
STUDIA INFORMATICA 2014
Volume 35 Number 4 (118)

Krzysztof A. CYRAN, Dariusz MYSZOR
Silesian University of Technology, Institute of Informatics

HOW MESSAGE PASSING INTERFACE (MPI) ACCELERATES
A COALESCENT-BASED WHOLE GENOME SIMULATOR

Summary.

Computer simulations are one of the pillars of contemporary science.

In the current paper we present next type of improvements introduced into GENOME:
A rapid coalescent-based whole genome simulator. The modifications are based on
parallelization of processes with the use of MPI technology. The influence of intro-
duced modification, has been tested on Ziemowit HPC cluster which is installed in
Silesian Biofarma. Results point out that process of outcomes generation can be re-
duced significantly if proposed modifications are applied.

Keywords: coalescence, MPI, parallelization, whole genome generation

JAK INTERFEJS PRZEKAZYWANIA KOMUNIKATÓW MPI
PRZYSPIESZA SYMULATOR CAŁEGO GENOMU OPARTY NA
KOALESCENCJI

Streszczenie. Symulacje komputerowe uważane są za jeden z filarów współcze-
snej nauki. W artykule opisano kolejny rodzaj optymalizacji programu GENOME:
A rapid coalescent-based whole genome simulator, mającej na celu skrócenie czasu
oczekiwania na wyniki. Modyfikacje bazują na zrównoleglaniu wykonywania proce-
sów z wykorzystaniem technologii MPI oraz klastrów HPC. W celu przetestowania
uzyskanego rozwiązania wykorzystano klaster HPC Ziemowit, będący na wyposaże-
niu Śląskiej Biofarmy. Wyniki wskazują, iż wprowadzone modyfikacje pozwalają na
znaczne skrócenie czasu wykonywania aplikacji.

Słowa kluczowe: koalescencja, MPI, zrównoleglanie, generacja całego genomu

60 K. A. Cyran, D. Myszor

1. Introduction

In the post-genomic era, which started with the completion of the Human Genome Pro-
ject, the extremely large amount of genetic data of various types creates an informational
noise that requires rapid and constant development of new advanced methods, as well as
technologies, for data mining and processing the diversity of these data to understand bio-
logical and environmental processes contributing to genetic variation. In particular, currently
launched 1000 Genomes Project (1000GP) and Cancer Genome Project (CGP) constitute an
important challenge for information sciences to search for causative variants by genome-wide
association studies (GWAS). Unfortunately, it has been shown that synthetic associations [1]
can be responsible for many GWAS results. Such synthetic association which obscure actual
reasoning can be proved by using whole genome simulators such as GENOME [2] consid-
ered as a gold standard and used by Dickson et al. (2010) [1] for the above purpose. Whole
genome simulators supply advanced machine learning (ML) and bio-statistical models with
large examples of sequences required for training, before application to genome-wide studies.
This may finally result in better understanding of the genetic component of susceptibility to
common human diseases with complex scheme of inheritance. As stated by Stefansson
(2010) [3], at the EMBO|EMBL Symposium Human Variation: Cause and Consequence, the
understanding of the genetics of complex diseases will always be fragmentary unless consid-
ered in the context of the natural selection and human diversity in general. Therefore, easy
access to genetic variation patterns obtained from whole genome simulators is so crucial for
studying implications of the common disease – rare variant (CDRV) paradigm and for effec-
tive use of data mining methods in the case-control genome-wide association studies
(GWAS). Most of the GWAS research up-to-date has been focused on common variants [4,
5], which invariably have small effects. However, the role of rare variants in complex disease
susceptibility, which can have larger effect sizes [1, 6] is currently recognised and empha-
sised. The analysis of lower frequency polymorphisms necessitates utilization of larger sam-
ple sizes as well as development of new analytical approaches in order to increase power.
The 1000GP will improve our understanding of variation at the lower end of the frequency
spectrum and is expected to motivate the enhancement of information capture and interpreta-
tion of genetic association studies [5].

In our study, GENOME [2] has been used as a software for parallel coalescent-based [7,
8] generation of genome-wide sequences for studying synthetic associations (SA) between
rare variants and common marker SNPs in GWAS case-control studies. We tried to perform
time optimization of this software by using Message Passing Interface (MPI) technology.
With that respect, our method will make possible to study SA between rare variants and
common SNP markers faster. Verification of proposed methodology has been done at Sile-

How Message Passing Interface (MPI) accelerates… 61

sian Ziemowit cluster. The methodology is based on multiprocessing in a coalescent-based
simulations for generating whole genomes. As proved by Dickson et al. (2010) [1] it allows
for studying of the effect of synthetic associations (SA) between multiple rare variants and
marker common SNPs using large amounts of data simulated on parallel computational clus-
ters.

2. Original implementation

GENOME: A rapid coalescent-based whole genome simulator [2], is currently used as
one of gold standards in generating the whole sequences for population genetics studies (see
for example how it is used for proving the existence of synthetic associations in Genome
Wide Association Studies GWAS [1]). Since authors of GENOME software allowed for in-
troduction of modifications into original code if certain condition are met (redistributions of
source code must retain specific copyright notice, this list of conditions and specific dis-
claimer; redistributions in binary form must reproduce the specific copyright notice, this list
of conditions and specific disclaimer in the documentation and/or other materials provided
with the distribution; the names of project contributors may not be used to endorse or pro-
mote products derived from this software without specific prior written permission), therefore
keeping in mind the above conditions, we tried to optimise the code in order to achieve
higher performance. One of such modification, parallelization based on introduction of multi-
threading, has been presented in our first in a series paper [9]. Here, the second level of paral-
lelization is considered, namely using multiple processes in MPI technology.

Original code of a GENOME is based on a standard coalescent model [10, 11, 13]. It al-
lows for simulation of sequences (on the whole genome scale) which are drawn from a popu-
lation that is under the Wright-Fisher neutral model [12]. At the beginning of the simulation
user defines number of subpopulations (s), effective population size (N) and number of sam-
ples drawn from every population (n), number of independent regions (chromosomes, c),
number of fragments (genes, g) in a single independent region and length of each fragment
(nucleotides, l). In addition recombination rate (r), mutation rate (mt) and migration rate (m)
can be set. User can define complex subpopulation scenarios such as bottlenecks, subpopula-
tions growths / shrinks, merge of subpopulations etc. There is also ability of definition of
frequency of different recombination rates.

Simulation application works in two phases. First phase is responsible for creation of
gene genealogy for every gene from pool of sampled individuals. It takes into account coa-
lescent, recombination and inter-subpopulation migration events. Interestingly for genome
wide analysis, coalescent events occur so often that execution of code which is skipping gen-

62 K. A. Cyran, D. Myszor

erations that are not informative can take more time than application of simpler approach that
is recreating every generation back in time.

Second phase is responsible for application of mutation process on top of created gene
genealogy, that is in accordance with user defined values of mutation coefficient.

Original code was written in C++ and is portable between various operating system. All
calculations performed by GENOME application are done in a single process which utilizes
single thread approach. Therefore, an assumption could be made that introduction of modifi-
cations in the code, which will allow for utilization of several nodes of High Performance
Computing Cluster (HPCC), should allow for decreasing of result await time.

3. Parallel programming

In order to be able to run the application on variety of systems Message Passing Interface
(MPI), which is standardized and portable system for message passing across computation
units, is applied. MPI is commonly used in scientific parallel computations because it allows
achieving of high performance, scalability and portability. Huge advantages of MPI is abun-
dance of free and commercial implementations. As a result ability of cooperation with many
programming languages as well as hardware and software platforms is achieved. All these
features makes application of MPI a perfect fit for distributed memory environment e.g. of
high performance computing clusters.

Among many available distributions, Intel MPI will be chosen because it is optimized for
Intel based processors, therefore it is argued that application of this library will results in ad-
ditional speed-up of communication operations, which is crucial for achieving of meaningful
results of biological processes simulation in acceptable time.

3.1. High Performance Computing (HPC) cluster

Silesian University of Technology is a Member of Bio-Farma Consortium, which is in a
possession of high performance computing cluster, called HPC Ziemowit. Hardware architec-
ture of HPC Ziemowit is composed of 106 computing nodes (IBM Blade Center HS22V).
Each node possess two Intel Xenon 2.66 GHz processors which are internally equipped with
6 cores. As a result 1272 computation units are available. Utilization of 40 Gbit InfiniBand as
a connection between nodes, allows to take full advantage of parallel computing abilities. It is
worth to mention that additional 1Gbit Ehternet network is available for management pur-
poses. Each computing node within the cluster is equipped with 36 GB of RAM shared be-
tween two processors.

How Message Passing Interface (MPI) accelerates… 63

Ziemowit HPC offers 216 TB of disk space, that is distributed through three disk arrays
and is accessible as one virtual drive. Storage is based on Lustre parallel distributed file sys-
tem that ensures efficient way of storage data access. In order to ensure fast communication
between computing units and storage devices, 10 additional nodes plugged to InfiniBand on
one end and to storage server on the other, are utilized. As a result overall theoretical compu-
tational power of HPC Ziemowit is estimated at 13.5 TFLOPS.

The hardware architecture of HPC Ziemowit cluster is controlled by Red Hat Enterprise 5
operating system. In addition, Intel Cluster Studio compiler, which improves thread perform-
ance and performs code optimization, therefore allows to gain additional speed-up of code
execution and ensures maximum utilization of available computing platform, is available.
Furthermore implementation of Intel MPI library, which is optimized for Intel based proces-
sor is installed.

3.2. Pseudorandom number generator

Processes of development of real population are based on randomness. Thus ability of
generation of random sequences of data is also required in case of coalescence approach to
the population development. However computer algorithms, designated to run on contempo-
rary computers, are deterministic therefore, obtainment of truly randomness in computer en-
vironment is not an easy task. Fortunately in case of simulation researches truly random se-
quences are not required, as a result application of specialized deterministic algorithms which
are able to generate sequences of data, that capture all important statistical properties of true
random series, is possible.

Generated sequences should be able to pass tests designated to validate its pseudorandom
statistic properties such as die hard battery of tests. In order to generate sequence of values
PRNG must be initialized with seed. For a given seed PRNG should always return the same
sequence of values. It is worth to mention that such a behaviour introduces additional bene-
fits among them facilitation of application testing and ability of easy recreation of phenome-
non which were observed during simulation approach execution.

There are many available algorithms, that generate pseudo random values (PRNG), how-
ever only fraction can successfully pass statistical tests and at the same time is characterized
by sufficiently long period (maximum length of repetition free sequence for all possible
seeds) [14] and ability of efficient generation of data series. In conducted simulations
Mersenne-Twister pseudorandom number generator was utilized [15]. It has good k-
distribution property and passes most of available tests for statistical randomness, in addition
it is characterize by long period equal to 219937-1 . In addition Mersenne Twister PRNG util-

64 K. A. Cyran, D. Myszor

izes memory in an efficient way and is characterized by high speed of generation of consecu-
tive values, which are created in packages of 625 entries each.

Introduction of multi-process application includes new challenges in the area of random
number generators. Parallel PRNG should be able to generate sequences of pseudorandom
values, without correlation at the level of node and between nodes and at the same time it
should require minimum amount of communication between nodes, moreover it should work
correctly for any number of computing nodes. The main techniques of parallelization of pseu-
dorandom number generators for N computation nodes include [16]:

Leapfrog – values Xj that are generated by pseudorandom number generator, are assigned
to the computation nodes j according to the formula Xj , Xj+R , Xj+2R ,

Sequence splitting – the pseudo-random series X, characterized by period d is divided
into R non overlapping sub-sequences. Each subsequence contains M =dR values. Individual
group is assigned to each node, so node j generates following values from the sequence X jM ,
X jM+1 , . . .

Independent PRNG – each node utilizes different algorithm of pseudorandom values gen-
eration or the same PRNG algorithm with various values of internal state constants, which
are set in such a way that generators are independent. There are various libraries which pro-
vides above mentioned solution e.g. Intel® Math Kernel Library which implements set of
6024 independent Mersenne Twister pseudorandom generators each with period equal to
 22203-1.

Independent sequences – each node initializes instance of PRNG with different seed,
these seeds should be random and independent at each node. Initialization of seed at each
node, can depend on the time, however such approach might result in achievement of identi-
cal seeds across many nodes. In order to obtain proper set of seeds, additional PRNG is re-
quired, then an array of seeds is initialized at master node which ensures correctness of gen-
erated seeds and values are sent across the cluster.

The first two solutions are applicable only for PRNGs which allow for easy jumping to
the arbitrary values in the random sequence. What is more there is a possibility of the occur-
rence of long range correlation between sequences in different nodes. On the other hand the
independent sequence solution does not guarantee non overlapping sequences in different
nodes, however it is usually applied for PRNG with long periods, therefore such a possibility
is practically ruled out. Independent sequences method is a good option, however it usually
requires utilization of commercial libraries.

In case of Mersenne Twister generator application of leapfrog or sequence splitting
mechanism would take significant fraction of computation time, therefore the decision was
made that independent sequences method will be applied. Master node initializes vectors
with values and sends to the respective worker nodes.

How Message Passing Interface (MPI) accelerates… 65

4. Introduced modifications

Introduction of concurrency into base code can be done at various levels of simulation
process. Therefore, at the solution design level areas, which can be simulated as independ-
ently from each other as possible, should be recognized. In addition computational architec-
ture and hardware should be taken into account in order to utilize its advantages and to avoid
creation of architecture induced bottlenecks. As mentioned earlier Ziemowit HPC possesses
over one thousands of computation units, it allows for high level of tasks granulation how-
ever utilization of MPI causes that communication between these tasks is done through ex-
changing of message between processes, therefore synchronization tasks such as barrier syn-
chronization might take sufficient amount of simulation time.

Simulation process has two phases first one is generation of genealogy for every gene
from every chromosome of every individual sampled from the first population. During this
phase following processes are simulated:
• searching for predecessors of every individual,
• recombination process causes that one individual can have various areas of a single chro-
mosome derived from various parents,
• migration process introduces ability of possession of predecessors from different sub-
populations.

Second phase of simulated process includes application of mutations. Gene genealogy
and predefined mutation process are also taken into account. Initial performance analysis
point out that first phase of simulation takes sufficient amount of total simulation time there-
fore, priority was put at parallelization of processes from this simulation’s phase.

Parallelization can be introduced at the level of genes, individuals, populations or chro-
mosomes simulation. Introduction of concurrency at the level of genes processing was ruled
out because sequences of genes (in chromosome of a single individual) should emerged from
the same parental individual unless recombination event occurred, as a result dependency,
between consecutive genes exists which prevents ability of efficient parallelization.

Another level on which concurrency can be introduced is analysis of individuals. All
genes of a single individual, from given population, can be analysed in a package independ-
ently from other individuals in a given population. Issue in such a solution is the number of
individuals which should be analysed, which significantly exceeds the number of computa-
tion units, possessed by Ziemowit HPC. This issue can be mitigated by assigning of groups of
individuals to every HPC’s node. In such a solution two types of nodes are distinguished
main node and worker nodes. Main node is responsible for initialization of worker nodes,
data collection, normalization when first phase of computation is done and execution of sec-
ond phase of simulation process i.e. assigning mutation process on generated gene genealogy.

66 K. A. Cyran, D. Myszor

Every worker node, on the other hand, is responsible for simulation of group of descendants,
as well as parental individuals, and keeping track of local coalescence events. The issue is
that in such a solution parent can be located in a different worker node than its descendants.
Therefore necessity of internode communication occurs. Node which stores parent must get
unique id of a child, and its location in a sparse structure, as well as list of genes which given
parents passing on particular child. To make matter worse all nodes have to process the same
generation at the same time frame, in order to be able to assign children (from one node) to
its parent (from the other node) and to track coalescent events efficiently. Termination of
simulation requires additional communication event based on collective operation
MPI_AllReduce, with is summing the amount of calescent events. When proper value is ob-
tained, first phase of simulation is terminated on all worker nodes and arrays describing local
coalescence events are send to the main node. Next step is execution of phase two of simula-
tion process.

In order to test performance of such a solution, application in C++, based on GENOME,
GENOME: A rapid coalescent-based whole genome simulator project, was implemented and
experiments were conducted in Ziemowit environment. For original code, average time of
computation, for very small data set: p=1, N=12 , n=7, g=3, r=0.0001, m=0.00025, l=10000,
for 100 independent repetition of simulation run took 0.175369 [s]. When suggested multi
process approach was applied simulation took more than 3 seconds. Results of experiments
showed that extensive amount of communications between worker nodes and necessity of
synchronization between all nodes leads to the significant extension of the time which is re-
quired in order to execute first phase of simulation. As a result this approach was abandoned.

Population consists of subpopulations, between them migration of individuals is limited,
so time of simulation can potentially be reduced if a single subpopulation is simulated by
single worker node. It allows for minimization of amount of data which are transferred
among worker nodes, still all worker nodes have to work on the same generation at the same
timeframe, so in order to start to process the next generation there is a need for synchroniza-
tion between nodes.

In order to mitigate effect of data dependency, parallelisation at the level of simulation of
chromosomes was introduced. GENOME application does not track dependencies between
genes from various chromosomes of a single individual, such an approach allows for simula-
tion of chromosomes by independent computation units. As in previous method there is
a master node, which is responsible for initialization of worker nodes, and collection of data
after completion of simulation. Importantly additional speed up is obtained because worker
nodes, in this version of simulation application, could be responsible for conduction of both
phases of simulation process i.e. creation of gene genealogy and application of mutations.

How Message Passing Interface (MPI) accelerates… 67

On one hand, applied approach limits utilization of HPC nodes to the number of analysed
chromosomes e.g. for simulation of whole human genome which possess 46 chromosomes
only 47 nodes (one master node and 46 worker nodes) are utilized, therefore there is no way
of increase of performance through utilization of HPC machine which more computation
nodes. On the other hand, there is no need of communication between worker nodes during
simulation process, therefore time which has to be sacrifice for the sake of initialization and
communication is minimized as a result obtained speed up, should be significant.

5. Results

Several tests, with various values of initialization parameters, were performer in order to
validate performance gain for implemented solution. Default values, of simulation input vari-
ables were as follow: p=1, N = 10000, n = 6000, g = 30, r = 0.0001, m= 0.00025, l=10000.
For every test scenario 30 independent simulation runs were performed.

Results were presented in on fig. 1 and fig. 2. Influence of the number of analysed chro-
mosomes was presented. Noteworthy performance gain is obtained for more than 1 chromo-
somes. Because of ability of minimization of communication between nodes during simula-
tion, almost linear speed up can be observed.

68 K. A. Cyran, D. Myszor

Fig. 1. Time of simulation application execution for various number of involved threads

(p=1, N = 10000, n = 6000, g = 30, r = 0.0001, m= 0.00025), when single computa-
tion process is utilized

Rys. 1. Czas wykonywania programu symulacyjnego dla różnej liczby chromosomów (p=1,
N = 10000, n = 6000, g = 30, r = 0.0001, m= 0.00025), gdy aplikacja wykorzystuje
jeden proces obliczeniowy

Fig. 2. Time of simulation application execution for various number of involved threads

(p=1, N = 10000, n = 6000, g = 30, r = 0.0001, m= 0.00025), when number of util-
ized processes is equal to the number of simulated chromosomes

Rys. 2. Czas wykonywania programu symulacyjnego dla różnej liczby wątków (p=1, N =
10000, n = 6000, g = 30, r = 0.0001, m= 0.00025), gdy liczba wykorzystywanych
procesów równa jest liczbie symulowanych chromosomów

How Message Passing Interface (MPI) accelerates… 69

6. Discussion

As compared to the state-of-the-art software simulating the whole genome data, the GE-
NOME [2], the advantage of method is the proposed development of a parallel algorithm for
implementation in distributed cluster environment such as Silesian BIOFARMA. Although
not all nodes of HPC cluster were utilized obtained performance gain is sufficient. Unfortu-
nately limiting factor, on a way of additional speedup obtainment and increase of utilization
of computation cluster, are exchange of data between nodes and necessity of synchronization
of execution of successive generations. Conducted experiments point out that in analysed
scenario message passing between nodes is taking too much time in order to obtain speedup,
what is even worst, it causes significant slowdown of the simulation process. In order to
overcome this issue in the future work internal architecture of available computing cluster
can be taken into account. In HPC Ziemowit set of nodes utilizes shared memory, communi-
cation through shared memory is significantly faster than communication with messages that
are send across the network. Therefore an assumption could be made that proper utilization of
threads, which would take benefit from existing architecture, can lead to further improvement
in the results await time.

The results obtained by us will accelerate searching for causative variants in simulated
data using combined, machine learning and statistical models. Without distributed processing
the task would require much more time, therefore the clear advantage of the proposed meth-
odology is its time effectiveness. After choosing the appropriate data mining strategy using
simulated data, this strategy may be easily applied to the actual anonymised data (from
1000GP and WTCCC) genotyped from large cohorts of controls and cases with complex dis-
eases (such as for example autoimmune thyroid disease or breast cancer). The use of devel-
oped algorithms has been verified in the Institute of Informatics of Silesian Univeristy of
Technology [9] and in European BIO-FARMA Consortium platforms located in Gliwice,
Poland (current paper). Using this parallel environment we performed a series of experiments
and obtained in parallel way data for studying the effect of synthetic associations between
multiple rare variants and common marker SNPs. The results achieved will make searching
for causative variants in simulated and real (WTCCC or 1000GP) data more reliable because
the effect of synthetic association can be assessed much faster than with original GENOME
software.

70 K. A. Cyran, D. Myszor

7. Summary

It is widely believed that simulation, in addition to theory and experiments, is one of the
pillar of science. Computer simulations are important tools because they usually allow for
obtainment of results in shorter time, and with smaller costs, than conduction of real experi-
ments. Utilization of these methods is especially important in biological sciences, where they
can be utilized in order to validate hypothesis and confirm correctness of undertaken ap-
proaches. Therefore work over reduction of results await time is important, especially now
because new methods utilized in biological science, e.g. genome sequencing techniques allow
for efficient obtainment of vast amount of real data.

ACKNOWLEDGEMENTS

The research leading to these results has received funding from the PEOPLE Programme
(Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-
2013/ under REA grant agreement no. 298995. Krzysztof Cyran has been supported by the
above mentioned grant, Dariusz Myszor has been supported by BK-215/Rau2/2013.
Calculations were carried out using the computer cluster Ziemowit
(http://www.ziemowit.hpc.polsl.pl) funded by the Silesian BIO-FARMA project No.
POIG.02.01.00-00-166/08 in the Computational Biology and Bioinformatics Laboratory of
the Biotechnology Centre in the Silesian University of Technology.

BIBLIOGRAPHY

1. Dickson A. et al.: Rare variants create synthetic genome-wide associations. PloS Biol-
ogy, 2010, vol. 8, no. 1, p. 1÷12.

2. Liang L., Zollner S., Abecasis G.R.: GENOME: a rapid coalescent-based whole ge-
nome simulator. Bioinformatics, 2007, vol. 23, no. 12, p. 1565÷1567.

3. Stefansson K.: Genetic common/complex traits and the juxtaposition of nature and nur-
ture. EMBO|EMBL Symposium on Human Variation: Cause and Consequence, EMBL
Advanced Training Centre, Heidelberg, Germany, 2010.

4. Peng B., Kimmel M.: Simulations provide support for the common disease – common
variant hypothesis. Genetics, 2007, vol. 175, p. 763÷776.

5. Panoutsopoulou K., Zeggini E.: Finding common susceptibility variants for complex
diseases: past, present, and future. Briefings in Functional Genomics and Proteomics,
2010, vol. 8, no. 5, p. 345÷352.

How Message Passing Interface (MPI) accelerates… 71

6. Gorlov I. P., Gorlova O. Y., Sunyaev S. R., Spitz M. R., Amos C. I.: Shifting paradigm
of association studies: value of rare single-nucleotide polymorphisms. Am. J. Hum.
Genet., 2008, vol. 82, p. 100÷112.

7. Hein J., Schierup M., Wiuf C.: Gene Genealogies, Variation and Evolution: A Primer
in Coalescent Theory. Oxford University Press, 2004.

8. Kingman J.F.C.: Origins of the coalescent: 1974–1982. Genetics, 2000, vol. 156,
p. 1461÷1463.

9. Cyran K.A., Myszor D.: Multithread parallelization of a rapid coalescent-based whole
genome Simulator. Studia Informatica, vol. 35, no. 4 (118), 2014, p. 73÷88.

10. Hudson R.R.: Properties of a neutral allele model with intragenic recombination. Theo-
retical Population Biology, 1983, vol. 23, p. 183÷201.

11. Hudson R.R.: Gene genealogies and the coalescent process. Oxford Surveys in Evolu-
tionary Biology, 1990, vol. 7, p. 1÷44.

12. Hudson R.R.: Generating samples under a Wright-Fisher neutral model. Bioinformat-
ics, 2002, vol. 18, p. 337÷378.

13. Donnelly P., Tavare S.: Coalescents and genealogical structure under neutrality. An-
nual Review of Genetics, 1995, vol. 29, p. 401÷421.

14. Cyran K. A., Kimmel M.: Interactions of neanderthals and modern humans: what can
be inferred from mitochondrial DNA? Math Biosci Eng, 2005, vol. 2, no. 3, p. 487÷98.

15. Matsumoto M., Nishimura T.: Mersenne Twister: A 623-dimensionally equidistributed
uniform pseudorandom number generator. ACM Transactions on Modeling and Com-
puter Simulation, 1998, vol. 8, p. 3÷30.

16. Coddington P. D.: Random number generators for parallel computers. The NHSE Re-
view, 1997, vol. 2.

Omówienie

W artykule przedstawiono zestaw modyfikacji wprowadzonych do kodu aplikacji GE-
NOME: A rapid coalescent-based whole genome simulator. Celem było skrócenie czasu o-
czekiwania na wyniki, gdy aplikacja uruchamiana jest w środowisku klastra obliczeniowego
HPC. Aplikacja została rozbita na wiele procesów, do komunikacji pomiędzy procesami wy-
korzystano biblioteki MPI.

Kolejne sekcje artykułu opisują klaster obliczeniowy Ziemowit HPC, który został wyko-
rzystany do przeprowadzania testów wydajnościowych aplikacji zmodyfikowanej oraz bazo-
wej. Przedstawiono także problem wykorzystania generatora liczb pseudolosowych w środo-

72 K. A. Cyran, D. Myszor

wisku wieloprocesowym. Omówiono i przetestowano kilka scenariuszy pozwalających na
zrównoleglenie kodu.

Uzyskane wyniki wskazują, iż wprowadzone modyfikacje pozwalają na znaczące skróce-
nie czasu generacji wyników, gdy liczba symulowanych chromosomów była większa od jed-
nego.

Addresses

Krzysztof CYRAN: Politechnika Śląska, Instytut Informatyki, ul. Akademicka 16
44-100 Gliwice, Polska, krzysztof.cyran@polsl.pl.
Dariusz MYSZOR: Politechnika Śląska, Instytut Informatyki, ul. Akademicka 16
44-100 Gliwice, Polska, dariusz.myszor@polsl.pl.

	1. Introduction
	2. Original implementation
	3. Parallel programming
	3.1. High Performance Computing (HPC) cluster
	3.2. Pseudorandom number generator

	4. Introduced modifications
	5. Results
	6. Discussion
	7. Summary

