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Summary. This paper considers a nonstationary multisequeuing model with
abandonment and balking for inbound call centerg. pkkesent a continuous time
Markov chain (CTMC) model which captures the impatt characteristics of an
inbound call center and obtain a numerical solutarrits transient state probabilities
using uniformization method with steady-state d&dec
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MODELOWANIE CALL CENTER JAKO SYSTEMU KOLEJKOWEGO
Z WYKORZYSTANIEM t ANCUCHOW MARKOWA
Z NIEJEDNORODNYM CZASEM CAGLYM

Streszczenie Artykut opisuje zastosowanie CTMC do modelowa@gll Center
z klientami o ograniczonej cierpliwoi.

Stowa kluczowe call center, metody numeryczne, uniformizacja,néaichy
Markowa

1. Introduction

The problem of managing operations of a telephalecenter in an efficient way has
a long history in the area of operational researuth is a topic of current research in various
disciplines (see e.g. [1] or [2] for extensive oaews). From the modeling point of view they
can be viewed as queuing systems.

Such a queuing model can be described by a comdspp continuous time Markov
chain (CTMC) whose steady-state distribution cardsly determined, either analytically —
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with the Erlang-C formula for the simplest M/M/n de or with the Erlang-A formula for its
version augmented with exponential patience timpgraposed in [3] or numerically for more
complicated models (as in [4] or recently [5]). Hower, as real call centers are time
inhomogenous, with varying arrival rates and chaggiumber of servers, scheduled to meet
the forecasted demand and in order to provide bteag&, stationary models cannot be
applied directly. It is, therefore, common to uppraximations, assuming the system being
pointwise stationary. Examples of such well esthi@dd methods can be found e.g. in [1], [3]
or in [6]. Unfortunately, stationary approximatiomse in many cases not adequate. For
example, [4] compared them with simulations basedeal inbound call center data, with the
conclusion that due to the nonstationarity only sooh the performance measures can be
estimated with satisfactory accuracy. Ingolfssor{ihcompared them with an inherently
transient model and found their results signifibamaccurate or even entirely unreliable.
Despite this, their widespread use is commonlyifjadtby simple implementation and low
computational costs.

Many authors proposed to use simulation, which aahieve any desired accuracy.
However, in order to achieve acceptable precisieny long computational times are needed,
which makes it often impracticable for common agggions like schedule planning.

An alternative approach, which is very effectiveenms of the accuracy of the model, is
to analyze transient CTMC using numerical methsdssing effectively their corresponding
system ofordinary differential equations (ODE’s) as proposed in [8], [9] or by the author
in [10].

Other, less computationally intensive, analyticattimods that can approximate such
nonstationary systems more accurately than stajfomedels areclosure approximations
and fluid and diffusion approximations, discussed e.g. in [3], [6], [11] and [12] or, fibre
direct comparison of some examples of such methaitis the numerical methods and
stationary approximations, in [8].

Although there is a number of papers dealing wiig phenomena of customer balking
and abandonment in multiserver queues (e.g. [3}1H] or recently [5]), they concentrate on
stationary models or approximations. To the bestwfknowledge, an inherently transient
CTMC model dealing with both balking and abandoniradra call center, has never been
investigated.

The main objective of this work is to model suchnistationary systems, using transient
analysis of corresponding CTMC, in a reliable andcpe way, with computational
efficiency enabling its use for practical applicat — in particular, as a much more accurate
replacement to the Erlang-C and Erlang-A formulased by practitioners for quantitative
call center management.
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In this paper we model an inbound telephone caltezewith balking and abandonment,
i.e. the customer may not stay in the queue oraleziieg he is put on hold, or abandon the
gueue if the waiting time is too long, extending thonstationary M/M/n queuing model
analyzed by the author in [10].

The paper is structured as follows. In the nextige¢he model and the basic notation are
introduced. Section 3 reviews the proposed mutfp-stniformization algorithm with steady-
state detection and section 4 presents the resulismerical experiments. The paper ends
with a summary of results, conclusions and prosofealfuture research.

2. Model

We propose a following model of a Call Centre: #malyzed period is finite (e.g. one
working day) with the system starting empty. ThetestvariableX(t) represents total number
of service requests (served/waiting calls) in ty&tesn at timd. The sizen(t) of the system,
which represents the number of non empty possthtes is finite, equal tgt) = number of
identical servers (agents) plgd) equal capacity of the queue, with correspondiisgrdte
state spacep(t) ={0,..., n(t)}, | ¢(t)] = 1 +s(t) + q(t). Customers arrive according to an
inhomogenous Poisson process with rafg, the service time is i.i.d. exponentially
distributed with rate(t). The loadp(t) = A(t) / S(t) u(t) can be bigger than 1.

Service requests that are not served immediatelylezve the system (hang up or balk)
with probability 1 -y, otherwise, after joining the queue, they abandfter reaching their
patience time. The patience times are independent and identieaiponentially distributed
with mean 1 k. Queued requests are FCFS served. All of this eslaied via the state
transition rates of a CTMC which is described byfinitesimal generator matrix
Q(t) : n(t) + 1 xn(t) + 1, Q(t) = (gi;j(t)) and thanitial state probability vector p(0), where the
time dependent valugj(i #]) is the rate at which the statechanges to the stajeand
01 = -2+ Gij represents the rate for the event of stayingerstime state.

BecauseX(t) =k is a birth-and-death process, it can be descrledollowing state
dependent birtlay k1 = A(t) and deathyc k.1 = ux(t) rates:

_(A(D), if 0<k<s(t)—1

Alt) = {Wl(t), if st)<k<n-1 @)
_ (ku(t), if 1<k<s(t)—1

O = {00 + G = s if s <k<n @)

The transient distribution at timtep(t) for a given time dependent generator maf(¥
can be calculated using Kolmogorov's forward eaurei

p'(t) = p(HQ) )



26 M. R. Burak

where the vectop(t) = [po(t) ... pa(t)] gives probabilities of the system being in arytlee
states at timeé

As we do not allow blocking or abandonment dueh® overflow of the system, the
capacity of the queue has to be big enough to bsidered practically infinite, which is
insofar realistic, as the cost of setting prachcalnlimited queue space in the
telecommunications equipment is negligible nowadayfie system size must, in
consequence, ensure that the probability of benghe staten (blocking or abandoning
service requests) is insignificant compared to riéguired computational precision of the
whole model.

3. Multi-Step Uniformization with Steady-State Detecton

The infinitesimal generator matriQ(t) of an inhomogenous continuous-time Markov
chain (ICTMC) is time dependent and the procesgescribed by modified Kolmogorov's
forward equations (3).

When the changes in generator ma@occur in a discrete way at finite points of time
and all rates are constant during the intervalsvéen them, we could also replace the
analyzed ICTMC with a sequence of homogeneous regstmputing the state probability
vectors for consecutive time periods recursiveipgisiniformization as proposed e.g. in [16]
orin [17].

In case of a call center, time dependent chang@scian occur either discretely due to the
changing number of servers or due to changes imatheal rate. Since the forecast and
current traffic data in call center management iappbns are already aggregated with their
average values by an arbitrary period (e.g. 5, 1830@minutes), we will further assume,
similarly to [7], Q(t) being accordingly piecewise constant and refesutch consecutive time
periods of lengthA with the coresponding homogenous continuous-timerkiblv chains
(HCTMCs) as steps.

Another approach adopting uniformization for timé&k@mogenous CTMCs introduced by
[18] with subsequent improvements by [19], [20] §2d]] could be used if continuous arrival
rates were available, reducing the error of the@pmation with the average rates.

Uniformization or Randomization, known since thebjpeation of Jensen in 1953 and,
therefore, often referenced to as Jensen methotheiamethod of choice for computing
transient behavior of CTMCs. Many authors compared performance in different
applications with the conclusion that it usuallytprrforms known differential equation
solvers (e.g. [20], [22], [23]). To use uniformizat we first define the matrix:

—1+2
P=1+2 4)
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which fora > max;(|g;|) is a stochastic matrix. The value ofs called uniformization rate.
Further, let

k
B(at, k) = e‘“t% (5)
be the probability of a Poisson process with ratéo generatek events in the interval

[0, t). One now finds fop(t)
p(®) =p(0) X, _, Blat, )(P)X (6)

The formula (6) can be interpreted as a discrate tVlarkov process (DTMC) embedded
in a Poisson process generating events avbrate

The implemented uniformization algorithm is based 23] and computes transient state
probabilities for a CTMC with the following modittion of (6):

[oe)

p) =) Me“x )
i=0 :
wherea is uniformization rate, as described in (4), @0 is the state probability vector of
the underlying DTMC after each step i computedaiigely by:
11(0) = p(0), 1(i) =M@ —1)P (8)
To computep(i), within prespecified error tolerance, in finitene, the computation stops
when the remaining value of cdf of Poisson distidouis less than the error bousid
k at)t
1-) ew@ce 9)
i=0 u
with k being the right truncation point. Ag increases, the corresponding probabilities of
small number of Poisson events occurring become less signifiCEms allows us to start
the summation from thkth iteration called left truncation point with tleguation 7 reduced
to:

" (at)!
PO =) M@e (10)
i=l :
In [23] it is suggested that the valued ahdk be derived by:
Zl_l e—at (at)! <f 1= Zk e—at (at)t <€ (11)
i=0 it 20 i=0 T2

The main computational effort of the algorithm ligs consecutivek matrix vector
multiplications (MVM), necessary for calculation gbochs of DTMC in (8), and is @¥(#nk)
wherez is the number of nonzero elements of (spaPsefyor largeat, as the distribution
converges to normal, both left and right truncatpmints| andk in (11) will tend to be
symmetric to the mean. The numbetk) / 2 is consequently dD(at) and the number of
additional k-1) / 2 MVMs for the given error tolerance 6{Yat) and proportional to inverse
cdf for that givens. Therefore, although we could solve @) with any accuracy > 0,
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choosing a higher, acceptable for a respectivetipeda@pplication, value would bring some
computational advantage.

The savings due to (tighter) left truncation arewaver, rather insignificant, unless the
computation of the first significant DTMC is penfioed in a more efficient way.

An example of this, presented first in [24], is &@&®n recognizing the steady-state of the
underlying DTMC. If convergence of the probabilitgctor in (8) is guaranteed then we can
stop the MVM after arriving at the steady-state, et us assume that DTMC has the steady
state solutionf7(«) and that after th& iteration of (8)||77(S)- I1(«0)||v= 4(S), is smaller than
some predefined threshold, whélrf, is an arbitrary vector norm. Then (10) changes to:

(1105 ifs<l,
R 4 S g (at) S @i,
PO =1 > MDe &L ) - Zt:oe @y fi<s<k (12)
same as p(t) in (10) ifS>k

with p(t) used insteadp(t) denoting transient state probability vector cormepuusing
approximate steady state DTMC veci(lS). According to [25] for a predefined error bound
¢ (asin (9),(11)) the following inequality holds:

lp(®) =PIl <5 +258(S) (13)
The computing of consecutive epochs of the DTMEgsivalent to the power method of
finding stationary probability vector of a finite dvkov chain. According to [26] if the
stochastic matrixXP is aperiodic convergence of the power method igranteed and the
number of iterationk needed to satisfy a tolerance criteriomay be obtained approximately
from the relationship

kK _ , __logé
pr=2¢ le k= (14)

wherep is the magnitude of subdominant eigenvalyief matrixP

1= l4ll > lI221l = 1230l ... = Nl 4wl (15)
reducing, consequently, the computational compfe®iO (1 log & /log|A,]).

Since in most cases the size of the subdominaeheajue is not known in advance, the
usual method of testing for convergence is to erangsome norm of the difference of
successive iterates:

17 (k) — Mk —m)ll < & (16)

In [26] it is recommended to use the relative cogeace test of iterates spaced apart by

m being function of the rate of convergence:

[11;(k)—11; (k—m)|
700 )< ¢ 17)

and suggests envisaging a "battery” of differemveogence tests in order to accept the
approximation//(S) as being sufficiently accurate. The main riskhis approach is that in

max; (
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order to ensure, with the above proposed methdad, the//(S) is steady, an additional
computational effort for both the convergence testd the required additional number of
iterations can easily obliterate the potential 1sgsi

However, in case of our model, we can easily cateuprecise stationary distribution
I1(«) in advance, using global balance equations &s.gn [26]) with birth and death rates as
in (1) and (2). Therefore, we can consequentlypraposed in [10] instead of iterating the
DTMC vector in (8) up to a poirs where it would probably satisfy required conveigen
tests, simply use th&(«) (instead off7(S), as proposed in the original algorithm by [24) a
thep(t+A) approximation of(t+A).

This can be decided after relatively few iteratiolge to convergence properties of the
power method as described e.g. in [27] or in stahd@oks on numerical analysis, using
numerically estimated convergence function/ff) (as proposed in [10]), as it allows for
precise calculation of the error of such an appnation:

Q-1 e
EH0 = T ()l (18)

in order to decide if it is acceptable (smallemthize steady-detection threshéljl
One of the biggest advantages of the uniformizaisoits strict error bounding for one
step independently of its length. It is not difficto show (e.g. [28]) that the total error for a
number of uniformization steps is the sum of traioceerrors (error bounds) for each step.
Assume for a time period with a known initial distributionp(0) that for anyp(t),
t=(0, T] the value of each its state has to be computed an error less than, . Let us

further assume < er being the error after computing sop(é), t < T. Then:

& + Zi EAi < &r, ZiAi =T—-t, (19)
According to e.g. [20] for,= e, - ¢ being the remaining error in a step of length
A < (T-t) starting withp(t) the error should be:

er < &g % (20)
to not exceed the erref. This implies distribution of the error bound pootonal to the
length of the respective single interval. Althougls very intuitive, one could also consider,
according to the already mentioned computationahpexity of higher right truncation
values which is asymptotically @(\at), to set rather higher error bounds for the steitis
smallerat (shorter size or lower activity) or, in our cag@de them for higher steady-state
detection thresholds.

In particular, as the error bound of steady stpfg@imation is, in case the steady state
is reached, absolute and independent of the eifrdheo previous steps, we can set the
convergence threshofddependent rather on the actual total error bohad the error for the
single step (as proposed e.g. by [25]). It alloemisequently, to trade the error bounds of
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steps for higher convergence thresholds while wsiithin the global error bound for the
whole solution. Then, assuming the system at imé < m < T — to satisfye, < e_for each

p(t), t=(m, T] we have to:

‘Sm < Er —&m — Zzwn €A (21)

4. Computational Examples

To test the implementation the following model Heeen used: a service system (call
center) working for tim& = 24h and starting empty. The arrival rate charsgassoidal with
two peaks and is divided into 288 (5min) periodghvgonstant averaged rates, same as the
first example in [10]. The service rate and numtfeservers are constant(() = u, st) = 9),
the arrival rate varies in timei{t) = s«(0.85 + 0.2sin(8t/ T), 0 < t< T (the load varying
between 0.65 and 1.05 as shown in Figure 1. Theapibity 1 -y of a customer immediately
leaving when not served immediately is 0.03. Thamealue of patience time % /is equal
to 4 minutes.

The capacity of the queue is constant and chosémasdor all times the probabilify(t)
of the system being in the statés less than 1xIdfor all tested system sizes.

HVN 7\
: A4

06

24 48 72 96 120 144 168 192 216 240 264 288

Fig. 1. System load
Rys. 1. Obcigzenie systemu

To evaluate the impact of the proposed steady-statection algorithm, models of 5
different sizes have been at first calculated usingnodified uniformization algorithm with
an error step = 1.5x10° corresponding to the total error boung- 2.88x1C0°

All experiments were performed on a 1.7GHz PC uddit Linux OS with a processor
supporting vector operations (an Intel i5-3317UWEPU throttling disabled via kernel
scaling governor using avx instuction set with 26@bctors — 4 double or 8 float operations
simultaneously) , compiled with GNU GCC compilell measurements use standard Unix
time.h/clock() function — returning CPU time. All times are milliseconds. The detailed
results of computation times are in Table 1.



Inhomogeneous CTMC Model of a Call Center with Bagkand Abandonment 31
Table 1
Computation times, steady-state detection, loab<p61.05
en=1e-7  [6=0@,=1e-5)] &r=5e-03 [ eq=15e-02 | &r=3e-02 e7= 5€-02
System size time t/n2 time t/n2 time t,nz time t/n2 time t/n2
(ms) (ms) (ms) (ms) (ms)
54......(30+24)| 4.2% 1.46 4.27 1.46 3.25 1.1] 213 0.71 248 0.850
150....(100+50) 15.8| 0.70 15.3| 0.68 11.5 0.5] 446 0.1p8 3.f3 0.166
390 ...(300+90) 90.1| 0.59 86.2| 0.57 62.0 0.4] 436 0.286 153 0.101
1200(1000+20%) 709 | 0.49 715 0.50 534 0.3f 468 0.3p5 3y8 0.262
3300(3000+300)5996| 0.55 5547 0.51| 435( 040 4083 0.3y2 3915 0.859

The impact of reduced computational effort duetéag@y-state detection for some chosen
total error bounds (between 0 and 5%)0with corresponding steady-state detection

thresholds, is illustrated for the system of si28Lin Figure 2.

Figure 3 shows the expected state of the systenvedefrom the calculated probability

vector as:
ES(t) = X;im; (8), p(t) = [mg ... 70y,]

Figure 4 shows its relative error for different astg-state detection thresholds. The

reference for the error estimate has been calciaith ¢, = 1x10"°.

3000

no ssd(1.5e-5) rees no ssd(1e-13) 1.5%(1e-7) —— 5%(1e-7)

2500 - gt
2000
1500
1000

500

L

1 24 48 72 96 120 144 168 192 216 240 264 288

0

Fig. 2. Number of iterations (mvm) per step (load 0s65< 1.05, s = 1000, g = 200)

Rys. 2. Liczba operacji (mnzenia wektora matrycy) na interwat

Figure 5 shows the probability for an incoming ssgwequest to be served immediately

(with no waiting time).

5. Conclusion

In this paper we showed that the uniformizatiorhvgiteady-state detection can be used in
a very effective way to evaluate transient behawbmultiserver queues. Applied to the
modeling of the call center schedules, it allowfuation of transient system states for
systems of any, possible in practical applicati@ze in a very short time, in a numerically
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stable way, with very high precision, using relaljvcommon and inexpensive CPU. It can,
therefore, be used for schedule planning basedafable forecasts, as described in [7].

The presented method can be extended in seveeditidins. One could be, in regard to
call center modeling, to automatically optimize thedel size (queue length) with significant
impact on the computational efficiency. Another Idoloe to use known periodicity of traffic
forecasts to divide total error bound in betweewvikm times of the day, bounded by the
points of time when the system will reach a stestdye, than for the whole modeled period.
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Omowienie

Artykut opisuje zastosowaniertauchow Markowa z czasemaglym do modelowania
systemoOw telefonicznej obstugi klienta (Call CeptéVykorzystany model uwzedinia
zjawisko niecierpliwéci klientéw, tzn. klient mee st rozlgczy¢ albo natychmiast, gdy
znajdzie s} w kolejce (angbalking), albo gdy czas oczekiwania w kolejce przekro@goj
cierpliwos¢ (ang. abandonment). W celu uwzgidnienia zmian matrycy intensyw§ed
przeg¢ w czasie, model jest rozgaywany w interwatach odpowiadaych skokowym
zmianom matrycy intensywsoi przeg¢ (np. zmiana obsady, przerwy, awarie) oraz zmianom
natzenia ruchu wynikacym z prognozy ruchu. Modelowanie poszczegoélinych
(jednorodnych w czasie) interwatdow, tzn. wyliczanapowiednich (przégiowych)
rozktadoéw prawdopodobistwa standw, odbywa ¢siza pomog zmodyfikowanego
algorytmu uniformizacji, wykrywagcego osigniecie, z predefiniowan doktadndcia, stanu
stacjonarnego, w celu zmniejszenia nakfadu oblicxesgo. Metoda umdiwia bardziej
doktadne modelowanie systemow zmiennych w czasiepapularne metody bazge na
przyblizeniach stacjonarnych, z wydafoy umazliwiajaca ich bezpérednie zasipienie
w zastosowaniach praktycznych, takich jak np. plearde obsady.
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