to  

the voltage VR by the Pt100 sensor [Y4], the resistance of which is indicated as R.  

The sensor is connected in series with the reference resistor Rref, the resistance of 

which at the nominal environmental temperature ϑ0env = 25oC is R0ref = 5.1253 kΩ. 

Both resistors are supplied from the current source Iref = 400 μA that is a part of  

the ADuC386 microcontroller [Y6]. The voltage drop across the resistor Rref is used as 

the reference voltage Vref of the 16-bit analog-to-digital converter (ADC), which 
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causes the drift of the Iref  does not influence the inaccuracy of the converter 

indications. The VR voltage drop is introduced to the input of amplifier A working with 

the amplification coefficient kV = 32. The amplifier output voltage is sampled and 

quantized by the AD converter which, together with the sensor and the amplifier, 

forms the analog converter. On the basis of the quantization results nq and parameters 

of the inverse static characteristic, the estimate ̂  of the input temperature is 

calculated accordingly with an one- or two-dimensional reconstruction algorithm.  

In this second case, the environmental temperature is measured using the additive AD 

converter of the microcontroller.  

The characteristic of sensor Pt100 is nonlinear and it can be described by  

the polynomial: 

( ) ( ) 2

0
1  ++ RR                                         (3.5) 

where R is the sensor resistance equal to R0 = 100.0 Ω at the input temperature 

ϑ0 = 0oC, Δϑ = ϑ – ϑ0, ϑ denotes the input temperature, α and β are constant 

coefficients, the values of which are [Y5]: 

α = 3.9083·10−3oC−1,  β = −5.775·10−7oC−2     (3.6) 

With assumption that all elements of the analog converter are stable, i.e. their 

characteristics do not change in time, and they are not dependent on influence 

quantities, the static reconstruction problem can be treated as one-dimensional.  

It means that the reconstruction consists in solving the inverse model describing  

the relations between the indication nq and the input temperature ϑ. The reconstruction 

procedures considered here are based on two approximations of the inverse 

characteristic: analytical and neural.  

Properties of elements of real analog converters depend on influence quantities, 

mainly on the environmental temperature in which a sampling instrument works.  

In the case if only one influence quantity is taken into account, the reconstruction 

problem can be investigated as two-dimensional, which means that the inverse model 

must contain dependencies of the reconstructed quantity on the ADC indication and 

the influence quantity. For the exemplary converter, we assume that the reference 

resistor Rref depends on the environmental temperature ϑenv. In this case, the indication 

nq and the temperature ϑenv are the input quantities of the inverse model. Such  

a reconstruction problem is considered in Sections 3.4 and 3.5 for the analytical and 

the neural reconstruction, respectively. 
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3.2. One-dimensional analytical static reconstruction 

3.2.1. Linear segmental approximation of static inverse characteristic of sensor 

Properties of the linear segmental approximation are considered in this chapter for  

the Pt100 sensor applied in the exemplary instrument. The static characteristic (3.5) of 

the sensor can generally be written as R = S(ϑ); thus, the inverse characteristic of it is:  

)(1 RS −=          (3.7) 

where ϑ is the reconstructed (input) temperature and R is the sensor resistance. After 

expanding the function (3.7) into the Maclaurin series for the temperature ϑp, we 

obtain the expression that for two initial terms takes the form: 

( ) RDR
R

RS
+




+

−

pp

1

p d
)(

    (3.8) 

With assumption that the series is determined only in selected points called nodes, the 

expression (3.8) describes the linear segment that approximates the inverse function 

(3.7) in any node. For node number N, the segment can be described as: 

( ) ( ) ( ) NRRNDN −+=
app     (3.9) 

where ϑapp is the temperature calculated on the basis of the resistance value R. 

Parameters ϑ(N), D(N) and R(N) of the approximation are calculated for every node N 

on the basis of the static characteristic (3.5). 

The exemplary characteristic inverse to (3.5) and approximated by 4 segments 

linking 5 nodes numbered from N = 0 to 4 is presented in Fig. 3.3. 
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Fig. 3.3. Graphical presentation of the linear segmental approximation of the inverse characteristic of 

the Pt100 sensor  
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Some forms of the static reconstruction algorithm can be performed in a relatively 

short time if the distance between nodes is the same as it has been taken for  

the approximation presented in Fig. 3.3. For the distance Δϑ equal to 25oC,  

the temperature in the nodes takes the values described by the expression:  

( ) ( ) ( ) 125 −===
nod

...,1,0,for NNNNN           (3.10) 

where Nnod is the total number of nodes and Nnod = 5 in the case considered. As  

the resistance in node N is: 

( ) ( ) NRNR =             (3.11) 

the inclination coefficient of every segment is calculated as: 

( )
( ) ( )
( ) ( ) NRNR

NN
ND

−+

−+
=

1

1 
    (3.12) 

The values of the approximation parameters, calculated on the basis of equations 

from (3.10) to (3.12), are contained in the Tab. 3.1. 

Table 3.1 

Parameters of the segments calculated for the 5-node linear approximation determined 

for the exemplary inverse characteristic of the sensor Pt100, N is the node number, 

D(N) – the inclination coefficient (3.12) 

N 0 1 2 3 4 

 (N)oC 0 25 50 75 100 

R(N) Ω 100.0000 109.7347 119.3971 128.9874 138.5055 

D(N)oC/Ω 2.568144 2.587330 2.606806 2.626576  

Experiment 3.1. Let us determine the distribution of the approximation error of  

the first segment described by the parameters contained in the Tab. 3.1. This error is 

defined as the difference between the input temperature ϑ and the temperature ϑapp 

calculated on the basis of the equation (3.9). The histogram of the error values, 

obtained by using Monte Carlo method with the assumption that every value of  

the input temperature from 0 to 25oC is of the same probability, is shown in Fig. 3.4a. 
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a)       b) 

 
Fig. 3.4. Histograms of the approximation error of the first segment: a) the mean value of the error is 

equal to µ = -0.0154oC because it contains the systematic component, b) the systematic 

component is eliminated by adding the correction cs = -0.0154oC to the reconstruction result, 

in this case µ = 0.0oC 

The set of error values presented in Fig. 3.4a as the histogram contains the systematic 

component µ = - 0.0154oC that has been calculated as the mean value of the set. This 

component can be reduced to zero by subtracting this value from every error value. 

Accordingly with the error definition used in this book, this operation is equivalent to 

addition of this mean value to every value of the reconstructed temperature as  

a correction cs. The histogram of the error obtained in the same way as in Experiment 

3.1 but with using such a correction is shown in the Fig. 3.4b. 

The values of the corrections cs are different for all segments (nodes). They are 

calculated in the same way as described above and presented in the Tab. 3.2. 

Table 3.2 

Corrections of the reconstruction temperature, which are calculated as the mean values 

of the error distributions for the linear approximation of the exemplary sensor 

characteristic, N – node number 

N 0 1 2 3 4 

cs
oC -0.0154 -0.0156 -0.0157 -0.0158 - 

Adding the correction to the reconstructed result causes a suitable shifting of  

the approximating segment. As it results from the histogram presented in Fig. 3.4b, 

this operation decreases the error values about twice, which means that the shifting of 

the segments is the effective and simple manner of decreasing values of  

the approximation error. If all segments of the inverse characteristic are shifted 

accordingly with the values contained in Tab. 3.2, the global approximation error has  

a systematic component close to zero. This property is shown in Fig. 3.5 which 
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presents the deterministic characteristic of the global approximation error (a) and its 

distribution in the form of the histogram (b). This histogram has been obtained in  

the same way as described in Experiment 3.1 with the difference that the input 

temperature changes in the entire range from 0oC to 100oC. 

a)         b) 

 
Fig. 3.5. a) Deterministic characteristic of the approximationerror of the inverse characteristic of  

the sensor as the function of the inputtemperature, b) histogram of the global approximation 

error, the standard deviation of which is σapp = 7.2ˑ10-3oC 

3.2.2. One-dimensional static reconstruction algorithm  

In the previous chapter, the principle of the linear segmental approximation considered 

in this book has been presented as an example of the inverse characteristic of the Pt100 

sensor. To perform the static reconstruction using the exemplary instrument, it is 

necessary to approximate the inverse static characteristic of the whole analog 

converter as the part of the instrument. The converter consists of the sensor,  

the amplifier, and the AD converter; thus, the inverse characteristic is a relation 

between the quantization result nq (the ADC indication) and the reconstructed input 

temperature. In this case, the reconstruction equation in the analytical form based on 

the linear segmental approximation (3.9) can generally be written as: 

( ) ( )  ( )NbNnnNa
qq

+−=̂             (3.13) 

where ̂  denotes the estimate of the input temperature determined with  

the assumption that the mean value of the approximation error burdening the estimate 

is equal to 0. The inverse static characteristic in the form of Eq. (3.13) is made up of 

the set of Nseg = Nnod – 1 segments, Nnod is the number of all nodes, nq(N) is  

the indication, a(N), b(N) are constant coefficients in node N, N = 0, 1, ..., Nseg. 
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The determination of a(N) and b(N) has to be carried out beginning from  

the description of the indication nq which is equal to the number of quanta obtained in 

the output of the AD converter. The value of the ADC quantum is generally given by 

the equation: 

q
N

V
q ref=  (3.14) 

where Nq is the maximum number of quanta which may occur in the ADC output, Vref 

is the reference voltage obtained in the exemplary instrument using the reference 

resistor Rref. Based on the scheme from Fig. 3.1, we have the following: 

refrefref
RIV =           (3.15) 

where Iref is the current delivered by the reference source built-up in the 

microcontroller. Taking Eq. (3.15) into account, one can write Eq. (3.14) in the form: 

q
N

RI
q refref=      (3.16) 

The voltage drop across the resistance R of the sensor is: 

RIV
refin

=    (3.17) 

This voltage is introduced to the input of the amplifier, the amplification coefficient of 

which is denoted as kV. The output voltage kVVin of the amplifier is quantized by  

the AD converter, which means that, accordingly with Eq. (1.22), the number of 

quanta assigned to the quantized value is determined accordingly with the expression: 









+= 5.0

q

Vk
n V in

q
ent                       (3.18) 

where the symbol “ent” denotes the function entier which is equal to the integer value 

of its argument. Based on  Eqs. (3.18) and (3.17), one can write that the indication of 

the AD converter is described as: 









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
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Nk
R

RI

RNIk
n

qVqV

                     

(3.19) 

which means that the input circuit of the instrument from Fig. 3.1 enables avoiding  

the influence of changes of the current Iref on the quantization result.  
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Eq. (3.19) generally describes the dependence of the quantization result nq on  

the resistance R of the sensor and the other parameters of the analog converter.  

The amplification coefficient of the input amplifier is taken to be kV = 32, the 

reference resistor Rref = 5.1253 kΩ and the maximum number of quanta for the 16-bit 

ADC is Nq = 216. For these values, Eq. (3.19) takes the form:  

 5.05.0
101253.5

232
3

16

+=







+




= R

R
n 409.176entent

q

                  

(3.20) 

where R depends on the input temperature ϑ accordingly with Eq. (3.5). 

Eq. (3.20), together with the sensor characteristic, create the analytical model of 

analog and analog-to-digital conversions in the exemplary instrument. It is the basis 

for the determination of the inverse static characteristic in the form of linear segments. 

The node values of them are presented in Tab. 3.3 together with the mean values cs of 

the approximation error, which are calculated separately for every segment in  

the following way. 

Experiment 3.2. This experiment aims to determine the mean values cs of  

the approximation error separately for each approximation segment. The input 

temperature is randomly changed in the ranges suitably for the nodes, the parameters 

of which are taken from Tab. 3.1. The nodal values of the inverse approximation and 

the obtained results are presented in Tab. 3.3.  

Table 3.3 

The nodal values of the linear approximation of the characteristic inverse to (3.20)  

and mean values of distributions of the approximation error, N is the node number 

N 0 1 2 3 4 

ϑ(N)oC 0 25 50 75 100 

nq (N)  40918 44901 48854 52779 56673 

cs(N)oC -0.0136 -0.0162 -0.0156 -0.0147 - 

Based on the values from Tab. 3.3, one can determine the parameters of the approximating 

segments. Accordingly with Eq. (3.12), the inclinations are calculated as: 

( )
( ) ( )
( ) ( ) ( ) ( )NnNnNnNn

NN
Na

qqqq
−+

=
−+

−+
=

1

25

1
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                       (3.21) 

while the shift coefficients are obtained from the equation: 

( ) ( ) ( )NcNNb
s

+=                             (3.22) 
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where cs(N) are the corrections taken from Tab. 3.3 equal to the mean values of  

the approximation error. The values of the parameters calculated for all nodes, 

accordingly with Eqs. (3.21) and (3.22), are placed in Tab. 3.4. 

Table 3.4  

Nodal values of the linear segmental approximation of the static inverse function  

of the exemplary analog converter, N is the node number 

N 0 1 2 3 4 

ϑ(N)oC 0 25 50 75 100 

nq (N)  40918 44901 48854 52779 56673 

a(N)·10-3oC 6.2767 6.3243 6.3694 6.4201  

b(N)oC -0.0136 24.9838 49.9844 74.9853  

The values in Tab. 3.4 are stored in a look-up-table created in the microcontroller non-

-volatile memory as the parameters of the exemplary linear approximation. On the basis 

of the AD converter indication and these parameters, the microcontroller performs  

the reconstruction algorithm in the following steps: 

• The AD indication nq is compared with all node values nq(N), N = 0, 1, ..., 4, which 

allows the determination of a suitable node number N. 

• On the basis of the determined number N, the values of a(N), b(N) and nq (N) are 

read from the look-up table. 

• Having known the parameters of the linear approximation, the estimate of  

the measured temperature is calculated using the equation (3.13). 

The physical properties of the analog converter need that its model (3.20) should 

contain the random noise error enoi that represents the influence of noises arising in all 

parts of the converter. In this case, Eq. (3.20) takes the form: 

 5.0++=
noiq

409.176ent eRn                                 (3.23) 

in which is the basis for the determination of the partial errors that burden  

the indication. It is used in simulative experiments aimed at obtaining distributions of 

the partial errors, such as the experiment described below. 

Experiment 3.3. The input temperature of the exemplary instrument changes 

randomly in the range from 0 to 100oC according to the rectangular distribution.  

At every step of the experiment, first, the value of the suitable resistance R is 

determined according to Eq. (3.5). Next, the indication of the AD converter is 

calculated on the basis of Eq. (3.20) and the static reconstruction is performed by using 

the described algorithm. Finally, the reconstruction error is calculated and placed in 

the set, which after ending 100,000 steps of the experiment is presented as  
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the histogram in Fig. 3.6a. The histogram from Fig. 3.6b is determined in the same 

way, with this difference that the indications are calculated accordingly with Eq. (3.23) 

for the normal noise error N(0; 1). 

a)       b) 

 
Fig. 3.6. Histograms of the reconstruction error composed: a) of the linear approximation error and the 

quantization error, the standard deviation of the reconstruction error is σrec = 7.4ˑ10-3oC,  

b) of the same errors as previously, as well as of the noise error, σrec = 9.8ˑ10-3oC in this case 

Knowledge about the standard deviations of the total error and the partial errors 

enables the determination of the correlation coefficient between the partial errors. For 

the total error etot composed of two errors e1 and e2, it results from Eq. (1.53) that this 

coefficient is calculated from the expression:  
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where σtot, σ1 and σ2 are standard deviations of errors, respectively.  

Example 3.1. The standard deviations, obtained as effects of the simulative 

experiments for the errors presented in Figs. 3.5b and 3.6b, are: of the approximation 

error σapp = 7.2ˑ10-3oC and of the total error σrec = 9.8ˑ10-3oC . The standard deviation 

of the quantization error can be determined analytically based on the quantum value q. 

Accordingly with Eq. (1.35), this error is of the rectangular distribution in the range 

from -q/2 to q/2 where q is equal to 1 at the output of the AD converter. Therefore,  

the standard deviation of the quantization error at the ADC output, the same as at  

the input of the static reconstruction algorithm, has the value [M2]: 
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The ADC indication is processed by the algorithm. It means that the errors which 

burden the indication must be transferred to the algorithm output to express them in 

values comparable with other errors of which the reconstruction error is composed. 

The transfer consists in multiplication of the input values by the coefficient which can 

be approximately determined as the inclination of the inverse static characteristic 

connecting its ending points. It is determined as the quotient: 
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(3.26) 

the value of which is calculated accordingly with Tab. 3.3. Taking this into account, 

the variation of the quantization error in the output of the algorithm is as follows: 
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q
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(3.27) 

After introducing to Eq. (3.24) the standard deviations from Figs. 3.5b, 3.6b and 

described by Eq. (3.27), the correlation coefficient between the approximation error 

and the quantization error is obtained. It takes the value: 
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(3.28) 

The result is close to zero, which means that these errors can be considered to be 

uncorrelated. 

The standard deviation of the noise error N(0; 1) is equal to 1 at the input of  

the algorithm. Accordingly with Eq. (3.27), at the algorithm output, the variance of 

this error takes the value: 

( ) ( ) 2o6232

statinnoi,

2

noi C103.401035.61 −− === S
                  

(3.29) 

Based on this value and the values from Figs. 3.6a and 3.6b, the correlation coefficient 

of the noise error in relation to the other errors contained in the reconstruction error 

can be calculated. One obtains the same result as for the quantization error, which 

means that the basis errors burdening the indication of the AD converter are 

uncorrelated. 

 



59 

3.2.3. Calibration of instrument with one-dimensional analytical static 

reconstruction 

The static characteristics of real analog converters change over time, which is called 

the drift of the characteristic. This drift is caused by material changes occurring in 

amplifiers and in other analog elements used for signal conversion as well as by  

the influence of quantities such as the environmental temperature [J14, T1]. Errors 

connected with the drift should be taken into account in the error budget of an 

instrument if their values are within acceptable limits. If these limits are exceeded,  

the drift errors have to be reduced by calibrating a measuring instrument. 

As the drift error changes over time, it is necessary to periodically check an 

instrument by introducing standards to its input and comparing the obtained 

indications with nominal values, for which a considered approximation of a static 

characteristic was determined [K1]. For the exemplary instrument, to check whether 

a calibration is necessary, one connects a standard resistor to the instrument input and 

the obtained indication is compared with this one suitable for the nominal 

characteristic. Such a checking procedure is described using the following example. 

Example 3.2. The resistance of the standard resistor R1 connected to input of  

the exemplary instrument is R1 = 138.5055 Ω. The indication of ADC obtained at  

the instrument output is ( ) 56689~
1
=Rn

q , while the appropriate indication in  

the nominal conditions, that is for which the parameters of the linear approximation 

were determined, is nq(R1) = 56673 (see Tab. 3.3 for N = 4)). The difference: 

( ) ( ) 165667356689~
11

=−=− RnRn
qq  

is substantially greater than the acceptable value that is calculated as: 

( ) ( ) 5.1
0100

4091856673
01.0 

−

−
=

−

−
=−=

minmax

minmax

maxqqdracpq


qq
nn

rnnn  

with assumption that the required resolution of the instrument is equal to r = 0.01oC. 

This means that calibration of the instrument is necessary in this case. 

A calibration consists in correction of an approximation parameters of a static 

characteristic on the basis of indications obtained for standards of an instrument input 

quantity. The necessary number of standards depends on a nonlinearity degree of  

the characteristic. The calibration of the exemplary instrument can be performed at 

two points because the nonlinearity of its characteristic is not strong. With  
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the assumption that the characteristic of the Pt100 sensor is stable [Y5], one can apply 

two standard resistors to calibrate the instrument instead of using two reference values 

of the input temperature. This is a much simpler method than using a reference 

temperature, which must be known with suitable low inaccuracy. On the basis of  

the indications and values of the resistors, one determines corrected parameters of  

the linear approximation, which replace, if necessary, these ones stored in the look-up 

table. 

Let us apply the standard resistors R1 and R2, the values of which correspond to  

the input temperature values ϑ1 and ϑ2, respectively. For resistor R1 connected to  

the input, one obtains the ADC indication nq1 and for R2 the indication is nq2.  

The nominal values of the indications, calculated for the resistances R1 and R2 on  

the basis of Eq. (3.20), are nq1nom and nq2nom, respectively. Therefore, the changes in  

the indications at the selected points that are caused by the drift are: 

nomqq 111
nn −=                (3.30) 

and 

nomqq 222
nn −=                 (3.31) 

Based on these values, one can determine the equation which enables calculations 

of the corrections, which must be added to all nominal values of the indications. This 

equation has the following form: 

( )
11

 −+= s                   (3.32) 

where the inclination coefficient is defined as: 

12

12

 −

−
=s

                                               

(3.33) 

The modified ADC indications in the nodes, corresponding to the shifted 

characteristic, are determined as: 

( ) ( ) += NnNn
qqsh                    (3.34) 

where N is the node number. On the basis of the indications calculated by using 

Eq. (3.34), the corrected parameters of the segments are determined in the same way 

as described in the previous chapter. 

The application of the described calibration procedure is presented in the next 

example.  
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Example 3.3. Calibration at two points is the most accurate if it is performed in 

extreme points of the characteristic. To carry out the calibration procedure for  

the exemplary instrument, one uses two standard resistors: R1 = 100.0 Ω corresponding 

to the input temperature ϑ1 = 0oC and R2 = 138.5055 Ω for ϑ2 = 100oC. After 

completing the AD conversion for R1 connected to the input, the indication is 

nq1 = 40931 and for R2: nq2 = 56689. The next phases of the calibration are carried out 

in the following way: 

• Having known indications nq1 and nq2, one calculates the indication changes 

accordingly with Eqs. (3.30) and (3.31). One obtains: 

134091840931
111

=−=−=
nomqq

nn ,  165667356689
222

=−=−=
nomqq

nn  

For these changes, the inclination coefficient (3.33) takes the value: 
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=


s  

• Using the calculated shift parameters, one corrects the nodal values of  

the characteristic accordingly with the equations (3.32) and (3.34). For the first 

node, the corrected indication is: nqcal(0) = nq1 = 40931 and for the last, 

nqcal(4) = nq2 = 56689. 

For the node number N = 1, one obtains:  

( ) ( ) ( )( ) ( ) 4491502503.01344901111
11

=−++=−++= snn
qqcal  

For N = 2: 

( ) ( ) ( )( ) ( ) 4886905003.01348854222
11

=−++=−++= snn
qqcal  

and for N = 3: 

( ) ( ) ( )( ) ( ) 5279407503.01352779333 11qqcal =−++=−++= snn  

 

• Based on the corrected nodal values, the inclinations from Tab. 3.3 are modified 

accordingly with Eq. (3.23), in which the nodal values from Tab. 3.3 are replaced 

by the corrected ones. The obtained inclinations are contained in the Tab. 3.5.  
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Table 3.5 

Nodal values of the segmental linear approximation of the static inverse function, 

which are calculated on the basis of the calibration results, N is the node number 

N 0 1 2 3 4 

ϑ(N) C 0 25 50 75 100 

nqcal (N)  40931 44915 48869 52794 56689 

a(N)·10-3 C 6.2751 6.3227 6.3694 6.4185 - 

b(N) C -0.0136 24.9838 49.9844 74.9853  

The shift coefficients in Tab. 3.5 are the same as in Tab. 3.4, which can cause  

the mean value of the approximation error to differ substantially from 0. In this case, it 

is necessary to correct them in the same way, which was performed for determining 

these coefficient by using Eq. (3.24).  

Based on the indications obtained during the calibration, one can determine  

the mathematical model of the analog converter valid for the measurement conditions 

under which the calibration is carried out. Generally, such a model is useful in error 

analysis, and, for the considered converter, it has the form: 

( ) 5.01~ +++=
shinc

409.176ent Rn
q                            (3.35) 

 

obtained accordingly with Eq. (3.20) where Δinc is the relative change in  

the characteristic inclination and Δsh is the characteristic shift. Accordingly with this 

model and for the two considered results of the calibration, one obtains the system of 

two equations: 

( )
shincq1

409.176 ++ 1
1

Rn                                (3.36) 

( )
shincq2

409.176 ++ 1
2

Rn                                (3.37) 

After solving them, one obtains values of the characteristic changes as is shown in  

the next example. 

Example 3.4. For two calibration points: (R1 = 100.0 Ω, nq1 = 40931) and 

(R2 = 138.5055 Ω, nq2 = 56689), from Eqs. (3.36) and (3.37), we obtain the following 

results: 

( ) ( )
4
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0.1005055.138176.409
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(3.38) 

and 

( ) ( ) 71057.110.100176.409409311409.176 4

inc1q1sh =+−=+−= −Rn
    

(3.39) 



63 

After introducing the values (3.38) and (3.39) into Eq. (3.35) and taking the noise 

into account, on obtains the model of the analog conversion that contains the drift 

parameters in the considered measurement conditions. It is of the form: 

( ) 5.071057.11 4 ++++= −

noiqdr
409.176ent eRn

                 
(3.40) 

where enoi is a realization of the normal noise error N(0; 1). 

Experiment 3.4. This experiment is carried out in the same way as Experiment 3.2 

with these differences, that the indications are determined on the basis of the model 

(3.40), and the reconstruction is performed with using the parameters of the linear 

approximation contained in Tab. 3.5. The reconstruction error calculated in the case if 

the indications are determined accordingly with Eq. (3.40) is presented in Fig. 3.7b but 

if the noise in this equation is omitted in Fig. 3.7a. 

a)      b) 

 
Fig. 3.7. Histograms of the static reconstruction error for the linear approximation parameters obtained 

as a result of the calibration: a) the reconstruction error is composed of the errors caused by 

the linear approximation, the calibration, and the quantization, the standard deviation of this 

error is σrec = 8.5ˑ10-3oC, b) the reconstruction error also contains the noise error, 

σrec =10.6ˑ10-3oC 

Based on data calculated for the histograms in Fig. 3.7, one can determinate  

the standard deviation of the calibration error. With the assumption that the partial 

errors are not correlated and accordingly with Eq. (1.53), the variance of  

the reconstruction error is the sum:  

2

cal

2

noi

2

q

2

app

2

rec
 +++=

                                       
(3.41) 

where the partial standard deviations represent: σapp – the linear approximation  

error shown in Fig. 3.5b, σq – the quantization error, σnoi – the noise error,  
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σcal – the calibration error. After rearranging the Eq. (3.41), we find that the standard 

deviation of the calibration error is expressed as: 

2

noi

2

q

2

app

2

reccal
 −−−=                                     (3.42) 

After introducing the values from Figs. 3.5b, 3.7b and these given by Eqs. (3.27), 

(3.29), we have: 

C1044.43.4036.376.1010 o3223

cal

−− =−−−=
                 

(3.43) 

As it results from comparison of standard deviations of the considered partial 

errors, their values are approximately at the same level. It means that such a simple 

calibration is accurate enough for the analog conversion performed in the exemplary 

instrument.  

3.2.4. Identification of parameters of one-dimensional linear approximation 

Generally, an identification of a static characteristic consists in measuring it in so 

many points as necessary to obtain such an approximation which fulfils accuracy 

requirements [G3, M8]. The number of points depends on the degree of nonlinearity of 

the characteristic and measurement conditions of the identification. From  

the reconstruction point of view, the identification should be carried out by direct 

determination of such a form of approximation which is applied in the reconstruction. 

It is possible to apply the other indirect way that is carried out in two stages. The first 

one consist in using the measurement results to calculate parameters of an initial 

analytical description of the static characteristic. The second stage aims to obtain  

the final approximation adapted to the reconstruction requirements on the basis of this 

initial description. 

The direct identification of the static characteristic of the exemplary instrument 

considered in this chapter consists in determination parameters of the applied linear 

approximation on the basis of measurement results. Let us assume that every segment 

of the characteristic is identified in I points. At first, standard I resistors are connected 

to the instrument input instead of Pt100 sensor one after the other and  

the corresponding ADC indications nqi, i = 1,...,I, are recorded. According to 

Eqs. (3.21) and (3.22), the parameters of the segment for the node N are calculated 
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with assumption that they minimize the following expression being the sum of  

the squared errors [L1]: 

( ) ( ) ( ) ( ) ( )( ) 
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(3.44) 

where the reference input temperature ϑi corresponds to resistance Ri according to  

the equation (3.5), ( )Nâ , ( )Nĉ  are the estimates of the parameters describing  

the segment of node N. To determine these estimates, one equates to zero the first 

derivative of expression (3.44) in relation to ( )Nâ  and next to ( )Nĉ . The obtained 

system of two equations enables determining the estimate of the segment inclination 

for node N as: 
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The estimate of the beginning point of the segment is calculated as the mean value: 
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(3.46) 

Let us take for example that the parameters of the linear approximation are 

identified in form of 4 segments the same as presented in Tab. 3.5. For every segment, 

4 standard resistors, with nominal values Ri, i = 1,... , 4 are used. Introducing  

the resistor Ri into the instrument input is adequate to give the temperature ϑi to  

the sensor input accordingly with Eq. (3.5). The resolution of the resistors is 0.001 Ω, 

which corresponds to a temperature resolution equal to 0.001oC. The ADC indications 

obtained for the used standard resistors are determined on the basis of the analog 

conversion model (3.20). All values designated in the described identification process 

are presented in Tab. 3.6. 
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Table 3.6 

ADC indications obtained for the selected standard resistors on the basis of Eq. (3.45), 

N is the number of the node, ϑi is the temperature responding the resistance Ri 

according to the characteristic (3.5) of the sensor, i = 1, ..., I, I = 4 is the total number 

of resistors used to identify the characteristic in one node 

N 0 1 2 3 

R1(N) Ω 100.000 109.856 119.424 129.035 

ϑ1(N)oC 0 25.313 50.070 75.125 

nq1(N) 40917 44949 48866 52797 

R2(N) Ω 102.454 112.130 121.651 131.435 

ϑ2(N) oC 6.285 31.180 55.859 81.411 

nq2(N) 41920 45882 49777 53782 

R3(N) Ω 104.860 114.444 124.331 133.792 

ϑ3(N)oC 12.458 37.161 62.838 87.596 

nq3(N) 42906 46829 50873 54744 

R4(N) Ω 107.333 116.986 126.698 136.010 

ϑ4(N) oC 18.815 43.744 69.015 93.427 

nq4(N) 43918 47868 51843 55652 

Based on the values contained in Tab. 3.6, one can calculate the parameters of  

4 segments that approximate the exemplary inverse static characteristic. The segments 

are generally described by the following linear equation: 

( ) ( ) 3,,0,ˆˆˆ =+= NNcnNa
q


                             

(3.47) 

where ( )Nâ  and ( )Nĉ  are calculated accordingly with the equations (3.45) and (3.46), 

respectively.  

Example 3.5. Let us calculate the approximation parameters for the first node (N = 0) 

on the basis of data from the first column of Tab. 3.6. Accordingly with Eq. (3.45), we 

obtain the estimate of the inclination equal to: 

( ) Co3102687.60ˆ −=a  

The estimate of the shift coefficient from Eq. (3.47) is calculated as the mean value: 
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The coefficient ( )Nĉ  describes the point on the vertical axis ̂  for nq = 0. For 

N = 0, the nodal value of the temperature ϑ(0) = 0oC. Taking this into account,  

the approximation segment begins from ( )0
q

n , which can be determined on the basis 

of the equation (3.47) as: 

( )
( )
( )

57.40917
102687.6

5.256

0ˆ

0ˆ
0

3q =


−
−=−=

−a

c
n  

To obtain the estimate ( )0ˆ
q

n
 
of the indication in node 0, ( )0

q
n  should be rounded 

as the indications take integer values. One obtains: 

( ) ( )  ( ) 409185.057.40917ent5.00ent0ˆ
qq =+=+= nn   

Based on the calculated values, the shift coefficient of the first segment is: 

( ) ( ) ( ) ( )  ( ) C003.0)57.4091740918102687.600ˆ0ˆ0ˆ o3

qq −=−−=−−= −nnab   

The values of the parameters obtained in Example 3.5 for node 0 are presented in  

the first column of Tab. 3.7. The remaining columns contain parameters of the other 

nodes, which are calculated in the same way as used for the first node. Distributions of 

the reconstruction errors are determined for the approximated parameters of Tab. 3.7 

using Experiment 3.5. 

Table 3.7 

Node values of the segmental approximation of the inverse function identified  

on the basis of I = 4 points for every segment according to the equations (3.45)  

and (3.46), N is the node number 

N 0 1 2 3 4 

ϑ(N) oC 0 25.313 50.070 75.125 93.427 

( )Nn
q
ˆ  40918 44950 48866 52799  

( ) Co310ˆ −Na  6.2687 6.3146 6.3643 6.4123  

( ) C
o

Nb̂  -0.003 25.3147 50.0721 75.1270  

Experiment 3.5. This experiment aims to determine histograms of the reconstruction 

errors that contain the identification error. It is carried out in the same way as 

Experiment 3.2 with this difference that the estimates of the input temperature are 

calculated with using the parameters from Tab.3.7 obtained as a result of the direct 

identification. The ADC indications used for the reconstruction are determined on  
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the basis of Eq. (3.20) or (3.23) in the case if the indications are burdened by  

the normal noise N(0; 1). The obtained histograms are presented in Figs. 3.8a and 3.8b, 

respectively. 

a)          b) 

 

Fig. 3.8. Histograms of the reconstruction errors which are calculated for the linear approximated 

parameters from Tab. 3.7 obtained as a result of identification: a) the total error contains  

the approximation, identification, and quantization errors, σrec  = 11.8ˑ10-3oC, b) the total 

error additively contains the noise error, σrec = 13.4ˑ10-3oC 

Example 3.6. The reconstruction error from Fig. 3.8b is composed of the errors caused 

by: eapp – the linear approximation, eq – the quantization, enoi – the noise, and eid – by 

the identification. If these errors are uncorrelated, the standard deviation of  

the identification error can be calculated in the same way as in Eqs. (3.41) and (3.42). 

One obtains: 
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 −−−=

                                     
(3.48) 

where σrec is the standard deviation of the reconstruction error described by  

the histogram in Fig. 3.8b, while the other standard deviations are the same as in 

Eq. (3.41). Based on these values, we have: 

C1032.93.4036.374.1310 o3223

id

−− =−−−=
                 

(3.49) 

which means that, in the considered case, the identification error takes values 

comparable to the linear approximation error. 

Identificationof a static characteristic of a sensor is generally a sophisticated problem 

from measurement point of view because it is necessary to use as many standards of an 

input quantity as identification points are chosen. For nonelectrical quantities, 

constructing of standards with suitable accuracy is difficult, and identification 

experiments need professional laboratory equipment. All these causes one strives to 

limit a number of identification points to a minimum. Tab. 3.8 contains standard 
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deviation values of the reconstruction error, which are determined for the number of 

identification points less than 4 for one segment. The parameters of the approximation 

are calculated on the basis of Eqs. (3.45) and (3.46). 

Table 3.8 

Standard deviations of the identification error in dependence  

on the number Nip of identification points for one approximation 

segment, the number of segments Nseg = 4 

Nip 2 3 4 

σidˑ10-3oC 10.4 10.0 9.32 

The values in Tab. 3.8 show that decreasing the identification points does not 

substantially influence the identification inaccuracy. This suggests that indirect 

identification enables more reduction of identification points. In the first step of such 

identification, one determines an inverse function as an analytical equation [A1].With 

the assumption that one uses the polynomial ( )
q

nf=̂
 
of the second order determined 

for I = 16 all identification points taken from Tab. 3.5 (4 points for each of the  

4 segments), the function has the following form: 

293 101444.6107467.54200.245ˆ
qq nn ++−= −−                    (3.50) 

In the second step, one calculates the approximation coefficients in the same way 

as for the exemplary static characteristic (3.5). The obtained node values are presented 

in Table 3.9. Histograms of the reconstruction error determined in the case if this 

approximation is used are shown in Fig. 3.9. 

Table 3.9 

Nodal values of the linear segmental approximation of the inverse function (3.52)  

for the number of all identification points I = 16, N is the node number 

N 0 1 2 3 4 

( )Nn
q
ˆ  40917 44949 48866 52797 55652 

( ) Co310ˆ −Na  6.2680 6.3171 6.3655 6.4130  

( ) C
o

Nb̂  -0.0015 25.2967 50.0644 75.1107  

Experiment 3.6. The reconstruction is performed using the parameters contained in 

Tab. 3.9, which are determined indirectly on the basis of Eq. (3.50). The histograms of 

the reconstruction errors obtained in the same way as used in Experiment 3.2 are 

shown in Fig. 3.9.  
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a)            b) 

 

Fig. 3.9. Histograms of errors of the reconstruction performed indirectly using the linear 

approximation parameters from Tab. 3.9, which are determined on the basis of Eq. (3.50): 

a) the error contains both the approximation and the identification errors, as well as  

the quantization error, the standard deviation of the error is σrec = 10.9ˑ10-3oC,  

b) the reconstruction error additively contains the noise error, σrec = 12.6 ˑ10-3oC 

The standard deviation of the error due to indirect identification is determined from  

the equation.(3.48), the same as used for direct identification. On the basis of  

the histogram in Fig. 3.9b, one obtains:  

C1095.73.4036.32.76.1210 o3223

id
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(3.51) 

where the other values are the same as in Eq. (3.49). The values being calculated by 

using Eqs. (3.49) and (3.51) mean that the errors of direct and indirect identification 

are comparable for the same number of identification points I equal to 16. The data in 

Tab. 3.10 shows that decreasing the number of points used for indirect identification does 

not increase its inaccuracy. It means that the indirect identification of the parameters of 

the linear approximation enables using fever standards than the direct one. Therefore, it is 

more effective if one takes into account the number of standards applied. 

Table 3.10 

The standard deviations of the identification error in dependence on 

number I of identification points used for determination of the analytical  

function in the form (3.50) which is the basis of calculation of  

the segmental approximation parameters for N = 5 nodes 

I 4 8 16 

σidˑ103oC 7.33 7.5 8.13 
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3.2.5. Influence of non-linearity degree of static characteristic on number of nodes 

From the linear approximation point of view, the number of nodes necessary to obtain 

the required accuracy is one of the basic properties of every class of approximated 

functions. The characteristic (3.5) of the exemplary Pt100 sensor belongs to the class 

of second-order polynomials. To consider the influence of the characteristic 

non-linearity on the necessary number of nodes, one can use an expression similar to 

Eq. (3.5) in the form: 

( ) ( )  4322-o7- 10 ,10 ,10 10, 1, = ,C ·5,775·10 = where kkRR  ,1
2

0
++=  

(3.52) 

where R0 = 100 Ω, α = 3.9083·10−3oC−1, Δϑ changes from 0 to 100oC. For k = 1, 

Eq. (3.52) describes the static characteristic of the Pt100 sensor. Taking into account 

that coefficient β forms the non-linearity degree of the sensor characteristic, the higher 

values of k cause the stronger non-linearity. 

To evaluate the influence of the non-linearity of the static characteristic on  

the number of nodes Nn needed to achieve the allowable inaccuracy of the segmental 

linear approximation of the characteristic inverse to (3.52), the following experiment 

has been carried out. 

Experiment 3.7. This experiment consists in looking, for k = 1, 10, 102, 103, the least 

number of nodes, for which the standard deviation of the approximation error is less 

than σapp,max = 10ˑ10-3oC. For every value of k, first, the parameters of the linear 

segmental approximation are determined for the number of nodes Nn = 5 and then,  

the approximation error is calculated in a simulative way. If the standard deviation of 

the error is higher than the allowable value σapp,max = 0.01oC, the number of nodes 

increases by 1 and all the procedure is repeated so long until the standard deviation is 

less than this value. The obtained minimal numbers of nodes are presented in 

Table 3.11. 

Table 3.11 

The least number of nodes Nn,min necessary to obtain the allowable standard 

deviation of the approximation error  σapp,max = 0.01oC for the static  

characteristic (3.52) approximated by linear segments 

K 1 10 102 103 

Nn,min 5 11 25 46 
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The exemplary function (3.52) for k = 102 is presented in Fig. 3.10a. The histogram  

of the approximation error of this function that is approximated in Nn = 11 nodes  

by linear segments is shown in Fig. 3.10b. 

a)           b) 

 
Fig. 3.10. a) Exemplary function (3.52) for k = 102, b) histogram of the linear approximation error of 

the function for the number of nodes Nn = 11 

The results which are contained in Tab. 3.11 show that the number of nodes necessary 

to obtain allowable inaccuracy of the segmental linear approximation significantly 

grows with non-linearity increasing of the linearized function. It causes the number of 

coefficients which have to be stored in the non-volatile memory of the microcontroller 

to perform static reconstruction to be suitable large but this is not a problem if modern 

microcontrollers are applied [Y6].  

3.3. Two-dimensional analytical static reconstruction 

3.3.1. Two-dimensional static characteristic of exemplary sampling instrument 

The output quantity y of the analog converter in a sampling instrument can be 

dependent not only on its input quantity x but also on other quantities that influence 

the analog conversion. Among the influence quantities, the environmental temperature, 

at which the instrument works, is most often taken into account. The considerations in 

this chapter focus on error analysis of the signal reconstruction of the exemplary 

instrument in the case where the ADC indications depend not only on the measured 

temperature but also on the environmental temperature.  
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The environmental temperature can influence many elements of the instrument but, 

to make the considerations simpler, only the temperature changes of the reference 

resistor Rref (see Fig. 3.2) are considered. Denoting the environmental temperature as 

ϑenv, the dependence of the resistance of Rref  on it can be described by the expression: 

( )    refrefenvrefrefenvref0envenvrefref RRRRRRR +=+=+=−+=  11
~

    (3.53) 

where ϑ0,env = 25oC is the nominal environmental temperature and Rref is the value of 

the reference resistor at this temperature. The temperature drift coefficient ε is defined 

as the relative change of the resistor Rref for the increase in the environmental 

temperature equal to 1oC. This resistor is a part of AD converter; therefore,  

the temperature drift of the resistor causes that the quantum value of the converter 

changes respectively. Denoting the fluent quantum as q~  and based on Eq. (3.18), one 

can describe the ADC indication in this case as: 
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where R(ϑ) is the resistance of the Pt100 sensor, which depend on the input 

temperature ϑ accordingly with the equation (3.5). After introducing Eq. (3.53) to 

Eq. (3.54), one obtains the expression: 
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which is the analytical two-dimensional model composed of the analog and 

analog-to-digital parts of the exemplary instrument. 

For the analysis of the properties of the model (3.55), another form of it is more 

usable. After rearranging the equation (3.53), this model takes the form: 
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(3.56) 

where it is taken into account that for 
refref

RR   we have: .1
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Example 3.7. Let us assume that the drift coefficient of the resistor Rref is 

ε = 30 ppm/oC and the environmental temperature varies from 5oC to 45oC. This 

means that the maximum absolute value of the temperature deflection from its nominal 

value ϑ0env = 25oC is: |Δϑenv|max = 20oC. Therefore, the maximum change of Rref is of 

the value: 

( ) === −− 36

maxmax
106.0103020

refrefenvrefref
RRRR           (3.57) 

Omitting the quantization operation in Eq. (3.54), we can write it in the simplified 

form: 
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(3.58) 

where nqnom is the indication at the nominal temperature ϑ0,env = 25oC. 

Accordingly with Eq. (3.58), one can determine the changes in the ADC 

indications caused by the influence of the environmental temperature on the resistor 

Rref. The maximum value of these changes can be determined as: 

( ) ( )

ref

ref

qnomq
R

R
nn max

max


=                             (3.59) 

Based on this equation and taking into account the fact that the maximum number of 

quanta (nq)max = 56673 (see Tab. 3.3), we have: 

( ) 34106.056673 3

max
= −

qn
                                 

(3.60) 

In Example 3.2 it is calculated that the maximum acceptable change of  

the quantization result is (Δnq)acp if the input temperature resolution is r = 0.01oC.  

The change (3.60) is substantially higher than this acceptable, which means that it is 

necessary to correct the error caused by changes of the environmental temperature by 

applying a two-dimensional static reconstruction algorithm. 

3.3.2. Algorithm of two-dimensional static reconstruction  

As result of the analytical model (3.55), the indication of ADC depends on both  

the input temperature ϑ and the resistance of Rref, which is influenced by  

the environmental temperature ϑenv. Taking this into account, this model can be 

generally presented in the following form: 

),(
envq

Sn =                        (3.61) 
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In this case, the reconstruction is performed by solving Eq. (3.61) in relation to  

the input temperature ϑ. This operation can be written as: 

),(ˆ 1

envq  nS −=            (3.62) 

where ̂  is the estimate of the reconstructed input temperature, and env  is  

the environmental temperature. In the exemplary instrument, this temperature is 

converted by the inside sensor and measured by using the additional AD converter that 

is a part of the ADuC386 microcontroller [Y6]. 

By expanding the inverse function (3.62) in the Maclaurin series and taking only 

the initial terms into account, one obtains the following expression: 
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(3.63) 

Denoting: 
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where N is the node number, and with assumption that: 

( )
0envenvenvenvqqqq

dd  −=−= ,Nnnnn               (3.65) 

Eq. (3.63) can be written as: 
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(3.66) 

The coefficient c(N) is interpreted as the inclination, in node N, of the linearized 

inverse characteristic in relation to the environmental temperature. Due to  

the non-linearity of the static characteristic, the inclination generally takes two values 

depending on the value of this temperature: c+ for the value higher or equal to  

the nominal environmental temperature ϑ0env and c- if the value is lower. The values of 

these inclinations are calculated as: 
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( ) ( )
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NnNn
Nc ,

            

(3.67) 

where Δϑenv,min, Δϑenv,max are the minimum and maximum values of Δϑenv, n2,q+ and n2,q-

are the indications calculated for these extreme values, respectively. 



76 

The determination of the coefficients of the two-dimensional linear approximation 

is carried out on the basis of the nodal values. For the exemplary analog converter 

working in the given range of environmental temperature, the parameters of the nodes 

are the same as for the one-dimensional approximation. It means that the node number 

takes values N = 0, ..., 4, the amplification coefficient is kV = 32 and the maximum 

number of ADC quanta Nq = 216. The nominal value of the reference resistor used in 

the instrument is Rref = 5.1253ˑ103 Ω and its temperature coefficient ε = 30 ppm/oC. 

The values of the environmental temperature change around its nominal value 

ϑ0env = 25oC from the maximum ϑenv,max = 45°C to the minimum ϑenv,min = 5°C.  

On the basis of these values, one can calculate the dependencies of the ADC 

indications from values of the sensor resistance R for the extreme values of  

the environmental temperature. Taking into account the values of the described 

parameters, the indication (3.55) of the instrument working at the environmental 

temperature of 45oC is expressed as: 
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and at the temperature 5oC: 
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The minimum and maximum indications calculated for all nodes accordingly with 

Eqs. (3.68) and (3.69) are presented in Tab. 3.12. 

Table 3.12 

ADC indications determined on the basis of Eqs. (3.68), (3.69) and (3.5) in the nodes 

of two-dimensional exemplary inverse static characteristic including the influence  

of the environmental temperature, N is the node number, nq (N) – the indication  

in the nominal environmental temperature ϑ0env = 25oC, nq+ (N) in the temperature 

ϑenv,max = 45°C, nq- (N) in ϑenv,min= 5°C 

N 0 1 2 3 4 

 (N)oC 0 25 50 75 100 

R(N)  Ω 100.0000 109.7347 119.3971 128.9874 138.5055 

nq (N)  40918 44901 48854 52779 56673 

nq+ (N) 40893 44874 48825 52747 56639 

nq- (N) 40942 44928 48884 52810 56707 
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Accordingly with Eq. (3.67), the inclinations c-(N) and c+(N), calculated for an 

environmental temperature lower and higher than the nominal one, are: 

( )
( ) ( )
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( ) ( )

CC o

-qq

o
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−
=

−
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NnNn
Nc                 (3.70) 

Their values were obtained on the basis of data from Tab. 3.12 and they are presented 

in Tab. 3.13. 

Table 3.13 

Inclinations calculated accordingly with expressions (3.67), N is the node number 

N 0 1 2 3 4 

c-(N)oC 1.2 1.35 1.5 1.55 – 

c+(N)oC 1.25 1.35 1.45 1.6 – 

The inclinations of Tab. 3.13 have similar values, which means that only one 

inclination can be used for positive and negative variations of the Δϑenv. For further 

considerations, the average value of the inclinations (3.70): 

( )
( ) ( )

2

NcNc
Nc −+

+
=                          (3.71) 

is used. Values calculated on the basis of data from Tab. 3.13 are presented in  

the table 3.14 together with the rest of the parameters of the two-dimensional linear 

approximation, which are the same as for one-dimensional approximation  

(see Tab. 3.3). 

Table 3.14 

Parameters of the segments of the five-node two-dimensional linear approximation  

of the exemplary inverse characteristic calculated for model (3.55) based  

on the analytical description (3.5) of the sensor and Eq. (3.71), N is the node number 

N 0 1 2 3 4 

R(N)  Ω 100.0000 109.7347 119.3971 128.9874 138.5055 

nq (N)  40918 44901 48854 52779 56673 

a(N)·10-3oC 6.2767 6.3243 6.3694 6.4201  

b(N)oC -0.0140 24.9782 49.9833 74.9888  

c(N)oC 1.225 1.35 1.475 1.575  

The coefficients contained in Tab. 3.14 describe two-dimensional exemplary inverse 

characteristic created with using the segmental linear approximation, which is shown 
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in the graphical form in Fig. 3.11. The approximation coefficients are stored in  

the look-up table and applied in the algorithm of the two-dimensional static 

reconstruction described below.  

 
Fig. 3.11. Graphical view of the linear approximation of the exemplary two-dimensional inverse 

function 

The two-dimensional reconstruction algorithm is performed in the following steps: 

• The ADC indication nq is compared with the node values nq(N), N = 0, 1, ..., 4, 

which allows the determination of suitable node number N. 

• Based on the determined node number N, the suitable value of c2(N) is read from 

the look-up table and the correction ( )
env

Nc  is calculated, where
0envenvenv  −= ˆ , 

env̂  
is the result of the environmental temperature measurement, ϑ0env = 25oC. 

• The calculated correction is added to the row result nq, which enables obtaining  

the corrected result 
q

n̂ . 

• The other parameters a(N), b(N) and nq(N) for the determined node number N are 

read from the look-up table. 

• Based on the result 
q

n̂  and read parameters, the input temperature estimate is 

calculated accordingly with Eq. (3.23), the same as used for the one-dimensional 

reconstruction equation. 

Using the two-dimensional model (3.55), one can carry out experiments, which enable 

the determination of errors specific to the reconstruction. In real measurement 

conditions, the model should take noise errors into account, which causes the ADC 

indications in this case to be expressed as: 
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where in the performed experiments enoi is the normal noise N(0; 1). Moreover, this 

model has to be completed by the expression, which describes the result of  

the environmental temperature measurement. With the assumption that this 

temperature is measured with resolution 0.1oC, the estimate of its change is described 

by the following equation: 

( )5.010ent1.0ˆwhere,ˆˆ
envenvenv0,envenv +=−= 

                
(3.73) 

Experiment 3.8. Let us assume that the input temperature changes from 0 to 100oC 

and the environmental temperature changes from 5 to 45oC. At the beginning of every 

step of the experiment, two values are randomly taken: the input temperature and  

the environmental temperature – both in their ranges accordingly with suitable 

rectangular distributions. Next, two indications are determined. The first indication is 

calculated on the basis of Eq. (3.55), which does not include the noise error, and 

assuming that the environmental temperature is measured accurately. The second 

indication is calculated using Eqs. (3.72) and (3.73), i.e. for the indications containing 

all considered errors. For both kinds of indication, the reconstruction is performed 

accordingly with the described algorithm on the basis of the approximation parameters 

presented in Tab. 3.14. The distributions of the reconstruction errors are presented in 

the form of histograms in Fig. 3.12. 

a)          b) 

 

Fig. 3.12. Histograms of total errors of the two-dimensional static reconstruction: a) the reconstruction 

is performed on the basis of ADC indications burdened by the approximation error and  

the quantization error (values of the environmental temperatures are exactly known) 

accordingly with Eq. (3.55), the standard deviation of the reconstruction error is 

rec = 9.0ˑ10-3oC, b) indications are calculated accordingly with equations (3.72) and (3.73), 

which means that they are additively burdened by the noise errors and the measurement 

errors of the environmental temperature, rec = 11.1ˑ10-3oC 
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The histogram of the reconstruction error from Fig. 3.12a enables the determination of 

the standard deviation of the two-dimensional approximation error eapp because in this 

case it is:  

2

q

2

recapp
 −=

                                             
(3.74) 

where eq is the quantization error with variance (3.39). After introducing the suitable 

values to Eq. (3.75), we obtain: 

C108.836.3910 o323

app

−− =−=
                            

(3.75) 

Having known the standard deviation ϭapp, one can calculate the standard deviation ϭenv 

of the error caused by the measurement of the environmental temperature, which is 

described by Eq. (3.74). For the histogram of Fig. 3.12b, we have: 
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q
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recenv
 −−−=

                                
(3.76) 

where ϭnoi is the normal noise error N(0; 1). Using these known values of the standard 

deviations, we obtain the following: 

C1045.13.4036.38.81.1110 o3223

env

−− =−−−=
             

(3.77) 

The value obtained is less than the other standard deviations, which means that  

the measurement of environmental temperature with resolution 0.1oC is accurate 

enough for the sampling instrument considered. 

3.3.3. Calibration of instrument with two-dimensional analytical reconstruction 

Taking into account that nonlinearity of the two-dimensional static characteristic of  

the analog converter is not great, one can carry out the calibration in the same way as 

applied for the one-dimensional characteristic, which is described in Section 3.2.3.  

It means that the calibration consists in measurements of the characteristic in  

the selected points and in modifying the approximation parameters on the basis of  

the obtained indications. As the environmental temperature can be one of the causes  

of the characteristic drift, the calibration must be performed at the nominal 

environmental temperature ϑ0env = 25oC, which means that the indications obtained for 

this temperature are the same as in Tab. 3.4. The calibration procedure is presented in 

the following example. 
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Example 3.8. Two resistors: R1 = 100.0 Ω and R2 = 138.505 Ω are used to calibrate 

the instrument that performs the exemplary two-dimensional linear approximation. 

The resistor R1 corresponds to the input temperature ϑ1 = 0oC and R2 – to  

the temperature ϑ2 = 100oC. The use of the resistor R1 in the nominal environmental 

temperature ϑ0env = 25oC gives the indication nqsh(0) = 40931 but, if the resistor R2 is 

connected to the input, the indication for the node number 4 is nqsh(4) = 56689. These 

indications are the same as in Example 3.6, which means that the constant component 

(3.27) of the correction is Δ1 = 13 and the inclination coefficient (3.30) is equal to 

s = 0.03oC-1.  

Based on the data presented, the other corrected indications in the nodes of  

the inverse two-dimensional static characteristic are calculated in the following way.  

For node N = 0 one obtains:  
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where the symbols ‘-‘ and ‘+’ denote the indications at the environmental temperatures 

ϑenv = 5oC and ϑenv = 45oC, respectively. 

For N = 1 we have:  
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For N = 2: 
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The node values of indications are presented in the table 3.15. The parameters of  

he two-dimensional linear approximation, which are calculated on the basis of these 

indications in the way described in the previous chapter, are contained in Tab. 3.16. 

Table 3.15 

ADC indications determined by the effect of calibration 

N 0 1 2 3 4 

 (N)oC 0 25 50 75 100 

nqsh (N)  40931 44915 48869 52794 56689 

nqsh- (N) 40955 44942 48899 52825 56723 

nqsh+ (N) 40906 44888 48840 52762 56655 
 

Table 3.16 

Parameters of the segments approximating the exemplary two-dimensional static 

characteristic obtained as the results of calculations performed on indications from 

Tab. 3.14, N is the node number 

N 0 1 2 3 4 

a(N)·10-3oC 6.2750 6.3227 6.3703 6.4176 _ 

b (N)oC -0.01533 24.98328 49.98341 74.98714 _ 

c(N)oC 1.2216 1.3441 1.4631 1.5785  

The error caused by the considered calibration can be determined by using  

the experiment in which the reconstruction error is calculated for the indications 

burdened by all the considered errors. These indications are determined by using  

the two-dimensional analytical model of the analog converter containing the influence 

of the drift. This model has the form:  

( )
( ) 








++++

+
= 5.01
1

noishinc

env

q
409.176ent e

R
n




               (3.78) 

that is obtained on the basis of Eqs. (3.35) and (3.75), where R(ϑ) is the resistance of 

the sensor dependent on the input temperature ϑ, Δinc – the drift coefficient of the static 

characteristic inclination, Δsh – the characteristic shift caused by the drift, Δϑenv –  

the environmental temperature, ε – the coefficient describing the influence of  

the environmental temperature on the characteristic, enoi is the noise error. 

The parameters of the linear approximation contained in Tab. 3.16 has been 

determined on the basis of the calibration results which enable calculation of values of 

the drift parameters in the nominal environmental temperature. For Δϑenv = 0, one 

obtains: Δinc = 1.57ˑ10-4, Δsh = 7oC (see Eqs. (3.37) and (3.38)). For these values and for 

the environmental temperature coefficient ε = 30 ppm/oC, the model (3.78) takes the form: 
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where enoi is the error caused by the normal noise N(0; 1). 

Experiment 3.9. This experiment is aimed at determination of distributions of  

the reconstruction error for the parameters of the linear approximation from Tab. 3.16 

and indications calculated accordingly with Eq. (3.79). One assumes that the input 

temperature ϑ varies randomly with the rectangular distribution in the range from 0 to 

100oC changing the sensor resistance R accordingly with Eq. (3.5). The environmental 

temperature ϑenv varies in the range from 5 to 45oC accordingly with the same kind of 

the distribution. The changes of this temperature are determined as: 
0envenvenv  −= ˆˆ  

where 
env̂  is a measurement result of the environmental temperature obtained with  

the resolution 0.1oC as it is described by the equation (3.70). The reconstruction is 

carried out on the basis of the parameters from Tab. 3.16 with using the calculated 

values of both temperatures. The histogram of the reconstruction error is presented in 

Fig. 3.15b. The same operations are performed for the indications obtained with 

assumption that the noise does not occur and the environmental temperature is known 

exactly. The histogram of this error is shown in Fig. 3.13a. 

a)          b) 

 

Fig. 3.13. Histograms of the reconstruction errors if the parameters of the two-dimensional static 

inverse characteristic are results of the calibration: a) the indications are burdened only by 

the quantization errors, σrec = 9.3ˑ10-3oC, b) the indications are burdened both by  

the quantization and the noise errors while the environmental temperature is measured with 

resolution 0.1, σrec = 11.3ˑ10-3oC 

The reconstruction error erec from Fig. 3.13b is composed of the approximation error 

eapp, the quantization error eq, the standard deviation of which is given by Eq. (3.39), 

the noise error enoi with the standard deviation (3.40), the calibration error ecal and  

the measurement error of the environmental temperature eenv described by Eq. (3.75). 
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Having known the distribution of the reconstruction error shown in Fig. 3.13b, one can 

calculate the standard deviation of the calibration error based on the expression: 

2

env

2

noi

2

q

2

app

2

reccal
 −−−−=                                (3.80) 

After introducing the suitable values to Eq. (3.80), one obtains: 

C1012.257.13.4036.38.83.1110 o32223

cal

−− =−−−−=
             

(3.81) 

which means that this error is of minor importance. Thus, the described calibration in 

two end points is relatively accurate in the measurement conditions for the exemplary 

instrument with the considered two-dimensional linear approximation of the static 

characteristic. 

3.3.4. Identification of parameters of two-dimensional analytical reconstruction 

In measurement practice, the key issue is to limit the number of an input quantity 

standards which are used for an identification of the static characteristic. As result of 

considerations in Section 3.2.4, the described indirect method requires the smallest 

number of standards for the identification of the inverse one-dimensional static 

characteristic approximated by linear segments. The results that are contained in  

the table 3.9 suggest that even three standards could be enough to determine  

the approximating polynomial with acceptable inaccuracy. The identification method 

described in this chapter is based on conclusions drawn in Section 3.2.4. 

Let us take that the experiment of the considered identification is carried out for  

the environmental temperatures stabilized at ϑenv- = 5oC, ϑ0env = 25oC and ϑenv+ = 45oC. 

At every temperature, the same 3 standard resistors are used: Rstd(Iid), values of which 

are known with resolution 0.001 Ω, Iid is the identification point number, Iid = 1,…,3. 

Using these values, the input temperature ϑ(Iid) is determined accordingly with 

Eq. (3.5) with the assumption that the connection of one of the resistors Rstd(Iid) to  

the instrument input is the equivalent to the placement of the Pt100 sensor at  

the corresponding temperature ϑ(Iid). 

The two-dimensional inverse characteristic of the exemplary instrument is 

approximated by linear segments connecting Nnod = 5 nodes. The first stage of  

the identification consists in carrying out the measurements for 3 values of  

the temperature inside the instrument housing stabilized at the ϑenv = 5oC, 25oC and 
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45oC. For every temperature, the 3 standard resistors Rstd(Iid), the values of which are 

presented in Tab. 3.17, are connected in sequence to the instrument input. 

Measurements are repeated 5 times for every resistor to decrease the influence of the 

noise by averaging the obtained indications. The calculated  average values: ( )idInq0
, 

( )idInq−
 and ( )idInq+

, where Iid = 1, ..., 3, are located in the Tab. 3.17 as the final 

identification results. 

One should notice that during all the measurement experiments the standard 

resistors work in stable nominal temperature 25oC, while the instrument itself works in 

the 3 described environmental temperatures.  

Table 3.17 

Averaged indications determined for 3 standard resistors Rst(Iid),  

Iid = 1, ..., 3, during the identification performed, respectively,  

at 3 values of the environmental temperature: 5oC, 25oC and 45oC 

Iid 1 2 3 

ϑ(Iid)oC 0.155 52.513 101.211 

Rstd(Iid)  Ω 100.061 120.364 138.965 

( )idInq−
 40967 49280 56896 

( )idInq0
 40943 49250 56861 

( )idInq+
 40918 49221 56827 

The second stage of the identification consists in the determination of 3 analytical 

forms of the inverse characteristic as the second order polynomial, respectively, for 

temperatures  ϑenv = 5, 25 and 45oC. The general form of this polynomial is as follows: 

2

210
ˆ

qq
nanaa ++=

                                            
(3.82) 

where a0, a1 and a2 are constant coefficients determined on the basis of indications 

from Tab. 3.17 and presented in the Tab. 3.18. 

Table 3.18 

Polynomial coefficients that approximate the exemplary two-dimensional  

inverse static characteristic at environmental temperatures ϑenv = 5, 25,  

and 45oC accordingly with Eq. (3.82) 

 a0 a110-3 a210-9 

ϑenv = 5oC -245.72148 5.755326 6.01684 

ϑenv = 25oC -245.80685 5.761800 5.999101 

ϑenv = 45oC -245.63312 5.758227 6.076019 
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The third stage of the identification consists of calculation of the parameters of  

the segments approximating the exemplary two-dimensional static characteristic 

between equally distant 5 nodes in the same way as described in Chapter 3.2 for  

the one-dimensional approximation. The final results are presented in Tab. 3.19. 

Table 3.19 

Parameters of the segments approximating in 5 nodes the exemplary two-dimensional 

static characteristic obtained indirectly by using polynomials of the form (3.82), 

parameters of which are contained in Tab. 3.17, N is the node number 

N 0 1 2 3 4 

nq (N)  40918 44901 48854 52779 56673 

a(N)·10-3oC 6.27664 6.32425 6.37151 6.41841 _ 

b (N)oC -0.01718 24.9829 49.9829 74.9913 _ 

c(N)oC 1.2194 1.3359 1.4570 1.5827  

The reconstruction is performed on the basis of parameters from Tab. 3.19 accordingly 

with the algorithm described in Section 3.3.2. The histograms of the reconstruction 

errors obtained in the same way as described in Experiment 3.8 are presented in 

Fig. 3.14.  

a)           b) 

 

Fig. 3.14. Histograms of the reconstruction errors if the parameters of the two-dimensional static 

inverse characteristic are obtained as the results of the identification, the indications are 

burdened: a) by the identification, approximation, and quantization errors, σrec = 9.5ˑ10-3oC, 

b) additively by the noise error and error of the environmental temperature which is 

measured with resolution 0.1oC, σrec = 11.5ˑ10-3oC 

The reconstruction error erec from Fig. 3.14b is the composition of the approximation 

error eapp, the quantization error eq, the noise error enoi, the measurement error of  
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the environmental temperature eenv and the identification error eid. Taking this into 

account, the standard deviation of the identification error can be determined from  

the following equation: 

2

env

2

noi

2

q

2

app

2

recid
 −−−−=                               (3.83) 

The standard deviation ϭrec is known from Fig. 3.14 and the values of the other 

standard deviations are the same as in the equation (3.77). For these values, we obtain 

the following: 

C100.345.13.4036.38.85.1110 o32223

id

−− =−−−−=
             

(3.84) 

which means that the identification error is comparable with the quantization error; 

thus, such a relatively simple identification procedure is accurate enough in  

the considered measurement conditions. 

3.4. Basic properties of neural networks used for static reconstruction 

Generally, neural static reconstruction can be considered as the task consisting in 

solving the inverse static characteristic modeled by an artificial neural network that 

approximates this characteristic [D1, H1]. The selected networks presented below 

meet the accuracy requirements of the reconstruction to a degree comparable with this 

achieved for the considered analytical algorithms. 

An artificial neural network is composed of interconnected processing 

elements called neurons [A2, L4]. The general structure of a single neuron is shown in 

Fig. 3.15.  
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Fig. 3.15. General structure of an artificial neuron 
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The neuron consists of the two main elements seriously connected. The task of the first 

consists in summing of the signals obtained by multiplication of input signals xj by 

suitably assigned weights wj, j = 1, …, N, N is the number of neuron inputs. Therefore, 

the output signal ξ of this element is given as the following linear combination: 

0

1

wxw
Nj

j

jj
+= 

=

=

x              (3.85) 

where w0 is the threshold coefficient (bias). The procedure to determine values of these 

coefficients is called the learning process. 

The weighted sum ξ is processed by the second element of the neuron accordingly 

with its transfer function f(ξ), the form of which determines the properties of  

the neuron. The transfer functions of the sigmoidal type: unipolar and bipolar are  

the most commonly used in practice. 

The unipolar transfer function is described by the relation: 

x
x

−+
=

e
u

1

1
)(f             (3.86) 

where β is the parameter that shape the selected form of the function. In the learning 

process, it is necessary to know the first derivative of the transfer function [A2, A3]. 

The derivative of the function (3.87) is given by the equation: 
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The bipolar transfer function is usually described by the expression: 

)()( xx tgh
b

=f            (3.88) 

and its derivative has the form: 
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−=              (3.89) 

Diagrams of the considered sigmoidal transfer functions and their derivatives are 

shown in Fig. 3.16. 

A set of neurons create an artificial neural network. The network composed of 

neurons with the sigmoidal transfer function, connected in this way that the signals 

propagate only in one direction from the input to the output of the network, is called 

feedforward sigmoidal neural network. The simplest structure of it, shown in 

Fig. 3.17a, consists of a single layer of neurons. It has small practical significance [A2] 

and is used in particular cases. 
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Fig. 3.16. Sigmoidal function diagrams for selected values of β coefficient: a) unipolar, b) bipolar,  

c) derivative of the unipolar function, d) derivative of the bipolar function 

The feedforward multilayer network contains at least one hidden layer that 

transforms signals from the input layer to the output layer. The scheme of this network 

is shown in Fig. 3.17b. 
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Fig. 3.17. The general structure of the feedforward sigmoidal neural network: a) single layer network, 

b) multilayer network, N is the number of network inputs, K – the number of neurons in  

the first hidden layer, L – the number of neurons in the H-th hidden layer, M – number of 

output neurons 
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The function implemented by the network with one hidden layer is of the form: 

( ) 
O0H0H
wwxwwy ++=

HO
ff

O
               (3.90) 

where: x, y are vectors of the network input and output signals, respectively, wH, wO – 

weight matrices of hidden and output layers, wH0, wO0 – bias vectors, fH, fO – sigmoidal 

transfer functions. 

The input layer is usually applied for a pre-treatment of the input signals 

(e.g. normalization, coding) and their transfer to the first hidden layer. Neurons in  

the hidden and output layers perform processing accordingly with the taken sigmoidal 

functions. The connections between layers are formed in such a way that every neuron 

of the preceding layer is connected to every neuron of the next layer.  

The feedforward multilayer sigmoidal neural network is usually called a Multi-Layer 

Perceptron or a Feed-Forward Neural Network as well as a Back-Propagation Neural 

Network. Networks of this type are most often described in the literature [A2] and 

used in practical applications. The main reason for this is the development of effective 

methods of their learning, numerous modifications and improvements. 

A feedforward neural network performs mathematical operations on the input 

signals represented in discrete forms by numerical data. These operations depend on 

both the structure of the network itself and the values of the weight coefficients of  

the neurons. Taking this into account, we can treat the exemplary expression (3.93) as 

an approximation of a real dependence between the output and the input data. 

Assuming that the network structure and the neuron transfer functions do not change, 

the approximation properties of the network are fixed by the weight coefficients.  

The corresponding values of the network coefficients are determined in the process 

of network learning which can generally be divided into supervised and unsupervised 

learning [B3]. In this book only the first method is applied for learning networks that 

perform static reconstruction. Using the supervised learning for the feedforward 

sigmoidal networks, one assumes application of a network learning set which consists 

of the input data vector and a corresponding output data vector. Elements of  

the learning input data vector are processed by the network, and the results obtained in 

the output of the network are compared with the output learning vector. The error, 

which is the difference between the compared values, is the primary parameter used to 

adjust the weights. It is the basis of the error backpropagation algorithm [L4], which is 

a generalization of the so-called delta rule that allows learning of multilayer neural 

networks. The operations performed accordingly with this algorithm consist of 
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optimizing the cost function by using a gradient method. The gradient of the cost 

function indicates the direction of the fastest growth and, by changing the sign,  

the direction of steepest descent. Therefore, it is possible to minimize the cost function 

by changing values of its variables, i.e. the weighting factors, in the direction of  

the steepest descent function in proportion to the gradient. 

Using a neural network for static reconstruction requires preparing an appropriate 

set of learning patterns in the identification process, which consist of numbers 

representing the input and output static signals, respectively. The size of this set can 

influence, among others, on the network structure, and more specifically on the number  

of neurons in the hidden layer. The results of the simulation studies, described in [R5], 

show some regularity, which, in short, can be formulated in the following way:  

the more numerous is the set of learning data the more neurons in the hidden layer may 

be applied, providing, as a rule, a more accurate static reconstruction.  

Evaluation of the neural approximation accuracy takes place in the process of 

network testing, wherein the set of testing data should be much larger than the set  

of learning data. This means that, in the simplest case, the identification results of  

the static characteristic should be divided into two separable sets: learning and testing. 

However, in practice, obtaining a suitably numerous set of measurement results of  

the static characteristic is difficult to carry out, time-consuming and costly, especially 

for nonelectrical quantities. Therefore, another approach is applied, which consists 

first in determiningan analytical approximation of the static characteristic on the basis 

of data obtained during the identification [M9]. Next, this approximation is used to 

calculate as numerous learning and testing sets as necessary [A2, A4]. One should 

emphasize that for the neural network working in the sampling instrument, testing 

consists in determination and analysis of distributions of the reconstruction errors by 

using Monte Carlo method [K4]. 

3.5. One-dimensional neural static reconstruction 

3.5.1. One-dimensional neural approximation of the sensor inverse characteristic 

As result of the analysis presented in [R5], a feedforward neural network with one 

hidden layer performs static reconstruction with a good enough accuracy. For  

the Pt100 sensor, the characteristic of which is nonlinear in a small degree,  
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the simplest structure 1-3-1 (one input, 3 neurons in hidden layer, one output) of this 

kind of network can be applied. The scheme describing mathematical operations 

performed by this network is shown in Fig. 3.20. 
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Fig. 3.18. Detailed structure of the 1-3-1 feedforward neural network applied for the static 

reconstruction of the input signal of the exemplary Pt100 sensor 

The scheme shown in Fig. 3.18 can be interpreted as the graphical form of  

the reconstruction algorithm implemented by the neural network. The coefficients of 

this algorithm are determined on the basis of the analytical equation (3.5) that 

describes the static characteristic of the sensor. The network process the input value, 

which is the resistance R of the sensor, to the estimate ̂  of the reconstructed 

temperature. Taking into account that the output layer is reduced to one neuron 

realizing function ,ˆ z=  the general equation (3.91) is transformed into the expression: 

( )
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ˆ bbRwfv
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iii
++=

=

H


                                         
(3.91) 

where fH is the sigmoidal transfer function (3.87) with β = 1. 

The the network learning considered in this book is performed by using 

Lavenberg-Marquard method [W3]. For the network in Fig. 3.18, the set of learning 

data consists of two vectors: the input vector )](...,,)2(),1([ PRRR=R , wherein P is 

the number of the learning patterns, and the output vector )](...,),2(),1([ P = .  

The graphical illustration of the network learning process is presented in Fig. 3.19. 
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Fig. 3.19. Illustration of a supervised learning process of the exemplary neural network with one input 

and one output, p is the current number of the learning step p = 1, …, P 

One learning cycle (epoch) consists in comparing successive responses )(ˆ p  of  

the network withthe values of the input vector to determine the difference: 

)()(ˆ)( ppp  −=Δ                 (3.92) 

where )( p  is the postulated true value (pattern) of the response, p = 1, …, P. After 

realization of the whole cycle of learning, the differences obtained are used to 

calculate the mean square error accordingly with the expression:  
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Δ
MSE               (3.93) 

The value of the mean square error ΔMSE is interpreted as a current measure of 

learning quality [B3] during the whole learning process and is used to modify  

the weighting coefficients W of the network in a manner dependent on the applied 

learning algorithm. After that, ΔMSE is compared with the acceptable value and if it is 

greater than this value, the described procedure is repeated. The learning process is 

carried out until the calculated value of ΔMSE is less than its taken value. 

Example 3.9. The characteristic of the Pt100 sensor is described by Eq. (3.5).  

The neural network from Fig. 3.18 is dedicated to representing the inverse static 

characteristic of this sensor, The network is learned by using data set ( ) 5,),( =PPPR     
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which is created on the basis of the values from Tab. 3.1 and shown in Fig. 3.20. Every 

pattern in the set consists of two values: the first value is the sensor resistance, while 

the second is the input temperature. 

         
54321

1005055.138,759874.128,503971.119,257347.109,00.100
===== ppppp  

Fig. 3.20. Data set used for learning the exemplary network, p is the current number of the pattern

 

Values of the network coefficients obtained after the selected step numbers of  

the learning process are presented in Tab. 3.19. At each step, all data from the set of 

patterns are used successively.  

Table 3.20 

Dependence of values of the network coefficients shown in Fig. 3.20 on the number 

of cycles used to learn the network by using the set from Fig. 3.22 

Learning 

cycles 

w1 

w2 

w3 

b1 

b2 

b3 

v1 

v2 

v3 

 

b4 

 

ΔMSE 

 

8 

8.027609 

6.571468 

0.367789 
 

-60.3751 

52.08052 

-43.6316 
 

11.87466 

11.31855 

12.4188 
 

 

12.22235 

 

 

1093.97 

 

 

16 

4.766387 

18.00239 

-0.0736 
 

-60.3952 

52.15988 

8.798834 
 

43.41665 

36.02665 

-160.671 
 

 

51.4009 

 

 

2.44343 

 

 

32 

-2.90368 

-6.75304 

0.038204 
 

-60.462 

-51.9444 

-4.60223 
 

-0.56514 

36.27894 

282.8482 
 

 

-88.5475 

 

 

0.194 

 

 

64 

-1.80717 

17.81642 

0.022277 
 

-60.4609 

52.1508 

-2.72876 
 

-0.73434 

-121.974 

473.3286 
 

 

-56.5376 

 

 

0.023 

 

 

128 

-4.8623 
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The exemplary learning progress is graphically presented in Fig. 3.21. The values of 

the learning quality measure ΔMSE, which determines the inaccuracy of the learning 

process, are shown in this figure as a function of the number of the learning cycles. 

The process is stopped after reaching the taken value of ΔMSE equal to 10-6. The final 

values of the coefficients are shown in the scheme of the neural network presented in 

Fig. 3.22. 

 
Fig. 3.21. Dependence of the learning quality measure ΔMSE from the number of learning cycles 

(Epochs) in the case if the set from Fig. 3.20 is used to learn the network from Fig. 3.19 

As in from Fig. 3.21, the learning process can be ended much earlier if one takes 

ΔMSE = 10-4 for example. But one should notice that this value could not be acceptable 

because the final decision about ending this process must be made on the basis of 

knowledge about the reconstruction error distribution.  
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Fig. 3.22. Values of the weight coefficients of the neural network, which are obtained as a result of  

the learning process performed on the basis of data presented in Fig. 3.20 
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The scheme in Fig. 3.22 presents the structure of the neural network approximating  

the inverse characteristic of the Pt100 sensor and the values of its parameters.  

The approximation error of this network is presented in analytical form in Fig. 5.23a. 

From another point of view, the scheme from Fig. 3.22 can be treated as a specific 

neural description of the algorithm which performs the static reconstruction of  

the sensor input signal on the basis of values of its resistance. 

After the learning process, it is necessary to evaluate the final inaccuracy of  

the network as the performer of the static reconstruction. This is done by testing  

the network with using a suitable numerous set of the input data and a corresponding 

set of the output data, both have to be known with a suitable accuracy. One should 

notice that the testing in the case if a network is used for realizing the signal 

reconstruction consists in determining the reconstruction error distribution by using  

the Monte Carlo method in the same way as for the analytical reconstruction. 

Experiment 3.10. After learning, the network of Fig. 3.22 is tested in the simulative 

way in 100,000 steps. At each step, the true values of the input temperature ϑ are taken 

randomly from the range 0 to 100oC according to the rectangular distribution. After 

introducing this value into Eq. (3.5), one obtains the resistance R, on the basis of 

which the estimate of the input temperature is determined by using the considered 

network. Both values are subtracted and the resultis treated as the value of  

the approximation error, which is located at the set of error values. After finishing all 

steps, the approximation error is presented in the form of histogram shown in 

Fig. 3.23b. The standard deviations of this error and other errors that influence 

inaccuracy of the reconstruction are compared to evaluate whether the reconstruction 

error takes values comparable to the other errors. 

a)           b) 

 

Fig. 3.23. a) Dependence of the approximation error on the input temperature for the neural network of 

Fig. 3.22, which is learned in 5 points accordingly with the set from Fig. 3.20, b) histogram 

of this error obtained by using Experiment 3.10, σapp = 1.7110-3 °C 
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As it results from comparing figures 3.5b and 3.23b, the error of the neural 

approximation is less than that of the approximation composed of the linear segments, 

despite the fact that the network from Fig. 3.22 is of the very simple structure.  

This feature is connected with a relatively low nonlinearity of the sensor characteristic. 

For stronger nonlinearities, one can suppose that more neurons in the hidden layer 

should be used. To check how the approximation error depends on the number of 

neurons in the hidden layer and the number of points in the learning set, the simulation 

experiments were carried out in the same way as described in Experiment 3.10.  

The results are presented in the Tab. 3.21.  

Table 3.21 

Standard deviations of the approximation error in dependence  

of the parameters of neural network from Fig. 3.22 

σnappˑ103 °C 
Number P of elements in learning set 

5 8 12 16 

Number 

of 

neurons in 

the hidden 

layer 

3 1.71 1.40 1.32 1.28 

5 1.71 1.40 0.0224 0.0320 

7 1.71 1.40 0.0190 0.0372 

9 1.71 1.41 0.0119 0.0408 

11 1.75 1.40 0.00373 0.0127 

The basic conclusion which one can draw from the results contained in Tab. 3.21 is 

that the approximation error of the network with one hidden layer can be significantly 

less than the error of the linear segmental approximation determined under comparable 

conditions. The error decreases with increasing the number of learning points, but only 

if one uses a suitable number of neurons in the hidden layer. This property may be 

important for the static characteristics of sensors with relatively strong nonlinearity, 

while 3 neurons in this layer are a sufficient number for the considered characteristic. 

3.5.2. One-dimensional static neural reconstruction in exemplary instrument  

As considered in Section 3.2, the static reconstruction of the input signal of  

the exemplary instrument is performed on the basis of the inverse model of the analog 

converter and the ADC indication. Such a model is obtained as an approximation of 

the static characteristic inverse to Eq. (3.20). In the case of the analytical 
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reconstruction, the model takes the form of linear segments, while for the neural 

reconstruction, it is approximated by a structure and coefficients of the neural network, 

which is created as effect of the learning process. 

Let us use the same nodal values for determination of the neural network 

parameters as applied in the case of the linear approximation of the inverse static 

characteristic. Based on the data from Tab. 3.3, one obtains the learning set presented 

in Fig. 3.24. The scheme of the exemplary neural network, parameters of which are 

obtained after learning the network with using this set, is shown in Fig. 3.25. 
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Fig. 3.24. Data set used for learning the exemplary network from Fig. 3.25, where p is the current 

number of the learning pattern 
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Fig. 3.25. Values of the weight coefficients of the exemplary neural network obtained as a result of  

the learning process using the set from Fig. 3.24 

Determination of metrological properties of the neural reconstruction is carried out by 

testing the network with using two sets: the first one contains the true values of  

the input quantity, the second – the reconstruction results obtained on the basis of 

indications suitable for these values. In practice, the indications are burdened at least 

by the quantization errors, and usually by the noise errors, too. The next experiment is 

devoted to determination of the reconstruction errors if the network from Fig. 3.25 is 

applied. 

Experiment 3.11. The input temperature value is randomly taken from the range 0 to 

100oC with the rectangular distribution; after that the sensor resistance is calculated 

accordingly with the equation (3.5). On the basis of the obtained resistance value, two 

indications are calculated: accordingly with Eq. (3.20) and Eq. (3.22). The indications 

obtained are processed by the network from Fig. 3.25, which results in determining  



99 

the suitable estimates of the input temperature. The differences between the true value 

of the temperature and its estimatesare located in two sets of the reconstruction error 

values, which are presented in the form of histograms in Fig. 3.26 after the end of  

the experiment. 

a)          b) 

 
Fig. 3.26. Histograms of the reconstruction error of the network shown in Fig. 3.25 if the indications 

are burdened by: a) the quantization error, σrec = 2.8710-3 °C, b) the quantization error and 

the noise error, σrec = 6.9710-3 °C 

The histograms obtained allow for the determination of the standard deviation of  

the neural approximation error σapp. Using the relationship between the standard 

deviations of uncorrelated errors, one can write that: 

2

noi

2

q

2

recapp
 −−=

                                          
(3.94) 

where σrec is the standard deviation of the reconstruction error given by Fig. 3.30b and 

σq, σnoi are given by Eqs. (3.39) and (3.40), respectively. Based on these values, we 

have: 

Co

app

323 1022.23.4036.397.610 −− =−−=                            (3.95) 

Thus, this error takes values less than the approximation error of the linear 

approximation. This means that the considered neural approximation of the static 

characteristic is more accurate under the same conditions than the one composed of  

the linear segments.  

The occurrence of noises in an analog converter allows us to suppose that errors 

caused by them could be filtered during the learning process. To verify this hypothesis, 

5 standard resistors connected sequentially to the instrument input are used. For every 

resistor, 4 indications are determined accordingly with Eq. (3.22), which means that 
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they are burdened both by the quantization and the noise errors. The input temperature 

values corresponding to the selected values of the resistors are presented in Fig. 3.27 in 

4 rows. 

 

Fig. 3.27. Data set used for learning the 1-3-1 exemplary network obtained for the same 5 standard 

resistors, on the basis of which the corresponding input temperatures are calculated and 

pointed as the second element in brackets, all indications are burdened by the quantization 

and noise errors 

The 1-3-1 network shown in Fig. 3.25 is learned successively by using the data from 

Fig. 3.27 starting from first row. After every learning process, the standard deviation 

of the reconstruction error is determined in the simulation way by using the Monte 

Carlo method, and the results are presented in the table 3.22. 

Table 3.22 

Dependence of the standard deviations of the reconstruction error  

for the number Nrep of rows from Fig. 3.31 used for the network learning 

Nrep  1 2 3 4 

ϭrec10-3 °C 5.27 3.29 2.84 1.53 

It results from values contained in Tab. 3.22, an increasing number of ADC indications 

used for the network learning enables a decrease in the reconstruction error, which 

means that noise errors are filtered in the learning process. 

Based on the histogram presented in Fig. 3.26, one can draw the conclusion that  

the simple network 1-3-1 that is learned by using 5 patterns approximates accurately 

enough the inverse static characteristic of the exemplary analog converter. This feature 

enables us to take the fact that the considered neural approximation is acceptable for 

further considerations. 

3.5.3. Identification of a network for one-dimensional neural reconstruction 

The neural network from Fig. 3.25 has been determined on the basis of the analytical 

description (3.20) of the exemplary analog converter. In practice, such knowledge of  

a static characteristic is relatively seldom; thus, it is identified in a measurement 
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process using standards of the sensor input quantity, the number of which should be 

minimized. As it results from the table 3.10, the indirect identification using  

the polynomial (3.49) can be performed with application of 4 standards only.  

To compare properties of the analytical and neural approximations determined 

indirectly in this way, the learning set composed of 5 patterns is determined on  

the basis of the polynomial (3.49) and presented in Fig. 3.28. The parameters of  

the exemplary network 1-3-1 obtained for this set are shown in Fig. 3.29.  

The histograms of the errors of the reconstruction performed using the network are 

presented in Fig. 3.30. 

Fig. 3.28. Learning set obtained on the basis of the polynomial (3.49) 
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Fig. 3.29. Scheme and values of the weight coefficients of the exemplary neural network obtained as  

a result of the learning process by using the data from Fig. 3.28 

Experiment 3.12. This experiment is carried out in the same way as Experiment 3.11. 

It is aimed at determining the distribution of the reconstruction errors in the case if  

the network is learned on the basis of the set that is obtained indirectly accordingly 

with the polynomial (3.49) and presented in Fig. 3.28. The histogram shown in  

Fig. 3.30a is determined for the indications calculated based on Eq. (3.20), while this 

from Fig. 3.30b on the basis of Eq. (3.22). 
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a)             b) 

 

Fig. 3.30. Histograms of the reconstruction error of the network from Fig. 3.29, the parameters of 

which are obtained on the basis of the data presented in Fig. 3.28, which are determined 

accordingly with the polynomial (3.49); the ADC indications are burdened by:  

a) the quantization errors, σrec = 3.16ˑ10-3 °C, b) by the quantization and noise errors, 

σrec = 7.11ˑ10-3 °C 

The reconstruction error erec from Fig. 3.30b is composed of the approximation error 

eapp, the identification error eid, the quantization error eq, and the noise error enoi. 

Knowledge of the suitable standard deviation of these errors allows calculation of  

the standard deviation of the approximation error as: 
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2

q

2

app

2

recid
 −−−=

                                     
(3.96) 

where σrec is the standard deviation of the reconstruction error with distribution 

presented in Fig. 3.30b, σapp is calculated using Eq. (3.92) and σq, σnoi are given by 

Eqs. (3.39) and (3.40), respectively. Using these values, we have: 

C104.13.4036.322.211.710 o3223

id

−− =−−−=
              

(3.97) 

Having known the polynomial (3.49), one can calculate as many patterns in  

the learning set as necessary. In Tab. 3.23, dependencies of the standard deviations of 

the reconstruction errors are presented on the number of patterns determined indirectly 

on the basis of polynomial (3.49). 

Table 3.23 

Standard deviations of the reconstruction errors of the neural reconstruction  

that is performed by the 1-3-1 network in relation to number P of elements  

in the learning set obtained on the basis of Eq. (3.49), σ1 is the standard  

deviation obtained if indications are burdened by the quantization error only,  

σ2 – if they are burdened both by quantization error and the noise error N(0; 1) 

P 5 8 12 16 

σ1ˑ10-3 °C 3.16 3.33 3.34 3.31 

σ2ˑ10-3 °C 7.11 7.18 7.18 7.17 
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As it results from values presented in Tab. 3.23, the reconstruction errors do not 

depend on the number of patterns obtained indirectly. It means that one can take, for 

the described kind of identification, the same number of identification points as used 

for the linear approximation, i.e.: 5. One may notice that the identification error in  

the case if the neural network approximates one-dimensional inverse static 

characteristic is suitably less than this error for the analytical approximation. 

3.5.4. Calibration of  instrument with one-dimensional neural reconstruction 

As is analyzed in Section 3.2.3, the changes in time of the static characteristic cause its 

approximation should be periodically modified by using the calibration. In the case of 

a neural network, the network coefficients cannot be modified as is done for  

the analytical approximation. Therefore, the calibration consists in identifying, i.e. in 

determining these coefficients for the changed operating conditions of the sampling 

instrument, which requires the use of a sufficiently large number of the input quantity 

standards. However, it is possible to indicate another method, which requires only two 

standards for a characteristic with a small nonlinearity. It consists in modifying  

the segmental linear approximation coefficients as shown in Section 3.2.3, and then 

the modified nodal values should be determined, which become learning patterns for 

the modified network. 

To present properties of such a kind of calibration, the determined nodal values of 

the linear approximation contained in Tab. 3.5 are used to learn the network.  

The learning set is presented in Fig. 3.31, and the parameters obtained for the 1-3-1 

exemplary network are shown in Fig. 3.32. The execution of Experiment 3.13 enables 

the determination of the distributions of the reconstruction errors for the instrument 

after the calibration.  

Fig. 3.31. The learning set obtained on the basis of the calibration results from Tab. 3.4  
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Fig. 3.32. Weight coefficients of the exemplary neural network being learned up using the data from 

Fig. 3.31, which are obtained on the basis of the calibration results from Tab. 3.4  

Experiment 3.13. This experiment is aimed at the determination of distributions of  

the reconstruction errors in the case if the exemplary network is learned on the basis of 

data from Fig. 3.31 obtained as a result of the exemplary instrument calibration at two 

points. The course of the experiment is the same as in Experiment 3.11. The histogram 

shown in Fig. 3.33a is determined for the indications calculated based on of Eq. (3.20), 

while this from Fig. 3.33b one the basis of Eq. (3.22). 

a)          b) 

 

Fig. 3.33. Histograms of the reconstruction error of the network from Fig. 3.32, the parameters of 

which are obtained as the results of the two-point calibration, the ADC indications are 

burdened by: a) the quantization errors, σapp = 4.69ˑ10-3°C, b) by the quantization and  

the noise errors, σapp = 7.91ˑ10-3°C 
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Knowledge of the standard deviation σrec of the reconstruction error presented in 

Fig. 3.33b enables the determination of the standard deviation σcal of the error caused 

by the considered calibration of the exemplary instrument. It is:  

2

noi

2

q

2

app

2

reccal
 −−−=

                                    
(3.98) 

where σapp is calculated using Eq. (3.92) and σq, σnoi are given by Eqs. (3.39) and 

(3.40), respectively. Based on these values, we have: 

C1074.33.4036.322.291.710 o3223

cal

−− =−−−=
             

(3.99) 

which means that the calibration error takes values comparable with the other errors of 

the sampling instrument in the considered measurement conditions. 

3.6. Two-dimensional neural static reconstruction 

3.6.1. Structure of neural network used for two-dimensional static reconstruction 

As it results from consideration presented in Section 3.3, the linear approximation of 

the inverse one-dimensional static characteristic may be enhanced in the simple way to 

the two-dimensional one. The same approach can be used if the neural approximation 

is applied. For further considerations, a neural network with 3 neurons in the hidden 

layer and two inputs, shown in Fig. 3.34, is used.The detailed structure of the network 

is shown in Fig. 3.35. 
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Fig. 3.34. General scheme of the neural network applied for the two-dimensional static reconstruction 

of the exemplary instrument, nq is the indication in the AD converter output, 
env̂  –  

the estimate of the environmental temperature change in relation to the reference 

temperature, ̂  – the reconstructed input temperature 
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Fig. 3.35. Detailed structure of the neural network 2-3-1 from Fig. 3.34 applied for two-dimensional 

static reconstruction of the exemplary instrument 

From Fig. 3.35, it results that the static reconstruction algorithm performed by  

the network can be written in the analytical form as: 
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where: wij, vi are appropriately weight coefficients of the hidden and the output layers, 

bi are the biases, fH, fO – are the transfer functions, respectively, of the hidden and  

the output layers. 

For this type of neural network, the learning data set consists of P elements, each 

of them is composed of 3 values, as shown in Fig. 3.36. 
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Fig. 3.36. General structure of the data set used for learning of the neural network from Fig. 3.35 

In Table 3.12, indications are contained calculated accordingly with the analytical 

model of the exemplary two-dimensional static characteristic, on the basis of which 

the learning set shown in Fig. 3.37 is created. The parameters of the exemplary neural 

network obtained by using the set from this figure are presented in Fig. 3.38. 
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Fig. 3.37. The data used to learn the neural network from Fig. 3.39, p is the current number of  

the element in the learning set, p = 1, …, P, P = 15 
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Fig. 3.38. The values of the weight coefficients of the exemplary network from Fig. 3.35, which are 

obtained on the basis of the learning data from Fig. 3.37 for the network performing neural 

approximation of the exemplary two-dimensional inverse static characteristic  

Experiment 3.14. This experiment aims at determination of distributions of errors 

burdening the two-dimensional reconstruction performed by the network from 

Fig. 3.38 with the assumption that the input and the environmental temperatures 

change randomly with the rectangular distributions: the input temperature varies in  

the range from 0 to 100oC and the environmental temperature in the range from 5 to 

45oC. The histogram of the reconstruction error shown in Fig. 3.39a is determined for 

the indications burdened only by the quantization errors and with the assumption that 

values of the environmental temperature are known accurately. The histogram from 
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Fig. 3.39b is obtained for indications burdened additively by noise and for  

the environmental temperature measured with resolution 0.1oC accordingly with 

Eq. (3.76). 

a)          b) 

 

Fig. 3.39. Histograms of the two-dimensional static reconstruction errors for the network in Fig. 3.38 

that is created by using the learning data obtained analytically: a) the reconstruction is 

performed based on the indications of the ADC with assumption that the indications are 

burdened by the quantization errors, the values of the environmental temperature are exactly 

known; the standard deviation of static reconstruction errors is rec = 10.2ˑ10-3°C,  

b) the indications are additively burdened by the noise errors, moreover, the environmental 

temperature values contain errors connected with the measurement resolution equal to 

0.1oC, rec = 12ˑ10-3°C 

The histograms from Fig. 3.39 enable determining the standard deviation of  

the approximation error. The reconstruction error shown in Fig. 3.39a contains  

the approximation and the quantization errors. Therefore, the standard deviation ϭapp of 

the two-dimensional neural approximation error can be calculated as:  

2

q

2

recapp
 −=                                              (3.101) 

in which ϭrec is the standard deviation of the reconstruction error, the value of which is 

taken from Fig. 3.39a, ϭq – the standard deviationof the quantization error given by 

Eq. (3.39). After introducing the suitable values to Eq. (3.101), we obtain: 

C101036.32.1010 o323

app

−− =−=
                        

(3.102) 

The value (3.102) is comparable to the approximation error of the two-dimensional 

linear approximation (see Eq. (3.75). It means that the considered structure 2-3-1 of 

the neural network is accurate enough for the assumed level. If necessary, this error 

can be reduced by extending the network with additional neurons in the hidden layer.  
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3.6.2. Calibration of instrument with two-dimensional neural reconstruction 

The assumptions taken for the calibration of the instrument performing the static two-

dimensional neural reconstruction can be the same as for the calibration described in 

Section 3.4.4. As result from the considerations presented there, the calibration can be 

carried out in two endpoints of the static characteristic with the use of two resistor 

standards. The indications obtained are applied to determine the shifted values of  

the static characteristic, which are used to create the learning set. Such a set composed 

of the same nodal values as used to determine the parameters of the two-dimensional 

linear approximation is presented in Fig. 3.40. The network obtained on the basis of 

this learning set is shown in Fig. 3.41 while the histograms of the reconstruction errors 

determined for this network using the Experiment 3.15 in Fig. 3.42.  
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Fig. 3.40. The learning set obtained on the basis of nodal values from Tab. 3.14, which is used to 

calibrate the exemplary instrument performing the two-dimensional neural static 

reconstruction  
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Fig. 3.41. Values of the weight coefficients of the 2-3-1 exemplary neural network determined by 

using the learning set from Fig. 3.40 
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Experiment 3.15. This experiment is carried out with the same assumptions as 

Experiment 3.14 with this difference that the exemplary neural network has been 

learned by using the data obtained as results of the two-point calibration described in 

Section 3.3.3. The histograms obtained for the reconstruction errors are presented in 

Fig. 3.42 a) and b). 

a)          b) 

 

Fig. 3.42. Histograms of the two-dimensional static reconstruction error for the network in Fig. 3.41 

obtained after calibration: a) the reconstruction is performed based on the indications (3.49) 

of the ADC, which are burdened by the quantization error, moreover, the values of  

the environmental temperature are exactly known, rec = 10.54 ˑ10-3°C, b) the indications  

are burdened additively by the noise errors, and the values of the environmental  

temperature contain errors connected with the resolution of this temperature equal to 0.1oC, 

rec = 12.31 ˑ10-3°C 

The standard deviations of the errors presented in Fig. 3.42 enable determining  

the standard deviation σcal of the error connected with the calibration of the instrument 

performing the static neural approximation. For the partial errors forming the total 

reconstruction error from Fig. 3.51a, we have the following:  

2

q

2

app

2

reccal
 −−=

                                       
(3.103) 

where σrec is the standard deviation of the reconstruction error, σapp – of  

the approximation error given by Eq. (3.102) and σq by Eq. (3.39). On the basis  

of these values, one obtains: 

C1028.136.33.1054.1010 o3223

cal

−− =−−=
               

(3.104) 

which means that such a simple calibration does not introduce a significant error to  

the error budget of the instrument.  
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3.6.3. Identification of a neural network for two-dimensional static reconstruction 

As shown in Section 3.2.2, the most effective way of an identification of the 

parameters of the two-dimensional linear approximation is carried out indirectly in two 

stages. At first, the polynomials are determined for three standards, respectively, 

which correspond to the extreme values of the environmental temperatures: 5oC, 45oC, 

and to the nominal temperature 25oC. If the neural reconstruction is applied,  

the second stage consists in calculating elements of the learning set and determination 

of the network weighs in the learning process. The set from Fig. 3.43 is determined on 

the basis of the polynomials, the coefficients of which are contained in Tab. 3.17.  

The weights of the obtained neural network are shown in Fig. 3.44, while the errors 

burdened the reconstruction results in the output of the exemplary instrument, which 

applies this neural network, are presented in Fig. 3.45. 
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Fig. 3.43. The learning set obtained on the basis of the polynomials determined in the first stage of the 

identification described in Section 3.2.3 
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Fig. 3.44. Values of the weight coefficients of the 2-3-1 exemplary neural network determined for  

the learning data from Fig. 3.43 
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Experiment 3.16. This experiment is carried out to determine histograms of  

the reconstruction errors of the network, the weights of which are determined 

indirectly in the identification process on the basis of polynomials approximating  

the inverse static characteristic for three values of the environmental temperature: 5oC, 

25oC and 45oC. The course of this experiment is the same as in Experiment 3.9. The 

histograms obtained for the reconstruction errors are presented in Fig. 3.45.  

a)          b) 

 

Fig. 3.45. Histograms of the two-dimensional static reconstruction error for the network from Fig. 3.44 

obtained as a result of the identification: a) the reconstruction is performed on the basis of 

the ADC indications burdened by the quantization errors (Eq. 3.71) with the assumption that 

the environmental temperature is exactly known, rec  = 10.5ˑ10-3°C, b) indications are 

burdened by both quantization errors and the noise errors (Eq. 3.72), plus, the estimates of 

the environmental temperature contain errors connected with the measurement resolution 

equal to 0.1oC (Eq. 3.73), rec = 12.3ˑ10-3°C 

Using the standard deviations of the reconstruction error from Fig. 3.45 one can 

determine the standard deviation of the identification error. Based on the error from 

Fig. 3.45b, one can write that the standard deviation of the error connected with  

the identification can be calculated as 

2

env

2

noi

2

q

2

app

2

recid
 −−−−=                                (3.105) 

Having given the standard deviation rec of the error from Fig. 3.45a and the standard 

deviation ϭapp of the neural approximation given by Eq. (3.102), we obtain  

the following value: 

C1024.345.13.4036.3105.1210 o32223

id

−− =−−−−=
         

(3.106) 

which is approximately the same as the identification error of the linear 

approximation. 
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3.7. Final remarks 

The basis of the static reconstruction is knowledge about the inverse characteristic of 

the analog converter being the beginning part of a sampling instrument. In order to 

perform the reconstruction in the real-time by a microcontroller, it is necessary to use 

an approximation of the characteristic, the form of which enables minimizing of 

necessary arithmetical operations. In this chapter, two ways of obtaining such an 

approximation were considered. The first one consists in using analytical description 

in the form of the segmental linear approximation, the parameters of which have to be 

calculated and introduced to a non-volatile microcontroller memory as a look-up table. 

The second method applies artificial neural networks that can create the approximation 

themselves on the basis of learning data.  

The considered analytical approximation needs very numerically simple algorithms 

for both one-dimensional and two-dimensional signal reconstruction independently of 

nonlinearity degree of the static characteristic. If the nonlinearity is stronger,  

the number of parameters necessary to store in a microcontroller memory increases, 

but it is not a problem for the modern microcontrollers. In the case of neural 

approximation, the stronger nonlinearity may implies using a network with a larger 

number of neurons in the hidden layer, but the general structure of the network does 

not change, and it is still very simple. 

The inverse static characteristic can be approximated on the basis of known static 

characteristic of the analog converter and the analog-to-digital converter or it can be 

identified as the effect of the identification process, which consists in determining  

the characteristic in selected points by using standards of the reconstructed input 

quantity. The approximation can be done directly by using identification results or 

indirectly by determining a polynomial describing the inverse characteristic. This 

second way consists in calculating on the basis of this polynomial either parameters of 

the linear approximation or the learning data. As it results from the presented 

investigations, indirect identification is more effective than direct because it needs less 

number of standards to be used. 

The static characteristic changes in time, which causes the sampling instrument 

have to be periodically calibrated. The calibration consists in modification of 

parameters of the linear approximation stored in a microcontroller memory on  

the basis of measurements in selected point of the characteristic. In the case of a neural 

network performing the reconstruction, the calibration needs learning up it by using 
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the data obtained on the basis of the measurements. For the considered exemplary 

sampling instrument, the calibration needs only measurements at two end points of  

the characteristic both in the case of the one- and two-dimensional approximation. 

The inaccuracy of the static reconstruction is described in this chapter by standard 

deviations of the reconstruction errors, which are at the level of 0.01oC for  

the exemplary instrument. These errors can be decreased if one increases the number 

of nodes of the linear approximation or the number of neurons in the case of the neural 

approximation. The main limitation of this is the level of noise appearing in analog 

converters of sampling instruments. 



 

 

4. DYNAMIC SIGNAL RECONSTRUCTION 

The dynamic properties of the analog converter cause its output signal to depend on 

time variations of the input signal [L1, Z2]. The output signal component that occurs 

for vary over time input signal can be considered as a dynamic error [J1, J16, M10, 

R2, R7]. For this reason, the dynamic reconstruction consists in elimination of  

the dynamic error from the output signal of the converter. Taking into account that  

the basic dynamic model of an analog converter is a differential equation, the dynamic 

reconstruction is performed by solving the inverse dynamic model, that is by solving 

the differential equation in relation to the input signal. 

The dynamic reconstruction algorithm is an element of the chain of partial 

algorithms, which, as a whole, perform the input signal reconstruction. Partial 

algorithms are obtained as the effect of the decomposition described in Chapter 1. One 

of the fundamental models from the decomposition point of view is known as  

the Wiener model, which is treated as the basis for further considerations. The first 

element in this model is a linear differential equation, which describes dynamic 

properties of the analog converter, while the second is a static equation. Taking into 

account that the partial reconstructions are performed in inverse order to this one in 

which the partial models are situated, the dynamic reconstruction makes calculation on 

the results of the static reconstruction. These results are burdened by errors propagated 

from the instrument input, errors related to the static properties of the converter and 

errors caused by the static reconstruction. This chapter is devoted to the description of 

these errors and analyzing their influence on accuracy of the result of the dynamic 

reconstruction. 

4.1. Significance of dynamic error for accuracy of analog conversion 

The dynamic error of an analog converter depends both on the variability of the input 

signal and the dynamic properties of the converter; therefore, the analysis of this error 

must be carried out for standard signals. Among them, the sinusoidal signal is 
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commonly used because the analytical description of the dynamic errors is relatively 

simple for this signal. For changes of its frequency, one can analyse dynamic 

properties of the converter and compare dynamic errors with other errors from  

the point of view of its influence on the accuracy of the signal processing.  

The essentiality of this analysis is presented graphically in Fig. 4.1. 

 
Fig. 4.1. General relation between errors of an analog converter in dependence on the frequency of its 

input signal 

Three ranges of the input signal frequency f can be separated. In the first, for  

the frequency from 0 to fst, the dynamic error is negligible small in relation to the static 

errors, which means that the signal is processed accordingly with the converter static 

transfer function. Therefore, this frequency range can be called static for the converter 

considered.  

In the second range, for the frequency from fst to fd, the dynamic error is 

comparable to other errors of the converter; thus, it must be contained by the error 

budget of the converter. For the frequency greater than fd, values of the dynamic error 

become essentially big and it is necessary to decrease them to an acceptable level. 

Elimination of excessive dynamic error from measurement results is called dynamic 

correction [J9, J12, R2, R9,] that can be performed on principle of the signal 

reconstruction. 

The simplest form of description of dynamic properties of the analog converter is 

the 1-st order linear differential equation: 

( )
( ) ( )tSxtu

t

tu
=+

d

d
                            (4.1) 

where τ is the time constant, x and u are the input and output signals, respectively, 

t denotes time, S is the static transfer function that describes the properties of  

the converter if the input signal does not change, that is, for the signal frequency 

0→f . If the input signal is sinusoidal, Eq. (4.1) can be written in the frequency 

domain as [L2]: 

( ) ( ) ( ) jjjj SXUU =+                                      (4.2) 

f 
fd 

 

negligible dynamic error      acceptable dynamic error         excessive dynamic error 

0 fst 
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where X(jω), U(jω) are transforms of the input and output signals, ω = 2π/f. For  

the sinusoidal signal, the dynamic properties of the converter are given by the transfer 

function: 

( )
( )
( ) 




j1j

j
j

+
==

S

X

U
S

                                      
(4.3) 

The dynamic error is defined as the difference between the output signal of the real 

converter and the reference converter with transmittance Sref, the output signal of 

which is taken as dynamically ideal. As the reference, the converter working in  

the static state is used [M1, J12], the transmittance of which is equal to S. Taking this 

into account, the dynamic error of the converter that is described by Eq. (4.3) may be 

written as : 

( ) ( ) ( )  ( ) ( )






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=
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−=−= SX

S
SXSSXe

      

(4.4) 

For the purpose of error analysis, the dynamic transfer function (4.3) can often be 

expressed in the following form: 

( )

b

j

j

f

f

S
S

+

=

1



                                               

(4.5) 

where f = ω/(2π), fb = 1/(2πτ) is the cutoff frequency [M2] of the converter bandwidth 

defined as the frequency for which we have: 

( )
2

j
S

S
bff
=

=


                                               
(4.6) 

Based on Eq. (4.5) and taking into account that the module of the signal spectral 

transform is equal to the signal amplitude, we may describe the amplitude of the error 

(4.4) using the expression: 
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(4.7) 

For the f << fb, the expression (4.7) can be written as: 

( ) ( )
b

out

b

dyn
j

f

f
A

f

f
jXSe = 

                                     

(4.8) 

where Aout = ( )jXS  is the amplitude of the output signal. 
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Example 4.1. The static transfer function S of an amplifier is called the amplification 

coefficient and is denoted as kV. The dynamic properties of the amplifier applied in  

the exemplary microcontroller presented in Section 3.1 are described by the 1-st order 

equation (4.5), and, for kV = 1, its bandwidth is fb = 1 MHz. To evaluate  

the significance of the dynamic error in relation to other errors of the analog converter, 

one can compare the Aout amplitude of this error in the amplifier output with the total 

error described by the uncertainty U. If we want the dynamic error to be significantly 

less than the total error, the dynamic error amplitude must be at least 3 times less than 

U (such a relation causes the ariance of the dynamic error to be about  

10 times less than the variance of the total error, which means that it can be omitted in 

the error budget). Taking this into account, one can determine the limit of the static 

working range fst defined in Fig. 4.1. Based on Eq. (4.8), we have: 
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If we take: U/Aout  = 10-3, the range calculated from this expression take the value: 
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which means that the dynamic error introduced by the amplifier can be neglected for 

the signal frequency f in the range from 0 to 333 Hz,. 

In the bandwidth from fst to fd, the dynamic error takes the values acceptable from 

the total uncertainty point of view, which means that the uncertainty of this error 

cannot significantly exceed U. For this assumption, the limit fd is determined on  

the basis of the expression: 

( ) U
f

f
Ae 

b

d

outdyn j  

from which we have: 

kHz11010 36

out

bd === −

A

U
ff  

As in Fig. 4.1, for the frequency f > fd = 1 kHz, the dynamic error exceeds  

the acceptable values and should be corrected. 

Example 4.2. For the concrete construction of the measuring amplifier, the product of 

its amplification coefficients and the bandwidth takes a constant value [M1]; thus, it is:  

b2b1 fkfk VV = 21  
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where fb1 is the bandwidth for the coefficient kV1 and fb2 for kV2. For kV1 = 1,we have: 

2

b

b2

Vk

f
f =  

which means that the bandwidth decreases as many times as the amplification 

coefficients increases. The amplifier in the exemplary microcontroller works with 

kV2 = 32, which causes the limit values of frequencies that determine the bandwidths of 

the amplifier to be: 
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32
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32
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s2 ====
f

f
f

f  

From the above calculations, it results that the amplifier works in the static state for  

the input signal frequencies from 0 to 10 Hz. If the frequency is greater than 31 Hz,  

the dynamic error of the exemplary amplifier should be corrected, which can be 

performed using the dynamic reconstruction algorithm.  

Example 4.3. Let us assume that the dynamic properties of the exemplary  

Pt100 sensor, if it measures the temperature of the air flowing in a ventilation duct 

with a constant speed, can be described by the 1-st order equation (3.11). In these 

measurement conditions, the sensor time constant is τ = 2 s, which means that  

the sensor bandwidth is: fb = 1/(2πˑ2) =  0.08 Hz. Moreover, let us take the air 

temperature should be measured with uncertainty not greater than U  = 0.1oC. This 

temperature varies from 0oC at night to 40oC at day, and can be described as sinusoidal 

signal with the amplitude Ain = (40 – 0)/2 = 20oC. If we want the dynamic error to be 

significantly less than the total error described by the uncertainty U, its amplitude (4.6) 

must be at least three times less than U. Taking this into account and based on 

Eq. (4.8), one can determine the limit frequency fst of the static bandwidth from 

expression: 

3
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f

f
A

f

f
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st
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b

st
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because, for a relatively small dynamic error, the amplitudes of the input and  

the output signals are approximately equal for the dynamic model used as the basis of 

the dynamic reconstruction (see Eq. (2.16)). Therefore, one obtains the following: 
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The maximum frequency of the bandwidth, in which the dynamic error is 

acceptable, is calculated as:  

Hz104.0
20

08.0
1.0 3
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b

d

−===
A

f
Uf  

The obtained values mean that, for the frequency from f = 0 to fs = 0.27ˑ10-3 Hz, the 

dynamic error of the sensor is negligible small, thus the sensor works in the static 

state. From fs = 0.27ˑ10-3 Hz to fd = 0.4ˑ10-3 Hz, the values of the dynamic error are 

comparable with other sensor errors and this error should be taken into account in the 

error budget. For f >fd = 0.4ˑ10-3 Hz the dynamic error exceeds the acceptable value 

and it should be decreased by using a dynamic reconstruction algorithm. 

As resultof the presented examples, the amplifier used in the exemplary instrument 

works in a static state because its limit of static bandwidth fs2 = 10 Hz is significantly 

greater than the frequency fd = 0.4ˑ10-3 Hz of the sensor. Therefore, there is no need 

for the general dynamic model of the exemplary analog converter to include  

the amplifier description. 

4.2. Dynamic models of analog conversion 

4.2.1. Analog model of conversion 

The analog model describes the relations between analog signals at the output and 

the input of the considered conversion. A signal is called analog if it is represented by 

a continuous function of the continuous time [L1]. In this book, it is taken that all 

elements of the measuring chain that perform the conversion are treated as a whole, 

i.e., as a single analog converter, the dynamic properties of which are generally 

described by the analog model being n-order linear ordinary differential equation: 

( ) ( ) xuuauaua n

n

n

n
=++++ −

−


1

1

1                                     
(4.9) 

where x and u are varying over the time input and output signals of the dynamic model 

(4.9), an, ..., a1 are constant coefficients. For further considerations, two basic forms of 

the model (4.9), most often used in measurement practice [L1], are taken into account. 
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These are:  

• The 1-st order model described by the equation: 

xuua =+
1

           (4.10) 

where a1 is equal to the time constant τ of the converter (see Eq. 4.1). 

• The 2-nd order model given by the expression: 

xuua
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u
a =++ 

12

2

2
d

d
                      (4.11) 

which is often presented in the form [H3, R9, Z2]: 
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(4.12) 

where ω0 is the natural frequency of the converter, b is its dumping coefficient. 

Most frequently for analysis of dynamic properties of the converter, one uses two 

kinds of the input signal: the step-change signal and the sinusoidal signal. To simplify 

considerations, the expressions presented below are determined for unitary step change 

signal occurring at time t = 0. For this assumption, the output signal of the 1-st order 

converter has the form: 

( ) 

t

tu
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−= e1                                                (4.13) 

The response of the 2-nd order converter to the unitary step change signal depends 

on the value of the damping coefficient b [H3]. For: 

• b < 1, the output signal is given by the equation: 
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               (4.14) 

• b = 1, it is: 

( ) ( ) t
ettu o

011
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+−=
                                        

(4.15) 

• The value of b > 1 occurs in the case if the converter can be described as two 1-st 

order elements connected one after the other. Therefore, as a whole, they can be 

described by the two equation system. The first equation is the following: 

( )
( ) ( )txtu
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d
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(4.16) 
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and the second: 
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( ) ( )tutu
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

                                            
(4.17) 

where τ1 and τ2 are the time constants of the selected converters, respectively. 

Combining Eqs. (4.16) and (4.17), we obtain the equation: 
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(4.18) 

that describes the both converters as one whole. 

The response of the conversion that is modeled by Eq. (4.18) to the unitary step 

change of the input signal at t = 0 has the form:  
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(4.19) 

For sinusoidal signals, the dynamic properties of the converter in the frequency 

domain are described as a spectral transmittance. In this case, the output signal of  

a dynamic converter for the input signal with amplitude equal to 1, i.e., x(t) = sinωt,  

is expressed as: 

( ) ( ) ( ) += tStu sinj                                          (4.20) 

The spectral transmittance S(jω) of the 1-st order converter (4.10) is given by Eq. (4.3) 

with S = 1. According to this, the module of its transmittance is: 
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(4.21) 

and the phase shift: 

  arctan−=                                               (4.22) 

The transmittance of the 2-nd order converter (4.12) is given by the expression: 
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Thus, its module is described as: 
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and the phase shift takes the form: 
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(4.25) 

4.2.2. Discrete model of analog conversion 

The basis of a dynamic reconstruction algorithm that is considered in this book is such 

a discrete model of the conversion, which enables solving differential equation (4.9) in 

real time. This model can be built using the transformation of this equation to the form 

of state equations [M12, O1]. In the beginning, we need write Eq. (4.9) as: 
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(4.26) 

where it is: d0 = 1/a(n-1), d1 = a(1)/a(n-1) and so on. In the next step, Eq. (4.26) is 

transformed to the form of n state equations after introducing new variables that are 

succeeding derivatives of the output signal: 
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(4.27) 

where u1, ..., un are state variables and u1 = u, which means that the output signal u is 

treated as one of the state variables. 

The system of equations (4.27) can be written in matrix form: 

xGFuu +=                                                 (4.28) 

where:  
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After solving Eq. (4.28) for the time between instants tk and tk+1, k is the current 

number of the instant, k = 0, 1, ..., one obtains [M12]: 
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(4.30) 

where: tk+1 – tk is the time distance between the instants at which the state variables are 

discretized. This time distance is equal to the sampling period Ts, since, at  

the discretization instants, the described signal is sampled, and therefore, it is: tk = kTs. 

Because Ts = const., one can simplify the notation of the variables by putting 

u(tk) = u(k) and so on. Taking this into account and assuming that the state variables 

change only in the discretization instants, which means that the state variables are 

taken as constant between them [M12], Eq. (4.28) can be written in discrete form:  

( ) ( ) ( )kxkk ΨΦuu +=+1                                      (4.31) 

where:  
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(4.32) 

For constant sampling period Ts, the elements of the matrixes Φ  and Ψ  have 

constant values and can be calculated on the basis of Eq. (4.30) as: 

,se
TF

Φ =     (4.33) 
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For the 1-st order converter, the matrix equation (4.31) takes the scalar form: 

( ) ( ) ( )kxkuku  +=+1                                        (4.35) 

for which the matrices (4.32) reduce to the coefficients determined accordingly with 

Eqs. (4.33) and (4.34). They are expressed as: 

  −=−==== 1e1,eee
ss
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TT
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                         (4.36) 

where τ is the time constant of the analog converter.  
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Example 4.4. The time constant of the 1-st order sensor Pt100 from Example 4.3 is 

equal τ = 2 s. For  the discretization period Ts = 0.2 s, the parameters of the dynamic 

discrete sensor model, according to Eq. (4.36), take the following values: 

0952.09048.011,9048,0e 2

2.0
-

s

=−=−====
−

  e

T

 

Moreover, let us assume that at the instant number k = 0 the step change of the input 

temperature from 0 to ϑran = 100oC occurs, which means that ϑ(k) = 100oC for instants 

k = 0, 1, ... . The discrete model enables the calculation of the of the sensor wire 

temperature at the succeeding discretization instants. Taking into account that  

the sensor output signal u(0) = 0oC and based on Eq. (4.35), one obtains:  

( ) ( ) ( ) C52.91000952.009048.0001 o=+=+= xu   

( ) ( ) ( )



C13.181000952.052.99048.0112 o=+=+= xu 
 

and so on for the succeeding instants. On should notice that this model has  

the recurrent form because, to calculate the output temperature at any instant, one 

should know the previous one. 

The values of the output temperature, calculated in the described way for 10 

succeeding instants, are presented in Tab. 4.1 and Fig. 4.2b. 

Table 4.1 

The output signal values of the 1-st order exemplary converter calculated  

in Example 4.4 for the step change of the input signal on the basis  

of the discrete model, k is the number of the discretization instant 

k 0 1 2 3 4 5 6 7 8 9 

u(k)oC 0 9.52 18.13 25.92 32.98 39.36 45.13 50.35 55.08 59.35 

In Fig. 4.2a, one can see the response of the converter in the analytical form described 

by the expression:  

( ) ( ) Cee o
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t

t

tu 5.011001 −
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−=
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




−=                            (4.37) 

which is the solution of the differential equation (4.10) for the step change of the input 

signal ϑ from 0 to ϑran = 100oC at t = 0. 
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a)          b) 

 
Fig. 4.2. Step response of the exemplary converter described by 1-st order differential equation (4.10) 

obtained on the basis of: (a) the analog model, (b) the discrete model for 10 beginning 

instants 

For converters described by differential equations of the order higher than the first,  

the matrix equation (4.31) can be written in the form of the system of n discrete state 

equations:  
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(4.38) 

where x(k) is the input signal sample, u1(k), ..., un(k) are the values of the state 

variables at k instant, k = 0, 1, ..., and it is u1(k) = u(k), because, accordingly with 

Eq. (4.27), the output signal u is treated as the state variable u1. 

The dynamic model in the general discrete form (4.38) is of recurrent form 

because, for the determination of the output signal u(k+1), it is necessary to know both 

the input signal and the state variables of the previous instant k. It means that at every 

step of the calculations, the determined values of the state variables must be stored to 

use them in the next step. Moreover, to start the calculations, the beginning values of 

the state variables should be known. If these values cannot be determined,  

the calculation algorithm begins its activity in a transient state that ends after a number 

of the steps dependently on parameters of the model and properties of the input signal 

[M12].  

The 2-nd order dynamic converter is described generally by differential equation 

(4.11), which, based on Eqs. (4.12) and (4.13), can be written as two state equations: 
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Presenting Eq. (4.39) in the matrix notation (4.28), we obtain the following forms of 

the matrices: 









=









−−
=








=

2

00

2

02

0
,

2

10
,


GFu

bu

u

                         

(4.40) 

After discretization of the state equations (4.39) in the described way, one obtains  

the discrete matrix equation: ( ) ( ) ( )kxkk ΨΦuu +=+1  where it is:  
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This means that the discrete state equations take in this case the following form of two 

equations: 

( ) ( ) ( ) ( )kxkukuku 1212111  ++=+                              (4.42) 

( ) ( ) ( ) ( )kxkukuku 2222212 1  ++=+                             (4.43) 

Elements of the matrix Φ  can be calculated on the basis of Eq. (4.33) as se
TF

Φ = , 

while elements of Ψ  can be obtained on the basis of them if one takes static properties 

of the converter into account. In the converter static state, i.e. when the state variables 

are not changing over time, it is:  

( ) ( )kuku =+1                                              (4.44) 

and the values of the first derivative of the output signal take the value:  

0)()1( 22 ==+ kuku                                        (4.45) 

Moreover, the static properties of the converter dynamic model are ideal (see 

Section 2.2), which means that at every instant of the static state ( ) ( ).kukx =  Taking 

above into account, one obtains from Eq. (4.42) that: 

111 1  −=             (4.46) 

From Eq. (4.43), we have the following: 

212  −=           (4.47) 

To start calculations of the output signal values, it is necessary to know  

the beginning values of the input signal x(k), the output signal u(k), and the state 

variable u2(k) that is the first derivative of the output signal. Having given them,  

the values of the output signal u(k+1) are calculated for the subsequent instant k+1 

accordingly with Eqs. (4.42), (4.43). After that, the value of the state variable u2(k+1) 

is determined to be stored and used in next step of calculations, that is, for the instant 

k+2. Next, all this procedure is repeated for the subsequent instants k+2, k+3,... . 
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Example 4.5. Let us assume that the parameters of the 2-nd order converter described 

by Eq. (4.11) have values: ω0 = 1 and b = 0.7, which means that this equation takes  

the form: 
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According to Eq. (4.31), this expression can be written as two state equations:  
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This means that the matrix F has the form: 
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Based on this matrix, the matrix Φ  is calculated. According to Eq. (4.33) ,se
TF

Φ =

which means that one can use Maclaurin’s sequence to determine the values of this 

matrix [M12]. One obtains the following sequence: 
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ss
TT FFΦ  

For the determined matrix F and the sampling period Ts = 0.5 s, we have: 
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Based on Eqs. (4.46) and (4.47), values of the coefficients of the matrix Ψ can be 

calculated according to Eqs. (4.46) and (4.47) as follows: 

,0.09831 111 =−=  0.3449212 =−=   

To start the calculations accordingly with the discrete model (4.42), (4.43) of  

the converter, one can take the starting values u(k) = 0 and u2(k) = 0. Taking into 

account that, for the unitary step change, x(0) = 1, one can calculate the discrete values 

of the output signal at the succeeding instants in the following recurrent way  

(the values of u2 are determined to use them in the next step of the calculations):  

( ) ( ) ( ) ( ) 0983.010983.003449.009017.00001
121211

=++=++= xuuu   

( ) ( ) ( ) ( ) 3449.013449.004188.003449.00001
2222212

=++−=++= xuuu   

( ) ( ) ( ) ( ) 3059.010983.03449.03449.00983.09017.01112 121211 =++=++= xuuu   

( ) ( ) ( ) ( ) 4554.013449.03449.04188.00983.03449.01112 2222212 =++−=++= xuuu   

  
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The obtained values were placed in Tab. 4.2 and presented in Fig. 4.3b. In Fig. 4.3a, 

the output signal of the converter is shown in the analog form as the expression: 

( ) ( )02714.0sin4.117.01sin
7.01
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determined on the basis of Eq. (4.14) for the exemplary values of the 2-nd order 

converter, the parameters of which are: for ω0 = 1 and b = 0.7. 

 

Table 4.2 

The output signal values of the exemplary 2-nd order converter calculated on the basis 

of the discrete model for unitary step change of the input signal, sampling period 

Ts = 0.5 s, k is the number of the instant for which the values are determined 

k 0 1 2 3 4 5 6 7 8 9 

u(k) 0 0.0983 0.3059 0.5313 0.7257 0.8706 0.9653 1.0185 1.0416 1.0458 

 

a)          b) 

 
Fig. 4.3. Step responses of the 2-nd order converter from Example 3.5, which are obtained on the basis 

of the analog (a) and discrete (b) models 

Example 4.6. Let us assume that the input signal of the 2-nd order converter from 

Example 4.5 has the form: x(t) = sinωt, ω = 1 s-1. For the beginning values u(k) = u2(k) = 0 

of the state variables, the use of the discrete model in the form of equations (4.42) and 

(4.42) to calculate the output signal values of the exemplary converter causes  

the appearance of  transient state shown in Fig. 4.4b. The duration of this state depends on 

the properties of the input signal and parameters of the discrete model. In Fig. 4.4a,  

the analog form of the signal calculated for correct beginning values is presented.  
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a)          b) 

 
Fig. 4.4. Exemplary responses of the 2-nd order converter from Example (4.6) to the sinusoidal signal: 

in the analog form (a) obtained on the basis of Eqs. (4.20), (4.24) and (4.25), in the discrete 

form (b) calculated for zeroed beginning values of the state variables  

4.2.3. Discretization error 

Coefficients of the discrete model of the converter are calculated with the assumption 

that the input signal does not change between discretization (sampling) instants, which 

is necessary to present Eq. (4.26) in its discrete form (4.31). This assumption is 

fulfilled only for step change input signals. For other signals, the discrete model gives 

results which differs from these exact ones. These differences are described by  

the discretization error: 

( ) ( ) ( )kukuke
disdis

−=
                                         

(4.48) 

where u(k) is the instantaneous value of the analog output signal determined for  

the instant k and udis(k) is the response of the discrete model calculated for the same 

instant. 

The discretization error describes generally imperfection of the discrete dynamic 

model in its representation of the analog dynamic model, as it is illustrated by the next 

example. 

Example 4.7. Let us determine the waveform of the discretization error of the 

exemplary 1-st order converter from Example 4.4 for the input signal 

x(t) = 50+50sinωtoC. Accordingly with Eqs. (4.48) and (4.20), the error value at 

instant k is described as: 
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where k = 0, 1, ..., Ts = 0.2 s is the sampling (discretization) period,ω = 2πf, the signal 

amplitude is X = 50oC, its frequency f  = 0.01 Hz, udis(k) is the sample in the converter 

output calculated using the discrete model in the way described in Example 4.4 for  

the given samples x(k) of the converter input signal. 

a) b) 

 
Fig. 4.5. Waveforms of the discretization error determined for the sinusoidal input signal of the 1-st 

order converter with amplitude X = 50oC and frequency f = 0.01 Hz calculated for the initial 

values equal to 0 (a), and for accurate initial values (b) 

As in Fig. 4.5, the discretization error changes sinusoidal for the sinusoidal input 

signal (excluding the transient state in Fig. 4.5a). The amplitude Edis of the error 

depends on the number of discretization points (samples) in the signal period. In 

Tab. 4.3, there are presented values of the discretization error in relation to the number 

of samples for the exemplary converter described in Example 4.4. 

Table 4.3 

The amplitude Edis of the discretization error of the exemplary 1-st order converter  

in relation to the number of samples Nsam in the period T of the input signal, 

Nsam = T/Ts, Ts is the sampling period, Edis is calculated for the amplitude  

of the input signal X = 50oC 

Nsam 20 50 100 200 500 

Edis
oC 2.4208 1.9876 1.3523 0.7618 0.3169 

It results from Tab. 4.3 that the discretization error increases if the number Nsam 

decreases. Taking this into account that this number is related to the signal period,  

the assumption of the maximum acceptable value of this error imposes a maximum 

value of the signal frequency.  

Comparing the results from Tab. 4.2, obtained on the basis of the discrete 

converter model, with the results calculated for the analog model, one can find that  
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they are the same at the sampling instants. Thus, that the discrete model is accurate for 

the step input signal, which means that it enables the calculation of accurate output 

signal samples for this signal. 

For the step change of the input signal, the zeroed beginning values of the state 

variables are correct, and the transient state does not appear in the response of  

the converter as can be seen in Fig. 4.5b. For other input signals, a transient state 

occurs in the output signal as shown in Fig. 4.5a for the sinusoidal signal. 

4.3. Analytical dynamic reconstruction 

4.3.1. Recurrent form of reconstruction algorithm 

The dynamic reconstruction algorithm is constructed on the basis of the dynamic 

discrete model of the analog converter. According to the general consideration 

presented in Chapter 2, the reconstruction algorithm is a specific solution of an inverse 

model. Taking into account that the considered dynamic model of the converter has  

the form of n discrete state equations (4.38), the dynamic reconstruction consists in 

solving these equations in relation to the input signal. Based on the first equation from 

the system (4.38), the instantaneous value x(k) of this signal is calculated accordingly 

with equation: 

( ) ( ) ( ) ( ) ( ) 1ˆˆˆˆ
1

ˆ
121211

1

++−−−−= kukukukukx nn


                (4.49) 

All quantities in this equation are estimates of the quantities, being state variables of 

the dynamic model (4.38) in this sense that all errors that burden the estimates, are 

random and are deprived of systematic components, as it is discussed in Chapter 1. 

The input signal is one of these variables, the rest are determined by using the system 

of the following n - 1 equations as: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )kxkukukuku

kxkukukuku

nnnnnnn

nn

ˆˆˆˆ1ˆ

ˆˆˆˆ1ˆ

221

22222212





++++=+

++++=+







                 

(4.50) 

The estimates obtained accordingly with equations (4.50) are used in Eqs. (4.49) 

and (4.50) in the next step of algorithm realization, which means that the algorithm is 

performed recurrently.  



133 

One can point a substantial difference between the estimates ( ) ( )1ˆ,ˆ +kuku , which 

are given directly since they are quantized samples of the converter output signal,  

or they are obtained as results of the static reconstruction algorithm performed 

previously, while the other estimates ( ) ( )kuku
n
ˆ,,ˆ

2
  

are calculated indirectly on  

the basis of other estimates using equations (4.50).  

From the measurement point of view, the current instant number k  = 0, 1,... is 

interpreted as the pointer of the beginning of the measurement window shown in 

Fig. 2.1 that contains all measurement results necessary to calculate one reconstruction 

result. For the recurrent form of the dynamic reconstruction algorithm, the width of  

the window is equal to 2 because two measurement (quantization) results 

( ) ( )1ˆ,ˆ +kuku are used.  

As it results from the above considerations, the dynamic reconstruction algorithm 

is performed in two steps. At each current instant k one must dispose 2 samples 

( ) ( )1ˆ,ˆ +kuku  of the output signal and n - 1 values of the state variables 

( ) ( )kuku
n
ˆ,,ˆ

2
  

which are calculated in the previous instant k - 1 and stored to use 

them in the current instant k. The first step consists in calculating the estimate of  

the input signal ( )kx̂  accordingly with Eq. (4.49), while, during the second step, 

estimates of the state variables ( ) ( )kuku
n
ˆ,,ˆ

2
  

are determined and stored to use them 

in the next step of the algorithm realization.  

To start the algorithm, it is necessary to have given 2 samples of the output signal 

and the beginning values of the rest state equations, i.e. ( ) ( ).0ˆ,,0ˆ
2 n

uu  They can be 

taken as equal to 0, which causes the transient state of the algorithm (the real values 

usually differ from 0) but after several steps all values of the state variables take the 

values close enough to the real ones. This is a general property of stable dynamic 

models [O1], which is illustrated in Example 4.6. 

The dynamic model of the 1-st order converter is given by Eq. (4.35),  

the coefficients of which are described by expressions (4.36). Solving Eq. (4.35) in 

relation to the input quantity, one obtains the reconstruction algorithm in the form: 

( ) ( ) ( )  ( ) ( ) kukukukukx ˆ1ˆ
1

1
ˆ1ˆ

1
ˆ 





−+

−
=−+=

                   
(4.51) 

This algorithm has not recurrent form because to calculate the sample of the input 

signal x, only 2 samples of the output signal u are needed. The specificity of 

calculations performed accordingly with this algorithm is illustrated in the following 

example. 
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Example 4.8. As it results from expressions (4.36), to perform 1-st order dynamic 

reconstruction algorithm, it is necessary to know one parameter φ of the discrete 

model. Its value, calculated in Example 4.4 for the exemplary analog converter, is: 

φ = 0.9048. Based on the samples of the converter response to the step change of  

the input signal contained in Tab. 4.1, we obtain the following input signal samples 

reconstructed on the basis of Eq. (4.51): 

( ) ( ) ( )  ( ) C0.10009048.052.950.100ˆ9048.01ˆ
9048.01

1
0ˆ o=−=−

−
= uux

 
( ) ( ) ( )    C0.10052.99048.013.1850.101ˆ9048.02ˆ50.101ˆ o=−=−= uux  

  

The reconstruction results for 10 beginning samples are shown in Fig. 4.6. 

 

 

Fig. 4.6. Exemplary reconstruction results of the 1-st order exemplary converter, which are calculated 

for the step change of the input signal, u(k) denotes samples of the output signal of  

the dynamic converter 

For the 2-nd order converter, the first part of the reconstruction algorithm, described 

by Eq. (4.49), takes the form:  

( ) ( ) ( ) ( ) kukukukx
21211

11

ˆˆ1ˆ
1

1
ˆ 


−−+

−
=                            (4.52) 

while the second part, obtained on the basis of the first equation of the system (4.50), 

is described by the expression: 

( ) ( ) ( ) ( )kxkukuku ˆˆˆ1ˆ
21222212  −+=+                                 (4.53) 
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which aimes at calculation of the estimate of the state variable 
2

û , the value of which 

is stored to use it in the next step of calculations. Both parts of the algorithm create  

the loop, characteristic for the recurrent form of the reconstruction algorithm, shown  

in Fig. 4.7. 

)1(ˆ +ku

)(ˆ ku

)(ˆ
2 ku

)(ˆ kx

)1(ˆ
2 +ku

delay

Eq.

(4.52)

Eq.

(4.53)

 

Fig. 4.7. Block diagram of the algorithm performing the dynamic reconstruction of  the 2-nd order 

converter, “delay” denotes the operation of storing the value for one sampling period 

To start activity of the reconstruction algorithm in the form of the equations (4.52) and 

(4.53), the beginning value of the state variable ( )0ˆ
2

u  is necessary. If the reconstructed 

signal is step-changed at the instant k = 0, the beginning value is equal to 0; therefore, 

starting the algorithm with this value does not cause appearance of the transient state. 

Exemplary reconstruction of the step change input signal using 2-nd order algorithm is 

described in the following example.  

Example 4.9. Let us apply the algorithm in the form of Eqs. (4.52) and (4.53) for  

the reconstruction of the input signal based on the samples of its output signal that are 

contained in Tab. 4.2. The algorithm has the same coefficients values as calculated in 

Example 4.5: 

φ11 = 0.9017,   φ12 = 0.3449,   φ21 = -0.3449,   φ22 = 0.4188 
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The estimates obtained for the following instants take the values:  

( ) ( ) ( ) ( )  ( )

( ) ( ) ( ) ( ) 0.3449

1.000000.9017-0.098310.173

=++−=−+=

=−=−−
−

=

000.13449.004188.003449.00ˆ0ˆ0ˆ1ˆ

03449.00ˆ0ˆ1ˆ
1

1
0ˆ

21222212

21211

11

xuuu

uuux






( ) ( ) ( ) ( )  ( )

( ) ( ) ( ) ( ) 4555.00000.13449.03449.04188.00983.03449.01ˆ1ˆ1ˆ2ˆ

0001.13449.009316.01ˆ1ˆ2ˆ
1

1
1ˆ

21222212

21211

11

=++−=−+=

=−=−−
−

=

xuuu

uuux






0.09830.9017-0.305910.173

  

The calculated values are presented in the graphical form in Fig. 4.8. 

 

Fig. 4.8. Beginning 10 reconstructed samples ( )kx̂  
of the unitary step change input signal of  

the exemplary 2-nd order converter, ( )kû  
is the estimate of the output signal, k is  

the current number of the reconstruction instant 

Application of the algorithm to the sinusoidal signal reconstruction causes it to be 

necessary to know the beginning value ( )0ˆ
2

u  to start the calculations. If this value is 

not correct, the transient state occurs as illustrated by the next example.  

Example 4.10. The input signal of the exemplary 2-nd order converter from Example 

4.6 is: x(t) = sinωt, ω =1 s-1. On the basis of the samples of the output signal, which 

are calculated accordingly with Eqs. (4.20), (4.24) and (4.25), the input signal 

estimates reconstructed by using Eq. (4.52) and (4.53) are presented in Fig. 4.9 for  

the correct and not-correct beginning value ( )0ˆ
2

u . 

  



137 

a)      b) 

 

Fig. 4.9. Reconstruction of a sinusoidal input signal of the exemplary 2-nd order converter for:  

a) correct beginning value ( ) 0.346,=ku
2
ˆ b) incorrect beginning value ( ) 0ˆ

2
=ku  

The recurrent form of the reconstruction algorithm enables its realization in minimally 

short time, which is necessary if the algorithm is applied in a measuring and control 

system working in real-time. The current window contains only 2 samples of  

the output signal, however, one should point out that many previous samples have 

their participation in the value of the state variable 
2

û  and, therefore, in  

the reconstructed sample. Although, as it results from Eq. (4.51), the algorithm for  

the 1-st order converter is not recurrent, it also needs 2 samples.  

4.3.2. Non-recurrent form of algorithm 

Signal reconstruction can be performed in batch mode on the basis of recorded 

measuring data by using a non-recurrent form of the reconstruction algorithm, such as 

described in [B4]. For the considered algorithm, the non-recurrent form can be 

obtained on the basis of Eqs. (4.49) and (4.50). This form is very usable for analysis of 

the error propagation, since it enables the determination of the influence of errors 

burdening the succeeding samples of the output signal on the reconstructed samples  

of the input signal. The method of transformation of the recurrent form to its  

non-recurrent form is presented on an example of the reconstruction algorithm 

determined for 2-nd order converter as the system of equations (4.52) and (4.53). 
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The recurrent form of the algorithm can be transformed to a sequence in 

succeeding steps consisting in decreasing by 1 the number of the running instant and 

introducing the obtained expressions suitably to the previous equations. Based on 

(4.52), the estimate of the state variable at the instant k takes the form: 

( ) ( ) ( ) ( )1ˆ1ˆ1ˆˆ
2222212 −+−+−= kxkukuku                         (4.54) 

Introducing (4.53) into (4.52) yields the following: 

( ) ( ) ( ) ( ) ( ) ( )  

( ) ( ) ( ) ( ) ( ) 1ˆ1ˆ1ˆˆ1ˆ
1

1ˆ1ˆ1ˆˆ1ˆ
1

ˆ

21222212211211

1

2222211211

1

−−−−−−−+=

=−+−+−−−+=

kxkukukuku

kxkukukukukx







  

(4.55) 

Moreover, from Eq. (4.53), it results that: 

( ) ( ) ( ) ( ) 1ˆ1ˆˆ
1

1ˆ
21211

1

−−−−=− kukukukx 
                          

(4.56) 

Based on Eq. (4.54), we can write Eq. (4.56) as: 
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(4.57) 

Using relations (4.46), (4.47) and denoting: 

11

2112

1 



−
=H               (4.58) 

one can write Eq. (4.57) in the following form: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 1ˆ1ˆˆ1ˆ
1

1
ˆ

2221211

11

−+−−−−++
−

= kuHkuHkuHkukx 
   

(4.59) 
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After applying of the presented procedure for the previous moments: k – 1,  

k – 2 …, k – m using the relations (4.56) and (4.57), one obtains the reconstruction 

algorithm in the form of the sequence: 

( ) ( ) ( ) ( )





+−+−++

+−+−++

+−−++

+−++
−

=

− )(ˆ))(1(
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(4.60) 

which is the linear combination of constant coefficients and estimates of the samples at 

instants k +1, k, k – 1, ..., k – m, ... . Denoting the coefficients in Eq. (4.60) as:  

( )

( )
( )





1

22

11

22

11

22
1

11

11

11

1

1

1

1

1

1

1

1

−

−

−

+

+
−

−+
=

−

−+
=

−

−
=

−
=

m

mk

k

k

k

H
HH

A

HH
A

H
A

A
















                             

(4.61) 

expression (4.60) can be written as the sequence: 

( ) ( ) ( ) ( ) ( )  +−++−+++=
−−+

mkuAkuAkuAkuAkx
mkkkk
ˆ1ˆˆ1ˆˆ

11
       (4.62) 

which describes the reconstruction algorithm in the non-recurrent form. 

Example 4.11. The coefficients of the discrete model of the 2-nd order converter from 

Example 4.5 have values: 

φ11 = 0.9017,   φ12 = 0.3449,   φ21 = -0.3449,   φ22 = 0.4188 

which causes, accordingly with Eq.(4.58), that we have: 

( )
21.1

0917.01

3449.03449.0

1 11

2112 −=
−

−
=

−
=




H  
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Based on these values, one obtains the following values of the coefficients (4.61): 

17.10
9017.01
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1

1
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48.21
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( ) ( )


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14188.021.121.1

1

1

11

22
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−
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−

−+
=−



HH
Ak  

Ten starting values of the coefficients obtained in this way are presented in Tab. 4.4. 

Table 4.4 

Ten starting values of the coefficients (4.61) of the sequence (4.62) determined  

for the exemplary 2-nd order converter 

Ak+1 Ak Ak-1 Ak-2 Ak-3 Ak-4 Ak-5 Ak-6 Ak-7 Ak-8 

10.17 -21.48 22.05 -17.45 13.80 -10.92 8.64 -6.84 5.41 -4.28 

As it results from Eq. (4.61), the coefficients of the sequence (4.62), beginning from 

the third element, create the geometrical sequence with the quotient: 

22+= HqA
              (4.63) 

which causes that the sum: 
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(4.64) 

Taking Eq. (4.64) into account, one obtains that the sum of all coefficients (4.61) is: 
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(4.65) 

if the number of sequence terms (4.61) comes to infinity. It means that the 2-nd 

recurrent algorithm in the general form of equations (4.52) and (4.53) is stable, 

because it can be described as the sequence with elements having finite sum  

(the measurement results have always finite values).  

The finite sum of the geometrical sequence means that the quotient ,1
A

q  which 

results in decreasing the values of the coefficients (4.61) with increasing of m. This 

causes the participations of succeeding measurements in the reconstruction result to 

decrease, too, and for some value of m = mlim the remaining elements can be neglected 
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from the reconstruction accuracy point of view. This means that the reconstruction 

algorithm can be considered in the form of the sequence (4.62) containing finite 

mlim = mmin + 2 elements.  

The properties of the algorithm described above in the form of the sequence can be 

generalized for all dynamic reconstruction algorithms that are stable. It means that 

every recurrent algorithm may be analyzed in two manners from the measurement 

window point of view. The window determines the number of measurement data 

(estimates of the output samples), which are used to obtain one estimate of the input 

signal sample and, for the current window, this number is equal to 2 (see beginning 

considerations in Section 4.3.1). But, for the algorithm in the form of the described 

sequence, the number of measurements necessary to calculate one output sample is at 

least equal to K = mmin. Therefore, from the reconstruction accuracy point of view,  

the length of the algorithm measurement window is equal to KTs = mminTs, Ts is  

the sampling period. 

Let us analyze how many elements of the reconstruction algorithm in the form of 

sequence (4.62) are necessary for calculation of the input signal sample with error less 

than  emax. The sum of all omitted terms of sequence (4.62) must be equal or less than 

emax, dependently on the acceptable inaccuracy of the reconstruction. As it results from 

Tab. 4.5, the terms of the sequence take positive and negative values alternately. Thus, 

to determine mmin, sequence (4.62) should be replaced by sequence the terms of which 

are the sum of two successive terms described by expressions (4.61). The quotient of 

this sequence is positive and equal: 
22

−−H , which means that the i-th term of it is 

expressed as:  
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(4.66) 

Beginning from mmin, the sum of the terms have to fulfil the condition: 
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(4.67) 

The expression in (4.67) creates the geometrical sequence, which means that it is:  

( )( )( )
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(4.68) 
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From Eq. (4.68), we obtain the following:  

( )
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( )22

22

11max

min
log
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(4.69) 

Example 4.12. Let us take emax = 0.001. For the exemplary 2-nd order algorithm from 

Example 4.11, it is: H = -1.21. Based on the expression (4.66), we have: 

( )
( )
( )

5.42
102.0

34.4

4188.021.1log

14188.021.121.1

9017.01001.0
log

min =
−

−
=

−

−+−−

−

m  

This means that the number K of samples in the measurement window, which is  

the minimum number of terms representing the reconstruction algorithm in the form of 

the sequence, is:  

452432min =+=+= mK  

 

As it results from Eq. (4.51), the reconstruction algorithm of the 1-st order converter 

has only the non-recurrent form: 
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(4.70) 

Accordingly with Eq. (4.62), the general form of the sequence (4.51) reduces in this 

case to 2 elements: 

( ) ( ) ( )kuAkuAkx
kk
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The coefficients of this expression have the forms: 
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The sum of both coefficients is: 
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kk AA

                                   
(4.73) 

which means that static sensitivity of the dynamic algorithm is equal 1, the same as 

obtained for the 2-nd order reconstruction algorithm accordingly with Eq. (4.65). This 

property is the same as results from the basic decomposition assumptions described in 

Chapter 2. 

 



143 

Example 4.13. The coefficient φ of the discrete model of the 1-st order converter from 

Example 4.2 has the value: .9048,0=  On the basis of expressions (4.72),  

the coefficients of the sequence (4.71), calculated for this value, are: 

50.9
9048.01

9048.0

1
,50.10

9048.01

1

1

1
1 −=

−

−
=

−

−
==

−
=

−
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
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
kk AA

 

4.3.3. Description of dynamic reconstruction in frequency domain 

From an error analysis point of view, every reconstruction algorithm can be presented 

as such an element of the sampling instrument, which both introduces inside errors and 

propagates the input errors to the output. Inside errors are connected with the fact that 

the basis of the dynamic reconstruction algorithm is the discrete model of the analog 

converter described in Section 4.2.2. The use of this model causes the samples of  

the reconstructed signal to be burdened by the discretization error that is immanently 

connected with the mathematical conditions of the discretization of the analog model. 

One can say that the discretization error is the same kind of error as the approximation 

error of the static reconstruction, because both errors describe imperfection of  

the reconstruction, static and dynamic, respectively.  

The reconstruction consists in realizing mathematical operations on the samples 

that are burdened by errors. It means that the same operations are performed on  

the input samples as on their errors, which causes that the output samples contain error 

dependent on properties both of the input errors and the mathematical operation 

specific for the algorithm. Transmission of an error from the algorithm input to its 

output is generally called an error propagation and described by a propagation 

equation that consist of relations between realizations of the output and the input 

errors. The propagation is described in the following chapters for two basic input 

errors that arise during the physical realization of digitalization of the input signal, 

which is made up of the signal sampling and the quantization of the obtained samples. 

The parameters of the discrete state equation (4.31) are determined with  

the assumption that the input signal does not vary between discretization instants, 

which is not true. This assumption causes that dynamic reconstruction algorithm to be 

inaccurate because it is the inverse solution of the inaccurate discrete model of  

the analog converter. This results in the appearance of the error in the output of  

the reconstruction algorithm, which is called the dynamic discretization error.  

The nature of this error is connected with nonideality of the reconstruction caused by 

application of the discrete model. 
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The dynamic discretization error depends on both the parameters of the model and 

the properties of the reconstructed signal. Taking this into account, the error analysis 

should be carried out for selected signals. The sinusoidal signal is commonly used 

because for it, the analysis of the reconstruction algorithm gives essential information 

and is relatively simple.  

For the sinusoidal signal, the dynamic properties of the algorithm are described by 

the spectral transmittance that is its transfer function in the frequency domain ω [L2]. 

Based on the sequence form (4.62) of the algorithm and taking into account that  

the estimates ( ) ( ) ( )  +++ mkukuku ˆ,,ˆ,1ˆ  represent samples of the algorithm input 

signal, we can write the spectral form ( )jX̂  of the reconstructed signal as  

the expression: 

( ) ( ) ( ) 
jˆjˆ sss -j-j
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j

1 UeAeAAeAX
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(4.74) 

where ( )jÛ  denotes the spectral form of the output signal of the analog converter, and 

Ts is the sampling (discretization) period. To obtain this equation, the theorem  is used, 

according to which rotation of the vector by the angle mωTs on the complex plane 

corresponds to the sample shift in the time domain by m sampling periods Ts [L2]. 

Based on Eq. (4.74), we obtain the spectral transfer function (transmittance) of  

the dynamic algorithm in the form of the sequence: 
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(4.75) 

From the dynamic error analysis point of view, the reconstruction algorithm should 

be considered as the second of two elements from the couple shown in Fig. 4.10. One 

can interpret the dependence between these elements in this manner so that  

the dynamic error arising during the analog signal conversion is eliminated (decreased) 

by the dynamic reconstruction, which works as the dynamic error corrector.  

The transfer function of the reconstruction algorithm is the basis of determination of 

its efficiency as the corrector of the dynamic error.  

Analog signal 

conversion

Digital dynamic 

reconstruction

)(tx )(ty )(ˆ tx

 

Fig. 4.10. Dynamic reconstruction chain composed of the analog conversion and the digital 

reconstruction described in the time domain 
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The dynamic properties of the analog converter, being the first element of the chain of 

Fig. 4.10, are modeled by the transfer function S(jω), while the dynamic reconstruction 

algorithm by the transmittance A(jω) described by Eq. (4.75). Based on the scheme 

from Fig. 4.10, the relation between the input signal X(jω), and its reconstructed form

( )jX̂  can be written as follows: 
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with the assumption that the estimation errors of the signal U(jω) is neglected; 

therefore, ( ) ( ) jˆj UU = . Based on Eq. (4.76), one can describe the transmittance of the 

chain from Fig. 4.10 as the whole:  
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presented graphically in Fig. 4.11. 

)j( X )j( U )j(ˆ X
)j( S )j( A

 

Fig. 4.11. Dynamic reconstruction chain described in the frequency domain 

Accordingly with Eq. (4.51), the transmittance the reconstruction algorithm for the 1-st 

order converter consists of two terms, which means that the sequence (4.75)  

is described in this case by the expression:  

( ) k

T
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sj
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(4.78) 

The transmittance S(jω) of  the 1-st order converter is described by Eq. (4.3). 

Taking into account that the static sensitivity of the converter S = 1 and based on 

Eqs. (4.77) and (4.78), one can write the transmittance of the 1-st order reconstruction 

chain in the form: 
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After introducing the expressions (4.72) to (4.79), one obtains the following: 
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The transmittance of the reconstruction chain generally describes the relation 

between the complex forms of the input and the reconstructed signals. Accordingly 
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with Eqs. (4.80) and (4.77), the relation between amplitudes of these signals for  

the 1-st order reconstruction chain can be written as: 

( )

( )
( )

( )

( )2

s

22

sss

rec
1

sincos

1

1

j1

sinjcos

1

1
j

j

jˆ
















+

+−

−
=

+

+−

−
==

TTTT
S

X

X
 (4.81) 

One can point to another way of determining the module of the reconstruction 

chain transmittance. Accordingly with Eq. (4.77), this transmittance can be described 

in the following form:  
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Considering the 1-st order algorithm, one obtains that the module of its 

transmittance accordingly with Eq. (4.78) is described by the expression:  
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The module of the 1-st order converter is described by Eq. (4.21); therefore, based on 

Eqs. (4.82) and (4.83), the expression (4.83) takes the form: 
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the same as (4.80). 

Example 4.14. The time constant of the 1-st order converter from Example 4.4 is 

τ = 2 s. The frequency of the sinusoidal input signal is f = 0.01 Hz. The signal is 

sampled with the period Ts = 0.2 s, which means that the coefficient φ = 0.9048 and 

ωTs = 2ˑπˑfˑTs = 2ˑπˑ0.01ˑ0.2 = 12.56ˑ10-3. For these assumptions, the module of  

the converter transmittance (4.3) takes the following value: 
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The module of the 1-st order reconstruction algorithm (4.83) is: 
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Thus, the module of transmittance of the reconstruction chain has the value: 

( ) ( ) ( ) 99998.000784.19922.0jjjrec ===  SAS  

which means that it is close to the ideal one equal to 1. 

As in Example 4.14, the efficiency of the dynamic reconstruction can be considered on 

the basis of the transmittances of the reconstruction chain. But the better way to do 

such considerations seems to be an analysis of dynamic errors, which enables to 

compare these errors with other reconstruction errors. According to the general 

definition (1.50), the dynamic error of the sinusoidal output signal of the converter 

described by the statically ideal transmittance S(jω) (its static transfer function S = 1) 

is defined as: 
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where X(jω) and Y(jω) are spectral transforms of the input and output signal, 

respectively. 

The reconstruction chain can be considered as such a converter which aims at 

minimalization of the dynamic error at its output by using a suitable reconstruction 

algorithm. The basic error of this chain is connected with the discrete form of the 

reconstruction algorithm. This error is called the discretization error and, accordingly 

with Eq. (4.85), it is described in the frequency domain as:  
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where ( )jX̂  is the spectral form of the reconstructed signal. 

The transmittance of the 1-st order reconstruction chain is described by Eq. (4.79), 

thus, the discretization error (4.86) takes the following form: 
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from which one obtains that the amplitude of the error is: 
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where X|(jω)| is the amplitude of the input signal. Based on Eq. (4.80), the numerator 

of expression (4.88) can be written as:  
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(4.89) which means that the amplitude of the discretization error (4.88) is expressed in  

the form: 
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Reconstruction reduces the dynamic error introduced by the analog converter to  

the discretization error. Taking this into account, the discretization error can be 

interpreted as the effect of non-ideal elimination of the dynamic error by  

the reconstruction algorithm. The degree of this reduction may be determined by using 

the reduction coefficient generally defined as: 
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(4.91) 

where Edyn is amplitude of the dynamic error in the input of the reconstruction 

algorithm and Edis is the amplitude of the output error resulting from non-ideal 

reconstruction of the input signal by the discrete algorithm. 

The transmittance of the 1-st order converter is given by Eq. (4.3) (with S = 1).  

In this case, the dynamic error (4.85) takes the form: 

 ( ) ( )  ( ) ( ) ( )






 j

j1

j
j

j1

1
1jj1jdyn XXXSe

+
=









+
−=−=

         

(4.92) 

which means that the amplitude of this error is:  
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Therefore, on the basis on Eqs.(4.91) and (4.93), the reduction coefficient (4.91) for 

the 1-st order converter is described by the expression: 
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The considered errors calculated for the exemplary 1-st order converter in 

dependence of the input signal frequency are shown in Fig. 4.12, while the selected 

values of these errors and the reduction coefficient are presented in Tab. 4.5. 

a)         b) 

 

Fig. 4.12. Dependences of the amplitudes: a) of the dynamic error, b) of the discretization error as the 

function of frequency f  =  ω/2π of the input temperature signal ϑ(t) = x(t) = 50+50sinωtoC 

determined for the exemplary 1-st order converter, both amplitudes are expressed in relation 

to the signal amplitude equal to 50oC 

Table 4.5 

Values of amplitudes of the dynamic errors of the exemplary 1-st order converter  

in dependence of the frequency f of the sinusoidal signal ϑ(t) = x(t) = 50+50sinωtoC,  

Edyn is the amplitude of the converter dynamic error, and Edis is the amplitude  

of the discretization error, both amplitudes are expressed in relation to the signal 

amplitude equal to 50oC 

f  Hz 0.001 0.002 0.005 0.01 0.02 

Edyn1 0.628 1.256 3.135 6.234 12.19 

Edis1  0.0317 0.0634 0.158 0.317 0.634 

kDred1 19.8 19.8 19.8 19.7 19.2 

On the basis of results presented in Tab. 4.5, one can state that for the exemplary 1-st 

order converter the dynamic error is reduced about 20 times in result of application of 

the dynamic reconstruction although, starting of some signal frequency, the efficiency 

of the reconstruction diminishes.  

The transmittance of the reconstruction algorithm of the 2-nd order converter can 

be written as the expression: 
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which is obtained basing on the fact that, beginning from 3-rd element, the terms in 

Eq. (4.75) create the geometrical complex sequence with the quotient s-j T

Aeq
 , where  

the coefficient qA is given by Eq. (4.63). Introducing the algorithm coefficients (4.61) 

to Eq. (4.95), we have:  
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where H is given by Eq. (4.58). 

The module ( )jA  of the transmittance of the 2-nd order reconstruction algorithm 

can be determined on the basis of Eq. (4.86) but the numerically simpler way consists 

in calculation of the real and imaginary parts of the transmittance in the form of  

the sequence (4.75). Eq. (4.96) as the sequence is of the form: 
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After splitting expression (4.97), one obtains its real part as: 
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while the imaginary part is: 

( )   +++−= −−+ ss1s1 sinsinsinjIm TmATATAA mkkk 
          

(4.99) 

Generally, the algorithm transmittance can be written in the form: 

( ) ( ) AAA
 j

ejj =
                                         

(4.100) 

where the module is expressed as:  

( ) ( )  ( ) 22
ImRe  jjj AAA +=                           (4.101) 

and the phase shift is: 

( ) 
( ) 




jRe

jIm
arctan

A

A
A =

                                         
(4.102) 

Having calculated the algorithm transmittance accordingly with the presented 

equations, one can determine the amplitude of the reconstructed signal on the basis of 

Eq. (4.76) as: 

 ( ) ( ) ( ) ( ) ( ) ( ) jjjj
rec

XjAjSXSX ==ˆ                       (4.103) 
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Example 4.15. Let us take that the parameters of the 2-nd order converter are the same 

as in Example 4.5, and the coefficients of the reconstruction algorithms are taken from 

Example 4.11. The sinusoidal input signal: x(t) =  sinωt, ω = 2πf, f = 0.1 Hz, is 

sampled with period Ts = 0.5 s. For these parameters, the module of the converter 

transmittance (4.24) is as follows: 
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In Example 4.12, 45 elements of the sequence (4.97) are calculated to be necessary to 

obtain the inaccuracy at the level of 0.001. In this case, accordingly with Eqs. (4.98) and 

(4.99), the real and imaginary parts of the reconstruction algorithm have the values: 

( )  ( )  96685.0jImand46226.0jRe ==  AA  

Based on these values, the module of the reconstruction is calculated as: 

( ) ( )  ( )  0717.196685.046226.0jImjRej 2222
=+=+=  AAA  

Thus, on the basis of Eq. (4.103), the amplitude of the reconstructed signal takes the value: 

( ) ( ) ( ) ( ) 0037.110717.193656.0jˆ
22 ===  jXjAjSX  

The errors calculated in the way presented in Example 4.15 for this exemplary 2-nd 

order converter in dependence of the input signal frequency are shown in Fig. 4.13. 

The selected values of these errors and the reduction coefficient kDred are presented in 

Tab. 4.6. 

a)      b)    

 
Fig. 4.13. Dependences of the dynamic error (a) and the discretization error (b) determined for  

the exemplary 2-nd order converter as a function of the frequency f  = ω/2π of  

the sinusoidal input signal with the amplitude equal to 1, both amplitudes are expressed in 

relation to the signal amplitude  
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Table 4.6 

Values of the amplitudes of the dynamic errors of the exemplary 2-nd order converter 

in dependence of the frequency f of the sinusoidal signal with the amplitude equal to 1, 

Edyn is the amplitude of the converter dynamic error while Edis is the amplitude  

of the discretization error, kDred is the reduction coefficient defined by Eq. (4.91) 

f  Hz 0.01 0.02 0.05 0.1 0.2 

Edyn
 0.0881 0.1767 0.4495 0.9030 0.9767 

Edis
 0.0152 0.0313 0.0781 0.1568 0.3153 

kDred 5.7921 5.6400 5.7517 5.7580 3.0974 

Based on results presented in Tab. 4.6, one can state that, for the exemplary 2-nd order 

converter, the dynamic error is reduced about 6 times as a result of application of  

the dynamic reconstruction algorithm although, starting of some signal frequency,  

the efficiency of the reconstruction diminishes.  

4.4. Identification of parameters of dynamic algorithms 

4.4.1. Identification of first-order algorithm 

In practice, the coefficients of the dynamic model are determined in a measurement 

experiment, which means that they are identified on the basis of measurement data 

burdened by errors. This causes the obtained values of the model coefficients to be 

inaccurate, which results in occurrence of a specific error of the reconstruction 

algorithm called the identification error. 

One of the simplest ways of the dynamic model identification consists in 

stimulation of the converter input by a well-determined reference signal and carrying 

out measurements of the response at the converter output [K2]. To obtain a satisfactory 

identification accuracy, it is necessary to reduce errors that burden the measured 

results. Such a reduction can be achieved if one uses step-changing reference signal 

[M8], because for this signal, the discretization error is equal to zero (see Fig. (4.6)).  

For 1-st order converter, the relation between samples of the input and output 

signal is described by Eq. (4.35). Based on Eq. (4.36), one can write that, for  

the unitary step change of the input signal, that is, for x(k) = 1, k = 0, 1, ..., it is: 

( ) ( )  ( ) 1ˆ1ˆ
1

1
==−+

−
kxkuku 


                            (4.104) 
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According to this equation, the estimate of the reconstruction algorithm coefficient that 

is determined for k instant is obtained as: 

( )
( )
( )ku

ku
k

ˆ1

1ˆ1
ˆ

−

+−
=                                           (4.105) 

Expression (4.105) enables the calculation of coefficient φ basing on 2 subsequent 

samples of the output signal. Taking into account that the samples are burdened by 

random errors, inaccuracy of the identified coefficient can be decreased if we 

determine its estimate as the average value of partial identification results. If one uses 

K beginning samples of the same response, the estimate is calculated as: 
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(4.106) 

In measurement practice, the sensor input signal is converted both by its static and 

dynamic part, which means that the output signal used for the identification is 

burdened by static and dynamic errors. The sensor applied in the exemplary instrument 

is described by the Wiener model; therefore, the dynamic input signal is converted at 

first by the dynamic linear part of the sensor; and then, by the static nonlinear part. 

This means that, before performing the identification of the dynamic properties of  

the sensor, it is necessary to correct static nonlinearity errors, i.e., to perform the static 

reconstruction.  

Example 4.16. Let us determine the coefficient φ of the 1-st order dynamic 

reconstruction algorithm applied in the exemplary sampling instrument for the step 

input temperature signal changed from ϑ = 0oC to 100oC at time instant t = 0 (k = 0). 

The sensor output signal is sampled with the period Ts = 0.2 s and statically corrected 

using the algorithm (3.13). According to Fig. 3.6b, the total static reconstruction error 

can be described as normal noise N(0; 0.01)oC (its standard deviation is equal to 

0.01oC). Taking this into account, the estimates ( ) ...,,1,0,ˆ =kku  can be determined in 

a simulative way as samples of the output signal of the dynamic sensor with the time 

constant τ = 2 s, which are burdened by the noise error N(0; 0.01)oC. The beginning  

9 output samples are presented in the table 4.7.  

Table 4.7 

Beginning samples of the response of the 1-st order sensor applied  

in the exemplary instrument to the step input signal from ϑ = 0oC to 100oC,  

k is the number of the sample 

k 0 1 2 3 4 5 6 7 8 

( )kû oC 0.015 9.509 18.131 25.916 32.979 39.336 45.119 50.347 55.078 
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Based on the results from Tab. 4.7, the estimates ̂  are calculated accordingly with 

Eq. (4.106) with such a difference that the estimate for the instant k is calculated as: 

( )
( )
( )ku

ku
k

ˆ100

1ˆ100
ˆ

−

+−
=                                               (4.107) 

because the step change of the input signal is 100oC in the case considered.  

The obtained estimates are contained in Tab. 4.8 together with the Etot amplitude of  

the total dynamic error calculated for every estimate ( )k̂  accordingly with the 

expression: 
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(4.108) 

obtained on the basis of Eq. (4.90) for: 

( ) s2,s2.0Hz,02.0,2 C,50 s

o =====  TffjX  

Table 4.8 

Estimates of the coefficient φ of the 1-st order dynamic reconstruction algorithm used 

in the exemplary instrument, which are calculated on the basis of Eqs. (4.106)  

and (4.107), K is the number of samples used to obtain a single estimate, Etot  

is the amplitude of the error at the output of the dynamic reconstruction algorithm for  

the input sinusoidal signal with the amplitude 50oC, the exact value of φ is 0.90484 

K 2 3 4 5 6 7 8 9 10 

( )K̂  0.90489 0.90489 0.90483 0.90490 0.90486 0.90484 0.90483 0.90481 0.90484 

Etot(K)oC 0.645 0.646 0.638 0.647 0.642 0.640 0.637 0.636 0.639 

The error etot, the amplitude of which is denoted as Etot, is determined as  

the discretization error in the case if the coefficient φ is calculated by effect of its 

identification as the estimate .̂  It means that the error etot is a composition of  

the discretization error edis calculated for the exact value of φ and the additive error 

connected with the difference between φ and its estimate .̂ The amplitude of the error 

edis is Edis = 0.639oC in the considered conditions. Etot(K) values do not differ 

essentially from Edis, which means that the coefficient φ determined on the basis of 

2 samples of the step response is accurate enough in the experimental conditions.   
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4.4.2. Identification of the second-order algorithm in the analytical form 

The reconstruction algorithm for the 2-nd order analog converter consists of  

2 equations (4.52) and (4.53). The simplest way to identify the algorithm coefficients 

consists in measuring beginning values of the converter response u to unitary step 

change and in calculating estimates of the coefficient on the basis of the description of 

the algorithm [M8].  

For the step change of the input signal, the beginning values of the state variables are: 

( ) ( ) 000 2 == uu                                              (4.109) 

of the input signal x from 0 to 1. The instantaneous values of the input signal that 

change from 0 to 1 at instant k = 0 are: x(k) = 1 for k = 0,1,..., which means that 

Eq. (4.53) for k = 0 takes the form:  
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(4.110) 

from which one obtains: 

( )1ˆ1ˆ
11 u−=                                               (4.111) 

Having known 
11

̂ , one can calculate 
12

̂ on the basis of Eq. (4.53). For k = 1, we 

have: 
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(4.112) 

from which, it is: 
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(4.113) 

As it results from Eq. (4.113), to identify the coefficient ,ˆ
12

  it is necessary to 

know the value of the state variable u2(1) that is the first derivative of the output signal 

(see Eq.(4.27)). This variable can be approximated by samples of the output signal u as 

the mean value of its two successive estimates: 
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where Ts is the sampling period. According to this equation, the value u2(1) of the state 

variable may be determined as: 
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   (4.115) 

where it is taken into account that, accordingly with (4.108), u(0) = 0. After 

introducing Eq. (4.115) to (4.113), one obtains the following: 
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(4.116) 

As result of Example 4.5, we have:  

1221
ˆˆ  −=                                                (4.117) 

This relation can be used to calculate the last coefficient. For k =1 and x(k) =1, 

Eq. (4.53) takes the form: 

( ) ( ) ( ) 21222212
ˆ1ˆˆ1ˆˆ2ˆ  −+= uuu                                  (4.118) 

on the basis of which and Eq. (4.117), we obtain the following: 
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Accordingly with Eq. (4.113), it is: 
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Based on Eqs. (4.115) and (4.119), Eq.(4.120) can be written in the following form: 
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(4.121) 

The main problem connected with the determination of the estimate of the state 

variable u2 is that it is physically the first derivative of the output signal of the analog 

converter. Using Eqs. (4.114) and (4.119) causes u2 to be calculated as the inclination 

of the straight line connecting two points of the converter response, which differs 

significantly from the real value of the derivative. This causes the errors that burden 

the estimates of the coefficients to be determined on the basis of the equations (4.115), 

(4.116) and (4.118). Application of such inaccurate coefficients in the reconstruction 
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algorithm entails that its results differ significantly from these obtained using the exact 

values of the coefficient determined on the basis of the definition (4.33). The next 

example illustrates this problem.   

Example 4.17. The beginning four samples of the output response to the step input 

signal in Tab. 4.2 are: u(k) = 0, u(1) = 0.0983, u(2) = 0.3059, u(3) = 0.5313. These 

values were obtained for the 2-nd order exemplary converter, the output signal of 

which is sampled with the period Ts = 0.5 s. Using them to calculate the coefficients of 

the dynamic reconstruction algorithm according to Eqs. (4.111), 4.116), (4.117) and 

(4.121), respectively, gives the results: 
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To compare the calculated values with these exact, they are located together with 

the other coefficients in Tab. 4.9. 

Table 4.9 

Exact and estimated values of the coefficients of the exemplary  

2-nd order dynamic reconstruction algorithm 

Coefficient φ11
 φ12

 φ 21
 φ 22

 

Estimated values 0.9017 0.3889 -0.3889 0.2691 

Exact values 0.9017 0.3449 -0.3449 0.4188 

The amplitude of the discretization error calculated for the sinusoidal signal frequency 

f = 0.02 Hz by using the exact values is Edis = 0.0313, while for the estimated values 

this error substantially exceeds 1. This means that the simple method applied to 

identify the coefficients is useless in practice.  

As it results from the presented example, the key issue in the coefficient 

identification is an accurate enough calculation of the first derivative of the output 

signal. One can do it determining the analytical form of the step response (4.14) on  

the basis of known discrete samples of it and then calculating the derivatives in  

the suitable points. Such a way is mathematically complicated, so, in practice, simpler 

methods should be taken into account. In the following example, the results of 

application of polynomials to approximate the step response are presented in order to 

calculate the derivative of this signal. 
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Example 4.18. To measure samples of the step response of the exemplary 2-nd order 

converter, the 16-bit AD converter is used, which works in the range from 0 to 1. It is 

assumed that the quantized signal is disturbed by the normal noise N(0; q), q is  

the quantum value. The 5 beginning samples of the response measured with  

the sampling period Ts = 0.5 s are presented in the table 4.10. They are calculated 

accordingly with the equation:  

( )













++



























 −
+−

−
−=

−

5.0
1

1sin
1

1
1

ˆ
2

0

2

2

0

nois
arctgent

s

e
b

b
kTb

b

e

q
qku

kTb




  (4.122) 

 

obtained on the basis of Eq. (4.14), with the assumption that b = 0.7 and ω0 = 1, and 

the number k of the sample takes values: k = 0, ..., 4. 

Table 4.10 

Beginning samples of the response to the unitary step change of the input signal  

of the exemplary 2-nd order converter obtained on the basis of Eq. (4.122) 

k 0 1 2 3 4 

( )kû  0 0.098312 0.305954 0.531265 0.725708 

In the following table, there are presented values of the coefficients calculated on  

the basis of the results from Tab. 4.10 with the assumption that the state variable u2 is 

determined using polynomials of the order 3 and 4. The last column contains values of 

the amplitude of the discretization error calculated for the suitable values of  

the coefficients. 

Table 4.11 

Results of identification of the coefficients of the exemplary 2-nd order algorithm  

on the basis of the samples of the step response from Tab. 4.10 using polynomials  

of 3-rd and 4-th order to calculate the state variable u2, the exact values,  

determined from definition, are taken from Example 4.5 

Polynomial φ 11
 φ 12

 φ 21 φ 22 Edis 
3rd order 0.9017 0.3647 -0.3647 0.3909 0.73 

4th order 0.9017 0.3462 -0.3462 0.4195 0.030 

Exact values 0.9017 0.3449 -0.3449 0.4188 0.031 

The amplitudes of the discretization error Edis presented in the last column show that 

using the polynomial of the forth order gives approximately the same results as 

obtained for the exact values of the coefficient. This means that the identification using 

this polynomial does not introduce a significant error. 
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In practice, the identification of the parameters of the dynamic model is realized on 

the basis of measurement results that are obtained at the output of the analog 

converter. These results are burdened by several errors; among them is the static error 

connected with nonlinearity of the sensor characteristic, which occurs dependently on 

the general model of the analog converter. In the Hammerstein model (see Chapter 1), 

the first element is static and nonlinear, while the second is dynamic and linear. This 

means that the step input signal changes its value after propagation through the first 

static element, which must be taken into account during the identification. If  

the Wiener model is used, the first element is dynamic, while the second is static, 

which causes the nonlinearity error introduced by it to be corrected before making  

the identification of the dynamic parameters. This means that the static reconstruction 

error must be taken into account in the budget of identification errors. 

4.5. Neural dynamic reconstruction 

Accordingly with Eqs. (4.49) and (4.50), the estimate of the reconstructed sample )(ˆ kx  

is the linear combination of the estimates of the state variables and the constant 

coefficients. This means that the neural implementation of these equations takes  

the form of network composed of the linear neurons that consists of n neurons 

described generally as the system of the recurrent equations, which can be written in 

the following form:  
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where )(ˆ ku  and )1(ˆ +ku  are estimates of samples of the output signal, nikui ...,,2),(ˆ =  are 

estimates of the state variables, and wij are constant coefficients. 
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The network composed of neurons performing operations described by equations 

(4.123) and (4.124) is graphically presented in Fig. 4.14. 


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Fig. 4.14. The scheme of the neural network that perform dynamic reconstruction according to 

equations (4.123) and (4.124), “delay” denotes the operation of storing the sample for one 

sampling period of the reconstructed signal 

The arithmetical operations performed by the network from Fig. 4.14 are repeated at 

every cycle of the reconstruction between two succeeding sampling instants k and k+1, 

k = 0, 1, ... . To carry out the reconstruction, the two measurement results )1(ˆ),(ˆ +kuku  

of the output signal should be known, which means that the reconstruction is realized 

with the delay equal to the sampling period Ts. Moreover, it is necessary to give in the 

network input the state variables )(ˆ,),(ˆ
2

kuku
n

 , which are calculated in the previous 

cycle and stored to use them in the next cycle. This causes that to start activity the 

network, the initial values )0(ˆ,),0(ˆ
2 n

uu   
of the state variables are required. These 

values can be estimated or taken as zero. Assuming the initial values to be different 

from the real ones results in appearance of a transient state of the same kind as shown 

in Fig. 4.9b. This state disappears after a certain number of cycles from the beginning 

of the reconstruction. 
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4.5.1. Identification of coefficients of first-order network 

For the 1-st order dynamic converter, the system of equations (4.123) and (4.124) 

reduces to the one expression that is the linear combination of the two measuring 

results )(ˆ ku  and )1(ˆ +ku  multiplied by constant coefficients w1 and w2. Thus,  

the input sample estimate is determinedby one linear neuron that realizes the following 

equation: 

)1(ˆ)(ˆ)(ˆ
21

++= kuwkuwkx                (4.125) 

in which, accordingly with Eq. (4.72), the coefficients take the forms: 
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where φ is given by Eq. (4.36). 

The neuron described by expression (4.124) is graphically presented in Fig. 4.15. 

 )(ˆ kx

w1

w2)1(ˆ +ku

)(ˆ ku
 

Fig. 4.15. Linear neuron realizing the dynamic reconstruction of one input signal sample of a first-

order dynamic converter 

The simplest way of determining the coefficients of the neuron from Fig. 4.15 consist 

in calculating them by using Eq. (4.126). Such values are named in the Table 4.12 as 

“exact values” because they are determined from the definition on the basis of  

the known parameters of the dynamic analog converter. Another way can be applied  

if the responses of the converter to the step input signal are known [S5]. This way is 

described in the next example. 

Example 4.19. Let us consider the sampling instrument presented in Example 4.16, 

which works under the described conditions. Two beginning samples of the responses 

to the step input signal are measured in three cases: for the input step from ϑ = 0oC to 

100oC, from ϑ = 0oC to 50oC and from ϑ = 100oC to 0oC. The estimates of the output 

samples, obtained with the assumption that they are burdened by the normal noise 

N(0; 0.01)oC, are presented in Fig. 4.16. The learning data presented in Fig. 4.17,  

the same as in Fig. 4.16, were used to learn the 1-st order neural network from  

Fig. 4.15. 
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Fig. 4.16. The results used to obtain the learning set presented in Fig. 4.17 
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Fig. 4.17. The learning set used to learn the neuron from Fig. 4.15 

The values of the neuron coefficients obtained after 3 learning steps using the set from 

Fig. 4.17 are presented in the table 4.12. They are the same as the exact values that are 

calculated on the basis of parameters of the exemplary 1-st order dynamic converter.  

Table 4.12 

Exact and estimated values of the weight coefficients of the neuron from Fig. 4.15 

Coefficients w1 w2 Bias 

Exact values -9.5083 10.5083 0 

Estimated values -9.5083 10.5083 3.685810-10 

4.5.2. Identification of coefficients of second-order network 

For the 2-nd order converter, the reconstruction algorithm in the form of  

the expressions (4.122) and (4.123) is deribed as two recurrent equations: 

)(ˆ)(ˆ)1(ˆ)(ˆ 2321 kuwkuwkuwkx +++=                                (4.127) 

)(ˆ)(ˆ)(ˆ)1(ˆ
32212 kxvkuvkuvku ++=+                      (4.128) 
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wherein the coefficients 321 ,, www  and 321 ,, vvv  have constant values. Accordingly with 

the scheme of Fig. (4.14), the structure of the neural network that performs  

the operations described by the equations (4.127) and (4.128) can be presented  

as in Fig. 4.18. 
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Fig. 4.18. The scheme of the network described by the recurrent equations (4.127) and (4.128), 

“delay” denotes operation of storing the sample for 1 sampling period of the reconstructed 

signal 

The coefficients of the network from Fig. 4.18 can be calculated on the basis of 

parameters of the equations (4.52) and (4.53), which describe the analytical form of 

the dynamic reconstruction algorithm of the 2-nd order. Taking into account that 

accordingly with Eqs. (4.46) and (4.47) we have: ψ1 = 1 – φ11 and ψ2 =  –φ21, one 

obtains the following expressions describing the coefficients of Eq. (4.127) and 

(4.128) in relation to the parameters of Eqs. (4.52) and (4.53):  
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213222211 ,,  −=== vvv         (4.130) 

The values that are calculated accordingly with Eqs. (4.129) and (4.130) on  

the basis of the parameters of the exemplary 2-nd order converter taken in Example 

4.5 are called here as “exact values”. They are contained in Tables 4.13 and  

4.14 together with the values estimated as the results of the identification that is 

considered in the following sections of the text.  

Table 4.13 

Exact and estimated values of the weight coefficients of the N1 neuron of the network 

shown in Fig. 4.18 

Coefficients w1 w2 w3 Bias 

Exact values 10.1701 -9.1701 -3.5077 0 

Estimated values 10.1506 -9.1514 -3.4982 2.867510-4 
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Table 4.14 

Exact and estimated values of the weight coefficients of the N2 neuron of the network 

presented in Fig. 4.18 

Coefficients v1 v2 v3 Bias 

Exact values 0.3449 0.4188 -0.3449 0 

Estimated values 0.3452 0.4184 -0.3451 -6.093710-5 

The identification needs the measurement data of the output responses to 3 different 

step input signals. The estimates of the output samples used to identify the parameters 

of the exemplary 2-nd order converter are described by the following expressions: 
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where k = 0, 1, …, enoi is the normal noise N(0; 1), and accordingly with Eq. (4.14),  

it is: 
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The learning data includes the values of the first derivative u2(k) of the response. 

These values can be calculated on the basis of the derivative of the expression (4.134), 

but the numerically simpler way seems to be to use a polynomial for this purpose.  

As considered in Section 4.4.2, use of the 5-th order polynomial leads to obtaining 

exact enough values of estimated parameters. In Fig. 4.19a, 6 discrete values of  

3 responses to the step input signals are presented, which are calculated using 

Eqs. (4.131), (4.132), and (4.133). On the basis of these values, the polynomial is 

determined and the discrete values of its derivatives are calculated in the points 

presented in Fig. 4.19b. 
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a)       b) 

 
Fig. 4.19. a) Samples of the responses to the step input signals (4.31), (4.132), and (4.133), b) the first 

derivatives of the these responses 

The learning data consist of the elements that, according to the scheme of the network 

in Fig. 4.18, have the general form presented in Fig. 4.20. 
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Fig. 4.20. The general form of the elements of the data used to learn the network from Fig. 4.18, 

k = 0,1,… is the number of the output sample, n = 1, 2, 3 is the number of the response,  

N1 and N2 denote the learning data of neurons from this figure 

As in Fig. 4.18, both neurons are learned separately. For the N1 neuron, the learning 

data containing 4 samples from Fig. 4.19 are presented in Fig. 4.21. After 4 steps of 

the learning process, the obtained coefficients of the neuron do not substantially 

change their values as presented in Tab. 4.15. 
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Fig. 4.21. The data used to learn the N1 neuron from Fig. 4.18 



166 

Table 4.15 

Values of the coefficients of the N1 neuron from Fig. 4.18, which are obtained  

in dependence of the number of the learning steps Nls 

Nls 1 2 3 4 

MSE 0.00383 6.7e-006 1.4e-007 1.4e-007 

w1 6.9257 10.0166 10.1501 10.1506 

w2 -6.3727 -9.0359 -9.1510 -9.1514 

w3 -2.0993 -3.4401 -3.4980 -3.4982 

Bias 0.1922 0.0083 3.2e-004 2.9e-004 

The data used to learn the N2 neuron from Fig. 4.18, are presented in Fig. 4.22.  

The values of the coefficients obtained in the succeeding steps of the learning 

processare presented in the table 4.16.  
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Fig. 4.22. Data used for learning the neuron N2 from Fig. 4.18. 

Table 4.16 

Values of coefficients of the N2 neuron from Fig. 4.18 in dependence of the number  

of the learning steps Nls 

Nls 1 2 3 

MSE 1.2e-007 6.3e-009 6.3e-009 

v1 0.3437 0.3452 0.3452 

v2 0.4197 0.4184 0.4184 

v3 -0.3462 -0.3451 -0.3451 

Bias 0.0011 -6.0e-005 -6.1e-005 

As it results from Tabs. 4.13 and 4.14, the values of the coefficients estimated in  

the learning process are very close to these calculated as the exact values. To evaluate 

the accuracy of the estimated values, the amplitudes of the reconstruction error 
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composed of the discretization error and the identification error are determined 

depending on the frequency of reconstructed signal. They are presented in Tab. 4.17 

together with the discretization error. Comparing these values leads to the conclusion 

that the identification error is negligibly small in relation to the discretization error, 

which means that the considered method of identification is effective from accuracy of 

the reconstruction point of view. 

Table 4.17 

Values of amplitudes of the dynamic errors of the exemplary 2-nd order converter  

in dependence of the frequency f of the sinusoidal signal with the amplitude equal to 1, 

Erec is the amplitude of the reconstruction error obtained for the network from  

Fig. 4.18, Edis is the amplitude of the discretization error determined for the exact 

values of the coefficients 

f  Hz 0.01 0.02 0.05 0.1 0.2 

Erec
 0.0159 0.0315 0.0786 0.1574 1.9675 

Edis
 0.0158 0.0315 0.0787 0.1571 1.9682 

4.6. Final remarks 

Summing up the considerations presented in this chapter, one can state that realization 

of the dynamic reconstruction algorithm is an effective way of the correction of  

the error which arises when a varying over time signal is converted by the sensor 

modeled by a differential equation. As result of the presented examples, the correction 

effectiveness depends on relationships between parameters of the sensor model and  

the frequency of the input signal, as well as on the discretization (sampling) period. 

This means that the choice of these relationships should be preceded by  

the metrological analysis of the applied algorithm. 

The characterized relationships result from the fact that the signal conversion and 

the suitable reconstruction create the couple, the property of which should be 

considered together. In particular, this couple has to be treated as one specific error 

source connected with non-ideal realization of the reconstruction. For the dynamic 

algorithm, this error is caused by the step approximation of the varying in time signal, 

and it is called the discretization error. It should be noticed that for the step-changing 

signal this approximation is made exactly; therefore, the dynamic algorithm does not 

introduce any error in this case (see Example 5.9). 
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Such a coupling of the analog conversion and the digital reconstruction causes that 

description of the error propagation through the sampling instrument can be limited to 

the algorithms since its elements performing analog and analog-to-digital conversions 

can be treated as sources of errors conveyed at the input of the first algorithm. This 

enables treating the error propagation in the instrument entirely from the considered 

algorithms point of view.  

The main advantage of neural network applications to signal reconstruction is self- 

-building of the inverse model based directly on the measurement results obtained 

during the identification. In the case of dynamic reconstruction, this advantage is not 

important because it is necessary to use polynomials to obtain learning patterns, and 

the complexity of the learning process means that the easiest way is to obtain network 

coefficients based on the parameters of the analytical algorithm. 

 



 

 

5. PROPAGATION OF ERRORS IN SAMPLING INSTRUMENT 

A sampling instrument delivers estimates, which are sufficiently accurate 

instantaneous values (digital samples) of its input signal representing a varying over 

time measured quantity. Samples occur in the instrument output periodically with 

frequency determined by the sampling frequency. An inaccuracy of this instrument is 

described by the uncertainty of the error burdening the reconstructed samples. This 

erroris a combination of many partial errors that arise in elements of the instrument 

and propagate to its output. Arising and propagation of errors are strictly connected 

with specificity of the signal processing that is performed by three main parts  

of the instrument shown in Fig. 1.1, which realize the analog conversion,  

the digitalization and the digital reconstruction. 

As it results from the scheme presented in Fig. 2.3, the reconstruction is realized by 

the chain of partial reconstruction algorithms created as the effect of  

the decomposition of the analog conversion. According to Fig. 2.2, every algorithm 

processes samples from its measurement window that contains K samples of the input 

signal. With the assumption that the algorithm realizes operation on true values of 

samples, its output result, according to the model of the measurement result (1.18), can 

be generally written as: 

( ) ( ) ( ) ( )  ( ) ( ) 11ˆˆˆ
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where a0, ..., aK-1 are coefficients of the algorithm, ( )kŷ  and ( )kx̂  are estimates of  

the samples in its input and output, respectively, ein(k), eout(k) are realizations of input 

and output errors, k is interpreted both as the number of the first  sampling instant in 

the window and the number of the current measurement window, k = 0, 1, ... .  

According to the considerations presented in Section 1.4, two expressions can be 

extracted from Eq. (5.1). The first one: 
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describes numerical operations performed by a reconstruction algorithm on estimates 

of the input samples to obtain the estimate of the output sample. The second 

expression: 

( ) ( ) ( )1
10

−+++=
−

Kkeakeake
K ininout


                              

(5.3) 

determines propagation of the input errors to the algorithm output. 

In Eqs. (5.2) and (5.3), the arithmetical operation performed on the estimates and 

the errors are the same, but, in the case of the errors, a value of the output error 

depends on both the coefficients of the applied algorithm and the properties of  

the input errors. It causes the error propagation should be described in at least three 

categories: separately for static, dynamic, and random errors.  

Every algorithm performs its task only approximately, which causes that Eq. (5.3) 

should be supplemented by the inside error of the algorithm, which is the difference 

between the results obtained at the outputs: of the ideal model and the real form of  

the algorithm. Taking this into account, one can write Eq. (5.3) in the form: 

( ) ( ) ( ) ( )keKkeakeake
K recininout

+−+++=
−

1
10

                        (5.4) 

where erec(k) is the inside error of the algorithm caused by non-ideal realization of  

the reconstruction. 

The decomposition of the general model of the analog conversion causes  

the reconstruction to be realized as a chain of algorithms performed in series.  

In the case where the chain of the algorithm consists of I elements, the general model 

of the error propagation takes the form presented in Fig. 5.1. 
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Fig. 5.1. General scheme of error propagation in the sampling instrument 

As in Fig. 5.1, every algorithm transforms a realization of the input error ein into  

the output and introduces its inside reconstruction error erec. The error at the output of 

the last algorithm is the total error of the sampling instrument, and it is a composition 

of all errors which propagate from the input to the output of the algorithm chain. 
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5.1. General error model of exemplary sampling instrument  

5.1.1. Signal processing in exemplary instrument 

The further considerations are carried out for the exemplary instrument, for which  

the Wiener model is applied suitable for physical properties of the converters used in 

the instrument described in Section 3.1. One should emphasize that although  

the presented error analysis is focused on the reconstruction using the Wiener model, 

the applied methods are of universal character and can be used for whichever model of 

the sampling instrument, the input signal of which is reconstructed.  

Accordingly with the Wiener model presented in Fig. 2.5, the signal processingin 

the exemplary sampling instrument may be presented, from the reconstruction point of 

view, in the graphical form, as in Fig. 5.2.  
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Fig. 5.2. Scheme of signal processing in the exemplary instrument, k is the number of the reconstructed 

sample (number of the measurement window) 

According to the physical properties of the Pt100 sensor, the reconstructed temperature 

ϑ(t) varying over time is converted to the temperature ϑR(t) of the sensor wire causing 

changes of its resistance R(t). This resistance is converted to the voltage, which is 

sampled at instant k, and the sample is quantized by the AD converter.  

The quantization result ( )kn
q
ˆ

 
is the estimate of the quantized voltage sample expressed 

as a number of quanta hat is assigned to the sample value. On the basis of  

the quantization result, the estimate of the temperature sample ( )k
R

̂  of the wire is 

calculated accordingly with the static reconstruction algorithm. Finally, based on  

the results of the static reconstruction, the estimate of the input temperature ( )k
R

̂  is 

determined using the dynamic reconstruction algorithm.  

As result of considerations presented in Chapter 2, the partial analog conversions 

and the suitable digital reconstructions can be described as couples. On the basis of 

this property, one can state that the error propagation model of the sampling 
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instrument can be constructed taking into account only properties of the reconstruction 

algorithms, which are performed in series. The result of this is that all input errors of 

the instrument and errors arising in the analog conversion as well as during  

the digitalization are contained by the quantization result. Thus, these errors can be 

modeled as the input errors of the first element of chain of the algorithms, which is  

the static algorithm in the case considered. This means that, for the exemplary 

instrument and from the error propagation point of view, the scheme from Fig. 5.2 can 

be reduced to two elements shown in Fig. 5.3. 

Nonlinear

 static 

reconstruction

+
Sine

Srece

Soute Linear

 dynamic 

reconstruction

+
Doute

Drece

 

Fig. 5.3. General form of the error propagation model in the exemplary instrument 

The scheme from Fig. 5.3 is universal in this sense that it can be used for all sampling 

instruments, the analog part of which is described by the Wiener model. In the case 

where the Hammerstein model is applied, the order of the static and the dynamic 

reconstruction is reverse to that in this figure. 

The error propagation model from Fig. 5.3 consists of two elements. The first 

represents numerical operations performed on the input error eSin accordingly with 

equations that describe the static reconstruction. Realization of these operations causes 

the propagation of the error eSin to the algorithm output, which results in the occurrence 

of the error eSprop. The second element models properties of the dynamic algorithm 

performing calculations on the static output error eSout, which is the sum of the error 

eSprop and eSrec that is the error introduced by the static algorithm itself. The output error 

eDout of the dynamic algorithm is also the total error etot in the output of the sampling 

instrument. This error is a composition of the errors which propagate throughout  

the chain, as well as the errors eSrec and eDrec arising as effects of non-ideal realizations 

of the reconstruction algorithms, static and dynamic, respectively. As it is proved in 

this chapter, all composed errors can be described as the sum of uncorrelated and 

correlated partial errors. 

The input error eSin is the composition of the errors introduced to the input of  

the instrument, the errors arising during the analog conversion and the errors caused by 

digitalization of the analog signal, i.e., connected with sampling of the signal and 
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quantization of the obtained samples. All these errors burden the digital data processed 

by the algorithms, which means that all errors must be transformed to the input of  

the chain of algorithms and expressed in quanta. 

5.1.2. Mathematical description of error propagation  

Dependently on the algorithm kind, the reconstruction of one input sample needs one 

or more quantization results, the number of which is determined by the suitable 

measurement window. If the static algorithm is applied, a single quantization result is 

used to obtain the reconstruction result. Accordingly with Eq. (3.13), the temperature 

estimate ( )k
R

̂  that is obtained at the output of the static reconstruction algorithm is 

described as the following linear approximation: 

( ) ( ) ( ) ( )  ( )NbNnknNak
R

+−=
qq

ˆ̂
                                  

(5.5) 

where a(N) and b(N) are coefficients dependent on the working point in the inverse 

static characteristic, N is the number of the approximation node, ( )kn
q
ˆ  is the estimate 

of the indication of the ADC and nq(N) is the indication suitable for node N. Based on 

the taken error definition (1.23), one can describe the input error as: 

( ) ( )knkne
qqSin
ˆ−= 

                                             
(5.6) 

where ( )kn
q
  denotes the accurate (ideal) quantization result that could be obtained if 

0→q . According to Fig. 5.3, the output error of the static algorithm is the sum of two 

errors:  

( ) ( )
SrecSpropSout

eekke
RR

+=−=  ˆ
                                 

(5.7) 

where ( )kR  is the instantaneous true value of the temperature of the sensor wire.  

Connection of equations (5.5), (5.6) and (5.7) yields: 

( ) ( ) ( ) ( )  ( )
SrecSpropqSinqSout

eeNbNneknNake
R

+=−−−−=               (5.8) 

After splitting Eq. (5.8) to two parts, one obtains description of the error that 

propagate from the input to the output of the static algorithm as: 

( ) ( ) ( )keNake
SinSprop

=
                                             

(5.9) 

and the expression describing the static reconstruction error: 

( ) ( ) ( ) ( )  ( )
appqqSrec

eNbNnknNake
R

=−−−=                      (5.10) 
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which is identical to the error eapp of the linear segmental approximation described by 

Eq. (5.5) and used to calculate the estimate ( )kR̂  of the temperature of the wire. If  

the neural network is applied for the static reconstruction, eapp is the error connected 

with the neural approximation described in Section 3.4.   

The inclination a(N) in Eq. (5.9) depends on the value of the quantization result, 

but it is possible using one constant coefficient kS to describe the transfer of errors 

from the input to the output of the static algorithm. This coefficient is determined as 

the mean value of the inclinations of the segments approximating the inverse static 

characteristic. For the number Nnode of the nodes, the relation between the input and  

the output errors may be written as: 

( ) ( ) ( )
=

==
node

node

SSinSSout

N

N

Na
N

kkekke
1

1
,                             (5.11) 

According to Eq. (3.26), the static transfer coefficient can be approximately 

calculated as the inclination of the segment linking the endpoints of the inverse static 

characteristic: 

minq,maxq,

minmax

S
nn

k
−

−
=


                                            (5.12) 

This approximation is universal in this sense that it can be applied both for  

the programmed and the neural static reconstruction. As shown in Chapter 3,  

the coefficient (5.12) enables the description of relations between errors accurately 

enough.  

Introducing Eq. (5.9) into (5.7), we obtain the general error model of the static 

algorithm in the form: 

( ) ( ) ( )kekkeke
SinSSrecSout

+=                                       (5.13) 

For the exemplary instrument, the distribution of the total static input error eSin is  

the same in the successive sampling instants. Whereas, the static reconstruction error 

depends on the working point in the nonlinear static characteristic, which means that 

its values change in the sampling instants for signals varying over time.  

Example 5.1. The inverse static characteristic of the exemplary instrument is 

approximated by using 4 segments. Based on the values of Tab. 3.4, the transfer 

coefficient (5.11) takes the value: 

( ) ( ) C1035.6104201.63694.63243.62767.6
4

1

4

1 o33
3

0

S

−−

=

=+++== 
N

Nak  
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The second way of determination of this coefficient is based on the data from Tab. 3.4. 

According to them, the range of the input temperature is from ϑmin = 0oC to 

ϑmax = 100oC, and the extreme indications are: nq,min = 40918, nq,max = 56673. For these 

values, we have:  

C1035.6
4091856673

0100 o3

S

−=
−

−
=k  

The second algorithm in the chain presented in Fig. 5.3 realizes dynamic 

reconstruction. As result of the considerations presented in Section 4.3.2, this 

algorithm must be written for the analysis of errors in the non-recurrent form 

(4.61).Taking into account that the measurand, for the dynamic algorithm, is the single 

sample of sensor resistance ϑR(k) and basing on considerations presented in Chapter 

1.4, one can present the algorithm in the form of two equations. The first: 

( ) ( )  ( )  ( ) mkAkAkAk
RmKRkRk

−++++=
−+
 ˆˆ1ˆˆ

1
                

(5.14) 

is the linear combination of constant coefficients Ak+1, Ak, ..., Ak-m and estimates of  

the samples ( ) ( ) ( )mkkk
RRR

−+  ˆ,,ˆ,1ˆ   which are the results of the static algorithm 

realization (see Fig. 5.3). The second equation: 

( ) ( ) ( ) ( )mkeAkeAkeAke
mKkk

−++++=
−+ DinDinDinDprop

1
1               

(5.15) 

describes the same arithmetical operations as in Eq. (5.14) but on realizations of  

the input error eDin(k), the result of which is the realization of the input error eDprop(k). 

Eq. (5.15) can be written in matrix form as: 

( ) ( )kke
Din

T

Dprop 
eA=

                                          
(5.16) 

where T is the symbol of the vector transposition, and it is denoted: 
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



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


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−

+
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ke

ke

k

A

A

A

mk

k

k

Din

Din

Din

Din


1

,

1

eA                             (5.17) 

Accordingly with Fig. (5.3), the error at the output of the dynamic algorithm is  

the sum of the dynamic reconstruction error eDrec(k) and the propagated error eDprop(k): 

( ) ( ) ( )kekeke
DpropDrecDout

+=                                     (5.18) 
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After introducing Eq. (5.16) into it, Eq.(5.18) takes the form: 

( ) ( ) ( )kekke
DrecDin

T

Dout 
+= eA                                     (5.19) 

As in Fig. (5.3), every output error of the static algorithm is introduced to the input 

of the dynamic algorithm; therefore, taking Eq. (5.13) into account, we have: 

( ) ( ) ( )keekkeke
SrecSinSSoutDin

+==                                 (5.20) 

Based on this relation, one can present the vector of the input error described by 

expressions (5.17) as: 

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )kkk

mkemkek

kekek

kekek

k
SrecSinS

SrecSinS
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Din
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

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
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


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+++

=

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             (5.21) 

where it is: 

( )

( )

( )
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








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


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ke

k
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Srec

Srec 

1

e                                          (5.22) 

Combining Eqs. (5.19) and (5.21), one obtains the general error model that 

describes the error propagation from the input to the output for the chain of  

the algorithms presented in Fig. 5.3. This model has the matrix form: 

( ) ( ) ( )  ( )kekkkke DrecSrecSinS

T

Dout ++= eeA
                         

(5.23) 

For the 1-st order dynamic converter, the dynamic reconstruction algorithm is 

reduced to 2 beginning terms (see Eq. 4.71). In this case, the equation (5.23) of  

the error propagation takes the scalar form: 

( ) ( ) ( )  ( ) ( )  ( )kekekekAkekekAke kk DrecSrecSinSSrecSinS1Dout 11 ++++++= +   
(5.24) 

5.1.3. Decomposition of general error model 

In general, the following three types of input errors can be distinguished if  

the physical properties of errors are taken into account: 

• static errors, values of which do not change in the measurement window, 
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• dynamic errors that have sinusoidal values for the form of the input signal taken in 

this book, 

• random – values of these errors are described in the probabilistic categories. 

According to the general error model (1.50), the input error can be written as  

the sum of partial errors: 

Sran,inSdyn,inSstat,inSin
eeee ++=

                                   
(5.25) 

where eSstat,in, eSdyn,in and eSran,in are static, dynamic and random errors, respectively. 

Moreover, every algorithm can introduce its inside errors of the described kinds. This 

means that the total reconstruction error of the static algorithmis: 

recSran,recSdyn,recSstat,Srec
eeee ++=

                                 
(5.26) 

and, for the dynamic algorithm, we have: 

recDran,rec Ddyn,recDstat,Drec
eeee ++=                               (5.27) 

Introducing Eqs. (5.26), (5.27) and (5.22) in (5.24), one obtains the general error 

model in the form: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 
( ) ( ) ( )kekeke

kkkkkkkkkke

recDran,recDdyn,recDstat,

recSran,recSdyn,recSstat,inran,Sindyn,Sinstat,S

T

Dout 

+++

++++++= eeeeeeA
    (5.28) 

Describing the output error as the sum of three partial errors of the considered 

kinds, we have the following: 

outDran,outDdyn,outDstat,Dout
eeee ++=                                  (5.29) 

After introducing Eq. (5.29) in (5.28) and splitting the obtained expression into three 

parts, one obtains the equations that describe the propagation of the extracted errors. It is: 

• for the static error: 

( ) ( ) ( )  ( )kekkkke
recDstat,recSstat,inSstat,S

T

outDstat,
++= eeA                (5.30) 

• for the dynamic error: 

( ) ( ) ( )  ( )kekkkke
recDdyn,recSdyn,inSdyn,S

T

outDdyn,
++= eeA                (5.31) 

• and for the random error: 

( ) ( ) ( )  ( )kekkkke
recDran,recSran,inSran,S

T

outDran,
++= eeA                 (5.32) 

The static algorithm does not introduce dynamic errors as well as the dynamic 

algorithm the static errors. Moreover, one can omit the random errors generated by  

the static and dynamic algorithms. These errors arise as effects of rounding of numbers 
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during arithmetical operations. The reconstruction algorithms considered here, both 

the static and the dynamic, are numerically simple, which means that the errors caused 

by rounding take values much less than the quantization errors even if 16-bit 

representation of numbers is used as in the exemplary sampling instrument. Analysis 

of the rounding errors can be carried out using Monte Carlo method [K4]. 

If errors discussed above are omitted in Eqs. (5.30), (5.31) and (5.32), they take  

the forms of the following expressions: 

( ) ( ) ( ) kkkke
recSstat,inSstat,S

T

outDstat,
eeA +=                              (5.33) 

( ) ( ) ( )kekkke
recDdyn,inSdyn,S

T

outDdyn,
+= eA                               (5.34) 

( ) ( )kkke
inSran,S

T

outDran,
eA=                                        (5.35) 

The equations (5.33), (5.34) and (5.35) can be written in more clear forms if one 

takes into account the sequence of the algorithms in the chain presented in Fig. 5.3. 

The first algorithm is static, which means that errors at its input are the input errors of 

the chain; thus, the symbol S in their indexes can be omitted. Similar principle can be 

used for the errors in the output of the dynamic algorithm, which are the errors in  

the output of the chain. This means that all symbols S and D that denote the kind of  

the algorithm in the symbols of errors can be omitted. Thus, Eqs. (5.33), (5.34) and 

(5.35) can be written in the more communicative forms as: 

( ) ( ) ( ) kkkke
recstat,instat,S

T

outstat,
eeA +=                             (5.36) 

( ) ( ) ( )kekkke
recdyn,indyn,

T

Soutdyn,
+= eA                              (5.37) 

( ) ( )kkke
ran,in

T

Soutdran,
eA=                                      (5.38) 

The presented above equations describe three kinds of errors that together compose 

to the output error eout at the output of the chain of algorithms, which is also the total 

error etot of the estimate delivered by the sampling instrument. Therefore, Eq. (5.29) 

may be written in the form: 

( ) ( ) ( ) ( ) ( )kekekekeke
outran,outdyn,outstat,outtot

++==                  (5.39) 

Eqs. (5.36), (5.37), (5.38) and (5.39) describe the partial errors of a single 

reconstructed sample at the instant k. These equations create together the model of 

error propagation in the chain of the reconstruction algorithms used in the exemplary 

sampling instrument accordingly with the Wiener model. This error model, shown in 

the graphical form in Fig. 5.4, has the decomposed form, which enables separate 

analysis of the propagation of different kinds of error and linking the obtained partial 

errors to determine descriptions of all kinds of errors at every stage of the propagation.  
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Fig. 5.4. Decomposed general model of error propagation in the exemplary sampling instrument 

To compare the results of the error analysis that is carried out using the general error 

model, it is necessary to take two basic assumptions. The first is related to the fact that 

many of the errors depend on changes in the input signal. For the further 

considerations, it is taken that the input signal changes sinusoidal in the suitable 

temperature range with the frequency dependent on properties of the analysed errors. 

The second assumption is connected with using probabilistic descriptions of all 

analysed errors in the form of probability density functions that are mainly described 

by histograms. The histograms are obtained as the effect of realization of probabilistic 

experiments by using Monte Carlo method with assumption that the measurement 

window is selected randomly in the signal period with rectangular distribution. On  

the basis of obtained histograms, the probabilistic parameters of errors are determined, 

mainly standard deviations and uncertainties, which are applied in comparison of  

the analyzed errors.  

The analysis is carried out in the same way for both kinds of reconstruction 

algorithms: analytical and neural, because the differences between errors specific for 

these algorithms are of minor importance. In these cases, for which these differences 

are important, the errors are analysed using suitable examples.  
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5.2. Propagation of static errors 

5.2.1. Propagation of input static errors by reconstruction chain 

From the definition, the static error does not change its values in the measurement 

window, which means that estat,in(k+1) = estat,in(k) = ... = estat,in(k-m). Taking this into 

account, one may write the static propagation equation  (5.36) in the form: 

( ) ( ) ( ) ( )kkeAAAkke
mkkk recstat,

T

instat,Soutstat,
eA++++=

−+


1            (5.40) 

Accordingly with Eq. (4.65), the sum of the coefficients of the dynamic algorithm is 

equal to 1; thus, Eq. (5.40) takes the following form: 

( ) ( ) ( )kkekke
recstat,

T

instat,Soutstat,
eA+=                              (5.41) 

The propagation of the static reconstruction error estat,rec is described in Section 

5.2.2. After omitting this error in Eq. (5.41), one obtains the expression: 

( ) ( )kekke
stat,inSoutstat,

=                                            (5.42) 

which means that every realization of the output static error is calculated by 

multiplying the input error value by the constant coefficient kS defined in Example 5.1. 

The graphical description of the propagation of the static errors from the input to  

the output of the reconstruction chain is presented in Fig. 5.5. 
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Fig. 5.5. Propagation of the input static errors by the reconstruction chain 

 

The basic input static errors are connected with the thermal and temperature drift of 

the characteristic of the static conversion [J14,V1]. These factors influence on the shift 

and the inclination of the characteristic, which means that the total input static error 

can be described as the sum of these two partial errors: 

( ) ( ) ( )kekeke
ininc,insh,instat,

+=
                                      

(5.43) 

where esh,in is the input error caused by the shift of the characteristic, while einc,in by 

changes in the characteristic inclination.  
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Accordingly with Eqs. (5.42) and (5.43), the static output error is in this case  

the sum of partial errors described as: 

( ) ( ) ( ) ( ) ( )kekekekkekke
outinc,outsh,ininc,Sinsh,Soutstat,

+=+=                   (5.44) 

The following experiment is aimed at determination of histograms both of  

the considered partial errors and their total error in the output of the reconstruction 

chain.  

Experiment 5.1. Let us take that the shift error esh,in of the static characteristic, which 

arises in the exemplary instrument is described as random in the range from -2 to 2 

with the rectangular distribution.The inclination error is expressed as: einc,in = nqˑεinc, 

wherein nq is the quantization result and the inclination coefficient εinc changes 

accordingly with the rectangular distribution in the range from -5ˑ10-5 to 5ˑ10-5.  

The input signal of the instrument changes sinusoidal in the input range from 0 to 

100oC, that is, it is described as: x(t) = 50sinωt+50oC, ω = 2ˑπˑf, f is frequency and it is 

taken that f = 0.01 Hz. This signal is converted by the sensor Pt100 to the resistance R 

in accordance with Eq. (3.5) and; next, to the voltage. To avoid the influence of  

the quantization error on the analyzed errors, it is assumed that the quantization is 

ideal, which means that it is performed with the quantum value 0→q . This 

assumption causes that Eq. (3.20) describing the quantization result takes the form: 

Rn 409.176q =                                            (5.45) 

At every step, after random determination of the sampling instant in the signal 

period T = 1/f accordingly with the rectangular distribution, the voltage value is 

calculated in three cases, i.e., for the voltage burdened by: 

• the input shift error esh,in, 

• the input inclination error einc,in, 

• both the input shift error and the inclination error. 

The obtained values of the errors are multiplied by the coefficient kS accordingly 

with the propagation model from Fig. 5.5 and the output values of these errors are 

located in the suitable sets. The histograms of the partial errors are presented in 

Figs. 5.6a and 5.6b, whereas the error that is composition of them in Fig. 5.7. For 

every set of the error, the suitable standard deviation is calculated.  
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a)       b) 

 

Fig. 5.6. Histograms of the static errors in the output of the reconstruction chain: a) the shift error, its 

standard deviation is σsh,out = 7.3ˑ10-3oC, b) the inclination error, the standard deviation 

σinc,out = 9ˑ10-3oC 

 

Fig. 5.7. Histogram of the output error composed of the shift error and the inclination error,  

the distributions of which are presented in Fig. 5.6 as histograms, the standard deviation  

σstat,out = 11.6ˑ10-3oC 

For the total error is described as a sum of partial errors, it is necessary, from the error 

propagation point of view, to determine the correlation coefficients describing 

codependences between the partial errors. In Experiment 5.1, the standard deviations 

of the drift errors are calculated, which are: σsh,out = 7.3ˑ10-3oC, σinc,out = 9ˑ10-3oC for the 

partial errors, and σstat,out = 11.6ˑ10-3oC for the error composed of them. On  

the bases of these values and accordingly with Eq. (3.24), we obtain the following 

correlation coefficient of the partial drift errors: 
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(5.46) 

which means that they are not correlated. Therefore, their standard deviations can be 

composed with others accordingly with Eq. (1.52).  
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5.2.2. Propagation of static reconstruction errors by dynamic algorithm  

The static reconstruction error arises as the effect of both the approximation of the real 

static characteristic and the identification of the parameters of the inverse model. Thus, 

this error can be described as the sum of the error eSapp connected with the linear or 

neural approximation of the inverse static characteristic and the identification error 

eSid. It is: 

( ) ( ) ( )kekeke
SidSapprecstat,

+=                                    (5.47) 

The approximation errors depend on the working point in the static characteristic, 

which means that, for the sinusoidal input signals, values of these errors change in 

time. Processing such errors by the dynamic reconstruction algorithm causes  

the output error depends both on the frequency and the amplitude of the signal. On  

the basis of Eqs. (5.41) and (5.47), the propagation of the static approximation error by 

the dynamic algorithm can be described as:  

( ) ( ) ( ) ( )  ( ) ( )kekekkkke
outSid,outSapp,SidSapp

T

recstat,

T

outstat,
+=+== eeAeA      (5.48) 

For the 1-st order dynamic reconstruction algorithm, the partial output errors in 

Eq. (5.48) take the following forms: 

( ) ( ) ( ) ( )keAkeAkke
kk SappSappSapp

T

outSapp,
++==

+
1

1
eA                       (5.49) 

( ) ( ) ( ) ( )keAkeAkke
kk SidSidSid

T

outSid,
++==

+
1

1
eA                          (5.50) 

The succeeding experiments are intended to show the relation between the input 

and the output errors described by Eqs. (5.49) and (5.50) for the programmed and 

neural realization of the static reconstruction in the case if the dynamic reconstruction 

is performed by using the exemplary the 1-st order algorithm. 

Experiment 5.2. This experiment aims to determine the histograms of the input and 

output errors connected with linearization for the sinusoidal input signal with  

the amplitude X = 50oC and the frequency f = 0.01 Hz, which is sampled with period 

Ts = 0.2 s. The propagation of the linearization error eSapp to the output of the dynamic 

algorithm is described by Eq. (5.49). The experiment is carried out in the same way 

and with the same assumptions as taken in Experiment 5.1 with this difference that  

the ideal indications are processed by the static reconstruction algorithm (3.13) and; 

next, by the of the 1-st order dynamic algorithm (4.51).The value of the error eSapp  in  

the input of the dynamic algorithm is calculated as the difference between the true 
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value ( )k
R

  of the sensor resistance (see Fig. 5.2), while the output error on the basis of 

Eq. (5.49). The obtained histograms are presented in Figs. 5.8a and 5.8b, respectively.  

a)           b) 

 

Fig. 5.8. Histograms of the linear approximation error eSapp obtained for the sinusoidal signal under  

the measurement conditions described in Experiment 5.2: a) at the input of the of the 1-st 

order dynamic algorithm, σSapp = 8.2ˑ10-3oC, b) at its output, σSapp,out = 14ˑ10-3oC 

As it results from Fig. 5.8, propagation of the approximation error by the dynamic 

algorithm changes the distribution of this error, which can be expressed as the error 

propagation coefficient. It is generally defined as the ratio of the standard deviations: 
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(5.51) 

where σDout is determined for the same error at the output of the dynamic algorithm and 

σDin at the algorithm input. For the approximation error eSapp that propagatesby the 1-st 

order dynamic algorithm, this coefficient takes the value: 
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(5.52) 

obtained on the basis of histograms presented in Fig. 5.8. 

Experiment 5.3. This experiment aims to show properties of the error caused by 

neural approximation of the static inverse characteristic if this error propagates 

throughout the dynamic algorithm. The way of carrying out the experiment is the same 

as described in Example 5.2. The parameters of the exemplary neural network as in 

Fig. 3.25 used for the static reconstruction are taken from Fig. 3.24.  
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a)           b) 

 

Fig. 5.9. Histograms of the neural approximation error eSapp obtained for the sinusoidal signal under 

the measurement condition described in Experiment 5.3: a) at the input of the 1-st  

order exemplary dynamic algorithm, σSapp = 2.01ˑ10-3oC, b) at the algorithm output, 

σSapp,out = 2.10ˑ10-3oC 

On the basis of Fig. 5.9, the value of the coefficient (5.52) that describes propagation 

of the neural static approximation error by the 1-st order dynamic algorithm is: 

04.1
1001.2

1010.2
3

3

Sapp

outSapp,

SappD, =



==

−

−




k                    (5.53) 

The second source error of the static algorithmis connected with inaccurate 

identification of the parameters of the static characteristic approximation.  

The histograms of the identification error at the output and at the input of the dynamic 

algorithm are determined using Experiments 5.4 and 5.5 for the analytical and neural 

realizations of the static reconstruction algorithms, respectively. 

Experiment 5.4. The calculations are carried out in the same way as Experiment 5.2; 

however, the error is defined in this case as the difference between two errors 

connected with the linear approximation. The values of the error are calculated for  

the parameters contained in Tab. 3.4, which are determined on the basis on the known 

static characteristic (3.5). The second error is calculated for the identified parameters 

presented in Tab. 3.9. The obtained histograms are presented in Figs. 5.10a and b, 

respectively. 
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a)          b) 

 

Fig. 5.10. Histograms of the static identification error eSid obtained for the sinusoidal signal if the static 

reconstruction is performed by the exemplary analytical algorithm: a) at the input of the 1-st 

order dynamic algorithm, σSid = 11.5ˑ10-3oC, b) at its output, σSid,out = 27ˑ10-3oC 

The propagation coefficient (5.51) for the errors presented in Fig. 5.10 takes the value: 
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(5.54) 

Experiment 5.5. It is aimed at obtaining the histograms of the errors that are 

connected with identification of the exemplary neural network at the input and  

the output of the dynamic algorithm. The parameters of the network are presented in 

Fig. 3.29. This experiment is carried out in the same way as the Experiment 5.4, and 

the obtained histograms are presented in Fig. 5.11. 

a)             b) 

 

Fig. 5.11. Histograms of the static identification error eSid obtained for the sinusoidal signal if the static 

reconstruction is performed by the exemplary neural network, a) at the input of the exemplary 

1-st order dynamic algorithm, σSid = 4.64ˑ10-3oC, b) at its output, σSid,out = 4.71ˑ10-3oC 

-0.03 -0.02 -0.01 0 0.01 0.02
0

500

1000

1500

2000

2500

3000

Number of occurence

 e
Sid

  °C
-0.4 -0.2 0 0.2 0.4
0

2000

4000

6000

8000

10000

12000

Number of occurence

 e
Sid,out

  °C

-5 0 5 10 15

x 10
-3

0

2000

4000

6000

8000

10000

Number of occurence

 e
Sid

  °C
-5 0 5 10 15

x 10
-3

0

2000

4000

6000

8000

Number of occurence

 e
Sid,out

  °C



187 

The propagation coefficient calculated for the error characterized by Fig. 5.11 takes 

the value: 

02.1
1064.4
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As it results from Eqs. (4.52), (4.53), (4,54) and (4.55), the values of the propagation 

coefficient (5.51) are greater for the linear approximation error than for the neural 

approximation error. Moreover, the values of these errors are substantially greater for 

the linear approximation than for the neural one. To evaluate these differences in  

the output of the 1-st order exemplary dynamic algorithm, the following experiment is 

carried out. 

Experiment 5.6. This experiment is aimed at obtaining histograms of the static 

reconstruction error after its propagation by the exemplary 1-st order dynamic 

reconstruction algorithm. The analytical static reconstruction is performed using  

the approximation parameters of Tab. 3.4, while the neural reconstruction on the basis 

of parameters from Fig. 3.29. This experiment is carried out in the same way as 

Experiments 5.2, and the obtained histograms are presented in Fig. 5.12. 

a)          b) 

 

Fig. 5.12. Histograms of the output static reconstruction error eSrec,out that is composed of  

the approximation and the identification errors after propagation by the exemplary 1-st 

order dynamic algorithm obtained for: a) the exemplary analytical static reconstruction, 

σSrec,out = 30.7ˑ10-3oC, b) the exemplary neural reconstruction, σSrec,out = 3.84ˑ10-3oC 

The standard deviations calculated for the errors from Figs. 5.9, 5.10, 511, 5.12 and 

5.12 enable determination of the correlation coefficients between the approximation 

and identification errors. For the analytical static reconstruction, one obtains  

the following: 
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and for the neural form of the static algorithm, we have: 
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The calculated values of the correlation coefficient mean that the approximation 

and identification errors at the output of the exemplary dynamic algorithm may be 

correlated. This fact and the different amplification of these errors during  

the propagation by the dynamic algorithm (see Eqs. 5.52, 5.53, 5.54 and 5.55) cause 

that, in the process of composition of standard deviations at the output of the sampling 

instrument, the reconstruction error should be considered instead of the partial,  

(i.e. approximation and identification) errors. 

The coefficient describing propagation of the static reconstruction error by  

the dynamic algorithm depends on both the signal frequency and its amplitude as well 

on the parameters of the static, linear and neural, approximations. For the exemplary 

instrument, the most essential is the dependence of this coefficient on the frequency, 

which is presented below in Tabs. 5.1 and 5.2. 

Table 5.1 

Dependence of the propagation coefficient (5.51) of the static reconstruction error  

on the signal frequency f for the analytical form of the static algorithm, the standard 

deviation of the error is σSrec = 12.4ˑ10-3oC 

f  Hz 0.001 0.005 0.01 0.05 

σSrec,outˑ10-3oC 15.2 23.4 30.7 71.9 

kD,Srec 1.23 1.89 2.48 5.80 

Table 5.2 

Dependence of the propagation coefficient (5.51) of the static reconstruction error  

on the signal frequency f for the neural form of the static algorithm, the standard 

deviation of the error is σSrec = 3.7ˑ10-3oC 

f  Hz 0.001 0.005 0.01 0.05 

σSrec,outˑ10-3oC 3.72 3.73 3.84 5.83 

kD,Srec 1.005 1.008 1.038 1.576 

As it results from Tabs. 5.1 and 5.2, the static reconstruction error is amplified by  

the dynamic algorithm in dependence of the frequency of the input signal, however, 

the propagation coefficient takes significantly greater values for the analytical form of 

the static algorithm. Making the suitable experiments one can prove that  



189 

the propagation coefficient depends on the amplitude of the signal. These properties 

cause that the propagation of the static reconstruction error by the dynamic algorithm 

should be analyzed dependently on the mentioned measurement conditions and 

represented separately in the error model. 

5.2.3. Probabilistic description of static error propagation 

As it results from the presented considerations, the most effective way of the error 

analysis consists in comparing standard deviations as basing parameters of the error 

distributions, which allows identifying the dominant sources of errors. Standard 

deviations of partial non-correlated errors can be composed in any point of the error 

propagation model on the principle of summing up the variances accordingly with 

Eq. (1.52). To do this, it is necessary to describe the relations between the standard 

deviations at the output and the input of the reconstruction chain.  

It results from Fig. 5.5 that every sampling instant realization of the input static 

errors differs from the realization of the output error by the constant coefficient kS that 

describes properties of the static reconstruction algorithm. This means that  

the propagation of standard deviations of every static error may be described as in 

Fig. 5.13. 

instat,

sk
outstat,

1

Static

reconstruction

Dynamic

reconstruction
 

Fig. 5.13. Propagation of the standard deviation of the static error from the input to the output of the 

reconstruction chain 

From the considerations presented in the previous chapter, it results that the static 

reconstruction errors propagate by the dynamic algorithm dependently on  

the amplitude and frequency of the input signal. This dependence is described together 

for the approximation and identification error by the propagation coefficient kD,Srec,  

the values of which are presented in Tabs. 5.1 and 5.2. Taking this into account,  

the propagation of the standard deviation of the static reconstruction error to the output 

of the reconstruction chain may be graphically presented as shown in Fig. 5.14. 
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Fig. 5.14. Propagation of the standard deviation of static reconstruction error σSrec to the output of  

the reconstruction chain, X is the amplitude, and f the frequency of the input signal 

According to Eq. (5.44), realizations of the output static errors are summing up in  

the output reconstruction chain, which means that we have the dependency: 

( ) ( ) ( ) ( )kekekeke
outSrec,outinc,outsh,outstat,

++=                           (5.58) 

where esh,out and einc,out are the errors caused by the drift of the static characteristic, 

eSrec,out is the error composed of the static approximation error and the error connected 

with inaccurate identification of the static characteristic. All these errors are not 

correlated, which results from Eqs. (5.46), (5.56) and (5.57). This means that  

the relation between standard deviations of the errors from Eq. (5.58) may be written as: 

2

outSrec,

2

outinc,

2

outsh,outstat,  ++=
                               

(5.59) 

Eq. (5.59) can be used for analysis of the influence of the partial errors on  

the standard deviation σstat,out of the total static error. Based on values of the standard 

deviations given in Figs. 5.6, 5.8b and 5.12a, the value of the standard deviation of  

the total static error at the output of the exemplary instrument is calculated in 

accordance with Eq. (5.59). We have: 

( ) C1035103393.7 o36222

outstat,

−− =++=
                     

(5.60) 

As it results from Eq. (5.60), the reconstruction error dominates, which means that 

decreasing of this error leads to decreasing the total static error. 

5.3. Propagation of dynamic errors 

In the decomposed model of propagation of the errors shown in Fig. 5.4,  

the propagation of dynamic errors from the input to the output of the sampling 

instrument is described the time domain by Eq. (5.34) that may be written as: 

( ) ( ) ( ) ( )  ( )kemkeAkeAkeAkke
mkkk recdyn,indyn,indyn,indyn,Soutdyn,

+−++++=
−+

1
1    (5.61) 
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where k is the current number of the measurement window, as well as it denotes  

the time instant for which the specified error value is determined. The constant 

coefficient kS describes the propagation of errors by the static algorithm, Ak+1,..., Ak-m 

are coefficients of the dynamic reconstruction algorithm in the form of  

the sequence (4.62), edyn,in(k+1),..., edyn,in(k-m) are realizations of the dynamic input 

error in the window, edyn,rec(k) is the value of the dynamic reconstruction error. 

The 1-st order algorithm in the form of the sequence (4.62) consists of two terms. 

In this case, the expression (5.61) takes the following form: 

( ) ( ) ( )  ( )kekeAkeAkke kk recdyn,indyn,indyn,1Soutdyn, 1 +++= +              
(5.62) 

Equations (5.61) and (5.62) are mainly useful in simulative experiments, in which 

the arithmetical operations are performed on realizations of dynamic errors or in  

the error analysis that is carried out on error values changing over time. 

As it is considered in Section 4.3.3, the effective error analyze for changing over 

time signals is performed if the input signal of the instrument is described as 

sinusoidal. Such an approach enables analytical description of errors in the frequency 

domain as spectrum forms, the effect of which is obtaining amplitudes of the analysed 

error that may be transformed to the probabilistic forms. 

From Eq. (4.74), it results the relation between spectral forms of the errors at  

the input and the output of the dynamic reconstruction algorithm is to be represented 

by the algorithm transmittance that has the general form: 
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(5.63) 

where ED,in(jω), ED,out(jω) are the spectral forms of errors in the input and output of  

the algorithm, respectively, Ak+1, Ak, ..., Ak-m are constant coefficients, Ts is  

the sampling period. Based on this equation, the error propagation model (5.61) can be 

expressed in the frequency domain as: 

( ) ( ) ( ) ( ) jjjj
Drecindyn,Soutdyn,

EEAkE +=
                          

(5.64) 

where EDrec(jω) is the spectral form of the error introduced by the dynamic 

reconstruction algorithm. Graphical equivalent of Eq. (5.64) is shown in Fig. 5.15. 
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Fig. 5.15. Propagation scheme of dynamic errors  

5.3.1. Propagation of input disturbances 

The analysis presented in the next example is devoted to the influence of the input 

electromagnetic disturbance on the inaccuracy of the sampling instrument. The base of 

this analysis is Eq. (5.62), with the assumption that the dynamic reconstruction error 

EDrec is omitted. 

Example 5.2. The frequency of the industrial electromagnetic disturbance, generated 

as the voltage directly (bypassing the sensor) in the input circuit of the amplifier 

implemented in the exemplary instrument shown in Fig. 3.2, is f = 50 Hz and  

the amplitude of the disturbing voltage is Edis = 0.1 V. The common mode rejection 

ratio CMRR [J14, M2, T1] of the amplifier is equal to 100 dB, which means that this 

voltage amplitude in the amplifier output is equal kAˑ0.1/105 = 32 µV, where kA = 32 is 

the amplification coefficient. This voltage at the ADC input corresponds to about 1 

(1 quantum) at its output. The sampling period is Ts = 0.2 s, which means that  

the disturbance voltage is sampled once per 10 periods of the disturbances (for 

T = 1/f = 1/50 = 20 ms, the relative sampling frequency is Ts/T = 0.2/0.02 = 10). In this 

case, i.e., if Ts/T is a positive integer, two succeeding ADC results are burdened by  

the error with the same value edis that changes from 0 to 1 dependently on the phase 

shift of the first sample in the window in relation to the disturbance signal. If  

the exemplary 1-st order dynamic algorithm is applied, according to Eq.(5.62),  

the error at the algorithm output is described as: 

( ) ( ) ( )  disSdisdisSindis,indis,1Soutdis,
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(5.65) 

The output error is expressed as the number of quanta. For its maximum value, this 

number is equal to 1; thus, it is: 

Co

disSoutdis,

33

max
1035.611035.6 −− === Eke                      (5.66) 

where the value of the static propagation coefficient kS is calculated in Example 5.1. 
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A more sophisticated case occurs if Ts/T is not an integer, which causes the values 

edis,in(k+1) and edis,in(k) of the disturbance error to be different. The worst situation is if 

we have: edis,in(k+1) = edis and edis,in(k) = –edis . After introducing this values to the first 

expression in Eq. (5.63), we obtain the output error in the following form: 
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(5.67) 

If edis takes the value equal to the error amplitude, one obtains the maximum value of 

the output error, which is: 
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This value is relatively big, which means that it is necessary to take actions to reduce 

this error, for example by changing the sampling period. 

5.3.2. Description of dynamic error propagation in frequency domain 

The basic dynamic errors in the sampling instrument arise during analog conversion in 

elements described by differential equations. For sinusoidal signals, these elements are 

expressed in the frequency domain as transmittances, as it is shown in Fig. 5.16. 

The dynamic input error occurs if the inverse dynamic model that is the basis of  

the dynamic reconstruction algorithm does not contain the dynamic properties of any 

element that is a component of the analog conversion. In such a case, the input error 

Edyn,in(jω) should contain a description of all dynamic errors that arise during  

the analog conversion of the instrument input signal. To obtain this description, one 

should use the model another than this presented in Fig. 5.15. With assumption that  

the static reconstruction is not taken into account, the chain of the dynamic 

reconstruction that contains the additive source of the dynamic input error can be 

described in the frequency domain as presented in Fig. 5.16. 

)j( S )j(add S )j( A
)j(ˆ X)j( X

 

Fig. 5.16. Structure of the reconstruction chain composed of dynamic components described  

by transmittances: S(jω) is the transmittance of the component, the dynamic error of 

which is corrected by the reconstruction algorithm with the transmittance A(jω), Sadd(jω)  

is the transmittance of the component not contained by the reconstruction algorithm 
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The spectral transform of the output signal ( )jX̂  of the chain from Fig. 5.16 is 

described as: 

( ) ( ) ( ) ( ) ( ) jjjjj
add

ASSXX =ˆ
                              

(5.69) 

where X(jω) is the transform of the input signal. Accordingly with the definition 

(4.85), the dynamic error in the output of the chain from Fig. 5.16 takes the form: 

( ) ( ) ( ) ( ) ( ) ( ) ( )  jjj1jjˆjj addoutdyn, ASSXXXE −=−=
            

(5.70) 

With the assumption that only the dynamic error of the component S(jω) is 

corrected by the reconstruction algorithm with transmittance A(jω), Eq. (5.70) may be 

transformed in the following way: 
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(5.71) 

As it results from this expression, the additional element Sad(jω) introduces the error 

that is described as: 

( ) ( ) ( )  jjj
addadd

SXE −= 1                               (5.72) 

Based on the same definition (4.85) as used in Eq. (5.66), the dynamic 

reconstruction error is expressed as: 

( ) ( ) ( ) ( )  jjjj
Drec

ASXE −= 1                          (5.73) 

Introducing this expression into Eq. (5.71),we have: 

( ) ( ) ( ) ( ) jjjj Drecaddaddoutdyn, ESEE +=
                     

(5.74) 

which means that the output dynamic error is the sum of the additional dynamic error 

Eadd and the dynamic reconstruction error after its propagation by the additional 

component Sadd. If the additional component does not introduce the dynamic error, its 

transmittance is equal to 1. In this case, accordingly with Eq. (5.74), the output dynamic 

error reduces to the dynamic reconstruction error EDrec. 

Eq. (5.74) enables determination of the dynamic output error in the analytical 

spectral form, and, using the inverse Fourier transform, as the suitable time waveform.  

To simplify further considerations, we define the transmittance of the source of  

the dynamic error Edyn(jω) as: 
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where X(jω) is the spectral transform of the input signal. Introducing Eq. (5.74) to 

(5.75), we have: 
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The transmittance of the output error source can be expressed using  

the transmittances of the elements of the reconstruction chain. Based on Eqs. (5.72) 

and (5.73), Eq. (5.76) may be written as: 
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To obtain the transmittance of the output error source according to Eq. (5.76), it is 

necessary to determine the transmittance of the reconstruction chain from Fig. 5.22. 

This transmittance is the product of three transmittances, which is expressed as 

follows:  

( ) ( ) ( ) jjjaddrec ASSS =
                                     

(5.78) 

The module of the source transmittance is described as the following product of the 

modules : 

( ) ( ) ( ) jjj
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and its phase is the sum: 
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The transmittance (5.78) can be written as: 
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where the module of it is described by Eq. (5.79) and the phase by Eq. (5.80). Taking 

these expressions into account, the transmittance of the output error source (5.77) takes 

the form:  

( ) ( ) ( ) recrecrecrec
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The module of the transmittance (5.82) is expressed as: 
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and its phase as: 
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As it results from Eqs. (5.62) and (5.63), the transmittance of the 1-st order 

reconstruction algorithm is described as the sequence reduced to two terms; thus, we 

have in this case: 
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(5.85) 

The coefficients of this equationare calculated according to Eq. (4.72) as: 
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where the value of φ is determined on the basis of parameters of the analog converter 

and the reconstructed signal, as it shown in example 5.3. 

Introducing expressions (5.86) into Eq. (5.85), we obtain the following expression: 
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from which we have that the real part of the transmittance is:  
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(5.88) 

and its imaginary part: 
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(5.89) 

The module of the algorithm transmittance is expressed as: 
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while its phase as: 
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Example 5.3. The dynamic properties of the Pt100 sensor placed in a jacked are 

described by the series connection of two 1-st order converters with the time constant 

τ1 = 20 s of the first converter and τ2 = 2 s of the second. The dynamic error of the first 

converter dominates; therefore, it has to be corrected using the dynamic reconstruction 

algorithm, while the correction of the error introduced by the second converter is not 

necessary if this error is negligible. To resolve this issue, the transmittance of  

the reconstruction error source should be determined. 

Let us take the reconstructed temperature signal to change sinusoidal in the input 

range of 0 to 100oC, which means that it is described as: x(t) = 50sinωt+50oC, 

ω = 2ˑπˑf, f is the frequency and f = 0.002 Hz. The signal is sampled with the period 

Ts = 2 s. For these parameters, the coefficient φ in the expressions (5.82) takes  

the value (see Example 4.4): 
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ee
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On the basis of these values, one can calculate the transmittances of  

the reconstruction chain. The module of the transmittance of the reconstruction 

algorithm has the following value: 
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9048.01

9048.099968.09048.021

1

cos21
j

22

s
=

−

+−
=

−

+−
=






T
A

   

(5.92) 

and the phase is: 
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(5.93) 

The module of the transmittance of the 1-st order converter is described by 

Eq. (4.21). According to this equation, the module of the first dynamic converter, 

contained by the reconstruction algorithm, is: 
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(5.94) 

and its phase: 

2462.02513.0arctanarctan 1S −=−=−= 
                      

(5.95) 
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The module of the second additive converter takes the value: 
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(5.96) 

and its phase is:  

02513.002513.0arctanarctan 2add −=−=−= 
                   

(5.97) 

According to the values obtained using Eqs. (5.92), (5.94) and (5.96), the product 

(5.78) of the considered modules has the value: 

( ) ( ) ( ) ( ) 99966.099968.096985.00315.1jjjj addrec ===  SSAS   (5.98) 

The phase shift obtained as the sum of values calculated using expressions (5.93), 

(5.95) and (5.97) is: 

01243.002513.02462.02589.0addSArec −=−−=++= 
        

(5.99) 

For the calculated values of module (5.98) and the phase (5.99), the module of  

the output error source (5.82) takes the value: 
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(5.100) 

Based on Eq. (5.74), one can describe the dynamic error connected to the output 

error source as: 

 ( ) ( ) ( ) jjj
dynoutdyn,

ESXE =                                 (5.101) 

The amplitude of this error is equal to its module that, according to Eq. (5.101),  

is expressed as:  

 ( ) ( ) ( ) jjj dynoutdyn, ESXE =
                                

(5.102) 

The amplitude of the input signal is: ( ) Cj o50=X ; therefore, the amplitude (5.102) 

of the output dynamic error takes the following value: 

 ( ) ( ) ( ) C620.00124.050jjj o

dynoutdyn,outdyn, ====  ESXEE
 

(5.103) 

The assumption that the additive converter Sadd does not exist in the analog 

conversion chain is equivalent to the description of its properties as ideal, which means 

that its transmittance Sadd(jω) = 1 and the phase φadd = 0. For these values, the module 

(5.98) is: 

( ) ( ) ( ) ( ) 0001.1196985.00315.1 ===  jjjj
addrec

SSAS     (5.104) 



199 

and the phase: 

0127.002462.02589.0addSArec =+−=++= 
          

(5.105) 

In this case, the amplitude (5.100) of the dynamic output error is of the following 

value:  
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(5.106) 

This means that the amplitude of the error Edyn,out = 50ˑ0.0127 = 0.635oC is comparable 

to the value (5.103) that is calculated for the case if all dynamic elements are taken 

into account in the signal reconstruction. 

5.3.3. Analytical and probabilistic description of dynamic reconstruction error  

The dynamic reconstruction error is described analytically in the same way as 

presented in the previous chapter, i.e., with using the transmittance of error source. 

The starting point of determination of this transmittance is the description of  

the reconstruction chain in the frequency domain presented graphically in Fig. 5.17. 

)j( S )j( A
)j(ˆ X)j( X

 

Fig. 5.17. Structure of the reconstruction chain made up of the transmittance S(jω) of the converter, 

the dynamic error of which is corrected by the reconstruction algorithm with the 

transmittance A(jω) 

According to Fig. 5.17, the transform of the output signal is as follows: 

( ) ( ) ( ) ( ) jjjj ASXX =ˆ
                                   (5.107) 

where X(jω) is the transform of the input signal. Based on the definition (4.85),  

the error in the output of the chain, that is, the dynamic reconstruction error in this case 

takes the form: 

( ) ( ) ( ) ( ) ( ) ( )  jj1jjˆjjDrec ASXXXE −=−=
               

(5.108) 

From Eqs. (5.75) and (5.108), we find that the source of the dynamic reconstruction 

error is described as: 
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According to this equation, the amplitude of the dynamic reconstruction error is of 

the form: 

 ( ) ( ) ( ) jjj
recdyn,recdyn,recdyn,

ESXEE ==
                          

(5.110) 

where: 
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and it is: 

( ) ( )
ASrecrec

jj  +== ,ASS                             (5.112) 

Example 5.4. The dynamic properties of the sensor are described by the 1-st order 

converter with the time constant τ = 2 s. The reconstructed temperature signal change 

sinusoidal in the input range from 0 to 100oC, which means that it is described as: 

x(t) = 50sinωt+50oC, ω = 2ˑπˑf, f is the frequency and f = 0.01 Hz. The signal is 

sampled with the period Ts = 0.2 s. 

For these parameters, the coefficient φ of the exemplary algorithm of 1-st order has 

the value (see Example 4.4): φ = 0.9048. Furthermore, we have: 

ωτ = 2πfτ = 2πˑ0.01ˑ2 = 0.1257, ωTs = 2ˑπfˑTs = 2ˑπˑ0.01ˑ0.2 = 0.01257. 

According to the taken assumptions and Eq. (5.19), the module of the transmittance 

of the reconstruction algorithm has the value: 
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and its phase is: 
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Based on Eq. (4.21), we have the following value of the transmittance module of 

the 1-st order converter: 
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and the phase of the transmittance is: 

1250.0.1257.0arctanarctanS −=−=−= 
                         

(5.116) 

Using results (5.113) and (5.115), we obtain the following value of the product of 

the transmittance module from Eq. (112):  

( ) ( ) ( ) 00014.19922.0008.1jjjrec ===  SAS
                    

(5.117) 
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The transmittance phase calculated as the sum of values (5.114) and (5.116)is: 

0064.01250.01314.0SArec =−=+= 
                            

(5.118) 

According to these values, the transmittance module of the error source (5.111) 

takes the following value: 
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Thus, the amplitude of reconstruction dynamic error calculated for the amplitude of 

the input signal ( ) Cj o50=X  on the basis of Eq. (5.110) is as follows: 

 ( ) ( ) ( ) C32.00064.050jjj o

DrecDrecDrec ====  ESXEE
          

(5.120) 

The analytical description of dynamic errors as transmittances enables detailed 

analysis of the error sources and determining relations between them, but combining 

of the dynamic errors with other errors needs consistent description of all errors in  

the probabilistic categories. Complete information about the distribution of  

the dynamic error is given by its histogram that is determined using Monte Carlo 

method as shown in the Experiment 5.7. However, the standard deviation σdyn of  

the sinusoidal error may be calculated on the basis of its amplitude Edyn [J15, M2] as: 
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(5.121) 

According to this expression and Eq. (5.110), the standard deviation of the dynamic 

output error may be determined as: 
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where X denotes the amplitude of the input signal. Based on this equation, we can 

present the dynamic reconstruction algorithm as the source of the random error shown 

in Fig. 5.18a, the standard deviation of which is described by Eq. (5.122).  

The amplitude of the reconstruction dynamic error calculated in Example 5.4 is: 

EDrec = 0.32oC. Thus, the standard deviation of this error takes the value:  

 C226.0
2

32.0

2

oDrec
Drec ===

E


                               
(5.123) 

The same value we obtain performing Experiment 5.7.  
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Experiment 5.7. This experiment aims to determine of the histogram of the dynamic 

error in output of the exemplary algorithm (5.85) used to correct the dynamic error of 

the 1-st order converter with time constant τ = 2 s. The input signal of the instrument 

changes sinusoidal in the input range of 0 to 100oC, i.e., it is described as: 

x(t) = 50sinωt+50oC, ω = 2ˑπˑf, the frequency is f = 0.01 Hz. At every step of  

the experiment, the input signal is sampled, first at the random instant tk located in  

the signal period T and, next, in the instant tk + Ts, where the sampling period 

Ts = 0.2 s. At the same instants the output signal of the analog converter is sampled, 

too, and the obtained samples are processed by the reconstruction algorithm.  

The reconstruction result is subtracted from the input signal at the instant tk to obtain 

the reconstruction error, the value of which is located in the set of error values. After 

100 000 steps, the standard deviation of the error is calculated and the error 

distribution is determined in the form of the histogram presented in Fig. 5.18b. 

a)      b) 

 

Fig. 5.18. a) Scheme of the dynamic reconstruction error as the source of the random error, 

b) histogram of the dynamic reconstruction error determined in Experiment 5.7, 

σDrec = 0.226oC 

5.4. Propagation of random errors 

There are two main kinds of random errors in the sampling instruments. The errors of 

the first kind are connected with random disturbances introduced to the input of  

the instrument and the noises generated in its analog and analog-to-digital converters. 

These errors may be modelled together as an additive noise at the input of the AD 

converter [M2]. The second kind of random error is connected with digitalization of 

the analog signal performed by sample-and-hold circuits and AD converters [J5, J14]. 
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Both these kinds of errors are modelled at the output of the AD converter, which 

causes that values of them are expressed as numbers at the input of the chain of  

the reconstruction algorithms.  

The input random error eran,in is composition of the partial errors that are 

characterized above. The propagation of this error is described in the general model by 

Eq. (5.30) that may be presented in the form of the linear combination of realizations 

of the input error and constant coefficients Ak+1, Ak ... Ak-m of the dynamic 

reconstruction algorithm. Thus, we have the following: 

( ) ( ) ( ) ( ) mkeAkeAkeAkke
mkkk

−++++=
−+ inran,inran,inran,Soutran,

1
1    

(5.124) 

where kS is the propagation coefficient of the static algorithm, k is the number of  

the current measurement window. Denoting the random error at the input of  

the dynamic algorithm at every sampling instant as: 

ran,inSDran,in
eke =

                                         
(5.125) 

and introducing this expression to Eq. (5.124), one obtains a description of  

the propagation of the random error by the dynamic algorithm in the form of  

the following equation: 

( ) ( ) ( ) ( )mkeAkeAkeAke
mkkk

−++++=
−+ inDran,inDran,inDran,outran,

1
1     (5.126) 

For the 1-st order algorithm, Eq. (5.126) takes the form: 

( ) ( ) ( )keAkeAke kk inDran,inDran,1outran, 1 ++= +                     
(5.127) 

Taking into account that realizations eDran,in(k+1), eDran,in(k),..., eDran,in(k-m) of  

the error at the algorithm input are taken from the same population with the standard 

deviation σDran,in, their linear combination (5.126) fulfils requirements of the Central 

Limit Theorem. This means that the propagation of the random error may be described 

as the following relation between variances of the input and output errors: 

( )      222

1 inDran,inDran,inDran,

2

outran,


mkkk
AAAk

−+
+++=             (5.128) 

Based on this equation, we can obtain a description of the standard deviation of  

the output error as the expression: 

( ) 222

1 mkkk
AAAk

−+
++= 

Dran,inoutran,
                            (5.129) 

For the 1-st order reconstruction algorithm, this expression takes the form: 

( ) 22

1 kk
AAk +=

+Dran,inoutran,
                                 (5.130) 
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Generally, the propagation of different kinds of error by the dynamic algorithm is 

described by the propagation coefficient defined as expression (5.51) that is the ratio 

of standard deviations of the error considered at the output and input of this algorithm. 

According to Eq. (5.129), the propagation coefficient of the random error is described as: 

222

1 mkkk
AAAk

−+
++== 

Dran,in

outran,

Dran



                          (5.131) 

The coefficients of the dynamic reconstruction algorithm are constant if  

the sampling instrument works under stable measurement conditions. This means that, 

in such conditions, the random propagation coefficient has a constant value the same 

for every kind of random error, although it depends on the form of the reconstruction 

algorithm. 

Example 5.5. The values of the coefficients of the exemplary algorithm of the 1-st 

order, calculated in Example 4.13, are: Ak+1 = 10.5 and Ak = -9.5. For these values,  

the coefficient (5.114) has the following value: 

2.14)5.9(5.10 2222

1Dran =−+=+= + kk AAk
                 

(5.132) 

As it is calculated in Example 4.11, to represent the exemplary 2-nd order 

algorithm accurately enough, it is necessary to take 45 initial terms of the algorithm in 

the form of the series. For the purpose of calculating the random propagation 

coefficient, it is enough to take 10 values presented in Tab. 4.4. According to 

Eq. (5.114), we have: 

( ) ( ) 8.429.108.134.1722)5.21(2.10
222222

Dran =+−++−++−+= k    
(5.133) 

From the values calculated using the equations (5.132) and (5.133), it results that 

the dynamic reconstruction algorithm significantly amplifies the random errors.  

The coefficient kDran that quantitatively describes this amplification has the constant 

value, which means that influence of stable random error sources on inaccuracy of  

the sampling instrument does not change in time. 

 

According to Eq. (5.35), the input random errors are multiplied by constant coefficient 

kS during their propagation by the static algorithm. This means that this coefficient can 

be used to describe the relationship between the standard deviations of the random 

errors at the output and the input of the static algorithm. If one takes into account that 

the propagation of the standard deviation by the dynamic algorithm is described by  

the coefficient kDran, propagation of random errors by the reconstruction chain of  

the sampling instrument can be presented as in Fig. 5.19.  
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Fig. 5.19. Propagation of the standard deviation of the input random error by the chain of reconstruction 

algorithms, kS is the static propagation coefficient, kDran the dynamic propagation coefficient 

The scheme from Fig. 5.19 is enough to compare standard deviations of the errors in 

the output of the chain of algorithms. But, if we want to know how the distributions of 

the random errors change during their propagation, there is necessary to use probabilistic 

experiments. To carry out them, the random errors must be defined in the input of  

the reconstruction chain. The determination of error values needs knowledge about  

the true value of the input quantity. In the case if the reconstruction chain is 

considered, it is necessary to know the number representing the exact quantization 

result. Accordingly to Eq. (5.45), this result is obtained for the exemplary sampling 

instrument if we take the quantum value 0→q . For this assumption we obtain  

the expression: 

( ) ( )
kk

tRtn 409.176
q

=
                                         

(5.134) 

where ( )ktR  is the resistance value of the sensor at the nominal sampling instant tk, k is 

the number of the current measurement window. 

In the further considerations, three random input errors are taken into account:  

the noise error, the quantization error and the error caused by the jitter [Z1]. For these 

errors, the analytical description of the quantization result takes the form: 

( ) ( ) ( ) 5.0
~~ ++=

kkk
tetRtn

noiq
409.176ent

                      
(5.135) 

where enoi(tk) is the normal noise, which models composition of all noises generated in 

the analog and analog-to-digital parts of the instrument, ( )
k
tR
~  is the sensor resistance 

at the instant: 

( )
kkk

ttt
jit

+=
~

                                             
(5.136) 

that is disturbed by the jitter ( )ktjit . 

Based on the error definition (1.24) and the equations (5.134) and (5.135), the total 

error composed of the considered errors is expressed as:  

( ) ( ) ( ) ( ) ( ) ( ) 5.0
~~

409.176ent-409.176~- noiqqinran, ++== kkkkkk tetRtRtntnte 
   

(5.137) 

Eq. (5.137) describes the total random error at the input of the chain of  

the algorithms. During propagation of this error by the static algorithm, every 

realization of the error is multiplied by the constant coefficient kS. This means that  
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the total random error at the input of the dynamic algorithm is described by  

the following equation: 

( ) ( ) ( ) ( ) ( )  5.0
~

409.176ent-409.176 noi.inSinran,SinDran, ++== kkkkk tetRtRktekte   (5.138) 

The experiments presented below are aimed at determination of histograms for  

the considered partial errors which propagate by the 1-st order exemplary dynamic 

algorithm.  

Experiment 5.8. The first experiment deals with calculations of the jitter error that, 

accordingly with Eq. (5.138), is defined by the expression: 

( ) ( ) ( ) kkk tRtRkte
~

409.176-409.176SinDjit, =                       (5.139) 

The input temperature signal: ϑ(t) = 50sinωt+50oC, ω = 2ˑπˑf, f = 0.01 Hz is converted 

at the sampling instants to the sensor resistance R accordingly with the equation (3.5). 

At every step of the experiment, two nominal sampling instants tk and tk+1 are 

determined as random with the rectangular distribution in the signal period T = 1/f. 

Next, two instants disturbed by the jitter are determined on the basis of Eq. (5.136) as: 

( )
kkk

ttt
jit

+=
~

  
and  ( )

111

~
+++

+=
kkk

ttt
jit

 

with the assumption that the jitter takes values accordingly with the rectangular 

distribution in the range from Δjmin to Δjmax and ǀΔjminǀ = ǀΔjmaxǀ = 1ˑ10-6 s. The input error 

(5.139) is processed by the exemplary 1-st order dynamic algorithm using the equation:  

( ) ( )
kDjit,in1kDjit,inoutjit,

teAteAe
kk

+=
++1                          (5.140) 

where Ak+1 = 10.5 and Ak = -9.5. The histograms contained 100,000 values of  

the output and input error are presented in Figs. 5.20a and 5.20b, respectively. 

a)           b) 

 
Fig. 5.20. Histograms of the jitter error: a) at the input of the exemplary dynamic algorithm of the 1-st 

order, σDjit,in = 7.6ˑ10-3oC, b) at the algorithm output, σjit,out = 108ˑ10-3oC 
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Experiment 5.9. Histograms of the noise error at the input and output of the dynamic 

algorithm, presented in Fig. 5.21, are determined in the same way as described in 

Experiment 5.8, but with this difference that only noise error is taken into account. 

According to Eq. (5.138), the noise input error is described as: 

( ) ( )
kk

tekte
noi,inSDnoi,in

=
                                      

(5.141) 

where enoi,in(tk) is a realization of the normal error N(0, 1), which burdens the number 

that is the result of the quantization of the sample at instant tk. The realization of  

the noise output error is calculated by multiplying the dynamic algorithm coefficients 

by realizations of the input error as is performed for the jitter error. 

a)      b) 

 

Fig. 5.21. Histograms of the noise error: a) at the input of the exemplary1-st order dynamic algorithm, 

σDnoi,in = 6.3ˑ10-3oC, b) at the algorithm output, σnoi,out = 89.4ˑ10-3oC 

Experiment 5.10. This experiment aims to obtain histograms of the errors caused by 

the quantization for the sinusoidal signal in the same way as in Experiment 5.9.  

The quantization error in the input of the dynamic algorithm is described by  

the expression: 

( ) ( ) ( )  5.0+=
kkk

tRtRkte 409.176ent-409.176
SqDin,               

(5.142) 

obtained on the basis of Eq. (5.138). The error at the output of the exemplary dynamic 

algorithm is calculated in the same way as in previous experiments. The distributions 

of these errors in the form of histograms are shown in Fig. 5.22. 
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a)          b) 

 

Fig. 5.22. Histograms of the quantization error for the sinusoidal input signal: a) at the input of the 

dynamic algorithm, σDq,in = 1.8ˑ10-3oC, b) at the algorithm output, σDq,out = 25.6ˑ10-3oC 

Composition of standard deviation is possible if the partial errors are not correlated.  

The jitter error is not correlated with the other random errors because the phenomena 

responsible for their arising are quite different. However, it can be assumed that the noise 

error and the quantization error are correlated because the noise disturbs the quantized 

voltage. To check this, the correlation coefficient between them is calculated in the way 

presented in Experiment 5.6. To perform these calculations, it is necessary to determine 

the standard deviation of the total error using the following experiment.  

Experiment 5.11. The total error that is composed of the noise error and  

the quantization error is described in the input of the dynamic algorithm by the expression: 

( ) ( ) ( ) ( )  5.0++=
kkkk

tetRtRkte
innoi,SinDran,

409.176ent-409.176
          

(5.143) 

obtained from Eq. (5.121). The histogram of this error determined as described in 

Experiment 5.8 is shown in Fig. 5.23. 

 
Fig. 5.23. Histogram of the error composed of noise and quantization errors at the input of the 1-st 

order dynamic algorithm, σDran,in = 6.6ˑ10-3oC 
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The estimate of the standard deviation of the error from Fig. 5.23 is 

σDran,in = 6.6ˑ10-3oC. The estimates of the standard deviations of the noise error from 

Fig. 5.21a is σDnoi,in = 6.3ˑ10-3oC and of the quantization error from Fig. 5.22a is 

σDq,in = 1.8ˑ10-3oC. The correlation coefficient calculated for these values is as follows:  

( )
0028.0

108.1.03.62

108.13.66.6
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6222
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2
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2

inDnoi,

2

inDran,
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2 


c    (5.144) 

which means that the partial errors are not correlated. 

 

The total random input error of the static algorithm is composed of three partial errors, 

realizations of which at instant tk create the sum: 

( ) ( ) ( ) ( )
kkkk

tetetete
inq,innoi,injit,inran,

++=
                      

(5.145) 

where ejit,in is the error caused by the jitter, enoi,in – caused by the noise and eq,in that is 

connected with the quantization. Based on the fact that partial random errors are not 

correlated, propagation of the standard deviation of the total random error by the chain 

of the reconstruction algorithm may by calculated using the scheme from Fig. 5.18. 

According to Eq. (5.128), the standard deviation of the total random error at  

the input of the static algorithm can be calculated using the equation: 

222

q,innoi,injit,inran,in
 ++=                                (5.146) 

At the input of the dynamic algorithm, it is: 

inran,SinDran,  k=
                                          

(5.147) 

where kS is the propagation coefficient of the static algorithm the same for all kinds of 

errors. The standard deviation of the random error propagate by the dynamic algorithm 

with the coefficient kDran, so we have: 

Dran,inDranoutran,
 k=                                          (5.148) 

Example 5.6. The standard deviation of the quantization error with the rectangular 

distribution in the range of -0.5 to 0.5 takes the value [J14, M2]: 

289.0
3

5.0
q,in ==

                                          
(5.149) 
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According to the value of the static coefficient kS that is calculated in Example 5.1, 

propagation of this error by the static algorithm causes its standard deviation in  

the input of the dynamic algorithm input to be: 

C108.1289.01035.6 o33

inq,SinDq,

−− ===  k
                    

(5.150) 

Comparing this calculated analytically value with the standard deviation value from 

Fig. 5.22a that is determined in the probabilistic experiment, one conclude that  

the quantization error does not depend on the input sinusoidal signal. 

The standard deviation of the noise error is taken as σnoi,in = 1, which means that at 

the input of the dynamic algorithm it takes the value:  

C1035.611035.6 o33

innoi,SinDnoi,

−− ===  k
                    

(5.151) 

The jitter error in the input of the dynamic algorithm presented in Fig. 5.20a is of 

the standard deviation equal to σDjit,in = 7.6ˑ10-3oC. Taking this value and the values 

calculated in Eqs.(5.150) and (5.151) into account, one obtains the standard deviation 

of the total random error in the input of the dynamic algorithm as: 

C10108.135.66.710 o322232

inDq,

2

inDnoi,

2

inDjit,inDran,

−− =++=++=     (5.152) 

The value of the propagation coefficient kDran of the exemplary 1-st order dynamic 

algorithm is calculated in Example 5.5. Multiplying this value by the standard 

deviation (5.152) at the input of the algorithm gives the standard deviation of total 

random error at the algorithm output: 

Co

inDran,Dranoutran,

33 1014.010102.14 −− ===  k                  (5.153) 

Complete knowledge of the distribution of the output random error may be obtained 

on the basis of the set of error values that is determined using the probabilistic 

experiment described in the following. 

Experiment 5.12. Two random nominal instants and two instants burdened by jitter 

are determined according to the measurement conditions described in Experiment 5.8. 

For these instants, two realizations of the input error are determined on the basis of 

Eq. (5.121), and then, they are processed by the exemplary 1st order algorithm.  

The obtained values of the input and the output errors are located in the suitable sets of 

error values and after ending the experiment presented in Fig. 5.24. 
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b)   b) 

 

Fig. 5.24. Histograms of the total random error composed of the jitter error, noise error and 

quantization error, a) at the input of the exemplary 1-st order dynamic algorithm, 

σDran,in = 10.1ˑ10-3oC, b) at the algorithm output, σran,out = 142ˑ10-3oC 

The dynamic reconstruction algorithm that is performed by the neural network has  

the same form of linear equations as the analytical algorithm. The only difference is 

related to obtaining values of the algorithm coefficients, which, for the neutral 

network, are obtained in the learning process, while, for the analytical form, they are 

determined using calculations. This means that all considerations presented in this 

chapter deals with both the analytical and the neural dynamic reconstruction. 

5.5. Propagation model of standard deviations of sampling instrument 

The considerations presented in Sections 5.2, 5.3 and 5.4 make it possible creation of 

the general propagation model of the standard deviations that describe the errors 

typical for the sampling instrument. This instrument measures, on the principle of  

the reconstruction, samples of the input signal that, for the purposes of the error 

analysis, is considered as sinusoidal. The model, presented in the graphical form in 

Fig. 5.25, is created for the exemplary instrument, but the structure of the model is of 

universal character for the analog converter described by the Wiener model. For stable 

measurement conditions, the parameters of the model are constant. 
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Fig. 5.25. The structure of general propagation model of standard deviations in the exemplary 

instrument for sinusoidal input signal, SRA – static reconstruction algorithm, DRA – 

dynamic reconstruction algorithm, X, f – the amplitude and frequency of the signal  

The errors modelled in the input of the chain of the reconstruction algorithms arise 

during the analog and analog-to-digital conversions, and they are expressed as 

numbers burdening the number of quanta obtained in the output of the AD converter. 

The input errors are divided into two groups: the static errors and the random errors 

because of their specificity of the propagation. The third group of errors depend on  

the amplitude X and the frequency f of the input signal. This group includes  

the dynamic reconstruction error and the static reconstruction error processed by  

the dynamic algorithm. All these errors are represented in Fig. 5.25 by their standard 

deviations. The standard deviation of the total output error is calculated as  

the geometrical sum of standard deviations of the suitable partial errors, i.e., as  

the square root of the sum of squares. The considered partial errors are not correlated 

as is proved in Sections 5.2, 5.3 and 5.4, in which detailed analysis of the propagation 

of these errors is carried out. 

The basic application of the model from Fig. 5.25 is used in the analysis of 

participations of the errors in the total output error. Knowledge about these 

participations enables selection of dominating errors and takes measures to reduce 

their values, which leads to increased accuracy of the output results. This kind  

the model is illustrated by the following examples. The table containing the standard 

deviations of the partial output errors is called the error budget. The complete 

description of every error should include, except for the standard deviation, its type of 

distribution, although in the case of the exemplary instrument it may be impossible 
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because many of the partial errors are characterized by non-standard distributions.  

If the knowledge about the concrete error distribution is needed, one can find this 

information in the chapter, in which this error is considered.  

Example 5.7. Let us take that the amplitude of the input signal of the exemplary 

instrument is X = 50oC and its frequency f  = 0.01 Hz. The time constant of the sensor 

is τ = 2 s and the sampling period is equal to Ts = 0.2 s. The standard deviations of  

the output errors presented in  the Tab. 5.4 are taken for the analytical reconstruction 

from Figs. 5.6a, 5.6b, 5.12a, 5.18b, 5.20b, 5.21b and 5.22b. The table 5.3 contains  

the appropriate standard deviations determined for the neural reconstruction, which 

differ from the values contained in Tab. 5.4 in one position, i.e.in the value from  

Fig. 12b, that describes the static reconstruction error after its propagation by  

the dynamic algorithm. 

Table 5.3 

Budget of errors, represented by their standard deviations, of the exemplary instrument 

with analytical reconstruction for sinusoidal input signal changing in the range from  

0 to 100oC with the frequency f  = 0.01 Hz and the amplitude X = 50oC 

Standard deviation σsh,out σinc,out σSrec,out σDrec σjit,out σq,out σnoi, ,out 

Valueˑ10-3oC 7.3 9 30.7 226 108 25.6 89.4 

 

Table 5.4 

Budget of errors, represented by their standard deviations, of the exemplary instrument 

with neural reconstruction for sinusoidal input signal changing in the range from  

0 to 100oC with the frequency f  = 0.01 Hz and the amplitude X = 50oC 

Standard deviation σsh,out σinc,out σSrec,out σDrec σjit,out σq,out σnoi, ,out 

Valueˑ10-3oC 7.3 9 3.84 226 108 25,6 89.4 

 

The standard deviation of the total error in the output of the exemplary instruments for 

the considered partial errors is calculated using the expression: 

2222222

outq,outnoi,outjit,recdyn,outSrec,outinc,outsh,out
 ++++++=        (5.154) 

Introducing the values from Tab. 5.3 into Eq. (5.154) gives: 

C269.04.896.251082267.3093.710 o22222223

out =++++++= −
    

(5.155) 

while, for the values from Tab. 5.4, we have: 

C267.04.896.2510822684.393.710 o22222223

out =++++++= −
      

(5.156) 
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Comparison of the values (5.155) and (5.156) comes to the conclusion that different 

kinds of the static reconstruction have the minor meaning in the budget of the output 

errors in the considered measurement conditions. Analysis of the values presented in 

Tabs. 5.3 and 5.4 shows that there is no single dominant error, which means that 

reducing the value of any error does not significantly reduce the total error.  

The opposite kind of situation is considered in the next example.  

Example 5.8. Let us take that the input signal frequency is f  = 0.05 Hz, while  

the others parameters of the signal reconstruction are the same as described in 

Example 5.7. The standard deviations of the partial error in the output of  

the exemplary instrument working under these conditions are presented in Tab. 5.5. In 

this table, two standard deviations differ from these in Tab. 5.3 because the suitable 

errors depend on the signal frequency that is 5 times greater than in Example 5.7.  

The dependencies of the standard deviations σSrec,out and σDrec of these errors on  

the signal frequency are described in Sections 5.2.3 and 5.3, respectively. 

Table 5.5 

Error budget of the exemplary instrument for the frequency f  = 0.05  

of the sinusoidal input signal with amplitude X = 50oC 

Standard deviation σsh,out σinc,out σSrec,out σDrec σjit,out σq,out σnoi, ,out 

Valueˑ10-3oC 7.3 9 71.9 1129 108 25,6 89.4 

In this case, the dynamic reconstruction error eDrec dominates. The analysis of  

the impact of this error on inaccuracy of the instrument may be performed analytically 

by comparison of standard deviations of the total error under different measurement 

conditions. Introducing the values from Tab. 5.5 in Eq. (5.154), we have: 

C1.14C1011404.896.2510811299.7193.710 oo322222223

out ==++++++= −−  

(5.157) 

The standard deviation determined by Eq. (5.157) is substantially greater than 

calculated in Eq. (5.155), which is caused by the dominance of the dynamic 

reconstruction error. Such a situation inspires seeking some means to decrease this 

error if the values of the total error is greater than the allowable one. 

5.6. Reduction of total error 

The total error is a composition of several partial errors. As in the results from 

Fig. 5.25, some of the errors do not depend on the reconstructed signal, but the others 
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are dependent on the signal parameters that influence properties of the dynamic 

algorithm. This causes the problem of reduction of the total error by the actions that 

lead to decreasing values of the partial errors to be complex.  

As a rule, the error, the values of which are the most significant in the error budget, 

are connected with the frequency of the reconstructed signal. In this chapter, two ways 

to decrease such a kind of errors are considered. 

In the case if the error caused by the dynamic reconstruction dominates, one can 

reduce it by decreasing the sampling period (see Section 5.3). However, this way is 

connected with increasing the output random error, because the dynamic coefficient 

kDran increases with grow of the sampling period. Dependencies of these errors from 

the sampling period for the exemplary instrument working with the signal frequency 

f  = 0.05 Hz are presented in Fig. 5.26. 

a)       b) 

 

c) 

 

Fig. 5.26. Dependencies of standard deviations of the selected errors on the sampling period in  

the output of the exemplary instrument with the 1-st order dynamic reconstruction for  

the input signal frequency f = 0.05 Hz: a) the dynamic reconstruction error, b) the random 

error, c) the error composed of these errors 
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As in Fig. 5.26, the standard deviation of the error composed of the discussed two 

partial errors reaches a minimum if the partial standard deviations have the same 

values. This minimum is obtained for the optimal sampling period Ts,opt that is about 

0.07 s. The values of the standard deviations read from this figure is about 0.4oC, but 

they also can be determined analytically in the way presented below. 

For the optimal sampling period Ts,opt = 0.07 s, the parameter φ of the discrete 

dynamic model takes the value: 

9656.02

07.0opts,

===
−−

ee

T

                                    (5.158) 

for which the coefficients of the dynamic reconstruction algorithm are: 
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On the basis of these values, one obtains that the dynamic coefficient describing 

amplification of random error by the 1-st order dynamic algorithm is: 

4.40)28(29 2222

1
=−+=+=

+ kk
AAk

Dran
                       (5.160) 

The standard deviation of the total input random errors is calculated in Eq. (5.152) 

as σran,in = 10ˑ10-3oC. Taking into account this value and the result of Eq. (5.160), we 

obtain the standard deviation of the output error that is determined according to 

Eq. (5.48) as: 

C 0.4C oo

inran,Dranoutran,
=== −− 33 1040410103.40 k          (5.161) 

From Fig. 5.26c, it results the standard deviation of the dynamic reconstruction 

error to be of the same value as the value of the standard deviation calculated above; 

thus, it is: 

Co

outran,Drec
4.0=                                     (5.162) 

The values of standard deviations of the partial errors at the output of the 

exemplary instrument working with the optimum sampling period are presented in 

Tab. 5.6. One should notice that the value of the standard deviation of the static 

reconstruction error differs of the value from Tab. 5.5. These differences are connected 

with changes of coefficients of the dynamic algorithm, which depend on the sampling 

period, and this in turn causes that the dynamic algorithm processed the error of  

the static reconstruction differently.  
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Table 5.6 

Error budget of the exemplary instrument for sinusoidal input signal  

with the frequency f  = 0.05 Hz and the amplitude X = 50oC determined  

for the optimal sampling period Ts,opt = 0.07 s 

Standard deviation σsh,out σinc,out σSrec,out σDrec σran,out 

Valueˑ10-3oC 7.3 9 109 400 400 

For the values from Tab. 5.6, the standard deviation of the total output error takes  

the value:  

C576.040040010993.710 o222223

out =++++= −
              

(5.163) 

This value is significantly less than the value calculated in Eq. (5.157), but, in some 

applications of the sampling instrument, it may be too big. In such cases, the other 

method of reducing the dynamic reconstruction error, even more effective than  

the described above, may be used. This method consists in changing the point in  

the measurement window to which the output result is assigned.  

Suppose that the output result is not assigned to the first sampling point in  

the window but to the point shifted by half the sampling period h = Ts/2. This causes 

that all terms of the transmittance (4.75) of the dynamic algorithm are multiplied by –

jωh [L1], so we have: 
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For the 1-st order algorithm, this expression takes the form: 
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(5.165) 

The transmittance of the 1-st order dynamic converter is described by Eq. (4.3). 

Based on these equations, the transmittance (5.109) of the reconstruction error source 

for the algorithm transmittance (5.148) is expressed as: 

 ( ) ( ) ( )





j1
1jj1j

ss -0.5j0.5j

1

1shshDrec,
+

+
−=−= +

T

k

T

k eAeA
SAES

              

(5.166) 

After transformation of this equation, we obtain the following expression: 
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The real part of the transmittance (5.167) is: 
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and the imaginary part: 
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Example 5.9. The measurement conditions are the same as in Example 5.7 with this 

difference that the input signal frequency is f = 0.05 Hz. According to Eqs. (5.168) and 

(5.169), the real part of the transmittance of the dynamic error source has the value: 

  41064.1Re −=
shDrec,

ES
                                 

(5.170) 

and the imaginary part is: 

  4

shDrec, 1023.5Im −−=ES
                                 

(5.171) 

Based on these values, we obtain the module of the error source transmittance as: 
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Having given this transmittance, one can calculate the amplitude of the output 

dynamic error accordingly with Eq. (5.105). For the amplitude X of the input signal 

equal to 50oC, the standard deviation of the error takes the value:  
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The error budget for the shifted reconstruction instant is presented in Tab. 5.7.  

Table 5.7 

Error budget of the exemplary instrument for sinusoidal input signal with f  = 0.05 Hz 

and amplitude X = 50oC if the reconstruction instant is shifted by Ts/2, Ts  

is the sampling period 

Standard deviation σsh,out σinc,out σSrec,out σDrec,sh σjit,out σq,out σnoi,out 

Valueˑ10-3oC 7.3 9 73.6 19.4 105 25 87.6 

Introducing values from Tab. 5.7 into expression (5.154), one obtains the following 

standard deviation: 

  
( ) CC oo

outtot, 16.0101606.8725105276.7393.710 322222223 ==++++++= −−
   

(5.174) 

that is substantially less than the standard deviations of the other discussed total errors. 

This means that this method is effective in decreasing the total reconstruction error. 
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5.7. Uncertainty evaluation of reconstruction results 

As discussed in Chapter 1, the inaccuracy of every measurement instrument must be 

described quantitatively, which enables comparison of basic metrological properties of 

the same kind of instruments. The most commonly used measure of the inaccuracy is 

the uncertainty [B1, B2, G1, J1, J2, K3, M6, S2] treated in this book as the parameter 

of the uncertainty interval that is calculated on the basis of distribution of total error 

burdening the estimate of reconstructed sample. If the measurement conditions, in 

which the instrument works, are stable, the uncertainty is the same for all estimates, 

which means that the inaccuracy of instrument may be described by one number. In 

this case, every reconstructed sample can be written in the interval form (1.45): 

( ) ( ) ( )  ( )
outoutout

ukxukxukxkx =+−= ˆˆ,ˆ


                     
(5.175) 

where ( )kx̂  is the estimate of the input sample x(k), k is the instant, for which  

the estimate is determined, uout is the uncertainty, the value of which is the same for 

every sample. 

If the measurement conditions change, uncertainties of individual samples depends 

on time variations of the parameters that describes these conditions. This means that 

every change of the measurement conditions should result in determination of  

the suitable value of the uncertainty. In this case, the reconstructed sample is described as: 

( ) ( ) ( ) ( ) ( )  ( ) ( )kukxkukxkukxkx
outoutout

=+−= ˆˆ,ˆ


               (5.176) 

Determination of the current uncertainty uout(k), requires keeping track of changes of 

the measurement conditions and the knowledge about relations between quantities that 

describe these conditions is necessary. 

Calculation of the uncertainty is the simplest if partial output errors take 

comparable values. In this case, the Central Limit Theorem may be used [P1,Y1], 

accordingly with which the distribution of the sum of random uncorrelated errors tends 

to the normal distribution if no one error dominates. Having given standard deviations 

of the partial errors, one can calculate in this case the standard deviation σout of  

the total output error accordingly with Eq. (1.52). Denoting the expanded uncertainty 

for the confidence level p = 0.95 as U, we have [K3, Y1]: 

out
2=U                                                   (5.177) 

One should notice that qualification of the total error distribution as normal do not 

have to be carried out statistically strictly because the inaccuracy of uncertainty itself 
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equal to about 10% can be treated as good enough for industrial conditions. If there is 

any doubt about normality of the error distribution, one may carry out the simulative 

probabilistic experiment [M6] assuming the suitable measurement conditions in  

the way described below.  

The reconstruction chain in the exemplary sampling instrument consists of  

the static and the dynamic algorithms. The coefficients of static algorithm in  

the analytical form are presented in Tab. 3.9, while of the neural form in Fig. 3.29. 

These coefficients are calculated as the effect of the identification, which means that 

the algorithms introduce both the approximation and the identification errors.  

The exemplary dynamic algorithm is of 1-st order; thus, it is composed of two terms 

the values of which are determined with assumption that the time constant τ of  

the sensor is known, and τ = 2 s. In this case, the measurement window contains two 

quantization results, which are described as: 

( ) ( ) ( ) ( ) ( ) 5.0
~~ ++++=

kkkkkq
tetetetRtn

noi.inincsh
409.176ent          (5.178) 

and 

( ) ( ) ( ) ( ) ( ) 5.0
~~

111
++++=

+++ kkkkkq
tetetetRtn

noi.inincsh
409.176ent       (5.179) 

where tk and tk+1 are the nominal sampling instants distant in time by the sampling 

period Ts. 

The quantization results are burdened by the errors connected with: jitter, drift of  

the shift and of inclination of the static characteristic, noise, and caused by  

the quantization. The standard deviations of these errors are contained by the error 

budget presented in Tabs. 5.4 and 5.5. One should notice that the shift error esh and  

the inclination error einc are static in the window, which means that they have the same 

values in these two sampling instants. It is assumed that the value of the drift error is 

taken, for every window, from the population described as random in the range from 

-2 to 2 with the rectangular distribution. The inclination error is expressed as: 

einc = nqˑεinc, wherein nq is the quantization result, and the inclination coefficient εinc 

changes accordingly with the rectangular distribution in the range from -5ˑ10-5 to 5ˑ10-5. 

The sampling instant is burdened by the jitter, which means that they are 

determined as: 

( )kkk ttt jit+=
~

   
and   ( )111

~
+++ += kkk ttt jit                       

(5.180) 

where the jitter takes values Δjit(tk) and Δjit(tk+1) accordingly with the rectangular 

distribution in the range from Δjmin to Δjmax and ǀΔjminǀ = ǀΔjmaxǀ = 1ˑ10-6 s. Except of  

the jitter error, the quantization result is burdened by the normal noise error N(0 ,1) 

and by the quantization error that is presented in Fig. 5.22a.  
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The experiments described below are performed for the temperature sinusoidal 

signal ϑ(t) = 50sinωtoC, wherein ω = 2πf, f is the frequency. For every measurement 

window, the input signal is sampled two times in the signal period T = 1/f: first, at  

the instant tk that is determined randomly accordingly with the rectangular distribution, 

next, at the instant tk+1 = tk + Ts, Ts is the sampling period. The number of measurement 

windows used in the experiment presented below is K = 100,000.  

Experiment 5.13. This experiment is aimed at obtaining two histograms of the total 

error in the output of the exemplary sampling instrument for the signal frequency 

f = 0.01 Hz, which is sampled with the period Ts = 0.2 s. The first histogram is 

determined for the analytical static reconstruction, and presented in Fig. 5.27a.  

The second, shown in Fig. 5.27b, is obtained with assumption that the neural static 

reconstruction is performed. 

a)           b) 

 

Fig. 5.27. Histograms of the total error of the samples reconstructed using the exemplary instrument 

for the input signal frequency f = 0.01 Hz: a) if the analytical static reconstruction  

is performed, σout = 0.268oC, the uncertainty obtained from definition (1.49) is U = 0.56oC,  

b) for the neural static reconstruction, σout = 0.266oC, U = 0.55oC 

Based on the standard deviation from Fig. 5.27a, the expanded uncertaintythat is 

calculated using Eq. (5.177) with assumption that the error distribution is normal has 

the value: 

C54.0268.022 o

out === U
                                 

(5.181) 

If we calculate the uncertainty on the basis of the set of error values presented as  

the histogram in Fig. 5.27a, the obtained value is U = 0.56oC. Both values differ 

insignificantly from accuracy requirement point of view, which means that  

the distribution of the total error presented in Fig. 5.27a may be treated as close 

enough to the normal in the considered measurement conditions. 
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Experiment 5.14. This experiment is aimed at obtaining two histograms of the total 

error at the output of the exemplary sampling instrument for the signal frequency 

f1 = 0.05 Hz, which is sampled with the period Ts = 0.2 s. The first histogram is 

determined for the analytical static reconstruction, and presented in Fig. 5.28a.  

The second, shown in Fig. 5.28b, is obtained if the neural static reconstruction is 

performed by the sampling instrument. 

a)             b) 

 
Fig. 5.28. Histograms of the total error of the samples reconstructed using the exemplary instrument 

for the input signal frequency f = 0.05 Hz: a) the analytical static reconstruction is 

performed, σout = 1.12oC, b) the neural static reconstruction is performed, σout = 1.14oC 

The distributions of the errors shown in Fig. 5.28 are significantly different from  

the normal distribution, which means that the uncertainties of these errors must be 

calculated from the definition on the basis of the histograms. Accordingly with 

Eqs. (1.30) and (1.31), we may determine the lower bound of the uncertainty interval as:  

 ( )
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eeg
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and the upper bound as: 
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where the confidence level p = 0.95 and ( )
out

eĝ  is the probability density function of 

the error eout, which is obtained by the normalization of its histogram in this way that 

every value of the histogram bar is divided by the number of occurrence equal to 105. 

For the histogram from Fig. 5.28a, we obtain that: 

C andC oo 7.17.1 =−= uu                               (5.184) 
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which means that, according to Eq. (1.50), the uncertainty takes the value: 

C7.1
2

)7.1(7.1

2

o=
−−

=
−

=
uu

U
                                

(5.185) 

Based on this uncertainty, one can describe the value of every reconstructed 

sample in the interval form (1.34) as: 

( ) ( ) ( )  ( ) CC oo 7.1ˆ7.1ˆ,7.1ˆ =+−= kkkk 


                  (5.186) 

The same values as (5.184) can be obtained on the basis of the histogram from 

Fig. 5.28b. It means that the output values of the sampling instrument using  

the exemplary neural static reconstruction are described by the same interval (5.186) 

as determined for the exemplary analytical algorithm.  

One can point one more analytical method of calculation of the uncertainty.  

It consists in application of the reductive interval arithmetic [J13, J15] to determinate  

the uncertainty of the total error on the basis of uncertainties of the partial errors. 

However, this method, as well as the other methods considered here, are numerically 

sophisticated and they can be used only for stable measurement conditions, in which 

all partial errors does not change their parameters. In such conditions, the uncertainty 

can be calculated one times before the sampling instrument is used and next every 

sample is characterized by the same uncertainty. In this the case, the time necessary to 

calculate the uncertainty is not important. But the calculation time is critical for  

the sampling instrument working in real-time if the parameters of the input signals, 

i.e., its amplitude and frequency, change significantly in time. In this situation,  

the uncertainty may have different values for successive samples, which causes that all 

calculations connected with the uncertainty determination must be performed between 

the sampling instants. In practice, the only way possible to obtain the current 

uncertainty consists in using a look-up table to store selected values of the uncertainty 

as a function of the measurement conditions. Calculation of the intermediate values is 

performed using the linear approximation as it is illustrated by the next example. 

Example 5.10. Let us take that the frequency of the input signal of the exemplary 

sampling instrument varies from fmin = 10-3 Hz to fmax = 0.1 Hz, which means that  

the signal period T changes from 10 s to 1000 s. The others quantities, which influence 

the measurement conditions, are stable. In Tab. 5.8, there are presented values of  

the uncertainty determined in the way described above for the selected values of  

the signal period.  
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Table 5.8 

Uncertainties of the reconstructed samples in relation to the signal period T calculated 

for the exemplary sampling instrument 

T  s 10 20 50 100 500 1000 

Uncertainty oC 3.3 1.7 0.81 0.54 0.43 0.39 

Let us take that the measured value of the period is T = 72 s. Using the linear 

approximation of values lying between these contained in Tab. 5.8, we obtain  

the uncertainty value as: 

( ) ( )
( ) ( )

( ) C69.022
50

81.054.0
81.05072

50100

50100
5072ˆ o=

−
+=−

−

−
+=

UU
UU

   
(5.187) 

The value of the uncertainty determined for this period in the same way as 

described in Experiment 5.13 is U = 0.67oC, which means that estimated value (5.187) 

is close enough to this one obtained experimentally. The time necessary to calculate 

the uncertainty accordingly with Eq. (5.187) is the same as for performing the static 

reconstruction using the linear approximation.  

5.8. Final remarks 

As it results from Example 5.10, the method of the uncertainty determination based on 

the look-up table needs only few arithmetical operations and may be performed in 

real-time by a microcontroller. One should notice that these operations may be reduced 

to seeking the suitable value of the uncertainty in the memory if the data stored in  

the look-up table are so close that this value is read as the closest to this one that 

corresponds to the measured value of signal period. In this case, other calculation are 

not needed. Capacities of EEPROM memories in modern microcontrollers are so big 

that there is no problem with storing many values of uncertainties in them [Y6].  

If the total uncertainty is dependent both on the period of signal and its amplitude, 

one may use the two-dimensional linearization method described in Chapter 3. Much 

more complicated problem occurs if the signal is poliharmonic because, in this case, 

the total uncertainty depends both on the amplitudes of harmonics and their beginning 

phases; and, what is more, these dependencies are non-linear. This problem of 

evaluation of the uncertainty can be solved by using the reductive interval arithmetic 

[J15], although the calculations are numerically complex, which means that this 
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method can’t be used in the real-time. However, one may use in this case the same 

means as described above to make the calculations quickly enough. 

The decomposed general model of error propagation presented in Fig. 5.4 can be 

extended to include other errors than those described in this chapter. For example, 

when a sampling instrument is used in a measurement system, additional errors may 

occur due to delays in data transmission [J11]. The probabilistic description of these 

errors allows them to be included in the output of the model in Fig. 5.4 and included in 

the error budget of the sampling device. 



 

6. REAL-TIME EXECUTION OF RECONSTRUCTION  

BY MICROCONTROLLERS 

The presented analytical forms of the reconstruction algorithms characterize very 

small number of arithmetical operations, which means that they may be performed 

efficiently by microcontrollers. This property also applies to neural reconstruction if 

one takes into account that the transfer functions of the neurons may be approximated 

by linear segments, which enables rapid realization of these functions with  

the acceptable inaccuracy. Short execution times of the presented algorithms cause that 

they may be performed in the real-time mode, that is, all arithmetic operations 

connected with the signal reconstruction are executed between the succeeding 

sampling instants. The basic question is how often the input signal may be sampled if 

microcontrollers are applied to the signal reconstruction in this mode. 

To evaluate the reconstruction execution time, it is useful to define a unit 

arithmetic operation as the number of instructions necessary to perform one operation 

by a microprocessor. This definition requires some assumptions. At first, it is assumed 

that 16-bit microcontrollers are used and all operations are performed using the fixed- 

-point arithmetic. This kind of arithmetic is computationally effective, and moreover, it 

is possible to use it because the coefficients of the algorithm may be stored in look-up 

tables in such a form that enables obtaining accurate enough results expressed in units 

of the sampled quantity. In second, results of the A/D conversion are positive integer 

numbers in the binary code and arithmetic operations are performed in this code.  

It enables one to evaluate the execution time of the arithmetic instructions as 

approximately equal to the time of moving data. Based on these assumptions, it is 

defined a unit of arithmetic operation as the sequence of three processor instructions: 

move + operation + move, for which one takes that two transfers of data are needed 

per one arithmetic operations. To simplify the considerations, one assumes that all 

instructions are executed in the same time that is equal to one cycle of  

the microcontroller. 
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6.1. Execution time of static reconstruction 

6.1.1. Execution time of analytical static reconstruction 

Accordingly with Eq. (3.13), three arithmetical operations are necessary to obtain  

the result of the analytical static reconstruction: one to determine the distance of  

the working point from the node, one to multiply the distance by the inclination and 

one to add the obtained result to the shift coefficient. These operations must be 

preceded by two activities. The first one concerns obtaining a measurement result from 

the AD converter. Taking into account that the AD converter handling can be carried 

out by using an interrupt, one can evaluate it execution time as approximately equal to 

one unit. The second activity consists in the determination of the node number, and it 

is performed by comparing the AD indication with the nodal values, which causes  

the number of comparisons to depend on the total number of nodes. One can point  

the more efficient method of determination of the node number than described.  

It requires a different look-up table structure than this one used in this work, namely 

the even distribution of nodes along the axis of indications is necessary. In this case, 

the AD converter result may be split into two parts: higher, which is used to determine 

addresses of three nodal values and lower, which represents the distance from  

the node. Such a splitting can be carried out by using two logical operations, so  

it needs about two units. The addresses are determined in about three units. 

Taking the presented analysis into account, on can set together all units necessary 

to obtain one estimate of the input sample that reconstructed by using the static 

algorithm. One obtains the following list:    

• measurement of a value of the input signal sample by using AD converter – 1 unit, 

• splitting the ADC result into the bits that represent the node number and  

the distance from the node – 2 units, 

• the determination of addresses of 3 node values – 3 units, 

• calculation of the estimate of the reconstructed sample by using the static 

algorithm according to Eq. (3.13) – 3 units. 

Summing up the values of units, one obtains 9 units. Adding 1 unit to perform 

other operations, we find that the number of unit necessary to reconstruct one sample 

using the static algorithm is about 10. Taking into account that one unit consists of  

3 instructions, and with assumption that the execution time of each instruction is 1 µs, 

one obtains that the static reconstruction is performed in 3ˑ10ˑ1 µs = 30 µs, which 

means that the maximum sampling frequency for the exemplary sampling instrument 

performing in the real-time only the static reconstruction is about 1/30ˑ10-6 = 33 kHz. 
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If the two-dimensional static reconstruction is applied, the influence quantity have 

to be measured. In the exemplary sampling instrument, this quantity is measured by 

the second AD converter of the microcontroller, which means that measurements of 

both the input and the influence quantities are performed in parallel at the same time. 

In this case, the static reconstruction requires 3 units more than the one-dimensional 

reconstruction: one for determining the address of the coefficient, one for calculating 

the correction and one for correcting the AD indication. Therefore, if the two- 

-dimensional reconstructionis performed accordingly with the algorithm described in 

Section 3.3.2,  it requires 13 calculation units, which means that its execution time is 

3ˑ13ˑ1 µs = 39 µs, i.e., the maximum sampling frequency is about 25 kHz.  

6.1.2. Execution time of neural static reconstruction 

Neurons in layers of artificial neural networks perform operations in parallel. It means 

that to obtain a minimum execution time of the static reconstruction, we must use as 

many microcontrollers as the number of neurons is applied in the hidden layer. For  

the exemplary network of Fig. 3.18, 3 microcontrollers should be used. They execute 

the same kinds of operation except the last that consists in addition of the output data 

of the neurons. This operation is carried out by the microcontroller selected as  

the main on the basis of the partial results obtained from the remaining 

microcontrollers.  

The main problem that must be solved if microcontrollers are used to perform 

operations suitable for a neuron is caused by non-linearity of the transfer function.  

The most time-efficient solution consists in using the linear approximation of  

the transfer function, which requires the same calculation units as the one-dimensional 

static reconstruction. As it results from considerations presented in Section 3.2.5, this 

approximation requires many nodes if the nonlinearity is strong, but the number of 

arithmetical operations do not depend on the number of nodes.  

Based on Fig. 3.18 and taking the above into account, one may state that  

the operations that perform the exemplary static reconstruction in parallel are: 

• measurement of a value of the input signal sample by using ADC converter – 1 unit, 

• multiplication of the indication by the suitable coefficient and addition of the result 

to the bias – 2 units, 

• processing this result by the transfer function using the linear approximation – 

9 units, 
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• multiplication of transfer function output result by the coefficient suitable for  

the neuron – 1 unit, 

• summing up output results of 3 neurons by the main microcontroller and connected 

with addition of the bias – 4 units.    

Summing up the presented above numbers of units, one obtains 15 units, which 

means that the parallel execution of the one-dimensional reconstruction algorithm 

using the neural network is about 50 % longer than of the analytical algorithm. 

As it results from Fig. 3.38, each neuron in the hidden layer of the network that 

performs two-dimensional neural reconstruction processes two measurement results.  

If as many microcontrollers as the neurons are used, 2 more arithmetical units are 

necessary to multiply the indication obtained for the influence quantity by the suitable 

coefficient and to add the result the second input value. This means that the total 

number of units is equal to 17, 4 units more than for the two-dimensional analytical 

reconstruction. 

6.2. Execution time of signal reconstruction 

The signal reconstruction based on the Wiener model is performed in series: the static 

reconstruction algorithm is executed as first, and next, the dynamic algorithm is 

performed on the basis of the estimates obtained from the static reconstruction. Thus, 

the execution time of the signal reconstruction is the sum of the times at which  

the static and dynamic algorithms are executed. 

Accordingly with Eq. (4.51), the first-order dynamic reconstruction requires  

3 units: 2 for making the multiplications plus 1 for the addition. If the reconstruction is 

realized accordingly with the second-order dynamic algorithm described by 

Eqs. (4.52) and (4.53) – 6 operations of addition and 4 of multiplication are required, 

which gives 10 arithmetic units. 

Summing up the presented considerations, we obtain that the different 

combinations of the exemplary signal reconstruction algorithms require the following 

number of units: 

• the analytical one-dimensional static algorithm + 1-st order dynamic algorithm – 

9 + 3 =  12 units, 

• the analytical two-dimensional static algorithm + 1-st order dynamic algorithm – 

12 + 3 =  15 units, 
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• the analytical one-dimensional static algorithm + 2-nd order dynamic algorithm – 

9 + 10 =  19 units, 

• the analytical two-dimensional static algorithm + 2-nd order dynamic algorithm – 

12 + 10 =  22 units, 

• the neural one-dimensional static algorithm + 1-st order dynamic algorithm – 

15 + 3 = 18 units, 

• the neural two-dimensional static algorithm + 1-st order dynamic algorithm – 

17 + 3 =  20 units, 

• the neural one-dimensional static algorithm + 2-nd order dynamic algorithm – 

15 + 10 =  25 units, 

• the neural two-dimensional static algorithm + 2-nd order dynamic algorithm – 

17 + 10 =  27 units. 

As it results from the presented list, the number of the units required to perform  

the signal reconstruction in the conditions considered in this book does not exceed 27. 

Taking into account that the execution time of the unit takes 3 instructions, this 

number of units needs 27ˑ3ˑ1 µs = 81 µs. Taking other operations needed into account, 

one can evaluate the execution time as about 100 µs. This means that the maximum 

sampling frequency of the instrument working in real-time mode o is about 

1/(100ˑ10-6) = 10 kHz. This frequency is limited exclusively by the execution time of 

mathematical operations necessary to obtain the estimate of the input sample for  

the execution time of one instruction by the exemplary microcontroller. However, if 

we take into account that the instrument processes varying over time signals, the 

suitable number of samples per one period must be performed to obtain the required 

uncertainty of the estimate, which is connected with property of the discretization 

error. As resulted from the considerations presented in Chapter 4, for the first order 

dynamic converter, about 100 samples per the period is needed to obtain about 1 % 

uncertainty related to the measurement range. In this case, the maximum frequency of 

the sinusoidal signal is about 10ˑ103/100 = 100 Hz. This frequency is limited 

exclusively by properties of the mathematical tools used to perform the reconstruction 

in the considered conditions.  

6.3. Real-time calculation of uncertainty 

A single sample of the instrument input signal is treated as the measurand, which 

means that the result of the reconstruction is expressed in the form of the interval, 
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which is presented in Chapter 1. The radius of this interval is described by the defined 

uncertainty. If the sampling instrument works in stable measurement conditions,  

the uncertainty is the same for each sample, thus, the uncertainty can determined only 

once as the result of the error analysis. However, for changing conditions,  

the uncertainty must be calculated dependently of the their actual state. Quantities that 

substantially affect measurement results are contained in the measurement model as 

influence quantities. Embracing these quantities by the model means that the suitable 

errors that burden the results are eliminated from them as an effect of  

the reconstruction. However, there are parameters of the measurement conditions 

which do not affect measurement results, but they influence on the instrument 

inaccuracy. In this situation, the uncertainties of the reconstructed samples should  

be calculated based on values of these parameters. 

It results from considerations presented in Chapter 5 that two parameters of  

the reconstructed signal mainly influence the uncertainty of the estimates obtained:  

the frequency and the amplitude of the signal. Both parameters can be calculated based 

on the samples reconstructed for at least one signal period. These calculations are 

performed with assumption that these parameters change in time relatively slowly, 

therefore, a value of the parameter determined for the current period may be used in 

the next. Taking this into account, one can state that the calculations of these 

parameters may be performed in background of the reconstruction execution.  

The signal period may be determined by countering the samples, while the amplitude 

as the maximum value of them in the period, which means that these calculations do 

not consume essential part of the microcontroller time. 

The basic way of the sampling instrument adjustment to the signal amplitude 

variations consists in suitable changes of the amplification coefficient of the amplifier 

working in the analog part of this instrument. It causes the parameters of the linear 

approximation of the static characteristic to be changed dependently on the coefficient 

value. The fastest way of obtaining the suitable parameters is to store them in a look-up 

table for every values of the amplification coefficient and use the actual parameters to 

perform the reconstruction. 

Variations of the signal frequency are important from properties of the dynamic 

algorithm point of view because, for the constant sampling frequency, the number of 

samples in the signal period changes. This causes in turn the discretization error to 

change, which may influence significantly the uncertainty of the reconstructed 

samples. We have two ways to proceed in this situation. The first consists in using  

a look-up table to store the selected values of uncertainty dependently on  
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the frequency values to use them as in Example 5.7 to calculate the current value of 

the uncertainty. The essence of the second way is to change the sampling frequency so 

that the uncertainty is constant. This way needs suitable changes of parameters of  

the dynamic algorithm, the current values of which may be determined with using 

look-up tables. Such a working mode of the sampling instrument can be considered as 

adaptive [G2].  



 

 

BIBLIOGRAPHY 

A1. Andria G.T.: Approximation of continuous functions by polynomials with 

integral coefficients. Journal of Approximation Theory, Vol. 4 (4), 1971,  

pp. 357–362. 

A2. Ablameyko S., Goras L., Goris M., Piuri V.: Neural Networks for 

Instrumentation, Measurement and Related Industrial Applications. IOS Press, 

2003. 

A3. Armato A., Fanucci L., Scilingo E. P., De Rossi D.: Low-error digital hardware 

implementation of artificial neuron activation functions and their derivative. 

Microprocessors and Microsystems, Vol. 35, Issue 6, August 2011, pp. 557–567.  

A4. Arpaia P., Daponte P., Grimaldi D., Michaeli L.: Systematic error correction for 

experimentally modeled sensors by using ANNs. Instrumentation and 

Measurement Technology Conference, 1999.IMTC/99. Proceedings of the 16th 

IEEE, Vol. 3, 1999, pp. 1635–1640.  

B1. Betta G., Lignori C., Pietrosanto A.: A Structural Approach to Estimate  

the Measurement Uncertainty in Digital Signal Elaboration Algorithms. IEE 

Proc. Part A, Sci. Measur. Technol. 146 (1), 1999, pp. 21–26. 

B2. Betta G., Lignori C., Pietrosanto A.: Propagation of Uncertainty in a Discrete 

Fourier Transform Algorithm. Measurement, 27 (4), 2000, pp. 231–239. 

B3. Battiti R.: First and second order methods for learning: Between steepest descent 

and Newton’s method. Neural Computation, Vol. 4, No. 2, 1992, pp. 141–166, 

1992. 

B4. Bicle L.W., Dove R.C.: Numerical Correction of Transient Measurements. Adv. 

Instrum., Vol. 27, Part 2, Pittsburgh 1972. 

C1. Chudzik S., Grys S, Minkina W. The application of the artificial neural network 

and hot probe method in thermal parameters determination of heat insulation 

materials. Part: 1-thermal model consideration. 2009 IEEE International 

Conference on Industrial Technology, 2009, pp. 1–6.  

https://scholar.google.pl/citations?view_op=view_citation&hl=pl&user=fW8P1xgAAAAJ&citation_for_view=fW8P1xgAAAAJ:Y0pCki6q_DkC
https://scholar.google.pl/citations?view_op=view_citation&hl=pl&user=fW8P1xgAAAAJ&citation_for_view=fW8P1xgAAAAJ:Y0pCki6q_DkC
https://scholar.google.pl/citations?view_op=view_citation&hl=pl&user=fW8P1xgAAAAJ&citation_for_view=fW8P1xgAAAAJ:Y0pCki6q_DkC


234 

C2. Cichy A., Roj J.: Applications of artificial neural networks in quasi-balanced 

measuring circuits. Diagnostic of electrical machines and materials: DESAM 

2014. 3rd International conference, Papradno, Slovak Republic, 19-20.06.2014. 

Proceedings, 2014, EDIS − Zilina University Publisher, pp. 7–11. 

D1. Daponte P., Grimaldi D.: Artificial neural networks in measurements. 

Measurement, Vol. 23, Issue 2, March 1998, pp. 93–115.  

G1. Godec Z.: Standard Uncertainty in Each Measurement Result Explicit or 

Implicit. Measurement 20 (2), 1997, pp. 97–101. 

G2. Gröchenig  K.: A discrete theory of irregular sampling. Elsevier Inc., 1993. 

G3. Guo F.: A new identification method for Wiener and Hammerstein systems. 

Forschungszentrum Karlsruhe, 2004. 

H1. Hornik K.: Approximation capabilities of multilayer feedforward networks. 

Neural Networks, Vol. 4, Issue 2, Elsevier 1991, pp. 251–257.  

H2. Hsu Y.-L., Wang J.-S.: A Wiener-type recurrent neural network and its control 

strategy for nonlinear dynamic applications. Journal of Process Control, Vol. 19, 

Issue 6, June 2009, pp. 942–953. 

H3. Hagel R., Zakrzewski J.: Miernictwo dynamiczne. WNT, Warszawa 1984. 

J1. Jakubiec J., Topór-Kamiński T.: Uncertainty Modelling Method of Data Series 

Processing Algorithms. IMEKO TC-4 Symposium on Development in Digital 

Measuring Instrumentation and 3rd Workshop on ADC Modelling and Testing, 

Sep. 17-18, 1998, Naples, Italy, pp. 631–636. 

J2. Jakubiec J., Konopka K.: Uncertainty Propagation Model of A/D Measuring 

Chain. IMEKO TC-4 Symposium on Development in Digital Measuring 

Instrumentation and 3rd Workshop on ADC Modelling and Testing, Sep. 17–18, 

1998, Naples, pp. 831–836. 

J3. Jakubiec J., Konopka K.: Reductive Interval Arithmetic in Dynamic Error 

Evaluation. Proc. XVI IMEKO World Con., Sept. 25–28, 2000. Vienna, Austria. 

Vol. X, pp. 195–200. 

J4. Jakubiec J., Konopka K.: Coherence Coefficient as Uncertainty Parameter of 

Error Value Set. Proc. of the IMEKO-TC7 Symposium „Measurement Science 

of the Information Era”, Cracow, Poland, June 25-27 2002, pp. 76–81. 

J5. Jakubiec J., Konopka K.: A Method of Error Source Identification of A/D 

Measuring Chain. Proc. 20th IEEE Instrumentation and Measurement Technology 

Conference IMTC/03, Vail, CO, USA, 20-22 May 2003, pp. 1659–1664. 

https://core.ac.uk/search?q=authors:(Gröchenig,%20Karlheinz)
https://digbib.bibliothek.kit.edu/volltexte/fzk/6955/6955.pdf


235 

J6. Jakubiec J.: Reductive Interval Arithmetic Application to Uncertainty 

Calculation of Measurement Result Burdened Correlated Errors. Metrology and 

Measurement Systems. Vol. X, No. 2 (2003), pp. 137–156. 

J7. Jakubiec J.: System Oriented Mathematical Model of Single Measurement 

Result. Metrology and Measurement Systems. Vol. XIII, No. 4 (2006),  

pp. 405–419. 

J8. Jakubiec J., Makowski P., Roj J.: Error Model Application in Neural 

Reconstruction of Nonlinear Sensor Input Signal. IEEE Transactions on 

Instrumentation and Measurement, Vol. 58, No. 3, March 2009, pp. 649–656. 

J9. Jakubiec J.: Błędy i niepewności w systemie pomiarowo-sterującym. 

Wydawnictwo Politechniki Śląskiej, Gliwice 2010. 

J10. Jakubiec J.: A New Conception of Measurement Uncertainty Calculation. Acta 

Physica Polonica A. Vol. 124 (2013), No. 3, pp. 436–444. 

J11. Jakubiec J., Wymysło M.: Errors caused by delays in measuring and control 

systems. Proceedings of Metrology Commission of Katowice Branch of Polish 

Academy of Sciences, Conferences Nr 20.PPM'15, Kościelisko, 07–10 June 2015, 

pp. 49–52.  

J12. Jakubiec J.: A Complex Method of Systematic Error Correction in AD 

Measuring Chain. Proc. IMEKO TC-4 Int. Work. on ADC Modelling, 

Smolenice, May 7–9, 1996, pp.13–18.  

J13. Jakubiec J., Konopka K.: Reductive Interval Arithmetic in Dynamic Error 

Evaluation. Proc. XVI IMEKO World Congr., Sept. 25–28, 2000. Vienna, 

Austria. Vol. X, pp. 195–200. 

J14. Jakubiec J., Roj J.: Pomiarowe przetwarzanie próbkujące. Wydawnictwo 

Politechniki Śląskiej, Gliwice 2000. 

J15. Jakubiec J.: Application of reductive interval arithmetic to uncertainty 

evaluation of measurement data processing algorithms. Wyddawnictwo 

Politechniki Śląskiej, Gliwice 2002. 

J16. Jackowska-Strumiłło L.: Analytical and neural correctors of temperature sensors 

dynamic errors. Automatyka, tom 14, zeszyt 3/2 (2010), s. 773–783.  

J17. Jackowska-Strumiłło L. et al.: Modelling and MBS experimentation for 

temperature sensors. Measurement. Vol. 20, Issue 1, Jan. 1997, pp. 49–60. 

K1. Kluk P., Morawski R.Z.: Static Calibration of Transducers Using 

Parametrization and Neural-Network based Approximation. Proc. IEEE 

Transactions on Instrumentation and Measurement, 1995, pp. 49–53. 

http://www.bg.polsl.pl/expertusbin/expertus.cgi?KAT=%2Fvar%2Fwww%2Fbibgl%2Fexpertusdata%2Fpar%2F&FST=data.fst&FDT=data.fdt&ekran=ISO&lnkmsk=2&cond=AND&mask=2&F_00=27&V_00=Proceedings+of+Metrology+Commission+of+Katowice+Branch+of+Polish+Academy+of+Sc
http://www.bg.polsl.pl/expertusbin/expertus.cgi?KAT=%2Fvar%2Fwww%2Fbibgl%2Fexpertusdata%2Fpar%2F&FST=data.fst&FDT=data.fdt&ekran=ISO&lnkmsk=2&cond=AND&mask=2&F_00=27&V_00=Proceedings+of+Metrology+Commission+of+Katowice+Branch+of+Polish+Academy+of+Sc
https://www.sciencedirect.com/journal/measurement
https://www.sciencedirect.com/journal/measurement/vol/20/issue/1
https://repo.pw.edu.pl/info/article/WUT300148bfab6b4f9b98266ae00fbe8e59/Publikacja%2B%25E2%2580%2593%2BStatic%2BCalibration%2Bof%2BTransducers%2BUsing%2BParametrization%2Band%2BNeural-Network-based%2BApproximation%2B%25E2%2580%2593%2BPolitechnika%2BWarszawska?r=publication&ps=20&tab=&lang=pl
https://repo.pw.edu.pl/info/article/WUT300148bfab6b4f9b98266ae00fbe8e59/Publikacja%2B%25E2%2580%2593%2BStatic%2BCalibration%2Bof%2BTransducers%2BUsing%2BParametrization%2Band%2BNeural-Network-based%2BApproximation%2B%25E2%2580%2593%2BPolitechnika%2BWarszawska?r=publication&ps=20&tab=&lang=pl


236 

K2. Konopka K., Topór-Kamiński T.: Identification of Measurement Data 

Processing Algorithm Coefficients Presented on Selected Form of FFT 

Algorithm. XIX IMEKO World Congress, Lizbona, Portugalia, 6–11.09.2009, 

pp. 2400–2404. 

K3. Korczyński J.: Calculation of Expanded Uncertainty. Proc. Joint IMEKO TC-1 

& XXXIV Conference 2002, Wrocław, 8–12 Sept. 2002, Vol. I, pp. 107–114. 

K4. Kroese D.P., Taimre T., Botev Z.I.: Handbook of Monte Carlo Methods. Wiley 

Series in Probability and Statistics, John Wiley & Sons, New York 2011. 

L1. Layer E., Tomczyk K.: Measurement Modelling and Simulation of Dynamic 

Systems. Springer, 2010. 

L2. Layer E., Tomczyk K.: Signal Transforms in Dynamic Measurements. Studies in 

Systems, Decision and Control, Vol. 16, Springer 2015. 

L3. Luque J., Escudero I., Pérez F.: Analytic Model of the Measurement Errors 

Caused by Communications Delay, IEEE Transactions on Power Delivery,  

Vol. 17, No. 2, 2002, pp. 334–337.  

L4. Leondes C.T.: Algorithms and Architectures. Neural Network Systems 

Techniques and Applications. Vol. 1, Academic Press, 1998. 

M1. McGhee J., Kulesza W., Henderson I.A., Korczyński M.J.: Measurement Data 

Handling. Theoretical  Technique. Vol. 1. The Technical University of Lodz, 

Łódź 2001. 

M2. McGhee J., Kulesza W., Henderson I. A., Korczyński M. J.: Measurement Data 

Handling. Hardware Technique. Vol. 2. The Technical University of Lodz, Łódź 

2001. 

M3. Morawski R.Z.: Basic Problems of Measurement Signal Reconstruction. 

Advances in Science and Technology and Engineering of Instrumenation, 1989, 

pp. 80–84. 

M4. Morawski R.Z.: Unified Approach to Measurement Signal Reconstruction. 

Measurement 9 (3), 1991, pp. 140–144. 

M5. Morawski R.Z.: Unified Approach to Measurand Reconstruction. IEEE 

Transactions on Instrumentation and Measurement, Vol. 43, No. 2, 1994,  

pp. 226–231. 

M6. Morawski R.Z., Miękina A.: Monte-Carlo Evaluation of Measurement 

Uncertainty using a New Generator of Pseudorandom Numbers. Measurement 

Automation Monitoring, Vol. 59, No. 5, 2013, pp. 390–393. 

https://repo.pw.edu.pl/info/article/WUT241121/Publikacja%2B%25E2%2580%2593%2BBasic%2BProblems%2Bof%2BMeasurement%2BSignal%2BReconstruction%2B%25E2%2580%2593%2BPolitechnika%2BWarszawska?r=publication&ps=20&tab=&lang=pl
https://repo.pw.edu.pl/info/article/WUT241121/Publikacja%2B%25E2%2580%2593%2BBasic%2BProblems%2Bof%2BMeasurement%2BSignal%2BReconstruction%2B%25E2%2580%2593%2BPolitechnika%2BWarszawska?r=publication&ps=20&tab=&lang=pl
https://repo.pw.edu.pl/info/article/WUT275503/Publikacja%2B%25E2%2580%2593%2BMonte-Carlo%2BEvaluation%2Bof%2BMeasurement%2BUncertainty%2Busing%2Ba%2BNew%2BGenerator%2Bof%2BPseudorandom%2BNumbers%2B%25E2%2580%2593%2BPolitechnika%2BWarszawska?r=publication&ps=20&tab=&lang=pl
https://repo.pw.edu.pl/info/article/WUT275503/Publikacja%2B%25E2%2580%2593%2BMonte-Carlo%2BEvaluation%2Bof%2BMeasurement%2BUncertainty%2Busing%2Ba%2BNew%2BGenerator%2Bof%2BPseudorandom%2BNumbers%2B%25E2%2580%2593%2BPolitechnika%2BWarszawska?r=publication&ps=20&tab=&lang=pl


237 

M7. Minkina W., Gryś S.: Application of adaptive signal processing in error 

compensation of transient temperature measurements. Metrology and 

Measurement Systems 9 (2), 125–139, pp. 2002. 

M8. Minkina W.: Theoretical and experimental identification of the temperature 

sensor unit step response non-linearity during air temperature measurement. 

Sensors and Actuators A: Physical 78 (2–3), 1999, pp. 81–87. 

M9. Minkina W., Chudzik S.: Determination of Thermal Parameters of Heat- 

-Insulating Materials Using Artificial Neural Networks. Metrol. and Measur. 

Sys. Vol. 10, No. 1, 2003, pp. 33–49.  

M10. Minkina W., Gryś S.: Correction of dynamic characteristics of thermometric 

sensors – methods, systems, algorithms. Publishing House of Czestochowa 

University of Technology, 2023. 

M11. Mirri D., Luculano G., Filicori F., Pasini G., Vannini G., Pellegrini G.P.:  

A modified Volterra series approach for nonlinear dynamic systems modeling. 

IEEE Transactions on Circuits and Systems,Vol. 49, Issue 8, 2002, pp. 118–1128. 

M12. Meditch J.S.: Stochastic optimal linear estimation and control. McGraw Hill, 

New York 1969. 

N1. Neumaier A.: Interval Methods for System of Equations. Cambridge Univer. 

Press, 1990. 

O1. Orfanidis S.J.: Optimum Signal Processing. Sec. Ed., Macmillan Publ. 

Company, New York 1988. 

O2. Olyaee S., Hamedi S.: Neural network approximation of nonlinearity in laser 

nanometrology system based on TLMI. 3rd International Photonics 

&OptoElectronics Meetings (POEM 2010), Journal of Physics: Conference 

Series 276, 2011, pp. 1–8.  

P1. Papoulis A.: Probability, Random Variables, and Stochastic Processes. McGraw-

Hill, Inc., New York 1965. 

P2. Patra J.C., Chakraborty G., Meher P.K.: Neural-Network-Based Robust 

Linearization and Compensation Technique for Sensors Under Nonlinear 

Environmental Influences. Circuits and Systems I: Regular Papers, IEEE 

Transactions on Instr., Vol. 55, Issue 5, 2008, pp. 1316–1327.  

R1. Roj J.: Correction of dynamic errors of a gas sensor based on a parametric 

method and a neural network technique. Sensors, Multidisciplinary Digital 

Publishing Institute, Vol. 16, No. 8, 2016, art. No. 1267. 

https://scholar.google.pl/citations?view_op=view_citation&hl=pl&user=fW8P1xgAAAAJ&citation_for_view=fW8P1xgAAAAJ:u-x6o8ySG0sC
https://scholar.google.pl/citations?view_op=view_citation&hl=pl&user=fW8P1xgAAAAJ&citation_for_view=fW8P1xgAAAAJ:u-x6o8ySG0sC
https://ieeexplore.ieee.org/author/37274023200
https://ieeexplore.ieee.org/author/37086973077
https://ieeexplore.ieee.org/author/37274734400
https://ieeexplore.ieee.org/author/37274060500
https://ieeexplore.ieee.org/author/37274696500
https://ieeexplore.ieee.org/author/37088190476
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=81
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=22013&punumber=81


238 

R2. Roj J., Urzędniczok H.: Correction of gas sensor dynamic errors by means of 

neural networks. Measurement Automation Monitoring, Wyd. PAK, Vol. 61, 

No. 12, 2015, pp. 538–541.  

R3. Roj J., Cichy A.: Method of measurement of capacitance and dielectric loss 

factor using artificial neural networks. Measurement Science Review, De 

Gruyter Open, Vol. 15, No. 3, 2015, pp. 127–131. 

R4. Roj J.: Estimation of the artificial neural network uncertainty used for 

measurand reconstruction in a sampling transducer. IET Science Measurement 

& Technology, Institute of Electrical and Electronics Engineers, Vol. 8, No. 1, 

2014, pp. 23–29. 

R5. Roj J.: Neuronowe odtwarzanie sygnałów pomiarowych. Wydawnictwo 

Politechniki Śląskiej, Gliwice 2013. 

R6. Roj J.: Neural approximation of empirical functions. Acta Physica Polonica A, 

Polish Academy of Sciences Institute of Physics, Vol. 124, No. 3, 2013,  

pp. 554–557. 

R7. Roj J.: Neural network based real-time correction of transducer dynamic errors. 

Measurement Science Review, De Gruyter Open, Vol. 13, No. 6, 2013,  

pp. 286–291. 

R8. Roj J.: Właściwości metrologiczne radialnych i sigmoidalnych sieci neuronowych 

zastosowanych do korekcji błędów statycznych w przetworniku próbkującym. 

Przegląd Elektrotechniczny, Sigma NOT, Vol. R. 89, nr 1a, 2013, s. 84–87. 

R9 Roj J.: Neuronowa korekcja błędów dynamicznych przetwornika II-go rzędu. 

Measurement Automation Monitoring, Wydawnictwo PAK, Vol. 56, nr 11, 

2010, s. 1315–1317. 

R10. Roj J.: Modele odcinkowo-liniowe w zastosowaniu do budowy szybkich 

algorytmów korekcji błędów systematycznych złożonych nieliniowych 

przetworników pomiarowych. PAK, nr 11, Warszawa 1999, s. 2–5. 

S1. Szczeciński L., Barwicz A.: Quickly Converging Iterative Algorithms for 

Measurand Reconstruction. Measurement 20 (3), 1997, pp. 211–217. 

S2. Szafrański T., Morawski R.Z.: Efficient Estimation of Uncertainty in Weakly 

Non-linear Algorithms for Measurand Reconstruction. Measurement 29, 2001, 

pp. 77–85.  

S3. Szczeciński L., Morawski R.Z., Barwicz A.: Numerical Correction of 

Spectrometric Data Using a Bilinear Operator of Measurand Reconstruction. 

Instrumentation Science & Technology, Vol. 25, No. 3, 1997, pp. 197–205. 

https://repo.pw.edu.pl/info/article/WUT244963/Publikacja%2B%25E2%2580%2593%2BNumerical%2BCorrection%2Bof%2BSpectrometric%2BData%2BUsing%2Ba%2BBilinear%2BOperator%2Bof%2BMeasurand%2BReconstruction%2B%25E2%2580%2593%2BPolitechnika%2BWarszawska?r=publication&ps=20&tab=&lang=pl
https://repo.pw.edu.pl/info/article/WUT244963/Publikacja%2B%25E2%2580%2593%2BNumerical%2BCorrection%2Bof%2BSpectrometric%2BData%2BUsing%2Ba%2BBilinear%2BOperator%2Bof%2BMeasurand%2BReconstruction%2B%25E2%2580%2593%2BPolitechnika%2BWarszawska?r=publication&ps=20&tab=&lang=pl


239 

S4. Stone H.: Approximation of curves by linear segments. Math. Comp. 15, 1961, 

pp. 40–47. 

S5. Smith B.A., McClendon R.W., Hoogenboom G.: Improving air temperature 

prediction with artificial neural networks. International Journal of Computational 

Intelligence, 3(3), 2006, pp. 179–186.  

S6. Sabatier P.C.: Inverse problems – An Introduction. Inverse problems, Vol. 1, 

No. 1, Feb. 1985. 

S7. Sasai T. Nakamura M., Yamazaki E., Matsushita A., Okamoto S., Horikoshi K., 

Kisaka Y.: Wiener-Hammerstein model and its learning for nonlinear digital pre-

distortion of optical transmitters. Optics Express, Vol. 28, Issue 21, 2020,  

pp. 30952–30963.  

T1. Terrell D.L.: Op Amps, Design, Application, and Troubleshooting. Second 

Edition. Elsevier Inc., 1996. 

V1. Vopalensky M., Platil A.: Temperature Drift of Offset and Sensitivity in Full- 

-Bridge Magnetoresistive Sensors. EEE Transactions on Magnetics, Vol. 49, 

Issue 1, 2012. 

W1. Wiliams C.M.: An efficient algorithm for the piecewise linear approximation of 

planar curves. Comp. Graphics Image Processing, 8, 1978, pp. 286–293. 

W2. Wu D., Huang S., Zhao W., Xin J.: Infrared thermometer sensor dynamic error 

compensation using Hammerstein neural network. Sensors and Actuators A, 

Physical, Vol. 149, Issue 1, 15 January 2009, pp. 152–158.  

W3. Wiliamowski B., Yu H.: Improved Computation for Levenberg–Marquardt 

Training. IEEE Transactions on Neural Networks and Learning Systems, 21 (6), 

2010, pp. 930–937. 

Z1. Zieliński M., Kowalski M., Frankowski R., Chaberski D., Grzelak S., 

Wydźgowski L.: Accumulated Jitter Measurement of Standard Clock 

Oscillators. Metrology and Measurement Systems. Vol. XVI (2009), No. 2,  

pp. 259–266. 

Z2. Żuchowski A.: Technika pomiarów dynamicznych. Wyd. Pol. Szczecińskiej, 

Szczecin 1974. 

Y1. Guide to the Expression of Uncertainty in Measurement. ISO, 1992, 1995. 

Y2. International vocabulary of metrology – Basic and general concepts and 

associated terms. JCGM 200:2012\. 

Y3. Guide to Expression of Uncertainty in Measurement. Supplement 1. Numerical 

Methods for the Propagation of Distributions. BIPM 2004. 

https://opg.optica.org/oe/issue.cfm?volume=28&issue=21
https://ieeexplore.ieee.org/author/38201912500
https://ieeexplore.ieee.org/author/37327770200
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=20
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6392325&punumber=20
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6392325&punumber=20
https://www.eng.auburn.edu/~wilambm/pap/2010/Improved%20Computation%20for%20LM%20Training.pdf
https://www.eng.auburn.edu/~wilambm/pap/2010/Improved%20Computation%20for%20LM%20Training.pdf


240 

Y4. EN IEC 60751:2022. “Industrial platinum resistance thermometers and platinum 

temperature sensors”. https://standards.iteh.ai/catalog/standards/clc/61d80f27-

74a7-4165-97ad-67edd99b8f7d/en-iec-60751-2022 

Y5. ASTM E1137/E1137M-08(2020). “Standard Specification for Industrial 

Platinum Resistance Thermometers”. 

https://webstore.ansi.org/standards/astm/astme1137e1137m082020j 

Y6. ADuC 386. https://www.analog.com/media/en/technical-documentation/data-

sheets/ADUC836.pdf 

https://standards.iteh.ai/catalog/standards/clc/61d80f27-74a7-4165-97ad-67edd99b8f7d/en-iec-60751-2022
https://standards.iteh.ai/catalog/standards/clc/61d80f27-74a7-4165-97ad-67edd99b8f7d/en-iec-60751-2022
https://webstore.ansi.org/standards/astm/astme1137e1137m082020


 

 

ERROR ANALYSIS OF ANALYTICAL AND NEURAL REAL-TIME 

RECONSTRUCTION OF ANALOG SIGNALS 

Summary 

This monography is devoted to signal reconstruction by a sampling instrument, which 

can operate autonomously or be an element of a measurement and control system.  

The reconstruction consists in calculation of the input signal sample values based on 

quantized signal samples at the output of the analog part of the device, assuming that 

this signal is burdened by dynamic errors and errors caused by the nonlinearity of 

analog processing. The book considers the reconstruction algorithms that can be 

implemented in real time by microcontrollers, which means that all calculations are 

performed in the period between successive sampling instants. Two types of  

the algorithms are analyzed: analytical, whose parameters are specyfied as 

programming constants, and neural, implemented using artificial neural networks and 

learned during the identification of analog processing parameters. The reconstructed 

samples must have the required accuracy, which in the book is expressed 

quantitatively by the uncertainty interval of the sample estimate of the input signal. 

The main goal of the book is to analyze errors in the reconstruction process, on  

the basis of which a model of error propagation in the sampling instrument is created. 

The uncertainty interval is determined based on the distribution of  the instrument 

output error using the proposed mathematical apparatus adapted to the algorithmic 

processing of measurement data. 



 

ANALIZA BŁĘDÓW ANALITYCZNEGO I NEURONOWEGO 

ODTWARZANIA SYGNAŁÓW ANALOGOWYCH W CZASIE 

RZECZYWISTYM 

Streszczenie 

Monografia ta poświęcona jest odtwarzaniu sygnału przez przyrząd próbkujący, który 

może działać autonomicznie lub być elementem systemu pomiarowo-sterującego. 

Odtwarzanie to polega na obliczaniu wartości próbek sygnału wejściowego na 

podstawie skwantowanych próbek sygnału na wyjściu części analogowej przyrządu, 

przy założeniu że sygnał ten obarczony jest błędami dynamicznymi i błędami 

powodowanymi nieliniowością przetwarzania analogowego. W monografii rozpatry-

wane są takiego rodzaju algorytmy, które mogą być realizowane w czasie rzeczy-

wistym przez mikrokontrolery, co oznacza, że wszystkie obliczenia wykonywane są  

w okresie między kolejnymi chwilami próbkowania. Analizowane są właściwości 

dwojakiego rodzaju algorytmów: analitycznych, których parametry określane są jako 

stałe programistyczne, oraz neuronowych, realizowanych przy użyciu sztucznych sieci 

neuronowych i uczonych w trakcie identyfikacji parametrów przetwarzania analogo-

wego. Odtwarzane próbki muszą cechować się wymaganą dokładnością, która  

w monografii wyrażana jest ilościowo za pomocą przedziału niepewności estymaty 

próbki sygnału wejściowego. Głównym celem pracy jest analiza błędów procesu 

odtwarzania, na podstawie której tworzony jest model propagacji błędu w przyrządzie 

próbkującym. Wyznaczanie przedziału niepewności realizowane jest na podstawie 

rozkładu błędu wyjściowego przyrządu przy użyciu zaproponowanego aparatu 

matematycznego dostosowanego do algorytmicznego przetwarzania danych 

pomiarowych.
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