
STUDIA INFORMATICA 2014
Volume 34 Number 4 (118)

Tomasz JASTRZĄB, Zbigniew J. CZECH
Silesian University of Technology, Institute of Informatics

A PARALLEL ALGORITHM FOR THE DECOMPOSITION OF
FINITE LANGUAGES

Summary. A finite language is said to be decomposable, if it can be written as
a catenation of two non-empty languages. In this paper a parallel algorithm for find-
ing the decomposition of finite languages is proposed. The effectiveness of the algo-
rithm is assessed based on the experimental results provided for selected languages.

Keywords: parallel algorithms, finite languages, finite languages decomposition

RÓWNOLEGŁY ALGORYTM DEKOMPOZYCJI JĘZYKÓW
SKOŃCZONYCH

Streszczenie. Język skończony jest dekomponowalny, jeżeli może zostać zapisa-
ny jako złożenie dwóch niepustych języków. W niniejszym artykule zaproponowany
został równoległy algorytm dekompozycji języków skończonych. Efektywność przed-
stawionego algorytmu została oceniona na podstawie eksperymentów przeprowadzo-
nych dla wybranych języków.

Słowa kluczowe: algorytmy równoległe, języki skończone, dekompozycja języ-
ków skończonych

1. Introduction

A language is said to be finite, if it consists of a finite set of words over a certain alpha-
bet. Since every finite language is regular [9] it may be represented by a finite automaton
[11]. Consequently, they may be applied in such areas as lexical analysis in compilers, pat-
tern matching, spell-checking [1, 11], computational biology [7]. Finite languages and their
decompositions are also essential to practical applications in the field of grammatical infer-
ence [3, 8].

6 T. Jastrząb, Z. J. Czech

The problem of determining whether a finite language possesses a decomposition is
proven to be intractable [4], yet decidable [9]. However, the NP-hardness of this problem has
been left as an open issue [4]. Due to lack of the universal solution for finding a decomposi-
tion of a language of arbitrary length, the only method left to be used is the exhaustive search
of all possible solutions [4]. It was shown in [10] that other approaches may be applied, al-
though they usually fail to provide satisfactory results in terms of correctness. For each finite
decomposable language it is possible to obtain a decomposition into non-trivial languages,
although this decomposition may not be unique. Furthermore, as it was shown in [4, 6] the
decomposition is usually noncommutative, which causes certain difficulties [5]. An inde-
composable language is called prime, by analogy to prime numbers in the number theory.

The aim of this paper is to propose a parallel algorithm for the decomposition of finite
languages. The algorithm searches for all possible decompositions, not only allowing to state
whether a given language is decomposable. It also returns the information about actual de-
composition set(s) and factor languages building the input language. Performance of the algo-
rithm is to be compared with existing sequential algorithm based on exhaustive search. In
particular, its effectiveness in finding all possible decompositions of a given language is to be
assessed for selected languages, which may be considered hard to decompose. In this context
a language is considered hard if the space of possible solutions cannot be searched in
a reasonable time.

The paper is organized into six sections. In section 2 the basic notions and terms are in-
troduced. Section 3 provides an overview of existing algorithms which constitute the basis
for the proposed algorithm, which is later presented in section 4. In section 5 some remarks
related to the analyzed languages’ structure are presented and the experimental results of de-
compositions searching are described. Section 6 contains the summary of the paper.

2. Basic terms and notions

An alphabet, denoted by Σ , is understood as a nonempty set of symbols, building words

 of a given language w L . The length of a word is denoted by w w . It equals to the number

of symbols from the alphabet appearing in the word . The cardinality of language w L , i.e.

the number of words in L , is denoted by L . The empty word is denoted by λ . The length of

the empty word is equal 0. A language is called trivial or singleton, if it consists solely of the
empty word λ . For each word a prefix (respectively a suffix) is defined as a word

such that , (resp.

w *Σ∈v

vuw = *Σ∈u uvw = ,). A prefix (resp. suffix) is called proper, if *Σ∈u

λ≠v holds. The symbol denotes all the words that may be generated over an alphabet *Σ Σ .

A parallel algorithm for the decomposition of finite languages 7

Given two words a result of a catenation operation performed on them is de-

fined as a new word , produced by first copying word u and then following it

by a copy of word . A catenation of two sets of words U is defined as a set

. Given word u and set one may define left (resp. right)

quotient of W as (resp.).

*, Σ∈vu
*, Σ∈= wuvw

v *, Σ⊂V

}|{ VvUuuvUV ∈∧∈= *Σ⊂W

}|{1 WuwwWu ∈=− }|{1 WwuwWu ∈=−

A finite language may be represented in the form of an automaton having the following
characteristics:
• It is minimal, what means that for all states qpQqp ≠∈ ,, , the sets of paths, beginning

at state or state and reaching final states, are not equal [7]. p q

• It is acyclic, which follows from the finite nature of the language accepted by the automa-
ton.

• It is deterministic, meaning that for all states qpQqp ≠∈ ,, , different words are spelled

out on the paths from the starting state to given state or state . It also implies the

existence of only single starting state [7].

s p q

s
• It is finite, what means that it contains a finite set of states.

More formally, a minimal acyclic deterministic finite automaton (MADFA) is defined as
a quintuple ()FsQ ,,,, δΣ , where:

• is the finite set of states of the automaton, Q

• is an alphabet, Σ

• QQ →Σ×:δ is a transition function, which does not necessarily have to be total [11],

i.e. it does not have to be defined for all possible elements of the Cartesian product of
, Σ×Q

• is the starting state, and Qs∈

• is the set of final states. QF ⊆

Given a language L , the problem of language decomposition may be formulated as the
problem of finding the nontrivial languages and such that: 1L 2L

21LLL = (1)
As stated in [2, 10] the problem may be also formulated as the problem of finding a non-

empty subset of states of the MADFA accepting language QP ⊆ L , which satisfies the fol-

lowing condition:
PP RRL 21= (2)

where , are defined as follows: PR1
PR2

8 T. Jastrząb, Z. J. Czech

←

∈= pR Pp
P ∪1 (3)

→

∈= pR Pp
P ∩2 (4)

where is the left language for the state
←

p p , and is the right language for the state
→

p p . The

left language for state p represents the set of words spelled out on the paths from the starting

state to state . Respectively the right language for state is the set of words spelled out

on the paths from state to final states. It was proven in [6] that for languages , from

(1) and (2) it holds , .

s p p

p iL P
iR

P
ii RL ⊆ 2,1=i

3. Related works

3.1. Sequential algorithm

In [9] a sequential algorithm for determining the decomposition of a given language
based on the exhaustive search with pruning was proposed. The modified version of this al-
gorithm, searching for all available decompositions, is shown in fig. 1. It uses a previously
built minimal acyclic deterministic finite automaton, representing the language L being de-
composed, by making use of the algorithm presented in [8]. A significant state is a state

satisfying one of the following conditions [9]:

q

• a number of outgoing transitions from state q is at least equal to 2,

• state q is final with at least one outgoing transition.

The variable represents the set of pairs (, st(w)), where word and st() is
the set of significant states for . Initially, inSt contains all words and by means of respec-
tive st() it covers altogether all significant states in MADFA. Variable decSt represents
the current decomposition set. This set is initially empty and then is successively updated in
line 17 during the recursive call of function decompose. The pruning of search space is per-
formed in line 16, based on a conclusion following from formula (4). Namely, for the decom-
position set and language

inSt w Lw∈ w
w

w

decSt L , each word can be written as a catenation of two sub-
words generated by splitting the input word in the position of state

w
decStq∈ . Thus it should

be possible to generate the suffix of in state by means of at least one state from .

Consequently all the states in inSt which are not able to produce such a suffix can be re-
moved from the search space. The verification whether a given set of states is the decomposi-
tion set is performed in lines 2-7, after the number of additional states falls at or below cut-
off level K, which is the parameter of the algorithm.

w q decSt

A parallel algorithm for the decomposition of finite languages 9

function decompose(inSt, decSt)
1: if |st(inSt) – decSt| <= K then // a cut-off point reached
2: for each subset D in (st(inSt) – decSt) do // power set generated
3: generate P = sum(decSt, D) // decSt complemented with D
4: if P is decomposition set then // formulae (2), (3), (4) used
5: print P, L1, L2
6: end if
7: end for
8: else
9: sort inSt according t inSt i nding order o |st([])| in asce
10: if inSt[0])| = 0 then // inSt empty |st(
11: return
12: else
13: remove inSt[0] from inSt // word and its states removed
14: for each state q in st(inSt[0]) do
15: find suffix s of w(inSt[0]) // suffix at state q
 // states not generating s removed
16: remove redundant states based on s
17: decompose(inSt, sum(decSt, q)) // decSt extended with q
18: end for
19: end if
2

0: end if

Fig. 1. Sequential algorithm for finite language decomposition
Rys. 1. Sekwencyjny algorytm dekompozycji języka skończonego

3.2. Parallel algorithm

As it was pointed out in [2], a certain amount of time is spent on execution below the cut-
off level defined by the value of parameter K (lines 2-7 in fig. 1). Since the generation of the
power set of additional states (line 2) and verification whether a current set P constitutes the
decomposition set (line 4) can be performed independently, this part of the algorithm could
be parallelized, as it was done in [2]. The approach taken in [2] involved the master-workers
scheme of work distribution with data buffering in the master in order to reduce the amount
of communication between master and worker processes. The pseudo-code of this algorithm
is shown in fig. 2 and 3 for the master and worker processes respectively. Lines 9-18 in fig. 2
contain the operations presented also in lines 9-19 in fig. 1. Instead of checking the decompo-
sition set in the master process buffering is introduced in lines 2-3. The complete buffer is
sent to one of the workers according to round robin communication scheme (lines
4-7). The variable buffer_size is adjusted so as to achieve a high communication perform-
ance. The worker processes presented in fig. 3 receive potential decomposition sets and per-
form verification depicted in fig. 1 in lines 3-6.

It was stated in [2] that the applied approach was not satisfactory in terms of speedup.
One of the potential drawbacks of the approach was unbalanced loading of worker processes.
As the tests have shown the communication between master and workers could also be
a source of degradation of performance. Both of these issues were addressed in the improved
algorithm proposed in this paper, as described in the next section.

function decomposeM(inSt, decSt)

10 T. Jastrząb, Z. J. Czech

1: if |st(inSt) – decSt| <= K then // a cut-off point reached
2: put pair (st(inSt), decSt) into buffer
3: buffered_count = buffered_count // pairs’ counter updated + 1
4: if buffered_count = buffer_size then // a sending point reached
5: send buffer to next process in round robin fashion
6: buffered_count = 0 // counter reset
7: end if
8: else
9: sort inSt according to |st(inSt[i])| in ascending order
10: if |st (inSt[0])| = 0 then // inSt empty
11: return
12: else
13: remove inSt[0] from inSt // word and its states removed
14: for each state q in st(inSt[0]) do
15: find suffix s of w(inSt[0]) // suffix at state q
 // states not generating s removed
16: remove redundant states basing on s
17: decomposeM(inSt, sum(decSt, q)) // decSt extended with q
18: end for
19: if buffered_count != 0 then // some pairs not sent yet
20: send remaining pairs
21: end if
22: send finish signal // master finished
23: end if
24: end if

Fig. 2. Master process used in parallel algorithm
Rys. 2. Proces zarządcy wykorzystywany w algorytmie równoległym

function decomposeW()

1: while true do
2: receive buffer from master // pairs (st(inSt), decSt) or finish
3: if buffer = finish signal then // finish signal received
4: break // worker finished
5: else

for each pair Pr in buffer do 6:
 // power set generated for every pair (st(inSt), decSt)
7: for each subset D in (Pr[i].inSt – Pr[i].decSt) do
8: generate P = sum(Pr[i].decSt D) // decSt complemented with D ,
9: if P is decomposition set then // formulae (2), (3), (4) used
10: print P, L1, L2
11: end if
12: end for
13: end for
14: end if
15: end while

Fig. 3. Worker process used in parallel algorithm
Rys. 3. Proces wykonawcy wykorzystywany w algorytmie równoległym

4. An improved parallel algorithm

Following the idea of parallelization of computation below the cut-off level suggested in
[2], an improved algorithm is proposed in this paper aiming at achieving better speedup val-
ues. The main assumptions of the algorithm presented in fig. 4 are as follows:
• removal of communication overhead introduced by the master-workers scheme,

A parallel algorithm for the decomposition of finite languages 11

• balancing the load of each process by equally distributing the computations regarding the
verification steps among processes.
The first aim was achieved by allowing all the processes to execute the code of function

decomposeP in parallel, so that there is no need for communication between processes. In
this scheme each process executes the same code, and consequently it has access to the same
data, as if executing in a shared memory model, although the computations are distributed.
The second aim was achieved below the cut-off level where each potential decomposition set
is produced and checked by a separate process, depending on process number (lines 3-8).
This way one takes advantage of the search independence, assuring the correctness of the
solution at the same time (by verifying all necessary combinations).

function decomposeP(inSt, decSt)
1: if inSt – decSt| <= K then // a cut-off point reached |st()
2: for each subset D in (st(inSt) – decSt) do // power set generated
 // sum of decSt and current D verified only in process

//
3: if (combination_no++ % proc_cnt) = proc_no then

with rank matching combination number

4: generate P = sum(decSt, D) // decSt complemented with D
5: if P is decomposition set then // formulae (2), (3), (4) used
6: print P, L1, L2
7: end if
8: end if
9: end for
10: else
11: sort inSt according t inSt i nding order o |st([])| in asce
12: if |st(inSt[0])| = 0 then // inSt empty
13: return
14: else
15: remove inSt[0] from inSt // word and its states removed
16: for each state q in st(inSt[0]) do
17: find suffix s of w(inSt[0]) // suffix at state q
 // states not generating s removed
18: remove redundant states basing on s
19: decomposeP(inSt, sum(decSt, q)) // decSt extended with q
20: end for
21: end if
22: end if

Fig. 4. Improved parallel algorithm for finite language decomposition
Rys. 4. Ulepszony równoległy algorytm dekompozycji języka skończonego

5. The experiments

5.1. Sample languages

The four decomposable languages were selected for the purpose of algorithms perform-
ance assessment. They differed from each other in the number of words ranging from 800 up

to 6583 (see tab. 1, column L). All languages were generated over the alphabet consisting of

at most four different symbols i.e. small letters a, b, c and d (alphabet size is shown in col-

umn Σ). The appropriate minimal acyclic deterministic finite automata were constructed for

12 T. Jastrząb, Z. J. Czech

each language (the minimal number of states are shown in the column labeled |states|).
Among the states of MADFA, the final and significant states were distinguished, and their
counts are presented in columns |f_states|, |s_states|, respectively.

Table 1
Sample languages characteristics
 MADFA

Name L Σ |states| |s_states| |f_states|

we-800 800 2 18 17 14
we-5317 5317 4 79 73 37
we-6034 6034 4 74 67 32
we-6583 6583 4 82 74 36

5.2. Experimental results

The algorithms were implemented in C language with the use of Message Passing Inter-
face (MPI). The interpreter run on Intel Xeon Quad Core 2,33 GHz processors, with the
nodes interconnected with Infiniband 20 Gb/s network. The operating system was Debian
GNU/Linux 4.0.

According to the best knowledge of the authors there are no benchmarks for the problem
of finite languages decomposition. The computation times for sequential and parallel algo-
rithms described in sections 3.1 and 4 are given in tab. 2. The column Tdec shows the decom-
position procedure execution time (without the time of MADFA construction), and TbelowK the
execution time below the cut-off level. The value of cut-off level parameter
(K in fig. 1 and 4) was 10. The number of nodes executing the decomposition algorithm is
reported in column n_count. The values presented in tab. 2 are the average values out of three
measurements performed for each language and node count. All times listed in tab. 2 are
given in seconds and were measured using the clock() function.

Based on the experimental results presented in tab. 2 one may observe that the perform-
ance of the improved algorithm varies depending on the language. The speedup values are
highly different among the languages. The best speedups are summarized in tab. 3 in terms of
overall algorithm execution times, with node counts for these situations provided in parenthe-
ses. Speedup values were computed according to the formula:

)(
)1()(

nT
TnS = (5)

where denotes the speedup obtained for nodes, is the sequential execution time

and is the parallel execution time for nodes.

)(nS n)1(T

)(nT n

Table 2
Execution times for finite languages decomposition

A parallel algorithm for the decomposition of finite languages 13

 we-800 we-5317 we-6034 we-6583
n_count Tdec TbelowK Tdec TbelowK Tdec TbelowK Tdec TbelowK

1 117,25 117,12 921,65 211,40 142,12 135,23 1006,21 157,42
2 60,01 59,89 816,72 106,47 74,75 67,89 887,54 79,27
4 30,76 30,61 766,50 54,15 40,85 34,01 848,03 39,78
6 20,94 20,80 748,78 36,55 30,00 23,07 837,51 26,97
8 16,03 15,90 740,48 27,76 24,10 17,24 828,75 20,18
10 13,09 12,96 734,88 22,59 20,93 14,07 824,66 16,35
12 11,11 10,98 736,56 19,01 18,70 11,82 822,21 13,89
14 9,79 9,65 729,34 16,64 17,05 10,15 820,43 12,11
16 8,72 8,60 726,54 14,55 15,66 8,78 819,00 10,41
18 7,86 7,73 725,37 13,30 14,92 8,04 818,35 9,59
20 7,22 7,10 724,60 12,07 14,21 7,30 817,26 8,71
22 6,67 6,53 723,39 11,18 13,61 6,75 816,51 7,99

Table 3
Best speedup values

we-800 we-5317 we-6034 we-6583
17,87

(22) 1,29 (22)
10,70

(22) 1,24 (22)

The best speedup values shown in tab. 3 were obtained for 22 nodes regardless of the lan-
guage, but the actual results are quite language-dependent. It follows that in case of lan-
guages for which the execution time below cut-off level was close to the total execution time,
the speedup values are relatively good. However, for the other languages they are certainly
not satisfactory. The value of parameter K affects to a large degree the results obtained by the
algorithm. Depending on the size of the part devoted to the decomposition sets verification
(which is parallelized) one obtains better or worse performance.

The load distribution in the proposed algorithm is quite balanced, what results in almost
linear speedups in terms of execution times below the cut-off level. However, some differ-
ences occur, and the potential reason for this may be that with more nodes the distribution of
load among processes becomes unequal. It may happen that some of the processes have lar-
ger decomposition sets assigned every time. Such conclusions were drawn as the result of
detailed analysis of processing times.

6. Final remarks

The paper introduced an improved parallel algorithm for the finite languages decomposi-
tion. The main goal was to improve the performance of finding all possible decompositions
of a given language. The algorithm is based on the exhaustive search with pruning. The

14 T. Jastrząb, Z. J. Czech

communication between processes in the algorithm is minimized by simultaneously execut-
ing sequential searching and selecting solutions to be verified in given process. The experi-
mental results show that the algorithm should still be improved, so as to provide larger
speedup values. The potential improvement paths may involve further balancing of load dis-
tribution combined with optimal cut-off level choice. It may be crucial to find the relation
between the value of parameter K and the distribution of potential decompositions sets
among processes. It may be also vital to base the load distribution on the size of processed
data instead of assuming every-nth decomposition assignment scenario. Another direction of
improvement could be the parallelization of the sequential part of the solution space pruning.

Acknowledgements

Calculations were carried out using the computer cluster Ziemowit
(http://ziemowit.hpc.polsl.pl) funded by the Silesian BIO-FARMA project No.
POIG.02.01.00-00-166/08 in the Computational Biology and Bioinformatics Laboratory of
the Biotechnology Centre in the Silesian University of Technology and at the Academic
Computer Center in Gdańsk.

BIBLIOGRAPHY

1. Ciura M., and Deorowicz S.: Experimental Study of Finite Automata Storing Static
Lexicons. [in:] Technical Report, Silesian Technical University, Gliwice 1999.

2. Czech Z. J.: Równoległy algorytm dekompozycji języków skończonych. [in:] Waku-
licz-Deja A. (ed.): Systemy wspomagania decyzji. Instytut Informatyki Uniwersytetu
Śląskiego, Sosnowiec 2010, p. 289÷295.

3. de la Higuera C.: A bibliographical study of grammatical inference. Pattern Recogni-
tion, vol. 38 is. 9, 2005, p. 1332÷1348.

4. Mateescu A., Salomaa A., and Yu S.: On the Decomposition of Finite Languages. [in:]
Technical Report, Turku Centre for Computer Science, 1998.

5. Salomaa A., Salomaa K., and Yu S.: Length Codes, Products of Languages and Primal-
ity. [in:] Martín-Vide C., Otto F., and Fernau H. (eds.): Language and Automata The-
ory and Applications. LNCS 5196, Springer, Berlin 2008, p. 476÷486.

6. Salomaa A., Yu S.: On the Decomposition of Finite Languages. [in:] Rozenberg G., and
Thomas W. (eds.): Developments in Language Theory: Foundations, Applications and
Perspectives, World Scientific Publishing, Singapore 2000, p. 22÷31.

A parallel algorithm for the decomposition of finite languages 15

7. Watson B.W.: A Fast and Simple Algorithm for Constructing Minimal Acyclic Deter-
ministic Finite Automata. Journal of Universal Computer Science, vol. 8 no. 2, 2002, p.
363÷367.

8. Wieczorek W.: A Local Search Algorithm for Grammatical Inference. [in:] Sempere
J.M., and García P. (eds.): Grammatical Inference: Theoretical Results and Applica-
tions. LNCS 6339, Springer, Berlin 2010, p. 217÷229.

9. Wieczorek W.: An algorithm for the decomposition of finite languages. Logic Journal
of the IGPL, vol. 18 is. 3, 2009, p. 355÷366.

10. Wieczorek W.: Metaheuristics for the Decomposition of Finite Languages. [in:] Kłopo-
tek M.A., Przepiórkowski A., Wierzchoń S.T., and Trojanowski K. (eds.): Recent Ad-
vances in Intelligent Information Systems, Akademicka Oficyna Wydawnicza EXIT,
2009, p. 495÷505.

11. Yu S.: Regular languages. [in:] Rozenberg G., and Salomaa A. (eds.): Handbook of
Formal Languages: Volume 1., Word, Language, Grammar. Springer, 1997.

Omówienie

Problem dekompozycji języków skończonych jest rozstrzygalny, jednak jego rozwiązanie
uznawane jest za trudne. Problem polega na wyznaczeniu pary niepustych języków skończo-
nych L1, L2, których złożenie daje w rezultacie język początkowy. Dla danego języka może
istnieć zero lub więcej dekompozycji, przy czym języki niemające jakiejkolwiek dekompo-
zycji (poza dekompozycją trywialną) zwane są pierwszymi. Z uwagi na brak uniwersalnego
algorytmu, pozwalającego na wyznaczenie zbioru dekompozycji dla danego języka, wyko-
rzystano algorytm przeszukiwania wyczerpującego z obcinaniem przestrzeni rozwiązań. W
artykule zaprezentowano istniejące algorytmy zarówno sekwencyjne (rys. 1), jak i równole-
głe (rys. 2 i 3), rozwiązywania problemu dekompozycji języków skończonych. Stanowiły one
podstawę do opracowania ulepszonego algorytmu równoległego (rys. 4). Zaproponowano
algorytm minimalizujący liczbę transmisji danych między procesami oraz dokonano oceny
efektywności opracowanego algorytmu na podstawie pomiarów czasu wykonania dla imple-
mentacji korzystającej z biblioteki MPI. Uzyskane rezultaty (tabela 2) oraz wyznaczone przy-
spieszenia (tabela 3) dla wybranych języków skończonych umożliwiły ocenę algorytmu jako
nie w pełni zadowalającego, w kontekście wykorzystanej liczby procesów. Zaproponowano
także dalsze możliwości poprawy działania algorytmu.

16 T. Jastrząb, Z. J. Czech

Addresses

Tomasz JASTRZĄB: Politechnika Śląska, Instytut Informatyki, ul. Akademicka 16
44-100 Gliwice, Polska, Tomasz.Jastrzab@polsl.pl,
Zbigniew J. CZECH: Politechnika Śląska, Instytut Informatyki, ul. Akademicka 16
44-100 Gliwice, Polska, Zbigniew.Czech@polsl.pl.

mailto:Tomasz.Jastrzab@polsl.pl
mailto:Zbigniew.Czech@polsl.pl

	1. Introduction
	2. Basic terms and notions
	3. Related works
	3.1. Sequential algorithm
	3.2. Parallel algorithm

	4. An improved parallel algorithm
	5. The experiments
	5.1. Sample languages
	5.2. Experimental results

	6. Final remarks
	Acknowledgements

