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TOWARDS THE NEW CONCEPT OF LINEAR IMAGE QUALITY 
ASSESSMENT. REVIEW OF PHASE CORRELATION FORMULAS

Summary.  The article reports the progress in a development of an image quality 
assessment (IQA) method based on a new concept – phase correlation. The primary 
idea  stems  from  the  classical  observation  that  structural  information  of  the 
media/image information is stored within the phase part of the Fourier spectra. The 
paper describes the review and selection process of a correlation formula for future 
full reference IQA method. The results were verified with reference database against 
the  human  visual  quality  responses  given  in  mean  opinion  score  (MOS)  scale, 
whereas the key goal was to keep the linearity of the results as it was observed in 
preliminary results. There were tested correlation models linear and circular raw and 
weighted in using various weighting schemes.
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NOWA  KONCEPCJA  LINIOWEJ  METODY  OCENY  JAKOŚCI 
OBRAZÓW. ANALIZA FORMUŁ KORELACJI FAZ

Streszczenie. Artykuł opisuje prace związane z rozwojem metody oceny jakości 
obrazów, bazującej na nowej koncepcji – korelacji faz. Podstawowy pomysł wynika z 
klasycznej  obserwacji,  że  informacja  strukturalna  w  mediach/obrazach 
reprezentowana  jest  przez  część  fazową widma  Fourierowskiego.  Artykuł  opisuje 
przegląd metod pomiaru korelacji i ich ocenę w celu dobrania formuły korelacyjnej 
dla  przyszłej  metody  oceny  obrazów.  Wyniki  zostały  zweryfikowane  względem 
ludzkich  ocen,  podanych  w  skalach  MOS,  zawartych  w  referencyjnych  bazach 
danych,  gdzie  jako  główny  cel  badawczy  postawiono  poszukiwanie  liniowej 
zależności,  tak  jak  zaobserwowano  to  we  wstępnych  wynikach.  Przetestowano 
modele korelacji liniowej i cyklicznej w postaci prostej i ważonej z wykorzystaniem 
różnych schematów doboru wag.

Słowa kluczowe: jakość obrazów, korelacja faz, korelacja cykliczna
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1. Introduction

Image quality assessment (IQA) methods plays pivotal role for image compression and 

reproduction.  The key problem for IQA algorithms is  to provide relevance to the human 

visual perception. It is not a trivial task [1] as human quality perception is not a linear process 

in terms of classical signal processing measures such as MSE or SNR so they perform poorly 

[2] when used for evaluating image quality.

 The key for the article is discovery  [3] by Oppenheim and Lim, that the most of the 

media  information  structure  is  stored  within  the  phase  spectrum  (Fig.  1).  Long  lasting 

knowledge on the significance of signal phase has not influenced the development of image 

quality assessment (IQA) methods for quite a long time. The most of image distortion or 

quality objective measure methods are based mainly on amplitude spectra using some human 

related weighting function  [4–6], alternatively there is used multiresolution approach [7] or 

sophisticated  statistics  [8].  Therefore  measuring  image  similarity  or  distortion  by  phase 

comparing still remains promising field of research that recently gained some interest from 

the scientists [9–12]

Fig. 1. Swapping amplitude (A) and phase (θ) of Fourier spectra for ’lake’ and ’lena’ images
Rys. 1. Zamiana amplitud (A) i faz (θ) widm Fouriera dla obrazów 'lake' i 'lena'

Authors former results [13] demonstrated (see Fig. 2) interesting and noteworthy property 

that the Pearson’s phase correlation coefficients (RP) between the phase spectra of an original 

and distorted  images  are  linearly  correlated  with  human subjective  quality  of  experience 

(QoE) judgments given using the MOS scale. That is highly desired property, alas, the simple 
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RP measure appeared to have good accuracy but still  unsatisfactory precision (see Fig. 2). 

Another advantage is the fact, that the resulting measure is conceptually simple and easy to 

implement in any development environment.

Fig. 2. Preliminary results
Rys. 2. Wstępne wyniki

The aim of the work is  to overcome low precision  limitation  by selection of a more 

appropriate correlation method resulting in precise responses. As a key criterion there was 

assumed correspondence of the results to the human visual quality responses from reference 

databases  given  in  mean  opinion  score  (MOS)  scale,  another  intention  was  to  keep  the 

property of linearity of the results as it is desired feature and the most notable property of the 

proposed method. Following types of correlation were analyzed and tested: linear, circular – 

simple and weighted by spectral amplitude to choose the best  phase correlation coefficient  

(PCC) to use in image quality measurement.

2. Background

2.1. Spectral representation

The discrete two dimensional Fourier transform [14] is given as:

O(u , v)=F ( o(m ,n))=∑
m=0

M −1

∑
n=0

N −1

o (m ,n)e− j (2π u/ M)m e− j (2π v /N ) n , (1)

which returns as a result  complex spectra consisting of real  (ℜ) and imaginary (ℑ) parts 

(spectra).  With Euler’s formula these parts can be also considered as an amplitude  A and 

phase θ spectra which are given as:

A(u , v)=|O(u , v)|=√ℜ(O (u , v ))
2
+ℑ(O (u , v ))

2

θ(u , v)=arctan(ℑ(O(u , v))
ℜ(O (u ,v )) )

, (2a,b)
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where:  F(  )  is  Fourier  transform;  o(  ),   O(  )  are  image  in  spatial  and  spectral  form 

respectively; M, N are spatial sizes of images; m, n are spatial coordinates; u, v are frequency 

coordinates.

2.2. Linear correlation

Initially  for  the  measurement  of  spectral  phase  similarity  we  used  one  of  the  most 

canonical tools Pearson Correlation Coefficient [15] which can be interpreted as normalized 

common (of both variables) variance from the respective mean values:

R xy
P
=

sxy

sx s y

, (3)

where: sxy is the covariance; sx, sy are the standard deviations for random variables x and y.

Another  agreement  measure  between  two  variables  is  Lin's  Concordance  Correlation 

Coefficient (CCC) [16, 17]. It is especially preferred in life sciences, it measures how close 

relationship between two variables is to a 45-degree line from the origin (of a slope 1):

R xy
L
=

2 sxy

sx
2
+s y

2
+( x̄− ȳ)2

, (4)

Where mean values, STD deviations and covariance estimators are respectively computed as:

x̄=
1
N

∑
i=1

N

x i , sx=√ 1
N

∑
i=1

N

(x i− x̄)2 , sxy=
1
N
∑
i=1

N

( xi− x̄)( yi− ȳ) . (5a-c)

2.3. Circular correlation

The phase of complex number varies in the cyclic range [0, 2π) therefore the distance 

between two values given as a simple absolute difference might be incorrect (see Fig. 3), 

therefore it has been the natural next step in our analysis. For the need of analysis of circular  

data  the  whole  sub-discipline  in  statistics  is  established  [18].  The  first  approach  to 

measurement of agreement between circular data was proposed by Fisher [19]. Although, we 

neglected it, as it appeared to be slow during our initial tests (in its convenient basic form) 

and to provide much worse results  than the more convenient,  modern version of circular 

correlation proposed by Jammalamadaka [18] which adopts the classical linear measure:

Rα β
J =

∑
i=1

N

sin(α i−ᾱ )sin (β i−β̄ )

√∑
i=1

N

sin2(α i−ᾱ)√∑
i=1

N

sin2(β i−β̄ )

, (6)

where: α, β are angular random variables, which can describe the phase angle of a complex 

number, therefore their mean values can be computed as:



Towards the new concept of linear image quality assessment method. 115

ᾱ=arg( 1
N
∑
i=1

N

e j α i) . (7)

Using above we can note dispersion measures (covariance and STD deviation) as:

sα=√ 1
N
∑
i=1

N

sin2(α i−ᾱ ) , sα β=
1
N

∑
i=1

N

(α i−ᾱ)(β i−β̄ ) . (8a,b)

Now, we can rewrite (6), as a simple corollary of above:

Rα β
J

=
sα β

sα sβ

, (9)

Using the same concept we can try to adopt Lin's formula (4) of Concordance CC to the 

circular domain:

Rα β
cL

=
2 sα β

sα
2
+sβ

2
+sin2

(ᾱ−β̄ )
, (10)

Although,  please  treat  it  as  an  author's  utility  function,  which  has  not  been  studied 

comprehensively for its properties elsewhere.

Fig. 3. Circular and linear distance between angular values x and y
Rys. 3. Odległość cykliczna i liniowa pomiędzy wartościami kątowymi x i y

2.4. Weighted correlation measures

The participation of phase of each harmonics  in an image is  related to its  amplitude, 

therefore  it  was  obvious  in  the  next  step  to  incorporate  amplitude  weighting  into 

measurement.  In  such a  case  it  is  just  necessary  to  substitute  certain  parts  in  respective  

formulas with their weighted counterparts (weighted mean, STD deviation and covariance):

wx=∑
i=1

N

wi x i , wsx=√∑
i=1

N

wi( xi−wx)2 , ws xy=∑
i=1

N

wi( xi−wx)( y i−wy) , (11a-c)

where wi is weighting function. For the circular measures it is:

wα=arg(∑
i=1

N

w i e
jα i) , wsα=√∑

i=1

N

w isin2
(α i−wα ) ,

wsα β=∑
i=1

N

wi sin(α i−wα)sin(β i−wβ )

. (12a-c)

The choice of appropriate weighting function will be discussed in the experimental part.
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3. Results

The experimental part consists of the evaluation and tuning of correlation models for the 

needs  of the IQA.  Color  RGB images  at  the  current  stage  of  development  require  to  be 

converted to the grayscale, as it is a common step for many methods [5, 8], for this purpose 

the Matlab rgb2gray (L = 0.2989*R + 0.5870*G + 0.1140*B) was used. 

The analysis consisted of two steps. In the initial step there was analyzed performance of 

simple correlation formulas then a weighting scheme is selected as a next step.

In order to evaluate the results, there were two basic criteria assumed:

− Relevance  to  the  human  judgment  (monotonicity)  which was  measured  with  the 

Spearman  (SROCC)  and  Kendall  (KROCC)  rank  correlation  coefficients  –  these 

correlation  coefficients  are  assumed  as  the  criteria  since  the  most  of  IQAs  are 

nonlinearly related to the human responses. This criterion relates to the precision.

− Linearity was verified using Pearson CC (verified better with CoD for linear model).

− The  accuracy  of  a  model  (with  special  emphasize  on  linearity)  –  described  as  a 

Goodness  of  Fit  (GoF)  of  a  regression  model  between  human  responses  and  a 

measure result. It is measured with a Coefficient of Determination given as explained 

part of the variance – it can be computed effectively as:

R2
=1−

SS res

SS tot

=1−∑
i

( yi− f i)
2
/∑

i

( yi− y)2 , (13)

where: yi is measured value;  fi predicted value; ȳ mean value; SSres, SStot residual and 

total sum of squares respectively.

3.1. The data

The results  were evaluated using two reference databases  – LIVE database  [20]  and 

TID2008 database  [21].  Both  of  them are  commonly  applied  for  the  evaluation  of  IQA 

methods – LIVE as a classic one and TID as newer and more comprehensive,  containing 

some  “odd”  distortions.  The  LIVE  contains  DMOS  scale  evaluations  of  five  image 

distortions at various degrees for 29 reference images collected in 25000 evaluations. The 

TID2008 database consists of 17 distortions at 4 levels for 25 ref images collected in 256428 

MOS evaluations.  Distortions in the TID2008 were grouped by the database authors into 

several categories. The IQA results can vary heavily depending on these categories – please 

see [21] where various IQAs are demonstrated against various distortion classes.
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Table 1
Types of image distortions in reference databases

No Type (in case of different nomenclature: 
LIVE/TID)

# in LIVE # in TID

1 White noise / Additive Gaussian noise 174 100
2 Additive noise in color components 100
3 Spatially correlated noise 100
4 Masked noise 100
5 High frequency noise 100
6 Impulse noise 100
7 Quantization noise 100
8 Gaussian blur 174 100
9 Image denoising 100
10 JPEG compression 233 100
11 JPEG2000 compression 227 100
12 JPEG transmission errors 100
13 Fast Fading / JPEG2000 transmission errors 174 100
14 Non eccentricity pattern noise 100
15 Local block-wise distortions of different intensity 100
16 Mean shift (intensity shift) 100
17 Contrast change 100

3.2. Results and analysis of simple phase correlation formulas (PCC)

The  observed  results  are  plotted  in  respective  Figs.  4-6  for  visual  examination  and 

gathered  in  Tab.  2  to  compare  numerical  results.  One  can  note  several  interesting 

observations and conclusions on these.

Table 2
Results of evaluation criteria for PCC

LIVE TID2008
Criterion: Linear CC Circular CC Linear CC Circular CC
SROCC 0.9519 0.9496 0.5291 0.5116
KROCC 0.8158 0.8120 0.3774 0.3644
Pearson 0.9545 0.9393 0.5796 0.5955
R^2(lin) 0.9111 0.8823 0.3360 0.3547
R^2(pow) 0.9115 0.8898 0.4235 0.4055
R^2(exp) 0.8998 0.8949 0.3066 0.3275
R^2(log) 0.9111 0.8814 0.4347 0.4173
R^2(sigm) 0.9087 0.8941 0.4251 0.3910

− The concordance and Pearson based correlation formulas provided almost identical 

results (to the fourth digit after the decimal point) in our cases, both for linear and for 

circular formulas for the provided datasets, therefore formulas (3) PCCP and (8) PCCJ 

will be used as the default correlation versions – linear and circular.
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− Circular models, due to uniform circular PDF, appeared to have volatility of the mean 

value (from ≈0 to ≈π) which resulted in an occasional change of sign of the resulting 

value. As a temporary countermeasure we used absolute value of PCC.

− The  results  for  the  LIVE  database  appear  to  be  very  promising,  having  both 

evaluation criteria at a reasonably high level.  The rank correlation coefficients are 

high and the coefficients of determination provide that model explain approx. 80% of 

variance. Moreover, the linear model is on par with more flexible functions, whereas 

the competing fits were elongated very much so they resemble the linear function.

− The results for TID2008 database are ambiguous, as one can expect since the base is 

known to be 'harder case' for the metrics. Correlation is notably lower and regression 

models – logarithmic and power – perform far better than the desired linear function. 

On the other hand the linear model seems to be appropriate for the all but the lowest  

quality subset of images.

Fig. 4. Results plot PCC versus DMOS (all four types) for LIVE database
Rys. 4. Wykres wyników PCC vs DMOS (wszystkie cztery rodzaje) dla bazy LIVE
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Fig. 5. Results plot PCC versus MOS (two basic types) for TID2008 database
Rys. 5. Wykres wyników PCC vs MOS (dwa podstawowe rodzaje) dla bazy TID2008

The last observation suggests the need for some qualitative analysis of the results which was 

necessary to  perform. In the scatter  plot  (Fig.  6),  with color  distinction  of every type  of 

distortion and with the distinction of distortion categories according to [21] –  actual (•) and 

exotic  (□),  we cannot  observe  any special  distinction  of  distortion  type  in  the  nonlinear 

relationship  area.  We can suspect  the simple  PCCs describe  strong distortion  poorly and 

require improvement. One of such potential improvements is amplitude weighting.

Fig. 6. Different distortion categories plot (in TID) PCC vs MOS for Jammalamadaka CC 
Rys. 6. Wykres różnych kategorii zniekształceń (w TID) PCC vs MOS dla Jammalamadaka CC 

3.3. Selection of the amplitude weighting (WPCC)

The intuitively obvious extension of the basic formulas (PCC) of the proposed approach 

is to incorporate weighting of the phases by the amplitudes (WPCC). The phase of each of 
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harmonics can contribute to the image structure with different degree which is proportional to 

the amplitude. Since it is unknown whether the amplitude of source (A1) or the distorted (A2) 

image determine quality it was necessary to analyze several schemes, these are:

SRC=A1 , DST=A2 , MAX=max {A1(n) , A2(n)},
MIN=min {A1(n) , A2(n)}, MEAN=( A1+ A2)/2

. (14a-e)

All WPCC results were qualitatively (visually) examined versus MOS/DMOS responses 

as  demonstrated  in  Figs.  4-6  and  verified  against  fitted  regression  models.  Resulting 

correlations are demonstrated in the Tab. 3, the results of a special interest are underlined and 

provided in figures further in this paragraph. In the computation of the goodness of fit for all 

the regression schemes in the tables 4 and 5, there were excluded reference images – one can 

note a dot in (0,1) position in plots in Fig 7. In order to clearly identify weighing type we  

used following naming scheme WPCCP-type and WPCCJ-type respectively for the linear and 

circular formulas where types are identified as in above equations (14).

Table 3
Correlation coefficients for tested weighting schemes of linear and circular WPCCs 

Linear PCC Circular PCC
Measure: SROCC KROCC Pearson SROCC KROCC Pearson

L
IV

E
 d

at
ab

as
e SRC 0.9562 0.8241 0.9188 0.9576 0.8277 0.8708

DST 0.8601 0.6895 0.7814 0.8737 0.7026 0.7176
MAX 0.9437 0.8000 0.9098 0.9465 0.8057 0.8669
MIN 0.8771 0.7140 0.8091 0.9077 0.7459 0.7630
MEAN 0.9419 0.7959 0.8980 0.9477 0.8073 0.8526

T
ID

 d
at

ab
as

e SRC 0.6657 0.4831 0.7327 0.6091 0.4375 0.6867
DST 0.5365 0.3682 0.5392 0.4972 0.3413 0.4554
MAX 0.6268 0.4465 0.6815 0.5837 0.4137 0.6616
MIN 0.6085 0.4296 0.6325 0.5844 0.4100 0.6186
MEAN 0.6419 0.4588 0.6936 0.5963 0.4235 0.6717

Table 4
Goodness of Fit for different regression models for WPCCs in LIVE database

PCC Criterion: SRC DST MAX MIN MEAN

L
in

ea
r

R2 (linear) 0.8441 0.6105 0.8277 0.6546 0.8064
R2 (power2) 0.9073 0.7435 0.8924 0.7668 0.8880
R2 (exp) 0.8993 0.6948 0.8823 0.7357 0.8721
R2 (log) 0.8419 0.6077 0.8255 0.6512 0.8039
R2 (sigmoid) 0.9093 0.7349 0.8935 0.7636 0.8885

C
ir

cu
la

r

R2 (linear) 0.7583 0.5150 0.7515 0.5821 0.7270
R2 (power2) 0.8764 0.7554 0.8681 0.7938 0.8683
R2 (exp) 0.8364 0.6270 0.8259 0.7062 0.8149
R2 (log) 0.7557 0.5076 0.7490 0.5382 0.7241
R2 (sigmoid) 0.8693 0.7257 0.8583 0.7751 0.8578
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Table 5
Goodness of Fit for different regression models for WPCCs in TID database

PCC Criterion: SRC DST MAX MIN MEAN

L
in

ea
r

R2 (linear) 0.5369 0.2907 0.4645 0.4000 0.4810
R2 (power2) 0.5347 0.2897 0.4703 0.3941 0.4807
R2 (exp) 0.5070 0.2917 0.4380 0.3881 0.4552
R2 (log) 0.5434 0.2903 0.4796 0.4002 0.4900
R2 (sigmoid) 0.5435 0.2996 0.4789 0.4135 0.4911

C
ir

cu
la

r

R2 (linear) 0.4716 0.2074 0.4378 0.3827 0.4512
R2 (power2) 0.4645 0.2547 0.4302 0.3898 0.4421
R2 (exp) 0.4684 0.2305 0.4244 0.3949 0.4412
R2 (log) 0.4711 0.2062 0.4395 0.3815 0.4512
R2 (sigmoid) 0.4730 0.2594 0.4375 0.4005 0.4511

Furthermore,  during  the  analysis  of  the  resulting  WPCC values  we can  observe  one 

particular  case  –  the  best  theoretically  motivated  measure  –  source  amplitude  weighted 

circular  PCC (WPCCJ-SRC).  It  has  very high  rank correlation  but  slightly  odd behavior 

regarding the regression model in TID database. The visual inspection in Fig. 8 revealed that 

the measure is oversensitive to a single class of distortion – contrast  change (number 17) 

marked with 'o' sign in plots – this observation is deliberated in the discussion of results.
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Fig. 7. Result plots of different weighting (SRC, MAX, MEAN) schemes in WPCC versus DMOS 
for LIVE database, categories as in Tab. 1

Rys. 7. Wykres wyników różnych metod ważenia (SRC, MAX, MEAN) dla WPCC vs DMOS  dla 
bazy LIVE, kategorie jak w tab. 1
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Fig. 8. Result plots of different weighting (SRC, MAX, MEAN) schemes in WPCC versus MOS 
for TID database, categories as in Tab. 1

Rys. 8. Wykres wyników różnych metod ważenia (SRC, MAX, MEAN) dla WPCC vs MOS  dla 
bazy  TID, kategorie jak w Tab. 1

3.4. Discussion of results

As one can note from the Tab. 3 versus Tabs. 4-5 the weighting models which provide the 

high rank correlation result also in good fit of the regressive models. Therefore there will be 

no contradiction in selection of the most appropriate weighting formula for the WPCC. 

Both linear and circular CC with all three interesting weighting schemes provide similar 

results  which are nearly linearly related to the human responses.  Even, the more flexible 

regression  models  like  a  sigmoid  or  power  function,  are  elongated  such  they  resemble 

straight   line (see Fig.  9). Therefore,  according to the Occam razor  principle,  one should 

choose the simplest of the possible solutions – the linear model in this case.
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Fig. 9. Results plot WPCCP-SRC versus MOS for TID2008 database
Rys. 9. Wykres wyników WPCCP-SRC vs MOS dla bazy TID2008

Qualitative analysis of the resulting values of PCC suggest that they exhibit mainly the 

structure of information,  although the information on contrast  and mean color are  poorly 

represented  by  phase  (see  example  in  Fig.  1).  Thus  certain  types  of  distortions  can  be 

measured improperly. Average color value, as it is stored in Fourier DC component, always 

has 0 phase for real valued functions, they always fit each other and they are very significant 

due to the amplitude weighting. On the other hand the contrast change can be overrated (see 

results of class 17 distortion for WPCCJ-SRC in Fig.  8) as it changes a lot of harmonics. 

These issues should be addressed in further development of the WPCC based IQA method.

Further  improvement  is  possible  by  taking  viewing  conditions  into  account.  For  this 

purpose  we  used  simple  heuristic  approach  which  was  adopted  from  the  default 

implementation of single scale SSIM1. To adopt the image to the approximate proper viewing 

scale, which is approximately 3-5 times of image height or width, low pass filtering (LPF) is  

used with normalized uniform kernel of size f , in next step the input image is downsampled 

(↓) by the same f factor. This process and computing of f factor is described with formulas: 

f =max {1, round (
min (M , N )

256
)}

oscaled=[o∗(
1
f

rect ( f ))]↓ f
, (15)

where M, N is size of image. It results (Tab. 6) in notable precision improvement of results 

but in the most of interesting cases we lose the linearity.  For the TID database the linear 

1Available at SSIM webage https://ece.uwaterloo.ca/~z70wang/research/ssim/

https://ece.uwaterloo.ca/~z70wang/research/ssim/
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regression improved performance but performance of other models was improved even more. 

For  the  LIVE database  the  ROCC coefficients  were  slightly improved but  most  of  CoD 

coefficients were downgraded.  Luckily the most clear results are for the WPCCP-SRC which 

returned the best results both for TID and LIVE databases.

Table 6
Results of evaluation criteria for selected WPCCs for scale adopted images.

database: TID2008 LIVE
measure: WPCCP-SRC WPCCJ-SRC WPCCP-SRC WPCCJ-SRC

criterion: original adopted original adopted original adopted original adopted
SROCC 0.6657 0.7658 0.6091 0.7489 0.9562 0.9587 0.9576 0.9601
KROCC 0.4831 0.5811 0.4375 0.5612 0.8241 0.8301 0.8277 0.8341
Pearson 0.7327 0.7935 0.6867 0.7334 0.9188 0.8434 0.8708 0.7439
R^2(lin) 0.5369 0.6296 0.4716 0.5379 0.8441 0.7114 0.7583 0.5534
R^2(pow) 0.5347 0.6291 0.4645 0.5937 0.9073 0.9158 0.8764 0.8647
R^2(exp) 0.5070 0.6316 0.4684 0.5937 0.8993 0.8321 0.8364 0.6737
R^2(log) 0.5434 0.6284 0.4711 0.5356 0.8419 0.6962 0.7557 0.4815
R^2(sigm) 0.5435 0.6360 0.4730 0.6018 0.9093 0.9029 0.8693 0.8076

Fig. 10. Viewing conditions adopted results for selected WPCCs vs MOS for TID (first row) 
and LIVE (second) . Marker categories as in Figs. 7, 8.

Rys. 10.Wyniki po adaptacji do warunków obserwacji dla wybranychWPCC vs MOS dla baz 
TID (pierwszy wiersz) i LIVE (drugi). Oznaczenia markerów jak na rys. 7, 8.

The results of scale adoption are ambiguous, but the conclusion based on them is quite 

straightforward – including viewing conditions can result in significant improvement but one 

needs the knowledge on them first – what was the viewing distance, size of image and its 

resolution. Using of more sophisticated approaches should be taken into consideration. The 
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difference of scaling adoption results between databases stems probably from the fact that 

such a  rough  approximate  rule  as  used  in  our  case  worked  especially  well  for  the  TID 

database which was gathered massively in 'uncontrolled' way with no special attention for the 

viewing distance  [22]. Meanwhile LIVE respondents were asked to keep the fixed distance 

from the screen so the results are already well tuned.

To compare the results of the PCC to the results of other methods (Tab. 7) we employed 

the TID2008 database as it is more comprehensive and demanding one. The various measure 

results (sorted according SROCC) computed using Metrixmux [23], are provided along with 

the database [21, 24] and with measures [8, 11]. Additional results annotated with asterisk (*) 

are computed with scale adoption according to Eq. (15).

Table 7
Spearman and Kendall ROCCs for WPCC against some of existing IQAs

Measure SROCC KROCC Pearson Measure SROCC KROCC Pearson
FSIMc 0.884 0.699 0.834 UQI 0.600 0.435 0.652
FSIM 0.880 0.695 0.830 PSNRHVS 0.594 0.476 0.576
MSSSIM 0.853 0.654 0.784 XYZ 0.577 0.434 0.482
SSIM* 0.775 0.577 0.740 IFC 0.569 0.426 0.212
WPCCP-SRC* 0.766 0.581 0.793 PSNRHVSM 0.559 0.449 0.550
VIF 0.750 0.586 0.778 PSNRY 0.553 0.402 0.519
WPCCJ-SRC* 0.749 0.561 0.733 SNR 0.523 0.374 0.493
VSNR 0.705 0.534 0.293 MSE 0.525 0.369 0.293
WPCCP-SRC 0.666 0.483 0.733 PSNR 0.525 0.369 0.489
VIFP 0.655 0.495 0.638 WSNR 0.488 0.393 0.463
SSIM 0.645 0.468 0.754 LINLAB 0.487 0.381 0.258
NQM 0.624 0.461 0.608 DCTUNE 0.476 0.372 0.286
WPCCJ-SRC 0.609 0.437 0.687

Comparing the relationship between various IQAs (see Fig. 11), one can note that, except 

for  the  proposed  WPCC,  only  the  Universal  Quality  Index  (UQI)  [25] can  be  visually 

considered as linearly related to the human responses but it has poorer correlation to human 

judgments. Moreover, the single scale  WPCCJ-SRC*, WPCCP-SRC* and SSIM* which use 

relatively simple mathematical  apparatus,  provide results  which are on par or outperform 

much  more  complex  multiresolution/multiscale  measures  such  as  VIF,  VIFP,  VSNR. 

Significantly  better  results  are  obtained  using  MSSSIM and  FSIM which  are  multiscale 

measures and as such are much more complex both conceptually and computationally (2-5 

times).  The complexity  issue  is  important  especially  for  the  latter  which  employs  pretty 

complex apparatus to compare information structure.
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Fig. 11. Result plots of selected (best) different IQAs and selected  WPCCs for TID2009 database
Rys. 11.Wyniki dla wybranych  (najlepszych) metod IQA i wybranych WPCC dla bazy TID2009
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4. Conclusions

The results of the proposed method are promising and at the current stage of development 

that already can be used to measure visual quality. If one would like to use WPCC 'as is' as a 

standalone  quality  measure  then  the  WPCCP-SRC  (source  weighted  linear  Pearson  CC) 

seems to be the most appropriate choice due to the highest values of evaluation criteria. The 

WPCCJ-SRC seems  to  be  better  theoretically  motivated  and  also  provides  good  results, 

although it seems to be oversensitive (probably due to high accuracy) to contrast changes so 

there is some work need to be done to solve these issues. Further extensions would include 

computations of WPCC in color and possibly incorporating viewing conditions by additional 

weighting  by  contrast  sensitivity  functions  (CSF)  such  as  in  [6,  14] and/or  using 

multiresolution approach.  Another  prospective improvement  can be using sliding window 

approach to evaluate measure by spatial pooling of WPCC distortion maps and some form of 

a spatial weighting.

The proposed WPCC solution is intended to become one day a part of more complex 

measures – the final concept is not fully established yet – but on the basis of SSIM concept it  

should be a function involving at least three components – color value, contrast and structure. 

WPCC would fit into such a form of measure very well as the last part which describes the 

structure similarity.
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Omówienie

Artykuł omawia postępy prac nad autorską metodą obiektywnej oceny jakości obrazów, 

bazującą na korelacji faz w widmie Fourierowskim. Przetestowano formuły korelacji liniowej 

Pearsona  i  konkordancji  Lina  oraz  ich  cyklicznych  wersji  –  zaproponowanej  przez 

Jammalamadaka  podstawowej  wersji  korelacji,  oraz  wzoru  konkordancji  zaadaptowanej 

podobnie przez autora. Okazało się, że dla faz widm konkordancje dają identyczne wyniki z 

podstawowymi korelacjami.

 W pracy  wykazano,  dla  ogólnie  uznanych  zestawów danych  pomiarowych  (LIVE i 

TID2008), że degradacja struktury obrazu – wyrażona korelacją liniową (3), bądź cykliczną 

(6) w dziedzinie widma fazowego transformaty Fouriera pomiędzy obrazem oryginalnym i 

zniekształconym – jest prawie liniowo skorelowana z ludzkim postrzeganiem spadku jakości. 

Wymaga  to  zastosowania  korelacji  ważonej  względnym  udziałem  poszczególnych 

składowych  fazowych,  które  wyrażone  są  poprzez  odpowiednie  amplitudy  w  widmie. 

Szczególnie  dobre  rezultaty  uzyskano  przy  wykorzystaniu  jako  wag  amplitud  obrazu 

źródłowego (14a) i średnich amplitud obrazu źródłowego i zniekształconego (14e).  

Wyniki obliczeń eksperymentalnych wykazały, że ważona korelacja faz (WPCC) posiada 

wysoką korelację rangową (Spearmana, Kendalla) z ocenami respondentów – MOS (tab. 7), 

na  poziomie  uznanych  miar,  takich  jak  VIF  czy  SSIM.  Ponadto,  zależność  pomiędzy 

wartościami miary jest bliska liniowej, gdzie dużo bardziej elastyczna funkcja sigmoidalna 

używana powszechnie do opisu zależności miara-MOS opisywała przeciętnie zaledwie od 

1% (TID) do 7% (LIVE) wariancji więcej (wg współczynnika determinacji R2) – patrz tab. 3-

4.  Kolejnym  udoskonaleniem  było  wprowadzenie  heurystycznej  adaptacji  do  warunków 

obserwacji, co skutkuje uzyskaniem współczynnika korelacji Spearmana względem baz na 

poziomie metod wielorozdzielczych, które są dużo bardziej złożone zarówno koncepcyjnie, 

jak i obliczeniowo.

We  wnioskach  wskazano  użycie  jako  samodzielnej  miary  jakości  liniowego 

współczynnika  korelacji  Pearsona  ważonego  amplitudą  obrazu  źródłowego,  nie 

dyskwalifikując jednocześnie miary cyklicznej. Wskazano przyszłe zastosowania w bardziej 

złożonych  miarach,  biorących  pod uwagę nie  tylko  strukturę  obrazu oraz dalsze  kierunki 

rozwoju miary – uwzględniające kolor czy filtrację przestrzenną.
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