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A MODEL OF GENOME LENGTH ESTIMATION BASED ON
K-MERS DETECTION!

Summary. The genome length estimation at raw sequencing data level gives a
practical knowledge about size of the DNA sequence at early stage of analysis. In our
research, we created a model based on random sampling of k-mer (very short DNA
fragments), that we used to predict genome size. Furthermore, we made the
comparison of model results with empirical whole-genome sequencing data.
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OSZACOWANIE DLUGOSCI GENOMU NA PODSTAWIE DETEKCIJI
FRAGMENTOW K-MER

Streszczenie. Oszacowanie rozmiaru genomu na podstawie surowych danych
pochodzacych z sekwencjonowania dostarcza wiedzy na temat dtugosci DNA na
wczesnym etapie analizy. W naszej pracy stworzony zostat model szacujacy dtugosé
genomu oparty na losowym doborze krotkich fragmentow DNA zwanych k-mer.
Wyniki powstate przy uzyciu modelu zostaly odniesione do danych pochodzacych
z eksperymentow sekwencjonowania catych genomow.

Stowa kluczowe: szacowanie dlugo$ci genomu, wielkos¢ genomu, model
sekwencjonowania

!Calculation were carried out using GeCONIl infrastucutre (POI1G.02.03.01-24-099/13)
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1. Introduction

Whole-genome sequencing methods [5, 6, 7, 8] are commonly used to read the genomic
DNA structure of many living organisms. The DNA sequences consists of four basic units,
called nucleotides: A — adenine, T — thymine, C — cytosine and G — guanine. The shotgun
sequencing technique is based on creation of short sequences (called reads) by cutting
genomic DNA in random places. The main measure that describe the process of reads cre-
ation is a depth of coverage [1, 3], which means how many nucleotides cover the genome in
particular place. The depth of coverage is described as NL/G [1] where N is the number of
reads, L is a mean length of reads (in bases) and G is the whole genome length (in bases). The
problem, which we take on is how to estimate genome length knowing only N and L values.
Algorithm, that we chosen is based on sampling k-mers (shorter than reads, very small frag-

ments of exploring genome) which are in fact character subsets of read sequences (Fig. 1).
read

...ATGAGCGCTA

TGAGCGCTAG
GCGCTAGTAA...

k-mer

...ATGAGCGCTAGTAA...

genome fragment
Fig. 1. Basic definitions in analysis
Rys. 1. Podstawowe pojgcia w analizie
New methods of sequencing [7, 8] (called by researchers as next-generation sequencing)
are highly specialized in genome analysis. A lot of experiments during the last years, bring a
lot of datasets, which may be useful to study length of the genome sequences. To produce
those data, there are several sequencing platforms (fully-automatic devices) used to
sequencing: Roche 454, HiSeq 2000 — Illumina, SOLiD System, Ion Personal, HeliScope and
PacBio system. In spite of the different chemistry and base detection mechanisms there are
two common steps for all methods: library construction (chemical preparation of sequences)
and base detection. The most widely used platform is Illumina [7, 8] sequencer. Illumina
technology uses sequencing by synthesis approach with bridge amplification (DNA set
generation). A sequence length of reads in [llumina is about 50 to 200 bases (depending on
device version). The main advantages of Illumina sequencing are: single per time, nucleotide

detection and relatively high set of reads.
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Such a large collection of data that whole genome sequencing produces may lead to errors
[9] in order to nucleotide detection. The types of errors are different for each platform [9] e.g.
for the Illumina and SOLiD most of mistakes types are substitutions (wrong nucleotide
detection). Roche 454 reads contain a lot of deletion (missing of some nucleotide) and
insertion (additional wrong nucleotide) and for the Helicos the main mistakes are deletions.
This possible errors may lead to some inaccuracy in the analysis, so in exploring such a data
with errors there may be a need to use some correction mechanisms.

The widely used .FASTQ [10] format stores all the reads sequences coming from whole-
genome sequencing experiments. This data format contains two section. First part is used to
storing reads sequences (line with A,T,C,G characters) and the second part contain quality
PHRED scores of base calls represented in ASCII code. The PHRED describes probability
error for each base.

The main objective of this work is to predict the genome size using only the raw whole-
genome sequencing data, according to the assumptions of k-mer detection and knowing, that
in empirical data may occur some errors. To check our method properties and correctness we
made the model and then we check the real data with proper parameters. The main idea of our

work and methods can be found in [1, 2].

2. Methods

2.1. A model algorithm

The model assumptions [1, 2, 3, 4] imitates the shotgun sequencing process to create raw
sequencing dataset. To do the implementation of algorithm we use R environment in 3.1.0
version. As an input to create the dataset, there are couple of parameters that we can set, N as
the number of reads, L as the length of reads, G to know what is the genome length at the
beginning, Ny to declare the number of k-mers and at least k to set the k-mers length.

First step of algorithm is to generate collection of reads by setting above parameters. By
making a set of reads we mean creating a N-element vector of L-length of sequences
containing four basic nucleotides (A,T,C,G). The reads sequences are extracted from the
human genome sequence stored in .FASTA file. Knowing this basic parameters we are able
to count in easy way the depth of coverage, which is very important parameter in further
analysis. According to [2] the article we assumed that the depth of coverage should be greater
or equal to 2. This assumption is related to the sampling k-mers, when we have a relatively

high depth of coverage then is bigger chance to find more significant k-mers e.g. when the
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depth of coverage is 1, then we find k-mers one or zero times, so the prediction won’t give
the proper result, but on the other hand when the depth of coverage is 5 then the maximum
number of found k-mers in reads will be also 5, what is statistically more important in
analysis.

The next step of algorithm is to randomize the reads, which we use to gain the k-mers
sequences and some random values to establish the beginning positions of k-mers. After
receiving the k-mer sequences we checked the k-mer content in reads (defined for one k-mer
sequence, as how many reads contain whole k-mer sequence). There may happen a situation,
when we choose such a k-mer sequence that may occur more in one place of the genome. For
example on the picture (Fig. 2) the number of k-mer CGCGC contained in reads should be 3
and chosen in first position, but there is another group of reads, where those k-mers occur. So

in fact we get greater number of reads containing the k-mer, as in picture — 6.

ATGACGCGCG
TGACGCGCGC
GACGCGCGCT

...ATGACGCGCGCTCGCGCGTA...

CTCGCGCGTA
GCTCGCGCGT
CGCTCGCGCG

Fig. 2. Not unique k-mer sequences
Rys. 2. Powtarzalne sekwencje k-mer
Counting of non unique sequences, that in fact are describe as Poisson mixtures [1, 2] we
treated as outliers. The outlier detection [4] which we applied is based on IQR rate caluclation
and the outlier values are removing by simple equation Q+1.5*IQR [2] (where Q is a quartile
value). The IQR and quantiles values are callculated by function contained in stats package.

The example showed below presents those outliers detection in model.

Qutlier detection

15

10
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k-mer content

I I
Outliers Removed outliers
Fig. 3. Outlier detection
Rys. 3. Wykrywanie warto$ci odstajacych
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As we can see on the above picture (Fig. 3) there are some outliers, that are detected by
chosen method, which we eliminated by giving calculated thresholds.

In the next step lets denote that in our set of reads are Nx number of k-mers with k length.
Any of k-mers is choosing and comparing with all reads sequences, then the amount of k-mer
is counting. After searching substrings in reads and counting them, we calculate the mean (1)
as x(w) (sum of all the reads contained k-mers after outliers removing) divided by number of
used k-mers:

Ny
> xw,)

x(w)= =, (1)

According to the theory we may count the genome length as the maximum likelihood
function give as the following:
N(L—-k+1)
— N 2)
x(w)

Whole algorithm was repeated several times to make the results more accurate. So the

G=k-1+

general steps of algorithm may be presented as the flowchart, where the last stage of analysis

(genome length calculation) is based on the above (1, 2) equations:

CREATION OF ARTIFICIAL
READS DATASET

RANDOMIZING K-MERS
FROM READS

COUNTING THE NUMBER OF
K-MERS INCLUDED IN READS

r

< OUTLIER DETECTION
@OME LENGTH CALCULATION

Fig. 4. Algorithm of model
Rys. 4. Algorytm dziatania modelu
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2.2. Algorithm on the empirical data

Algorithm, which we created to estimate the genome size in empirical data is almost the
same as in model. As we described in reads may occur some errors (e.g. wrong base calling
and A replace to G) that may cause the situation, when we choose the k-mer sequence with
error and non of the reads may contain such a pattern. Moreover, when we have a lot of
mistakes in data, then we surely get the lower mean, than we should get. This case was
eliminated by applying simple correction. Every of 0 values (0 means that non of reads does
not include k-mer) was replaced by the mean value of the rest elements (non 0 elements).

The number of k-mer was set as 100 and the length of the k-mers as the 29 bp (which is
80% of the read). Parameters we set according to the results given by model. The estimation
of the genome length according to real sequencing data run with 5 times repetition, and the

number of k-mers was 100. The main steps of algorithm we presented as the flowchart:

RAW DATASET OF READS

D

RANDOMIZING K-MERS
FROM READS

£

COUNTING THE NUMBER OF
K-MERS INCLUDED IN READS

@

OUTLIER DETECTION

RESULTS CORRECTION

O )

GENOME LENGTH CALCULATION

Fig. 5. Algorithm of genome length estimation on real data
Rys. 5. Algorytm oszacowania dtugosci genomu dla danych rzeczywistych
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2.3. Empirical data sources and using methods

The real data from whole-genome sequencing stored in .fastq files were downloaded from
the European Nucleotide Archive?. To access the data we search Gene Expression Omnibus -
GEO?® database taking into account only whole genome sequencing data. Data, which we
collected are coming from microorganisms and have relatively short genome sequences. Such
a short genomes are very easy to analyze at the early stage of tests. The main information and
statistic about the data is described in Table 1. We collect in this table such content as the
species names from where the genome come from, SRR number (Sequence Read Archive run
accession number), sequencing device used to create data, length of whole genome and one

single read, number of reads and two set parameters the number of k-mers (Nk) and the length

of k-mer.
Table 1
Statistic of used whole-genome sequencing data
. Candida gla- | Candida albi- | Lachancea | Mycoplasma
Species .. .
brata cans walltii agalactiae
Strain CLIB 138 SC 5314 NCYC 2644 PG2
SRR number SRR059730 | SRR059732 | SRR059728 | SRR006331
Genome size [bp] 12338308 15213099 10912112 877438
Sequencing device Illumina Genome Analyzer
Depth of coverage 14,3 ‘ 7,7 | 6,9 ‘ 69,5
Read len.|[bp] 36
Read number 4912244 | 3265677 | 2095254 | 1693848
Nk 100
k [bp] 29

To analyze empirical data we use packages called seqinr* and ShortRead®. Easy way to
load .fastq files are functions (e.g. readFastq allows to read the .fastq format file) included in
ShortRead. After reading the file we extracted only the nucleotide sequences, which gives us
all the information we needed. As regards pattern matching, we apply grepl function which is

in basic package in R. To show the data results in a barplot we use package ggplot2°.

2 http://www.ebi.ac.uk/ena

3 http://www.ncbi.nlm.nih.gov/geo/

4 http://cran.r-project.org/web/packages/seqinr/

3 http://www.bioconductor.org/packages/release/bioc/html/ShortRead.html
® http://cran.r-project.org/web/packages/ggplot2/
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3. Results

This section reports results, which we obtained for model and empirical data. First three
charts shows influence of the basic parameters into the genome length estimation. The
barchart (Fig. 8) shows how the algorithm is working with data coming from real experiments
of whole-genome sequencing.

On the first figure (Fig. 6) we can see the influence of the depth of coverage into the

estimated genome length. This shows how a size and number of reads is important in genome

length estimation.
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Fig. 6. Influence of the depth of coverage into genome length estimation
Rys. 6. Wptyw pokrycia na oszacowanie dtugosci genomu
As we see the best results are obtained when the depth coverage is relatively high, so the
best case is to have a datasets with relatively high depth of coverage. The next results (Fig. 7)
presents how to choose the k-mer length. We can see that, when we have the k-mer length as
the 60%-80% of read then we get the result very close to the real genome length. Moreover,
above the length of k-mer at 80% level of read, we see decrease of estimation genome length.
It may happen because of very unique sequences that may occur very rarely in reads, so it’s
hard to apply the outlier detection here.
We also checked the influence of the number of k-mer parameters, but above the small
values of 10-50 there was no differences between estimated genome length. The very high

value e.g. 1000 of k-mers given the same effect as the smallest number e.g. 100.
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Fig. 7. Influence of k-mer length into genome length estimation
Rys. 7. Wplyw dlugosci k-mer na oszacowanie dlugosci genomu

On the next chart we wanted to check how the algorithm is working on the real data. We
collect three groups of results (estimated genome length with and without correction, and the

real genome length founded in NCBI” database) for each of four organisms.
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1.5e+07

Genome length [bp]

5.0e+06

0.0e+00 1

1.0e+07

] Method
Estimated genome length

Real genome length (from NCBI)

Fig. 8. Empirical data estimation results compared with the real genome size
Rys. 8. Porownanie oszacowanych wartosci dlugosci genomu z rzeczywistymi

C. Glabrata C.Albicans L Walti M. Agalactiae

Species

7 http://www.ncbi.nlm.nih.gov/assembly

Estimated genome length with correction
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Estimation of genome length let us to calculate the depth of coverage of datasets. To
calculate the depth of coverage we use genome length value after correction. As we see the
genome sizes without correction given in the chart and table are higher than the real genome
length. This overestimation is caused by errors in real data. Sampling randomly k-mers we
may choose the k-mer with error that may not occur in any read. This defective k-mer make
the mean lower, that in fact influence to the higher genome size.

Table 2
Results for the empirical data

. Candida gla- |Candida albi-| Lachancea |Mycoplasma aga-
Species . .
brata cans walltii lactiae
Estimated genome size [bp] | 14970133 19688496 16185406 4252096
Estimated genome size with | 130619 | 14620517 | 11081666 3218311
correlation [bp]
Calculated depth of coverage 11.81 5.97 4.66 14.34

4. Conclusions

The whole-genome sequencing data analysis is a wide field for creating bioinformatics
tools and algorithms. The genome length estimation according to raw sequencing data is a
problem, which we researched by creating our model. A created model can estimate the
genome length in very good results according only to such parameters as: the number of
sequences, length of sequences, k-mer number and k-mer length. To check some properties of
parameters we draw two plots. First plot (Fig. 3) shows that increasing depth of coverage
causes better estimation to known genome length. Furthermore, very small coverage make the
estimated genome length lower than the real length. Next plot (Fig. 4) present influence of
k-mer length into estimated values. Moreover, we see that in parameter k length is 80% of L
and, that is the upper bound and the estimated values greater than this k-mer length are
decreasing. Created results are showing that to obtain good estimated values we should
choose the data with high coverage and should have unique k-mers sequences (not so long
and also not so short).

Applied correction into the model let us to check the real data from WGS can let us know
the estimated values of four chosen organisms. Estimated values without correction are higher
than real genome length for all organisms, that is related to choosing k-mers with errors that
making it not unique. The correction, which we apply can estimate very similar genome
length values as the real genome lengths from NCBI database. The estimation of the genome
length my depend on quality of sequencing data, as we observe the M. Agalactiae organism

estimated values are very high in comparison with real data.
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Above analysis explain the process of genome length estimation and show the influence

of main parameters. The estimated genome length values may be used to calculate the depth

of coverage, which is very good measure of the data quality and usefulness. The corrected

values of the study organisms genome length, gives very good results that provides the model

as a good predictor of genome length.
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Omowienie

Artykut prezentuje jedna z propozycji metody szacowania dtugosci genomu na podstawie
danych pochodzacych z sekwencjonowania. Proces sekwencjonowania pozwala na odczyt
sekwencji DNA (zawierajacej cztery podstawowe nukleotydy oznaczane jako A, T, C, G),
ktory wspotczesnie zostat w pelni zautomatyzowany. W wyniku sekwencjonowania otrzymu-
je sie zestaw krotkich sekwencji DNA zwanych odczytami. Zaproponowana metoda bazuje
na losowym generowaniu krotkich fragmentow (krotszych niz odczyty) zwanych
k-mer, ktére pozyskuje si¢ z losowo wybranych sekwencji odczytow. W analizie zapropo-
nowano dwa kierunki badan: stworzono model generujacy sztuczny zestaw danych (rys. 4)
oraz przebadano wybrany zestaw danych rzeczywistych (rys. 5, tabela 1). Model bazuje na
rzeczywistych wtasciwosciach sekwencjonowania oraz zaklada, iz moze zaistnie¢ sytuacja,
podczas ktorej zostanie wybrana powtarzalna sekwencja (rys. 2) znajdujaca si¢ na wigcej niz
jednym miejscu w genomie. Taki przypadek zostat rozwigzany przez wykrycie wartosci
odstajacych (rys. 3) oraz usunigcie ich z dalszej analizy. Samo szacowanie wielkosci genomu
zostalo oparte na wzorze (2). Zaproponowany model pozwolit okresli¢ ilo§¢ oraz dlugosc
sekwencji k-mer (rys. 7), jaka nalezy ustali¢ w badaniach. Dzigki modelowi przebadano
rowniez relacje (rys. 6) stopnia pokrycia (ilosci nukleotydow zawartych w odczytach na
danym miejscu w genomie) z oszacowang wartoscig dlugosci genomu. Ze wzgledu na
pojawiajace sie¢ w danych rzeczywistych btedy (zle odczytany nukleotyd) zastosowano
korekcje, ktora polegata na wypethieniu wartosci zerowych (przypadek gdy sekwencja k-mer
z btedem nie zostala znaleziona w zadnym z odczytow) — warto$cig srednig pochodzaca z we-
ktora warto$ci niezerowych. Zastosowanie korekcji pozwolito na otrzymanie wynikéw bardzo
zblizonych do rzeczywistych dtugosci genomu (rys. 8, tabela 2). Niniejsza praca pozwolita na
stworzenie algorytmu do szacowania dtugosci genomu, co jest waznym parametrem podczas
analizy danych pochodzacych z sekwencjonowania. Dzigki pozyskanym dtugosciom genomu
obliczono stopien pokrycia danych (tabela 2), ktory jest rowniez bardzo istotnym parametrem

mowigcym o przydatnosci i1 jakosci danych w analizie.
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