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HEURISTIC ALGORITHM FOR SCHEDULING MULTIPLE-
OPERATION JOBS OF CYCLIC MANUFACTURING PROCESSES 

Summary. The paper deals with the problem of evaluating the performance of 
job-shop systems under a cyclic manufacturing process. This process for each job is 
specified uniquely. Modelling based on timed event graphs terminology allows the 
performance of a system of repetitive production processes to be evaluated. The 
objective of the schedule production is to minimize the cycle time and the number of 
jobs that are actually required in the process. The considered problem is specified as a 
linear programming problem and is solved by a heuristic algorithm.  
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HEURYSTYCZNY ALGORYTM PLANOWANIA 
WIELOOPERACYJNYCH ZADAŃ CYKLICZNYCH PROCESÓW 
PRODUKCYJNYCH 

Streszczenie. Artykuł dotyczy oszacowania wydajności systemów typu job-shop, 
w których występują cykliczne procesy produkcyjne. Proces produkcyjny jest 
jednoznacznie określony dla każdego zadania. Modelowanie oparte na terminologii 
czasowych grafów znakowanych pozwala oszacować wydajność systemu cyklicznych 
procesów produkcyjnych. Celem planowania produkcji jest minimalizacja czasu 
cyklu i liczby zadań wymaganych w procesie. Rozważany problem przedstawiony 
jest jako problem programowania liniowego i rozwiązywany za pomocą algorytmu 
heurystycznego. 

Słowa kluczowe: job-shop, czasowy graf znakowany, czas cyklu, oszacowanie  
wydajności 
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1. Introduction  

The application of effective methods and models in manufacturing field are determined 

by automation of production control. Scheduling is one of the most fundamental problems to 

be solved within the manufacturing industry. It relates to the sequence of operations on 

machines and is directly linked with productivity. There is a great need for improving 

scheduling within the manufacturing environment. Scheduling problems, generally 

considered within large scale systems, are difficult to solve in most practical situations. The 

logical strategy is to pursue scheduling methods which consistently and efficiently generate 

good schedules [8, 13]. 

We have considered a cyclic manufacturing process in which each job is specified as a 

sequence of machines to be visited. Every sequence is defined uniquely for each job. We are 

assuming that the time spent by jobs on the machines is fixed and deterministic. The input 

sequence of loading jobs into the system is also given. 

In this paper, we are interested in evaluating the performance of such job-shop systems 

under a cyclic manufacturing process. A performance evaluation method allows us to 

determine the limits of using a system, i.e. the throughput of the system or the waiting times 

of machines. Such operation sequences on machines should be found that would minimise the 

makespan, that is the total time required to complete all jobs. This problem has been studied 

by H.P. Hillion and J.M. Proth [10]. It has been shown that  the solution to this problem is the 

solution to an integer linear programming problem derived from the event graph model Laftit 

S., Proth J.M., Xie X. L. [14]. 

Several efficient heuristic approaches have been proposed [7, 12, 16]. Recently, 

multiobjective heuristic algorithms have been applied to job-shop scheduling problems 

[20, 21]. Furthermore, immune algorithms for production job scheduling can be found in 

[18]. Usually, heuristic procedures [14] and simulation methods [11] are more dedicated to 

solving such problems. What is more, problems in the field of scheduling belong to the 

category of NP-complete problems [9]. 

Models of asynchronous systems such as timed Petri nets (TPN) [2, 19] can be directly 

used to study the performance of systems, in particular by using a special class of TPNs 

called timed event graphs (TEG). By using known results about the TEG [11], the model 

makes it possible to evaluate this performance measured as the production rate in a steady 

state [6]. It is possible to fully utilize some machines, which are then referred to as a 

bottleneck, during a steady state with a minimal number of jobs in process. This means that 

the maximum production rate is obtained when those machines are fully utilized. The 

minimum distribution of jobs in a process leads to the full utilization of the bottleneck 

machines [4, 10]. 
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2. Petri Net modelling 

2.1. Mathematical structure of Petri nets 

We use Petri nets to model the dynamic behaviour of job-shop systems. They are a 

special type of graph which consists mainly of two types of elements: places and transitions. 

We can assume that a set of places represents system states and the set of transitions 

represents events which modify the state of the system.  

Definition 1. A Petri net structure is specified as a four-tuple N=(P,T,F,W) where: 

 P={p1, p2,..., pr} is a finite set of places; 

T={t1, t2, ..., tn} is a finite set of transitions; 

(PT0, PT=0) i.e. places and transitions are disjoint sets; 

 F(PxT)(TxP) is a flow relation (set of directed arcs); 

W:F{1,2,...} is a weight function (assigns a weight to each arc). 

A Petri net structure is weighted-bipartite, directed graph consisting of two kinds of nodes: 

places and transitions. Since this graph is bipartite, there are no arcs from place to place or 

from transition to transition. A net structure represents the static part of the modelling 

stystem. In order to determine the formal definition of Petri net an initial marking is 

introduced.  

Definition 2. A Petri net is the couple PN=(N, M0) where: 

 N=(P,T,F,W) is a Petri net structure; 

 M0 is an initial marking function which assigns a non-negative number of so called 

tokens to each place the net, M0: P{0,1,2,...}. 

Let any function M: P{0,1,2,...} be called a marking in a net N. 

A Petri net PN is said to be ordinary if all of its arc weights are equal to one. The use of 

asynchronous models for performance evaluation requires the introduction of a time 

parameter. 

Definition 3. A timed Petri net is specified as a triplet TPN=(PN, M0, Τ), where Τ:TR+ is a 

function assigning a non-negative rational number to each transition tT. 

We assume that each transition tT has a duration t = Τ(t) measured in time units.  

Definition 4. A timed event graph (TEG) is such a ordinary timed Petri net in which 

•p=p•=1 for all pP, where: 

•p={t:(t,p)F} - the set of input transitions of p; 

p•={t:(p,t)F} - the set of output transitions of p. 

In a TEG ever arc has the weight equal to one, each place has exactly one upstream  and 

downstream transition. Situations such as confluent places, 'or' places and multiplying tokens 

are forbidden. A token in a TEG may be in one of the following two states: available or 
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unavailable. In the literature event graphs are sometimes also referred to as marked graphs or 

as decision free Petri nets [1, 4].  

2.2. Timed event graph modelling 

In order to simulate of cyclic manufacturing processes a marking in a TEG is changed 

according to the transition enabling and firing rule. The firing time of a transition is the time 

that elapses between the starting and the completion of the firing of the transition. It is 

assumed that a firing is initiated as soon as the transition is enabled.  The firing of transition 

tT at time t induces two actions on the marking at the time when tokens are removed from 

the input place of t and added to the output place of t. The tokens are consumed by a 

transition remain in the preceding places during the firing time. Durations associated with 

firing times will be used to represent operations times in manufacturing processes, where 

transitions represent machines.  

The holding time of a place is the time a token must spend in the place before 

contributing to the enabling of the downstream transitions.  The holding times can be the 

minimal time tokens have to spend in places, while firing times represent the actual time it 

takes to fire a transition.  

The marking Mn is said to be reachable from the marking M0 if a sequence of firings 

=t1t2...tn  that transforms M0 to Mn exists. The set of all possible markings reachable from M0 

is denoted by R(M0). For a connected TEG, with initial marking M0, a firing sequence can 

lead back to M0 if it fires every transition an equal number of times [1]. 

Let us consider a job-shop system. A job-shop system consists of different types of jobs 

J1,J2,....,Jn and a certain set of machines m1,m2,...,mr. The manufacturing process of each job 

is supposed to be uniquely defined as a manufacturing routing through the system (i.e., a 

sequence of machines to visit) with a given time spent on each machine. The routing 

corresponding to job type Jv is determined by: 

Jv=m1(v),m2(v),...,mr(v), v=1,2,...,n  

while, the fixed seqencing of the jobs on machine mu is represented by 

mu=J1(u),J2(u),...,Js(u),  u=1,2,...,r. 

The jobs are running through various manufacturing processes. Not all jobs go through the 

same path of manufacturing. The same job type may appear several times in the input 

sequence of jobs into the system. 

Let us now consider the TEG model of the job-shop cyclic manufacturing. The way to 

model was extensively explaned in [4, 10].  

In TEG model each transition firing corresponds to executing the operation determined 

by the order specified in the manufacturing routing. The place corresponds to a storage buffer 
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or resource. The presence of a token in a place is interpreted as the condition associated with 

the place being true. In the other interpretation, a token is put in a place to indicate that the 

resource is available. 

The example shown in Fig.1 illustrates the model of a manufacturing routing of the 

(s+1)th operation job <Jk>=<m0(k),..,mi-1(k), mi(k), mi+1(k),.., ms(k)>, where transition ti
k 

corresponds to the execution of operation mi(k) and pb
i represents storage buffer. Places are 

represented by circles and transitions by bold bars. A token on a line represents the job as it 

flows through the system.  

 

 

 

 

 

 

 

 
We are assuming that the job recirculates as soon as it has been completed. The closed 

loop model is shown in Fig. 2. The repetitive operation of the manufacturing process is 

modelled by a loop closing in the place pr
k

  representing resources. A token in such a place 

can model a free transportation resources for starting a new job of the same type. The total 

number of tokens in a cycle remains constant, and shows how many jobs can be performed in 

parallel in the same cycle. 

 
 

 

 

 

 

 

 

 

 

In the papers [10] authors introduced three types of elementary circuits: process circuits, 

command circuits and mixed circuits. 

The circuit (t0
k, pb

1, …, ti
k, pb

i+1, …, ts
k, pr

k, t0
k) of Fig. 2 is referred to as a process circuit, 

which model the cyclic manufacturing process. The command circuits model the control of 

the system. One command circuit is associated to each machine. For instance  (tk
i
-1, p1

i, tk
i
+1, 

p2
i, tk

i, p3
i, tk

i
-1) is a command circuit corresponding to mi machine, which is given in Fig. 3. 

Fig. 1.    The model of routing of Jk job as a sequence of transition 
Rys. 1. Model marszruty zadania Jk jako sekwencja tranzycji 
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Fig. 2.  The model of cyclic manufacturing process related to Jk job  
Rys. 2. Model cyklicznego procesu produkcyjnego dla zadania Jk 
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In each command circuit there is one token, which prevents transitions corresponding to 

the same machine to be fired simultaneously 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 According to Hillion and Proth [10] the model related to cyclic manufacturing processes 

is given in Fig. 4.    

    
    
   

 
       
    
 
 
  

 

 

 

 

 

 

 

 

   

 

 

 
Fig. 4.  TEG model of cyclic manufacturing processes 
Rys. 4. Model TEG cyklicznych procesów produkcyjnych 
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Fig. 3.  The model of the sequencing of jobs on mi  machine 
Rys. 3. Model sekwencji zadań wykonywanych na maszynie mi 
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The mixed circuits is partially composed of parts of the command circuits, and partially 

of parts of the process circuits. For instance (ti-1
k+1, p2

i-1, ti
k

-1, pb
i, ti

k, pb
s, ts

k , pr
k, t0

k, p3
0, t0

k+1, 

pb
1, ti-1

k+1)  is a mixed circuit. 

The loop-closing places pr
k

  k=1,2, … , in Fig. 5 will denote by rk,  k=1,2, … , and, 

likewise pb
k, will denote by bk, k=1,2,… , olso the places in command circuits will denote by 

ck, k=1,2, …, . 

3. Cycle time in a performance evaluation 

 We are interested in how long it will take each transition to regularly initiate firing in a 

TEG. In terms of Petri nets, this time, called cycle time, is determined by the time necessary 

to complete a firing sequence and reload back to the start after firing each transition at least 

once.  We have studied the properties of schedules associated with periodic sequences. To 

obtain the maximum performence within the system, the transition must fire as soon as it is 

enabled. The times at which those transitons fire are the earliest possible times [3]. 

    In order to compute the cycle  time, we need to determine specific circuits in the TEG, 

called elementary circuits. An elementary circuit is a directed path that goes from one node 

i.e., a place or a transition, back to this node in such a manner that no other nodes are 

repeated. Let  be the set of elementary circuits of a TEG. For each  the cycle time of  
is defined by [10]: 

C() = (()/M()), (1)    

where:  

()=tt   - is the sum of the transition firing times in circuit . 

M()=pP M(p) - is the number of tokens circulating in circuit  at marking M. 

We will refer to the elementary circuits for which the cycle time is the greatest. The 

maximum cycle time taken over all elementary circuits is given 

C(*) = max C(). (2)  

          

Then * is a circuit called critical. The known C(*) allows us to evaluate a performance 

measure, namely the production rate specified by     

 = min (M()/()) = 1/C(*) (3)  
    
The critical circuit *  for which C(*) is cycle time bounds the throughput of the system. The 

machines determining the value of C(*) are referred to as bottleneck machines. In order to 

discuss the maximum performance, we must consider the minimum distribution of jobs in the 
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process which leads to the full utilization of bottleneck machines. In such a situation, the 

system works at its maximum rate and its productivity is the greatest. 

The maximum performance is achieved when transitions fire as soon as they are enabled. 

The times at which transitions fire are the earliest possible times [3]. In a TEG, for given 

cycle time C, the earliest instants of initiating the firing of transition tiT are, by definition, 

determined as follows: 

si(k) = si(1) + (k-1)C (4) 

where:  

si(k) - is the instant of the kth firing initiation of transition ti. 

Let us consider the fragment of the TEG in which transition ti constitutes the input 

transition and tj - the output transition of place pP. 

Hence, for cycle time C, the instant of the kth firing completion of transition tiT must be less 

then the instant of the (k+M0(p))th firing initiation of transition tjT and the following 

relations must be true:   

si(k) + (ti)  sj(k+M0(p) (5) 

si(1) + (k-1)C + (ti)  sj + (k-1+M0(p))C ,    pP,  (6) 

 (ti)  sj(1) - si(1) + M0(p)C. (7) 

Obtaining the minimum cycle time can be expressed as a linear programming problem, 

and a polynomial algorithm exists to solve it [14]. When the circuits and the transition firing 

times are known, the production rate depends on the initial marking M0 in the net. 

4. Problem formulation  

We are considering how to schedule multiple-operation jobs on different types of 

machines, where the completion of a job may require a few operations to be performed in a 

particular sequence. Each job is completed in a multi-machining operation and is associated 

with a period of processing time. 

The objective of the schedule is to minimize the cycle time C and the number of jobs  that 

are actually required in the process. This is important because the number of pallets or carts 

circulating in the system should be as low as possible. 

Let us now consider the elementary circuit  of a TEG. The total transition firing times 

belonging to circuit  is given by () = t(t). According to [14], it is assumed that every 

place holds no more than two tokens. We can always extend the TEG so that the optimal 

marking exists in which evere place contains no more than one token. For this purpose, for 

each place of the model, one additional place and additional transition whose firing time is 

equal to zero are introduced.  
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From now on, we will represent 

M() =  M(p), (8) 
           p 
In particular, the inequality (7) for all places belonging to elementary circuit  can be 
expressed as: 

()/M() = C()  C. (9) 

For any elementary circuit  and the minimum number of tokens Mmin() such that 

C()C, the following relation is true 

M0()  Mmin(),  (10) 

where M0() is the initial marking determining the number of tokens in circuit  at a steady 

state. Let us now turn to the problem of minimizing the number of jobs in the process. The 

objective function should be to minimize the total number of tokens that are not changed by 

any transition firing and are uniquely determined by the initial marking M0. Now we 

represents the criterion to minimize as follows [14]: 

(M0
*) = min  M0(p),  (11) 

                              Mo  pP 
subject to 

()/M0()  C,    ,  (12) 

((p)  sp(1) - sp(1) + M0(p)C ,       pP.  (13) 

 
The problem (11) - (13) is specified as a linear programming problem.  

5. Solution methodology  

5.1. Construction of a feasible schedule 

    This section presents numerical results of applying a heuristic algorithm based on the 

idea of Laftit S. at el. [14] to obtain a solution to problem (11) - (13). 

We can evaluate the value of C from inequalities (8), (10). Let  be a positive real value. The 

value of  may represent the longest cycle time of bottleneck machines.  

The marking M0 is a feasible marking for  if cycle time C fulfils inequality (13) and C. 

The objective of function (M0
*) is to minimize the total number of tokens with the set of 

instances of first firing initiations of transitions.  

The main idea behind obtaining a feasible solution of problem (11)-(13) is based on the 

criterion associated with relation (12). This can be rewritten as: 

M
() = M() - ()/. (14) 
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We consider the value of M
() to be related to any pP. Let p be an elementary circuit 

containing the fixed place p. We introduce a criterion in which the set of places is taken into 

account 

M
(p) = min M

() ,    pP. (15) 
  p. 

For any  marking M belongs to a set of feasible markings if M
(p)0, pP. For pP 

with M
(p)1, we can obtain a new marking belonging to the feasible marking by removing 

one token from p. Let us represent this marking by M' so that M'(p')=M(p')-1, M'(p)=M(p), 

pP, p'p. Thus 

0  M'
(p) < M

(p) ,   pP. (16) 

The removal of a token from pP modifies the value of M
(p') which is associated with 

places belonging to circuits containing p. This minimisation criterion can be expressed as: 

*(p) =  (M
(p')-M'

(p')) . (17) 
                  p'P 

The choice of the place from which the token will be removed is determined by the minimal 

value of *(p) i.e., p=p* such that  

*(p*) = min *(p) , (18) 
                     pG  
where G is the set of places for which M

(p)1. 

5.2. The heuristic algorithm 

We start by choosing the places to be marked so that each place will contain only one 

token. At each iteration, the number of tokens will change in the selected places for which 

M
(p)1, pP, and if M(p)1, we can remove one token from p. In this case, the marking 

remains feasible under the constraint (16). Unfortunately, if M(p)=0, then we must compute 

marking M' which is reachable from marking M by a transition firing so that M'(p)=1. The 

removal of a token from some place may modify M
(p'), where the value for the other place 

p' belongs to elementary circuits containing p. In this case, the marking is also feasible. The 

algorithm is as follows: 

Step 1. Determine a starting marking M0, and evaluate . 

Step 2. Compute the value of criterion M
(p), pP. If  M

(p)<1 for any pP, 

   stop the  computation. 

Step 3. Compute the value of criterion *(p), for pGP, so that M
(p)1. 

Step 4. Choose place p* from subset G, so that  *(p*)= min *(p), pP. 

Step 5. If M(p*)  1, then  remove one token from p*, otherwise compute  

  marking M' reachable from M so that M'(p*)1,  remove one  
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  token from p* and rename marking from M' to M. 

Step 6. Go back to step 2. 

6. Applications 

Here we will present an application of the previous algorithm to determine a heuristic 

schedule of jobs on machines. We find an initial marking associated with the distribution of 

jobs. The algorithm was coded in C++ and a numerical result applying the algorithm is 

presented.  

6.1. An example 

In this example, four job types with fifteen operations are to be scheduled on four non-

identical machines. A number of these jobs comprise three or four operation and each 

operation may be scheduled on up to four different machines. A TEG model structure of the 

cyclic processes is given in Fig. 5. The places correspond to: storage buffers (b), resources (r) 

and command places (c). The transitions correspond to the execution of an operation. The 

firing times of transitions represent the operation processing time. The range of their values is 

placed in square brackets. The firing time of transitions are given in Table 1. 

 
Table 1

Transition firing times 
Machine Jobs 

mi     J1      J2   J3     J4 

m1 1 3 2 2 

m2 4 2 - 1 

m3 3 1 1 3 

m4 3 1 1 2 

 

The routing jobs through the system and the processing times for each machine (in 

parenthesis): 

<J1>: < m1(1),  m2(4),  m3(3),  m4(3)  
<J2>:  < m4(1),  m2(2),  m1(3),  m3(1)  
<J3>:  < m1(2),  m3(1),m4(1)  
<J4>:  < m3(3),  m1(2),  m2(1),   m4(2)  
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Table 2

Solved initial marking M0* 

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 r1 r2 r3 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15 

1 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0  1 0 0 0 0 1 

 

Assuming that we start from an initial state where each place has one token. The machine 

m1 and m3 is a bottleneck machine with cycle time equal 8 units. The total number of tokens 

for marking M0* is 10.  

 

  
  

  

Fig. 5.  Example of  TEG model of cyclic processes 
Rys. 5. Przykład modelu TEG cyklicznych procesów 
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7. Concluding remarks 

In this paper, the manufacturing scheduling problem has been formulated and numerically 

solved. We have considered a type of job-shop system, assuming a deterministic and 

repetitive operation of cyclic manufacturing process. We used the timed even graph to study 

the system. 

The objective in scheduling the machines was to find the maximum performance of the 

system while keeping the number of jobs in the process as low as possible. The production 

rate of this system can be determined from the initial state with enough jobs in the process so 

that the bottleneck machines are fully utilized. This minimum number of jobs in the process 

allows the system to operate optimally. 

The problem of the minimum distribution of jobs was specified as a linear programming 

problem and solved by a heuristic algorithm. We provided a numerical solution which allows 

the performance of the job-shop system to be evaluated. The tools of the Petri net are well 

suited to modelling cyclic manufacturing processes. Their advantages include their graphic 

nature and the ability to using them in simulation models. 

Fig. 6. Timed diagram of firing of  transitions  
Rys. 6. Diagram czasowy realizacji przejść 
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Omówienie 

W artykule przedstawiono propozycję algorytmu heurystycznego do optymalizacji 

procesu produkcyjnego. Problem optymalizacyjny został sprowadzony do postaci problemu 

programowania liniowego [10, 14]. Rozważany jest system typu job-shop, w którym 

wielooperacyjne zadania wykonywane są na równolegle pracujących maszynach. Opisywany 

system produkcyjny jest przykładem systemu cyklicznych procesów [2, 13, 11].  

Do modelowania systemu wykorzystano czasowe grafy znakowane jako narzędzie 

wspomagające jego dynamiczną analizę [1, 3, 5]. Badania koncentrowały się na najniższym 

poziomie operacyjnym systemu. Za miarę wydajności działania systemu wybrano czas cyklu 

odtwarzania początkowego znakowania w sieciowym modelu. Minimalny czas cyklu 

zapewnia jak najszybsze wykonywanie zadań, najkrótszy czas przebywania zadań w systemie 

oraz najlepsze zrównoważenie obciążeń maszyn.  

Realizacja współbieżności procesów w warunkach ograniczonych zasobów wymagała 

określenia mechanizmów synchronizacji, zapewniających bezblokadowy ich przebieg. 

Rozważany system był analizowany z jakościowego i ilościowego punktu widzenia. Analiza 

jakościowa pozwoliła wykryć zakleszczenia w przypadku korzystania ze współdzielonych 
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zasobów i wiąże się z implementacją zasady wzajemnego wykluczania. Jej ostatecznym 

celem jest dowodzenie poprawności modelowanego systemu. Z kolei analiza ilościowa 

dotyczy wydajności pracy systemu określonej czasem cyklu i związana jest z oceną 

skuteczności zastosowanego modelu. Proponowane podejście do modelowania i szerego-

wania zadań stanowi praktyczne narzędzie do sterowania cyklicznymi procesami w syste-

mach produkcyjnych. 
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