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A PARALLEL ALGORITHM FOR THE DECOMPOSITION OF 
FINITE LANGUAGES 

Summary. A finite language is said to be decomposable, if it can be written as  
a catenation of two non-empty languages. In this paper a parallel algorithm for find-
ing the decomposition of finite languages is proposed. The effectiveness of the algo-
rithm is assessed based on the experimental results provided for selected languages.  
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RÓWNOLEGŁY ALGORYTM DEKOMPOZYCJI JĘZYKÓW 
SKOŃCZONYCH 

Streszczenie. Język skończony jest dekomponowalny, jeżeli może zostać zapisa-
ny jako złożenie dwóch niepustych języków. W niniejszym artykule zaproponowany 
został równoległy algorytm dekompozycji języków skończonych. Efektywność przed-
stawionego algorytmu została oceniona na podstawie eksperymentów przeprowadzo-
nych dla wybranych języków.  

Słowa kluczowe: algorytmy równoległe, języki skończone, dekompozycja języ-
ków skończonych  

1. Introduction  

A language is said to be finite, if it consists of a finite set of words over a certain alpha-
bet. Since every finite language is regular [9] it may be represented by a finite automaton 
[11]. Consequently, they may be applied in such areas as lexical analysis in compilers, pat-
tern matching, spell-checking [1, 11], computational biology [7]. Finite languages and their 
decompositions are also essential to practical applications in the field of grammatical infer-
ence [3, 8]. 
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The problem of determining whether a finite language possesses a decomposition is 
proven to be intractable [4], yet decidable [9]. However, the NP-hardness of this problem has 
been left as an open issue [4]. Due to lack of the universal solution for finding a decomposi-
tion of a language of arbitrary length, the only method left to be used is the exhaustive search 
of all possible solutions [4]. It was shown in [10] that other approaches may be applied, al-
though they usually fail to provide satisfactory results in terms of correctness. For each finite 
decomposable language it is possible to obtain a decomposition into non-trivial languages, 
although this decomposition may not be unique. Furthermore, as it was shown in [4, 6] the 
decomposition is usually noncommutative, which causes certain difficulties [5]. An inde-
composable language is called prime, by analogy to prime numbers in the number theory.  

The aim of this paper is to propose a parallel algorithm for the decomposition of finite 
languages. The algorithm searches for all possible decompositions, not only allowing to state 
whether a given language is decomposable. It also returns the information about actual de-
composition set(s) and factor languages building the input language. Performance of the algo-
rithm is to be compared with existing sequential algorithm based on exhaustive search. In 
particular, its effectiveness in finding all possible decompositions of a given language is to be 
assessed for selected languages, which may be considered hard to decompose. In this context 
a language is considered hard if the space of possible solutions cannot be searched in 
a reasonable time. 

The paper is organized into six sections. In section 2 the basic notions and terms are in-
troduced. Section 3 provides an overview of existing algorithms which constitute the basis 
for the proposed algorithm, which is later presented in section 4. In section 5 some remarks 
related to the analyzed languages’ structure are presented and the experimental results of de-
compositions searching are described. Section 6 contains the summary of the paper. 

2. Basic terms and notions  

An alphabet, denoted by Σ , is understood as a nonempty set of symbols, building words 

 of a given language w L . The length of a word  is denoted by w w . It equals to the number 

of symbols from the alphabet appearing in the word . The cardinality of language w L , i.e. 

the number of words in L , is denoted by L . The empty word is denoted by λ . The length of 

the empty word is equal 0. A language is called trivial or singleton, if it consists solely of the 
empty word λ . For each word  a prefix (respectively a suffix) is defined as a word  

such that ,  (resp. 

w *Σ∈v

vuw = *Σ∈u uvw = , ). A prefix (resp. suffix) is called proper, if *Σ∈u

λ≠v  holds. The symbol denotes all the words that may be generated over an alphabet *Σ Σ . 
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Given two words  a result of a catenation operation performed on them is de-

fined as a new word , produced by first copying word u and then following it 

by a copy of word . A catenation of two sets of words U is defined as a set 

. Given word u  and set  one may define left (resp. right) 

quotient of W  as  (resp. ). 

*, Σ∈vu
*, Σ∈= wuvw

v *, Σ⊂V

}|{ VvUuuvUV ∈∧∈= *Σ⊂W

}|{1 WuwwWu ∈=− }|{1 WwuwWu ∈=−

A finite language may be represented in the form of an automaton having the following 
characteristics: 
• It is minimal, what means that for all states qpQqp ≠∈ ,, , the sets of paths, beginning 

at state or state and reaching final states, are not equal [7]. p q

• It is acyclic, which follows from the finite nature of the language accepted by the automa-
ton. 

• It is deterministic, meaning that for all states qpQqp ≠∈ ,, , different words are spelled 

out on the paths from the starting state  to given state  or state . It also implies the 

existence of only single starting state  [7]. 

s p q

s
• It is finite, what means that it contains a finite set of states. 

More formally, a minimal acyclic deterministic finite automaton (MADFA) is defined as 
a quintuple ( )FsQ ,,,, δΣ , where: 

•  is the finite set of states of the automaton, Q

•  is an alphabet, Σ

• QQ →Σ×:δ  is a transition function, which does not necessarily have to be total [11], 

i.e. it does not have to be defined for all possible elements of the Cartesian product of 
, Σ×Q

•  is the starting state, and Qs∈

•  is the set of final states. QF ⊆

Given a language L , the problem of language decomposition may be formulated as the 
problem of finding the nontrivial languages  and  such that: 1L 2L

21LLL =  (1)  
As stated in [2, 10] the problem may be also formulated as the problem of finding a non-

empty subset of states  of the MADFA accepting language QP ⊆ L , which satisfies the fol-

lowing condition: 
PP RRL 21=  (2) 

where , are defined as follows: PR1
PR2
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←

∈= pR Pp
P ∪1  (3) 

→

∈= pR Pp
P ∩2  (4) 

where is the left language for the state 
←

p p , and  is the right language for the state 
→

p p . The 

left language for state p represents the set of words spelled out on the paths from the starting 

state  to state . Respectively the right language for state is the set of words spelled out 

on the paths from state  to final states. It was proven in [6] that for languages ,  from 

(1) and (2) it holds , . 

s p p

p iL P
iR

P
ii RL ⊆ 2,1=i

3. Related works 

3.1. Sequential algorithm 

In [9] a sequential algorithm for determining the decomposition of a given language 
based on the exhaustive search with pruning was proposed. The modified version of this al-
gorithm, searching for all available decompositions, is shown in fig. 1. It uses a previously 
built minimal acyclic deterministic finite automaton, representing the language L  being de-
composed, by making use of the algorithm presented in [8]. A significant state is a state 

satisfying one of the following conditions [9]: 

q

• a number of outgoing transitions from state q is at least equal to 2, 

• state q  is final with at least one outgoing transition. 

The variable represents the set of pairs ( , st( w )), where word  and st( ) is 
the set of significant states for . Initially, inSt  contains all words and by means of respec-
tive st( ) it covers altogether all significant states in MADFA. Variable decSt  represents 
the current decomposition set. This set is initially empty and then is successively updated in 
line 17 during the recursive call of function decompose. The pruning of search space is per-
formed in line 16, based on a conclusion following from formula (4). Namely, for the decom-
position set and language 

inSt w Lw∈ w
w

w

decSt L , each word  can be written as a catenation of two sub-
words generated by splitting the input word in the position of state 

w
decStq∈ . Thus it should 

be possible to generate the suffix of  in state  by means of at least one state from . 

Consequently all the states in inSt which are not able to produce such a suffix can be re-
moved from the search space. The verification whether a given set of states is the decomposi-
tion set is performed in lines 2-7, after the number of additional states falls at or below cut-
off level K, which is the parameter of the algorithm. 

w q decSt
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function decompose(inSt, decSt) 
1:   if |st(inSt) – decSt| <= K then     // a cut-off point reached 
2:   for each subset D in (st(inSt) – decSt) do // power set generated 
3:    generate P = sum(decSt, D)     // decSt complemented with D  
4:    if P is decomposition set then   // formulae (2), (3), (4) used 
5:     print P, L1, L2 
6:    end if 
7:   end for 
8:  else 
9:   sort inSt according t inSt i nding order o |st( [ ])| in asce
10:   if inSt[0])| = 0 then      // inSt empty |st(
11:    return 
12:   else 
13:    remove inSt[0] from inSt     // word and its states removed 
14:    for each state q in st(inSt[0]) do   
15:     find suffix s of w(inSt[0])   // suffix at state q 
     // states not generating s removed 
16:     remove redundant states based on s  
17:     decompose(inSt, sum(decSt, q))  // decSt extended with q 
18:    end for 
19:   end if 
2
 
0:  end if 

Fig. 1. Sequential algorithm for finite language decomposition 
Rys. 1. Sekwencyjny algorytm dekompozycji języka skończonego 

 

3.2. Parallel algorithm 

As it was pointed out in [2], a certain amount of time is spent on execution below the cut-
off level defined by the value of parameter K (lines 2-7 in fig. 1). Since the generation of the 
power set of additional states (line 2) and verification whether a current set P constitutes the 
decomposition set (line 4) can be performed independently, this part of the algorithm could 
be parallelized, as it was done in [2]. The approach taken in [2] involved the master-workers 
scheme of work distribution with data buffering in the master in order to reduce the amount 
of communication between master and worker processes. The pseudo-code of this algorithm 
is shown in fig. 2 and 3 for the master and worker processes respectively. Lines 9-18 in fig. 2 
contain the operations presented also in lines 9-19 in fig. 1. Instead of checking the decompo-
sition set in the master process buffering is introduced in lines 2-3. The complete buffer is 
sent to one of the workers according to round robin communication scheme (lines  
4-7). The variable buffer_size is adjusted so as to achieve a high communication perform-
ance. The worker processes presented in fig. 3 receive potential decomposition sets and per-
form verification depicted in fig. 1 in lines 3-6. 

It was stated in [2] that the applied approach was not satisfactory in terms of speedup. 
One of the potential drawbacks of the approach was unbalanced loading of worker processes. 
As the tests have shown the communication between master and workers could also be 
a source of degradation of performance. Both of these issues were addressed in the improved 
algorithm proposed in this paper, as described in the next section. 

function decomposeM(inSt, decSt) 
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1:   if |st(inSt) – decSt| <= K then     // a cut-off point reached 
2:   put pair (st(inSt), decSt) into buffer 
3:   buffered_count = buffered_count // pairs’ counter updated + 1   
4:   if buffered_count = buffer_size then   // a sending point reached 
5:    send buffer to next process in round robin fashion 
6:    buffered_count = 0       // counter reset 
7:   end if 
8:  else 
9:   sort inSt according to |st(inSt[i])| in ascending order 
10:   if |st (inSt[0])| = 0 then      // inSt empty 
11:   return  
12:   else 
13:    remove inSt[0] from inSt     // word and its states removed 
14:    for each state q in st(inSt[0]) do 
15:     find suffix s of w(inSt[0])   // suffix at state q 
     // states not generating s removed 
16:     remove redundant states basing on s  
17:     decomposeM(inSt, sum(decSt, q))  // decSt extended with q 
18:    end for 
19:    if buffered_count != 0 then    // some pairs not sent yet 
20:     send remaining pairs 
21:    end if 
22:    send finish signal       // master finished 
23:  end if  
24:  end if 
 

Fig. 2. Master process used in parallel algorithm 
Rys. 2. Proces zarządcy wykorzystywany w algorytmie równoległym 

  
 
function decomposeW() 

1:   while true do 
2:   receive buffer from master    // pairs (st(inSt), decSt) or finish 
3:   if buffer = finish signal then  // finish signal received 
4:   break         // worker finished  
5:   else 

for each pair Pr in buffer do 6:    
     // power set generated for every pair (st(inSt), decSt) 
7:     for each subset D in (Pr[i].inSt – Pr[i].decSt) do  
8:      generate P = sum(Pr[i].decSt D) // decSt complemented with D , 
9:      if P is decomposition set then // formulae (2), (3), (4) used 
10:       print P, L1, L2 
11:     end if  
12:     end for 
13:    end for 
14:   end if 
15:  end while 
 

Fig. 3. Worker process used in parallel algorithm 
Rys. 3. Proces wykonawcy wykorzystywany w algorytmie równoległym 

4. An improved parallel algorithm  

Following the idea of parallelization of computation below the cut-off level suggested in 
[2], an improved algorithm is proposed in this paper aiming at achieving better speedup val-
ues. The main assumptions of the algorithm presented in fig. 4 are as follows: 
• removal of communication overhead introduced by the master-workers scheme, 
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• balancing the load of each process by equally distributing the computations regarding the 
verification steps among processes. 
The first aim was achieved by allowing all the processes to execute the code of function 

decomposeP in parallel, so that there is no need for communication between processes. In 
this scheme each process executes the same code, and consequently it has access to the same 
data, as if executing in a shared memory model, although the computations are distributed. 
The second aim was achieved below the cut-off level where each potential decomposition set 
is produced and checked by a separate process, depending on process number (lines 3-8). 
This way one takes advantage of the search independence, assuring the correctness of the 
solution at the same time (by verifying all necessary combinations). 

function decomposeP(inSt, decSt) 
1:   if inSt  – decSt| <= K then     // a cut-off point reached |st( )
2:   for each subset D in (st(inSt) – decSt) do // power set generated 
    // sum of decSt and current D verified only in process  

// 
3:    if (combination_no++ % proc_cnt) = proc_no then 

with rank matching combination number 

4:     generate P = sum(decSt, D)    // decSt complemented with D 
5:     if P is decomposition set then  // formulae (2), (3), (4) used 
6:      print P, L1, L2 
7:     end if 
8:    end if 
9:  end for  
10:  else 
11:   sort inSt according t inSt i nding order o |st( [ ])| in asce
12:   if |st(inSt[0])| = 0 then      // inSt empty 
13:    return 
14:   else 
15:    remove inSt[0] from inSt     // word and its states removed 
16:    for each state q in st(inSt[0]) do   
17:     find suffix s of w(inSt[0])   // suffix at state q 
     // states not generating s removed 
18:     remove redundant states basing on s  
19:     decomposeP(inSt, sum(decSt, q))  // decSt extended with q 
20:    end for 
21:  end if  
22:  end if 
 

Fig. 4. Improved parallel algorithm for finite language decomposition 
Rys. 4. Ulepszony równoległy algorytm dekompozycji języka skończonego 

5. The experiments 

5.1. Sample languages 

The four decomposable languages were selected for the purpose of algorithms perform-
ance assessment. They differed from each other in the number of words ranging from 800 up 

to 6583 (see tab. 1, column L ). All languages were generated over the alphabet consisting of 

at most four different symbols i.e. small letters a, b, c and d (alphabet size is shown in col-

umn Σ ). The appropriate minimal acyclic deterministic finite automata were constructed for 
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each language (the minimal number of states are shown in the column labeled |states|). 
Among the states of MADFA, the final and significant states were distinguished, and their 
counts are presented in columns |f_states|, |s_states|, respectively.  

Table 1 
Sample languages characteristics 
 MADFA 

Name L  Σ |states| |s_states| |f_states| 

we-800 800 2 18 17 14 
we-5317 5317 4 79 73 37 
we-6034 6034 4 74 67 32 
we-6583 6583 4 82 74 36 

5.2. Experimental results 

The algorithms were implemented in C language with the use of Message Passing Inter-
face (MPI). The interpreter run on Intel Xeon Quad Core 2,33 GHz processors, with the 
nodes interconnected with Infiniband 20 Gb/s network. The operating system was Debian 
GNU/Linux 4.0. 

According to the best knowledge of the authors there are no benchmarks for the problem 
of finite languages decomposition. The computation times for sequential and parallel algo-
rithms described in sections 3.1 and 4 are given in tab. 2. The column Tdec shows the decom-
position procedure execution time (without the time of MADFA construction), and TbelowK the 
execution time below the cut-off level. The value of cut-off level parameter  
(K in fig. 1 and 4) was 10. The number of nodes executing the decomposition algorithm is 
reported in column n_count. The values presented in tab. 2 are the average values out of three 
measurements performed for each language and node count. All times listed in tab. 2 are 
given in seconds and were measured using the clock() function. 

Based on the experimental results presented in tab. 2 one may observe that the perform-
ance of the improved algorithm varies depending on the language. The speedup values are 
highly different among the languages. The best speedups are summarized in tab. 3 in terms of 
overall algorithm execution times, with node counts for these situations provided in parenthe-
ses. Speedup values were computed according to the formula:  

)(
)1()(

nT
TnS =  (5) 

where  denotes the speedup obtained for  nodes, is the sequential execution time 

and  is the parallel execution time for  nodes. 

)(nS n )1(T

)(nT n

Table 2
Execution times for finite languages decomposition 
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 we-800 we-5317 we-6034 we-6583 
n_count Tdec TbelowK Tdec TbelowK Tdec TbelowK Tdec TbelowK

1 117,25 117,12 921,65 211,40 142,12 135,23 1006,21 157,42
2 60,01 59,89 816,72 106,47 74,75 67,89 887,54 79,27
4 30,76 30,61 766,50 54,15 40,85 34,01 848,03 39,78
6 20,94 20,80 748,78 36,55 30,00 23,07 837,51 26,97
8 16,03 15,90 740,48 27,76 24,10 17,24 828,75 20,18
10 13,09 12,96 734,88 22,59 20,93 14,07 824,66 16,35
12 11,11 10,98 736,56 19,01 18,70 11,82 822,21 13,89
14 9,79 9,65 729,34 16,64 17,05 10,15 820,43 12,11
16 8,72 8,60 726,54 14,55 15,66 8,78 819,00 10,41
18 7,86 7,73 725,37 13,30 14,92 8,04 818,35 9,59
20 7,22 7,10 724,60 12,07 14,21 7,30 817,26 8,71
22 6,67 6,53 723,39 11,18 13,61 6,75 816,51 7,99

Table 3
Best speedup values 

we-800 we-5317 we-6034 we-6583 
17,87 

(22) 1,29 (22)
10,70

(22) 1,24 (22)

The best speedup values shown in tab. 3 were obtained for 22 nodes regardless of the lan-
guage, but the actual results are quite language-dependent. It follows that in case of lan-
guages for which the execution time below cut-off level was close to the total execution time, 
the speedup values are relatively good. However, for the other languages they are certainly 
not satisfactory. The value of parameter K affects to a large degree the results obtained by the 
algorithm. Depending on the size of the part devoted to the decomposition sets verification 
(which is parallelized) one obtains better or worse performance. 

The load distribution in the proposed algorithm is quite balanced, what results in almost 
linear speedups in terms of execution times below the cut-off level. However, some differ-
ences occur, and the potential reason for this may be that with more nodes the distribution of 
load among processes becomes unequal. It may happen that some of the processes have lar-
ger decomposition sets assigned every time. Such conclusions were drawn as the result of 
detailed analysis of processing times.  

6. Final remarks  

The paper introduced an improved parallel algorithm for the finite languages decomposi-
tion. The main goal was to improve the performance of finding all possible decompositions 
of a given language. The algorithm is based on the exhaustive search with pruning. The 
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communication between processes in the algorithm is minimized by simultaneously execut-
ing sequential searching and selecting solutions to be verified in given process. The experi-
mental results show that the algorithm should still be improved, so as to provide larger 
speedup values. The potential improvement paths may involve further balancing of load dis-
tribution combined with optimal cut-off level choice. It may be crucial to find the relation 
between the value of parameter K and the distribution of potential decompositions sets 
among processes. It may be also vital to base the load distribution on the size of processed 
data instead of assuming every-nth decomposition assignment scenario. Another direction of 
improvement could be the parallelization of the sequential part of the solution space pruning.  
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Omówienie 

Problem dekompozycji języków skończonych jest rozstrzygalny, jednak jego rozwiązanie 
uznawane jest za trudne. Problem polega na wyznaczeniu pary niepustych języków skończo-
nych L1, L2, których złożenie daje w rezultacie język początkowy. Dla danego języka może 
istnieć zero lub więcej dekompozycji, przy czym języki niemające jakiejkolwiek dekompo-
zycji (poza dekompozycją trywialną) zwane są pierwszymi. Z uwagi na brak uniwersalnego 
algorytmu, pozwalającego na wyznaczenie zbioru dekompozycji dla danego języka, wyko-
rzystano algorytm przeszukiwania wyczerpującego z obcinaniem przestrzeni rozwiązań. W 
artykule zaprezentowano istniejące algorytmy zarówno sekwencyjne (rys. 1), jak i równole-
głe (rys. 2 i 3), rozwiązywania problemu dekompozycji języków skończonych. Stanowiły one 
podstawę do opracowania ulepszonego algorytmu równoległego (rys. 4). Zaproponowano 
algorytm minimalizujący liczbę transmisji danych między procesami oraz dokonano oceny 
efektywności opracowanego algorytmu na podstawie pomiarów czasu wykonania dla imple-
mentacji korzystającej z biblioteki MPI. Uzyskane rezultaty (tabela 2) oraz wyznaczone przy-
spieszenia (tabela 3) dla wybranych języków skończonych umożliwiły ocenę algorytmu jako 
nie w pełni zadowalającego, w kontekście wykorzystanej liczby procesów. Zaproponowano 
także dalsze możliwości poprawy działania algorytmu.  
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