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Chapter 1 

In tro d u ctio n

This monograph presents an approach to the synthesis and simulation of wide-sense sta­
tionary scalar and multivariate, one- and multi- dimensional random processes given by 
diagrams of their power spectral densities. The approach is based on multisine random 
time-series and the finite discrete Fourier transform. In the sequel:

• syn thesis means the determination of the spectrum of a multivariate multisine random 
time-series (1-D random process) or a multidimensional (M -D) multisine random 
process based on the corresponding power spectral density of the random process to 
be simulated,

• sim ulation  means the generation of the corresponding multisine random process ap­
proximation by performing the inverse finite discrete Fourier transform of the synthe­
sised spectrum.

1.1 STATE OF THE ART

Multisine time-series are known for a long time. They are sums of discrete-time sines 
with amplitudes and phase shifts determined by a variety of methods, depending upon the 
purpose for which the multisine time-series will serve. Traditionally, they are generated 
by solving their difference equations [52]. Recently, their popularity has increased due to 
the possibility of generating them by a numerically efficient implementation of the finite 
discrete Fourier transform and opportunities offered by digital computers equipped with 
new hardware for boosting numerical calculations like coprocessors or signal processors.

The most popular application of a multisine time-series is spectral analysis [46]. It deter­
mines the distribution of power or energy in the frequency-domain. The recent approach to 
spectral analysis has its roots in Fourier series representation of periodic functions. Ampli­
tudes and phase shifts of Fourier series are chosen so as to fit this series to a given function 
in the mean square sense. These ideas are also a basic tool for analysis of random processes 
by using the Wiener generalised harmonic analysis.

Multisine time-series may be used also as basic building blocks for synthesising and 
simulating various deterministic signals and random processes with predetermined spectral 
or correlation properties. A theoretical foundation for such synthesis is given by the fa­
mous Gauss sum [90]. Its individual complex terms with the period length equal to any 
prime number exhibit interesting property of whiteness. They have strictly zero correlation 
function for nonzero shifts. For a long time, this idea has received no attention [6] and the 
interesting potential of multisine time-series seemed to be largely unexplored. More atten­
tion was given to the synthesis of binary signals for the purpose of excitation in system 
identification [2], [8], [17], [18], [43], [57] and for generation of cryptographically secure se­
quences [44], [86]. Some discussion of multisine time-series may be found in the books of Kay
[50] and Marple [58]. However, in the last decade the significance of multisine time-series
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has increased. They have been successfully applied to synthesise excitations for process 
identification [42] and to synthesise different random processes: white noises of scalar [32], 
bivariate [66] and multivariate [34] type as well as random processes given by their power 
spectral densities [24], [25], [26], [28], [85].

If the multisine time-series is synthesised for the purpose of using it as an excitation 
signal during an identification experiment, it is worthwhile to choose its amplitudes so as 
to fit to the desired shape of spectrum [35], [23], [27] and its phase shifts so as to deliver to 
identified system as much power as possible in a limited amplitude range [42]. The choice 
of phase shifts which meets the above constraints is given by a number of suboptimum 
algorithms [7], [9], [10], [41], [76], [89]. The solution of this problem has contributed to 
the attractiveness of multisine excitations in system identification [9], [10], [87], [88], [91]. 
The properties of multisine excitations are basic to new methods of single- and multi-input 
system identification [23], [27], [29], [30], [31], [33], [35], [36].

This monograph concentrates on the application of multisine time-series to synthesis 
and simulation of random processes given by their power spectral densities.

The problem of synthesising and simulating random processes defined by their power 
spectral densities given in an analytical form has so far been solved satisfactorily only for 
rational 1-D power spectral densities [1 ], [49]. This approach is applied as an approximation 
for nonrational cases [78]. In the case of a multidimensional (A/-D) random process given 
by its power spectral density, the problem of factorising the power spectral density is more 
complicated. It is well known that the M -D (M  >  1) power spectral density of rational 
form almost never has a rational factorisation [1 1 ]. When the spectral factorisation problem 
is solved, the resulting random process is both synthesised and simulated as the output of 
a discrete-time linear filter excited by white noise. Spectral and correlation properties of 
the obtained random process realisations depend highly on:

• the quality of white noise used as a driving input. A considerable research effort 
has been made to develop various pseudo-random number generators and to compare 
their properties [53]. A recent comparison of several Gaussian white noise generators 
may be found in [12]. The generators currently used for simulation purposes belong 
as a rule to the class of linear congruential recursive generators. For a given initial 
state xo the future states of such generators evolve according to a linear recursion 
with modular arithmetic as:

xn = (Axn_i 4- C) mod m .

This basic scheme has been generalised to non-linear generators [69] and generators 
by inversion [70].

The literature concerning multivariate orthogonal white noise generation seems to be 
scarce. A few ad hoc attempts to generate multivariate white noise series can be found 
but they are limited to bivariate white noise series. As a rule they tried to decorre­
late binary random or binary pseudo-random series by various devices, the main one 
being time shifts [14], [37]. There exist congruential linear and non-linear generators 
producing sequences of multivariate white noise [71] but they have no mechanism 
providing, important in the multivariate case, orthogonality of its elements. However 
no systematic approach to deal with this problem is known so far.

Congruential generators produce realisations of independent and uniformly distributed 
random variables. These random variables are sufficient to construct a random num­
ber generator for any desired continuous random variable distribution by means of 
inverting the distribution function [62]. In the case of Gaussian random variables 
the rivalling tool is provided by the Central Limit Theorem. An approximation to a 
Gaussian random variable may be obtained by summing many uniformly distributed 
random variables [83];
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• the filter parameters accuracy obtainable for any given rational 1-D power spectral 
density by using spectral factorisation. In the 1-D nonrational case, the corresponding 
rational approximation can be calculated using minimax or least-squares error criteria 
[19] applied to the power spectral density. There exist extensions of the classical 1-D 
spectral factorisation concept to the 2-D case based on nonrational factors [15], [59] 
for which rational approximations are obtained using least squares, Pade or minimax 
approximation theory; however there is no general solution of the M-D (M > 2) 
spectral factorisation problem;

• the filter structure form implementation [38], [39], [54], [61], [64] and the rounding 
errors accumulating in recursive calculations.

Besides, analytical representations of power spectral densities are hardly ever available. 
Very often the power spectral density of the random process to be simulated is given only 
by a nonparametric representation, e.g. as a diagram or table.

1.2 THE CONTRIBUTION

This monograph presents a new approach to the problem of numerically synthesising and 
simulating wide-sense stationary time-series and multidimensional random processes for 
which only the nonparametric power spectral density representation as diagram or table is 
given.

The essence of the presented approach is to approximate the power spectral density by 
the periodogram of a multisine time-series with deterministic amplitudes chosen so that for a 
given number of equally spaced frequencies from the range [0, 2it), the periodogram is equal 
to the original power spectral density [24], [25], [28]. The periodogram may be used in turn 
to construct the corresponding spectrum provided the phase shifts for each sine component 
are chosen. It is well known, that any periodogram corresponds to infinitely many different 
time-series with different phase shifts. It is demonstrated in the monograph, that to get 
ergodic random processes, the phase shifts should be chosen with some well-defined random 
properties. This concludes the synthesis part of the procedure. To simulate the synthesised 
time-series, the spectrum with the chosen phase shifts is transformed into the time-domain 
using the inverse finite discrete Fourier transform. Using this approach a broad range of 
scalar and multivariate random processes may be synthesised and simulated provided, their 
power spectral densities are available.

Multisine approximations of wide-sense stationary scalar and multivariate random pro­
cesses obtained by this approach have discrete spectra. However, the original processes have 
continuous power spectral densities. It turns out that by fulfilling certain conditions on sam­
pling in the frequency domain, the approximation of continuous power spectral densities by 
discrete spectra is not resulting in loss of information.

Additionally, the original random processes have autocorrelation functions converging 
to zero for large lags. This property holds for multisine time-series provided the number of 
sines is sufficiently large. For any real random process simulation, it is usually possible to 
choose the necessary number of sine components.

Multidimensional random processes given also by power spectral densities may be syn­
thesised and simulated in the same way as 1-D random processes. The main building block 
used is an M-D multisine random process consisting of a sum of M-D sine components with 
deterministic amplitudes and random phase shifts.

A powerful theoretical justification of the approach is given by the Doob’s Spectral 
Representations Theorem [16], [80] which states that any wide-sense stationary random 
process can be approximated arbitrarily close by a sum of sines and cosines with amplitudes 
being zero mean independent random variables and with deterministic phase shifts equal 
to zero.
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1.3 ADVANTAGES OF THE APPROACH

The following factors are at the root of the attractiveness of the proposed approach to 
synthesis and simulation of wide-sense stationary random processes:

• there is no need to solve the spectral factorisation problem for a given power spectral 
density in order to calculate the corresponding parametric approximation needed for 
simulation;

•  time-series or multidimensional random processes may be precisely defined in the 
frequency-domain, which is of importance for a number of applications (e.g. design of 
optimum excitations for identification [92], data encryption [67] and computer simu­
lation of plants to be controlled [40], [84]);

• the frequency-domain definitions are directly used to generate, by means of the in­
verse finite discrete Fourier transform, the simulated random process which satisfy 
the ergodic hypothesis and are asymptotically Gaussian;

• particular realisations of the simulated random processes may be obtained by inversely 
Fast-Fourier-Transforming realisations of the synthesised spectrum;

• the approach may be used for nonparametrically defined wide-sense stationary ran­
dom, rational and nonrational, scalar and multivariate time-series and multidimen­
sional random processes, for which only the diagram or table of the power spectral 
density is available [24], [25], [28];

• the approach may be used to synthesise and simulate various types of scalar and 
multivariate white noises [32], [34], [66], which turn out to have interesting properties 
while compared with standard approaches, e. g. congruential generators;

• it gives an opportunity to reduce radically the simulation effort by a simulation 
time-scale contraction, which forms a new technique for the simulation of Gaussian 
random processes;

• there is a direct extension of the proposed method to the generation of wide-sense 
stationary continuous-time band-limited random signals, defined also by their power 
spectral densities [26].

1.4 ORGANISATION OF THE M ONOGRAPH

In Chapter 2, the time- and frequency- domain definitions of scalar as well as different 
multivariate multisine random time-series are introduced. Their statistical properties, re­
sulting from ensemble and time-domain averaging, are discussed. The weak ergodicity of 
multisine random time-series is examined. It is shown that periodograms of weakly ergodic 
multisine random time-series as well as expected values of periodograms for nonergodic 
multisine random time-series are uniquely defined by amplitudes of their sine components. 
This chapter is recapitulated with the idea of multisine random time-series synthesis and 
simulation based on the inverse finite discrete Fourier transform.

Chapter 3 is devoted to the synthesis and simulation of multisine random time-series 
defined by power spectral densities. Statistical properties of synthesised multisine random 
process approximations are determined. Asymptotic Gaussianess and ergodicity of synthe­
sised time-series are discussed. An extension of the proposed random process synthesis and 
simulation method to the generation of wide-sense stationary continuous-time band-limited 
random signals, given also by their power spectral densities, is included.

Multisine white noise approximations obtained by using the proposed random pro­
cess synthesis and simulation method are presented in Chapter 4. The following cases
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are discussed: weakly ergodic scalar and bivariate white and pseudo-white multisine ran­
dom time-series which are asymptotically Gaussian, weakly ergodic multivariate orthogonal 
asymptotically Gaussian and white multisine random time-series, and nonergodic multi­
variate orthogonal white and pseudo-white multisine random time-series which are asympto­
tically ergodic and Gaussian.

Simulation of Gaussian random processes is the subject of Chapter 5. Simulation 
schemes based on the proposed approach are established, including a proposition of simula­
tion time-scale contraction. The proposed schemes are illustrated by simulation examples.

In Chapter 6, an extension of multisine random time-series ideas given in Chapter 2 

to a multidimensional (Af-D) case is presented. Scalar and multivariate M -D multisine 
random processes are formally defined and their time- and frequency- domain properties are 
established. It is shown that multidimensional multisine random processes inherit properties 
of the 1-D multisine random time-series. The defined M -D multisine random processes are 
used to synthesise and simulate wide-sense stationary Af-D random process given by their 
power spectral densities. Asymptotic properties of synthesised Af-D multisine random 
process approximations are discussed.

The problem of synthesising and simulating various types of scalar, bivariate and multi­
variate ergodic and nonergodic multidimensional white multisine random processes is sum­
marised in Chapter 7.

The proposed synthesis and simulation method of wide-sense stationary random pro­
cesses given by their power spectral densities is recapitulated in Chapter 7.

All simulation experiments presented in the monograph have been done using the EFPI 
(E xpert fo r  Process Identification  [63], [65]) and Multi-EDIP (M ultivariate System  and Sig­
nal A n alyser [68]) software packages.
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1.5 NOTATIONS
Throughout this monograph:

• any multisine random time-series - one dimensional (1-D) multisine random process - 
is denoted by the stem MRS,

• any multidimensional (Af-D) multisine random process is denoted by the stem
m r s m- ° .

These stems can be preceded by additional letters with the meaning:

• B - bivariate,

• G - Gaussian,

• M - multivariate,

•  N - nonergodic,

• 0  - orthogonal,

• PW - pseudo-white,

• S - scalar,
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W - white,

and followed by figures 1  or 2 denoting type of pseudo-whiteness or ergodocity.
Lower- and upper- case letters denote scalar quantities. Vectors and matrices are de­

noted by lower- and upper- case letters with bold type faces. Additionally, the following 
shorthand notation is used:

[Qr]r=l,2..... — [ ° i , “ 2, • • ■, “PJ , (1.1)

^UlUi 0 0

diag[6UrUrJr=12 ip =
0 blt2U2 0

(1.2)

0 0 l>UpUp _

u2 tip

c u p u  1 cUjUi • • • C U p U p  J

(1.3)

Superscripts T and ’ represent the transpose and complex conjugate transpose operations, 
respectively.

The shorthand notation (a:„) denotes M-tuples with M consecutive elements 
X l , I 2 , .

(3„) =  (x1,x 2, . . . , x Af). (1.4)

The expected value operator £  {•} for a function 6 (x ) of the random variable x is defined
as

/00

0 (x )p (x )d x ,
•oo

(1.5)

where p(-) represents the probability density function of the random variable x. 
The mean value operator M { - }  is defined for:

the 1-D case as:
i iN - 1

■M {z(i)}= Urn —  J 2  * (0 ,
H t'=0

( 1.6)

where x ( i)  for i =  0, 1 , . . . ,  oo denotes a time-series which is periodic modulo N ,  i.e.: 
x ( i)  =  x ( i  +  q N )  for q =  0 ,1 , . . . ,  oo;

• the M-D case as:

{*(*•<)}= l im---] imu n i  ---- 5-7------------------- >9l-*oo jM-*oon« „ \r (1.7)

where x(i^) for (t,,) e  {0 , 1 , . . . , 00} x {0, 1 , . . . , 00} x x {0, 1 , . . . , 00} denotes 
a periodic multidimensional (M -D )  series with the period M-tuple (N u).

Notations M

The following detailed notation is used:
□ end of definition, lemma or proof
A  amplitude of a sine component

B  Q ,  {a,n +  a}) Bernoulli distribution with the probability j  on a set of events 
{a, it +  a}

C complex numbers
<5(-), <5C(-), <S0(-) the Kronecker’s delta, even delta and odd delta function

D F T  the one- or multi- dimensional discrete Fourier transform
F F T  the Fast Fourier Transform algorithm
g(-) Gaussian multisine random process

t, (i„) discrete time instants and M-tuple of independent variables
/m {-} imaginary part of a complex number

I  the unit matrix
j  a complex unit j 2 =  — 1
A2 the value of white noise power spectral density
N  period length of any multisine random time-series

( N , ,)  period M-tuple of any M-D multisine random process
A/"*, A/’r ’1 set of relative frequencies of the rth element of u(i)

N fjp, AJ'rp set of frequency M-tuples of the rth element of u(t„)
A^(0, cr̂ ) Gaussian distribution with mean 0 and variance a 2

o the zero matrix
0  fundamental relative frequency

(lu fundamental relative frequency for the i/th frequency axis
u T  relative frequency from the range [0, 2tv)

p  number of elements of any multivariate random process
4>, if phase shifts of sine components

^uu(’) periodogram of uB(-)
$„„(■) power spectral density of a random process u(-)

q number of repeated sequences of any basic multisine random
process 

V. real numbers
R e {-}  real part of a complex number
Ruu(') autocorrelation function of u(-)

<j 2u variance of u(-)
T  sampling interval
T„ sampling interval of the i/th independent variable

r, (t „) lag and M-tuple lag in autocorrelation function
11s (•) and u(-) basic and extended multisine random processes 

U B (-) finite discrete Fourier transform of uB(-)
z- 1  unit delay operator
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M u ltis in e  R an d om  T im e-S eries

The purpose of this chapter is to introduce time- and frequency- domain definitions of basic 
and extended multisine random time-series. Scalar and different multivariate multisine 
random time-series are discussed. Their statistical properties resulting from ensemble and 
time-domain averaging are presented. The weak ergodicity of multisine random time-series 
is examined. It is shown that periodogram for weakly ergodic multisine random time-series 
and expected value of periodogram for nonergodic multisine random time-series are uniquely 
defined by amplitudes of their sine components. This chapter is recapitulated with the idea 
of multisine random time-series synthesis and simulation based on the inverse finite discrete 
Fourier transform.

2.1 SCALAR MULTISINE RANDO M  TIME-SERIES

Definitions

The basic A-sample real-valued scalar multisine random time-series (SMRS) is defined in 
the time-domain as:

Definition 2 .1  The basic N -sam ple SM R S uB (i)  is defined in the tim e-dom ain by a sum  
o f  +  1  discrete-tim e harmonic sines, including a constant component:

uB(i)  -  Y ,  A * sin(ftni -(- </>„), (2 .1 )
n = 0

where A = ^  denotes the fundam ental relative frequency, n  =  0 , 1 , . . . ,  tjt denotes conse­
cutive harm onics o f  this frequency in the range [0, it], i =  0 , 1 , . . . ,  TV — 1 denotes consecutive 
discrete tim e instan ts, A n are determ in istic  am plitudes o f the sine com ponents (A n 6 1Z), 
4>n are phase shifts, o f which <j>o is determ in istic  and the rem aining phase shifts are random, 
independent and:

• uniform ly distributed on [0, 2it) fo r  n =  1 , 2 , . . . ,  y - — 1 ,

• B ernoulli distributed  B {“ > * +  “ }) f or n =  ,-e';

P{<t>z = a} = p {<t>f = * +  “ } = (2.2)

where P  {X } denotes the probability o f an event X .

□

The basic TV-sample SMRS can be defined in the frequency-domain by its finite discrete 
Fourier transform [22]. This spectrum is determined as follows:

UB(jS lm )  = £  uB { i )e"jnmi = £  £  An sin(fint +  4>n) e - ^ mi
i = 0  n = 0
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t = 0

*  A r N—1 W -lAnsin
= 2? n = 0  J

N -l
g j^ n  ^  £ j ( n n - n m ) i  _  e ~j<t>n ^  g - j ( n n + f 2 m - 2 i t ) i  

i—0 i=0

= ^  f — n) — e ^ " 6(m — (TV — n))j ,
3 n = 0

where j 2 =  —1, S(-) is the Kronecker’s delta function:

(  1  if fc =  0
6{k) =

[ 0 otherwise

and use has been made of:
N - i  (  N if k  =  0 ,TV, . . .
£  e - ’nki =
i=o

(2.3)

(2.4)

(2.5)

0 otherwise
\

The spectrum £/B(jflm ) constitutes the frequency-domain definition of the basic TV-sample 

SMRS:

Definition 2.2 The basic N -sam ple SM R S uB (i)  is defined in the frequency-domain for 
the (rela tive) frequency range [0,2it) by its fin ite  discrete Fourier transform:

U B(jC lm ) =  —  |  (2A0 sin <t>0 +  jO)tf(m) +  £  A n [(sin <t>n  -  j  cos </>„) 6(m  -  n)
n = l

TV,
+  (sin K  +  j  cos <M S(rn -  {N  -  n))] + (2A *  sin *  + jO)«(m -  - ) (2.6)

where fi =  ^  denotes the fundam ental relative frequency, m  — 0 , 1 , . . . , TV — 1 denotes 
consecutive harm onics o f  this frequency in the range [0,2it), A n are am plitudes o f  the sine  
com ponents (A n £ H ), <t>n are phase shifts, o f  which <t>o is  determ in istic  and the remaining

phase sh ifts are random, independent and:

•  uniform ly distributed on [0, 2ir) for n  — 1 , 2 , . . . , ^ -  -  1 ,

# Bernoulli distributed B {“ i 11 + Q}) f or n ~

□
These two definitions of the basic SMRS are equivalent by means of the finite discrete Fourier 
transform. Definition 2.1 can be determined from Definition 2.2 by using the inverse finite
discrete Fourier transform:
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‘ I t * -
g j f l n t  _  e  1 cj n ( N - n ) i

o ^ " " i  ,• -  -  i E A" sin(nni' + ^ ) -  (2-7)
n=0 L ■> J n=0

The range of relative frequencies in (2.1) is constrained from below by the constant 
component (Sim  =  0) and from above by the Nyquist frequency (Sim =  it). It can be shown 
that higher relative frequency sine components are represented by sine components from 
this range. The number of relative frequencies included in the spectrum UB (jS lm )  is equal 
to N . All sine components (including the constant and Nyquist frequency components!) 
of the SMRS are represented in the relative frequency range [0, 2 ir) by two lines each. 
These components are free from leakage [45] because their frequencies are harmonics of the 
frequency bin SI. It implies periodicity of the basic SMRS in the time-domain window of 
the length N . Additionally, the spectrum UB(jS lm )  of the real-valued SMRS satisfies, for 
the harmonic frequencies from the range (it, 2 it), the following condition:

U B( j ( 2iv -  Sim )) =  U B( - jS lm ) .  (2.8)

Each frequency Sim  (m  =  0 , 1 , . . . ,  N  — 1) is related to the absolute frequency u>m by

Sim  =  u mT , (2.9)

where T  is the sampling interval of the corresponding (hypothetical) continuous-time sine.
Expanding the time range up to i — 0 ,1 , . . . ,  oo, an extended SMRS is obtained.

Definition 2.3 The extended SM R S u (i) is defined in the tim e-dom ain by a sum  o f ^  +  1 
discrete-tim e harm onic sines including a constant component:

a
2

“ (0  =  An sin(fin* +  $n)> (2.10)
n = 0

where SI =  ^  denotes the fundam ental relative frequency, n = 0 ,1 , . . . ,  denotes con­
secutive harm onics o f this frequency in the range [0, ir], » = 0, 1 , . . . ,  oo denotes consecutive 
discrete tim e instan ts, A„ are am plitudes o f  the sine components (A n 6 TZ), 4>„ are phase 
shifts, o f which 4>o is de term in istic  and the rem aining phase shifts are random, independent 
and:

•  uniform ly distributed on [0, 2 it) fo r  n =  1 , 2 , . . . ,  y- -  1 ,

B ernoulli distributed B (Jj;, {a, ir + a})  fo r  n —

a
In the sequel, it is assumed that the definitions of extended multisine time-series are 

obtained from the corresponding definitions of the basic multisine random time-series by 
changing the time-range from i =  0 , 1 , . . . ,  N  — 1  up to i =  0 , 1 , . . . ,  oo.

The extended SMRS is periodic modulo N  because u (i)  =  u (i- \-q N )  for 5 =  0 , 1 , . . . ,  00. 
Besides:

u(t) =  uB(i)  (2 .1 1 )
for 0 < i <  N  — 1 . It implies that the extended SMRS belongs to the space of periodic 
signals [48] with the period N .

The spectrum U  (jS l m )  of the first qN  samples of the extended SMRS u (i)  is related 
to the U B (jS lm )  by:

[ qU B( jS l 'm )  if f i V  € { 0 , n , . . . , n ( J V - 1 )}
U ( j S i m ' )  =  < , (2 .12)

[ 0 + j 0  if Si m  {0, SI,. .  - ,S l(N  -  1)}

where Si' =  ^  denotes the relative fundamental frequency for the 9A'-sample

time-series and m  =  0 ,1 , . . . ,  qN  — 1 denotes consecutive harmonics of this fundamental 
frequency in the range [0 , 2it).
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Properties
By finite Fourier transform techniques [4], spectral properties of the basic TV-sample SMRS 

can be stated as:
Lemma 2.1 C onsider the basic N -sam ple SM RS. Its periodogram is given by:

N T  I$ Bu(Slm) =  —  I 4Ag sin2 <t>oS(m) +  £  A \  [£(m -  n) +  f(m  -  (N -  n))]

+ 4A^ sin2 aS(m -  y )  |  , (2‘13)

where m =  0,1,  ■.., N  -  1.

Proof: It follow s from  the periodogram definition [4] that:

* £ ,(flm) =  £  ( £  [ i :  UB(t)e-''nmi] uB(i)  
1 1 L<=o L;=o

L
N

£  ufl(»)e-,nmt B(i)e>tlmi =  j U B (jS lm )U B ( - jS lm ) .  (2.14)
.{=0 J Li=0

This ends the proof when Definition 2.2 is taken into account.
□

The statistical properties of the extended SMRS, which result from the ensemble aver­
aging, are given by:

Lemma 2.2 C onsider the extended SM RS. For each tim e instant i  =  0 , 1 , . . . ,  60:

1. i ts  expected va lue is  g iven  by £ { u ( i ) }  =  A 0 sin 4>o-

2. its  autocorrelation function is:

£-1
1  2

£ {u ( i)u ( i  -  r)} = A2 sin2 4>o +  x Y ]  A2 cos(ftnr) +  ( - 1 ) TA * sin2 a, (2.15)
2

w here t  -  0 , 1 , . . . ,  00.

3. i ts  v a r ia n ce  is :

£ {(«(») -  £{u(0})2} =  \  £  +  A\ sin2 a - (2-16)

□
Proof: The uniform  distribution of the random phase shifts 4>n on [0,2it) fo r  each frequency
Sin (n =  1 ,2 , .  — 1 )  im plies that fo r  any tim e instan t i the random variable (the nth

extended SM R S sine component)-.

u„(t) = A„sin(fini +  <t>„) (2.17)

is  ch a ra c te rise d  /77/ by:
£ { u n ( i ) }  =  0 (2.18)
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and
A2

£ { u n(i)un(i -  r)} =  - y  cos(nnr). (2.19)

B ernou lli d istribu tion  B  {a > *  + Q}) ° f  the random phase shift (pa fo r  the frequency

=  it 
variable

=  it and the properties o f sine function im ply that fo r  any tim e instan t i the random

u r t( i)  =  A n  sm(vm + </>a) (2.20)
2 2 2

is also characterised by Bernoulli distribution B  sin a ,  — A n  sin a j )  with:

£{ti£(t)} = 0 (2 .2 1 )

and
£{uN(i)tiw(t -  t )}  =  ( - l ) Ti4 v sin2 q. (2 .22)

2 2  2
It follow s from  the above rem arks and Definition 2.1 that:

£ { u ( i ) }  =  A 0 sin <t>o. (2.23)

The independence o f random phase shifts under the D isjoin t Blocks Theorem [51] im plies
that autocorrelation function  o f u (i) is:

2  1 a 2

£ {u ( i)u ( i  -  r)} =  ^  sin2 <£o + ^  ~ Y  cos(finr) +  (_ 1 )t ^ n  sin2 a. (2.24)
n=l 2

□
It follows from this lemma that the extended SMRS is a wide-sense stationary random

process. Any change of the assumption about distributions of the random phase shifts </>n
for n =  1 ,2 , . . . ,  in the extended SMRS definition would result in extended SMRS’s for
which the expected value and autocorrelation function will depend on the time instant i.
For instance, when the Nyquist-frequency phase shift 4 > n _ is assumed to be deterministic2
and the remaining phase shifts are defined as in Definition 2.1, the resulting extended SMRS 
has time-dependent expected value:

£{u(i)} =  Ao sin <j>o +  ( - 1 ) M »  sin <j>i±. (2.25)

The choice of all random phase shifts as Bernoulli distributed B Q , {a, it - fa } )  leads to
the extended SMRS’s which exhibit interesting symmetries:

• for a =  0 and additionally .Ao =  0 or <f>0 =  0, the resulting extended SMRS’s are odd 
sequences:

u(i +  q N ) =  - u ( q N  -  i) , (2.26)

• for a  =  Jj-, the resulting extended SMRS’s are even sequences:

u(i +  q N )  =  u (qN  -  i) , (2.27)

where i  =  1 , 2 , . . . , N  — 1  and q — 1 , 2 , . . oo.
The following lemma presents properties of the extended SMRS obtained for the 

time-domain averaging on any particular time-series:

Lemma 2.3 C on sider the extended SM RS.

1. Its m ean value is M { u ( i ) }  = j4osin0o.
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2. I ts  autocorrelation function  is given by:

f “1
Ruu(r) =  A l  sin2 fo  +  ^ A2 cos(nnr) +  ( -1 ) TA |  sin2 a, (2.28)

where r  =  0 , 1 , . . . , oo. 

S. Its variance is:

n = 1

i t " 1
°lu  = \  J 2  A * +  A\ si“ 2 a -

n=l

4- Its sine com ponents are m utually orthogonal:

q N - 1

Y  A , sin(fisi -f- (j>,)At sin(Jl<i -(- </><) =  0 
i=o

fo r  all s  /  t ,  s , t  =  0 , 1 , . . . ,  Y  and  9 — l , 2 , . . . , oo .

(2.29)

(2.30)

Proof:

1. It follow s from  Definition 2.1 that:

1 q N - \  .  N - 1 ,

M { u ( i )} = Urn —  £  u(i) =  -  £  u(i) =  j U B( j0 )  = Ao sin 0o- (2-31)

The lim it disappeared because o f the periodicity modulo N  of u (i).

2. It follow s from  the definition o f the tim e-dom ain averaged autocorrelation function  

that:

R uu( r )  =  Un  ̂ “(*)“(* " r ) = ^  ^ S L D T T  1 m ^  ’ (2'32^

2it 
q N ’

where m! =  0 , 1 , . . . ,q N  -  1, V T T  1 denotes the inverse discrete Fourier

transform  and $'uu(£l'm  ) is  the periodogram o f  qN  sam ples o f  u (i). The above defi­

nition can be presented as:

[qN-1 ̂ qN-1 yi

R uu(T)= k ™ o  q N T  ^  W
m  =0

v
m  =0

i  ^  t  ,

,N_1 '■ 
J 2  uB(i)e~’U m '
i '= 0

E
1 = 0

I I m T

N - l  , , ' -N -i , ,.]

V  uB (i)e~ in m ‘ 5 3  uB(i)e 3 m '
. i=0 . 1=0

„jCl m t

N - \

=  j U B (jS lm )U B( - j n m y n™  =  ~  ' g  $*u( ! l m ) ^ - ,  (2.33)
m=0 m=0

where the lim it disappeared because o f the periodicity modulo N  of u (i). A dditionally, 
the autocorrelation function R uu(t ) is a determ in istic  function. It follow s from  Lemma 

2.1 that:

1 N- 1 i _̂1
R uu(t ) = -  5 3   ̂4A0 sin2 <t>oKm ) + XJ A n [tf(m  -  " )  +  ^(m -  (N  -  "))]

m= 0 I
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TV
-I- 4A \  sin2 a S (m  -   ̂e3'

2 J
It resu lts in  (2 .28).

3. It fo llow s from  autocorrelation function (2 .28) that:

<r2 =  iiutl(0) -  Aq sin2 4>o.

j f t m r (2.34)

(2.35)

4. It fo llow s im m ediately from  the Parseval Theorem and from  (2 .6).

□
The same results of the time-domain averaging as presented in the above lemma may 

be obtained for any distributions of the random phase shifts <j>n (n =  1 ,2 , . . . ,  y  — 1) 
assuming only th a t <f>o is deterministic, and <j>N_ is deterministic or Bernoulli distributed 
B {a, it+  a } ) .

It follows from Lemma 2.2 and Lemma 2.3 that the extended SMRS is a wide-sense 
stationary random process for which the time-domain averaged results from any time-series 
realisation are equal to the corresponding ensemble averaged results over collection of the 
time-series. It implies weak ergodicity of the extended SMRS. When the random phase 
shifts distributions are different from these presented in the SMRS definition, the results of 
the time-domain averaging are different from the results of ensemble averaging and obtained 
time-series are nonergodic.

It should be noticed that, in spite of random phase shifts, the autocorrelation function 
and periodogram of the SMRS are deterministic, real-valued functions. Additionally, the 
autocorrelation function is periodic modulo TV.

The orthogonality of sine components of the SMRS is independent of the choice of these 
sine components phase shifts and amplitudes.

2.2 MULTIVARIATE ORTHOGONAL MULTISINE 
RA N D O M  TIME-SERIES

2 .2 .1  E rg o d ic  C ase  

D efinitions

Consider any scalar multisine random time-series with a sufficiently large number y  4-1 of 
sine components. Each element uT(i)  (r = 1 ,2 ,. . . ,  p), of a multivariate orthogonal multisine 
random time-series (MOMRS) u(i) is a sum of some of the SMRS sine components with the 
constraint that the same frequency may not appear in more than one MOMRS element and 
each SMRS sine component belongs to one and only one MOMRS element. It is formalised 
by the following time-domain definition:

D efinition 2.4 The basic N -sam ple M O M R S is defined in the tim e-dom ain by the 
p-d im ension al m ultivaria te tim e-series uB(i) =  [uf (:)] with the r th  M O M R S ele­
m en t given by:

“? (* )=  £  A „sin(ftn t+  <£„). (2.36)
One-V»,,

is the se t o f  all frequencies Sin present in the r th  M O M R S elem ent uT( i)  and:

(2.37)
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These se ts  are pairw ise disjoint:
< „ n < p = 0 (2.38)

fo r  s /  t, and s , t  =  1,2,.  . . ,p.  SI =  j j - denotes the fundam ental relative frequency,

n =  0, 1 , . . . ,  denotes consecutive harmonics o f  this frequency in  the range [0, it], i =  
0, 1 , . . . , TV — 1 denotes consecutive discrete tim e instants, A n are determ in istic  am plitudes 
o f  the sine com ponents (A n 6 TZ), 4>n are phase shifts, o f  which <f>o is determ in istic  and the 
rem aining phase shifts are random, independent and:

• uniform ly distributed on [0, 2it) f o r n  =  1 , 2, . . . ,  y  — 1 ,

• B ernoulli distributed B {a, it +  a}) fo r n  =  y  •

□
The basic TV-sample MOMRS is represented in the frequency-domain for the (relative) 

frequency range [0,2it) by the p-dimensional vector \J B (jS lm ) =  ju B (jS lm  ) L i  3 of 
finite discrete Fourier transforms with the rth element given by:

UB ( jS lm ) = ^ - .  J 2  An [eJ* " « ( m - n ) - e - J*"«(m -(T V- n) ) ] ,  (2.39)
3 nne^r',p

where m = 0, 1 , . . . ,  TV — 1 denotes consecutive harmonics of the fundamental relative fre­
quency SI in the range [0,2it).

Elements of the basic MOMRS can be regarded as real-valued SMRS. They inherit 
properties of the scalar multisine random time-series. The spectrum vector U B(jfim) of 
the real-valued MOMRS satisfies, for the harmonic frequencies from the range (it,2it), the 
condition:

U fl0(2it -  Sim )) =  U B( - jS lm ) .  (2.40)

Similarly as for the scalar case, the extended MOMRS is periodic modulo TV, i.e. u(i) =  
u(i -f q N )  for q — 0 ,1 , . . . ,  oo. The extended time-series is related to the basic TV-sample 
MOMRS by u(t) = uB(i)  for 0 < i <  TV -  1. The spectrum vector V '(jS l'm ')  of the first 
q N  samples of the extended MOMRS can be expressed using the U B(jS lm )  as:

( q V B(jS lm )  if Sl'm  € {0,n , . . . , fl(TV -  1)}
V '( jS l 'm )  =  \  , (2.41)

( 0  + j0  if Sl'm  0 {0,fl,...,S7(TV -  1 )}

where fl' = =  &  denotes the relative fundamental frequency for the ^TV-sample

time-series and m  =  0 , 1 , . . . , qN  — 1 denotes consecutive harmonics of this frequency in 
the range [0 , 2it).

The fact that elements of the MOMRS have no common frequencies under the Parseval 
theorem implies orthogonality of its elements for the ensemble averaging:

£{ttr(i> j(*)} =  0 (2.42)

as well as for the time-domain averaging:

i ()N-1
—  5 3  ur(i)ti,(i) =  0, (2.43)

where r ^  s , r , s  -  1 , 2 , . .  .,p  and q =  1 , 2 , . . . ,  oo.
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P roperties

The periodogram matrix of the basic TV-sample MOMRS is given by the lemma:

L em m a 2.4 Consider the basic N  -sample MOMRS. Its periodogram matrix is 
&%a(jSlm ) = f*S.u,(iftm )] , where for m  =  0 ,1 ,. .  ., TV -  1:

( ^ rUr(ftm ) +  j0  i f r - s
*uru.tin™ )  = \  (2.44)

[ 0 +  j'O i f r j t s

$ s „ r(fim ) is the periodogram of the rth MOMRS element:

N T
$urur (ftm ) =  —  £  A l  [tf(m - n) +  S(m  -  (TV -  n))] +  $£„(fim ), (2.45)

nn€JV?,p\{0,it}

where:

N T  sin2 <fa)6(m) +  A \  sin2 aS(m -  ^ ) j  i f  (0€ A/?,,) A (it 6 A/?p)

TVTA l  sin2 4>o6(m) if  (0 € A/?p) A (it £ A/?_p)

T V T s i n 2 <t>E.i(.m -  f  ) i /  (0 £ A/?,,,) A (it e  A/?iP)

» / (  0 * A ? , p ) A ( i t * A / ? iP)
0

.P'
(2.46)

□P ro o f: T/ie proo/ o / the above lemma proceeds similarly as for Lemma 2.1, when it is 
noticed that the periodogram matrix o f M OM RS is:

(Om) =  [ E  u fl(i)e- ,"0m,' |  [ ] T  u r 'B(t)ejnm*l }  =  ~ V B(jS lm )V T'B(-jS lm ).
I *=0 J 1=0 J

(2.47)

a
It follows from this lemma that for all frequencies Sim (m  =  0 ,1 , . . . ,  TV-1) the MOMRS 

periodogram matrix is a  singular matrix.

When the ensemble averaging is taken into account, properties of the MOMRS are given 
by the lemma:

L em m a 2.5 Consider the extended MOMRS. For each time instant i =  0 ,1 , . . . ,  oo;

1. its expected value vector is £{u(t)} =  [£{tir(t)}]r=i 2 p > where:

A0 sin <t>o i f  0 € A/?,

i f  0 £  A/^p ' (2'48)

2. its correlation function matrix js5{u(i)u:r(»-r)}=P{ur (i)uJ( i- r )} ] r j  2 , where for
t = 0 ,1 ,. .  .,oo;

£{ur (i)ur( i -  r)}  i f r  = s
£{ur(i)u ,(i -  r)}  =

I _
if r ^  s0 .. . * (2-49)
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£{ur(i)ur(i — r)}  is the autocorrelation function of the rth MOMRS element:

A2
£{ur (i)iir(t -  r)}  =  2 cos(0 n l") +  ^{Mo,it(*)uo,it(* -  r)} , (2.50)

nn&V'pUo,*}

where:

A l sin2 4>0 + ( - l ) TA^r sin2 a if  (0 e A/?iP) A (it e A/?iP)

£{u0,T,(i)u0,^(i -  r)}  =
Aq sin2 <j>o if  (0 € A/^p) A (it £ Af}<p)

( -  1)TA2W sin2 4>n if (0 £ A/’r p) A (it e A/^p)
T  2

0 »/ (0 0  A/J?iP) A (it £  A/?iP)
(2.51)

Proof of the above lemma proceeds similarly as for Lemma 2.2.
It follows from this lemma that the extended MOMRS is a wide-sense stationary mul­

tivariate random process. Similarly, as for the scalar case of multisine random time-series, 
any change of the assumption about distributions of the random phase shifts <j>n in the 
MOMRS definitions results in an extended MOMRS for which elements of the expected 
value vector and autocorrelation function matrix are time-dependent. For instance, when
the Nyquist-frequency phase shift 4>K is assumed to be deterministic and the remaining

2
phase shifts are as in the MOMRS definition, the resulting extended MOMRS expected 
value vector is time-dependent, i.e. elements of the £{u(i)} =  [£{ttr(*)}]r=i,2 p are:

( A0 sin <t>0 +  ( - l ) ’Aw sin <)>£ if 0 6 A/?|P
(2.52)

0 if 0 i  Mr]p

The choice of all random phase shifts </>„ as Bernoulli distributed B ^ , { a , n  + a}) leads 
to the extended MOMRS’s which exhibit the following symmetries:

•  for a  =  0 and additionally Ao = 0 or <t>o = 0, the time-series are odd sequences, i.e. 
u(i + qN) =  —u(qN -  i),

• for a  — 7j, the time-series are even sequences, i.e. u(i + qN) = u(qN  — i), where
» =  1 ,2 ,. .  .,TV — 1 and q = 1 ,2 , . . . ,  oo.

When the time-domain averaging on any particular extended MOMRS is analysed, the 
following lemma can be formulated:

L em m a 2.0 Consider the extended MOMRS.

1. Its mean value vector is A/f{u(i)} =  [A'l{ur(i)}]r=1 2 , where:

( Ao sin <t>o if  0 e A/J?p 
M { u r(i)} =  \  . (2.53)

I 0 if  0£A/?,p

2. Its correlation function matrix is R u u M  — [-Riiru,M]r,s=i 2 p 1 where for t - 
0, l,...,o o ,.-

! Rumr(r) i f  r = s
(2.54)

0 if  r /  s
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Rurur ( r )  is the autocorrelation function o f the rth  M O M R S elem ent:

Rurur(T) — -  y
nneK\P\{o,-*}

A l  cos(S lnr) +  R o ^ r ) ,

where:

Ro,t(t ) =

A° sir*2 +  { - l ) r A \  sin2 a  if (0 6 A/^p) A (it 6

A l  sin2 4>0

( - l ) M ^  sin2 <j>N_ 
2 2

0

3. I ts  variance m atrix is a ^ u =  diag [a2
«rur j r=1(2t...iP

if  (0 € ACJ A (* £ Afr]p) 

if  (0 A/?J A (tt € M?<p) 

i f  (0 £ A/?„) A (iv £ A/^p) 

, where:

£

and:

nnetf}p\{o,T<}

A \  sin2 a i /  ir € A/^p

i f * ? K , p0

(2.55)

(2.56)

(2.57)

(2.58)

□Proof of the above lemma proceeds similarly as for Lemma 2.3
The same results of the time-domain averaging as presented in the above lemma may 

be obtained for any distributions of the random phase shifts <pn assuming only that 4>o is 
deterministic, and 4>n_ is deterministic or Bernoulli distributed B { Q>17 +  Q}) •

Lemma 2.5 and Lemma 2.6 allow us to say that the extended MOMRS is a weakly 
ergodic multivariate orthogonal random process.

Frequencies d istribution

In the sequel, it is assumed that all elements of the MOMRS have similar frequency contents. 
It is achieved by ordering consecutive frequencies circularly to consecutive elements of the 
MOMRS, i.e. the frequency fin is a member of the Af^’p when:

r = n mod p +  1 . (2 .59)

Such ordering will be called consecutively circular ordering and denoted by the upper index 
c in symbols A/jf’p (r =  1 , 2 , . . .  ,p) describing sets of frequencies.

If ^  is an integer number then the zero- and Nyquist- frequencies are elements of the 

set A /ft . This set consists of n\ =  ^  +  1 elements:

A f t  =  jo , f t p , . . . ,  f l y } .  (2.60)

The remaining sets A/JjJ (r =  2,3 , . .  .,p) have nr = ^  elements and the rth set is defined
as:

•Aft =  j f l ( r -  l ) , n ( r - l + p ) , . . . , f i ( y - p  +  r - l ) j .  (2.61)
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For p =  1 the MOMRS with consecutive circularly ordered frequencies reduces to the 
SMRS. The set of its sine components frequencies is given by:

A ft = {o ,n ,...,fty } . (2.62)

It should be noticed that constant bin spacing equal to SI is kept throughout the relative 
frequency range [0,2ir). This property allows us to synthesise a scalar multisine white noise 
for which whiteness holds for finite iV-sample random process representations [32].

When p — 2, a bivariate orthogonal multisine random time-series (BOMRS) [66] is 
obtained. Elements of the basic BOMRS u B ( i )  = [uf ( i ) j   ̂have no common frequencies:

• the u f( i )  time-series contains the constant component and sine components with 
frequencies from the set of even harmonics of fl:

A /ft = {0,2ft, 4 f t,. . . ,  it} . (2.63)

Its frequency bin is equal to 2ft;

• the u f( i)  time-series contains only sine components with frequencies from the set of 
odd harmonics of ft:

A f t  = j f t , 3 f t , . . . , ( y -  l ) f t j .  (2.64)

Its frequency bin is also equal to 2ft.

The frequency-domain representation of each BOMRS element have the same frequency bin 
2ft throughout the range [0,2ir). It implies that each element of the BOMRS is represented 
in the frequency range [0,2it) by y  relative frequencies. This property offers the possibility 
to synthesise a finite-sample bivariate orthogonal white multisine random time-series [66].

For the SMRS (p = 1) and BOMRS (p = 2) constant bin spacings were kept for adjacent
frequencies below and above the Nyquist frequency f t y  = it and 2it frequency. It follows 
from definition (2.60) that for p > 2 a constant bin spacing equal to pft can be kept only 
for the first MOMRS element ui(i). For the remaining elements uT(i) (r = 2 ,3 ,..  .,p) of 
the MOMRS sets of frequencies of its sine components in the range [0,2it) are given by:

| f t ( r - l ) , f t ( r - l + p ) , . . . , f t ( y - p + r - l ) , f t ( y + p - r  + l ) , . . . , f t ( J V - r - |- l ) | .  (2.65)

The distance between the first-above and last-below the Nyquist frequency is equal to:

K ( r ,P) =  f t ( y  +  P  -  r  +  1) -  f t ( y  -  p +  r  -  1) =  [2(p -  r) + 2] ft. (2.66)

Values of the distance A '( r ,  p) for different numbers p (p > 2) of the MOMRS elements 
and elements r  =  2 ,3 ,. .  . ,p  are presented in Tab. 2.1.

The corresponding distance between the first-above and last-below the frequency 2-rc is 
given by:

A L (r,p ) = 2 ( r - l ) f t .  (2.67)

It should be noticed that the distance A ^ (r ,  p) is invariant to the number p of MOMRS 
elements. Values of A ^ (r ,p )  calculated for different p > 2 and elements r = 2 ,3 ,..  ,,p  are 
presented in Tab. 2.2.

It can be noticed from Tabs 2.1 and 2.2 that, for any even N , a constant frequency bin 
spacing equal to pft throughout the entire frequency range [0, 2tv) is kept for all MOMRS 
elements only for the case of p = 1,2.

Let us assume that N  is any odd number such that ^2 p   ̂ *s an 'n*'eSer number. The 
consecutive circular ordering of frequencies gives:
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Table 2.1

Al(r ,p)
V r =  2 r = 3 r =  4 r = 5 r =  6
2 2Q - — _ _
3 4Ü 20 — _ _
4 6fi 4 ft 20 _ _
5 8Ü 6f2 40 20 _
6 10 ft 8ft 60 40 20

Values of the distance A '(r, p) between the first-above and last-below Nyquist frequency 
for different numbers p  of MOMRS elements and elements r  =  2 ,3 , . . .  ,p  (TV even)

Table 2.2

A U r .p )
P r =  2 r =  3 r =  4 r =  5 r =  6
2 20 - — _ _
3 40 40 - _ _
4 60 60 60 _ _
5 80 80 80 80 _
6 100 lOO lOO lOO lOO

Values of the distance A 2̂ (r) between the first-above and last-below frequency 2it for dif­
ferent numbers p of MOMRS elements and elements r  =  2 ,3 , . . .  ,p

• the set Afi'l as:

JV £ =  { o , p n , . . . , £ ^ n }  (2.68)

• and sets -A/£p for r  =  2 ,3 , . . . , p  as:

K c:i = { f i ( r -  l),ft(r +  p -  1).......fl(—y ——P + r—1) j  • (2.69)

It follows from the definitions of the sets that:

AJ(1 ,p) =  0  (2.70)

and

A ;( r ,p ) = [ 2 ( p - r )  +  3]0. (2.71)

for r  = 2 ,3 , . . .  ,p. Values of the distance A °(r,p) are presented in Tab. 2.3.
The distance A jx(r, p) between the first-above and last-below the frequency 2it in the 

case of TV odd can be calculated from the corresponding expression on A ^ ( r ,p )  for TV even.
It follows from Tab. 2.3 tha t for any TV odd there exists a  possibility to  keep constant 

bin spacing equal to pf! only for the SMRS (p =  1). From the theoretical point of view, 
the case of N  even is more interesting because it offers possibilities to synthesise scalar and 
bivariate white or pseudo-white multisine random time-series. In the sequel, we return to 
the assumption that TV is any even number.

When is not an integer number, there is no possibility to keep constant bin spacing 
for all elements of the MOMRS, because its elements ur(i) (r = 1 ,2 , . . . , p) have different 
numbers nT of sine components. For large N (TV >  p) the number nT for all MOMRS 
elements can be approximated by
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Table 2.3

A 1(t , p )

p r = 2 r =  3 r =  4 r =  5 r =  6

2 30 — - - -
3 50 30 - - -
4 70 50 30 - -
5 90 70 50 30 -
6 1 1 0 90 70 50 30

Values of the distance A °(r,p) between the first-above and last-below Nyquist frequency 
for different numbers of MOMRS elements p and r  =  2 ,3 , . . . ,  p (TV odd)

2.2.2 N o n e rg o d ic  C ase  

Definitions

Consider a multivariate random time-series u(t) with the elements ur(i) (r = 1 ,2 , . . . , p  
and p >  1) being scalar multisine random time-series for which the same relative frequency 
appears in all elements of the multivariate time-series. This implies nonergodicity of the mul­
tivariate time-series. Assuming additionally that constant components of all elements of the 
multivariate time-series are equal to 0 then thus obtained multivariate random time-series is 
orthogonal one taking into account ensemble averaging. This determines that in the sequel 
these time-series are called nonergodic multivariate orthogonal multisine random time-series 
(NMOMRS). The NMOMRS is defined in the time-domain by:

Definition 2.5 The basic N  -sample NMOMRS ufl(i) is defined in the time-domain by the 
p-dimensional multivariate time-series uB(i) =  [tif (i)j  ̂ , with the rth element given

by:
N

uf  ( 0  =  £  Ar’n sin(fint' +  <t>r,n), (2.72)
n = 0

where O = ^  denotes the fundamental relative frequency, n = 0 ,1 , . . . ,  y  denotes conse­
cutive harmonics o f this frequency in the range [0, tv], i =  0 ,1 , . . . ,  N  — 1 denotes consecutive 
discrete time instants, Ar,n are deterministic amplitudes of the sine components (Ar<n ETZ), 
4>T,n are phase shifts, o f which </>r,o are deterministic and the remaining phase shifts are 
random, independent and:

• uniformly distributed on [0,2it) for n  =  1 ,2 , . . . ,  y  — 1 and r = 1 ,2 , . . . ,  p,

• Bernoulli distributed B (J^, {a ,^  + a l )  f or n = y  and r = 1 ,2 ,..  ,,p .

□

For p = 1 the NMOMRS becomes the weakly ergodic SMRS.
In the frequency-domain, the basic TV-sample NMOMRS is given by the p-dimensional 

vector U B(jflm )  =  |[ /B(jf!m )j of finite discrete Fourier transforms with the rth

element given by:

E
UrB(jQ m ) =  ^  E  Ar,n [ e ^ ( m  -  n) -  -  (TV -  n))] , (2.73)

•7 n=o

where m  =  0 ,1 ,. .  .,TV — 1.
Elements of the basic NMOMRS inherit properties of the scalar multisine random

time-series.
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Similarly as the previous scalar and multivariate orthogonal multisine random 
time-series, the extended NMOMES is periodic modulo N . The elements of the NMOMRS 
have common frequencies but the independence of its sine components random phase shifts 
under the assumption that all constant components are equal to 0 implies orthogonality of 
the elements for the ensemble averaging:

£{ur(l’)u»(*)} =  0, (2.74)

where r /  s and r ,s  = 0 ,1 ,. .  . ,p.

P ro p e rtie s

The periodogram matrix of the basic iV-sample NMOMRS is given by the lemma:

L em m a 2.7 Consider the basic N -sample NMOMRS. Its periodogram matrix is 
$ u u {jSlm) =  f$®u,(if tm ) | , where for m  =  0 ,1 , . . N  -  1:

| £ _ l 
2 1

(4Ar,oA,i0 sin <j>T]o sin +  jO)S(m) +  5 3  [(cos(0r,n -  </>,<n)
n = l

- j  sin{<t>Tin -  4>,:n))6(m - n )  + (cos(<£r,n -  </>,,„) +  j  sin{<t>r,n -  </>,,„)) S(m — (N  — n))]

N  }+jO)S(m-  y )  > . (2.75)

□
Proof of the above lemma proceeds similarly as for Lemma 2.4.

It is worth to note that the diagonal elements of the NMOMRS periodogram ma­
trix are deterministic functions of the frequency Sim, which are invariant to the choice 
of random phase shifts while its off-diagonal elements are functions of the random phase 
shifts 4>Ttn. It follows from Lemma 2.7 that the expected value of 3>®u(jf2m) is the matrix 

£{*uuO 'n ™ )}= [f {$ £ « .0 'n7n)}]rj=12 p, where:

• its diagonal elements are:

N T  [
£ { * l Ur(jClm)} = —   ̂ (4A20sin2 <t>r,o + jO)S(m) +  ]T  (A2n +  jO ) [tf(m -  n)

71=1

+£(m -  (N  -  n))] +  (4A2 N sin2 a + jO)S(m  -  ^ )  1 , (2.76)

2 J
for r  =  l , 2 , . . . ,p ;

• its off-diagonal elements are

( £-1N T  I 2
=  ~  { (4 A r ,o4A,,o sin <t>T,o sin <t>,,0 -I- j0)6(m ) + 5 1  (° +  J°) I^(m “  n )

+S(m  — (JV — n))] +  (0 +  jQ)6(m  -  y  ) 1, (2.77)

for r, s =  1 ,2 ,. .  . ,p  and r ^  s.
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If A rfi =  0 or 4>rfi =  0 (r =  1,2, . .  . ,p) then £ {$ S u (jfim)} is:

• a diagonal matrix for all frequencies fin € | f 1 , 2fI, . . . ,  y f i }  but

• the zero matrix for the constant component fin =  0 .
The properties of NMOMRS resulting from the ensemble averaging are given by the 

lemma:
Lemma 2.8 C onsider the extended NM OM RS. For each tim e instan t i =  0 ,1 , . .  .,oo;

1. its  expected value vector is £{u(i)} =  [£{«r(t)}]r= i ,2 p, where:

£ {“>■(«)} =  Ar,o sin <t>Tfi. (2.78)

2. its  correlation function  m atrix  is£{u(i)uT(i-r)}=[£'{ur(i)uJ(i-r )} ]I. J=1 2 , where for  

r  =  0 , 1 , . . oo:

|
£{ur(i)tir(i -  r)} i f r  =  s

(2.79)

Ar|oA,,o sin sin 4>3,o i f  r  ^  s  

£ {u r( i)u r( i  — r )} is  the autocorrelation function o f  the rth  N M O M R S element:

£ - i
£ { u r( i)u T(i -  t ) }  =  A20 sin2 <£r,o +  |  5 3  cos(Qnr) +  ( - 1 )TA2 ^ sin2 a. (2.80)

n= l

3. its  variance m atrix  is£{(u(i)-£{u(t)})(u(i)-£{u(i)})'r}=d2a<7[our„r]r=i i2 p , where:

puruT =  £{(«»•(*) -  £{«r(«)})2} =  \  Y 1  A ln  +  A l&  sin2 a . (2.81)
n= l

□

Proof of the above lemma proceeds similarly as for Lemma 2.2.
It follows from this lemma that the extended NMOMRS is a wide-sense stationary

multivariate random process.
When the time-domain averaging on any particular extended NMOMRS is analysed,

the following lemma can be formulated:

Lem m a 2.9  C onsider the extended NM OM RS.

1. I ts  mean value vector is _M{u(i)} = [■M{“r(*)}]r=i,2,...,p > where:

A4{ur(i)} = Ar,o sin <£Tio. (2.82)

2. I ts  correlation function  m atrix is R uuM  = №».•«. (T)]r,»=i,2,...,p > where fo r  r  =  

0 , l , . . . , o o :
Ruru ,(T) =  ^r.oAj.o sin <t>Tfi sin

I * " 1+  -  T  Ar,nA,,n cos(nnr +  4>r,n -  *.,„) -I- ( - l ) TAr « A v sin 4>T z  sin 6  n .  (2.83) z ' ’2 ’2 *2 *2
n=13. Its variance matrix is <r^u =  [ ^ rU.] r,,=i,2 p ’ where:

2-1
< « .  =  \  E  A ' , „ A * ,n  c o s (0 r ,n -  Kn)  +  Ar , fA. , f  s in  t r . f  s in  K f -  (2-84)

2 „ = i
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Proof of the above lemma proceeds similarly as for Lemma 2.3.
R u u (r) is a periodic function with the period TV. Its diagonal elements are determini­

stic functions, which are invariant to the choice of random phase shifts but its off-diagonal 
elements are random phase shifts dependent. Comparison of Lemma 2.8 and 2.9 allows 
us to say tha t the extended NMOMRS is a nonergodic multivariate random process. This 
nonergodicity is introduced by identical sets of sine components frequencies present in the 
NMOMRS elements.

The expected value of R UU(V) is the matrix £{R uu(r)} =  [£{-fturu,(r )}]r s=] 2 p> 
where:

• its diagonal elements are:

£ -1  
1 2

£{-RUrUr(r)}  =  A2o sin2 0r,o +  -  T]  A2n cos(finr)-|- ( - l ) M 2 N sin<£ « sm<t> « .
Z r ' T  ’ 2 * '2n = l

(2.85)
f o r r  = l , 2 , . . . , p ;

• its off-diagonal elements are:

£{Ruru,(T)} =  Ar,0A3,0 sin 4>rio sin (2.86)

for r, s = 1 ,2 ,..  . ,p  and r  ^  s.

It is worth to note that £{R uu(r)} = £{u(t')uT(t -  r)} . Additionally, if Ar,0 =  0 or <t>r,o = 0 
(r  = 1 ,2 ,. . .  ,p) then £{R uuM } and £{u(i)uT(j -  r)}  are diagonal matrices.

2.3 MULTIVARIATE NONORTHOGONAL MULTISINE 
RA N D O M  TIME-SERIES

D efin ition s

Let any nonergodic multivariate orthogonal random time-series be used as an excitation of 
a multi-input linear, discrete-time system with a transfer function matrix which off-diagonal 
elements are not all equal to 0 + j 0. When the system reaches steady-state conditions, its 
multivariate response vector is a nonergodic multivariate nonorthogonal multisine random 
time-series (NMMRS). The NMMRS is defined in the time-domain by:

D efin ition  2.6 The basic N -sample NMMRS is defined in the time-domain by the 
p-dimensional multivariate time-series uB(i) =  [uf (t)j with the rth element given
by:

p  $

“ ?(*) =  5 3  5 3  Ar’‘'n sin(fint' +  <pt,n +  <pT,t,n), (2.87)
t = l  n = 0

where Q — ^  denotes the fundamental relative frequency, n = 0 ,1 , . . . ,  y  denotes conse­
cutive harmonics of this frequency in the range [0,ir], i =  0 ,1,...,TV -  1 denotes con­
secutive discrete time instants, Ari<i„ are deterministic amplitudes of the sine components 
(AT,t,n € TZ), <Pt,n and ¥>r,(,n ore phase shifts, o f which (fit,a and <pT,t,n are deterministic and 
the remaining phase shifts <fit,n are random, independent and:

• uniformly distributed on [0,2tt) for n = 1 ,2 , . . . ,  y  -  1 and t — 1,2 , . . . , p ,

• Bernoulli distributed B ^ , {a, it +  a}) for n =  y  and t = 1,2

a
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The basic TV-sample NMMRS is defined in the frequency-domain for the (relative) fre­
quency range [0,2ir) by the p-dimensional vector U B(jflm ) =  [uTB ( j n  m ) J  ^  of finite 

discrete Fourier transforms with rth element given by:

p f
UTB(jS lm )  =  ^  £  Ar,(,n -  n) -  e- j(*t.n+vr,t,n)^m _  (jv _  n))j j

^  t= l n=0 (2.88)

where m =  0 , 1 , . . . ,  TV — 1.

Properties

The periodogram matrix of the basic TV-sample NMMRS is given by the lemma:

Lemma 2.10 C onsider the basic N -sam ple NM M RS. Its periodogram m atrix is 

= [$urU.0 'fim )]r J=1 2 p > where fo r  m  =  0, 1 , . .  .,TV -  1 :

N T  p ^  f= ~7~ E E ]  (4^r,t,o^5,M,osin(0t,o+V?r,t,o)sin(</)M,o + V>3,/i,o 
t=l *t=l I

) +  j0 )S (m )

2-1
+  5 3  Ar,t,nA,})i,n [ej(Vr'*'n 

n = 1

+ e—j ( v > r , ( c o s ( < / ) , , n-</y,„) +  j  sin(<pt,n -  <l>»,n))6 (m  -  (TV -  n))]

TV ]
+ (4Arl ^AJ(J ^sin (a  + v rt ^ )sin(a +  v5J(1^) +  j 0 ) S { m -  y H  . (2.89)

□

Proof of the above lemma proceeds similarly as for Lemma 2.4.
It follows from the above lemma that the periodogram matrix $ d u (jQ m )  can be written

as:
$uu ( jto m )  = K ( jS lm ) $ p p ( jS lm ) K ’ ( j£ lm ) , (2.90)

where:

• elements of the matrix K (jflm ) =  [K UrU,  (ifim)]r j= 12  p are given by:

C \ /N T A r,,fl sin (4>t,o +  V>r,«,o) +  j 0  if m  =  0

K Ur u.{№ m )=  s

[ V N T A r t  n sin (a +  <pT a n ) +■ jO if m  =
(2.91)

For harmonic frequencies from the range (iv,2it), the following condition

tfUr„.0'(2* -  fim)) =  i f ; rU.(jftm ) (2.92)

is satisfied;

elements of the matrix & ^ p ( j ( lm )  — [$B ^(jflm )]  ̂ are given by:

Z - i
= (* +j0)(5(m)+ 5 3  [(cos(</>r,n -< t> ,,n )-j  sin(0r,„ - <fi,,n) ) S ( m - n )

Tl= 1
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+ (cos(0r>n -  + j  sin(&_„ -  <&,_„)) tf(m - ( N  -  n))] +  (1 +  jO)S(m - — ). (2.93)
2

The matrix is the periodogram matrix of a NMOMRS with amplitudes
of its sine components chosen so that £{&pp(jSlm)} = I .

The above spectral factorisation of the NMMRS periodogram matrix allows us to write the 
finite discrete Fourier transform UB(jfim ) of NMMRS as:

U fl(jfim ) = K(jSlm)/3(jSlm), (2.94)

where /3(jSlm) is the finite discrete Fourier transform of a NMOMRS with
* { * f , ( i « r ) }  =  /•

Elements of the NMMRS periodogram matrix ^ „ „ ( jf tm )  are random phase shifts 
dependent. The expected value of $ „ u(yftm) is the matrix £{3>®u(jlim )} =
[£{$ fU ,(Ja m )}]rj=12 p> where for r . s = 1.2

N T ,” '
— —— £  |  (4AritioAJi(iosin((/itio-|-¥»rit1o) sm(4>t,o+<Ps,t,o)+j0)6(m) 

t.1 [

+  £  ^ ,(,nA s,(,n -  n) +  -  (N  -  n))l
n = l

JV I-f-(4Ar t  £ A , t ;tts in (a  +  <pr t  £ )8 iii(a  +  v>M JK ) + jO ) t f ( m - y )  i . (2.95)

It is obvious that:
£ { * * u(jftm )} = K (jS lm )K '(jS lm ). (2.96)

The properties of NMMRS, which follow from the ensemble averaging, are given by:

L em m a 2.11 Consider the extended NMMRS. For each time instant i =  0 ,1 , . . . ,  oo:

1. its expected value vector is £{u(i)} =  [£{«r(i)}]r=i,2 v, where for r -  1 ,2 ,. . .  ,p:

£{“<•(*)} =  53 ̂ r,t,osin(<fo,0 +  V>r,t,o); (2.97)
t=l

its correlation function matrix «s£{u(t)u:r(i-r)}=(f{ur (t)iJ( i- r )} ] r J=1 2 p , where for 
t =  0,1, — , oo:

£{vr (i)u ,(i - r ) }  = 53 AT,t,oA,<t,o sm(<j>r0 -f- <ypr,(i0) sin(^Ji0 +

N

1 V"1+  2 A r>t<nA‘,t,n COs(flnr +  lPr,t,n. — V\«,n)
n= l

(2.98)
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3. its variance matrix is £{(u(i) -  £{u(i)})(u(i) -  £ {u(i)})T}—toUrU J r j= i ,2 p. where.

puru, — 53  
t= i

[ i
-  5 3  Ar,t,nA 3,t,n COS(y)r,t,„ — V^s.t.n)

+  A r , ” A . t  a s m { a  +  ipr t  N ) s m ( a  +  i f  t z )>i‘iy 2 ’ 2 * 2
(2.99)

Proof of the above lemma proceeds similarly as for Lemma 2.2.
It follows from this lemma that the extended NMMRS is a wide-sense stationary mul­

tivariate random process.
When the time-domain averaging on any particular extended NMMRS is analysed, the

following lemma can be formulated:

Lem m a 2.12 Consider the extended NMMRS.

1. Its mean value vector is ,M{u(i)} = [A1{iir(t)}]r=i,2 p. where:

A4{ur(i)} = 5 3 A rtt,osin(0iio + ¥>r,t,o)- ( 2 .100)

2. Its correlation function matrix is R u u (t^ ) =  [•Rtiru , ( T i')]r,s= i,2  p > where for r  -
0, l , . . . ,o o :

RuruAT) =  1 3 5 3
t-1 1

A r,tflA3̂ fi  sin(</>(,o+¥>r,<,o) sin(^,o+V5s,/i,o)

1 2■^9 £  Ar,t,nAâ tn COs(0nr +  0(_n — (p̂  n + (pTit,n — <Pa,VL,n)

+ ( - 1  )TAr%t s A ttl z  sin(a + <pr t & )sin(a +

3. Its variance matrix is crj,u =  [ff5,u,]r,»=i,2 p ’ w^ere:

2 _  I v y
°UrU, O Z—/ l—J

£-1

( 2 .101)

ArittnAs^ fn COS{<f>t,n ~  fin.n ^r,t,n lps,n,n)

+ 2A ^ k A ^  e  sin(a + Y>r,(, |) s i n ( a  + (2 .102)

Proof of the above lemma proceeds similarly as for Lemma 2.3.
R-uu(f) is a periodic function with the period y .  Its values are random phase shifts 

dependent. Comparison of Lemma 2.11 and 2.12 allows us to say that the extended NMMRS 
is a nonergodic multivariate random process.
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where:
The expected value of R uu(r) is the matrix: £{R Uu(r)}  =  [£{£Ur„.(r)}l
iro- r * r,S

£{R»ru,(T)} = l ' t
2 <=i

2Ari(ioi4,i<io sin(0tio+¥’r,(,o) sin(0tiO+¥,j lMlo)

2
+  £  ^r,«,nA,,tl„cos(f tnr+y)r, ,  ^  , ^  sin (a+ y>r )sin(a+ <p5 ^ n )

n=1

(2.103)

2.4 SYNTHESIS AND SIMULATION
A single TV-sample realisation of the random sine sequence

u f  (») =  An sin(u>nT i +  <j>n) (2.104)

for the time instants i — 0 ,1 , . . . , TV -  1, any frequency u nT  from the set 
jf ln ; n = 1 ,2 , . . . ,  y  |  and a realisation of the random phase shift <f>n can obviously 
be numerically calculated by using the time-domain definition (2.104). This iV-sample 
sequence could also be calculated by transforming the corresponding realisation of its 
frequency-domain representation back into the time-domain by the inverse finite discrete 
Fourier transform. For a single sine this approach seems artificial. Things change however 
if realisations of a multisine random time-series consisting of a sum of hundreds or thou­
sands sine components should be obtained. To calculate the multisine random time-series 
realisation for large values of TV, a good starting point is offered by its frequency-domain 
representation. This approach gains a lot from the numerical efficiency of Fast Fourier 
Transform algorithms [72].

For a given set of multisine random time-series amplitudes, phase shifts for constant 
components, and parameters of Nyquist frequency phase shifts distributions, the procedure 
of simulating the basic TV-sample multisine random time-series consists of two steps:

• step 1: synthesis of the corresponding multisine random time-series spectrum;

• step 2: transformation of the synthesised spectrum back into the time-domain by the
inverse finite discrete Fourier transform. It results in the basic TV-sample multisine 
random time-series.

For example, if the amplitudes {Ao, A \ , . . . ,  An j  and two phase shifts {<j>o,a} for a
SMRS are given, the basic TV-sample SMRS uB(i) may be simulated as the inverse discrete 
Fourier transform of the corresponding synthesised spectrum UN(jSlm):

• for m = 0:
UN(j0)  = TVA0 sin <j>0 -I- jO; (2.105)

• for m =  1 , 2 , . . . , y  — 1:

R e { u N{jSlm )} =  y A m sin</>m, (2.106)

Im  { (/^ (jf lm )}  =  - y A m cos(£m, (2.107)

where <t>m are random, independent and uniformly distributed on [0,2it);

•  for m  =  y-:

UN( jv )  =  N A n sin4>n + jO, (2.108)
2 2

where <j>N is random, independent and Bernoulli distributed B {a, it +  a } ) ;
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•  for TV — m =  TV — 1 ,TV — 2 , . . . , TV — ( y  -  1):

UN (jSl(N  -  m)) =  Re { t/N(.?ftm)} -  j l m  {UN{jSlm )} ; (2.109)

Synthesis and simulation of basic MOMRS’s, NMOMRS’s and NMMRS’s can be per­
formed in the same way as the synthesis and simulation of scalar multisine random
time-series.

Sets of multisine random time-series amplitudes, phase shifts for constant components, 
and the parameter of Nyquist frequency components distribution are important degrees of 
freedom for different multisine random time-series synthesis and simulation. Their choice 
allows us to  control the expected value vector of the extended multisine random time-series. 
Additionally, in spite of random phase shifts, the periodogram and correlation function ma­
trices for weakly ergodic multisine random time-series or expected values of periodogram 
and correlation function matrices for nonergodic multisine random time-series are deter­
ministic, real-valued functions. They are uniquely defined by the sets of multisine random 
time-series amplitudes, phase shifts for constant components, and the parameter of Nyquist 
frequency components distribution. It implies that the multisine periodogram (or expected 
value of the periodogram) matrix elements can be fitted to  the corresponding power spectral 
density function matrix elements of a wide-sense stationary multivariate random process. 
This fitting is behind the proposed synthesis and simulation method [24] of wide-sense 
stationary multivariate random processes defined by their power spectral densities given by 
nonparametric representations, e.g. as diagrams or table, where:

• synthesis means the determination of the spectrum of a multisine random time-series 
based on the corresponding power spectral density of a wide-sense stationary random 
process to be simulated,

• simulation means the generation the corresponding multisine random process approx­
imation by performing the inverse finite discrete Fourier transform of the synthesised 
spectrum.

Sample realisations of the synthesised and simulated multisine random process approxima­
tion may be obtained by replacing the sequence of random phase shifts by their respective 
realisations. The numerical complexity of generating the sample realisations can be reduced 
by using the FFT algorithms.
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P ow er S p ectra l D en sity  D efin ed  
M u ltis in e  R an d om  P ro cesses

In this chapter, the synthesis of multisine random time-series defined by power spectral 
densities of wide-sense stationary random processes and their simulation with the inverse 
finite discrete Fourier transform is described. Statistical properties of obtained multisine 
random process approximations are established. Asymptotic Gaussianess and ergodicity of 
the synthesised time-series are discussed.

This chapter is finished with an extension of the proposed random process synthesis 
and simulation method to generation of wide-sense stationary continuous-time band-limited 
random processes, given also by their power spectral densities.

3.1 SYNTHESIS

In the sequel, it is assumed that:

• v (i) is a wide-sense stationary, real-valued multivariate (orthogonal or nonortho-
gonal) random process given by the power spectral density matrix $ vv (jujT) =
[*vr» ,(jnm )]r,s=i,2  which satisfies, for uiT £ [0,2it), the following conditions:

$VV U uT )  = 4>vv ( j ( 2 i r - w r )  (3.1)

and:
||$vvO'wr)|| < oo, (3 .2)

where:

| |* w ( j « r ) | |  = N v r v ,

\ r= l»=1

the autocorrelation function R vv(t) of v (i) for lags |r | >  r0 satisfies the condition:

R-vv(r) =  o. (3.4)

The power spectral density matrix $ wv(ju T )  of a multivariate wide-sense stationary 
random process with finite powers of its elements may be approximated by the periodogram 
of a  multivariate multisine random time-series with amplitudes of its sine components chosen 
so as to make values of the periodogram matrix (or expected value of the periodogram 
matrix) equal to the corresponding values of power spectral density matrix of the original 
random process for some equally spaced frequencies (being approximation nodes) from the 
range [0, 2ir). This approximation criterion allows us to  synthesise the spectrum U  
of the multisine random time-series. The corresponding time-series is simulated by the 
inverse finite discrete Fourier transform of the synthesised spectrum It is worth
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to note tha t the above approximation criterion can be interpreted as sampling of the power 
spectral density matrix in the frequency domain.

The power spectral density matrix $ vv(jujT) is approximated by a periodogram ma­
trix of the corresponding multisine random time-series - it means that the power spectral 
densities (jojT) (r, s = 1,2, . . . ,p )  are sampled in the frequency-domain choosing for 
each, n sample points along the uiT axis at relative, equidistant frequencies from the range 
[0, 2ir). It does not produce aliasing [47] if the spacing A between the samples along the 
frequency axis is such that:

A < A0 =  (3.5)
2to

In this case the original power spectral densities $ VrV,(jb jT)  may be reconstructed from their 
sampled values (periodograms of approximating multisine random time-series) by using the 
sine interpolation:

*vrv ,t iu T )=  £  $vrv ,(jA m )sinc(''^‘j r  Am ^  ■ (3.6)
m =—oo

The accuracy of the reconstruction is dependent of the number of terms used to perform
the summation in (3.6).

The assumption (3.4) can be interpreted as a lower bound on the number of approxima­
tion nodes - samples of multisine random time-series to  be simulated. When it is satisfied 
(the number of approximation nodes is two times greater than r0), the original power spec­
tral density matrix may be reconstructed uniquely without producing aliasing.

For asymptotically uncorrelated random processes (limT_ 00 R vv(r) =  o) the assump­
tion (3.4) can be satisfied only asymptotically for n' —» oo. In this case, the finite number n' 
of approximation nodes implies aliasing in the shift-domain of the corresponding autocor­
relation function. This aliasing may be made insignificant by selecting a sufficiently large
To such that for all r  >  to it is reasonably to assume that R Vv(r ) is a zero matrix.

In the sequel, for given power spectral density matrices of wide-sense stationary ortho­
gonal and nonorthogonal multivariate random processes the synthesis of the corresponding 
multisine random time-series is discussed in details.

3 .1 .1  E rg o d ic  case

Let \ ( i )  be a wide-sense stationary, real-valued multivariate orthogonal random process 
with the power spectral density matrix $ vv(jw T)  =  diag[$Vrtv(wT) +  j0]r=1 2 . The
power spectral densities $ Vr„r (wT) (r = 1,2, . . . ,p )  are sampled in the frequency-domain 
(approximated by a periodogram of MOMRS) choosing for each, nr sample points along 
the u>T axis at relative frequencies from the set . It does not produce aliasing if the 
spacing Ar between the samples along the frequency axis is such that:

2it
max Ar =  p—  = pSi < Ao- (3-7)

r = l , 2 , . . . , p  N

The approximation criterion:

$vrVT(u r ) \uT6tf?£ = <®’urUr(^m)lnm6A"r1p (3-^)

for r = 1 ,2 , . . . ,  p allows us to synthesise the rth  element UT(jQ.m) of the MOMRS finite
discrete Fourier transform U B(jSlm) = |t/rs (j'nm )j  ̂  ̂ as:

• for (m  = 0) A (d m  e

=  y ^ * « r» r(o )  +  i° ; (3.9)
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for (to =  1 , 2 , . . ^  — 1) A (torn 6 M%):

Re[u?(jSlm)} = i /y $ „ ,.„ r(n m )s in 0 m, (3.10)

I m { u ? ( jS lm ) }  =  - ^ y $ UrUr(fiTO)cos0m, (3.11)

where <f>m are random, independent and uniformly distributed on [0,2 it); 

for (to = y )  A (Sim e  A/jf’p):

= \ J ^ v r v r( ^ ) s'm <t>E+jO, (3.12)

where 4>n_ is random, independent and Bernoulli distributed B  ( j ,  {a,it +  a});

• for (to =  0 , 1 , . . . ,  y ) A (Sim  £  J\T$):

U f ( jS lm )  =  0 +  jO; (3.13)

• for N - m  =  N  - 1 , N - 2 , . . . , N - ( f y - l ) :

U ? ( jS l(N  -  to)) = Re { UrB(jS lm )} -  j l m  {U TB( jS lm )}  . (3.14)

Accuracy of the multisine random process approximation defined by the criterion (3.8) 
may be discussed in the shift-domain of its autocorrelation function.

Let us assume that for the given power spectral density <S>vv(cjT )  a scalar multisine
random time-series u (i)  was synthesised and simulated. The approximation error e(r) is
defined as:

e(r) =  R vv( r )  -  R un( r ) ,  (3.15)

where r =  0 , 1 , . . . ,  N  — 1. It follows from the approximation criterion (3.8) and Lemma 2.2 
that:

£

^  =  2itT Jo cos(u T T )d (u T ) ~  £  $™(fin) cos(ftnr)
n = 0

I r2v i  N- 1
= 2 i\ f  )  $ vv(vT )c°s(u > T T) d ( u T ) -  5 3  $ w (ttn )c o s (S lnT)Sl. (3.16)

^ n = 0

For N  —* oo the product (N  — l)fi tends to 2it. It implies under Riemann’s definition of
the integral that the approximation error e(r) declines with j y  (because SI =  ̂ ) .

For the given number N  of approximation nodes, values of the corresponding appro­
ximation error f(r) depend on the shape of the power spectral density $„„(u>T). Analysis 
of the expression (3.16) leads to the conclusion, that the approximation error e(r) is equal 
to zero for lags r  =  0 , 1 , . . . , JV -  1  when a white noise with the power spectral density 
$ yv(cjT ) =  A2 is synthesised (see Chapter 4 for details).

E xam ple  3.1 L et u(i) be the follow ing third-order scalar AR tim e-series:

"  1.00 -  2.002- 1 -(- 1.45z- 2 -  0.35z-3   ̂ ^

where e ( i)  is  a hypothetical white noise.
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Fig. 3.1. Power spectral density of the third-order AR time-series

Table 3.1

Parameter
Parameter Estim ates

N  =  128 N  =  256
-2.00

1.45
-0.35

-2.00 (0.012) 
1.45 (0.019) 

-0.35 (0.011)

-2.00 (0.006) 
1.45 (0.010) 

-0.35 (0.006)

Mean values and standard deviations (in parentheses) of the third-order AR time-series 
model parameter estimates obtained for 100 simulation experiments using the Least Squares 
identification method

The v(i) with variance equal to 1 was simulated by using its frequency-domain repre­
sentation as the power spectral density diagram (Fig. 3.1), which was approximated by the 
periodogram of a scalar multisine random time-series.

Each simulated N -sample third-order AR time-series realisation (N = 128 and N  = 256) 
was identified using the Least Squares identification method [13]. The mean values and 
standard deviations (in parentheses) of the estimated parameters for a third-order AR  model 
in 100 simulation experiments are presented in Tab. 3.1.

The mean values o f the estimated parameters do not differ from the true values but its 
standard deviations show that the autoregressive time-series simulated with multisine ran­
dom time-series very precisely reconstruct spectral and correlation properties of the original 
random process for finite number of samples.

E xam ple 3.2 A time-series v(i) with the nonrational power spectral density:

Svv(uT )  =  eJCOS(“,T) (3.18)

was simulated by using the proposed approach: the power spectral density Svv(uT) was 
approximated by the periodogram of a scalar multisine random time-series. The number N  
of approximation nodes was 256. An example of the simulated N  =  256-sample multisine 
random time-series realisation u256(i) is shown in Fig. 3.2.



40 Power Spectral Density Defined Multisine Random Processes

Tims

Fig. 3.2. Nonrational multisine random time-series realisation - N  = 256

For this realisation the rational AR, MA and ARMA approximations were identified by 
using the Least Squares and Recursive Prediction Error methods [55], respectively. Appli­
cation of the A IC  criterion [56] for the model order selection resulted in:

the AR(5) model: 

“256(0  =
1.000

1.000 -  0.9932-1 + 0.4942-2 -  0.161z"3 +  0.050z-* -  0 .01 6 * -* * ^’
(3.19)

the MA(4) model:

u256(t) =  (l.OOO -(- 0.987z_1 +  0.492z-2 +  0.169z-3 +  0.042z-4) e(i); 

the ARM A(2,1) model:

1.000 +  0.369z-1ti (t) :
1.000 -  0.621Z-1 + 0.130z~2

(3 .2 0 )

(3.21)

where e(i) is a hypothetical white noise. One-step prediction error variances for the above 
models were all equal to 1.006.

The original power spectral density (3.18), unwindowed periodogram for the simulated 
time-series realisation and power spectral densities for identified rational AR(5), MA(4) 
and ARM A(2,1) approximations are compared in Fig. 3.3.

The time-domain identification methods allow us to identify rational approximations of 
v(i) based on the corresponding multisine random time-series realisation u256(i). The power 
spectral densities calculated by using these rational approximations very precisely reconstruct 
the original one.

The proposed approach based on approximating the power spectral density by the perio­
dogram of a multisine random time-series allows us to simulate nonrational time-series 
without calculating any parametric approximation.

E xam ple  3.3 The following bivariate orthogonal A R  time-series v (i):

A (z - ')v ( t ) = e(i) (3.22)
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Fig. 3.3. Comparison of the original power spectral density (solid line), unwindowed perio­
dogram for N  =  256-sample multisine random time-series realisation (solid line) 
and power spectral density for indentified: AR(5) (dotted line), MA(4) (dashdot 
line) and ARMA(2,1) (dashed line) models

with

A t*"1) =
' 1.00 0.00 ' -0.80 0.00

0.00 1.00 + 0.00 -1.50
z-1 +

0.00 0.00 
0.00 0.70

(3.23)

and a unit variance matrix of the white noise e(i) was simulated by using its 
frequency-domain representation as the power spectral density matrix

$vv(jw T) :

1.00+ i0 
1.64 —1.6ÛCOS u T

0 +  j0

„ . .„  1 .0 0 +  70
° +  -7° 3.74-5.1ÛcoswT+1.40cosVi'

(3.24)

which was approximated by the periodogram matrix of a multivariate (bivariate) orthogonal 
multisine random time-series.

Each simulated N -sample A R  time-series realisation (N -  128 and N  = 256) was 
identified using the Least Squares identification method [13]. The mean values and standard 
deviations (in parentheses) of parameters estimated in 100 simulation experiments for the 
orthogonal A R  model with a structure of the matrix A (z_1) chosen as

A (z -1) =
1.00 0.00
0.00 1.00 +

0.00 
0.00 a\2

z_1 +
0.00 0.00 
0.00 a2 2

(3.25)

are presented in Tab. 3.2.
The corresponding results for a nonorthogonal A R  model with the following structure 

of the matrix A (z-1 )

A (z"1) = 

are presented in Tab. 3.3.

1.00 0.00
0.00 1.00

a li
°21

0.00 0.00 
0.00 a?,

(3.26)
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Table 3.2

Parameter
Parameter Estim ates

N  =  128 N  = 256

“ li -0.801 (0.006) -0.800 (0.002)
a22 -1.500 (0.009) -1.500 (0.004)
a22 0.700 (0.008) 0.700 (0.003)

Mean values and standard deviations (in parentheses) of the orthogonal A R  model parame­
ter estimates obtained for 100 simulation experiments using the Least Squares identification 
method

Table 3.3

Parameter

a 21

° 2 2

° 2 2

Parameter Estim ates
N  = 128

-0.801 (0.006) 
0.000 (0.009) 
0.000 (0.009) 

-1.500 (0.009) 
0.700 (0.008)

N  = 256
-0.800 (0.002) 

0.000 (0.003) 
0.000 (0.003) 

-1.500 (0.003) 
0.700 (0.003)

Mean values and standard deviations (in parentheses) of the nonorthogonal A R  model 
parameter estimates obtained for 100 simulation experiments using the Least Squares iden­
tification method

The mean values o f the estimated parameters do not differ from the true values but 
their standard deviations show that autoregressive multivariate orthogonal time-series simu­
lated using weakly ergodic bivariate orthogonal multisine random time-series precisely appro­
ximates properties of the original multivariate orthogonal random process.

3 .1.2 N o n e rg o d ic  case

M u ltivaria te  orth ogon a l m u ltis in e tim e-series

Similarly as for the previous ergodic case, let v (i) be a wide-sense stationary, 
real-valued multivariate orthogonal random process with the power spectral density matrix 
$ vv( ju T )  — diag (u>T) +  j'0]r_12  . It is assumed that the number of approxima­

tion nodes N  is chosen so that y  > To- This implies that choosing the maximum spacing 
A =  ft between the samples along the frequency axis, the original power spectral densities 

Vr(uT )  for r  =  1 ,2 , . . . , p  may be recovered from their samples ($„r„r(ftm )) without 
producing aliasing.

The approximation criterion:

4>.r„ > T ) |wr=nm = < Ur(ftm) (3.27)

for m  = 0 ,1 , . . . ,  y  and r — 1 ,2 , . . . ,?  allows us to synthesise the rth  element UT(jSlm ) of 

the NMOMRS finite discrete Fourier transform U B(jQ m ) =  [t/rB(jftm )]r=i  ̂ ^as:

• for m =  0:

V f( j0 )  =  \ J + jO; (3.28)
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• for m =  1 ,2 , . . . ,  y  — 1:

A e|f7rs (jftm )} = ^ ^ - * „ r„r(ftm )sin </>r,m,

Im  {{/,?(jftm ) j  =  - J ^-$„r„r (ftm) cos 4>T<m, 

where 4>riTn are random, independent and uniformly distributed on [0,2-nr); 

• for m  =  y :

(3.29)

(3.30)

^  ̂ „ rvr(it) sin 4>t k  +  j'O, (3.31)

where 4>r z  is random, independent and Bernoulli distributed B Q ,  } )î

•  for N  — m  = N  — 1,N  — 2 , — ( y  — 1):

UB(jtt(N  -  m)) = Re { UB( jü m )} -  j I m { u ? ( jS lm ) } . (3.32)

E xam p le  3.4 The simulation experiment from Example 3.3 was repeated. The power spec­
tral density matrix (3.24)  was approximated by the expected value of the periodogram matrix 
of a nonergodic multivariate (bivariate) orthogonal multisine random time-series. Similarly 
as for the previous case, each simulated N -sample A R  time-series realisation (N — 128,
N  =  256 and N  =  1024) was identified using the Least Squares identification method
[13]. The mean values and standard deviations (in parentheses) of parameters estimated in 
100 simulation experiments for the orthogonal A R  model with the structure of the matrix
A t* -1):

A t* "1) = 

are presented in Tab. 3-4-

1.00 0.00
0.00 1.00 + 0.00

0.00
a 22

z - 1 +
0.00 0.00 
0.00 a\ 2

-2 (3.33)

Table 3.4

Parameter
Parameter Estim ates

N  = 128 N  = 256 N = 1024

ah
a22
n2 “22

-0.800 (0.006) 
-1.499 (0.010) 

0.699 (0.008)

-0.800 (0.002) 
-1.500 (0.003) 

0.700 (0.003)

0.800 (0.0003) 
-1.500 (0.0006) 

0.700 (0.0008)

Mean values and standard deviations (in parentheses) of the orthogonal A R  model parame­
ter estimates obtained for 100 simulation experiments using the Least Squares identification 
method

The corresponding results for a nonorthogonal A R  model with the following structure 
of the matrix A (z-1 )

A( z  l ) =
1.00
0.00

0.00
1.00 + °11 “12 

“21 °22
z - 1 +

0.00
0.00

0.00
a 22

(3.34)

are presented in Tab. 3.5.
It follows from Tabs 3-4 and 3.5 that the synthesised and simulated nonergodic multiva­

riate orthogonal multisine random time-series very precisely reconstruct correlation pro­
perties of the original random process. Additionally, when the value of N  grew up from 
N  =  128 to N  =  1024, the results of identification for any NMOMRS realisation approached 
the results o f the ensemble averaging.
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Table 3.5

Power Spectral Density Defined Multisine Random  Processes

■
Parameter

Parameter Estim ates
N  =  128 N  = 256 N  = 1024

o}i
o}2
a21
a22
a22

-0.797 (0.009) 
-0.007 (0.031) 
-0.017 (0.051) 
-1.495 (0.012) 

0.698 (0.015)

-0.798 (0.005) 
-0.004 (0.022) 
-0.012 (0.040) 
-1.498 (0.005) 

0.700 (0.005)

0.800 (0.001) 
0.001 (0.010) 
0.002 (0.019) 

-1.500 (0.001) 
0.700 (0.001)

Mean values and standard deviations (in parentheses) of the nonorthogonal A R  model
parameter estimates obtained for 100 simulation experiments using the Least Squares iden­
tification method

M u ltivaria te  n on orth ogon a l m u ltis in e  tim e-series

Let v (t) be a wide-sense stationary, real-valued multivariate nonorthogonal random 
time-series with the power spectral density matrix &vv(jujT). The &yv(ju>T) may be 
reconstructed from its approximation by the expected value of a NMMRS periodogram ma­
trix if the number N  of approximation nodes is chosen so that y  >  tq. The approximation 
criterion:

* w O ‘wr)l«T=am =  £{$uu(.7fim )} =  K (jSlm )K "(jSlm ). (3.35)

allows us to  synthesise the NMMRS finite discrete Fourier transform U B(jSlm ) using the 
following two-step procedure:

• step 1: synthesis of the finite discrete Fourier transform /3B(jSlm ) =
m ) J  ^ ^  of NMOMRS which approximates multivariate orthogonal white 

noise with the periodogram matrix equal to / :

— for m  — 0:

J8?(i0)=  \ [ ^  + j0;  (3.36)

~ for m  =  1 ,2 , . . . , 4- -  1:

Re |/3 f  (jftm )}  =  J ^ - s in  фт,т, 

Im[pB(jüm)} = -^-cos& vn,

(3.37)

(3.38)

where are random, independent and uniformly distributed on [0,2ir);
for m =

Р ? (.п )  = \J y  sin ФТЕ +  JO, (3.39)

where фг % is random, independent and Bernoulli distributed В 

-  for N  -  m  = N  -  1, N  -  2 , . . . ,  N  -  (%  -  1):

~ m)) -  Re {/?f (jfim )} -  j l m  ( jfim )}  , (3.40)

where r =  1 ,2 ,. .  ,,p
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• step 2: for each frequency Sim (m = 0 ,1 , . . . ,  N  -  1) the matrix K (jSlm) is chosen so 
that the following spectral factorisation equation is satisfied:

$ vv(jSlm) =  K(jSlm )K*(jSlm ). (3.41)

The finite discrete Fourier transform U B(jSlm) is calculated as:

V B(jSlm) = 1t(jSlm)(3(jSlm). (3.42)

3.2 ASYM PTOTIC PROPERTIES
The synthesised and simulated multisine random process approximations of wide-sense sta­
tionary random processes with specified power spectral densities turn asymptotically for 
the number of approximation nodes N  —* oo into Gaussian random processes. Addition­
ally, nonergodic multisine random time-series become asymptotically ergodic. This is sum­
marised in the sequel.

3 .2 .1  E rg o d ic  case  

L em m a 3.1 Assuming that:

1. 3>vv (jujT) =  diaj/[$„r„r (Hm) +  j0]r=1 2 is the power spectral density matrix of a 
wide-sense stationary, orthogonal, real-valued multivariate random process with zero 
mean vector and the variance matrix a 2v = diag r=1 2 p , where:

= ^ f l  * w r ( “T)d(u,Ty, (3.43)

2. A„ converges to 0 for N  —* oo in such a way that for  r =  l ,2 , . . . ,p :

NT A2
= *vrvr(Sln), (3.44)

where n =  1 ,2 , . . . ,  y  — 1 and Sin £ ;

3. Aq = A n = 0 or <j>0 — a = 0;
2

then the corresponding extended MOMRS u(») with the consecutively circularly ordered fre­
quencies converges in distribution for N  —> oo to a Gaussian multivariate orthogonal multi­
sine random time-series of type 1 (GMOMRS1) g(i) =  [ffr(*)]r=i,2,...,p zero mean vector 
and the variance matrix ^cr2v :

g(i) 6 AsAT(o, -o-yV). (3.45)
P

Additionally the correlation function matrix of the GMOMRS1 converges to:

£{g(*)gT(* -  t)}  = Rgg(r ) = j  cos(ojTr)d(uT) =  iRvv(T-), (3.46)

where r  = 0 , 1 , . . . , oo.

□
P roof: The uniform distribution of the independent, random phase shifts 4>n on [0,2ir) for
each frequency Sin (n — 1 ,2 , . . . ,  y  — \ )  implies that for any time instant i the random
vector ln(i) =  [/r,n(»)U i 2 p’ elements:

sin(Slni +  </>„) if Sin € A/"rc;p
M O  = (3.47)

0 if Sin £ M CT
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is characterised by the expected value £ { ln(i)}  =  o. Its variance matrix is £ { l„ ( i) lj ( i)}  =  
d*ag[£{l*n(i)}]r=i2 where:

N T  A2 r  , , c l

8 if ü n  e

0 if fin  $  A/^’p
(3.48)

C V '  1 !  V N T  gS n = ln(*) =  —5— “n=l
and for each time instant i:

. . B ,

The corresponding variance matrix is:

'(*) (3.49)

(3.50)

*-1
E l  = £  £{ln(i)l^(i)} = ^ d i a g  [ar% ] r=i 2   , (3.51)

where:
2   ̂ 2 nr- i

CT?r,w = ^  £  $ Ur„r (n n )n  =  — -  53  $„r„r(fipn +  (r -  l)ft)fy>. (3.52)
Un^Afr p \{0,tt} P n=0

For N  -> 00 the product (r -  l)fi tends to 0 and (nT -  1 )Qp tends to it. It implies under 
Riemann’s definition of the integral that

1 / 2ir a2
L  * ^ T W “ T ) = (3-53)

\

N

Let:

I|ln(0ll2 = £  (3.54)

denotes the Euclidean norm of the vector\n(i). It follows from the properties o f sine function 
that for each time instant i the sequence of random vectors l„(t) (n =  1, 2, . . . ,  y- -  1)  is 
a uniformly bounded sequence [51], i.e. there exists a constant c such that

P { |IU 0 ll2 < c }  =  l  (3.55)

holds for n =  1,2 , . . . , y  -  1. It implies that for every e > 0, the extended Lindeberg 
condition:

N ®oo f c  £ |IM O IIa; IIIW OB, > -  i j  j  =  0 (3.56)

is satisfied by the sequence of l„(i) (n =  1 ,2 , . . . ,  ^  -  1) for each time instant i. It follows 
from an extension of the Lindeberg-Feller central limit theorem to the multivariate case [83] 
that for each time instant i the random variable

2
T f f 1S"  = uB(!‘) (3-57)

aussio
g(z) with zero mean vector and the variance matrix ^<7yV.
converges in distribution for N  —>■ oo to a Gaussian multivariate orthogonal random variable

y V V

The proof o f the property 3-46 follows from Riemann’s definition of the integral applied 
for N  ► 00 to correlation function matrix elements of the power spectral density defined 
MOMRS.
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3 .2 .2  N o n e r g o d ic  ca se

M ultivariate orthogonal multisine tim e-series

The properties of NMOMRS for the ensemble averaging under TV —► 00 are given by the 
lemma:

Lemma 3.2 Assuming that:

1. $ vv{ ju T )  =: diag[$VrVr(uT ) + j0 ]r=12 „ is the power spectral density matrix of
a wide-sense stationary, orthogonal, real-valued multivariate random process with zero 
mean vector and the variance matrix <72v =  diag[<rlrVr]r_12 p> where:

; /  $„r„ > T )d (a ;r ) ;  (3.58)
JoalrVr 2ljT

2. Ar<n converges to 0 for N  -* 00 in such a way that for r = 1 ,2 ,. . .  ,p:

N T A l.r,n
=  $ v rvr (f tn ) , (3-59)

where n = 1, 2, . . . ,  y  — 1;

3. Aro = Ar n = 0 or 4>T,0 =  a = 0 for r =  1 ,2 , . . . ,p;’ r’ 2
then the corresponding extended NMOMRS u(i) converges in distribution for N  -* 00 to 
a Gaussian multivariate orthogonal multisine random time-series of type 2 (GMOMRS2) 
g (j) = (<7r(i)]r=i 2 p zero mean vector and the variance matrix <r2v :

g(.-)e AsM (o,<r2v v ). (3.60)

Additionally the correlation function matrix £{g(i)gT{i -  t)}  of the GMOMRS2 converges

to: 1 t 2%r
£{g(*)gT(* -  r )} = JQ *wO'wT)cos(wTr)d(wT), (3.61)

where r  =  0, 1, . . . ,  00.

□
P roof: When for each frequency tin (n = 1 ,2 ,. . . ,  y  -  \ )  and any time instant i elements 
the random vector ln(i) =  t^r,n(*)]r= i,2 p are defined as:

lr,n(i) = sin(fini +  ^ r,n), (3.62)

the proof proceeds similarly as the proof of previous lemma. It should only be noticed that 
for the rth element of the GMOMRSl:

2 _  1
rr’N  2 itT

■ N - 1

Y  -  *«,*(0)11 -  $„r„r (it)n
.n=0

(3.63)

where o 2r N corresponds to a2rN in equation (3.52). It follows for N  -> 00 under Riemann’s 
definition of the integral that

1 /*2tt
Jim = - ± -  /  * VrVr(u,T)d(uT) = < Ur. (3.64)
N-*00 2lti Jo

a
The properties of NMOMRS obtained for the time-domain averaging under N  -» 00 are 

given by the lemma:
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L em m a 3 .3  Consider the GM0MRS2.

1. Elements o f its periodogram matrix # | g(jflm ) =  [фв 3>(/Пто)] for m  =
0 ,1 , . . . ,  TV — 1 under TV —* oo converge to:

K 3. № m ) = (0 + j0)S(m )

+ 5 3  [(cos(^,n -  4>S,n) -  j sin(</y,n -  <t>,,n))6(m -  n)Tl= 1

+(cos{4>T<n -  4>̂ n) + j  sin(</>r,„ -  <t>,,n))S(m -  (TV -  n))] +  (0 +  j0)£(m  -  y ), (3.65) 

where r, s =  1 ,2 , . . .  ,p.

2. The mean value vector A i{g (i)}  is equal to o for N  —> oo.

3. Elements o f the correlation function matrix R gg(r) =  [Rgrg,(T)\T 2 / or T =  
0 ,1 , . . . ,  00 under TV —» 00 converge to:

( Rvrvr(.T) if r = s
a.s. (3.66)

0 if r /  s

4■ Elements o f the variance matrix cr|g = x 2 under TV —> 00 converge to:

if r = s 

0 i f  r ^  s
c9rg. -  { a.s. (3 67)

P roof:

1. It follows from Lemma 2.7 when AT<n calculated from equation (3.59) for n = 
1 ,2, . . . ,  00 are used.

2. It follows from Lemma 2.9 and Lemma 3.2.

3. It follows from Lemma 2.9 and equation (3.59) that the elements of the correlation 
function matrix for  r  = 0 , 1 , . . . ,  00 are given by:

2 2 /--------------------------
Ruru.iT) = jy 1 3  \J^vrvr{^n)i>VtVl(Sln)cos(SlnT +  -  <t>s>n), (3.68)

71=1

when r ,s  =  1, 2, . .  .,p . For the case o f r — s the elements RUrur(T) are deterministic 
functions and:

£-1 
2 2

jUin, R ^ r(T) = ^lin^ j  £  $ wvr(fl« )cos(finr) =  Ji„r„r (r) , (3.69)
n = l

while for r /  s and r  =  0, 1,.., TV — 1 the components

r?ä( r)  = y /$„rVr(fin)$„,Vj(fin)cos(finr +  -  ф,'П) (3.70)
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are independent random variables with £ {r",(r)} =  0 and £ j ( r " 3( r ))2 j  < 00 for all

n (n =  1 ,2 , . . . ,  у  — 1 /  Additionally:

t l £ { W r ))2}lim УЗ 1 2 ' < 00. (3.71)N-oo П271= 1

It implies under the strong law of large numbers [51] that
Z - l

lim iJUrUl(r)  =  lim £  r" ,(r) =  0 a.s. (3.72)
N - * o o  N — * o o  ’n=l

4. Л follows immediately from the variance matrix definition that:

°gg = ®-gg(®) a-s- (3.73)

□
It follows from Lemma 3.2 and 3.3 that the power spectral density defined NMOMES 

converges asymptotically for TV —► oo to a Gaussian multivariate random process which is 
ergodic.

M u ltivaria te  n on orthogon al m ultisine tim e-series

The extended NMMES obtained from application of the approximation criterion (3.35) 
to the power spectral density matrix $ vv(juiT) (uT  6 [0,2ir)) of a wide-sense stationary 
multivariate nonorthogonal random process v (i) turns also asymptotically for TV —► oo into 
an ergodic Gaussian multivariate nonorthogonal multisine random time-series:

L em m a 3 .4  Assuming that:

1. &V4( ju T )  - [Ф„г„.0'и>:Г)]г,=1,2 p is the power spectral density matrix of
a wide-sense stationary, real-valued multivariate nonorthogonal random time-series 
with zero mean vector and the variance matrix <7yV — [<T2r„ J r f=1 2 , where:

= M f L  *»r».U“ T)d(uTy, (3.74)

2. for r , t  = 1 , 2 , . . . ,  p values of i „ (amplitudes of the sine components o f the extended 
NM M RS  u (i))  converge to 0 for TV —► oo in such a way that:

£{*B u(jSln)} = Ф w O ’fin), (3.75)

where n = 1 ,2 , . . . ,  у  — 1 ;

3- Ar,t, о = ATt n = 0 or фГ) о = a = 0 for r ,t  =  1,2r,I , J

then the corresponding extended NMMRS  u(i) converges in distribution for TV —* oo to 
a Gaussian multivariate nonorthogonal multisine random time-series (GNMMRS) g (i) = 
[ffr(»)]r=i 2 p zero mean vector and the variance matrix <r2v :

g(t) € AsAf(0,<Tyy). (3.76)

Additionally the correlation function matrix £{g(i)gT(i — r)}  of the GNMMRS converges
to:

£{g(i)&T(i - * ) } =  2k f S J  * vv{jijT) С05И > № П  (3-77)
where r  = 0 , 1 , . . . , oo.
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P ro o f: When for each frequency Sin (n = 1 ,2 , . . . ,  y  -  1) and any time instant i elements
the random vector ln(t) = [ir,n(*)]r=i,j, p are defined as:

/N T  ^
/r,„(t) =  — Z— s\n(Slni + + ¥>r,(,n), (3.78)

t = 1
the proof proceeds similarly as for Lemma 3.2. It should only be noticed that:

£ L - 1 £ - 12 pjj* 9 2
£  ^{U (*)№ )> =  — ^  £  * w tf n » ) .  (3.79)
n=l n=l

□
The time-domain averaging on any GNMMRS realisation under TV -+ oo results in the 

following lemma:

L em m a 3.5 Consider the GNMMRS.

1. Its periodogram matrix $ g g(jSlm ) for  m  =  0 ,1 , . . . ,  TV — 1 under TV —*• oo converges 
to:

$ Bg(jSlm ) = K (jS lm )$ p p (jS lm )K '(jS lm ), (3.80)

where elements of the matrix & ^p(jS lm )  =  ^  fo r r ,s  =
1 ,2 , . . . ,  p are given by:

f - i
$ B /JJ0 'fim ) =  (°+.?0)‘5(m )+  £  [(cos(</>r,n -</>,,„) —j  sin(</>ri„ — </>s n))6(m — n)

71=1

+ (cos{<t>r,n -  4>,,n) + j  sin{<t>r,n -  4>,,n))6(m- (N  -  n))] +  (0 +  ;0 )5 (m -  y ) .  (3.81)

2. Elements o f its correlation function matrix: R gg(r)  = [Rgrg.{T)]r ,=i 2 p f or T = 
0 ,1 , . . . ,  00 under TV —► 00 converge to:

J™  RgraXT) = Rvrv.(T) (3-82)N — * 0 0

3. Its mean value vector M  {g(i)} is equal to o.

4- Elements o f its variance matrix crgg =  f  ̂ under TV —> 00 converge to:

a°rS‘ ~  a',rV‘ a"3' (3-83)

□
Proof of the above lemma proceeds similarly as for Lemma 3.3.

It follows from Lemma 3.4 and 3.5 tha t the power spectral density defined NMMRS 
converges asymptotically for TV —> 00 to  an ergodic, Gaussian multivariate random process.

To summarise the asymptotic properties of the power spectral density defined multisine 
random time-series it is worth to emphasise that:

1. The results of lemmas (3.1 -r 3.5) still hold if:

• the zero-frequency phase shifts and Nyquist-frequency distribution parameter a  
are equal to lj, and

• the sine component amplitudes for constant and Nyquist frequency components 
are assumed to be chosen so as the approximation criterion is satisfied,

because amplitudes of the constant and Nyquist frequency components tend to zero 
for TV —► 00.

2. For a given power spectral density m atrix of an orthogonal random process the cor­
responding synthesised MOMRS exhibits an interesting property: its periodogram 
m atrix is a consistent estimator of the true power spectral density matrix.
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3.3 CONTINUOUS-TIM E RANDOM  PROCESS 
GENERATION

Consider a wide-sense stationary continuous-time band-limited multivariate random process 
s(t) with the power spectral density matrix <S>gs(jcj) ( ||4>ss(ju;)|| < 00 for 0 < u  < 00) and 
the corresponding autocorrelation function RgsM for which:

lim Ruu(i) = *>. (3.84)I—*-00

In the sequel, the to denotes a lag beyond which the autocorrelation function matrix R 33(t) 
may be assumed to be a zero matrix.

The band-limited property of s(t) implies that there exists such a frequency u>mar that 
for all u) > u)max the following assumption is satisfied:

# S8(j'u)) = o. (3.85)

The proposed approach to the continuous random process s(t) generation is based on 
the previously defined synthesis and simulation of random time-series.

The power spectral density matrix # S8( ju )  is sampled in the frequency-domain (approxi­
mated by the periodogram of the corresponding multivariate multisine random time-series) 
so as to avoid aliasing in the shift-domain of its autocorrelation function. Reversing the 
sampling theorem it is evident that &ss(ju )  can be sampled without producing aliasing if 
the spacing S between the samples along the u> axis is such that:

* *  2h '  (3 86)

Choosing the spacing S = j 1 , the resulting discrete-frequency power spectral density 
lines $ ss (jSm ) are then given by:

^ m) — ^ ss(jw)|u/=6m* (3.87)

The synthesis and simulation of continuous-time random processes follows closely what 
has been done while synthesising and simulating multisine random time-series u(i) with 
specified power spectral densities. The approximation criterion:

<!>aa(j6Tm )  = 4>Bu(jSlm), (3.88)

for m = 0 ,1 , . . . ,  y  results in the finite discrete Fourier transform U B(jSlm) of the cor­
responding basic //-sample multisine random time-series provided the sampling interval
T  and the number TV of approximation nodes in the relative frequency range [0,2it) are 
properly determined.

It follows from the given bandwidth ojmax of &m (ju )  under the sampling theorem that 
the sampling interval T for Rs3(t) is constrained by:

T  < . (3.89)
Umax

The sampling interval of the continuous-time random process s(() is, also of course, equal to 
T. The corresponding number TV of approximation nodes (the number of discrete-frequency 
power spectral lines) should be chosen so as to satisfy the assumption (3.4).

Transforming the synthesised spectrum U B(jSlm) back into the time-domain an 
TV-sample multisine approximation uB(i) of the random signal s(i) sampled with the sam­
pling interval T  is obtained. The spectrum of the time-series uB(i) is given by periodic 
repetitions of the continuous-time random process spectrum. These periodic repetitions do 
nor overlap and accurate reconstruction of continuous-time random process is possible. Ad­
ditional s(t) values in between the sampling intervals (needed e. g. for numerical integration)
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can be calculated by using the sine interpolation. This interpolation can be interpreted as 
a filtering, of a series of rectangular pulses spaced T  seconds apart, with the area under 
each pulse equal to the amplitude of the corresponding sample, by an analog reconstruction 
filter with the impulse response:

sin
=  " r i  '  • (3-9°)

T
This reconstruction filter is noncausal and therefore physically unrealizable in real time. Its 
good approximations are high-orders analog low-pass filters with sharp cutoff characteristics. 
Such reconstruction is called band-limited interpolation [61].

It should be noticed that continuous-time multisine approximations of wide-sense sta­
tionary band-limited continuous-time random processes inherit properties of the correspond­
ing multisine random time-series - their stationarity, ergodicity or nonergodicity, asymptotic 
Gaussianess and ergodicity.

Chapter 4

M u ltis in e  W h ite  N o ise  
A p p rox im ation

This chapter is devoted to multisine white noise approximations obtained by using the pro­
posed random process synthesis and simulation method. The following cases are discussed:

• weakly ergodic scalar and bivariate white multisine random time-series for which 
whiteness holds for finite TV-sample representations. Its pseudo-white and asympto­
tically Gaussian cases are introduced, too;

• weakly ergodic multivariate orthogonal asymptotically Gaussian and white multisine 
random time-series which is obtained by approximating the power spectral density 
matrix of multivariate white noise by the periodogram matrix of a weakly ergodic 
multivariate multisine random time-series with the number of elements greater than 2;

• nonergodic multivariate orthogonal pseudo-white multisine random time-series which 
is asymptotically ergodic and Gaussian. It is synthesised using the corresponding 
nonergodic multivariate orthogonal multisine random time-series.

4.1 SCALAR W HITE MULTISINE RANDOM  
TIME-SERIES

N-lag w hite m ultisine random tim e-series

When the power spectral density of a scalar white noise is approximated, the corresponding 
extended SMRS can be turned into an extended white SMRS [32] for which the autocorrela­
tion function behaves for lags 0 ,1 , . . . ,  N  — 1 as a pure white noise autocorrelation function. 
This time-series is called N-lag white multisine random time-series (WSMRS):

D efin ition  4.1 An extended scalar multisine random time-series x(i) is said to be N-lag 
white if its autocorrelation function for lags r  =  0 ,1 , . . . ,  N  — 1 is the same as the white 
noise autocorrelation function, i. e.:

( r 2 if t  =  0
£{x(i)x(i -  r)} =  R xx(r) = < . (4.1)

[ 0  t / r  =  1 ,2 ,. . . ,  JV -  1

□
For any real random process simulation with WSMRS, the TV-lag white multisine random 
time-series seems to be as good as the pure white noise series, because there exists a pos­
sibility to establish the necessary length N  for which the autocorrelation function values 
have to be equal to 0.

The statistical properties of the WSMRS are given by the following lemma:
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L em m a 4 .1  Assuming that:

1. $„u(a>T) =  A2 (uT  € [0,2n)) is the power spectral density of a real-valued white noise;

2. An =  A  for n = l , 2 . . . , y  — 1 and the value o f A is chosen so that:

NTA*  x,  , ,
— —  = *2; (4.2)

3. Aq =  i4w =  y  and <f>o = ex. — ^

then the corresponding extended SM RS is a white multisine random time-series (WSM RS) 
and:

1. its periodogram is:
N - 1

= A2 5 3  s (m  ~  n )> (4.3)
n=0

where m  =  0 ,1 , . . . ,  N  — 1.

2. its mean value is:

Af{u(i)} =  £{«(«')} = (4.4)

3. its autocorrelation function is:

£  : / r  =  0,TV,...
£{u{i)u(i -  r)}  =  R uu(t ) = . (4.5)

4- its variance is:

(4.6)

□
P roof:

1. It follows immediately from the assumptions 2, 3 and from Lemma 2.2.

2. It follows immediately from Definition 2.1.

3. Application of (2.33) and (4-3) results in:

£{u(i)u(i -  r)}  =  Ruu{r) =  «("» -  n)einmT = T  E  ein"T- (4-7)
m=0 n=0 n=0

It ends the proof when (2.5) is taken into account.

4. It follows from the WSMRS autocorrelation function.

a
It is surprising that the WSMRS has a constant mean value and its autocorrelation function
is equal to  0 for all lags r  different from r  =  0, N ,___ This is a consequence of choosing
the WSMRS constant component amplitude Ao =  4- and the corresponding phase shift
00 = f -

It should be emphasised that the property of whiteness (4.5) depends upon the fact 
tha t the WSMRS has the constant frequency bin fi throughout the entire frequency range
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[0,2it). It is also worth to note that whiteness of the WSMRS holds for finite TV-sample 
time-series but Gaussianess of the time-series is an asymptotic property for N  —> oo.

It follows from Lemma 4.1 that for N  -* oo, the corresponding extended WSMRS u(i) 
converges in distribution to a Gaussian WSMRS (GWSMRS) g(i) with zero mean and the 

A2variance

g{i) € AsAT{0, y ) .  (4.8)

N -lag  p seu d o -w h ite  m u ltis in e  random  tim e-series

The choice of the WSMRS mean value as equal to zero (j4o = 0) influences behaviour of its 
autocorrelation function resulting in an N-lag pseudo-white multisine random time-series 
(PWSMRS).

D efin ition  4 .2  An extended scalar multisine random time-series x(i) is said to be N-lag 
pseudo-white if its autocorrelation function for lags t  =  0 ,1 , . . . ,  TV-1 satisfies the condition:

[ T2 i f  t  = 0
£ { x ( i ) x ( i -  r)}  =  R xx(t ) = \  , (4.9)

( 7 ( r ) r 2 i f r  = 1 ,2 ,...,TV — 1

where |7 (r) | <C 1.

□
The following lemma can be formulated:

L em m a 4 .2  Assuming that:

1. 3>vv(l>T) = A2 (uiT 6 [0, 2k )) is the power spectral density of a real-valued white noise;

2. An = A for  n = 1 ,2 . . . ,  y  — 1 and the value of A is chosen so that:

N T  A 2 o=  A2; (4.10)
4

A3. Ao = 0 or <t>o — 0, A n — y  and a = ^ !

then the corresponding extended SM RS is a pseudo-white multisine random time-series of 
type I (PWSMRS1) and:

1. Its periodogram is:
N - 1

<S>uu(Slm) = A2 53  ^(m ~ n )> (4-11)
n= l

where m = 0 , 1 , . . . , TV — 1.

2. Its mean value is A<{u(i)} =  £{u(t)} =  0.

3. Its autocorrelation function is:

i f r  = 0, TV,. . .
£{u(i)u(i -  r)}  =  RUu{t ) =  ̂ . (4.12)

4- Its variance is:

1 A2 
~ W T

N  -  1 A2

otherwise
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Proof of the above lemma proceeds similarly as for Lemma 4.1.
Another type of pseudo-white multisine random time-series may be defined by taking

additionally A n =  0 or a  =  0.
2

L em m a 4 .3  Assuming that:

1. <bvv(u T ) = A2 (uiT e  [0,2ir)j is the power spectral density of a real-valued white noise;

2. A n = A  fo r  n = 1 ,2 . . . ,  y  — 1 and the value of A  is chosen so that:

(4 .» )

3. Aq = A n_ = 0  or <j)o =  a  =  0,
2

then the corresponding extended SM RS is a pseudo-white multisine random time-series of 
type 2 (PW SM RS2) and:

1. Its periodogram is:

2 1

$ uu(fim) = A2 5 3  t^(m -  n) +  H m  ~  ( N  -  n))] . (4-15)
71=1

where m  = 0 ,1 , . . . ,  N  — 1.

2. Its mean value is ,M{u(i)} =  £{u(i)} =  0.

3. Its autocorrelation function is given by:

[ ~ Y  i f  t  = 0, N , . . .
£{u(i)u{i -  r)}  =  Ruu(r) =  ̂ . (4.16)

'  — jV'tl ( —l) 7] ^  otherwise

4■ Its variance is:
^  _  N  -  2 A2
nuu = N  T  ' (4- l7)

□
Proof of the above lemma proceeds similarly as for Lemma 4.1.

Mean values of the PWSMRS1 and PWSMRS2 are both equal to  0 but their autocorre­
lation functions axe not equal to  0 for all lags different from integer multiplicity of N . For 
these lags:

• the autocorrelation function of PWSMRS1 has a small constant value and

• the autocorrelation function of PWSMRS2 exhibits oscillatory behaviour with small 
amplitudes.

When N  —► oo:

•  either the PWSMRS1 and PWSMRS2 autocorrelation function values tend to zero 
for all lags t  >  0;

• either the PWSMRS1 and PWSMRS2 converge in distribution for N  —► oo to the 
Gaussian WSMRS (GWSMRS) g(i) with zero mean and the variance y -:
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E xam ple 4.1 Using a standard linear congruential random number generator with shuffling
[82], 100 different 128-sample equally distributed on [0, 2tt) white noise time-series realisa­
tions <£jt28(»)> (k = 1 ,2 , . . . ,  lOOj were generated, see Fig. 4-1 for an example. The unbiased 
estimate o f the autocorrelation function and unwindowed periodogram of this time-series 
realisation with removed mean value are shown respectively in Figs 4-2 and 4-3. 

Autoregressive models:

= IT « "  (4-19)

where e t(i) is a hypothetical white noise with the variance a2, were fitted to all 128-sample 
time-series realisations 4>\7a{i) using the Least Squares identification method [13]. The mean 
values and standard deviations of the a a n d  a \ estimates are shown in Tab. 4-1-

Table 4.1

Time-series
Parameter Estim ates

ak, l °k
True white noise 0.000 1.000

0 i28(O - 4 .6 3 -10“3 (9.32 -10 -2) 0.990 (1.30 - 10-1)
« l” (0 -6.71 • 10-4 (0.83 ■ 10-2) 1.008 (1.76 • 10-4 )
*1” (0 -6.50 ■ 10~3 (0.77 - 10“2) 0.998 (2.24 ■ 10-4)
s£28(0 -2 .46 ■ 10-4 (0.85 ■ 10“2) 0.992 (1.77 - 10-4)

Mean values and standard deviations (in parentheses) for 100 parameter estimations of AR 
models for an equally distributed on [0,2ir) white noise generator (t>\28(i), WSMRS ?/j.28(i), 
PWSMRS1 x£28(i) and PWSMRS2 ff£28(i); k = 1 ,2 ,. . . ,  100

Table 4.2

Time-series
Parameter Estimates

ak, i ak, 2 °k
Simulated -1.500 0.700 1.000

Vl28(i) -1.499 (1 .20-10“2) 0.699 (1.34'1 0 "2) 1.007 (8.22 • 10“4)
4 28(*) -1.496 (1.20- 10-2) 0.703 (1.35 10-2) 0.998 (8.42 ■ 10“4)
<i” (0 -1.499 (1.18 ■ 10~2) 0.703 (1.30 IQ“2) 0.991 (8.14-lO“4)

Mean values and standard deviations (in parentheses) for 100 parameter estimations of 
second-order AR models excited by WSMRS ( ^ 28(i))> PWSMRS1 (s[28(i)) and PWSMRS2
(*i28(0 ); * =  1 ,2 , . . . ,  100

This standard linear congruential random number generator with shuffling was used 
to generate 63-sample time-series realisations applied as phase shifts to synthesise hun­
dred 128-sample WSMRS realisations u[28(i), (k = 1 ,2 ,. . . ,  100j  with the variance 1. An 
example of the resulting 128-sample WSMRS realisation, the unbiased estimate of its au­
tocorrelation function and unwindowed periodogram are shown in Figs 4-t, 4-2 and 4-3, 
respectively.

Autoregressive models were fitted to all 128-sample time-series realisations u \28(i) using 
the Least Squares identification method and the A IC  criterion [56] to determine the models 
order. The results of this simulated identifications are presented in Tabs 4-1 and 4-2.

All WSMRS realisations were used to generate 100 second-order AR time-series reali­
sations y l28{i) (k — 1 ,2 , . . . ,  100j:
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a)

Fig. 4.1. A 128-sample white noise time-series realisation generated by using a standard 
white noise generator (a) and a WSMRS (b)

The models:
1 2 8 / 1 . 0 0 0  / ...

Vk ^  = 1.000 +  a*,!*-1 +  afc,2z -2 e^ ^  4̂-21^

with ek(i ) being another hypothetical white noise with the variance erf k were fitted  to the 
tim e-series using the Least Squares identification m ethod [13]. The mean values and stan ­
dard devia tions fo r  estim ates o f the m odel param eters a* i, a k 2 and a \  are shown in Tab. 
4.2.

This sim ulation and identification experim ents were repeated fo r  the 128-sam ple reali­
sa tions o f P W SM R S1 and P W SM R S2 with variances equal to  1. Exam ples o f unbiased 
estim ates o f their autocorrelation functions (Fig. 4-2) show that correlation properties o f 
the resulting PW SM R S1 and P W SM R S2 are indistinguishable from  the properties o f the 
W SM RS. The presence o f correlations is apparent from  the results o f fittin g  first-order A R  
models to the 100 realisations o f PW SM R S1 or PW SM R S2 (Tab. 4 .1 ). A ll 128-sample 
P W S M R S l and P W SM R S2 realisations were also used to generate the corresponding hun­
dred second-order A R  tim e-series realisations with param eters as in (4-20). The obtained  
results (Tab. 4-2) differ only slightly from  those achieved fo r WSMRS.

The G aussianess is an asym ptotic  property o f W SM RS am plitudes fo r  any given time 
instan t i which holds fo r  N  —> 00. This feature o f G W SM R S was tested by finding biased 
norm alised autocorrelation estim ates fo r  W SM R S realisations at the tim e instan t i =  0 for  
the case o f fin ite  N . In order not to invoke the ergodicity assum ption, averaging was not 
perform ed in tim e but in the sam ple space.

N orm alised biased autocorrelation function estim ates fo r  100 segm ents o f M  (M  — 
32,64,128,256,512J realisations o f the N  — M -sam ple  W SM R S fo r  the tim e instan t i =  0 
have been calculated. In each segm ent the sam ples were numbered from  0 to M  -  1, its lag 
being the shift between the sam ple numbers. In Tab. 4-3 the mean square values of auto­
correlation estim a tes fo r  lags 1  and  2 calculated on the basis o f this 100 data segm ents are 
compared with the values o f the hypothetical variance fo r white noise. For real-valued white 
noise tim e-series o f the length M  such tests result in the autocorrelation functions fo r all 
lags asym pto tica lly  norm ally distributed with zero mean and with the variance -j j .
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Fig. 4.2. Unbiased estimates of the autocorrelation function for 128-sample white noise 
time-series realisations generated with a standard white noise generator (solid 
line), WSMRS, PWSMRSl and PWSMRS2 (dotted lines)

Table 4.3

M 1
M

V arian ce  o f  
autocorrela tion
L a g l Lag2

32 0.0312 0.0370 0.0298
64 0.0156 0.0152 0.0146
128 0.0078 0.0069 0.0071
256 0.0039 0.0037 0.0040
512 0.0019 0.0016 0.0017

Mean square values for biased autocorrelation function estimates of WSMRS realisations 
for the time instant i = 0 for 100 simulation experiments

The sm all difference between the calculated and hypothetical values should be noted. It 
im plies that G aussianess is very good approximated fo r even sm all ones as well as fo r  large 
number of sam ples by white m ultisine random tim e-series.

4.2 MULTIVARIATE MULTISINE W HITE NOISE

4 .2 .1  E r g o d ic  C a se

Bivariate -75--lag w hite multisine random tim e-series

When the power spectral density matrix of a bivariate white noise is approximated by 
the periodogram matrix of the extended BOMRS, a bivariate orthogonal white multisine 
random time-series [66] is obtained. It is characterised by the autocorrelation function 
matrix which for a number of lags behaves exactly like correlation function matrix of the 
bivariate white noise. This time-series is called bivariate y-lag  white multisine random 
time-series (BOWMRS):
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b)

0.5 1 .5  2
Frequency

2.5 3 .5

Fig. 4.3. Unwindowed periodograms for 128-sample white noise time-series realisations 
generated with a standard white noise generator (a) and WSMRS (b)

D efin ition  4.3 An extended bivariate orthogonal multisine random time-series x(i) is 
said to be y -lag white if  its correlation function matrix £{x(i)xT(i — r)}  = R xx(r) =

[Rxrx,{T)]r,3=1,2 f or ,aSs T = 0) 1) • • -, vjr — 1 is the same as for bivariate white noise corre­
lation function matrix -  its elements satisfy the conditions:

f F if t =  0
Rxixi ("*") — R'XlXli'r') — 

Rx\x% (̂ ") =  R'X2Xi (t ') = 0.
0 i f r  =  1 , 2 , . . . , $  - 1

(4.22)

(4.23) 

□
The spectral and correlation properties of the BOWMRS are:

Lem m a 4.4 Assuming that:

1. & w (ju iT ) =  A21 (l>T £ [0,2iv)j is the power spectral density matrix of a real-valued 
bivariate white noise;

2. A n =  A for n =  1 ,2 , . . . ,  y  — 1 and the value of A is chosen so that:

N T  A 2
A2; (4.24)

3. A q — A n_ — and (j)o — cl — rgj

then the corresponding extended BOMRS is a bivariate y -lag white multisine random 
time-series (BOW M RS) and:
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1. its periodogram matrix is $ Bu(jQm) = diag [$„rUr( ^ m) + ^®]r=1 2 ’ w^ere f or 
m  = 0 ,1 ,. .  . ,N  — 1:

$ f iU) (fim) =  A2 I S(m) + Y  W m “  n ) +  £(m ~ ( N  ~  "))) + ~  y  ) f >
I n n e ^ ' ‘ \ {  o , n f }  J

(4.25)
$ u2u2(f2m) = a2 £  [6(m -  n) +  Æ(m -  (JV -  n ))] , (4.26)

sineATj'i

2. its mean value vector is

M {n (i)}  = £{u(i)} = (4.27)

3. its correlation function matrix is £ {u (i)u T(i -  r)} = R u u M  — diag [ÄUrur (i')]r=i i2 , 
where for t  =  0 ,1 , . . . ,  oo:

Ru i« i(r ) —

Ä U2u2 ( t )

l / r  — 0, y ,  . . .

0 otherwise 

Yp if  r  =  0, N , ..

_ a2 : f T - N  m  
YT lJ 2 ’ 2 ’

0 otherwise

(4.28)

(4-29)

4. its variance matrix is given by:

A2
O'uu =  2 f dia3

N  — 2
N ,1 (4.30)

Proof: This lemma can be proven similarly as Lemma 4-1 when it is noticed that for ne
zero or even holds: , tN  _ _  n N- j  11 r  — U,- j ,  ■ . .N - 2

Y ,  ejnn' T =
ne= 0 0 otherwise

and that for na odd holds:

JV-i
%  if r  =  0, iV,. . .

- N  :t r - N 3 N  
~ T  l i T -  T ’T ’ - -

0 otherwise

(4-31)

(4.32)

so that:
N - 1 N - 1 N - 2

^  gjOnoT _|_ ^  ejnneT
n=0 nQ=l nc=0

(4.33)

A2When N  -y oo, the variance matrix of the BOWMRS converges to ^  J  and its mean 
value vector tends to a zero vector.
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B iv aria te  $ - l a g  pseudo-w hite  m ultisine ran d o m  tim e-series

Each of the BOWMRS elements is an -lag WSMRS. When values of its zero- and (or) 
Nyquist-frequency amplitudes or the corresponding phase shifts are chosen as equal to 0, the 
resulting BOMRS becomes an ^ -la g  orthogonal pseudo-white multisine random time-series.

D efin ition  4.4 An extended bivariate orthogonal multisine random time-series x(i) is said 
to be np-lag pseudo-white i f  elements of its correlation function matrix £{x(i)xT(i — r)}  = 

R-xx(r ) =  [Rxrx, (T)]r j=12 f or l°gs t =  0,1, — 1 satisfy the conditions:

C r s i f r  = 0 
R x r x r ( T )  =  s , (4 -34)i 7i(r)r2 t/r = 1,2,...,$- 1

where r = 1,2, |7r(r) | <  1 and:

R x  ix 2( r ) — R i j n i ^ )  =  0. (4 .3 5 )

□
The properties of the BOWMRS for the case of A0 = 0 or <f>0 =  0 are given by: 

L em m a 4.5 Assuming that:

1. &vv ( ju T )  =  A21 (uiT 6 [0,2ir)) is the power spectral density matrix o f a real-valued 
bivariate white noise;

2. A n =  A for  71=  1,2, — 1 and the value of A is chosen so that:

N T  A 2
4 =  A2; (4.36)

3. A0 =  0 or <t>0 =  0 and A n =  ^  and a  =

then the corresponding extended BOMRS is a bivariate Q-lag pseudo-white multisine ran­
dom time-series of type 1 (BOPWMRS1) and:

1. its periodogram matrix is ^ u(jQ m ) = diag [$®Ur(fi77i) + jo] _ , where for
m  =  0 ,1 , . . . ,  N  — 1;

$ ? 1u1(fim ) = A2 £  [<5(m -  n) + S(m -  (N  -  ti))] -f \ 26(m  -  y ) ,  (4.37)
\{ o,t }

$ fU 2(fim ) = A2 [^(m ~ n ) +  S(m -  (N  -  ti))], (4.38)

2. its mean value vector is A i{u(i)} =  £{u(i)} =  o.

3. its correlation function matrix is £{u(i)uT(j -  r)}  = R Uu ( 0  = diag{RUrUr(T)]r=1 2,
where for r  =  0 ,1 , . . . ,  oo:

N  -  2 A2 -r _  „ N
— f t - Z T  * /r  =  0) 2") • • •

(4.39)
1 A2

~ T 7 Y r otherwise 

YT i f  r  = 0 ,N , . . .

S '  ' (4-4«)

0 otherwise

Rui ui(r ) —

Ru^ W2 ( ̂ " ) — ‘
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4. its variance matrix is given by:

A2
CTuu =  ^ f dta3

N  -  2
N 4 (4.41) 

□
Proof of the above lemma proceeds similarly as for Lemma 4.4.

A second type of bivariate pseudo-white multisine random time-series can be obtained 
assuming additionally that A n, =  0 or a  =  0:

L em m a 4.6 Assuming that:

1. * vv ( ju T )  =  A21 (uT  € [0,2-rc),) is the power spectral density matrix of a real-valued 
bivariate white noise;

2. An =  A for n =  1,2, . . . , $ - 1  and the value of A is chosen so that:

N T  A2 _  2 
: — A \ (4.42)

3. A q = A n  = 0 or 4>o =  a  = 0;
2

then the corresponding extended BOMRS is a bivariate lag pseudo-white multisine ran­
dom time-series of type 2 (BOPWMRS2) and:

1. its periodogram matrix is =  diag |^u rur ( ^ m ) + J0]r_1 2> where for
m  = 0 ,1 , . . .  ,N  — 1:

$ f lUl(nm ) = A2 ^  [6(m -  n) + S{m -  (N  -  n))}, (4.43)

us (fim) = A2 H  [6{m -  n) + 6(m -  (N  -  71))], (4.44)
nneAfJ'j

2. its mean value vector is .M{u(i)} = £{u(i)} =  o.

3. its correlation function matrix is £{u(i)uT(« — r)} = R Uu(r ) =  diag[RUrUr(T)]r_l 2,
for r  =  0 ,1 , . . . ,  00:

Ru\tll(T) —

R u2 uj(7”) —

N  - 4  A2 
~~N 5T i f r  = 0 , f ,

-■̂ ■[1 + ( -1 ) t ] t ^  otherwise

^  i f r  = 0 ,N , . . .

A2 ; f T - K  3N
7£7JT tj I — 2 ) 2 ’  ’  ’

0 otherwise

(4.45)

(4.46)

J,. its variance matrix is:
A2

CTuu =

JV - 4
N 4 (4-47) 

□
Proof of the above lemma proceeds similarly as for Lemma 4.4.

When N  -> 00, either the BOPWMRS1 and BOPWMRS2 correlation function matrices 
tend to zero matrices for all lags r  > 0.
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E x am p le  4.2 To generate a bivariate orthogonal Q-lag white multisine random 
time-series realisations, two series of random phase shifts realisations are necessary. How­
ever, the randomness o f those series can rather be poor and they don’t need to be orthogonal: 
the proposed approach is randomising the u^(i)]r  outcome mainly thanks to the flat­
ness of the spectra and orthogonalising it thanks to the choice of frequencies present in each 
time-series. This effect is particularly striking for short time-series.

Table 4.4

Identifica tion
Method

Parameter Estim ates
ak, 1 t*2 ak, 1

LS
A C

4.30 1 0 '3 (0.130) 
4.45-10-3 (0.130)

1.57-10-3 (0.148) 
1 .5 M 0 -3 (0.145)

Mean values and standard deviations (in parenthesis) for 100 parameter estimations of AR 
models computed via the Least Squares (LS) and via normalised autocorrelation function 
(AC) for white noise realisations <£®4ui(n) and 4>t4U2(n) (fc =  1 ,2 ,...,1 0 0 ) generated by 
using the standard linear congruential random number generator Rani

A standard random number generator Rani with shuffling [82], was used to generate 100 
different 128-sample equally distributed on [0,2iv) white noise time-series realisations, the 
first half to be used as the </>®4ul(n) phase shifts, the second half to be used as the 4>l4U2(n) 
phase shifts (k =  1 ,2 , . . . ,  lOOj. The diagrams of unbiased autocorrelation functions and 
cross-correlation function estimates for two 64-sample phase shifts realisations (Fig. 4.4) 
are presented in Figs 4-5 and 4-6, respectively.

To each of the 100 different 64-sample subseries the following autoregressive time-series

, 1 ,  A U1̂ '  (4-48)1 +  ak,l z

t i 4U2w  = r~x L  (4-49)1 + ak,\ z

with e*'u' (ra) and e£’U2 (n) being hypothetical white noises were fitted using the Least Squares 
identification method [13]. The normalised autocorrelation approach (AC) was used in turn 
to determine another batch of estimates for the AR  coefficients. The mean values and 
standard deviations of the a f '“1 and a£’“2 (k = 1 ,2 ,. . . ,  100,) parameter estimates derived 
by both approaches are shown in Tab. 4-4■ Both phase shift series were in turn used to 
generate 100 different 128-sample BOW M RS realisations u£28(t) (k = 1 ,2 , . . . ,  100).

Unbiased autocorrelation functions and cross-correlation function estimates for a reali­
sation of the BOW M RS (Fig. 4-4) are shown in Figs 4-5 and 4-6, respectively.

To each of 100 different 128-sample bivariate 64-lag white multisine random time-series
realisations an autoregressive model was fitted using the Least Squares identification method
and the A IC  criterion [56] for order determination. It always resulted in first-order AR  
models:

U£ 8(i) =  r + a g ,* - * 6*1^  (4'5°)

U&8(1) = i  + ajfr»-1^ 0, (451)

where e£‘ (i) and e£2(i) are hypothetical white noises. The normalised autocorrelation ap­
proach (AC) was used in turn to determine another batch of estimates for the AR  coeffi­
cients. The mean values and standard deviations of the a^ j and ak\  (k = 1 ,2 ,. . . ,  100)
parameter estimates derived by both approaches are shown in Tab. 4.5.
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a) 0)

b) d)

Fig. 4.4. Phase shifts time-series ^64’UI(re) (a), <£64’ui(n) (b) generated by using the Rani 
and BOWMRS elements m 128 ( 0  ( c ) ,  l i j 28^ )  (d)

Table 4.5

Identification
M ethod

Parameter Estim ates
ttk, 1

LS
AC

9.83-lO“6 (0.155) 
6.35 10“5 (0.150)

-5 .67- 10-5 (0.113) 
2.23 10-4 (0.114)

Mean values and standard deviations (in parentheses) for 100 parameter estimations of AR 
models computed via the Least Squares (LS) and via normalised autocorrelation function 
(AC) for the BOWMRS elements u[2f(i)  and u\*$(i) (k = 1 ,2 , . . . ,  100) with phase shifts 
generated by the Rani

The results of this simulation and identification experiments clearly demonstrate the 
dramatic improvement of the BOWMRS properties as compared with the original Rani 
phase shift time-series.

Biased autocorrelation function estimates were calculated for 100 different 64-sample 
time-series realisations and lags 0 , 1 , . . 1 0 .  Mean values and mean square values for biased 
autocorrelation function estimates are presented in Tab. 4-ti­

lt should be noticed that the variance of autocorrelation estimates is lag dependent. This 
variance groves with the increase of the lag. Mean values of the estimates are near equal to 
zero.

Gaussianess of the BOWM RS is an asymptotic (N  -» 00)  property for any given time 
instant i. This property was tested for the time instant i = 0. In order not to invoke the 
ergodicity assumption, averaging was not performed in the time-domain but in the sample 
space.

Let us determine M  = 100 realisations, each consisting of N  = 64 samples of values 
u®4( 0) and uf4(0) of a BOWMRS u64(i). The samples were numbered from 0 to 63. For each 
realisation the normalised biased autocorrelation function was calculated, its lag being the 
shift between sample numbers. This was used in turn to calculate the mean value and mean 
square value of the autocorrelation functions. Tab. 4-7 shows results of those calculations
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a)

Fig. 4.5. Unbiased estimates of autocorrelation functions for phase shifts 064'“1 (n) (a), 
4>64'U2(n) (b) (solid lines) and BOWMRS elements u]28(i) (a), u \28(i) (b) (dash- 
dot lines)

for lags from  0 to 10.
For any time instant the biased autocorrelation function estimates for M  real-valued 

white noise samples are for all lags asymptotically normally distributed with zero mean and 
with the variance -j-r, which in our example is equal to 0.01 for M  = 100.

The small difference between the calculated and theoretical values should be noted. It 
follows that BOW M RS is a very good approximation of Gaussian bivariate white noise even 
for small values of N .

G aussian  M u ltiv a ria te  W h ite  N oise

When the power spectral density matrix of a multivariate white noise is approximated 
by the periodogram matrix of an extended MOMRS, the corresponding time-series is an 
extended white multivariate orthogonal multisine random time-series (MOWMRS). For 
p = 1,2 (WSMRS and BOWMRS) constant frequency bin spacings can be kept throughout 
the entire frequency range [0, 2tt) and whiteness holds for finite TV-sample time-series. This 
property cannot be, unfortunately, extended for MOMRS having more than 2 elements. 
Correlation matrices of MOWMRS synthesised and simulated on the basis of the power 
spectral density of a p-variate white noise with the number of elements p > 2 coincide only 
asymptotically for N  —> oo with the correlation matrices of a p-variate white noise. Asymp­
totically, the MOWMRS is a Gaussian multivariate orthogonal white multisine random 
time-series (GMOWMRS). Its spectral and correlation properties are given by the following 
lemma:

L em m a 4.7 Assuming that:

1. $ vv (ju)T) =  A2/  (uiT € [0,2it)j is the power spectral density matrix of a real-valued 
multivariate white noise;
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Fig. 4.6. Unbiased cross-correlation function estimates for phase shifts <p64,Ul (ra) and 
$64’U2(n) (solid line), and BOWMRS elements uj28(i) and u \2a(i) (dashdot line)

2. A„ =  A for n = 1,2, — 1, Aq =  A n = y ,  cj>o =  =  ?r and ^*e value of A
converges to 0 for N —+ oo in such a way that

= A2; (4.52)

then the corresponding extended MOMRS u(i) with the consecutively circularly ordered fre­
quencies converges in distribution for N  —► oo to a Gaussian multivariate orthogonal white
multisine random time-series of type 1 (GMOWMRS1) g(i) = [<7r(*)]r'=i,2p with zero

A2mean vector and the variance matrix —j i l  '-

g(t) € AsAf(o,^=I).  (4.53)
pT

and the GMOWMRSl correlation function matrix converges to £{g(i)gT(* ~  r )} = 
R gg(r ) =  dia9 [RgrBr(T)]T=i,2 p. where for r = 0 ,1 , . . . , oo:

Rgrgr(T) — W  . (4.54)
0 otherwise

□
P roo f: The asymptotic expressions for the correlation functions of MOMRS elements were 
derived for r =  1 ,2 ,. . .  ,p  as:

Rurur(T) = £  Z  [eJ'nnT + ejn(N' n)T] +  R o A r)

= ^ 1 , ejn(r-i)T £  (e^P(n-r)r +  £;fl()V-n+r)T  ̂ + (4.55)

nn€^r,p
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Table 4.6

Lag Autocorrelation Estim ates
u™ u f

0 1.000 (0.00-10-4 1.000 (0.00 10-4)
1 -0.028 (2.59-10-4 0.003 (2.77-10~4)
2 0.030 (3.71-10-“ -0.065 (3.59-10-4)
3 -0.031 (6.83-10-4) -0.002 (7.33-10“4)
4 0.026 (8.30-10~4) -0.067 (7.25-10-4)
5 -0.035 (9.00-10-4) -0.003 (8.49-10-4)
6 0.029 (1.25-10-3) -0.058 (1.22-10“3)
7 -0.029 (1.32• 10—3 0.002 (1.43-10“3)
8 0.034 (1.11-10-3 -0.055 (1.24-10-3)
9 -0.030 (1.33 10-3 0.005 (1.50-10“3)
10 0.024 (1.67-10-3 -0.057 (1.94-IO“3)

Mean values and mean square values (in parentheses) for biased autocorrelation function 
estimates of BOWMRS for 100 identification experiments -  N  = 64

The RUrur(T) can be approximated for N  »  k, N  »  p and N  -> oo by:

A2
Rgrgr{T) =  l im  T77?; Y '  e 9r9rV > W-.00 N T

j'Opjr

This implies, taking into account (2.5), that:

RgrgT ( r ) —

The M OW M RS mean value vector is:

A2 if r  = 0W

0 otherwise

] / n t x2,0' " - ’°

The corresponding variance matrix is given by:

- u u  =  f ÿ d i a 6 [„;]r=ii2 p,

(4.56)

(4.57)

(4.58)

(4.59)

where nr is the number of elements of the set \  {0}. When N  -> oo, the mean value

vector tends to a zero vector and nT approaches It implies that <r2u tends to ^  I  vector.

4.2.2 N o n e r g o d ic  C a se

N -lag  p seu d o -w h ite  m u ltis in e  random  tim e-series

When the power spectral density matrix of a multivariate white noise is approximated by 
the expected value of the periodogram matrix of an extended NMOMRS, a nonergodic 
multivariate orthogonal iV-lag pseudo-white multisine random time-series (NMOPWMRS) 
may be synthesised:
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Table 4.7

Autocorrelation Estim ates
Lag fo r  0-time instant realisations

«ï*(0) U«4(0)
0 1.000 (0.00-10"2) 1.000 (0.00 • 10-*)
1 -0.046 (1.42- IO"2) -0.055 (1.42 • lO"2)
2 0.018 (1.40 - 10-2) -0.018 (1.38-10-2 )
3 0.020 (1.60-10"2) 0.018 (1.62 -lO"2)
4 -0.010 (1.48-10"2) -0.017 (1.29-10-2 )
5 -0.014 (1 .22-IO“2) -0.011 (1.29 -lO“2)
6 -0.021 (1.39 - 10-2) -0.023 (1.40 • 10-2 )
7 -0.003 (1.42 -lO“2) 0.000 (1.53 • 10-2)
8 -0.013 (1.32-10-2) -0.007 (1.23 lO"2)
9 -0.007 (1.23 - IO“2) -0.012 (1.25- lO“2)
10 -0.022 (1.50 - lO“2) -0.015 (1.41 • 10-2 )

Mean values and mean square values (in parentheses) for biased autocorrelation function 
estimates for 100 64-sample segments of uf4(0) and u®4(0)

D efin ition  4 .5  An extended nonergodic multivariate orthogonal multisine random 
time-series x(i) is said to be an N-lag pseudo-white if its correlation function matrix 
£{x(i)xT(i -  r)}  = [£{xr(i)x ,( i ~  T)}]r,j=i,2,...,P f or laQs T = 0 ,1 ,. . .  ,N  -  1 satisfies the 
following conditions:

£ {xT(i)xr(i -  r)}  = 

for r = 1,2, . . . , p  and |7r (r) | <  1;

£{xT(i)x ,( i -  r)} = 0,

for r ,s  =  1 ,2 ,. . .  ,p  and r ^  s.

r 2 i / r  =  0

7r( r ) r 2 if t — 1 , 2 , . . — 1
(4.60)

(4.61)

The properties of NMOPWMRS are given by the following lemmas:

L em m a 4 .8  Assuming that:

1- & w { ju T )  = A21 (ljT  6 [0,2it)J is the power spectral density matrix of a real-valued 
multivariate white noise;

2. AT<n = A for n = 1,2, — 1 and r = 1 ,2 ,. ..  ,p  and the value of A is chosen so 
that:

(4-62)

3. Arfi =  0 or </v,o =  0 for r = 1 ,2 ,..  ,,p;

4■ A r M = Y  an^  a  =  5  for r = 1’2> • • -iP;

then the corresponding extended NMOMRS u(t) is a nonergodic multivariate N-lag 
pseudo-white multisine random time-series (NMOPWMRS) and:

1. its expected value vector is £{u(j)} = o.
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2. its correlation function matrix is £{u(t)uT(t — r)}  =  [£{ur (t)ua(i — r)}]r J=1 2 v, 
where for  r  =  0 , 1 , . . . , 00:

£{ur(i)u ,(i - r ) }  =
£{uT(i)ur(i -  r)}  i f r  = s 

0 i f  r /  s
(4.63)

£{uT(i)uT(i — r)}  is the autocorrelation function of the rth NM OPWM RS element:

N  -  1A2

£{ur(i)ur(i -  r)} =
1 A' 

T T otherwise

3. its variance matrix is:

£{(u(i) -  £{«(,)} )(« (.) -  £{u(z)})T} =

(4.64)

(4.65)

□
Proof:

1. It follows immediately from the assumption 3 and from Lemma 2.8.

2. It follows from Lemma 2.8 that £{u(t)ur (i -  r)}  =  diag${ur(i)ur(i -  r)}jr=1 2 p. 
This ends proof when it is noticed that the rth (r - 1,2 , . . . , p )  element uT(i) of 
NM OPW M RS u(t) is a PW SM RSl (see Lemma 4-2).

3. It follows from the NMOPWMRS correlation function matrix.

L em m a 4 .9  Consider the extended NMOPWMRS.

1. Its periodogram matrix is $ J u (j!!m ) =  (jHrn)] , where for
L r 3 Jr,a=l,2,...,p

m =  0 ,1 , . . . ,  N  -  1:
= (° +  jO)S(m)

+A2 J 2  [(cos( ^ ,n -  4>,,n) ~ j  sin[<t>r,n -  <!>.,n)) 6(m  -  n) -(- (cos(4>r,„ -  </yn)

+jsm(<j>ri„ -  <p,,n) ) i(m  -  (N  -  n))] + (A2 sin <j>T z  s i n z  +  jO )S (m -  (4.66)

2. Its mean value vector is .M {u(i)} = o.

3. Its correlation function matrix is R Uu (r)  =  [-Ruru,(f")]r J=i 2 p , where for 
r  = 0 ,1 , . . . ,  00:

A2
R urti,(T) — jy y ^  cos(finr +  <t>r,n -  <£,,„) +  ( ~ 1 )T sin 4>T t!_ sin <j>s N . (4.67)

4. Its variance matrix is o-2u =  k 2 ru J riJ=li2i.,.. ,  where:

N T
y '  cos(</>,.,„ -  4>3<n) +  sin <f> N sin <t> N' » 2 -»»2 (4.68)

o
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Proof of the above lemma follows immediately from Lemma 2.7 and Lemma 2.9.
The expected value of R Uu(r) is the diagonal matrix:

[ $ ^ ± £ 1  if r  =  0, iV,. . .
£ {Ruu(’-)} =  s (4-69)

( o otherwise

G aussian  m u ltivariate  w h ite  m ultisine random  tim e-series

The extended NMOPWMRS turns asymptotically for N  -» 00 into a Gaussian multivariate 
white multisine random time-series, which is ergodic:

L em m a 4 .10  Assuming that:

1. $ vv (juiT) =  A2/  (uiT G [0,2it)j is the power spectral density matrix of a real-valued 
multivariate white noise;

2. Ar<n =  A converges to 0 for N  -> 00 in such a way that for  r  =  1 ,2 ,.. .,p:

N T A 2
= ^ „ ( t o ) ,  (4-70)

Nwhere n =  1 , 2 , . . —  1;

3. Ar 0 =  Ar n = 0 or <j>T 0 =  a  =  0 for r =  1 ,2 ,. . . ,  p;
' T< 2

then the extended NMOMRS u(i) converges in distribution for N  —► 00 to an ergodic, 
Gaussian multivariate white multisine random time-series of type 2 (GMOWMRS2) g(i) =

A2[ffr(*)]r=i 2 p with zero mean vector and the variance matrix - j r l :

S(i) € A s S S io ,^ ! ) -  (4-71)

Additionally the correlation function matrix £{g(i)gT( i - r ) }  of the GMOWMRS2 converges 
to:

( L i  if r  = 0
£{g(0gT(‘ ~ r )}  = R g g (r)=  I ■ (4.72)

I. o if r  > 0

□
Proof of the above lemma follows immediately from Lemma 3.2 and Lemma 3.3.



C hapter 5

S im u la tion  o f G aussian  R an d om  
P r o ce sse s

This chapter is concerned with simulation of Gaussian random processes. Simulation 
schemes based on the proposed approach to random process synthesis and simulation are dis­
cussed, including a proposition of simulation time-scale contraction. The proposed schemes 
are illustrated by simulation examples.

5.1 SIM ULATION SCHEMES

It follows from the previous sections that the statistical properties of multivariate multi­
sine random time-series synthesised based on the given power spectral density matrix of 
a random process to be simulated behave, asymptotically with the number of approxima­
tion nodes N  —* oo, exactly as these for the corresponding true Gaussian random process. 
In computer simulation experiments there is no possibility to perform simulations for an 
infinite N . To simulate random time-series, a finite value of N  must be chosen. This choice 
influences the statistical properties of the synthesised multisine random process approxi­
mations. However, the original power spectral densities and autocorrelation functions are 
approximated very precisely by the corresponding properties of the synthesised multisine 
random process approximations, even for small values of N . The influence of finite N  can be 
seen while variances of parameter estimates obtained in multiple repeated simulation exper­
iments are compared with the corresponding theoretically calculated Cramer-Rao bounds 
for the true Gaussian random processes.

From the spectral factorisation theorem follows that results of parameter estimation 
for time-series obtained directly from the given power spectral density diagram and from 
the corresponding discrete-time filter excited by a multivariate orthogonal white multisine 
random time-series are comparable [24], [28]. It implies that discussion of the Cramer-Rao 
bounds for the results of parameter estimation for power spectral density defined mul­
tivariate multisine random processes may be done by analysing only the results for the 
corresponding multivariate orthogonal white multisine random time-series.

Let / be the number of consecutive samples taken from a synthesised WSMRS with 
the period N  (I < N ). It is well known [13] that, for a real-valued Gaussian white noise 
time-series of the length /, estimates of its normalised autocorrelation function for all lags are 
asymptotically normally distributed with zero mean and the variance j .  For the WSMRS, 
variance of the normalised unbiased autocorrelation estimator

Ruu{t ) _  I E '=o u{i)u(i -  r)

*««( o) l ~ T £ '= o “2«

is lag dependent. The smallest value of this variance is for the lag r  =  1. The variance
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Ruu( l )
Ruu(O)

may be approximated by the following formula:

Âuu(l)
Ruu(O) ( f - D 2 '

N -  1 + 1

(5.2)
/ +

It is obvious that the above expression is also valid for each element of the NMOPWMRS.
21

The variance £ Ruu( 1)
,Ruu{0)

for all elements of MOWMRS is

of the normalised autocorrelation function estimator (5.1)

Ru u (l)  
•Ruu(O) I - l ) 2

(5.3)

- /  + 1

Analysis of the above expressions leads to the conclusion, that using multisine random 
time-series to simulate Gaussian random processes, the two simulation schemes may be 
proposed:

case I «  N  so that 

where:

f ( l , N , P) =

1 +  f{ l, N ,p) = 1,

for SMRS, NMOMRS and NMMRS

( ' - I ).2
4 - - i + i

(5.4)

(5.5)
for MOMRS

This implies that variances of the autocorrelation function estimator for elements 
of the power spectral density defined multivariate multisine random processes are 
comparable with the corresponding values of the Cramer-Rao bounds for the true 
Gaussian random processes. For the given length / of a random process realisation to 
be simulated, the period N  of the corresponding multisine random time-series may 
be chosen using the following approximation:

N  >
I  for SMRS, NMOMRS and NMMRS 

^  for MOMRS
(5.6)

where k is the relative error, in the variance of normalised unbiased autocorrelation 
function estimator (5.1) for elements of the multivariate multisine random time-series, 
with respect to the Cramer-Rao bound, i.e.:

k =

Ruu(l )
Æuu(O)

T
7 1 +

(5.7)
W , N , p )

In this case an /-sample realisation of the power spectral density defined multisine 
random process u(t) may be obtained by using the non-destructive zoom FFT pro­
cedure [81]. Assuming that $  is an integer number, the /-sample multisine random
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process realisation may be calculated by performing y- /-sample inverse finite discrete 
Fourier transforms:

f _1 f-i
u(i) = Y ,  ejn,i £  U (jft(/m  -)- q ) y n,m\  (5 .8 )

9 = 0  771=0

where U ( ) is a realisation of the spectrum of a multisine random process synthesised 
for a given power spectral density matrix of the random process to be simulated using 
rules presented in Chapter 3.

• case / «  N  (I < N )  in which the variances of autocorrelation function matrix elements 
estimates for the power spectral density defined multivariate multisine random pro­
cesses are always much smaller than the corresponding Cramer-Rao bounds for the 
true Gaussian random processes. The results of autocorrelation estimation behave as 
for the true Gaussian random process with the number of samples

=  y 2 y * l  + f W p ) -  (5-9)
R u u (  1)
•Kuu(O)

It means that to simulate an / -sample time-series representation by using the classical 
Gaussian white noise random number generator you can simulate the corresponding 
/-sample (/ < / ) multisine random process realisation with the same statistical proper­
ties. This is an interesting property of the power spectral density defined multisine 
random time-series which may be called simulation time-scale contraction. The si­
mulation time-scale contraction allows us to reduce simulation effort radically. It is 
especially important in real-world experiments when test times are limited by the 
properties of system under tests.

5.2 EXAM PLES

The proposed approach to the synthesis and simulation of Gaussian random processes given 
by their power spectral densities is illustrated by the following examples:

E xam ple 5.1 / =  2 5 6 -sample realisations of the following third-order AR  time-series from 
Example 3.1:

!.00
V^  “  1.00 -  2 .0 0 2 -1 +  1 .4 5 z -2 -  0.35.Z-3  ^5 ' 10)

with unit variance were simulated by using:

• its time-domain representation as a discrete-time linear filter excited by the white 
noise e(i) obtained from a standard Gaussian white noise generator (SGWNG) or by 
a white multisine random time-series WSMRS with the period N  = 256 ;

• its frequency-domain representation as the power spectral density diagram (Fig. 3.1), 
which was approximated by the periodogram oj a multisine random time-series with 
the period N  =  2 5 6 ,26 214 4 . For N  = 262144 the non-destructive zoom FFT was 
used.

The period N  = 256 (^j- — 1 and the relative error k =  0.996)  corresponds to the 

contracted time scale l' “  65281. For N  = 262144 ( j -  = 1024 and the relative error 
k = 0.001 )  the contracted time-scale is equal to the original one (Ï  =  256).

Each simulated N  - 256-sample third-order AR  time-series realisation was identified 
using the Least Squares identification method [13]. The mean values and standard deviations
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Table 5.1

Parameter Estim ates
Parameter (C R B ) N  = 256 N  = 262144

SG W N G W S M R S S M R S S M R S
-2 .00  (0.058) 

1.45 (0.104) 
-0 .35  (0.058)

-1.99 (0.053) 
1.44 (0.095) 

-0 .35 (0.053)

-2.00 (0.006) 
1.45 (0.012) 

-0.35 (0.008)

-2.00 (0.006) 
1.45 (0.010) 

-0.35 (0.006)

-2 .00  (0.058) 
1.45 (0.099) 

-0 .35 (0.058)

Mean values and standard deviations (in parentheses) of the third-order AR time-series 
model parameter estimates obtained for 100 simulation experiments using the Least Squares 
identification method - / = 256

(in parentheses) of the estimated parameters for the third-order AR model in 100 simulation 
experiments are presented in Tab. 5.1.

It is worth to note that the method based on approximation of the power spectral density 
diagram by the SM RS periodogram gives results which are comparable in accuracy with those 
produced by the time-domain method with the WSMRS excitation.

E xam ple  5.2 The bivariate orthogonal random process v(i) given by the following power 
spectral density matrix

1.00 +  jO 
1.64-1.60cos u T  

O + jO
<&vv(ju T )  =

O + jO 
e2 cos(uT) +  j Q

(5.11)

was simulated by using the proposed approach. The $ vv(ju>T) was approximated by the 
expected value of NMOMRS periodogram matrix. Its I = 1000-sample realisations were 
obtained from the corresponding MOMRS with the period N  = 4096,65536,524288. This 
choice of the period N  corresponds to the contracted time-scale I ^  1324,1016,1002, re­
spectively.

The bivariate A R  time-series:

A(z  1)v (i) =  e(t) (5.12)

was identified for each simulated l-sample random process realisation using the Least Squares 
identification method [13], [56]. The mean values, standard deviations (in parentheses) of 
parameters estimated in 100 simulation experiments for the orthogonal A R  model with the 
structure of the matrix A (z~ l ) chosen as

1.00
0.00

0.00
1.00 + “h

0.00
0.00

z~ ' +
0.00
0.00

0.00
a 22

+
0.00
0.00

0.00 ,-3A ( , - 1) =
“22 "22 w.ww

(5 .1 3 )

and the corresponding Cramer-Rao bounds (CRB) are presented in Tab. 5.2.
The orthogonality of the simulated random process realisations was examined by identi­

fying a nonorthogonal A R  model with the following structure of the matrix A (z_1)

A ( 0  =
1.00
0.00

0.00
1.00 + °11

a21
a12
a22

0.00
0.00

0.00
Z - 2  +

0.00
0.00

0.00
a 22

-3

(5.14)
The results are presented in Tab. 5.3.

It follows from the above tables, that in simulation experiments for I ss N  (N = 4096, 
y- =  4) the standard deviations of the estimated parameters are much smaller than those 
which result from the Cramer-Rao bound. For interpretation of the identification results the 
simulation time-scale contraction proposition may be used. In the case of N  equal to 65536 
('y- = 65 and the relative error k = 0.015j the variances of the estimated parameters are 
very close to the Cramer-Rao bounds. The same is true for the period N  - 524288.
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Table 5.2

Parameter (C RB)
Parameter Estim ates

N  = 4096 N  = 65536 N  = 524288
aJi (0.019) -0.798 (0.018) -0.798 (0.017) -0.798 (0.018)
a22 (0.031) 
a22 (0.042) 
a22 (0.031)

-0.993 (0.026) 
0.481 (0.034) 

-0.130 (0.024)

-0.991 (0.035) 
0.478 (0.041) 

-0.124 (0.030)

-0.999 (0.033) 
0.484 (0.041) 

-0.127 (0.031)

Mean values and standard deviations (in parentheses) of the orthogonal A R  model parame­
ter estimates obtained for 100 simulation experiments - I — 1000

Table 5.3

Parameter (C R B )
Parameter Estim ates

N  = 4096 N  = 65536 N  = 524288
(0.019) 

a}2 (0.021) 
a h  (0.019) 
a22 (0.031)

-0.797 (0.018) 
0.001 (0.022) 

-0.001 (0.021) 
-0.992 (0.026)

-0.797 (0.017) 
0.000 (0.020) 

-0.002 (0.020) 
-0.990 (0.035)

-0.798 (0.018) 
0.000 (0.016) 

-0.001 (0.020) 
-0.998 (0.033)

a22 (0.042) 
al2 (0.031)

0.481 (0.034) 
-0.130 (0.024)

0.477 (0.041) 
-0.124 (0.030)

0.484 (0.044) 
-0 .127 (0.030)

Mean values and standard deviations (in parentheses) of the nonorthogonal A R  model 
parameter estimates obtained for 100 simulation experiments - I = 1000

It follows from the simulation and identification experiments that multivariate random 
process realisations simulated using multivariate multisine random time-series very precisely 
reconstruct the statistical properties of the original Gaussian random processes.

Chapter 6

M u ltid im en sion a l M u ltisin e  
R an d om  P ro cesses

In this chapter, an extension of multisine random time-series (1-D case) concepts presented 
in Chapter 2 to multidimensional (Af-D) case is given. Scalar and multivariate Af-D multi­
sine random processes are formally defined and their independent variable- and frequency- 
domain properties are established. It is shown that M-D multisine random processes inherit 
properties of 1-D multisine random time-series.

The defined M-D  multisine random processes are used to synthesise and simulate 
wide-sense stationary M-D  random processes given by their power spectral densities. 
Asymptotic properties of the obtained Af-D multisine random approximations are discussed.

6.1 FUNDAM ENTALS

Definitions of Af-D multisine random processes are closely related to the Af-D discrete 
Fourier transform defined for a finite number of data.

Let x (iu) ((i„) = .. .,»Af)) be an Af-D series represented by its Ni • JV2 ■ • • N m
values given for all independent variable Af-tuples ( iu) G X M, where:

X M =  { 0 ,1 , .. . ,  JVi — 1} X { 0 ,1 ,.. .,  iV2 — 1} x x { 0 ,1 ,.. . ,  — 1}- (6.1)

The corresponding Af-D finite discrete Fourier transform of z(i„) is given by:

N j- l N u -1

X ( jS lvm v) = £ • • • £  * (< „ )* -> £ -. tW > \  (6.2)
* 1 = 0  *Af=0

for all harmonic frequency M -tuples ( f i um u) =  (Qxrax, n 2m2, .. - € A where:

Ar g  = { O , « ! , . . . , ^ ! -  l ) n 1} x { 0, n 2). . . , ( J V a - l ) f t2} x - - -x { 0, n M l. .. ,( JV jif - l)n M } ,
(6.3)

( jI2 l/m v) =  ( j i l im i ,jS l2m 2,...,jSlM 'rnM ), and for u = l ,2 ,. . . ,A f :
e\

• denote fundamental relative frequencies (bins),

• m„ (m v = 0 ,1 , . . . ,  N u) denote the consecutive harmonics of these frequencies.

The inverse M-D  finite discrete Fourier transform is:

1 N i- l N m - l  M

X(t„) =  - s r —  E  E  (6.4)
llt/=l v mj =0 m\f=0
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The M-D finite discrete Fourier transform can be applied to synthesise and simulate 
M  - D  random processes exactly like it was done in the 1-D case. The main building block 
in this is the M-D sine series:

M

x(iu) = A(nj  sin(E &»nuiv + <£(«„))> (6.5)
i/=i

where A ^ n ^  ((ra„) =  (? ii, n?, . , . , u m )  ) is a deterministic amplitude of the M — D  sine series 
(j4(n„) € TV) and 4>(nu) is a phase shift.

If the M-D sine series is represented by N \ N i -  ■ • N m  values given for all (*„) £ X M, 
then its M-D finite discrete Fourier transform is calculated as follows:

N \ — l  N m ~  1 M  M

X ( j f l um v) =  E ' " E  A(n„) s in ( E  ft-'«-'**' +  <A(n„))e_J^ ‘- '‘ n,'m‘/' ‘'
*1=0 «Af=0 ^=1

A Ni  —1 N M- 1

= % *  E - E
J *1=0 <M=0

= ^ ( n , ) ( n ^ i ^ )  
2j

M  M

i / = l

where use has been made of:

ei*<n„) J J  <5(m„ -  n „ )  -  [ ]  « (m „  -  (JV„ -  n „ ) ) ( 6 .6 )

^  ^  ( n J l .  if (*„) € X "
E "  E  e =  < (6.7)
*i=o >m=o ( 0 otherwise

and Xg* =  {0, N l t . . .}  x {0, N3, ...}  x ■ • • x {0, NM, ■ ■ •}•
The spectrum X ( j  of the real-valued M-D sine series satisfies, for all harmonic

frequency M-tuples (f2vm v) e  the following condition:

* ( j ( a i r  -  n um„)) = X { - j n vm„). (6.8)

The M-D sine series is represented in the relative frequency range [0, 2tv)m  by two lines.
This implies that to define a sum of the M-D sine series (an M-D multisine random process)
having spectrum lines defined for all frequency M-tuples ( f l um v ) 6 a set N M (AfM C 
A/”̂ )  of the frequency M-tuples (Q ^m y)  of the corresponding M-D sine series components 
included in the sum should be defined. If N i, N 2, . . . ,  Nm  are all even then the set N M 
with minimum number of the elements ( f i,ra ,,)  can be defined for:

• the 1-D case [28], [32], [34], [66] as:

Ar1 =  { o ,fi1, . . . , f i 1^ -  = 1t} .  (6.9)

In the set A/-1 there are two special frequencies at which two spectral lines are placed. 
The set AQ of these frequencies is:

^  =  {0,*}. (6.10)

• the 2-D case in two ways - either

AT2 = {{o,ftlv .. A(ATj- 1)} X jf t2,2ft2„ !)} u {°>n i -  • • »*} x {0,^}} , (6.11)

or

N2 = {{fii,2ft!,.. .M y ~ X)} x {°’n2>- • • 1)} U |o,it| x jo,ft2,... ,it}J. (6.12)
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In the sequel, only the first definition of the set N 2 is used. In this definition the last 
(the second) frequency variable covers the range [0,it].

The set Af2 can be constructed on the base of the corresponding set (6.9) for the 1-D 
case as:

A ^ =  {{o,n„. . . . f t ^ - l ) } x  {ft2,2fi2, . . . , 0 ^ - 1 ) }  U AA1 x {0 ,* }}  . (6.13)

The set A/-2 contains four special frequency 2-tuples at which two spectral lines are 
placed. Their set Ng  is given by:

Afj  =  {0, it} x  {0, it} =  {0, it}2 . (6.14)

• the 3-D case in three ways. For the case when the last frequency variable (the third) 
covers the frequency range [0, it], the set A/"3 can be obtained recursively by using the 
set Af2 as:

AT3 = {{o,fti,... M N i- 1)} x {o,ft2, . .. . f t ^ - l ) }  x |fi3,2ft3, . .. -  l)J

U A/"2 x  | o , i t | | . (6.15)

The set A/-3 contains eight special frequency 3-tuples at which two spectral lines are 
placed:

A /| =  {0, it} x  {0, it} x  {0, it} =  {0, it}3 . (6.16)

Generally, for the M-D case the set N M can be constructed recursively using the corres­
ponding set A/”M_1 for the (M — 1)-D case as:

N M  = { { 0 A , . . .  ,fti(iV i -  l)j x • • • x |o ,ftM -i,- ■ • , S I m - { N m - i ~  l)j

x  | f t M , 2 f t A f • • , f t j 1)} U ArM~l x  {o,tt}} , (6.17)

where:

^  =  { 0 , « ! , . . . , « ! ^  =  * } .  (6.18)

In this set there are 2M special frequency M-tuples at which there are two spectral lines. 
Their set is:

A ff  =  { 0 ,it} M . (6.19)

Each frequency M-tuple ( f2 ,m ,)  is related to the absolute frequency M-tuple (oj„) by

( { lum v) =  (u>„T„), (6.20)

where T„ is the sampling interval of the uth independent variable.
In the sequel, scalar and multivariate M-D multisine random series are defined using 

the sets AfM and Af<f. It should be emphasised that the defined M-D multisine random 
series inherit properties of the corresponding 1-D multisine random time-series.
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6 . 2  M - D  SCALAR MULTISINE RANDO M  PROCESS

D efin itio n s

The basic real-valued M-D  scalar multisine random series (SMRSm-£>) is defined in the 
independent variable domain as:

D efin itio n  6.1  The basic SMRSm~d  is defined by a sum of M -D sines including a constant 
component:

M

uBM =  Y  4 (n „ )S in (E  +  0(n„)), (6.21)
(17„n )̂gA/'M "=l

where (i*) € X M and for v =  1,2, . . . ,M :

denote fundamental relative frequencies,

• n„ denote the consecutive harmonics of these frequencies,

^(n„) are deterministic amplitudes of the M -D sine components (A^n ^  6 U), <t>(n „) are 
phase shifts, o f which is deterministic and the remaining phase shifts are random, 
independent and:

• uniformly distributed on [0,2it) for (/2„n„) 6 ,

• Bernoulli distributed B {£*>'rc +  «}) f or (fli/« ,)  € N g 1 \  {(o)}.

□
The basic SMRSm_d consists of N\ ■ N 2 ■ ■ ■ Nm  samples. This SMRSM-C caji be defined in 
the frequency-domain by its M-D finite discrete Fourier transform [5] as:

M M
n « ( m v-(JVv- ni/)) ,

f=i i/=i
(6 .22)

where ( f l„ m u) e
Expanding all independent variable ranges up to i„ =  0 ,1 , . . . ,  00 for u — 1 ,2 , . . . ,  M , an 

extended SMRSM-D is obtained, i.e. the extended SMRSM-D is defined for all independent 
variable M-tuples (i„) € X £f, where:

X% = {0,1,...,00} x {0,1,...,00} x •••X {0,1,...,00}. (6.23)
The extended SMRSM-D is periodic with the period M-tuple (N „) = (N 1, N 2, . . . ,  Nm)- It 
implies that the extended SMRSM-D belongs to the space of M-D periodic signals [48] with 
the period M -tuple (7V„) and the inner product:

N1 - 1  N M - 1

Y  ' Y  “ i(*i')uj(*-). (6.24)
•1=0 *u= 0

where 'Ui(iy), «2(1̂ ) are two M-D periodic signals with the period M-tuple (JV„).
The spectrum U (j f l ' vm 'v) of the first q\N \ ■ 92^2 ■ - -^m N m  samples of the extended 

MRSm_d is related to the UB( j f l„ m v) by:

[ n "  1 q.UB( j f l„ m u) if ( n l m ‘u) e  M M 
U\jn'um'v) = I , (6.25)

I O +  jO if (fl'vm 'v) t  ATM
/  o _  Q

where — jy = for v — 1 ,2 ,. . . ,  M denote the relative fundamental frequencies for

the qiN i ■ q2N 2 ■ ■ -<im  JVM-sample series and m!v = 0 ,1 , . . . ,  quN u -  1 denote the consecutive 
harmonics of the j/th fundamental frequency in the range [0,2ir).
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P ro p ertie s

The spectral properties of the basic SMRSm_£) are given by:

L em m a 6 .1  Consider the basic SMRSm~d . Its periodogram is given by:
M

tj(mu)$?„(tt„m „) = | 4j42o) sin2 ^ (Q) J j  ,

+ Y  Ain„)
M M

6(m„ -  n„) + J J  5(771,, -  (N v -  7i„))

M
+4 E  ^ (n „ )sin2 a  I I  _  |  > (6.26)

(rt„n„)s^“ \{(o)} -=1 J
where (/2^m ^) € N$1 ■

□
P roof: The proof of this lemma proceeds in the same way as for Lemma 2.1. It follows 
from the periodogram definition [60] that:

* * № m „ )  =  S { S f e  UBU fi„ m v)\2}  = g f l ^ - | | 7 B ( j ^ m v)|2 (6.27)
I lli/=l ) 1 li/=l V

is a deterministic function.

□
The statistical properties of the extended SMRSm“d obtained for the ensemble averaging 

are given by the following lemma:

L em m a 6.2 Consider the extended SMRSm~d ■ For each M-tuple (i„) £ X*£:

1. its expected value is
£{“ (*./)} = ̂ (o)sin^(o)- (6.28)

2. its autocorrelation function is:

£{u(i„)u(i„ -  t„ )}  =  ^ 0 )sin2^ (0)

1 M M
+ 2 ^  A'2inu)cos('£i n i,n„Tu)+  Y ,  ( - l ) ^ = * T*'”(n," ‘')^ ni/)Sm2a,

(«,r»,)€ATM\Af“ (J7pn„)s^sM\{(o)}
(6.29)

where ( r„ )  e X*£ and:

( 1 if£ lun„ =  it
(6.30)

0 if Q.vnv = 0

□
Proof of the above lemma proceeds similarly as for Lemma 2.2.

It follows from this lemma that the extended SMRSm~d  is a wide-sense stationary 
(homogeneous) [50] multidimensional random process, i.e. its expected value does not 
depend on the location of (i„) and the corresponding autocorrelation function depends 
only on the vector (its oriention and lenght) joining the two points (i„) and ( iu -  r„ ) . 
Any change of the assumption about distributions of the random phase shifts <t>(ni,) 'n 
the extended SMRSM-D definition would result in an extended SMRSM“°  for which the 
expected value and autocorrelation function will depend on the independent variable (i„).

The following lemma presents properties of the extended SMRSM-D obtained for the 
independent variable domain averaging on any particular series:
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L em m a 6.3 Consider the extended SMRSM D.

1. Its mean value is
= A(O)sin0(O). (6.31)

2. Its autocorrelation function is:

R uu(t u) = A2o) sin2 0(O)

1 M M
+ 2 Y  ^ (n „ )C0S( E a ‘' n‘' Tv )+  E

(<2,,n„)eVM\ATSM "=1
(6.32)

where ( t „ )  € X££ and T](£lunv) is given by (6.30).

P roo f: The proof o f this lemma proceeds similarly as for Lemma 2.3, where:

• the mean value of u (i„) is calculated as:

. u N i - i  q M N M - x

•M{ti(i„)} =  lim --- lim  —77----------- E  V" u(i„)
lli/=l i1=0 ,M= 0

 ̂ N \ — l  N u - 1 ^

=  f F  AT =  n M A/' UB^°^ ~  ^ s i n ^ o ) .  (6.33)lli/=l JVX/ ,1=0 tM=0 11»/=1

• the independent variable domain averaged autocorrelation function of u (iv) is defined 
as:

j «JV1-1 <7mJVm-1
R uu(t „)= lim^ • • Um -  ̂  E  ” • E  -  r „ )

11k=i 9i/J»i/ <i=0 iM=0 

j  N i- l N M - 1  M

= u m N T  E  ■ ■ ■ E  *S.(n*i»»)«,'S ~ i  (6.34)
lll/=l lyu±Vmi=0 mM= 0

□
It follows from Lemma 6.2 and Lemma 6.3 that the extended SMRSM-D inherit proper­

ties of the 1-D SMRS, i.e. the extended SMRSm~d is a weakly ergodic multidimensional 
random process.

6.3 M -D MULTIVARIATE ORTHOGONAL MULTISINE
R ANDO M  PROCESS

6 .3 .1  E rg o d ic  C ase  

D efin itions

Following the MOMRS definition, each element uT(iv) (r  =  1,2, . . . ,p )  of an M-D  multi­
variate orthogonal multisine random series (MOMRSm -d) is a sum of some of SMRSM"~° 
M-D  sine components with the constraint that the same frequency M-tuple may not appear 
in more than one MOMRSM-D element and each SMRSM-D M-D  sine component belongs 
to one and only one MOMRSm_d element. It is formalised by the following definition:
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D efinition  6.2 The basic M 0MRSm  d is defined by the p-dimensional multivariate series
uB(i„) =  u f(i„ )  , where the rth MOMRSm~d element is given by:

L J r= l ,2 , . . . ,p

M
“?(**)= E  ^(n„)8in( E  + ^(n„)). (6-35)

(«-n„)€A/'[“  *=1

AfMp is the set of all frequency M-tuples (J?„ti„) present in the rth MOMRSm~d element 
ur(i„) and:

•< £  U N%v u  • • ■ u M ^v = U M. (6.36)

These sets are pairwise disjoint:

= 9 (6.37)

for s ^  t, s, t = 1 ,2 ,..  . ,p. Additionally, (i„) 6 X M and for v =  1 ,2 , . . . ,  M:

• = j f -  denote fundamental relative frequencies,

• n„ denote the consecutive harmonics of these frequencies,

A(n„) are deterministic amplitudes of the M-D sine components £11), are
phase shifts, o f which <f>̂  is deterministic and the remaining phase shifts are random, 
independent and:

• uniformly distributed on [0, 2tv) for (S7un„) 6 N M \  Mg1,

• Bernoulli distributed B {a i 11 + <*}) f or (J^ n ,, ) e ^ \ { ( » ) ) .

□
The spectrum of the basic MOMRSW-£> is given in the frequency-domain for

the (relative) frequency range [0,2it)w by the p-dimensional vector U M( j f t um„) — 
UB( j  f l um u)\ of M-D  finite discrete Fourier transforms with the rth  element given

>■ J r= l ,2 ,. . . ,p
by:

n M  pr M  M

UrB(j f i j m u) = ^  " E  Mn*) ej*(nu) I I  * K  -  " J  -  n  * K  - № - n „ ) )
3 (J7„n„)eA™ "= 1

(6.38)
where (J?^m„) 6 A f ^ .

Elements of the basic MOMRSm“,d can be regarded as scalar real-valued SMRSM D.
The fact that elements of the MOMRSm"d have no common frequency M-tuples implies
orthogonality of its elements for the ensemble averaging:

£{iir(ti/)u3(t1/)} =  0 (6.39)

as well as the independent variable domain averaging:

j  q i N i - l  qM N M - 1

E  "  E  urM v.,{ iu ) = 0, (6.40)
rii/=i , ^ 0

where r ^  s, r, s =  1 ,2, . . .  ,p  and <7i ,? 2> • • - ,<1M = 1 ,2 ,.. . , 00.
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P ro p e r tie s

The periodogram matrix of the basic MOMRSm-z) is given by the lemma:

L em m a 6.4 Consider the basic MOMRS^~D. Its periodogram matrix is &Bu( j  =
,  > where for £ N™:*■ J r ,a = l ,2 , . . . , p

( $ urur ( ^ m ») + i °  i f  r — s 
(t,UrU.tin *Tn<') = { (6-41)

[ 0 +  jO if r /  s

^ , r( f i» ra t ) is the periodogram of the rth MOMRSm~d element:

QurUrit2*™») = QurUri*2’

n i l i  K T ,  ^  a2 r M M
I f  S(m„ -  nu) + J}  6(m„ -  (N„ -  nu))
i/=i

M  M

+  n  NVT„ Y1 Aln„ ) sin2 a n  “  ” ")> ( 6 -4 2 )
"=i (/7„n1/)eA7 ,̂aVsM\{(o)} *=i

where:

f n ^ i  N vTuA(Q) sin2 * (0) n " ! if  (o) £
*2rur(n i'm i')= S  (6.43)

1 °  */( o ) e ^

□
P roof: 77ie proo/ o / the above lemma proceeds similarly as for Lemma 6.1, when it is 
noticed that the periodogram matrix of MOMRSm~d  is:

* u u U n vm v) = £ { ̂ l ^ . V B( j n i/m l/)V T'B( - j n vm v)}
I llj/=l J

r\M T
= V B( i n um v)V T’B( - j f l „ m v). (6.44)

□
The properties of MOMRS^“73 which result from the ensemble averaging are given by: 

L em m a 6.5 Consider the extended MOMRSm~d . For each M-tuple (i„) £ :

1. its expected value vector is £{u(t„)} = [£{tir(*i/)}]r=1 2 v< where:

( A(o) sin <j>{o) if (o) £
£{uT(i„)} =  I . (6.45)

[ 0  i f ( ° ) ? K MP

2. its correlation function matrix is £{u(il,)u:r( i1/- T 1,)}=p{ur (i1,)tiJ( i1, - T t,)}]r J=1 2 p , 
where for ( t „ )  £

(£{^r(*l/)^r(*i/ Tv')} i f  r — s
(6.46)

0 if r ^  s
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£{“r(*i/)“r(*f -  t^ )}  is the autocorrelation function of the rth MOMRSm  d element:

~ ^v)} = ^i/)}

+0 Y  A(n„)cos( 5 Z ^ n‘'^ ) +  Y  ( - l ) £ " * T”’’(n‘" ,')i4(„1,)Sina a,
»=1 («„n„)6jVsMnA%\{(0)}

(6.47)
where 7/(fl^n^) is given by (6.30) and:

( A(o)sin2^(o) i f  (°) 6 K MF 
£{u°(iv)u°(i„ -  t„ )}  = I (6.48)

1 0 i f ( o ) ? K Mr

□
Proof of the above lemma proceeds similarly as for Lemma 2.2.

It follows from this lemma that the extended MOMRSm_7) is a wide-sense stationary 
multidimensional multivariate random process. Similarly, as for the scalar case of mul­
tidimensional multisine random series, any change of the assumption about distributions 
of the random phase shifts </>(«„) in the MOMRSm_£) definition results in an extended 
MOMRSjW_n for which elements of the expected value vector and autocorrelation function 
matrix are functions of the independent variable (*„).

The independent variable domain averaging on any particular extended MOMRSm_d 
results in the following lemma:

L em m a 6.6 Consider the extended MOMRSm~d .

1. Its mean value vector is A4{u(i„)} =  [M {ur(iu)}]r:_12  , where:

{ A(o) sin 0 (o) if (o) £
M { u T{iu)} = I ■ (6.49)

{ 0 i f ( o ) ? K MP

2. Its correlation function matrix is Ruu(ti,)  = [Ruru,(T ‘')]r,s=i,2,...,pi where for (r„ ) £
X% :

I RurUr(Tu) if  r = s
(6.50)

0 if  r ^  s

Rurur{Tu) is the autocorrelation function of the rth M 0 MRSm~d element:

RnrU r (Tl/) — ^ UrUr (Tl')

1 M M
+0 Y  A(n„) c o s (£ n ,n ,r„ )+  £  (—l ) ^ ‘"tiTl/̂ n‘"l/̂ ( n „) sin2 a,

"=1 (/2„n^)eArsMnvVM\{(o)}
(6.51)

where T}(p.unu) is given by (6.30) and:

[ A \o) sin2 ^(O) if (°) e K Mp 
< UrK ) = i  • (6-52)

l o  i f ( o ) ? K MP

a
Proof of the above lemma proceeds similarly as for Lemma 6.3.

It follows from the above lemmas that similarly as MOMRS, the extended M 0MRSM-£i 
is a weakly ergodic multidimensional random process.
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F req u en cy  M -tu p les  d istribution

The consecutive circular ordering of frequency M-tuples for multidimensional multisine 
random processes is done taking into account the M th frequency axis. This ordering is 
denoted by the upper index c in symbols Af^p* (r  =  2 , . . . ,p). The frequency M-tuple
( f t un „) G AIM is a member of the set ■A/Jjj'* (r = 1 ,2 ,..  , ,p ) if:

r = tim mod p +  1. (6.53)

Thus defined circular ordering allows us to synthesise scalar (p  = 1) and bivariate (p = 2) 
multidimensional white multisine random series for which whiteness holds for finite sample 
representations. It is a consequence of a constant bin spacing along all frequency axes.

For p =  1 [ A f ^  — A fM) the constant bin spacing equal to  fix, fl2, . . . ,  is kept 
throughout each relative frequency axis in the range [0,2ir), respectively.

When p =  2, a multidimensional bivariate orthogonal multisine random process 
(BOMRSM-D) u(i„) =  [ur(i„)]r=li2 is obtained, where:

• the u f  ( iv) element contains the M-D constant component and M-D sine components 
with frequency M-tuples from the set

K .2 =  {{O A ,. • ■ M * i  - 1)} x • • • x {o,nw _ i , . . .  ,!1m-i(JVm-i-1)}

X {2nM,4fiM,. . .  , 0 m ( ^ - 2 ) }  U ATM~' x { o ,it} }  . (6.54)

The frequency bins along frequency axes u \T \ , .. are equal to
respectively. The M th frequency axis is sampled at even har­

monics of n ^ .  Its frequency bin is equal to 20.m .

• the uB (iv) element contains M-D sine components with frequency M-tuples from the 
set:

=  l - 1)| x  • ■ • x  .• • • ~  l)j

x |n M ,3 0 M v  . , n j w ( ^ ^ - - l ) | | . (6.55)

The frequency bins along frequency axes U \T \,. . . ,  are equal to
f t i , . . . ,  respectively. The M th frequency axis is sampled at odd harmo­
nics of Qm- Its frequency bin is also equal to 2CIm .

6 .3 .2  N o n e r g o d ic  C a se  

D efin ition s

Consider an M-D multivariate random series with the elements ur (t„) (r = 1 ,2 ,..  ,,p  and 
p > 1) being M-D scalar multisine random series for which the same relative frequency 
appears in all elements of the multivariate series. This condition implies nonergodicity of 
the multivariate series. The elements of the NMOMRSm“°  have common frequencies but 
the independence of its M-D sine components random phase shifts implies orthogonality 
of its elements for ensemble averaging if constant components of NMOMRS elements are 
equal to  0. In the sequel, thus constructed multivariate series are called nonergodic M-D 
multivariate orthogonal multisine random series (NMOMRSm_d). The NMOMRSm_d is 
defined as:
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D efin ition  6.3 The basic NMOMRSm d is defined by the p-dimensional multivariate se­
ries uB(i„) =  ju®(t„)j  ̂ , where the rth NMOMRSm~d element is given by:

M
ur M -  Ar,(n„)Sin(53ft-'n-*- +  ^,(n„))> (6.56)

</=1

where (i„) G X M and for v  =  1 ,2 ,..  . ,M :

» Slu — j f -  denote fundamental relative frequencies,

• n„ denote the consecutive harmonics of these frequencies,

AT (nu) are deterministic amplitudes of the M -D sine components (Ar^n ^  6 1Z), <j>r,(nw) are 
phase shifts, of which ij>T,{o) are deterministic and the remaining phase shifts are random, 
independent and:

• uniformly distributed on [0,2ir) for G AfM \ATst ,

• Bernoulli distributed B {a, t  +  a} j for (S7„n„) G Afg1 \  {(o)}.

□
The basic NMOMRSm_d is given in the frequency-domain for the (relative) frequency 

range [0,2ir)M by the p-dimensional vector UB( i  J2„m„) = \UB(jS Ivm v)\ of its
r = l » 2 , . .MP

M-D finite discrete Fourier transform with the rth  element given by:

-rM M  M
A " » )  U  S(mv -  n„) -  S(m„ -  (N„ -  nu))

U—1 V—\
(6.57) 

where (ß „ m „ )  G AT™.

=  £  A r , ( n ,

P rop erties

The periodogram matrix of the basic NMOMRSm_d is given by:

L em m a 6 .7  Consider the basic NMOMRSm D. Its periodogram matrix is &Bn( j  f 2 = 
( j f i .m , )  , where for ( f iuTnv) G A f^ f:i r,a=l,2,...,p

f tm  N UTV f M
$uru,U n i'rn‘') = v=1a  ̂4Ari(0)i4,i(0) sin <t>r,(o) sin 0s,(o) I J  Ä(rn‘')

I U=l

+ X) Ar,{n„)A.4n„)
(f}vnu)€Sfu \tf£L

M
(cos(0rt(Th,) ^3,(Tl„)) j  Ŝ n(<̂r,(nl/) f l  ^(rnu 111/)

M
+(cos(&.,(„„) -  4>.,{nu)) +  j  sin(0r,(n„) ~  <k,(n„))) n  ~ "■'))

U=1

M
+4 Ar,(ni,)ASi(ni,) sin0r ( w) sm 0i>(N) n ,5(m‘' - n*')f • (6-58)

(rt„n„)e.Vs“ \{(o)} ' 3 ’ 3 *=l J

□
Proof of the above lemma proceeds similarly as for Lemma 6.4.

It follows from the above lemma that expected value of $ Bu( j f l is the matrix 

=  [f {$ f ru . ( i ^ m ^)}]rj=1 2 p , where:
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its diagonal elements are:

N T  { M
£{*?rUr(r2„m„)} = » (4A2(o) sin2 0r,(o) + jO) I ]  6{mv)

V 1/=1

r M M
J J  S(m„ -  nv) + S(m„ -  (N v -  nu))

M
+ 4 E  (Ar,(n ,)sin2“ + i ° ) I I <(m^ ~ n‘' ) |>  (6-59)

(l?„n„)6jV“ \{(o)} —i J

for r  =  1 , 2 { n um v) eAf£H\

• its off-diagonal elements are:

Y\M MT ( M
— ~ ^   ̂ (4Ar,(o)AJj(0) sin 0r,(o) s in<p,i(0) +  jO) J J  b(mv)

V ■/=!

+  E  (° + jo )
M M

6(mv -  n„) +  J J  <$(m„ -  (N u -  nu))

M
+4 £  (o + io) n  6(m„ -  n„) > , (6.60)

(«»n.)6A^\{( o)} «=i J

for r ,s  =  1 ,2 , . . . , p ,  r  /  s, (J2„m„) € A/^f.

If all =  0 or </>r,(o) =  0 (r  =  1,2, . . . ,p )  then the € { ^ rUr( n vm u)} is a diagonal
matrix.

The properties of NMOMRSm_d which result from the ensemble averaging are given
by:

L em m a 6.8 Consider the extended NMOMRSm~d . For each M-tuple ( iu) € X ^ :

1. its expected value vector is € {u(tw)} = [£{ur(*i/)}]r=1 2 p > where:

£{ur (i„)} =  Ar,(o) sin 0r,(o). (6.61)

2. its correlation function matrix is £{u(iJ/)uT(ti,--Ti,)}=(£{u,.(*i,)u1!( i1, - T i/)J|ra_1 2 p> 
where for  ( r„ )  e  X ^ :

f£{ur (iv)ttr( tv -  t v)} i f  r = s
(6.62)

^ . ( o j ^ o )  **n0r,(o)«*n<£.,(o) i f r ^ s

£{uT(i„)ur(il/ -  r v) j is the autocorrelation function of the rth MOMRSm~d element: 

£{«(*„)«(»„ -  r^ )J  = A 2r {o) sin2 </>rj(o)

1 M M
+  2 Y  Ar,(n„)cos( E n ‘'n‘' r ^)+ I ]  ( - l ) £ ‘'=>™(n,* ')< ( „ 1/)Sin2a,

(«„n„)eArM\.V|1 -=1 (J7„n„)eArsM\{(o)}

where T7(fi„n„) is §it>en by (6.30).
(6.63)
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Proof of the above lemma proceeds similarly as for Lemma 2.2.
When the independent variable domain averaging on any particular extended 

NMOMRSm~d is analysed, the following lemma can be formulated:

L em m a 6.9 Consider the extended NMOMRSm~d .

1. Its mean value vector is ,M{u(i„)} = [A1{«r(*i/)}]r=i,2 p 1 where:

M {u T(i„)} = v4r,(0) sin 0r,(O). (6.64)

2. Its correlation function matrix is R uu(t„ )  = [£UrUl(T„)]r J=12 where for
( t„ )  6 X « :

Ruru.(T l/) = ^.r,(o)Aj,(o) sin 0r,(O) sin 0Ji(O)

2 A/
+  2 Y  Ar,(n„)A.,(n.,) c o s (E  SlvnvTu + 4>r,(nu) -  4>,,(nu))

(J7un„)eA''M\A/sM <«=1

+  E  ( - 1)^-',/=lT,'’,(n‘/‘‘')Ar,(n„)A.,(n1,)sin0r ( w ,sin0 , n v  (6.65) 
(fl„n„)eJtfJ‘\{(o)}

where T)(Slunu) is given by (6.30).

□
Proof of the above lemma proceeds similarly as for Lemma 6.3.

The expected value of R Uu(t „) is the matrix £{R Uu(t ^)} =  [£{-R^.u,(T„)]r J=12 ,
where:

• its diagonal elements are:

R utut(t u) = Ar,(o) si1*2 ^r.(o)

1 M
+ 2 Y  Al ( n , ) C0S( Y , n ^ T u)+ £  ( —l ) £ - i T̂ (n,^>A2(n^ s in 2a

(«»»>■) 6;VMVVSM ■>=! (fi„n„)€AfsM\{(o)}
( 6 .6 6 )

fo r r  =  l ,2 , . . . ,p ;

• its off-diagonal elements are:

P-uruA'r v) = j4r,(o)'4»,(o) sin ^r,(o) sin </>s,(o) (6.67)

for r ,s  = 1 ,2 ,..  ,,p  and r ^  s.

It is worth to note that ^ R u u ^ ) }  = £{u(*„)uT(t1, - T 1,)}. If Ar^0) = 0 or 0ri(o) =  0 
(r =  1 ,2 , . . .  ,p) then the £{R Uu(T</)} and £{u(i^)ur (i^ — t„ )}  are diagonal matrices.

6.4 M-D MULTIVARIATE NONORTHOGONAL MULTI­
SINE RANDO M  PROCESS

D efinitions

The basic nonergodic multivariate nonorthogonal multisine random series (NMMRSm_£)) 
is defined by:
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D efin ition  6.4 The basic NMMRSm  d is defined by the p-dimensional multivariate series
us (i„) =  , where the rth (r = 1 , 2 NMMRSm~d element is given

I J r=l,2,...,p
by:

p  M

uf M  =  5 3  Y  Ar,t,(n») sin( 5 I  ^ n viv + + ¥V,4,(«„)), (6-68)
<=l(/2i,n„)€.VM */=1

where ( iu) 6 X M and for v = 1 ,2 , . . . ,  M :

% denote fundamental relative frequencies,

• nu denote the consecutive harmonics of these frequencies,

and Ar (i(nv) are deterministic amplitudes of the M -D sine components (Ar t^Tl̂  £ 1Z), 
4>t,(nu) and <pr,t,(n„) are phase shifts, of which <t>t,{ou) and y>T,t,(nu) aTe deterministic and the 
remaining phase shifts <t>t,(nv) are random, independent and:

• uniformly distributed on [0,2-iv) for g U M \  Afg1 and t = 1 ,2 ,. .  ,,p ,

• Bernoulli distributed B {a, tc + a}) for ) e A fg * \ { ( o)} a n d t = 1,2

□
The basic NMMRSm~'D is defined in the frequency-domain by the p-dimensional vector

U B( j f l um u) =  I UB( jQ um u)\ of its M-D finite discrete Fourier transforms withI J r=l,2,...,p
the rth  element given by:

■ M  * T  P

TJB ( 'i  O  m  1 -  n , = l  N y  V *  Ar (3 ̂ i /m v) — 2j  2—i 2—i
=l(J7„Ti„)gATM

M

n  6(m u — nu)
i/=i

M
n  S(mu -  (N v -  n„))
u=i

(6.69)

where (J2^m^) £ A /^ .

P ro p e rtie s

Similarly as for the 1-D NMMRS, the periodogram matrix &Bu(jf2 „ m u) of the basic 
NMMRSm_£> can be written as:

$ u u t in vm >') = K ( j n i/m „ )$ ^ p (jn „ m „ )K * ( jf2 vm „), (6.70)

where:

• elements of the matrix K .(jf2vm v) =  [KUrUt( j ^ m i/)]ri3=i , 2 p are given by:

A t,,,(o) sin (</>t,(o) + ¥>r,»,(o)) +  j 0 if {n„m „) = (o)

\ K if ( f i.ro „ )  £ AfM \  Mg1 ;KurUa

^ v .lrn ,)  sin (a  +  ¥>r,s,(m„)) +  j 0 if (ß „ m „ )  £ Af j f  \  {(o)}
(6.71)

the matrix is the periodogram matrix of a NM0MRSm d with ampli­

tudes of all sine components chosen so that £ { $ p p ( jr ium l/)} = I.
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The above spectral factorisation of the NMMRSm d periodogram matrix allows us to write 
the M-D finite discrete Fourier transform UB(jf2I, m u) of NMMRSm_d as:

U B{ j f l um u) = K  ( j n vm v) P ( j n vm v), (6.72)

where (3 ( jf l^m^) is the M-D finite discrete Fourier transform of a NMOMRSm-°  with 
amplitudes of its M-D sine components chosen so that £ { $ Bf)(jfi„m „)} =  I .  It is obvious 
that:

f  {*2utf«*TO»)} =  K ( j n um u) K \ j n vm v). (6.73)

The statistical properties of NMMRSm_£) can be analysed similarly as it was done in 
Chapter 2 for the corresponding 1-D NMMRS.

6.5 SYNTHESIS AND SIMULATION

Synthesis and simulation of multidimensional multisine random processes follow the cor­
responding procedure for the 1-D multisine random processes. For a given deterministic 
amplitudes of M-D sine components of multidimensional multisine random processes, phase 
shifts for constant components, parameters of Bernoulli distributions, the corresponding 
spectrum is synthesised and a realisation of the basic multidimensional multisine random 
process approximation may be obtained using any M-D Fast Fourier Transform algorithm
[5]. Additionally, in spite of random phase shifts, the periodogram and correlation function
matrices for weakly ergodic or expected values of periodogram and correlation function
matrices for nonergodic multidimensional multisine random processes are deterministic, 
real-valued functions. They are uniquely defined by the amplitudes of M-D sine compo­
nents, phase shifts for constant components and parameters of Bernoulli distributions. It 
implies that like in the 1-D case, shapes of multidimensional multisine random process 
periodogram matrix elements can be fitted to shapes of any given power spectral density 
function matrix elements of M-D multivariate random process. This allows us to extend the 
proposed synthesis and simulation method of 1-D wide sense stationary random processes 
to the M-D case.

Let v(i„) be an M-D wide-sense stationary, real-valued multivariate random process 
with the power spectral density matrix = [*n .» ,(i«1,T|,)]r,s=i 2 p> which
satisfies, for (u>vT v) £ [0, 2it)'w, the following conditions:

$ w { ju „ T u) =  $ vv(i(a '!r-w l,T„)) (6.74)

and:
ll*w (i«i/T i»)|| < 00, (6.75)

where:

Y Y ^ v . U ^ T , ) .  (6.76)
r=l 3=1

It is assumed that its autocorrelation function R vv(t„ )  for all M-tuple lags (r„ ) with the 
elements |r„| > r^o (v = 1,2 , . . . , N  — 1) satisfies:

R w (t „) = o. (6.77)

The power spectral density matrix <f>vV(ju>vT u) may be approximated by a periodogram 
matrix (or expected value of the periodogram matrix) of the corresponding multidimensional 
multisine random series with amplitudes of its M-D sine components chosen so as to make 
values of the periodogram matrix (or expected value of the periodogram matrix) equal to 
the corresponding values of power spectral density matrix of the original multidimensional 
random process for some equally spaced frequency M-tuples from the range [0,2ir)M. It can
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be interpreted as multidimensional sampling of the elements (r, s = 1 ,2 ,. . .  ,p)
in the frequency-domain. When n„ sampling points (approximation nodes) are chosen for 
the i/th frequency axis in the frequency range [0,2 tv), the multidimensional sampling does 
not produce aliasing [21] under spacings A„ between the samples along this axis are such 
that:

A„ <  A0,„ =  (6.78)
£tV'0

When maximum spacings A0,u are chosen, the original power spectral densities $„rtJ>(w1,T i/) 
may be recovered from their sampled values (periodograms of approximating multidimen­
sional multisine random series) by using an M -D generalisation of the sine function:

* 1v. . ( i » „ T 1,) =  £  £  <&„r„ ,(M „ m „ ) n  sinc(^ ^ - A-ymi/))  . (6.79)
m i= - o o  771 M = —oo u—\  '  v  J

Asymptotic properties of the synthesised and simulated multidimensional multisine ran­
dom process approximations of wide-sense stationary multidimensional random processes 
given by their power spectral density matrices are briefly summarised in the sequel. It 
should be emphasised that proofs of presented lemmas proceed similarly as for the power 
spectral density defined multisine random time-series (see Chapter 3).

6 .5 .1  E r g o d ic  c a se

When the power spectral density matrix of an M -D causal, wide-sense stationary mul­
tivariate orthogonal random process is approximated by the periodogram matrix of 
a MOMRSm-£) with the consecutively circularly ordered frequency M-tuples and ampli­
tudes chosen so as to  make values of elements of the periodogram matrix equal to the 
corresponding values of the power spectral densities of the original random process for 
some frequency N-tuples from the range [0,2it)N, the obtained extended MOMRSm_d turns 
asymptotically for ( N „) —> (oo) into an M-D Gaussian multivariate orthogonal multisine 
random process:

L em m a 6.10 Assuming that:

1. &v v (jtji„Tu) — diag\$vTvT(y)„Tu) +  j0]r=12 p is the power spectral density matrix
of an M -D wide-sense stationary, orthogonal, real-valued multivariate random process 
with zero mean vector and the variance matrix -  f<72 „1 , „ , where:vv l vrvrJrz=l,2

CTurvr = - 9 W r r M „  /  • • • /  *vrvr(tavTv)d(uiTi)---d(wjvT]v); (6.80) 
(ZTVj i ix /r r i  1-V Jo JO

2. A(ni/) converges to 0 for (A/*) —* (oo) in such a way that for (J?„n.„) e  A/"rc^  \  Afg1

A2 M
I I  N"T» =  ^ . r ( f i»m »), (6-81)
I/=l

3. A(nu) =  0 for  (/2„n„) e  A/s* or = a  = 0,

then the extended MOMRSm~d  u(i„) with the consecutively circularly ordered frequency 
M-tuples converges in distribution for (N „) —*■ (oo) to an M -D  Gaussian multivariate 
orthogonal multisine random process of type 1 (GMOMRS1m~d ) g (iu) =  [ffr(*i/)]r=i 2 
with zero mean vector and the variance matrix jjCr^v :

Synthesis and Simulation 93

Additionally the correlation function matrix £{g(i)gr (i„ — r u)} = R gg(T„) of the 
GMOMRS1m~d converges to:

£{g(i)gT(*i/ -  ■>■„)} = Rgg(T„)
i r2* /•2it Ml ^

=  \ m  n M T  /  ' "  ̂ v v U ^ „ T ^ c o s (J 2  u uTvT,)d[yj\T{) ■ ■ -d(wMTM) =  - R vv(t„),
(2k )  P i [ u- \ J - u J0 Jo „=1 V

(6.83)
where ( t „ )  €  X ™ .

□

6 .5 .2  N o n e r g o d ic  ca se

Similarly as for the previous ergodic case, the power spectral density matrix of an M-D 
causal, wide-sense stationary multidimensional multivariate orthogonal or nonorthogonal 
random process with finite powers of its elements may be approximated by the expected 
value of periodogram matrix of a multidimensional nonergodic multivariate multisine ran­
dom series with amplitudes of M-D sine components chosen so as to make values of the 
expected value of its periodogram matrix equal to the corresponding values of power spec­
tral density matrix of the original random process for N \N i ■ ■ ■ frequency M-tuples from 
the range [0,2iv)M. The extended multidimensional multivariate orthogonal or nonortho­
gonal multisine random series obtained from application of this approximation criterion 
turns asymptotically for (N „) —> (oo) into an ergodic Gaussian multivariate orthogonal or 
nonorthogonal multisine random process. In the sequel, their properties are briefly sum­
marised.

M u ltivaria te  orth ogon al m ultid im en sional m ultisine random  processes 

L em m a 6.11 Assuming that:
1. <i>vv{ju}uT u) — diag[$VrVr(w,,Tu) -)- j0]r=1 2  is the power spectral density matrix

of an M -D wide-sense stationary, orthogonal, real-valued multivariate random process 
with zero mean vector and the variance matrix =  [o'2r„r]r=1 2 , where:

alrvr -  ,9 W 1 M rp /  ••■/ *vrvr(u i’T v)d(u)1T1)---d (u NTN)\ (6.84) 
Il„= 1 Jo Jo

2. A T̂ nu) converges to 0 for (2V„) —» (oo) in such a way that for ( n ^ n u) € A/}v \A fg

A 2 M
n  N »T* =  *»rv,(iw„T„), (6.85)
v - \

s. A T'(nii) = 0 for (n„n„) e  A or =  a -  0,

then the extended NMOMRSm~d  u(i„) converges in distribution for (iV„) —► (oo) to
an M -D  ergodic Gaussian multivariate orthogonal multisine random process of type 2
(GMOMRS2m~d ) g ( tu) = with zero mean vector and the variance matrix
_2 . ffvv •

g(t„) e AsAf(o,<r\y ). (6.86)
Additionally the correlation function matrix £ {g (iu)gT(iu -  r v)} of the GMOMRSm~d 
converges to:

£{g(*')gT(*i/ ~ t , ) }  =  Rgg(T„)
 ̂ y2ir r2"K ^^

= W r t M rp /  •••/ * w ( j u uT v)cos{Y JWvTvTv)d{uiT{)---d{uMTM), (6.87) 
( i i r ) «  l i v_ i  l u Jo Jo „=1

where ( r„ )  6 X ^ .
O
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M u ltiv a r ia te  nono rthogonal m ultid im ensional m ultisine  ran d o m  processes 

L em m a 6.12 Assuming that:

1. 4?v v (ju>uT y) -  [$vf.u,(iw,/2’i')]r,s=1,2 p ts the power spectral density matrix of 
a wide-sense stationary, real-valued multivariate nonorthogonal multidimensional ran­
dom process with zero mean vector and the variance matrix ct2v =  [c2rUJ  r j=12 , 
where:

= ,0 -r f  " /  ^ v rv .C w ^ X w iT i)  ■ • ■ d{uNTN)-, (6.88)
( 2- r c 11„=1 l u JO Jo

2. for r , t  = 1,2, . . . , p  values of Ar t (ni/) converge to 0 /o r (iVV) —» (oo) in suc/i a way
that for (fi,,» ,,) € N n  \  J^s :

=  # v v ( i « ^ r i ^ ) ;  (6 .8 9 )

Ari(n „) =  0 for (.r2„n„) e ^  or 0r (O) =  a  =  0,

then the extended NMMRSm~d u(i„) converges in distribution for (N „) —* (oo) to 
an ergodic Gaussian multivariate nonorthogonal multidimensional multisine random pro­
cess (GNMMRSm~d ) g(i„) =  [<7r(*i/)]r=li2 p w*th zero mean vector and the variance ma­
trix <7yV :

g ( * i/ )  €  A s.V ( o , ct-Jv ). (6 .90 )

Additionally the correlation function matrix £{g(tl/)g7’(i^ — t„ )}  o/ the GNMMRSm~d 
converges to:

^{ g (0 g r (*v -  T*)} =  R gg(T^)
 ̂ /*2ir /*2tt

=  Njvf j - i M  " r n  /  ■ ■ c o s i ^ T ^ d M ) . . .  W m ) ,  (6 .9 1 )
1 li^=i J -/0 „=i

where ( t„ )  €

□

Chapter 7

M u ltid im en sion a l W h ite  N o ise  
A p p rox im ation

This chapter addresses a direct extension of the 1-D white noises synthesis and simula­
tion results presented in Chapter 4 to the multidimensional case. Multidimensional scalar, 
bivariate and multivariate white multisine random series are discussed.

7.1 SCALAR W HITE NOISE

When the power spectral density of the M -D white noise is approximated by the periodo- 
gram of SMRSm-D, an extended multidimensional (iV^)-lag white multisine random series 
( W S M R S ^ )  is obtained:

D efin ition  7.1 An extended M-D scalar multisine random series x(i„) is said to be 
(N„)-lag white i f  its autocorrelation function for lags (t „) £ X M is the same as the M-D  
white noise autocorrelation function, i. e.:

( r 2 i / ( r „ )  =  (o)
£ {x ( iu)x (iv -  r v)} =  R xx(t „) =  ̂ (7.1)

( o  i f ( r „ ) e X M \{ (o )}

a
The statistical properties of WSMRSm_d are given by the following lemma:

L em m a 7.1 Assuming that:

1. =  A2 ((ojyTy) 6 [0,2it)M) is the power spectral density of a real-valued
M -D  white noise;

2. A^n ^  = A for (fiyUy) G AfM \Afg1 and the value of A is chosen so that:

A2 M
—  I J  N UTV = A2; (7.2)

U=1

3■ A (n„) = 4  f ° r ( ^ R») ^ M s1 and 0(0) = a  = f  ;

then the extended SM RSm~d is an M -D white multisine random series (WSMRSM D)  and:

1. its periodogram is given by:

N i - l  N M- 1 M

* Z ( n * m r )  = A2 £  • • • £  I I  S(m » ~ n-)> (7-3)
m = o  rijvf =o u=i

where ( f l vm u) e  .



96 Multidimensional White Noise Approximation

2. its mean value is:

= £ {u (i„)} =  J ^  t  A2. (7.4)

3. its autocorrelation function is:

£ { iu)u(iu -  t„ )}  =  R uu(t „) = lll/=l -1!/

0 otherwise

(7.5)

P roo f: The proof of this this lemma proceeds similarly as for Lemma 4-1, i.e.:
1. It follows immediately from the assumptions 1, 2, 3 and from Lemma 6.1.

2. It follows Immediately from Definition 6.1.

3. Application of (6.34) to (7-3) results in:
a 2 N , - 1  N u - 1 N i - 1  N u - i  m

S { u ( i v) u ( i u - T u)} =  R uu{Tv) =  —  Y ' Y  Y ' - Y  II
mi =0 mjvf =0 ni =0 n\f=0i/=l

A2 N i - 1  N M - 1

= ~4 Y "  Y  (7.6)
mi=0 rriM=Q

This ends the proof when (6.7) is taken into account.

□
When (7V„) —► (oo), the WSMRSM_D converges to a Gaussian WSMRSm_d g (iv) with 

zero mean and the variance ------•
n " i  Tv -

g{iu) e A s N (0 ,- -_ ^  ). (7.7)
lll/=l

7.2 MULTIVARIATE W HITE NOISE

7.2 .1  E rg o d ic  C a se

M -D bivariate  ( N \ , . . . ,  N m -i,  ^^O -lag w h ite  m ultisine random  series

When the power spectral density matrix of an M-D  bivariate white noise is approximated 
by the periodogram matrix of the extended B0MRSM-D, an M-D bivariate orthogonal 
white multisine random series is obtained. It is characterised by the correlation func­
tion matrix which for a number of M-tuple lags behaves exactly like the correlation func­
tion matrix of M-D bivariate white noise. This series is called multidimensional bivariate 
(N i , . . . ,  N m - i , —̂ ) - la g  white multisine random series (B0WMRSm_d):

D efin ition  7.2 An extended M -D  bivariate orthogonal multisine random series x(t„) is 
said to be ( N i , . . . ,  N m - i , ^^-)-lag  white if its correlation function matrix R Xx(Ti/) =

£{x(*„)xT(*„ -  t„ )}  for lags (t „)  6 X M~l x jo , 1 , . . . ,  ^ - l }  is the same as for the 
M -D  bivariate white noise correlation function matrix -  its elements satisfy the conditions:

(  T2 i / ( t „ )  =  (o)

Rxtx i(Tif) = Rxix2{T v) — S , (7.8)
[ 0 if(r„ ) e  X M~' x {o, l , . . . , ^ - l | \ { ( o ) }

Rxixii.Ti,') ~  Rx2Xi(^"v) =  0- (7-9)

□
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The spectral and correlation properties of the BOWMRSM u are the following: 

L em m a 7.2 Assuming that:

I- & v \{ jw vT u) =  A21 ((wuT v) 6 [0,2i\)M) )  is the power spectral density matrix of 
an M -D real-valued bivariate white noise;

2. A in \ = A for (QyTLy) £ M M \  N<? and the value of A is chosen so that:

A 2 M
~T II W  = A2, (7.10)

S- A {nA ~  4  f ° r ( ^ M  6 M's1 and ^(o) =  a =  $  i

then the extended BOMRSm~d is a bivariate (N \ , . . . ,  N m - i , )-lag white multisine ran­
dom series (BOWMRSM~D) and:

1. its periodogram matrix is -  diag [<5>®rUr(/7^m t/) + j'o]  ̂, where for

M
$ ?1UI { n um „) = A2 I J J  6{mu) +

M
[J 6(mu -  n„)

M
+ E[ f (Tn‘/ ~  (Nl/ ~  n"))

U = 1

M
+ Y  n  <5(m>' - n")

( iï^ n o e^ u to )} * « !

$ f U ( t t„ m „ ) = A 2 Y

2. its mean value vector is

r M M
12 i(m u -  nu) +  6(mv -  (N u -  n„))

■M{u(t„)} =  £{u(t„)} =
X2

(7.11)

, (7.12)

(7.13)

3. its correlation function matrix is £{u(iy)u(iy -  r „ ) }  =  R Uu ( T i/) =
di ag[RUrUr( T u)]rzzl 2, where for ( r u) £ X%:

j ^ r  i f ( r „ ) e x 0M - ' x { o , ^ , . . . }

(7.14)

0 otherwise

Ru?u2 (^”l/) —

i f ( r , ) e x 0M

" n f e  , / ( T' ) 6 ■ ( ,1 5 )

0 otherwise

□
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Proof: This lemma can be proven similarly as Lemma 4-4■ R  should be noticed that for all 
M -tuples ( n i , ri2, • • • i "M -i, ncM) with ncM zero or even it holds that:

JVi-l
5 3  . . .  E  | 3  n”‘'T,'+nn« T")

"1=0 nM_!=0 n^=0

if(Tl/) e x ^ ~ l x {o, . . .}

0 otherwise

and for  (tij, n2, . . . ,  tim -1, Ti^f), where n°M is odd it holds that:

Ni- 1 % - i - I N k - I
5 3 . . .  53  53  ^ ( E " ,

«1=0 «M—1=0 n^=l

tM

otherwise

so that:

(7.16)

(7.17)

Ni—1 % - l  w iVi-1 Nm-253 . . .  |3  = £ . . .  53  5 3  nn„T„+nni,TM)
ni=0 "M=0 ni=0 nM_i=On^=0

N,-1 JVM_,-1N M-1 „
+ 1 2  ■■ 12  12  e)(^  lk ,r ' +‘ln«™ )

ni=0 nM_,= On’ =l
(7.18)

Elements of the basic JVi • jV2• • • iVAf-sample B0WMRSM D have the mean val- 
■A2 and 0, respectively. The corresponding variances are equal to

s \lY1“J n ut l

anc  ̂ 9 |-rjw—rp~' When (N „) —*■ (oo), the variance matrix of the 
\ 2

BOW MRS^-0  converges to A—— I ,  and its mean value vector tends to a zero vec-
2 IL= i T-v

tor.

Gaussian M ultivariate W hite Noise

When the power spectral density matrix of an M-D multivariate white noise is approxi­
mated by the periodogram matrix of the extended M0MRSm~d , an extended M-D white 
multisine random series (M0WMRSm -d) is obtained. For p = 1,2 (WSMRSm-d and 
B0WMRSm~d ) whiteness holds for finite N \ ■ JV2 ■ • ■ TV^-sample series. Correlation matri­
ces of M0 WMRSM~D with the number of elements p  > 2 coincide only asymptotically for 
(7V„) —> (oo) with correlation matrices of an M-D p-variate white noise and asymptoti­
cally the MOWMRSm-c  is an M-D Gaussian multivariate random series. Its spectral and 
correlation properties are given by the following lemma:

Lem m a 7.3 Assuming that:

1- * w ( ju , ,T y )  = A21 f(u>„T„) 6 [ 0 ,2 « ) ^  is the power spectral density matrix of an 
M -D  real-valued bivariate white noise;
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2. A(n ^  =  A for ( n un v) 6 Af \Afg and the value of A converges to 0 for  (7V„) —> (oo) 
in such a way that:

A 2 M
T  n  N »T» = *2- (7-19)

U=1

S. A(nu) -  Y  f ° r № » n v) € Afg1 and 0 (o) = a = %,

then the extended MOMRSm~d u(i„) with the consecutively circularly ordered frequency 
M-tuples converges in distribution for ( N u) —► (oo) to an M -D Gaussian multivariate 
white multisine random series of type 1 (GMOWMRS1m~d )  g(i„) = [ffr(*i/)]r=i 2 p with

\2
zero mean vector and the variance matrix ■ -  w 1:

g(i„) € A sA f(o , -
A2

p U?Li T„ I)- (7.20)

Its correlation function matrix is £ { & { iu ) g T { iu -  r ,)}  = Rgg(r^) = [£Sr5,(T„)]r =12  ,

where for  ( t„ )  € X™ :

RgrgXTu) — (7.21)
RgrgriT*) if r = s 

[ 0  if r /  s

The autocorrelation function RgrgT(Tv) of the rth GWMOMRSm~d element converges to:

Rgrgr(Tv) — (7.22)

0 i f { Tv )  /  (o)

Proof: The proof of this lemma follows immediately from Lemma 6.10 when it is noticed 
that the mean value vector of u(i„) is:

X {u(i^ )}  = 

The corresponding variance matrix is:

1
n 5 v v

■A2,0 , .. .,0 (7.23)

2A2 r i

Ruu(o) =  r B w ^ ^ ^  * ’ (7'24)

where nr (r — 1 ,2 ,. .  .,p )  is the number of elements of the set AT?'** \  (o). When (iV„) -+
• r r ^  N(oo) , the mean value vector tends to a zero vector and nr approaches It implies

\ 2
that Ruu(o) tends to A— — I  vector.

V ll,/=i Tu

W

7 .2 .2  N o n e r g o d ic  C a se

M-D(7V^)-lag pseudo-w hite m ultisine random process

When the power spectral density matrix of an M-D multivariate white noise is approximated 
by the expected value of the periodogram matrix of extended NMOMRSm -d, a nonergodic 
multivariate orthogonal pseudo-white multisine random series (NM0PWMRSm_£’) is ob­
tained.
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D efin ition  7.3 An extended M -D nonergodic multivariate orthogonal multisine random 
series x (t„) is said to be (N ^ -la g  pseudo-white if elements of its correlation function matrix
£{x(t„)xT(t„ -  t„ )}  =  [€{xT(i„ )x ,(iv -  T„)}]ri,_ lt2 p for lags ( t„ )  6 X M satisfy the
following conditions:

( r 2 i f ( Tu) = (o)
£ {xT(i„)xr( iu -  t„ )}  =  I (7.25)

i 7 r K ) r 2 i f  ( t* )  € X M \  {(o)}

for r =  1 , 2 , . . . ,p  and |7 t ( t „ ) |  <  1 ;

£ {xr{i„)xa(ii, -  r , ) }  = 0 (7.26)

for r ,s  = 1 ,2 ,..  .,p  and r /  s.

□
The statistical properties of the NMOP WMRSm_d are given by the following lemma: 

L em m a 7.4 Assuming that:

1. &vv ( j f i l/m v) =  A2/  f(cjyTy) £ [0, 2-k)m) is the power spectral density matrix of 
a real-valued M -D  multivariate white noise;

2. Ar (nii) =  A for (n ^n ,,)  6 AfM \AJ~g1 and the value of A is chosen so that:

A2 a
T  I I  = A2> (7.27)

i/=i

3- Ar_{0) =  0 or </>Ti{o) =  0 for r =  1 ,2 , . . . ,p,

4• Ar,(n „) =  y  f ° r (fJi'n ») € Ms \  {o} and a  =  f ,

then the extended NMOMRSm~d u(t„) is an M -D nonergodic multivariate ( N l/)-lay 
pseudo-white multisine random series (NMOPWMRSm ~d ) and:

1. its expected value vector is < f{u^)}  =  o.

2. its correlation function matrix is£{\i(iv)aT(il/-^rl/)} = [£{tir( i1/)uJ( i„ -T ,/)}]r J=1 2 , 
where for ( r„ )  e  X ^ :

!£{ur (tv)ur (tv -  t , ) }  i f  r =  s
(7.28)

0 if r ^  s

£{i/r(i„)iir (*„ — t^ )}  is the autocorrelation function of the rth NMOMRSm~d element:t  M

£{ur{iv)uT{iu -  T,y)} =
fL = i Ny 1 A2 i f  ( t  \ G X mTT■'w 7r rrM /  V V J  ̂ 0

l l i ,=i i , >' 1 l^=i JŁ- (7.29)

0 otherwise

P roof:

1. It follows immediately from the assumption 3 and from Lemma 6.8.
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2. It follows from the assumption 3 and Lemma 6.8 that the NMOPWMRSm d  cor­
relation function is f{u (tv)uT(*„ -  t „)} = dtag^{ur( iu)ur(iy — Tv)]]r=1 2  . This
ends proof when it is noticed that the rth element ur( iu) of NMOPWMRSm~d u(i„) 
is a WSMRSm~d (see Lemma 7.1) with the removed expected value £{ur(iy)} =

] /  u i L i K T v X2'

The independent variable domain averaging on any particular extended 
NMOPWMRSm“d results in:

L em m a 7.5 Consider the extended NMOPWMRSm~d .

1. Its periodogram matrix is ^ u u ( i^ i /m ^) = u U ^ u rny)\ , where for
L T s J r ,3 = l ,2 1...,p

( n um u) 6 J\f$£:
Af

$ Z u , t i n ‘'Tn‘') = (° + i° )  I I

+*2 E
M

( c o s -  0 s,(n„)) -  j sin(0r,(n „) -  0»,(n „))) I f  S(m„ -  nu)

M

+(cos(0r,(Tlu) -  <t>,t(n„)) +  j  8in(0ri(n„) -  &,(„„))) I I  _  “  ">'))
J/=l

M

+ E  (*2 sin 4>r sin (iCj + j0) J J  rf(m„ — nv). (7.30) 
(ß„n„)eVM\{(o)} i/=i

2. /fa mean value vector is: = o.

3. Its correlation function matrix is R Uu(Ti/) =  [Ruru,(Tv)}r J=12 p. w/iere for
(t „) €

Rnrua(T j/) —
A2

n i l i  ^
y !  C0S ( E  $lun v Tu (f>T}( n v) 4*s,(n„ ) )  

(ß„n„)€ATMVVsM ■-=!

(7.31)

where is given by (6.30).

Proof: The proof follows from Lemma 6.9 when Ar (ni/) defined by the assumptions 2,3,4 
of Lemma 7.4 are used.

The expected value of Ruu('r^) is the diagonal matrix: 

£ {Ruu(t „)} =

n i l i  N v - 1  A2 / \ r  vW
i f  m— rrM t  '  on r= i N„ n

0 otherwise

(7.32)



102 Multidimensional White Noise Approximation

M- D  G au ssian  m ultivariate  w h ite  m u ltis in e random  series

The extended NMOPWMRSw~D turns asymptotically for ( N v) —► (oo) into an M -D er- 
godic Gaussian multivariate white multisine random series:

L em m a 7 .6  Assuming that:

1. = A21 ('(u>„T1/) S [0,2it)Mj  is the power spectral density matrix of a
real-valued M -D  multivariate white noise;

2. A T̂ riu') = A for g Mm  \  M cf and the value of A is chosen so that:

A2 M
T  n  N »T» =  A2> (7-33)

u = \

3■ A.T,(n„) =  0 or 0ri(O) =  a  =  0 for (n „ n u) € ,

then the extended NMOMRSm~d  u(t„) converges in distribution for  (N „) —► (oo) 
to an M -D  ergodic Gaussian multivariate white multisine random series of type 2 
(GMO WMRS2m~d )  g (»„) =  [<7r(*i/)]r=1 2 p with zero mean vector and the variance matrix 

A2
n "  1 T„ ■

s M e A s M ( o , - ^ — I).  (7.34)
lll/=l 1U

Additionally the correlation function matrix £{g(t^)gr (i^ — T„)} of GMOWMRS2m~d con­
verges to:

^ { g (^ )g r (*v “  T»)} =  R gg(T^) ;
n M 2 T 1 ' / ( T»l =  (°)
1L=1 " . (7.35)

O i f { r u) t {  o)

Proof of this lemma follows immediately from Lemma 6.11.

Chapter 8 

C on clu sion s

An efficient synthesis and simulation method of wide-sense stationary scalar and multiva­
riate one- and multi-dimensional random processes, given by diagrams of their power spec­
tral densities, is presented. The method is based on approximating the power spectral densi­
ties by periodograms (or expected values of periodograms) of multisine random time-series 
or multidimensional multisine random processes with deterministic amplitudes and ran­
dom phase shifts. The periodograms are used to synthesise spectra of the corresponding 
multisine random processes. Transforming the synthesised spectra by the inverse finite 
discrete Fourier transform gives the simulated multisine random process approximations. 
It was shown that multisine random process approximations thus obtained have spectral 
and correlation properties very close to those of the original wide-sense stationary random 
processes. Asymptotically, they turn into Gaussian random processes.

The proposed approach is applicable if only the power spectral density diagrams of 
random processes to be simulated are given. There is no necessity to solve the spectral 
factorisation problem in order to  calculate the corresponding parametric approximation. It 
is especially important for random processes which have nonrational power spectral densities
[78] or (and) which are multidimensional [15], [59], [20] because accuracy of the parametric 
approximation is crucial in reconstructing of the properties of original random processes.

The proposed method, when applied to power spectral densities of white noises, al­
lows simulate different types of interesting scalar and multivariate orthogonal, white, 
pseudo-white or asymptotically white, ergodic and nonergodic, time-series and multidi­
mensional random processes.

An extension of the proposed approach to the generation of wide-sense stationary 
continuous-time band-limited random processes, defined also by their power spectral den­
sities, has been presented.
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SYN TH ESIS A N D  SIM ULATION OF R A ND O M  PROCESSES

Summary

This monograph presents an approach to the synthesis and simulation of wide-sense 
stationary random processes given by diagrams of their power spectral densities. The ap­
proach is based on multisine random time-series, which are sums of discrete-time sines with 
deterministic amplitudes and random phase shifts.

The essence of the presented approach is to approximate the power spectral density 
by the periodogram of a multisine time-series with amplitudes chosen so that for a given 
number of equally spaced frequencies from the range [0,2it), the periodogram is equal to 
the original power spectral density. The periodogram may be used in turn to construct 
the corresponding spectrum provided the phase shifts for each sine component are chosen. 
It is well known, that any periodogram corresponds to infinitely many different multisine 
time-series with different phase shifts. In the proposed approach, the phase shifts are 
used to define properties of the multisine random time-series in the time-domain. This 
concludes the synthesis part of the procedure. To simulate the synthesised time-series with 
predefined spectral properties, the spectrum with the chosen phase shifts is transformed 
into the time-domain using the inverse finite discrete Fourier transform.

In Chapter 2, time- and frequency- domain definitions of scalar as well as different mul­
tivariate multisine random time-series are introduced. Their statistical properties, resulting 
from ensemble and time-domain averaging, are discussed. The weak ergodicity of multisine 
random time-series is examined. It is shown that periodograms of weakly ergodic multisine 
random time-series as well as expected values of periodograms for nonergodic multisine 
random time-series are uniquely defined by amplitudes of their sine components. This idea 
is behind the proposed random process synthesis and simulation method.

Chapter 3 is devoted to the synthesis and simulation of multisine random time-series 
defined by their power spectral densities. In the presented approach, the power spectral 
density matrix of a multivariate wide-sense stationary random process to be simulated is 
approximated by the periodogram of a multivariate multisine random time-series with sine 
component amplitudes chosen so as to make values of the periodogram matrix (or expected 
value of the periodogram matrix) equal to the corresponding values of power spectral density 
matrix of the original random process for some equally spaced frequencies (being approxi­
mation nodes) from the range [0,2it). This approximation criterion can be interpreted as 
sampling of the power spectral density matrix in the frequency domain. A lower bound on 
the number of approximation nodes (samples of multisine random time-series to be sim­
ulated) follows from the reconstruction criterion. Statistical properties of the synthesised 
multisine random process approximations are determined. It was shown that such multisine 
random process approximations converge to ergodic Gaussian multisine random processes 
for the number of approximation nodes tending to infinity. The proposed approach is illus­
trated by examples of simulating and identifying scalar and multivariate random processes 
given by rational and nonrational power spectral densities. An extension of the proposed 
random process synthesis and simulation method to the generation of wide-sense stationary 
continuous-time band-limited random signals, given also by their power spectral densities, 
is included.

Multisine white noise approximations obtained by using the proposed random pro­
cess synthesis and simulation method are presented in Chapter 4. The following cases 
are discussed: weakly ergodic scalar and bivariate white and pseudo-white multisine ran­
dom time-series which are asymptotically Gaussian, weakly ergodic multivariate orthogonal
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asymptotically Gaussian and white multisine random time-series, nonergodic multivariate 
orthogonal white and pseudo-white multisine random time-series which are asymptotically 
ergodic and Gaussian. Their whiteness is compared for finite and infinite periods of mul­
tisine random time-series. Asymptotic Gaussianess of the synthesised multisine random 
process approximations is discussed. Simulation examples are included.

Simulation of Gaussian random processes is the subject of Chapter 5. Simulation 
schemes based on the proposed approach and rules of computer simulation are established, 
including a proposition of simulation time-scale contraction. The proposed schemes are 
illustrated by simulation examples.

In Chapter 6, an extension of multisine random time-series ideas given in Chapter 2 to 
a multidimensional (M-D) case is presented. Scalar and multivariate M-D multisine ran­
dom processes are defined and their time- and frequency- domain properties are established. 
Similarly as for the 1-D case, definitions of M-D multisine random processes are closely re­
lated to the M-D finite discrete Fourier transform. A set of the frequency M-tuples of the 
M-D sine series such that a  sum of the M-D sine series has its spectrum lines defined for 
all frequency M -tuples present in definition of the finite discrete Fourier transform is a key 
to define M-D multisine random processes. It is shown that the multidimensional multisine 
random processes inherit properties of the 1-D multisine random time-series. The defined 
M-D multisine random processes are used to synthesise and simulate wide-sense stationary 
scalar and multivariate M-D random processes given by their power spectral densities. The 
synthesis and simulation follow the corresponding procedure for 1-D multisine random pro­
cesses. Asymptotic properties of synthesised M-D multisine random process approximations 
are discussed.

The problem of synthesising and simulating various types of scalar, bivariate and multi­
variate ergodic and nonergodic multidimensional white multisine random processes is sum­
marised in Chapter 7.

SYN TEZA  I SYM ULACJA PROCESÓW  LOSOW YCH

Streszczenie

W monografii przedstawiono podstawy teoretyczne oraz zastosowanie nowej metody syn­
tezy i symulacji stacjonarnych w szerszym sensie procesów losowych na podstawie wykresu 
ich gęstości widmowej mocy. Zaproponowana metoda korzysta z wielosinusoidalnych syg­
nałów losowych, które są sumą harmonicznych składowych sinusoidalnych o deterministycz­
nych amplitudach i losowych fazach.

Punktem wyjścia proponowanej metody jest definiowanie procesu losowego w dziedzinie 
częstotliwości za pomocą periodogramu wielosinusoidalnego sygnału losowego. Amplitudy 
poszczególnych składowych sinusoidalnych sygnału wielosinusoidalnego dobierane są tak, 
by jego periodogram był równy gęstości widmowej mocy procesu losowego dla pewnej 
liczby równoodległych częstotliwości z zakresu [0,2ir). Na podstawie tak zdefiniowa­
nego periodogramu dokonuje się syntezy widma amplitudowego i fazowego sygnału wielo­
sinusoidalnego. Przedstawienie periodogramu za pomocą widma amplitudowego i fazowego 
jest jednoznaczne w odniesieniu do widma amplitudowego i niejednoznaczne w odniesieniu 
do widma fazowego: ten sam periodogram można uzyskać dla jednego określonego widma 
amplitudowego i nieskończenie wielu różnych widm fazowych. Ową niejednoznaczność wyko­
rzystano do kształtowania własności wielosinusoidalnych sygnałów losowych w, dziedzinie 
czasu. W wyniku odwrotnego przekształcenia Fouriera widma zespolonego (z widmem am­
plitudowym determinującym periodogram i widmem fazowym determinującym własności 
losowe w dziedzinie czasu) otrzymuje się proces losowy o założonych właściwościach wid­
mowych.

W rozdziale 2 zdefiniowano skalarne i wektorowe (ortogonalne i nieortogonalne) wielo- 
sinusoidalne sygnały losowe w dziedzinie czasu i częstotliwości. Porównano ich własności 
statystyczne, analizując wyniki uśredniania po zbiorze realizacji i uśredniania w dziedzinie 
czasu. Na tej podstawie dokonano podziału wektorowych wielosinusoidalnych sygnałów 
losowych na ergodyczne i nieergodyczne. Wykazano, że periodogram dla ergodycznych 
wielosinusoidalnych sygnałów losowych oraz wartość oczekiwana periodogramu dla nieer- 
godycznych sygnałów wielosinusoidalnych przyjmują wartości deterministyczne jednoznacz­
nie określone poprzez amplitudy składowych sinusoidalnych. Konsekwencją tej własności 
jest możliwość dowolnego kształtowania periodogramu (lub jego wartości oczekiwanej) 
poprzez wybór amplitud składowych sinusoidalnych.

W kolejnym rozdziale przedstawiono algorytmy syntezy wielosinusoidalnych sygnałów 
losowych zdefiniowanych za pomocą macierzy gęstości widmowych mocy oraz ich symu­
lację z wykorzystaniem odwrotnego przekształcenia Fouriera. W prezentowanym podejściu, 
macierz gęstości widmowych mocy stacjonarnego w szerszym sensie procesu losowego, 
który ma być symulowany jest aproksymowana przez macierz periodogramu wielosinusoidal­
nego sygnału losowego o amplitudach składowych sinusoidalnych dobieranych tak, by jego 
macierz periodogramu (lub jej wartość oczekiwana) była równa macierzy gęstości widmowej 
dla pewnej liczby równoodległych częstotliwości z zakresu [0,2-ir). Takie kryterium aproksy­
macji interpretowane jest jako próbkowanie gęstości widmowej mocy w dziedzinie często­
tliwości. Z warunku rekonstrukcji gęstości widmowej mocy na podstawie periodogramu 
wynika dolne ograniczenie na liczbę węzłów aproksymacji (okres wielosinusoidalnego sygna­
łu losowego). Wykazano, że gdy liczba węzłów aproksymacji wzrasta do nieskończoności, 
wielosinusoidalne sygnały losowe stają się asymptotycznie gausowskie, a te które były nie­
ergodyczne stają się asymptotycznie ergodyczne. Przedstawiona metoda zilustrowana jest 
przykładami symulacji i identyfikacji skalarnych i wektorowych procesów losowych zadanych
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w postaci gęstości widmowych mocy będących wymiernymi i niewymiernymi funkcjami 
częstotliwości. Załączono również propozycję rozszerzenia powyższego podejścia na przy­
padek generacji ciągłych procesów losowych zdefiniowanych również poprzez gęstość wid­
mową mocy.

Rozdział 4 poświęcony jest wielosinusoidalnym sygnałom losowym otrzymanym 
w wyniku aproksymacji gęstości widmowej mocy białego szumu. Analizowane są przypadki 
skalarnych i wektorowych, ergodycznych i nieergodycznych sygnałów wielosinusoidalnych
0 własnościach białego szumu. Porównywana jest ich „białość” dla skończonego i nieskoń­
czonego okresu sygnału wielosinusoidalnego. Dyskutowana jest również ich asymptotyczna 
gausowskość. Rozważania są zilustrowane przykładami.

Tematem kolejnego rozdziału jest zastosowanie wielosinusoidalnych sygnałów losowych 
do syntezy i symulacji procesów gausowskich. Na podstawie analizy warunków symu­
lacji komputerowej oraz własności wielosinusoidalnych sygnałów losowych zaproponowano 
schematy symulacji procesów gausowskich. Zaproponowane schematy zilustrowano 
przykładami.

W rozdziale 6 uogólniono definicje jednowymiarowych (1-D) wielosinusoidalnych pro­
cesów losowych analizowanych w rozdziale 2 na przypadek wielowymiarowy (M-D). Zde­
finiowano M-wymiarowe skalarne i wektorowe wielosinusoidalne procesy losowe. Podobnie 
jak poprzednio, ich definicje są ściśle powiązane z M-wymiarową skończoną dyskretną trans­
formatą Fouriera. Kluczem do zdefiniowania M-wymiarowych wielosinusoidalnych procesów 
losowych okazało się skonstruowanie takiego zbioru M-tek częstotliwości, by odpowiednia 
suma M-wymiarowych sinusoid posiadała linie widma dla wszystkich M-tek częstotliwości 
występujących w definicji transformaty. Analizując własności statystyczne M-wymiarowych 
wielosinusoidalnych procesów losowych stwierdzono, że dziedziczą one własności ich jedno­
wymiarowych odpowiedników. Konsekwencją tego jest możliwość przeprowadzenia syntezy
1 symulacji stacjonarnych M-wymiarowych procesów losowych zadanych poprzez gęstość 
widmową mocy tak samo jak dla sygnałów 1-D. Podsumowano własności asymptotyczne 
tak otrzymanych M-wymiarowych wielosinusoiadalnych sygnałów losowych.

W kolejnym rozdziale przedstawiono wyniki syntezy M-wymiarowych wielo­
sinusoidalnych aproksymacji M-wymiarowego białego szumu. Analizowano przypadki 
skalarne i wektorowe.




