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Summary. This paper considers a nonstationary multiserver queuing model with 
abandonment and balking for inbound call centers. We present a continuous time 
Markov chain (CTMC) model which captures the important characteristics of an 
inbound call center and obtain a numerical solution for its transient state probabilities 
using uniformization method with steady-state detection. 
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MODELOWANIE CALL CENTER JAKO SYSTEMU KOLEJKOWEGO 
Z WYKORZYSTANIEM ŁAŃCUCHÓW MARKOWA 
Z NIEJEDNORODNYM CZASEM CIĄGŁYM 

Streszczenie. Artykuł opisuje zastosowanie CTMC do modelowania Call Center 
z klientami o ograniczonej cierpliwości. 
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1. Introduction 

The problem of managing operations of a telephone call center in an efficient way has 

a long history in the area of operational research and is a topic of current research in various 

disciplines (see e.g. [1] or [2] for extensive overviews). From the modeling point of view they 

can be viewed as queuing systems.  

Such a queuing model can be described by a corresponding continuous time Markov 

chain (CTMC) whose steady-state distribution can be easily determined, either analytically – 
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with the Erlang-C formula for the simplest M/M/n model or with the Erlang-A formula for its 

version augmented with exponential patience time as proposed in [3] or numerically for more 

complicated models (as in [4] or recently [5]). However, as real call centers are time 

inhomogenous, with varying arrival rates and changing number of servers, scheduled to meet 

the forecasted demand and in order to provide break time, stationary models cannot be 

applied directly. It is, therefore, common to use approximations, assuming the system being 

pointwise stationary. Examples of such well established methods can be found e.g. in [1], [3] 

or in [6]. Unfortunately, stationary approximations are in many cases not adequate. For 

example, [4] compared them with simulations based on real inbound call center data, with the 

conclusion that due to the nonstationarity only some of the performance measures can be 

estimated with satisfactory accuracy. Ingolfsson in [7] compared them with an inherently 

transient model and found their results significantly inaccurate or even entirely unreliable. 

Despite this, their widespread use is commonly justified by simple implementation and low 

computational costs. 

Many authors proposed to use simulation, which can achieve any desired accuracy. 

However, in order to achieve acceptable precision, very long computational times are needed, 

which makes it often impracticable for common applications like schedule planning. 

An alternative approach, which is very effective in terms of the accuracy of the model, is 

to analyze transient CTMC using numerical methods, solving effectively their corresponding 

system of ordinary differential equations (ODE’s) as proposed in [8], [9] or by the author 

in [10]. 

Other, less computationally intensive, analytical methods that can approximate such 

nonstationary systems more accurately than stationary models are closure approximations 

and fluid and diffusion approximations, discussed e.g. in [3], [6], [11] and [12] or, for the 

direct comparison of some examples of such methods with the numerical methods and 

stationary approximations, in [8]. 

Although there is a number of papers dealing with the phenomena of customer balking 

and abandonment in multiserver queues (e.g. [3], [13-15] or recently [5]), they concentrate on 

stationary models or approximations. To the best of our knowledge, an inherently transient 

CTMC model dealing with both balking and abandonment of a call center, has never been 

investigated. 

The main objective of this work is to model such non-stationary systems, using transient 

analysis of corresponding CTMC, in a reliable and precise way, with computational 

efficiency enabling its use for practical applications – in particular, as a much more accurate 

replacement to the Erlang-C and Erlang-A formulas, used by practitioners for quantitative 

call center management.  
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In this paper we model an inbound telephone call center with balking and abandonment, 

i.e. the customer may not stay in the queue once realizing he is put on hold, or abandon the 

queue if the waiting time is too long, extending the nonstationary M/M/n queuing model 

analyzed by the author in [10]. 

The paper is structured as follows. In the next section the model and the basic notation are 

introduced. Section 3 reviews the proposed multi-step uniformization algorithm with steady-

state detection and section 4 presents the results of numerical experiments. The paper ends 

with a summary of results, conclusions and proposals for future research. 

2. Model 

We propose a following model of a Call Centre: the analyzed period is finite (e.g. one 

working day) with the system starting empty. The state variable X(t) represents total number 

of service requests (served/waiting calls) in the system at time t. The size n(t) of the system, 

which represents the number of non empty possible states, is finite, equal to s(t) = number of 

identical servers (agents) plus q(t) equal capacity of the queue, with corresponding discrete 

state space φ(t) = {0,…, n(t)} , | φ(t)| = 1 + s(t) + q(t). Customers arrive according to an 

inhomogenous Poisson process with rate λ(t), the service time is i.i.d. exponentially 

distributed with rate μ(t). The load ρ(t) = λ(t) / s(t) μ(t) can be bigger than 1.  

Service requests that are not served immediately can leave the system (hang up or balk) 

with probability 1 - γ, otherwise, after joining the queue, they abandon after reaching their 

patience time. The patience times are independent and identically exponentially distributed 

with mean 1 / η. Queued requests are FCFS served. All of this is modeled via the state 

transition rates of a CTMC which is described by infinitesimal generator matrix 

Q(t) : n(t) + 1 x n(t) + 1, Q(t) = (qi,j(t)) and the initial state probability vector p(0), where the 

time dependent value qi,j(i ≠ j) is the rate at which the state i changes to the state j and 

qi,I = -∑i≠j qi,j  represents the rate for the event of staying in the same state. 

Because X(t) = k is a birth-and-death process, it can be described by following state 

dependent birth qk,k+1 = λk(t) and death qk,k-1 = μk(t)  rates: 

����� = �����,	����,    ��  0 ≤ � ≤ ���� − 1��  ���� ≤ � ≤ � − 1 (1) 
����� = ������,�������� + �� − ������,      ��  1 ≤ � ≤ ���� − 1��  ���� ≤ � ≤ �  (2) 

The transient distribution at time t p(t) for a given time dependent generator matrix Q(t) 

can be calculated using Kolmogorov‘s forward equations: 

����� = �������� (3) 



26 M. R. Burak 

where the vector p(t) = [p0(t) ... pn(t)] gives probabilities of the system being in any of the 

states at time t. 

As we do not allow blocking or abandonment due to the overflow of the system, the 

capacity of the queue has to be big enough to be considered practically infinite, which is 

insofar realistic, as the cost of setting practically unlimited queue space in the 

telecommunications equipment is negligible nowadays. The system size must, in 

consequence, ensure that the probability of being in the state n (blocking or abandoning 

service requests) is insignificant compared to the required computational precision of the 

whole model. 

3. Multi-Step Uniformization with Steady-State Detection 

The infinitesimal generator matrix Q(t) of an inhomogenous continuous-time Markov 

chain (ICTMC) is time dependent and the process is described by modified Kolmogorov‘s 

forward equations (3). 

When the changes in generator matrix Q occur in a discrete way at finite points of time 

and all rates are constant during the intervals between them, we could also replace the 

analyzed ICTMC with a sequence of homogeneous systems computing the state probability 

vectors for consecutive time periods recursively using uniformization as proposed e.g. in [16] 

or in [17]. 

In case of a call center, time dependent changes in Q can occur either discretely due to the 

changing number of servers or due to changes in the arrival rate. Since the forecast and 

current traffic data in call center management applications are already aggregated with their 

average values by an arbitrary period (e.g. 5, 15 or 30 minutes), we will further assume, 

similarly to [7], Q(t) being accordingly piecewise constant and refer to such consecutive time 

periods of length Δ with the coresponding homogenous continuous-time Markov chains 

(HCTMCs) as steps. 

Another approach adopting uniformization for time-inhomogenous CTMCs introduced by 

[18] with subsequent improvements by [19], [20] and [21] could be used if continuous arrival 

rates were available, reducing the error of the approximation with the average rates. 

Uniformization or Randomization, known since the publication of Jensen in 1953 and, 

therefore, often referenced to as Jensen method, is the method of choice for computing 

transient behavior of CTMCs. Many authors compared its performance in different 

applications with the conclusion that it usually outperforms known differential equation 

solvers (e.g. [20], [22], [23]). To use uniformization we first define the matrix: 

� = � + �
� (4) 
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which for α ≥ maxi(|qi,i|) is a stochastic matrix. The value of α is called uniformization rate. 

Further, let  

����, �� =  !�" ��"�#
�!  (5) 

be the probability of a Poisson process with rate α to generate k events in the interval 

[0, t). One now finds for p(t)    
���� = ��0� % ����, ������&

�'(  (6) 
The formula (6) can be interpreted as a discrete time Markov process (DTMC) embedded 

in a Poisson process generating events at rate α. 

The implemented uniformization algorithm is based on [23] and computes transient state 

probabilities for a CTMC with the following modification of (6): 

���� = ) *��� !�" ��"�+
,!

&
,'(  (7)  

where α is uniformization rate, as described in (4), and Π(i) is the state probability vector of 

the underlying DTMC after each step i computed iteratively by:  

*�0� = ��0�,  *��� = *�� − 1�� (8) 
To compute p(i), within prespecified error tolerance, in finite time, the computation stops 

when the remaining value of cdf of Poisson distribution is less than the error bound ε: 

1 − )  !�" ��"�+
,!

�
,'( ≤ - (9) 

with k being the right truncation point. As αt increases, the corresponding probabilities of 

small number of i Poisson events occurring become less significant. This allows us to start 

the summation from the l’th iteration called left truncation point with the equation 7 reduced 

to:  

���� = ) *��� !�" ��"�+
,!

�
,'.  (10) 

In [23] it is suggested that the values of l and k be derived by:  

)  !�" ��"�+
,!

.!/
,'( ≤ 0

1 ,  1 − )  !�" ��"�+
,!

�
,'( ≤ 0

1 (11) 
The main computational effort of the algorithm lies in consecutive k matrix vector 

multiplications (MVM), necessary for calculation of epochs of DTMC in (8), and is of O(ηk) 

where η is the number of nonzero elements of (sparse) P. For large αt, as the distribution 

converges to normal, both left and right truncation points l and k in (11) will tend to be 

symmetric to the mean. The number (l+k) / 2 is consequently of O(αt) and the number of 

additional (k-l) / 2 MVMs for the given error tolerance of O(√αt) and proportional to inverse 

cdf for that given ε. Therefore, although we could solve the p(t) with any accuracy ε > 0, 
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choosing a higher, acceptable for a respective practical application, value would bring some 

computational advantage. 

The savings due to (tighter) left truncation are, however, rather insignificant, unless the 

computation of the first significant DTMC is performed in a more efficient way.  

An example of this, presented first in [24], is based on recognizing the steady-state of the 

underlying DTMC. If convergence of the probability vector in (8) is guaranteed then we can 

stop the MVM after arriving at the steady-state, i.e. let us assume that DTMC has the steady 

state solution Π(∞) and that after the S iteration of (8) ||Π(S)- Π(∞)||v = δ(S), is smaller than 

some predefined threshold, where ||.||v is an arbitrary vector norm. Then (10) changes to:  

�̂��� =
345
46  *�7� 

 ) *��� !�" ��"�+
,! +8

,'.  �9:  9� ���� �� �10�
*�7��1 − )  !�" ��"�+

,!
8
,'( �      

�� 7 ≤ ;,
�� ; < 7 ≤ �,
�� 7 > �

 (12) 
with �̂��� used instead ���� denoting transient state probability vector computed using 

approximate steady state DTMC vector Π(S). According to [25] for a predefined error bound 

ε (as in (9),(11)) the following inequality holds: 

‖���� − �̂���‖ < 0
1 + 2@�7� (13) 

The computing of consecutive epochs of the DTMC is equivalent to the power method of 

finding stationary probability vector of a finite Markov chain. According to [26] if the 

stochastic matrix P is aperiodic convergence of the power method is guaranteed and the 

number of iterations k needed to satisfy a tolerance criterion ξ may be obtained approximately 

from the relationship  

A� = B,   �.  .   , � = DEF G
DEF H (14) 

where ρ is the magnitude of subdominant eigenvalue λ2 of matrix P 

1 = ‖�/‖ > ‖�1‖ ≥ ‖�J‖ … ≥ ‖�L‖ (15) 
reducing, consequently, the computational complexity to M�� log B / log|�1|�. 

Since in most cases the size of the subdominant eigenvalue is not known in advance, the 

usual method of testing for convergence is to examine some norm of the difference of 

successive iterates:  

‖*,��� − *,�� − :�‖ <  B (16) 
In [26] it is recommended to use the relative convergence test of iterates spaced apart by 

m being function of the rate of convergence: 

:9S, T|U+���!U+��!V�|
|U+���| W <  B (17) 

and suggests envisaging a "battery" of different convergence tests in order to accept the 

approximation Π(S) as being sufficiently accurate. The main risk in this approach is that in 
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order to ensure, with the above proposed methods, that the Π(S) is steady, an additional 

computational effort for both the convergence tests and the required additional number of 

iterations can easily obliterate the potential savings. 

However, in case of our model, we can easily calculate precise stationary distribution 

Π(∞) in advance, using global balance equations (e.g. as in [26]) with birth and death rates as 

in (1) and (2). Therefore, we can consequently, as proposed in [10] instead of iterating the 

DTMC vector in (8) up to a point S where it would probably satisfy required convergence 

tests, simply use the Π(∞) (instead of Π(S), as proposed in the original algorithm by [24]) as 

the ̂p(t+Δ) approximation of p(t+Δ). 

This can be decided after relatively few iterations due to convergence properties of the 

power method as described e.g. in [27] or in standard books on numerical analysis, using 

numerically estimated convergence function of Π(i) (as proposed in [10]), as it allows for 

precise calculation of the error of such an approximation:  

X"Y∆ = ‖U�.�!U�&�‖[‖U�&�‖[  (18) 
in order to decide if it is acceptable (smaller than the steady-detection threshold δt). 

One of the biggest advantages of the uniformization is its strict error bounding for one 

step independently of its length. It is not difficult to show (e.g. [28]) that the total error for a 

number of uniformization steps is the sum of truncation errors (error bounds) for each step. 

Assume for a time period T with a known initial distribution p(0) that for any p(t), 

t=(0, T] the value of each its state has to be computed with an error less than ɛ
T
 . Let us 

further assume εt < εT being the error after computing some p(t), t < T. Then: 

X" + ∑ -∆+  , ≤ X] ,  ∑ ∆,  = ^ − �,   ,  (19) 
According to e.g. [20] for ɛ

R
 = ɛ

T
  - ɛ

t
  being the remaining error in a step of length 

Δ ≤ (T−t) starting with p(t) the error should be: 

-∆ ≤ X_ ∆
]!" (20) 

to not exceed the error εT. This implies distribution of the error bound proportional to the 

length of the respective single interval. Although it is very intuitive, one could also consider, 

according to the already mentioned computational complexity of higher right truncation 

values which is asymptotically of O(√αt), to set rather higher error bounds for the steps with 

smaller αt (shorter size or lower activity) or, in our case, trade them for higher steady-state 

detection thresholds. 

In particular, as the error bound of steady state approximation is, in case the steady state 

is reached, absolute and independent of the error of the previous steps, we can set the 

convergence threshold δ dependent rather on the actual total error bound than the error for the 

single step (as proposed e.g. by [25]). It allows, consequently, to trade the error bounds of 
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steps for higher convergence thresholds while still within the global error bound for the 

whole solution. Then, assuming the system at time m, 0 ≤ m < T – to satisfy ɛ
t
 < ɛ

T
 for each 

p(t), t=(m, T] we have to: 

@V ≤ 	 X] � XV � ∑ -∆
]
V 	 (21)	

4. Computational Examples 

To test the implementation the following model has been used: a service system (call 

center) working for time T = 24h and starting empty. The arrival rate changes sinusoidal with 

two peaks and is divided into 288 (5min) periods with constant averaged rates, same as the 

first example in [10]. The service rate and number of servers are constant (μ(t) = μ, s(t) = s), 

the arrival rate varies in time - λ(t) = sμ(0.85 + 0.2sin(3πt / T), 0 ≤ t < T (the load varying 

between 0.65 and 1.05 as shown in Figure 1. The probability 1 - γ of a customer immediately 

leaving when not served immediately is 0.03. The mean value of patience time 1 / η is equal 

to 4 minutes. 

The capacity of the queue is constant and chosen so that for all times the probability pn(t) 

of the system being in the state n is less than 1×10-5 for all tested system sizes. 

 
Fig. 1. System load 
Rys. 1. Obciążenie systemu 

To evaluate the impact of the proposed steady-state detection algorithm, models of 5 

different sizes have been at first calculated using unmodified uniformization algorithm with 

an error step ɛ = 1.5×10-5 corresponding to the total error bound ɛ
T
 = 2.88×10-3. 

All experiments were performed on a 1.7GHz PC under 64bit Linux OS with a processor 

supporting vector operations (an Intel i5-3317U with CPU throttling disabled via kernel 

scaling governor using avx instuction set with 256bit vectors – 4 double or 8 float operations 

simultaneously) , compiled with GNU GCC compiler. All measurements use standard Unix 

time.h/clock() function – returning CPU time. All times are in milliseconds. The detailed 

results of computation times are in Table 1. 
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Table 1
Computation times, steady-state detection, load 0.65≤ρ≤1.05 

εΔ=1e-7 δ=0(εΔ=1e-5) εT= 5e-03 εT= 1.5e-02 εT= 3e-02 εT= 5e-02 

System size time 
(ms) 

t/n2 time 
(ms) 

t/n2 time 
(ms) 

t/n2 time 
(ms) 

t/n2 time 
(ms) 

t/n2 

54......(30+24) 4.25 1.46 4.27 1.46 3.25 1.11 2.13 0.731 2.48 0.850 
150....(100+50) 15.8 0.70 15.3 0.68 11.5 0.51 4.46 0.198 3.73 0.166 
390 ...(300+90) 90.1 0.59 86.2 0.57 62.0 0.41 43.6 0.286 15.3 0.101 
1200(1000+200) 709 0.49 715 0.50 534 0.37 468 0.325 378 0.262 
3300(3000+300) 5996 0.55 5547 0.51 4350 0.40 4053 0.372 3915 0.359 

The impact of reduced computational effort due to steady-state detection for some chosen 

total error bounds (between 0 and 5×10−2), with corresponding steady-state detection 

thresholds, is illustrated for the system of size 1200 in Figure 2.  

Figure 3 shows the expected state of the system, derived from the calculated probability 

vector as:  

`7��� = ∑ �a,, ���, ���� � 	 ba(…acd  
Figure 4 shows its relative error for different steady-state detection thresholds. The 

reference for the error estimate has been calculated with ɛ
Δ
 = 1×10-13. 

 
Fig. 2. Number of iterations (mvm) per step (load 0.65 ≤ ρ ≤ 1.05, s = 1000, q = 200) 
Rys. 2. Liczba operacji (mnożenia wektora matrycy) na interwał 

Figure 5 shows the probability for an incoming service request to be served immediately 

(with no waiting time). 

5. Conclusion 

In this paper we showed that the uniformization with steady-state detection can be used in 

a very effective way to evaluate transient behavior of multiserver queues. Applied to the 

modeling of the call center schedules, it allows calculation of transient system states for 

systems of any, possible in practical applications, size in a very short time, in a numerically 
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stable way, with very high precision, using relatively common and inexpensive CPU. It can, 

therefore, be used for schedule planning based on available forecasts, as described in [7].  

The presented method can be extended in several directions. One could be, in regard to 

call center modeling, to automatically optimize the model size (queue length) with significant 

impact on the computational efficiency. Another could be to use known periodicity of traffic 

forecasts to divide total error bound in between known times of the day, bounded by the 

points of time when the system will reach a steady state, than for the whole modeled period. 
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Omówienie 

Artykuł opisuje zastosowanie łańcuchów Markowa z czasem ciągłym do modelowania 

systemów telefonicznej obsługi klienta (Call Center). Wykorzystany model uwzględnia 

zjawisko niecierpliwości klientów, tzn. klient może się rozłączyć albo natychmiast, gdy 

znajdzie się w kolejce (ang. balking), albo gdy czas oczekiwania w kolejce przekroczy jego 

cierpliwość (ang. abandonment). W celu uwzględnienia zmian matrycy intensywności 

przejść w czasie, model jest rozwiązywany w interwałach odpowiadających skokowym 

zmianom matrycy intensywności przejść (np. zmiana obsady, przerwy, awarie) oraz zmianom 

natężenia ruchu wynikającym z prognozy ruchu. Modelowanie poszczególnych 

(jednorodnych w czasie) interwałów, tzn. wyliczanie odpowiednich (przejściowych) 

rozkładów prawdopodobieństwa stanów, odbywa się za pomocą zmodyfikowanego 

algorytmu uniformizacji, wykrywającego osiągnięcie, z predefiniowaną dokładnością, stanu 

stacjonarnego, w celu zmniejszenia nakładu obliczeniowego. Metoda umożliwia bardziej 

dokładne modelowanie systemów zmiennych w czasie niż popularne metody bazujące na 

przybliżeniach stacjonarnych, z wydajnością umożliwiającą ich bezpośrednie zastąpienie 

w zastosowaniach praktycznych, takich jak np. planowanie obsady. 
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