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Chapter 1

Introduction

This monograph presents an approach to the synthesis and simulation of wide-sense sta-
tionary scalar and multivariate, one- and multi- dimensional random processes given by
diagrams of their power spectral densities. The approach is based on multisine random
time-series and the finite discrete Fourier transform. In the sequel:

¢ synthesis means the determination of the spectrum of a multivariate multisine random
time-series (1-D random process) or a multidimensional (M -D) multisine random
process based on the corresponding power spectral density of the random process to
be simulated,

* simulation means the generation of the corresponding multisine random process ap-
proximation by performing the inverse finite discrete Fourier transform of the synthe-
sised spectrum.

1.1 STATE OF THE ART

Multisine time-series are known for a long time. They are sums of discrete-time sines
with amplitudes and phase shifts determined by a variety of methods, depending upon the
purpose for which the multisine time-series will serve. Traditionally, they are generated
by solving their difference equations [52]. Recently, their popularity has increased due to
the possibility of generating them by a numerically efficient implementation of the finite
discrete Fourier transform and opportunities offered by digital computers equipped with
new hardware for boosting numerical calculations like coprocessors or signal processors.

The most popular application of a multisine time-series is spectral analysis [46]. It deter-
mines the distribution of power or energy in the frequency-domain. The recent approach to
spectral analysis has its roots in Fourier series representation of periodic functions. Ampli-
tudes and phase shifts of Fourier series are chosen so as to fit this series to a given function
in the mean square sense. These ideas are also a basic tool for analysis of random processes
by using the Wiener generalised harmonic analysis.

Multisine time-series may be used also as basic building blocks for synthesising and
simulating various deterministic signals and random processes with predetermined spectral
or correlation properties. A theoretical foundation for such synthesis is given by the fa-
mous Gauss sum [90]. Its individual complex terms with the period length equal to any
prime number exhibit interesting property of whiteness. They have strictly zero correlation
function for nonzero shifts. For a long time, this idea has received no attention [6] and the
interesting potential of multisine time-series seemed to be largely unexplored. More atten-
tion was given to the synthesis of binary signals for the purpose of excitation in system
identification [2], [8], [17], [18], [43], [57] and for generation of cryptographically secure se-
guences [44], [86]. Some discussion of multisine time-series may be found in the books of Kay
[50] and Marple [58]. However, in the last decade the significance of multisine time-series
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has increased. They have been successfully applied to synthesise excitations for process
identification [42] and to synthesise different random processes: white noises of scalar [32],
bivariate [66] and multivariate [34] type as well as random processes given by their power
spectral densities [24], [25], [26], [28], [85].

If the multisine time-series is synthesised for the purpose of using it as an excitation
signal during an identification experiment, it is worthwhile to choose its amplitudes so as
to fit to the desired shape of spectrum [35], [23], [27] and its phase shifts so as to deliver to
identified system as much power as possible in a limited amplitude range [42]. The choice
of phase shifts which meets the above constraints is given by a number of suboptimum
algorithms [7], [9], [10], [41], [76], [89]. The solution of this problem has contributed to
the attractiveness of multisine excitations in system identification [9], [10], [87], [88], [91].
The properties of multisine excitations are basic to new methods of single- and multi-input
system identification [23], [27], [29], [30], [31], [33], [35], [36].

This monograph concentrates on the application of multisine time-series to synthesis
and simulation of random processes given by their power spectral densities.

The problem of synthesising and simulating random processes defined by their power
spectral densities given in an analytical form has so far been solved satisfactorily only for
rational 1-D power spectral densities [1], [49]. This approach is applied as an approximation
for nonrational cases [78]. In the case of a multidimensional (A/-D) random process given
by its power spectral density, the problem of factorising the power spectral density is more
complicated. It is well known that the M-D (M > 1) power spectral density of rational
form almost never has a rational factorisation [11]. When the spectral factorisation problem
is solved, the resulting random process is both synthesised and simulated as the output of
a discrete-time linear filter excited by white noise. Spectral and correlation properties of
the obtained random process realisations depend highly on:

« the quality of white noise used as a driving input. A considerable research effort
has been made to develop various pseudo-random number generators and to compare
their properties [53]. A recent comparison of several Gaussian white noise generators
may be found in [12]. The generators currently used for simulation purposes belong
as a rule to the class of linear congruential recursive generators. For a given initial
state xo the future states of such generators evolve according to a linear recursion
with modular arithmetic as:

xn = (Axn_i 4 C) mod m.

This basic scheme has been generalised to non-linear generators [69] and generators
by inversion [70].

The literature concerning multivariate orthogonal white noise generation seems to be
scarce. A few ad hoc attempts to generate multivariate white noise series can be found
but they are limited to bivariate white noise series. As a rule they tried to decorre-
late binary random or binary pseudo-random series by various devices, the main one
being time shifts [14], [37]. There exist congruential linear and non-linear generators
producing sequences of multivariate white noise [71] but they have no mechanism
providing, important in the multivariate case, orthogonality of its elements. However
no systematic approach to deal with this problem is known so far.

Congruential generators produce realisations of independent and uniformly distributed
random variables. These random variables are sufficient to construct a random num-
ber generator for any desired continuous random variable distribution by means of
inverting the distribution function [62]. In the case of Gaussian random variables
the rivalling tool is provided by the Central Limit Theorem. An approximation to a
Gaussian random variable may be obtained by summing many uniformly distributed
random variables [83];
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* the filter parameters accuracy obtainable for any given rational 1-D power spectral
density by using spectral factorisation. In the 1-D nonrational case, the corresponding
rational approximation can be calculated using minimax or least-squares error criteria
[19] applied to the power spectral density. There exist extensions of the classical 1-D
spectral factorisation concept to the 2-D case based on nonrational factors [15], [59]
for which rational approximations are obtained using least squares, Pade or minimax
approximation theory; however there is no general solution of the M-D (M > 2)
spectral factorisation problem;

« the filter structure form implementation [38], [39], [54], [61], [64] and the rounding
errors accumulating in recursive calculations.

Besides, analytical representations of power spectral densities are hardly ever available.
Very often the power spectral density of the random process to be simulated is given only
by a nonparametric representation, e.g. as a diagram or table.

1.2 THE CONTRIBUTION

This monograph presents a new approach to the problem of numerically synthesising and
simulating wide-sense stationary time-series and multidimensional random processes for
which only the nonparametric power spectral density representation as diagram or table is
given.

The essence of the presented approach is to approximate the power spectral density by
the periodogram of a multisine time-series with deterministic amplitudes chosen so that for a
given number of equally spaced frequencies from the range [0, 2it), the periodogram is equal
to the original power spectral density [24], [25], [28]. The periodogram may be used in turn
to construct the corresponding spectrum provided the phase shifts for each sine component
are chosen. It is well known, that any periodogram corresponds to infinitely many different
time-series with different phase shifts. It is demonstrated in the monograph, that to get
ergodic random processes, the phase shifts should be chosen with some well-defined random
properties. This concludes the synthesis part of the procedure. To simulate the synthesised
time-series, the spectrum with the chosen phase shifts is transformed into the time-domain
using the inverse finite discrete Fourier transform. Using this approach a broad range of
scalar and multivariate random processes may be synthesised and simulated provided, their
power spectral densities are available.

Multisine approximations of wide-sense stationary scalar and multivariate random pro-
cesses obtained by this approach have discrete spectra. However, the original processes have
continuous power spectral densities. It turns out that by fulfilling certain conditions on sam-
pling in the frequency domain, the approximation of continuous power spectral densities by
discrete spectra is not resulting in loss of information.

Additionally, the original random processes have autocorrelation functions converging
to zero for large lags. This property holds for multisine time-series provided the number of
sines is sufficiently large. For any real random process simulation, it is usually possible to
choose the necessary number of sine components.

Multidimensional random processes given also by power spectral densities may be syn-
thesised and simulated in the same way as 1-D random processes. The main building block
used is an M-D multisine random process consisting of a sum of M-D sine components with
deterministic amplitudes and random phase shifts.

A powerful theoretical justification of the approach is given by the Doob’ Spectral
Representations Theorem [16], [80] which states that any wide-sense stationary random
process can be approximated arbitrarily close by a sum of sines and cosines with amplitudes
being zero mean independent random variables and with deterministic phase shifts equal
to zero.
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1.3 ADVANTAGES OF THE APPROACH

The following factors are at the root of the attractiveness of the proposed approach to
synthesis and simulation of wide-sense stationary random processes:

¢ there is no need to solve the spectral factorisation problem for a given power spectral

density in order to calculate the corresponding parametric approximation needed for
simulation;

time-series or multidimensional random processes may be precisely defined in the
frequency-domain, which is of importance for a number of applications (e.g. design of
optimum excitations for identification [92], data encryption [67] and computer simu-
lation of plants to be controlled [40], [84]);

the frequency-domain definitions are directly used to generate, by means of the in-
verse finite discrete Fourier transform, the simulated random process which satisfy
the ergodic hypothesis and are asymptotically Gaussian;

particular realisations of the simulated random processes may be obtained by inversely
Fast-Fourier-Transforming realisations of the synthesised spectrum;

the approach may be used for nonparametrically defined wide-sense stationary ran-
dom, rational and nonrational, scalar and multivariate time-series and multidimen-
sional random processes, for which only the diagram or table of the power spectral
density is available [24], [25], [28];

* the approach may be used to synthesise and simulate various types of scalar and
multivariate white noises [32], [34], [66], which turn out to have interesting properties
while compared with standard approaches, e. g. congruential generators;

e it gives an opportunity to reduce radically the simulation effort by a simulation

time-scale contraction, which forms a new technique for the simulation of Gaussian
random processes;

¢ there is a direct extension of the proposed method to the generation of wide-sense
stationary continuous-time band-limited random signals, defined also by their power
spectral densities [26].

14 ORGANISATION OF THE MONOGRAPH

In Chapter 2, the time- and frequency- domain definitions of scalar as well as different
multivariate multisine random time-series are introduced. Their statistical properties, re-
sulting from ensemble and time-domain averaging, are discussed. The weak ergodicity of
multisine random time-series is examined. It is shown that periodograms of weakly ergodic
multisine random time-series as well as expected values of periodograms for nonergodic
multisine random time-series are uniquely defined by amplitudes of their sine components.
This chapter is recapitulated with the idea of multisine random time-series synthesis and
simulation based on the inverse finite discrete Fourier transform.

Chapter 3 is devoted to the synthesis and simulation of multisine random time-series
defined by power spectral densities. Statistical properties of synthesised multisine random
process approximations are determined. Asymptotic Gaussianess and ergodicity of synthe-
sised time-series are discussed. An extension of the proposed random process synthesis and
simulation method to the generation of wide-sense stationary continuous-time band-limited
random signals, given also by their power spectral densities, is included.

Multisine white noise approximations obtained by using the proposed random pro-
cess synthesis and simulation method are presented in Chapter 4. The following cases

Notations u

are discussed: weakly ergodic scalar and bivariate white and pseudo-white multisine ran-
dom time-series which are asymptotically Gaussian, weakly ergodic multivariate orthogonal
asymptotically Gaussian and white multisine random time-series, and nonergodic multi-
variate orthogonal white and pseudo-white multisine random time-series which are asympto-
tically ergodic and Gaussian.

Simulation of Gaussian random processes is the subject of Chapter 5. Simulation
schemes based on the proposed approach are established, including a proposition of simula-
tion time-scale contraction. The proposed schemes are illustrated by simulation examples.

In Chapter 6, an extension of multisine random time-series ideas given in Chapter 2
to a multidimensional (Af-D) case is presented. Scalar and multivariate M -D multisine
random processes are formally defined and their time- and frequency- domain properties are
established. It is shown that multidimensional multisine random processes inherit properties
of the 1-D multisine random time-series. The defined M -D multisine random processes are
used to synthesise and simulate wide-sense stationary Af-D random process given by their
power spectral densities. Asymptotic properties of synthesised Af-D multisine random
process approximations are discussed.

The problem of synthesising and simulating various types of scalar, bivariate and multi-
variate ergodic and nonergodic multidimensional white multisine random processes is sum-
marised in Chapter 7.

The proposed synthesis and simulation method of wide-sense stationary random pro-
cesses given by their power spectral densities is recapitulated in Chapter 7.

All simulation experiments presented in the monograph have been done using the EFPI
(Expertfor Process Identification [63], [65]) and Multi-EDIP (Multivariate System and Sig-
nal Analyser [68]) software packages.
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1.5 NOTATIONS

Throughout this monograph:

¢ any multisine random time-series - one dimensional (1-D) multisine random process -
is denoted by the stem MRS,

e any multidimensional (Af-D) multisine random process is denoted by the stem
mrsm-°.

These stems can be preceded by additional letters with the meaning:
e B - bivariate,
¢ G - Gaussian,
¢ M - multivariate,
¢ N - nonergodic,
e 0 - orthogonal,
* PW - pseudo-white,

e S - scalar,
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W - white,

and followed by figures | or 2 denoting type of pseudo-whiteness or ergodocity.

Lower- and upper- case letters denote scalar quantities. Vectors and matrices are de-

noted by lower- and upper- case letters with bold type faces. Additionally, the following
shorthand notation is used:

[Qr=12..... —[°i,“2 eem“P] , (1.1)
AU 0 0
0
diag[6UrUrir=12 ip = bR 0
(1.2)
0 0 >pp
u2tip
(1.3)
cupul cuUjui eee CUpUp J

Superscripts T and ’ represent the transpose and complex conjugate transpose operations,
respectively.

The shorthand notation (a:,,) denotes M-tuples with M consecutive elements
X 1,12

(3,) = (x1,x2,...,x A). (1.4)
The expected value operator £ {*} for a function 6(x) of the random variable x is defined

00
/ 0(x)p(x)dx, (L5)
0

where p(-) represents the probability density function of the random variable x.
The mean value operator M {-} is defined for:

the 1-D case as:

i iN-1
aM{z(i)}= Un — J2 *(0, (1.6)
H t=0
where x(i) for i = 0,1,..., oo denotes a time-series which is periodic modulo N, i.e.:
x(i) = x(i + qN) forq=0,1,..., o0;
» the M-D case as:
* (%o = 1 i
C== dgs - WP oon v L7

where x(i®) for (t,,) e {0,1,...,00} x {0,1,...,00} x x {0,1,...,00} denotes
a periodic multidimensional (M -D) series with the period M-tuple (N u).

Notations

The following detailed notation is used:

O
A

BQ,{a,n+a})

c
&), &X-), 9(-)
DFT
FFT
a(-)

t, (i.,)
/m{-}

|
i
A2
N
(N,)
A A
Nfjp, AJ'rp
ANO, e
0
0
(lu
uT
p
4 if
~uu(’)
$,..,(m)
q

V.
Re{-}
Ruu(")

§2u

T

T,
ryen

1s (+) and u(-)

UB(-)
z-1

end of definition, lemma or proof
amplitude of a sine component

Bernoulli distribution with the probability j on a set of events
{a,it+ a}

complex numbers
the Kronecker’s delta, even delta and odd delta function
the one- or multi- dimensional discrete Fourier transform
the Fast Fourier Transform algorithm
Gaussian multisine random process

discrete time instants and M-tuple of independent variables
imaginary part of a complex number

the unit matrix

a complex unitj2= —
the value of white noise power spectral density
period length of any multisine random time-series

period M-tuple of any M-D multisine random process
set of relative frequencies of the rth element of u(i)

set of frequency M-tuples of the rth element of u(t,,)
Gaussian distribution with mean 0 and variance a2

the zero matrix

fundamental relative frequency

fundamental relative frequency for the i/th frequency axis
relative frequency from the range [0, 2tv)
number of elements of any multivariate random process
phase shifts of sine components

periodogram of uB(-)

power spectral density of a random process u(-)

number of repeated sequences of any basic multisine random

process

real numbers

real part of a complex number

autocorrelation function of u(-)

variance of u(-)

sampling interval

sampling interval of the i/th independent variable

lag and M-tuple lag in autocorrelation function

basic and extended multisine random processes

finite discrete Fourier transform of uB(-)

unit delay operator



Chapter 2

Multisine Random Time-Series

The purpose of this chapter is to introduce time- and frequency- domain definitions of basic
and extended multisine random time-series. Scalar and different multivariate multisine
random time-series are discussed. Their statistical properties resulting from ensemble and
time-domain averaging are presented. The weak ergodicity of multisine random time-series
is examined. It is shown that periodogram for weakly ergodic multisine random time-series
and expected value of periodogram for nonergodic multisine random time-series are uniquely
defined by amplitudes of their sine components. This chapter is recapitulated with the idea
of multisine random time-series synthesis and simulation based on the inverse finite discrete
Fourier transform.

21 SCALAR MULTISINE RANDOM TIME-SERIES

Definitions

The basic A-sample real-valued scalar multisine random time-series (SMRS) is defined in
the time-domain as:

Definition 2.1 The basic N -sample SMRS uB(i) is defined in the time-domain by a sum
of + 1 discrete-time harmonic sines, including a constant component:

uB(i) - Y, A*sin(ftni (- <5,), (2.1)

n=0
where A = N denotes the fundamental relative frequency, n = 0,1,..., tjt denotes conse-
cutive harmonics of this frequency in the range [0, it], i = 0,1,..., TV—1 denotes consecutive

discrete time instants, An are deterministic amplitudes of the sine components (An 6 1Z),
%n are phase shifts, of which $0 is deterministic and the remaining phase shifts are random,
independent and:

e uniformly distributed on [0,2it) forn=1,2,..., y- —1,
e Bernoulli distributed B {“>*+*“}) forn= -e';

P{<t>z = a} = p {f = *+ “} = 2.2)

where P {X} denotes the probability of an event X.
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The basic TV-sample SMRS can be defined in the frequency-domain by its finite discrete
Fourier transform [22]. This spectrum is determined as follows:

UB(jSIm) = £ uB{i)e"jnmi = £ £ Ansin(fint+ &n)e-~mi
t=0 i=0 n=0

* B -
g\n rngn IANI_L}Ej(nn-nm)i _ E"]@hw Ig-j(nn+f2m»2it)i
= 2 i

n=0 3 i-0 i=0
= & f —n) —e A"6(M —(TV—))j , @3)
3 n=0
where j 2 = —1, S(-) is the Kronecker’s delta function:
(1 iffc=0
6{k) = 24)

[ O otherwise

and use has been made of:
N -i ( N ifk=0TV,...
£ e-'nki =
i=0 . 0 otherwise

(25)

The spectrum £/B(jflm) constitutes the frequency-domain definition of the basic TV-sample
SMRS:

Definition 2.2 The basic N -sample SMRS uB(i) is defined in the frequency-domain for
the (relative) frequency range [0,2it) by its finite discrete Fourier transform:

UB(jCIm) = — | (2A0sin<9 + jO)tf(m)+ £ An[(sin<a - j cos<>)6(m - n)
n=1
AN (26)
+ (SinK +jcos<MsS(n - {N - n))]+ (2A* sin * + jO)«(m- -) ’
where fi = ™ denotes the fundamental relative frequency, m — 0,1,...,TV—1 denotes

consecutive harmonics of this frequency in the range [0,2it), An are amplitudes of the sine
components (An £ H), <n are phase shifts, of which ¢eis deterministic and the remaining

phase shifts are random, independent and:

« uniformly distributed on [0, 2ir) forn —1,2,...,~- - 1,

# Bernoulli distributed B {“il+ Q}) forn ~
O

These two definitions of the basic SMRS are equivalent by means of the finite discrete Fourier
transform. Definition 2.1 can be determined from Definition 2.2 by using the inverse finite

discrete Fourier transform:
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. o . (__]jflnl _ e 1 i:jn(N—n)i i
SR -
The range of relative frequencies in (2.1) is constrained from below by the constant
component (Sim = 0) and from above by the Nyquist frequency (Sim = it). It can be shown
that higher relative frequency sine components are represented by sine components from
this range. The number of relative frequencies included in the spectrum UB(jSIm) is equal
to N. All sine components (including the constant and Nyquist frequency components!)
of the SMRS are represented in the relative frequency range [0,2ir) by two lines each.
These components are free from leakage [45] because their frequencies are harmonics of the
frequency bin SI. It implies periodicity of the basic SMRS in the time-domain window of
the length N. Additionally, the spectrum UB(jSIm) of the real-valued SMRS satisfies, for
the harmonic frequencies from the range (it, 2it), the following condition:

rI%ZOA" sin(nni'+ ~) - (2-7)

UB(j(2iv- Sim)) = UB(-jSIm). (2.8)
Each frequency Sim(m = 0,1,..., N —1) is related to the absolute frequency wmby
Sim = umT, (2.9)
where T is thesampling interval of the corresponding (hypothetical) continuous-timesine.

Expanding the time range up to i —0,1,..., 0o, an extended SMRS is obtained.

Definition 2.3 The extended SMRS u(i) is defined in the time-domain by a sum of ~ + 1
discrete-time harmonic sines including a constant component:

g
“(0 = Ansin(fin*+ $n)> (2.10)

n=0
where SI = © denotes the fundamental relative frequency, n = 0,1,..., denotes con-
secutive harmonics of this frequency in the range [0,ir], »= 0,1,..., 00 denotes consecutive

discrete time instants, A,, are amplitudes of the sine components (An 6 TZ), 4>, are phase
shifts, of which 40 is deterministic and the remaining phase shifts are random, independent
and:

« uniformly distributed on [0,2it) forn=1,2,..., y- - 1,

Bernoulli distributed B (Jj;, {a, ir+ a}) for n —

a
In the sequel, it is assumed that the definitions of extended multisine time-series are
obtained from the corresponding definitions of the basic multisine random time-series by
changing the time-range fromi=0,1,....,N —l uptoi=0,1,..., co.
The extended SMRS is periodic modulo N because u(i) = u(i-\-qN) for 5= 0,1,..., 00.
Besides:

u(t) = uB(i) (2.11)
for 0 < i < N —1. It implies that the extended SMRS belongs to the space of periodic
signals [48] with the period N.

The spectrum U (jSI m ) of the first gN samples of the extended SMRS u(i) is related
to the UB(jSIm) by:

[ qUB(SI'm) iffiV €{0,n,...,n(JV-1)}

u(jsim) = < , (2.12)
[ 0+jO ifsim  {0,SI,.. -,SI(N - 1)}
where Si' = ~ denotes the relative fundamental frequency for the 9A'-sample

time-series and m = 0,1,..., gN —1 denotes consecutive harmonics of this fundamental
frequency in the range [0, 2it).

- . . 11
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Properties
By finite Fourier transform techniques [4], spectral properties of the basic TV-sample SMRS

can be stated as:

Lemma 2.1 Consider the basic N -sample SMRS. Its periodogram is given by:

$BuSIm) = NT faagsinz<osm) + £ AV[EM- n)+ f(m - (N - n))]

+ 4AN sinzaS(m - y) |, (2°13)
wherem = 0,1, m..,N - 1

Proof: It follows from the periodogram definition [4] that:

*£,(flm)=£ (£ [i: UB(t)e-""nmi] uB (i)
11 <o L;=0

L £ ufl(»e-,nmt B(i)e>tlmi = jU B(jSIm)UB(-jSIm). (2.14)
N {0 J L0
This ends the proof when Definition 2.2 is taken into account.
O

The statistical properties of the extended SMRS, which result from the ensemble aver-
aging, are given by:

Lemma 2.2 Consider the extended SMRS. For each time instanti = 0,1,..., 60:
1. its expected value is given by £{u (i)} = A0SIn 40

2. its autocorrelation function is:

-1
L &
E{u(i)u(i- r)} = A2sin240+ x Y] A2cos(ftnr) + (-1) TA* sin2a, (2.15)
2
where t - 0,1,..., 00.
3. its variance is:
£{(«(»)- £{u(0}p2} =\ £ + A\ sin2a- (2-16)
|
Proof: The uniform distribution of the random phase shifts #n on[0,2it) foreach frequency
Sin (n = 1,2,. —1) implies that for any time instant i the randomvariable (the nth
extended SMRS sine component)-.
u,,(t) = A,sin(fini + <) (2.17)
is characterised /77/ by:
£{un(i)} = 0 (2.18)
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and

. . A2
£{un(i)un(i - r)} = -y cos(nnr). (2.19)

Bernoulli distribution B {a>* + Q}) °f the random phase shift (pa for the frequency
= it and the properties of sine function imply that for any time instant i the random
variable
urt(i) = a » sm(vm + </>a) (2.20)
2 2 2

is also characterised by Bernoulli distribution B sina, - ~ Sinaj) with:

E{tiE()} = 0 (2.21)

and
£{ul\zl(i)tiv2v(t -0} = (-I)T|4\é sin2q. (2.22)

It follows from the above remarks and Definition 2.1 that:
£{u(i)} = A0sin <a (2.23)

The independence ofrandom phase shifts under the Disjoint Blocks Theorem [51] implies
that autocorrelation function of u(i) is:

2 1 a2

£{u(i)u(i - r)} =~ sin2¢+ ~ ~Y cos(finr) + (_1)t"r; sin2a. (2.24)
O
It follows from this lemma that the extended SMRS is a wide-sense stationary random
process. Any change of the assumption about distributions of the random phase shifts £n
forn=1,2,..., in the extended SMRS definition would result in extended SMRS’s for
which the expected value and autocorrelation function will depend on the time instant i.
For instance, when the Nyquist-frequency phase shift 4>, is assumed to be deterministic
and the remaining phase shifts are defined as in Definition 2.1, the resulting extended SMRS

has time-dependent expected value:

£{u(i)} = Aosin$o+ (-1)M» sin it (2.25)
The choice of all random phase shifts as Bernoulli distributedB Q, {a, it-fa}) leads to
the extended SMRS’s which exhibit interesting symmetries:

e for a = 0 and additionally .20 = 0 or 9 = 0, the resulting extended SMRS’s are odd
sequences:
u(i+gN) = -u(gN - i), (2.26)

e for a = Jj, the resulting extended SMRS’s are even sequences:
u(i + gN) = u(gN - i), (2.27)
wherei=1,2,...,.N —l andq—1,2, .. oo.
The following lemma presents properties of the extended SMRS obtained for the

time-domain averaging on any particular time-series:

Lemma 2.3 Consider the extended SMRS.

1. Its mean value is M {u (i)} = jdosinOo.
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2. Its autocorrelation function is given by:

fe1
Ruu(r) = Alsin2fo + » A2cos(nnr) + (-1)TA | sin2a, (2.28)
n=1
where r = 0,1,...,00.
S. Its variance is:
it"l (2.29)

°lu =\ JZI A*+ A\ si“2a-
n=

4- 1ts sine components are mutually orthogonal:
gN -1
Y A, sin(fisi 4 (>)Atsin@I<i 9= 0 (2.30)

1=0

foralls/ t,s,t=0,1,...,Y and 9 —I,2,...,00.

Proof:
1. It follows from Definition 2.1 that:

1 gN -\ .ON -3 . N
M{u()}=Un— £ wu@)=- £ u(i)=ju B(o)= Aosinlo-  (2-31)
The limit disappeared because of the periodicity modulo N of u(i).

2. It follows from the definition of the time-domain averaged autocorrelation function
that:

Ruu(r) = Un® “)*Try= AN ASLDTT L mn >’ (2327

where 2t m!=0,1,....qN - 1, VTT 1 denotes the inverse discrete Fourier
NE

transform and $'uu(£l'm ) is the periodogram of gN samples of u(i). The above defi-

nition can be presented as:

ANl N1 w [AN-1 Lol

JZ uB(i)e~’Um’ E
Ruu(T)=k™oqNT "7 w . =0

N -1 L | PR B

o ) 1 ia

v V uB(i)e~inm* 53 uB(i)e3 m Mme
n —o .i=0 .1=0
i Nt . . v
= jU B(SImM)UB(-jnm yn™ =~ 'g $*u(!lm )" -, (2.33)

m=0 m=0

where the limit disappeared because of the periodicity modulo N of u(i). Additionally,
the autocorrelation function Ruu(t) is a deterministic function. Itfollowsfrom Lemma

2.1 that:
N\

Ruu(t) = -llg-Bl’!4AOsin2 <o) + XF Anftf(m - ") + A(m- (N - )]
m=0
I
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H v Naftm r
+ 4A \ sin2asS(m - e (2.34)

2J

It results in (2.28).

3. Itfollows from autocorrelation function (2.28) that:
2 = iiutl(0) - Aqsin24=. (2.35)
4. 1t follows immediately from the Parseval Theorem and from (2.6).

(I
The same results of the time-domain averaging as presented in the above lemma may

be obtained for any distributions of the random phase shifts g1 (n = 1,2,...,y —1)
assuming only that <$ois deterministic, and N is deterministic or Bernoulli distributed
B {a, it+ a}).

It follows from Lemma 2.2 and Lemma 2.3 that the extended SMRS is a wide-sense
stationary random process for which the time-domain averaged results from any time-series
realisation are equal to the corresponding ensemble averaged results over collection of the
time-series. It implies weak ergodicity of the extended SMRS. When the random phase
shifts distributions are different from these presented in the SMRS definition, the results of

the time-domain averaging are different from the results of ensemble averaging and obtained
time-series are nonergodic.

It should be noticed that, in spite of random phase shifts, the autocorrelation function
and periodogram of the SMRS are deterministic, real-valued functions. Additionally, the
autocorrelation function is periodic modulo TV.

The orthogonality of sine components of the SMRS is independent of the choice of these
sine components phase shifts and amplitudes.

2.2 MULTIVARIATE ORTHOGONAL MULTISINE
RANDOM TIME-SERIES

2.2.1 Ergodic Case

Definitions

Consider any scalar multisine random time-series with a sufficiently large number y 4-1 of
sine components. Each element uT(i) (r = 1,2,..., p), ofa multivariate orthogonal multisine
random time-series (MOMRS) u(i) is a sum of some of the SMRS sine components with the
constraint that the same frequency may not appear in more than one MOMRS element and

each SMRS sine component belongs to one and only one MOMRS element. It is formalised
by the following time-domain definition:

Definition 2.4 The basic N -sample MOMRS is defined in the time-domain by the
p-dimensional multivariate time-series uB(i) = [uf(:)] with the rth MOMRS ele-
ment given by:

“2*)= £ A, sin(ftnt+ <£). (2.36)
One-\»,,

is the set of all frequencies Sin present in the rth MOMRS element uT(i) and:

(2.37)
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These sets are pairwise disjoint:

<,n<p=0 (2.38)
fors / t, and s,t = 1,2,...,p. SI = jj- denotes the fundamental relative frequency,
n=20,1,..., denotes consecutive harmonics of this frequency in the range [0,it], i =
0,1,...,TV—1 denotes consecutive discrete time instants, An are deterministic amplitudes

of the sine components (An 6 TZ), &n are phase shifts, of which $ois deterministic and the
remaining phase shifts are random, independent and:

e uniformly distributed on [0,2it) forn = 1,2,...,y —I,

e Bernoulli distributed B {a,it+a}) forn=y

O

The basic TV-sample MOMRS is represented in the frequency-domain for the (relative)

frequency range [0,2it) by the p-dimensional vector \JB(jSIm) = juB(jSIm)L i 3 of
finite discrete Fourier transforms with the rth element given by:

UB(jSIm)=~-. J2 Anf[eF"«(m-n)-e-F*"«(m-(TV-n))], (2.39)
3 nnettp
where m = 0,1,..., TV—1 denotes consecutive harmonics of the fundamental relative fre-

guency Sl in the range [0,2it).

Elements of the basic MOMRS can be regarded as real-valued SMRS. They inherit
properties of the scalar multisine random time-series. The spectrum vector UB(jfim) of
the real-valued MOMRS satisfies, for the harmonic frequencies from the range (it,2it), the

condition:
UFIO(2it - Sim)) = UB(-jSIm). (2.40)

Similarly as for the scalar case, the extended MOMRS is periodic modulo TV,i.e. u(i) =
u(i -fgN) for ¢ —0,1,..., oo. The extended time-series is related to the basic TV-sample
MOMRS by u(t) = uB(i) for 0 < i < TV- 1. The spectrum vector V'(jSI'm') of the first
gN samples of the extended MOMRS can be expressed using the UB(jSIm) as:

( qVB(jSIm) ifsim € {0,n,...,fI(TV- 1)}
Vi(jsi'm) = \ , (2.41)
(0 +jo0 if si'm 0 {0,fl,...,S7(TV - 1)}

where fI' = = & denotes the relative fundamental frequency for the ~TV-sample

time-series and m = 0,1,..., gN —1 denotes consecutive harmonics of this frequency in
the range [0, 2it).
The fact that elements of the MOMRS have no common frequencies under the Parseval
theorem implies orthogonality of its elements for the ensemble averaging:
E{ttr(i>j(*)} =0 (2.42)

as well as for the time-domain averaging:

i ON-1
— 53 ur(i)ti,(i) = 0, (2.43)
where r ~'s, r,s - 1,2,.. .,pandg=1,2,..., 00.
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Properties
The periodogram matrix of the basic TV-sample MOMRS is given by the lemma:

Lemma 2.4 Consider the basic N-sample MOMRS. Its periodogram matrix is
&Ym@(jSIm) = f*S.u,(iftm)] , where form =0,1,.. ., V- 1

(™ rUr(ftm) +j0 ifr-s
*Uru.tin™) = \ (2.44)
[ 0+jO ifrjts

$s,,r(fim) is the periodogram of the rth MOMRS element:

NT

$urur(ftm) = — Al [tf(m- n) + S(m - (TV- n))] + $£,,(fim), (2.45)

£
nn€V?p\{0,it}

where:
NT sin2<fa)é(m) + A \ sin2aS(m - ~)j if (0€ A/?,,)A (it 6 A?p)

TVTAI sin2 4>06(m) if (0 € A/?p) A(it £ A?p)
TVTsin2<tEilm- f) i/ (0 £ A,)A(it e A?iP)

0

»I(0*A 2 p)A (It A 17 iR

(2.46)

Proof: T/ie proo/ o/ the above lemma proceeds similarly as for Lemma 2.1, when it E
noticed that the periodogram matrix of MOMRS is:

(Om) = | [5:0 qu(i)e-,'Om,'J [LI’0 ur'B(t)ejnm*I] = ~V B(SIm)VTB(-jSIm).

(2.47)

It follows from this lemma that for all frequencies Sim (m = 0,1,..., TV-1) the MOMRS
periodogram matrix is a singular matrix.

hen the ensemble averaging is taken into account, properties of the MOMRS are given
by t}% Femma: ging prop g

Lemma 2.5 Consider the extended MOMRS. For each time instanti= 0,1,..., 00;

1 its expected value vector is £{u(t)} = [E{tir(t)}]r=i 2 p>where:

AOsin¢o if0 € A?,
ifOE£ A (2'48)

2. its Ooirelationfunction matrix js5{u(i)ur(»-r)}=P{ur(i)ud(i-r)}]r 2 , wherefor
t=0,1,...,00;

— -
Eur(iyu(i- ny = our@urti-my e =s
e ifras (2-49)
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E{ur(i)ur(i —r)} is the autocorrelation function of the rth MOMRS element:

E{ur(i)iir(t- nN} = Achos(OnI")+ AM,It(F)uo,it(* - 1)}, (2.50)
nn&V'pUo,*}

where:
Alsin249 + (-1) TA sin2a if (0 e A?iP) A(it e A?IP)

Agsin2 e if (0 € Ap) A (it€ Al
£{u0,T,(Ju0AG - )} =
(- 1)TANsin2 4n if (0 £ Atp)A(ite Ap)
0 » (0 0 ATAP) A (it £ AiP)
(2.51)

Proof of the above lemma proceeds similarly as for Lemma 2.2.

It follows from this lemma that the extended MOMRS is a wide-sense stationary mul-
tivariate random process. Similarly, as for the scalar case of multisine random time-series,
any change of the assumption about distributions of the random phase shifts §n in the
MOMRS definitions results in an extended MOMRS for which elements of the expected
value vector and autocorrelationfunction matrix are time-dependent. For instance, when

the Nyquist-frequency phase shift 4K is assumed to be deterministic and the remaining

phase shifts are as in the MOMRS éefinition, the resulting extended MOMRS expected
value vector is time-dependent, i.e. elements of the £{u(i)} = [E{ttr(*)}]r=i,2 p are:

AO0sin4®+ (-1)’Aw sin<>£ if 06 A?P
(2.52)

0 if0i Mrp
The choice of all random phase shifts <, as Bernoulli distributed B ~,{a,n + a}) leads
to the extended MOMRS’s which exhibit the following symmetries:

e for a = 0 and additionally Ao = 0 or <e®= 0, the time-series are odd sequences, i.e.
u(i + gN) = —u(gN - i),
» for a — 7j, the time-series are even sequences,i.e. u(i + gN) = u(gN —i),where
»=1,2,...,TV—land q=1,2,..., 00.
When the time-domain averaging on any particular extended MOMRS is analysed, the
following lemma can be formulated:
Lemma 2.0 Consider the extended MOMRS.
1 Its mean value vector is AF{u(i)} = [A'{ur(i)}Ir=12 , where:

( Aosingo if0Oe Adp
M {ur(i)} =\ . (2.53)
10 if OEA/?,p

2. Its correlation function matrix is RuuM — [-Riiru,M]r,s=i 2 p1 where for t -
o,1,...,00,.-
Rumr(r) ifr=s
(2.54)

0 ifr/ s
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Rurur(r) is the autocorrelation function of the rth MOMRS element:

Rurur(T) —- y Al cos(SInr) + Ro~r), (2.55)
nneK\P{o,-*}
where:
A°sir2  + {-1)rA\ sin2a if (06 A"p)A(it 6
Rot() Alsin249 if (0 € ACJ A(* £ Afilp)
ot(t) =
o (2.56)
- N .
(-DM 7 sinzgN if (0 A/2] A(tt € M2<)
0 if (0 £ A/2,) A (v £ ANp)

. L AL = i
3. Its variance matrix is a”u = diag [a<2<rurj r=1(2t.ip, where:

£
nnetf}p\oT<3 (2:57)
and:
A\ sin2a ilir€ A™p
(2.58)
0 if*2 K ,p
O

Proof of the above lemma proceeds similarly as for Lemma 2.3

The same results of the time-domain averaging as presented in the above lemma may
be obtained for any distributions of the random phase shifts <;n assuming only that 4o is
deterministic, and 4n_is deterministic or Bernoulli distributed B {Q>17+ Q}) »

Lemma 2.5 and Lemma 2.6 allow us to say that the extended MOMRS is a weakly
ergodic multivariate orthogonal random process.

Frequencies distribution

In the sequel, it is assumed that all elements of the MOMRS have similar frequency contents.
It is achieved by ordering consecutive frequencies circularly to consecutive elements of the
MOMRS, i.e. the frequency fin is a member of the Af*p when:

r=nmodp+ 1. (2.59)

Such ordering will be called consecutively circular ordering and denoted by the upper index
¢ in symbols Aljfp (r = 1,2,...,p) describing sets of frequencies.

If ~ is an integer number then the zero- and Nyquist- frequencies are elements of the
set A/ft. This set consists of n\ = ~ + 1 elements:

Aft = jo,ftp,...,fly}. (2.60)
The remaining sets A/JjJ (r = 2,3,.. .,p) have nr = ~ elements and the rth set is defined
as:

Aft = jFI(r- 1),n(r-1+p),....fi(y-p+r-1)j. (2.61)
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For p = 1 the MOMRS with consecutive circularly ordered frequencies reduces to the
SMRS. The set of its sine components frequencies is given by:

Aft ={o,n,...,fty}. (2.62)

It should be noticed that constant bin spacing equal to Sl is kept throughout the relative
frequency range [0,2ir). This property allows us to synthesise a scalar multisine white noise
for which whiteness holds for finite iV-sample random process representations [32].

When p — 2, a bivariate orthogonal multisine random time-series (BOMRS) [66] is

obtained. Elements of the basic BOMRS uB (i) = [uf(i)j ~have no common frequencies:

e the uf(i) time-series contains the constant component and sine components with
frequencies from the set of even harmonics of fl:

Alft = {0,2ft, 4ft,..., it} . (2.63)

Its frequency bin is equal to 2ft;

e the uf(i) time-series contains only sine components with frequencies from the set of
odd harmonics of ft:
Aft = jft,3ft,...,(y- ftj. (2.64)

Its frequency bin is also equal to 2ft.

The frequency-domain representation of each BOMRS element have the same frequency bin
2ft throughout the range [0,2ir). It implies that each element of the BOMRS is represented
in the frequency range [0,2it) by y relative frequencies. This property offers the possibility
to synthesisea finite-samplebivariate orthogonal white multisine randomtime-series [66].
For theSMRS (p = 1)andBOMRS (p = 2) constant bin spacings were kept for adjacent
frequencies below and above the Nyquist frequency fty = it and 2it frequency. It follows
from definition (2.60) that for p > 2 a constant bin spacing equal to pft can be kept only
for the first MOMRS element ui(i). For the remaining elements uT(i) (r = 2,3,.. .,p) of
the MOMRS sets of frequencies of its sine components in the range [0,2it) are given by:

[ft(r-1),ft(r-1+p),....ft(y-p+r-1),ft(y+p-r+1),... . ftQQV-r-]-1)|. (2.65)
The distance between the first-above and last-below the Nyquist frequency is equal to:
K(rP)="ft(y +pP-r+1)- ft(y - p+r- 1) =[2(p- r) + 2]ft. (2.66)

Values of the distance A'(r, p) for different numbers p (p > 2) of the MOMRS elements
and elements r = 2,3,.. .,p are presented in Tab. 2.1.

The corresponding distance between the first-above and last-below the frequency 2t is
given by:

AL(r,p) = 2(r-1)ft. (2.67)
It should be noticed that the distance A~ (r, p) is invariant to the number p of MOMRS
elements. Values of A~ (r,p) calculated for different p > 2 and elements r = 2,3,.. ,,p are
presented in Tab. 2.2.

It can be noticed from Tabs 2.1 and 2.2 that, for any even N, a constant frequency bin
spacing equal to pft throughout the entire frequency range [0, 2tv) is kept for all MOMRS
elements only for the case ofp = 1,2.

Let us assume that N is any odd number such that *2p " * an 'n*Ser number. The
consecutive circular ordering of frequencies gives:
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Table 2.1
Al(r,p)
V r=2 r=3 r=4 r=5 r=6
2 20 - — _ _
3 40 20 — _ _
4 6fi 4ft 20 _ _
5 80 6f2 40 20 _
6 10ft 8ft 60 40 20

Values of the distance A'(r, p) between the first-above and last-below Nyquist frequency
for different numbers p of MOMRS elements and elements r = 2,3,... ,p (TV even)

Table 2.2

AUr.p)
r=2 r=3 r=4 r=5 r=¢6
20 - —
40 40 -
60 60 60 _
80 80 80 80
100 100 100 100 100

oo~ w N T

Values of the distance A2\(r) between the first-above and last-below frequency 2it for dif-
ferent numbers p of MOMRS elements and elements r = 2,3,... ,p

¢ the set Afi'l as:
JVE={o,pn,....£~n} (2.68)

e and sets -Afp forr = 2,3,...,p as:

Kci={fi(r-1),ft(r+p- 1).... fl(—y —P+r)j (2.69)
It follows from the definitions of the sets that:
AJl,p)=0 (2.70)
and
As(rp)=[2(p-r) + 3]0. (2.71)

forr = 2,3,...,p. Values of the distance A°(r,p) are presented in Tab. 2.3.

The distance Ajx(r, p) between the first-above and last-below the frequency 2it in the
case of TVodd can be calculated from the corresponding expression on A~ (r,p) for TVeven.

It follows from Tab. 2.3 that for any TV odd there exists a possibility to keep constant
bin spacing equal to pf! only for the SMRS (p = 1). From the theoretical point of view,
the case of N even is more interesting because it offers possibilities to synthesise scalar and
bivariate white or pseudo-white multisine random time-series. In the sequel, we return to
the assumption that TV is any even number.

When is not an integer number, there is no possibility to keep constant bin spacing

for all elements of the MOMRS, because its elements ur(i) (r = 1,2,...,p) have different

numbers nT of sine components. For large N (TV > p) the number nT for all MOMRS
elements can be approximated by
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Table 2.3

Al(t,p)
r=2 r=3 r=4 r=5 r==6
3 - - - -
50 30 -
70 50 30 -
90 70 50 30
110 90 70 50 30

ool wWwNT

Values of the distance A°(r,p) between the first-above and last-below Nyquist frequency
for different numbers of MOMRS elements p and r = 2,3,..., p (TV odd)

2.2.2 Nonergodic Case

Definitions

Consider a multivariate random time-series u(t) with the elements ur(i) (r = 1,2,...,p
and p > 1) being scalar multisine random time-series for which the same relative frequency
appears in all elements of the multivariate time-series. This implies nonergodicity of the mul-
tivariate time-series. Assuming additionally that constant components of all elements of the
multivariate time-series are equal to 0 then thus obtained multivariate random time-series is
orthogonal one taking into account ensemble averaging. This determines that in the sequel
these time-series are called nonergodic multivariate orthogonal multisine random time-series
(NMOMRS). The NMOMRS is defined in the time-domain by:

Definition 2.5 The basic N -sample NMOMRS ufl(i) is defined in the time-domain by the

p-dimensional multivariate time-series uB(i) = [tif(i)j] , with the rth element given
by: y
uf (0 = £ Arnsin(fint' + <), (2.72)
n=0

where O = ~ denotes the fundamental relative frequency, n = 0,1,..., y denotes conse-
cutive harmonics of this frequency in the range [0,tv], i = 0,1,..., N —1 denotes consecutive
discrete time instants, Arn are deterministic amplitudes of the sine components (Ar<n ETZ),
Hn are phase shifts, of which <r,0 are deterministic and the remaining phase shifts are
random, independent and:

e uniformly distributed on [0,2it) forn =1,2,...,y —landr=1,2,...,p,

¢ Bernoulli distributed B (3", {a,» + al) forn=y andr=1,2,..,,p.
O

For p = 1the NMOMRS becomes the weakly ergodic SMRS.
In the frequency-domain, the basic TV-sample NMOMRS is given by the p-dimensional

vector UB(jflm) = |[/B(jf'm)j of finite discrete Fourier transforms with the rth
element given by:
E
uB(jQm) =" E Arn[e”~(m - n)- - (V- n)), (2.73)
¢/ N=0
wherem =0,1,.. ,TV—L1
Elements of the basic NMOMRS inherit properties of the scalar multisine random
time-series.
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Similarly as the previous scalar and multivariate orthogonal multisine random
time-series, the extended NMOMES is periodic modulo N. The elements of the NMOMRS
have common frequencies but the independence of its sine components random phase shifts

under the assumption that all constant components are equal to 0 implies orthogonality of
the elements for the ensemble averaging:

£{ur(Nu»(*)?} = 0, (2.74)
wherer / sand r,s =0,1,...,p.

Properties
The periodogram matrix of the basic iV-sample NMOMRS is given by the lemma:

Lemma 2.7 Consider the basic N -sample NMOMRS.

Its periodogram matrix is
$uu{jSim) = f$®u,(iftm)|

, whereform=0,1,.. N - 1:

£_1
2—1

4Ar,0A,i0sin Flosin + jO)S(m) + 53 [(cos(Or,n - <)
n=1

-j sinfin - 45n))6(m -n) + (cos(<Er,n - <>,)+ j sinfFrn - <>, ))S(m —(N —n))]
+jo)s(m- ) &. 2.75)

O
Proof of the above lemma proceeds similarly as for Lemma 2.4.

It is worth to note that the diagonal elements of the NMOMRS periodogram ma-
trix are deterministic functions of the frequency Sim, which are invariant to the choice
of random phase shifts while its off-diagonal elements are functions of the random phase
shifts 49tn. It follows from Lemma 2.7 that the expected value of 3®u(jf2m) is the matrix

E{*uuO'n™)}= [f {$£«.0'n7n)}]rj=12 p, where:

« its diagonal elements are:

£{* 1Ur(jCIm)} = NT ’[(4A205in2#,o+j0)8(m)+ 1T (A2n + jo) [tf(m - n)

7=

+£(m - (N - n))] + (4A2Nsin2a +jO)S(m - )

1
2]

, (2.76)
forr=1,2,....p;

« its off-diagonal elements are

Nt G b1
= ~ {(4Ar,04A,0sin Hosin ¢,0--j0)6(m) + 51 (° +J°) I"(m “ n)

+S(m —OV—n)] + 0 +jQ)6(m - y ) 1 (277)

forr,s=1,2,...,.pand r " s.
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If Arfi= oor #rfi= 0 (r = 1,2,.. .,p) then £{$Su(jfim)} is:
 a diagonal matrix for all frequencies fin € |f1,2fl,..., yfi} but

¢ the zero matrix for the constant component fin = 0.
The properties of NMOMRS resulting from the ensemble averaging are given by the
lemma:

Lemma 2.8 Consider the extended NMOMRS. For each time instanti = 0,1,.. .,00;

1. its expected value vector is £{u(i)} = [E{«r(t)}]r=i,2 p, where:
£{"“>m«}= Ar,0sin <. (2.78)
2. its correlation function matrix iSE{u(i)uT(i-r)}=[E'{ur(i)ud(i-r)}]Li=1 2 , where for
r=20,1, .. 00

ur(i)tir(i - r)} ifr =s 2.79)

roA,,0sin sin4>30 ifr " s

£{ur(i)ur(i —r)} is the autocorrelation function of the rth NMOMRS element:
£-i

E{ur(i)uT(i - t)} = A20sin2<ro+| 53 cos(Qnr) + (-1)TA2” sin2a. (2.80)
n=I

3. its variance matrix iSE{(u(i)-E{u(t)})(u(i)-£{u(i)})'}=d2a<7[our,,Ar=ii2 p, where:

puruT = £{(«»e(*) - £{«r(«)}2} =\ Yll Aln + Al& sin2a. (2.81)
n=

O

Proof of the above lemma proceeds similarly as for Lemma 2.2.

It follows from this lemma that the extended NMOMRS is a wide-sense stationary
multivariate random process. . ) .

When the time-domain averaging on any particular extended NMOMRS is analysed,
the following lemma can be formulated:

Lemma 2.9 Consider the extended NMOMRS.

1. Its mean value vector is _M{u(i)} = [mM{*r(*)}]r=i,2,...p>where:

Ad{ur(i)} = Arosin <. (2.82)

2. Its correlation function matrix is RUuM = Now.s« (T)]r»=i,2,...p> where for r =
o,l,...,00: L .
Ruru,(T) = ~r.0Aj.0 sin <ffi sin

+ g*T" IArnAn cos(nnr+ &rn- *..)--(- I)TAr,séA Y sin 4>T,é sin 6 B (2.83)
3. Its vamtance matrix is <r*u = [~ rU]r,,=i,2 p’ where:

2-1
E

<«.=\ A',,A*,n cos(0r,n - Kn) + Ar,fA.,f sintr.f sin K f- (2'84)
2,,=i
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Proof of the above lemma proceeds similarly as for Lemma 2.3.

Ruu(r) is a periodic function with the period TV. Its diagonal elements are determini-
stic functions, which are invariant to the choice of random phase shifts but its off-diagonal
elements are random phase shifts dependent. Comparison of Lemma 2.8 and 2.9 allows
us to say that the extended NMOMRS is a nonergodic multivariate random process. This
nonergodicity is introduced by identical sets of sine components frequencies present in the
NMOMRS elements.

The expected value of RUJV) is the matrix £{Ruu(r)} = [E{-fturu,(r)}Irs=]2 p>
where:

« its diagonal elements are:
-1

1
£{-RUrUr(r)} = A20sin20ro + 5 T] A2ncos(finr)-|- (-1)M 2Nsin<E « s> «.
n=1 r'T t2 *'2

(2.85)
forr =1,2,...,p;

« its off-diagonal elements are:

£{Ruru,(T)} = Ar,0A30sin 4¥iosin (2.86)
forr,s=1,2,....pand r " s.

It is worth to note that £{Ruu(r)} =£{u(t)uT(t- r)}. Additionally, if Ar0=0or ¢,0=0
(r=1,2,...,p) then £E{RuuM} and £{u(i)uT(j - r)} are diagonal matrices.

2.3 MULTIVARIATE NONORTHOGONAL MULTISINE
RANDOM TIME-SERIES

Definitions

Let any nonergodic multivariate orthogonal random time-series be used as an excitation of
a multi-input linear, discrete-time system with a transfer function matrix which off-diagonal
elements are not all equal to 0 +j 0. When the system reaches steady-state conditions, its
multivariate response vector is a nonergodic multivariate nonorthogonal multisine random
time-series (NMMRS). The NMMRS is defined in the time-domain by:

Definition 2.6 The basic N -sample NMMRS is defined in the time-domain by the

p-dimensional multivariate time-series uB(i) = [uf (t)j with the rth element given
by:
p $
“?2(*) = 53 %Ar’“nsin(fint'+ <th+ <rt,n), (2.87)

where Q —”~ denotes the fundamental relative frequency, n = 0,1,..., y denotes conse-
cutive harmonics of this frequency in the range [0,ir], i = 0,1,...,TV - 1 denotes con-
secutive discrete time instants, Ard, are deterministic amplitudes of the sine components
(ATtn € TZ), </tn and ¥r,(,n ore phase shifts, of which (fita and <pTt,n are deterministic and
the remaining phase shifts <it,n are random, independent and:

e uniformly distributed on [0,2tt) forn=1,2,...,y - l1landt—1,2,...,p,

« Bernoulli distributed B~ ,{a,it+a}) forn=y andt= 1,2
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The basic TV-sample NMMRS is defined in the frequency-domain for the (relative) fre-
quency range [0,2ir) by the p-dimensional vector UB(jflm) = [uB(jnl )J n of finite

discrete Fourier transforms with rth element given by:

UB(jSIm) = ~ P £f Ar,(n - n) - e-j(*t.ntvrtn)™m _ (jv _ n))j j
N t=1 n=0 (288)
wherem=20,1,..., V—1

Properties
The periodogram matrix of the basic TV-sample NMMRS is given by the lemma:

Lemma 2.10 Consider the basic N-sample NMMRS. Its periodogram matrix is
= [$urdo'fim)]ri=12 p>where for m = 0,1,.. . TV- 1:

=NLPE ]f(4"r,t,0"5,M,osin(Ot,0+V?r,t,o)sin(<l)l\4b+ /i) * 10)S(m)

t=l *t=1 1
2-1
+ 53 Ar,t,nADin [ej(Vr*n
n=1

+e—(v>r,(cos(</),,n-<ly,,) +j sin(<ptn- <»n))6(m - (TV- n))]

v
+(4Arl "AJJ Nsin(a + vrt N)sin(a + \WBJ(AN) + jo)S{m - y H] . (2.89)

O

Proof of the above lemma proceeds similarly as for Lemma 2.4.
It follows from the above lemma that the periodogram matrix $d u(jQm) can be written

as:
$uu(jtom) = K(jSIm)$pp(jSIm)K’(jEIm), (2.90)

where:

 elements of the matrix K(jflm) = [Kuuy, (ifim)]rj=12 p are given by:

CVNTAT, flsin(4t0+ VB« +jo ifm=0

KUu{Nem)= s

[ VNTArt nsin(a + spran) mjO ifm =

291
For harmonic frequencies from the range (iv,2it), the following condition e
tfW,,.0"(2* - fim)) = if; U (jftm) (2.92)
is satisfied;
elements of the matrix & *p(j(Im) — [$B~(jflm)] ~  are given by:
Z-i
= (*+jO)(5(m)+ %21 [(cos(</>rn-<t>,,n)-j sin(Or,,,- <fi,n))S(m-n)
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+ (cos(0rn - +j sin(&, - <&_)tm-(N - n))] + (1 +jO)S(m - E)' (2.93)
The matrix is the periodogram matrix of a NMOMRS with amplitudes

of its sine components chosen so that £{&pp(jSIm)} = I.

The above spectral factorisation of the NMMRS periodogram matrix allows us to write the
finite discrete Fourier transform UB(jfim) of NMMRS as:

Ufl(jfim) = K(jSIm)/3(jSIm), (2.94)

where /3(jSIm) is the finite discrete Fourier transform of a NMOMRS with
*L{*f,(i«r)} =/

Elements of the NMMRS periodogram matrix ~,,,(jftm) are random phase shifts
dependent. The expected value of $,u(yftm) is the matrix £{3>®u(jlim)} =

[E{$fU,(Jam )}]rj=12 p>where forr.s = 1.2
NT,”
—t ) |[ (4AritioAli(iosin((/itio|-¥»rit D) sm(4>t,0+<Ps,t,0)+j0)6(m)
t.

+ £_I N (nAs,(n - n)+ - (N - )l

F(4Art £A Lt tsin(a + qrt £)8iii(a + wM K )+jo)tf(m Y | . (2.95)

It is obvious that:
E{**u(jftm)} = K(jSIm)K'(jSIm). (2.96)

The properties of NMMRS, which follow from the ensemble averaging, are given by:

Lemma 2.11 Consider the extended NMMRS. For each time instanti = 0,1,..., 0o:

1. its expected value vector is £{u(i)} = [E{«r(i)}]r=i,2 v, whereforr - 1,2,...,p:

£{" <"} = t5:1I%Ar,t,osin(<fo,o + \Brto); (2.97)

its correlation function matrix «sE{u(t)u:r(i-r)}=(f{ur(t)id(i-r)}]1rJ=12 p, where for
t=0,1,—,00:

E{vr(i)u,(i-r)} =53 ATto0A tos(<g>r0 £ 4r,(i0) sin(MJi0 +
N
+ % VulA <A “ t,n COs(flnr + Pritn. —V\«,n)

n=I

(2.98)
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3. its variance matrix isE{(u(i)- £{u()}u()- £{u(})TH—orWlrj=i,2 p. where.

[i
pury, —53 - 53 ArtnA3tnC8Y)rt,, —VAstn)
t=i

+ Aﬁ’ii}A't Qsm{a + iprt E)sm(a + if ,;12) (2-99)

Proof of the above lemma proceeds similarly as for Lemma 2.2.
It follows from this lemma that the extended NMMRS is a wide-sense stationary mul-

tivariate random process.

When the time-domain averaging on any particular extended NMMRS is analysed, the
following lemma can be formulated:
Lemma 2.12 Consider the extended NMMRS.

1. Its mean value vector is ,M{u(i)} = [Al{iir(t)}]r=i,2 p. where:

A4{ur(i)} = 53Arit,0sin(Oiio + ¥>r;t0)- (2.100)

2. Its correlation function matrix is Ruu(t®) = [Rtiru,(Ti)]r,s=i,2 p>where for r -
0,1,...,00:

RUruAT) = 1353 A A sin(</>(,0+¥%r1,<,0) sin(?,0+V5,/i,0)
1 1

w9 Z  ArtnAg nCOs(ONr+ O(n —(pn + (@Titn — <R

+(-1)TARbsAttl z sin(a + g t&)sin(a + (2.101)
3. Its variance matrix is crj,u = [ff5,u,]r,»=i,2 p’ w'ere:
£-1
oﬁrU’ - by N ArittnAs fn QOBBAN ~ finn  Artn  Ips,n,n)
(2.102)

+2A "k A M e sin(a+ ¥, (|)sin(a +

Proof of the above lemma proceeds similarly as for Lemma 2.3.
R-uu(f) is a periodic function with the period y . Its values are random phase shifts
dependent. Comparison of Lemma 2.11 and 2.12 allows us to say that the extended NMMRS

is a nonergodic multivariate random process.
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-The expected value of Ruu(r) is the matrix: £{RWI(r} = [E{EW, (N}
whéefe: r rs

£{R»ru,(T)} = I2 t. 2Ari(ioi4,idosin(0tio+¥°r,(,0) sin(0tiO+ ¥ j IMb)
<=
2
+ £ 1"r,«,nA,tI,,cos(ftnr+y)r, , A ANsin(atyr )sin(at b n)
n=
(2.103)
24 SYNTHESIS AND SIMULATION
A single TV-sample realisation of the random sine sequence
uf(» = Ansinu>nTi + §n) (2.104)
for the time instants i — 0,1,...,TV - 1, any frequency unT from the set

jfln; n=1,2,...,y | and a realisation of the random phase shift $a can obviously

be numerically calculated by using the time-domain definition (2.104). This iV-sample
sequence could also be calculated by transforming the corresponding realisation of its
frequency-domain representation back into the time-domain by the inverse finite discrete
Fourier transform. For a single sine this approach seems artificial. Things change however
if realisations of a multisine random time-series consisting of a sum of hundreds or thou-
sands sine components should be obtained. To calculate the multisine random time-series
realisation for large values of TV, a good starting point is offered by its frequency-domain
representation. This approach gains a lot from the numerical efficiency of Fast Fourier
Transform algorithms [72].

For a given set of multisine random time-series amplitudes, phase shifts for constant
components, and parameters of Nyquist frequency phase shifts distributions, the procedure
of simulating the basic TV-sample multisine random time-series consists of two steps:

e step L. synthesisof the corresponding multisine random time-seriesspectrum;

e step 2 transformation of the synthesised spectrum back into the time-domain by the

inverse finite discrete Fourier transform. It results in the basic TV-sample multisine
random time-series.

For example, if the amplitudes {Ao, A\,..., Anj and two phase shifts {<j>o0a} for a

SMRS are given, the basic TV-sample SMRS uB (i) may be simulated as the inverse discrete
Fourier transform of the corresponding synthesised spectrum UN(jSIm):

o form =0:
UN(jO) = TVAOsin 8 - jO; (2.105)

e« form=1,2,....y —L

Re{uN{jSIm)}

y A msin<>m, (2.106)

Im {(/"(jfIlm)}

where €m are random, independent and uniformly distributed on [0,2it);

-y A mcos(Em, (2.107)

e form = y-:
UN(jv) = NAnsinén +jO, (2.108)

where 9N is random, independent and Bernoulli distributed B {a,it+ a});
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e forV—m = W—1,V—-2,..., WV—(y - 1):
UN(jSI(N - m)) = Re {t/N(.2ftm)} - jIm {UN{jSIm)}; (2.109)

Synthesis and simulation of basic MOMRS’s, NMOMRS’s and NMMRS’s can be per-
formed in the same way as the synthesis and simulation of scalar multisine random
time-series.

Sets of multisine random time-series amplitudes, phase shifts for constant components,
and the parameter of Nyquist frequency components distribution are important degrees of
freedom for different multisine random time-series synthesis and simulation. Their choice
allows us to control the expected value vector of the extended multisine random time-series.
Additionally, in spite of random phase shifts, the periodogram and correlation function ma-
trices for weakly ergodic multisine random time-series or expected values of periodogram
and correlation function matrices for nonergodic multisine random time-series are deter-
ministic, real-valued functions. They are uniquely defined by the sets of multisine random
time-series amplitudes, phase shifts for constant components, and the parameter of Nyquist
frequency components distribution. It implies that the multisine periodogram (or expected
value of the periodogram) matrix elements can be fitted to the corresponding power spectral
density function matrix elements of a wide-sense stationary multivariate random process.
This fitting is behind the proposed synthesis and simulation method [24] of wide-sense
stationary multivariate random processes defined by their power spectral densities given by
nonparametric representations, e.g. as diagrams or table, where:

¢ synthesis means the determination of the spectrum of a multisine random time-series
based on the corresponding power spectral density of a wide-sense stationary random
process to be simulated,

« simulation means the generation the corresponding multisine random process approx-
imation by performing the inverse finite discrete Fourier transform of the synthesised
spectrum.

Sample realisations of the synthesised and simulated multisine random process approxima-
tion may be obtained by replacing the sequence of random phase shifts by their respective
realisations. The numerical complexity of generating the sample realisations can be reduced
by using the FFT algorithms.



Chapter 3

Power Spectral Density Defined
Multisine Random Processes

In this chapter, the synthesis of multisine random time-series defined by power spectral
densities of wide-sense stationary random processes and their simulation with the inverse
finite discrete Fourier transform is described. Statistical properties of obtained multisine
random process approximations are established. Asymptotic Gaussianess and ergodicity of
the synthesised time-series are discussed.

This chapter is finished with an extension of the proposed random process synthesis
and simulation method to generation of wide-sense stationary continuous-time band-limited
random processes, given also by their power spectral densities.

3.1 SYNTHESIS
In the sequel, it is assumed that:

« v(i) is awide-sensestationary, real-valued multivariate(orthogonal or  nonortho-
gonal)random process givenby the power spectral density matrix$ vv(jujT) =
[*vr»,(jnm)]rs=i,2 which satisfies, for uiT £ [0,2it), the following conditions:

$WWUUT) = ssw(j(2ir-wr) (3.1)
and:

[|$vvO'wr)|| < oo, (3.2)
where:

[I*w (jer)|| = vev,
Nr=|»:1

the autocorrelation function Rwv(t) of v(i) for lags |r| > rO satisfies the condition:
R-vv(r) = o. (3.4)

The power spectral density matrix $ wv(juT) of a multivariate wide-sense stationary
random process with finite powers of its elements may be approximated by the periodogram
of a multivariate multisine random time-series with amplitudes of its sine components chosen
so as to make values of the periodogram matrix (or expected value of the periodogram
matrix) equal to the corresponding values of power spectral density matrix of the original
random process for some equally spaced frequencies (being approximation nodes) from the
range [0, 2ir). This approximation criterion allows us to synthesise the spectrum U
of the multisine random time-series. The corresponding time-series is simulated by the
inverse finite discrete Fourier transform of the synthesised spectrum It is worth
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to note that the above approximation criterion can be interpreted as sampling of the power
spectral density matrix in the frequency domain.

The power spectral density matrix $ vv(jujT) is approximated by a periodogram ma-
trix of the corresponding multisine random time-series - it means that the power spectral
densities (JojT) (r,s = 1,2,...,p) are sampled in the frequency-domain choosing for
each, n sample points along the uiT axis at relative, equidistant frequencies from the range
[0,2ir). It does not produce aliasing [47] if the spacing A between the samples along the
frequency axis is such that:

A<A0= (3.5)
2to
In this case the original power spectral densities $WV,(jbjT) may be reconstructed from their
sampled values (periodograms of approximating multisine random time-series) by using the
sine interpolation:

*vrv,tiuT)= £ $vrv,(jAm)sinc("*jr Am”" m (3.6)
The accuracy of the reconstruction is dependent of the number of terms used to perform
the summation in (3.6).

The assumption (3.4) can be interpreted as a lower bound on the number of approxima-
tion nodes - samples of multisine random time-series to be simulated. When it is satisfied
(the number of approximation nodes is two times greater than r0), the original power spec-
tral density matrix may be reconstructed uniquely without producing aliasing.

For asymptotically uncorrelated random processes (limT_00Rvv(r) = o) the assump-
tion (3.4) can be satisfied only asymptotically for n' — 0o. In this case, the finite number n’'
of approximation nodes implies aliasing in the shift-domain of the corresponding autocor-
relation function.This aliasing may be made insignificant by selecting asufficiently large
To such that for all r > to it is reasonably to assume that RW(r) is a zero matrix.

In the sequel, for given power spectral density matrices of wide-sense stationary ortho-
gonal and nonorthogonal multivariate random processes the synthesis of the corresponding
multisine random time-series is discussed in details.

3.1.1 Ergodic case

Let \(i) be a wide-sense stationary, real-valued multivariate orthogonal random process
with the power spectral density matrix $vv(jwT) = diag[$Vriv(wT) + jO]r=12 . The
power spectral densities $M,r(wT) (r = 1,2, ...,p) are sampled in the frequency-domain
(approximated by a periodogram of MOMRS) choosing for each, nr sample points along
the u>T axis at relative frequencies from the set . It does not produce aliasing if the
spacing Ar between the samples along the frequency axis is such that:

2it
max Ar = pﬁl = pSi < Ao- (3-7)

r

The approximation criterion:

SvrVT(u r)\uT6tf?£ = @urUr("m)Inm6A"rp (3"

forr = 1,2,...,pallows us to synthesise the rth element UT(jQ.m) of the MOMRS finite
discrete Fouriertransform UB(jSIm) = |t/s (j'nm)j ~"  as:

o for (m = 0) A(dm e

= yM*«r»r(o) +i°; 3.9)
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for(to=1,2,..~ —1)A(torn 6 M%):

Re[u?(jSIm)}

ily$,,.,r(nm)sin0Om, (3.10)

Im{u?(jSIm)} = -7~y $ UUI(fiTO)cosOm, (3.11)
where €$m are random, independent and uniformly distributed on [0,2it);
for (to = y ) A(Sim e Aljfp):
= \JAvrvr(”N)sh <t>E+jO, (3.12)

where 4>n_is random, independent and Bernoulli distributed B (j, {a,it + a});

e for (to=0,1,...,y ) A(Sim £ \T$):

Uf(jSim) = 0+ jO; (3.13)
e forN-m = N-1,N-2,..., N-(fy-1):
U2(jSI(N - t0)) = Re {uB(jSIm)} - jim {UB(jSIm)}. (3.14)

Accuracy of the multisine random process approximation defined by the criterion (3.8)
may be discussed in the shift-domain of its autocorrelation function.
Let wusassume that forthe given power spectral density €ww(cjT)a scalarmultisine

randomtime-series u(i) wassynthesised and simulated. The approximationerror e(r) is
defined as:

e(r) = Rw(r) - Run(r), (3.15)
Where r=20,1,..., N —1 It follows from the approximation criterion (3.8) and Lemma 2.2
that: .
N = 2itT Jo cos(UTT)d(uT) ~ £ . $™(fin) cos(ftnr)
| r2v i N-1
= 2i\f ) $vv(vT)c°s(u>TT)d(uT)- 53 $w(ttn)cos(SInT)SI. (3.16)
N n=0

For N —* oo the product (N —I)fi tends to 2it. It impliesunder Riemann’sdefinition of
the integral that the approximation error e(r) declines with jy (because sl =").

For the given number N of approximation nodes, values of the corresponding appro-
ximation error f(r) depend on the shape of the power spectral density $,,,,(u>T). Analysis
of the expression (3.16) leads to the conclusion, that the approximation error e(r) is equal
to zero for lags r = 0,1,...,V- 1 when a white noise with the power spectral density
$yv(cjT) = A2 is synthesised (see Chapter 4 for details).

Example 3.1 Let u(i) be the following third-order scalar AR time-series:

" 1.00 - 2.002-1 {- 1.45z-2- 0.35z-3 NN

where e(i) is a hypothetical white noise.
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Fig. 3.1. Power spectral density of the third-order AR time-series
Table 3.1

Parameter Estimates

Parameter N = 128 N = 256
-2.00 -2.00 (0.012) -2.00 (0.006)
1.45 1.45 (0.019) 1.45 (0.010)
-0.35 -0.35 (0.011) -0.35 (0.006)

Mean values and standard deviations (in parentheses) of the third-order AR time-series
model parameter estimates obtained for 100 simulation experiments using the Least Squares
identification method

The v(i) with variance equal to 1 was simulated by using its frequency-domain repre-
sentation as the power spectral density diagram (Fig. 3.1), which was approximated by the
periodogram of a scalar multisine random time-series.

Each simulated N -sample third-order AR time-series realisation (N = 128 and N = 256)
was identified using the Least Squares identification method [13]. The mean values and
standard deviations (in parentheses) of the estimated parameters for a third-order AR model
in 100 simulation experiments are presented in Tab. 3.1.

The mean values of the estimated parameters do not differ from the true values but its
standard deviations show that the autoregressive time-series simulated with multisine ran-
dom time-series very precisely reconstruct spectral and correlation properties of the original
random process for finite number of samples.

Example 3.2 A time-series v(i) with the nonrational power spectral density:
Sw(uT) = eJAH“T) (3.18)

was simulated by using the proposed approach: the power spectral density Sw(uT) was
approximated by the periodogram of a scalar multisine random time-series. The number N
of approximation nodes was 256. An example of the simulated N = 256-sample multisine
random time-series realisation u256(i) is shown in Fig. 3.2.



40 Power Spectral Density Defined Multisine Random Processes

Tins

Fig. 3.2. Nonrational multisine random time-series realisation - N = 256

For this realisation the rational AR, MA and ARMA approximations were identified by
using the Least Squares and Recursive Prediction Error methods [55], respectively. Appli-
cation of the AIC criterion [56] for the model order selection resulted in:

the AR(5) model:

1.000

1.000 - 0.9932-1+ 0.4942-2 - 0.1612"3+ 0.050z-* - 0.016%-**A’
(3.19)

“256(0 =

the MA(4) model:
u256(t) = (.OOO -0.987z_1 + 0.492z-2 + 0.169z-3 + 0.042z-4) e(i); (3.20)

the ARMA(2,1) model:

1.000 + 0.369z-1

ti () :
® 1.000 - 0.621Z-1+ 0.130z~2

(3.21)

where e(i) is a hypothetical white noise. One-step prediction error variances for the above
models were all equal to 1.006.

The original power spectral density (3.18), unwindowed periodogram for the simulated
time-series realisation and power spectral densities for identified rational AR(5), MA(4)
and ARMA(2,1) approximations are compared in Fig. 3.3.

The time-domain identification methods allow us to identify rational approximations of
v(i) based on the corresponding multisine random time-series realisation u256(i). The power
spectral densities calculated by using these rational approximations very precisely reconstruct
the original one.

The proposed approach based on approximating the power spectral density by the perio-
dogram of a multisine random time-series allows us to simulate nonrational time-series
without calculating any parametric approximation.

Example 3.3 The following bivariate orthogonal AR time-series v (i):

A(z-")v(t) = e(i) (3.22)
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Fig. 3.3. Comparison of the original power spectral density (solid line), unwindowed perio-
dogram for N = 256-sample multisine random time-series realisation (solid line)
and power spectral density for indentified: AR(5) (dotted line), MA(4) (dashdot
line) and ARMA(2,1) (dashed line) models

with

100 000  '-0.80 0.0 0.00 0.00
") = - 3.23
A" = 900 100 T 000 -150 21F 000 070 (3.23)

and a unit variance matrix of the white noise e(i) was simulated by using its
frequency-domain representation as the power spectral density matrix

1.00+ i0 :
1.64 —1.60COSu T 0+J0
$vv(wT) : (3.24)
v _1.00+ 70
°+ -7 3.74-5.1UcoswT+1.40cosVi'

which was approximated by the periodogram matrix of a multivariate (bivariate) orthogonal
multisine random time-series.

Each simulated N -sample AR time-series realisation (N - 128 and N = 256) was
identified using the Least Squares identification method [13]. The mean values and standard
deviations (in parentheses) of parameters estimated in 100 simulation experiments for the
orthogonal AR model with a structure of the matrix A(z_1) chosen as

1.00 0.00 0.00 0.00 0.00
- = 1+ 3.25
A-D= 000 200 ¥ 000 a2 =" 000 az (3.25)

are presented in Tab. 3.2.
The corresponding results for a nonorthogonal AR model with the following structure

of the matrix A(z-1)

1.00 0.00 ali 0.00 0.00

A= 500 100 o1 0.00 a2,

(3.26)

are presented in Tab. 3.3.
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Table 3.2
Parameter Estimates
Parameter N = 128 N = 256
“lj -0.801 (0.006) -0.800 (0.002)
a2 -1.500 (0.009) -1.500 (0.004)
a® 0.700 (0.008) 0.700 (0.003)

Mean values and standard deviations (in parentheses) of the orthogonal AR model parame-

ter estimates obtained for 100 simulation experiments using the Least Squares identification
method

Table 3.3

Parameter Estimates
Parameter N = 128 N = 256
-0.801 (0.006) -0.800 (0.002)
0.000 (0.009) 0.000 (0.003)

o 0.000 (0.009)  0.000 (0.003)
2 -1.500 (0.009) -1.500 (0.003)
o2 0.700 (0.008)  0.700 (0.003)

Mean values and standard deviations (in parentheses) of the nonorthogonal AR model

parameter estimates obtained for 100 simulation experiments using the Least Squares iden-
tification method

The mean values of the estimated parameters do not differ from the true values but
their standard deviations show that autoregressive multivariate orthogonal time-series simu-
lated using weakly ergodic bivariate orthogonal multisine random time-series precisely appro-
ximates properties of the original multivariate orthogonal random process.

3.1.2 Nonergodic case
Multivariate orthogonal multisine time-series

Similarly as for the previous ergodic case, let v(i) be a wide-sense stationary,
real-valued multivariate orthogonal random process with the power spectral density matrix
$vv(juT) —diag (u>T) +j'0]r_12 . It is assumed that the number of approxima-

tion nodes N is chosen so that y > To- This implies that choosing the maximum spacing
A = ft between the samples along the frequency axis, the original power spectral densities

Vr(uT) forr = 1,2,...,p may be recovered from their samples ($,,r,,r(ftm)) without
producing aliasing.

The approximation criterion:
4>r,>T)|w=nm = < Ur(ftm) (3.27)

form=0,1,...,y andr —1,2,...,? allows us to synthesise the rth element UT(jSIm) of
the NMOMRS finite discrete Fourier transform UB(jQm) = [t/B(jftm)]r=i ~ ~as:

o form = 0:

VEiGjo)=\ +j0; (3.28)
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e form=1,2,...,.y —L
Aelf7s (jftm)} = AA-* rr(ftm)sin £Em, (3.29)
Im {{/,2(jftm)j = -J ~-$,rr(ftm) cos 4¥<m (3.30)
where 4¥iTh are random, independent and uniformly distributed on [0,2-);
e form=y:
AN rur(it) sindtek + O, (3.31)
where 4r z is random, independent and Bernoulli distributed B Q , i
e« forN —m =N —1,N —2 |, —(y —1):
UB(jtt(N - m)) = Re {UB(jim)}- jim{u?(jSIm)}. (3.32)

Example 3.4 The simulation experimentfrom Example 3.3 was repeated. The power spec-
tral density matrix (3.24) was approximated by the expected value of the periodogram matrix
of a nonergodic multivariate (bivariate) orthogonal multisine random time-series. Similarly
asfor the previous case, each simulated N -sample AR time-series realisation (N — 128,
N =256 and N= 1024) was identified using the Least Squares identification method
[13]. The mean values and standard deviations (in parentheses) of parameters estimated in
100 simulation experiments for the orthogonal AR model with the structure of the matrix

At*-1):

1.00 0.00 0.00 0.00 000 -2 333
AtUD = o0 100 Y000 L, 21T 000 a2 (3:33)
are presented in Tab. 3-4-
Table 3.4
Parameter Estimates
Parameter N = 128 N = 256 N = 1024

ah -0.800 (0.006) -0.800 (0.002) 0.800 (0.0003)

an -1.499 (0.010) -1.500 (0.003) -1.500 (0.0006)

ngy 0.699 (0.008) 0.700 (0.003) 0.700 (0.0008)

Mean values and standard deviations (in parentheses) of the orthogonal AR model parame-
ter estimates obtained for 100 simulation experiments using the Least Squares identification

method

The corresponding results for a nonorthogonal AR model with the following structure
of the matrix A(z-1)

1.00 0.00 e, ., 000 000 (3.34)

AZ D= 000 100 T «y op 000 ,p

are presented in Tab. 3.5.
It follows from Tabs 3-4 and 3.5 that the synthesised and simulated nonergodic multiva-

riate orthogonal multisine random time-series very precisely reconstruct correlation pro-
perties of the original random process. Additionally, when the value of N grew up from
N = 128 to N = 1024, the results of identification for any NMOMRS realisation approached
the results of the ensemble averaging.
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Table 3.5
u Parameter Estimates
Parameter N = 128 N = 256 N = 1024
of 0797 (0.009) -0.798 (0.005) 0,800 (0.001)
0y2 -0.007 (0.031) -0.004 (0.022) 0,001 (0.010)
a2l -0.017 (0.051)  -0.012 (0.040)  0.002 (0.019)
a2z -1.495(0.012) -1.498 (0.005) 1500 (0.001)

Mean values and standard deviations (in parentheses) of the nonorthogonal AR model

{)_a_ram_eter estimates obtained for 100 simulation experiments using the Least Squares iden-
ification method

Multivariate nonorthogonal multisine time-series

Let v(t) be a wide-sense stationary, real-valued multivariate nonorthogonal random
time-series with the power spectral density matrix &vv(jujT). The &yv(ju>T) may be
reconstructed from its approximation by the expected value of a NMMRS periodogram ma-

tri_>t< if the number N of approximation nodes is chosen so that y > tg. The approximation
criterion:

*w O wr)l«T=am = £{$uu(.7fim)} = K(JSIm)K"(jSIm). (3.35)

allows us to synthesise the NMMRS finite discrete Fourier transform UB(jSIm) using the
following two-step procedure:

e step 1. synthesis of the finite discrete Fourier transform /3B(jSIm) =
m]J M of NMOMRS which approximates multivariate orthogonal white
noise with the periodogram matrix equal to /:

—form —0:
J8?(i0)=\[ " +]j0; (3.36)

~form=1,2,...,4- - 1:

Re |/3f(jftm)} = J~-sin dmT, (3.37)
Im[pB(jum)} = -~-cos&vn, (3.38)
where are random, independent and uniformly distributed on [0,2ir);
form =
P?(.n) = \Jy sindTE + JO, (3.39)

where d¢r % is random, independent and Bernoulli distributed B

-forN-m=N-1LN-2,...,N- (% - 1):

~m)) - Re {/?f(jfim)} - jIm  (jfim)}, (3.40)

where r=1,2,..,,p
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e step 2: for each frequency Sim (m = 0,1,..., N - 1) the matrix K(jSIm) is chosen so
that the following spectral factorisation equation is satisfied:

$vv(jSIm) = K(jSIm)K*(jSIm). (3.41)
The finite discrete Fourier transform UB(jSIm) is calculated as:

VB(jSIm) = 1t(jSIm)(3(jSIm). (3.42)

3.2 ASYMPTOTIC PROPERTIES

The synthesised and simulated multisine random process approximations of wide-sense sta-
tionary random processes with specified power spectral densities turn asymptotically for
the number of approximation nodes N —* 0o into Gaussian random processes. Addition-
ally, nonergodic multisine random time-series become asymptotically ergodic. This is sum-
marised in the sequel.

3.2.1 Ergodic case

Lemma 3.1 Assuming that:

1 3v(jujT) = diaj/[$,,r,y(Hm) + jo]r=12 is the power spectral density matrix of a
wide-sense stationary, orthogonal, real-valued multivariate random process with zero

mean vector and the variance matrix a2v = diag r=12 p, where:
=A f1  *wr(“T)d(u,Ty, (3.43)
2. A,, converges to 0 for N —* 00 in such a way thatforr=1,2,...,p:
NT A2
= *vrvr(Sin), (3.44)

wheren=1,2,...,y —landSin£ ;
3. Ag= An =0or®—a =0;
2

then the corresponding extended MOMRS u(») with the consecutively circularly ordered fre-
quencies converges in distribution for N —00 to a Gaussian multivariate orthogonal multi-

sine random time-series of type 1 (GMOMRS1) g(i) = [ffr((™)]r=i,2,...p zero mean vector
and the variance matrix ~cr2v:

g(i) 6 AsAT(o,-0-yV). (3.45)
P
Additionally the correlation function matrix of the GMOMRS1 converges to:

£E{g(*)gT(*- t)} = Rgg(r) = j cos(0jTr)d(uT) = iRvv(T-), (3.46)

wherer =0,1,...,00.

m|
Proof: Theuniformdistribution of the independent, randomphase shifts 4n  on[0,2ir) for
each frequency Sin (n —,2,...,y —\) implies that for any time instant ithe random
vector In(i) = [fr,n(»)Ui2 p’ elements:

sin(SIni + <) if Sin € Algp
(3.47)

0 if Sin £ MT
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is characterised by the expected value £{In(i)} = o. Its variance matrix is £{I,,(i)l1j(i)} =
d*ag[£{I*n(i)}]r=i2 where:

NTA2 . r..c
8 iflin e
(3.48)
0 if fin $ A™p
§n = ;/1:| in(*) = 5T «9 (%) (3.49)
and for each time instant i:
(3.50)
The corresponding variance matrix is:
*-1
El =£ E£{In)I*i)}="diag [ap6 Jr=i2 , (3.51)
where:
2 n 2 nr-i
Qrw = 7 £ $Wr(nn)n = — - 53 $,rr(fipn+ (r- Dft)fy>.  (3.52)
UnAfr p\{Ott} P n=0

For N -> 00 the product (r - 1)fi tends to 0 and (nT- 1)Qp tends to it. It implies under
Riemann’ definition of the integral that

1 /2r a2
" L * A~ TW*T)= (3-53)
Let:

I[In(0l12 = \ £ (3.54)
denotes the Euclidean norm of the vector\n(i). Itfollowsfrom the properties ofsine function
that for each time instant i the sequence of random vectors I,,(t) (n = 1,2,..., y-- 1) is
a uniformly bounded sequence [51], i.e. there exists a constant ¢ such that

P{|1tUOll2<c} =1 (3.55)

holds for n = 1,2,...,y - 1. It implies that for every e > 0, the extended Lindeberg
condition:

N @m fc £|IMOIlla; IIIWOB, > -ijj=0 (3.56)

is satisfied by the sequence of I,,(i) (n = 1,2,...,~ - 1)for each time instanti. Itfollows
from an extension of the Lindeberg-Feller central limit theorem to the multivariate case [83]
that for each time instant i the random variable

2
T ff8" = uB(Y) (3-57)

converges in distribution for N —mo0 to a Gaussian multivariate orthogonal random variable
g(z) with zero mean vector and the variance matrix V?y\v/.

The proof of the property 3-46 follows from Riemann’ definition of the integral applied
for N »00 to correlation function matrix elements of the power spectral density defined
MOMRS.

Asymptotic Properties ar
3.2.2 Nonergodic case

Multivariate orthogonal multisine time-series
The properties of NMOMRS for the ensemble averaging under TV —»00 are given by the
lemma:

Lemma 3.2 Assuming that:

1 $vw{juT) = diag[$WW(uT) + jO]r=12 ,, is the power spectral density matrix of
a wide-sense stationary, orthogonal, real-valued multivariate random process with zero
mean vector and the variance matrix <R2v = diag[<rlrvi]r_12 p>where:

alve 2T J 0 Sor>T)d(@irn); (3.58)

2. Aran converges to 0 for N -* Q0 in such a way that forr =1,2,... ,p:

NTAL
r’n = $vrvr(ftn), (3-59)

where n =1,2,..., y —1;
3. Aro :Ar\,rzn =0or#H0=a=0forr=1,2,...,p;

then the corresponding extended NMOMRS u(i) converges in distribution for N -* 00 to
a Gaussian multivariate orthogonal multisine random time-series of type 2 (GMOMRS2)
g(j) = &@]r=i2 p zero mean vector and the variance matrix <2v:

g(.-)e AsM(o,<rgv). (3.60)
Additionally the correlation function matrix £{g(i)gT{i - t)} of the GMOMRS2 converges

to: EHoMaTe- =~ 38T wowT)coswTndwT), (3.61)

wherer = 0,1,..., 00.

O
Proof: When for each frequency tin (n=1,2,...,y - \) and any time instant i elements
the random vector In(i) = t"r,n(*)Jr=i,2 p are defined as:

Ir,n(i) = sin(fini + ~rn), (3.62)

the proof proceeds similarly as the proof of previous lemma. It should only be noticed that
for the rth element of the GMOMRSI:

aN- 1

2 _ 1 L ok * R i 3.63

CN T it ::O «*(0)11 - $,r.r(it)n (3.63)
where 02N corresponds to aZN in equation (3.52). Itfollows for N -> 00 under Riemann’s
definition of the integral that

o
S [ WU T)IT) = < (3.64)

a
The properties of NMOMRS obtained for the time-domain averaging under N -» 00 are
given by the lemma:
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Lemma 3.3 Consider the GMOMRS2.

1. Elements of its periodogram matrix # [g(jflm) = [dB 3X/MT0)] for m
0,1,..., V—1 under TV—* 00 converge to:

K 3Ne m)=(0+j0)S(m)

+ .ﬁzsl [(cos(™,n - #8n) - j sin(<ly,n- <t>,n))6(m - n)
+(cos@Tn- 45M) +j sin(<Br, - <t>,n)SMm- (V- n))] + (0+ jO)E(m - y ), (3.65)
where r,s = 1,2,... ,p.
2. The mean value vector Ai{g(i)} is equal to o for N —o00.

3. Elements of the correlation function matrix Rgg(r) = [Rgrg,(T\T 2 Jor T =
0,1,...,00 under TV—» 00 converge to:

Rvrvr(T) ifr=s

a.s. (3.66)
0 ifr/ s
/m Elements of the variance matrix cr|lg = X2 under TV—00 converge to:
ifr=s
cIrg. - { a.s. (3 67)
0 ifr~s

Proof:

1. It follows from Lemma 2.7 when ATn calculated from equation (3.59) for n =
1,2,..., 00 are used.

2. It follows from Lemma 2.9 and Lemma 3.2.

3. It follows from Lemma 2.9 and equation (3.59) that the elements of the correlation
function matrix forr = 0,1,..., 00 are given bhy:

2 2 /
Ruru.iT) = jy 711§1 \JMvrvr{"n)i>VM(SIn)cos(SInT + - &), (3.68)

when r,s

) =1,2,...,p. Forthe case of r —s the elements RUur(T) are deterministic
functions and:

-1

2 5

juin,R A r(T) = Min™j £ $wvr(fl«)cos(finr) = Ji,r,r(r), (3.69)
n=1

while forr / s andr = 0, 1,.., TV—1 the components

r?a(r) = y/$,,rvr(fin)$,,,Vi(fin)cos(finr + - 0, (3.70)
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are independent random variables with £ {r",(r)} = 0 and £ j(r"3(r))2j < 00 for all
n(mn=1,2,.,y —1/ Additionally:

im Y3l E iwrér))Z} < 00. (3.72)
00 7121
It implies under the strong law of large numbers [51] that
Z-1
lim iJUUI(r) = lim £ r"(r)=0 a.s. (3.72)
N-*o0o0 N —*o0 n=l

4. N1 follows immediately from the variance matrix definition that:
°gg = ®gy(®) as- (3.73)

O

It follows from Lemma 3.2 and 3.3 that the power spectral density defined NMOMES

converges asymptotically for Tv—»00 to a Gaussian multivariate random process which is
ergodic.

Multivariate nonorthogonal multisine time-series

The extended NMMES obtained from application of the approximation criterion (3.35)
to the power spectral density matrix $vv(juiT) (uT 6 [0,2ir)) of a wide-sense stationary
multivariate nonorthogonal random process v (i) turns also asymptotically for TV—»00 into
an ergodic Gaussian multivariate nonorthogonal multisine random time-series:

Lemma 3.4 Assuming that:

1 &V4(juT) - [&,r,,.0u>N]r,=12 p is the power spectral density matrix of
a wide-sense stationary, real-valued multivariate nonorthogonal random time-series
with zero mean vector and the variance matrix <ApWW — [T, Jrf=12 , where:

=M fL  *»r».U“T)d(uTy, (3.74)
2. forrit=1,2,..., p values of i, (amplitudes of the sine components of the extended
NMMRS u(i)) converge to 0 for TV—»oo in such a way that:
£{*Bu(jSIn)} = ®wO *fin), (3.75)
wheren =1,2,...,y —1;
3 Arto= ATtn = Oordlo=a=0forr,t=1,2

then the corresponding extended NMMRS u(i) converges in distribution for TV —* oo to
a Gaussian multivariate nonorthogonal multisine random time-series (GNMMRS) g(i) =
[fr»)r=i2 p zero mean vector and the variance matrix <r2v:

g(t) € AsAf(0,<Tyy). (3.76)

Additionally the correlation function matrix £{g(i)gT(i —r)} of theGNMMRS converges
to:

£{g()&T( -*) = xS 3 *wi{jijT) T >Ne I 37

wherer =0,1,...,00.
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Proof:When for each frequency Sin(n =1,2,...,y - 1) and any time instant i elements
the random vectoriIn(t) =[ir,n(*)]r=i,j, p are defined as:
INT A
Ir,(t) = —Z— =1 s\n(SIni + + ¥r,(,n), (3.78)
the proof proceeds similarly as for Lemma 3.2. It should only be noticed that:
i pij*9° 2’
£ | MUM*)INe)> = — A £| *wtfn»). (3.79)
n= n=

i
The time-domain averaging on any GNMMRS realisation under TV -+ oo results in the
following lemma:

Lemma 3.5 Consider the GNMMRS.

1 tIts periodogram matrix $gg(jSIm) for m = 0,1,..., V—1 under TV—% 00 converges
0:

$ By(jSIm) = K(jSIm)$pp(jSIm)K'(jSIm), (3.80)
where elements of the matrix &”p(jSIm) = A for r,s =
1,2,...,p are given by:

f-i
$BAN0'fim) = (+20)S(m)+ £ [@brn-<t>,,)—j sin<bri, —3n)6(m —n)

+ (cos{ttn - 4>,n) + j si{<trn- 4>,,n))6(m- (N - n))]+ (0+;0)5(m-y). (3.81)

2. Elements of its correlation function matrix: Rgg(r) = [Rgrg{T)]r,=i2 pfor T =
0,1,..., 00 under TV—»00 converge to:

J ™, RgraXT) = Rvrv.(T) (3-82)
3. Its mean value vector M {g(i)} is equal to o.

4- Elements of its variance matrix crgg = A under TV—00 converge to:

a°rs ~ a'\nv a"3 (383)

Proof of the above lemma proceeds similarly as for Lemma 3.3. -

It follows from Lemma 3.4 and 3.5 that the power spectral density defined NMMRS

converges asymptotically for TV—00 to an ergodic, Gaussian multivariate random process.

To summarise the asymptotic properties of the power spectral density defined multisine
random time-series it is worth to emphasise that:

1. The results of lemmas (3.1 -r 3.5) still hold if:

¢ the zero-frequency phase shifts and Nyquist-frequency distribution parameter a
are equal to |j, and

 the sine component amplitudes for constant and Nyquist frequency components
are assumed to be chosen so as the approximation criterion is satisfied,

because amplitudes of the constant and Nyquist frequency components tend to zero
for TV—00.

2. For a given power spectral density matrix of an orthogonal random process the cor-
responding synthesised MOMRS exhibits an interesting property: its periodogram
matrix is a consistent estimator of the true power spectral density matrix.
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3.3 CONTINUOUS-TIME RANDOM PROCESS
GENERATION

Consider a wide-sense stationary continuous-time band-limited multivariate random process
s(t) with the power spectral density matrix Sgs(jcj) ( [|4>ss(ju;)|| < 00 for 0 < u < 00) and
the corresponding autocorrelation function RgsM for which:

figpRuu (i) = = (3.84)

In the sequel, the to denotes a lag beyond which the autocorrelation function matrix R 33(t)
may be assumed to be a zero matrix.

The band-limited property of s(t) implies that there exists such a frequency wmar that
for all u) > umax the following assumption is satisfied:

# () = o. (3.85)

The proposed approach to the continuous random process s(t) generation is based on
the previously defined synthesis and simulation of random time-series.

The power spectral density matrix # S3(ju) is sampled in the frequency-domain (approxi-
mated by the periodogram of the corresponding multivariate multisine random time-series)
so as to avoid aliasing in the shift-domain of its autocorrelation function. Reversing the
sampling theorem it is evident that &ss(ju) can be sampled without producing aliasing if
the spacing S between the samples along the u>axis is such that:

** 2h ' (3 86)

Choosing the spacing S = j 1, the resulting discrete-frequency power spectral density
lines $ss(jSm) are then given by:

Am) —" ss(jw)|u/=6m* (3.87)

The synthesis and simulation of continuous-time random processes follows closely what
has been done while synthesising and simulating multisine random time-series u(i) with
specified power spectral densities. The approximation criterion:

$a(j6Tm) = 4Bu(jSIm), (3.89)

form =0,1,...,y resultsin the finite discrete Fourier transform UB(jSIm) of the cor-
responding basic//-sample multisine random time-series provided thesampling interval
T and the number TV of approximation nodes in the relative frequency range [0,2it) are
properly determined.

It follows from the given bandwidth ojmax of &m(ju) under the sampling theorem that
the sampling interval T for Rs3(t) is constrained by:

T < . (3.89)
Umax
The sampling interval of the continuous-time random process s(() is, also of course, equal to
T. The corresponding number TVof approximation nodes (the number of discrete-frequency
power spectral lines) should be chosen so as to satisfy the assumption (3.4).

Transforming the synthesised spectrum UB(jSIm) back into the time-domain an
TV-sample multisine approximation uB(i) of the random signal s(i) sampled with the sam-
pling interval T is obtained. The spectrum of the time-series uB(i) is given by periodic
repetitions of the continuous-time random process spectrum. These periodic repetitions do
nor overlap and accurate reconstruction of continuous-time random process is possible. Ad-
ditional s(t) values in between the sampling intervals (needed e. g. for numerical integration)
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can be calculated by using the sine interpolation. This interpolation can be interpreted as
a filtering, of a series of rectangular pulses spaced T seconds apart, with the area under
each pulse equal to the amplitude of the corresponding sample, by an analog reconstruction
filter with the impulse response:
sin
ri (39°)
This reconstruction filter is noncausal and therefore physically unrealizable in real time. Its
good approximations are high-orders analog low-pass filters with sharp cutoff characteristics.
Such reconstruction is called band-limited interpolation [61].
It should be noticed that continuous-time multisine approximations of wide-sense sta-
tionary band-limited continuous-time random processes inherit properties of the correspond-

ing multisine random time-series - their stationarity, ergodicity or nonergodicity, asymptotic
Gaussianess and ergodicity.

Chapter 4

Multisine W hite Noise
Approximation

This chapter is devoted to multisine white noise approximations obtained by using the pro-
posed random process synthesis and simulation method. The following cases are discussed:

« weakly ergodic scalar and bivariate white multisine random time-series for which
whiteness holds for finite TV-sample representations. Its pseudo-white and asympto-
tically Gaussian cases are introduced, too;

« weakly ergodic multivariate orthogonal asymptotically Gaussian and white multisine
random time-series which is obtained by approximating the power spectral density
matrix of multivariate white noise by the periodogram matrix of a weakly ergodic
multivariate multisine random time-series with the number of elements greater than 2;

« nonergodic multivariate orthogonal pseudo-white multisine random time-series which
is asymptotically ergodic and Gaussian. It is synthesised using the corresponding
nonergodic multivariate orthogonal multisine random time-series.

41 SCALAR WHITE MULTISINE RANDOM
TIME-SERIES

N-lag white multisine random time-series

When the power spectral density of a scalar white noise is approximated, the corresponding
extended SMRS can be turned into an extended white SMRS [32] for which the autocorrela-
tion function behaves for lags 0,1,..., N —1 as a pure white noise autocorrelation function.
This time-series is called N-lag white multisine random time-series (WSMRS):

Definition 4.1 An extended scalar multisine random time-series x(i) is said to be N-lag
white if its autocorrelation function for lagsr = 0,1,..., N —1 is the same as the white
noise autocorrelation function, i. e.:

(r2 ift=0
E{x()x(i- N} =Rxx(r) =< . 4.1)
[0 t/r=1,2,.,N-1

|
For any real random process simulation with WSMRS, the TV-lag white multisine random
time-series seems to be as good as the pure white noise series, because there exists a pos-
sibility to establish the necessary length N for which the autocorrelation function values

have to be equal to 0.
The statistical properties of the WSMRS are given by the following lemma:
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Lemma 4.1 Assuming that:
1 $,u(@>T) =A2 (uT € [0,2n)) is the power spectral densityof areal-valued white noise;

2. An=Afor n=1,2...,y —1 and the value of A is chosensothat:

3. Ag=idw = y and fo=&x—"

then the corresponding extended SMRS is a white multisine random time-series (WSMRS)
and:

1. its periodogram is:

= AZE;% s(m~n)y (4.3)
where m = 0,1,..., N —1. _
2. its mean value is:
AF{u(i)} = E{«()} = (4.4)
3. its autocorrelation function is:
£ r=0TV,..
E{u{i)u(i- N} = Ruu(t) = . (4.5)

4- its variance is:

(4.6)

Proof:
1. It follows immediately from the assumptions 2, 3 and from Lemma 2.2.
2. It follows immediately from Definition 2.1.

3. Application of (2.33) and (4-3) results in:

E{u(i)u(i- r)} = Ruu{r) = «("»- n)einmT =T E ein"T- (4-7)
n=0

m=0 n=0
It ends the proof when (2.5) is taken into account.

4. It follows from the WSMRS autocorrelation function.

a
It is surprising that the WSMRS has a constant mean value and its autocorrelation function
is equal to O for all lags r different from r = 0,N,___ Thisis a consequence of choosing

the WSMRS constant component amplitude Ao = 4- and the corresponding phase shift
00 = f-

It should be emphasised that the property of whiteness (4.5) depends upon the fact
that the WSMRS has the constant frequency bin fi throughout the entire frequency range
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[0,2it). It is also worth to note that whiteness of the WSMRS holds for finite TV-sample
time-series but Gaussianess of the time-series is an asymptotic property for N —00.

It follows from Lemma 4.1 that for N -* oo, the corresponding extended WSMRS u(i)
converges in distribution to a Gaussian WSMRS (GWSMRS) g(i) with zero mean and the

variance

o{i) € AsAT{0,y). (4.8)

N-lag pseudo-white multisine random time-series

The choice of the WSMRS mean value as equal to zero (4o = 0) influences behaviour of its
autocorrelation function resulting in an N-lag pseudo-white multisine random time-series
(PWSMRS).

Definition 4.2 An extended scalar multisine random time-series x(i) is said to be N-lag
pseudo-white if its autocorrelation function for lagst = 0,1,..., TV-1satisfies the condition:

[ T2 ift=0
E{x(i)x(i- N} = Rxx(t) =\ , (4.9)
(7(r)r2 ifr=1,2,.,TV —1

where |7(r)| <C 1.

The following lemma can be formulated:

Lemma 4.2 Assuming that:
1 3(1>T) = A2 (uiT 6 [0, 2k)) is the power spectral density ofa real-valued white noise;
2. An=Aforn=1,2...,y —1 and the value of A is chosen so that:

NTAZ: AS

4 ; (4.10)

3. Ao=00r<t:a—0,An—Ay anda = "!

then the corresponding extended SMRS is a pseudo-white multisine random time-series of
type 1 (PWSMRS1) and:

1. Its periodogram is:

Suu(SIm) = A2N55|1A(m ~np (4-11)
n=
wherem =0,1,...,TV—1
2. Its mean value is A<{u(i)} = £{u(t)} = 0.
3. Its autocorrelation function is:
ifr =0,TV,...
E{u(iu(i- N} = RU{e) =~ . (4.12)

1/ i
“WT otherwise

4- Its variance is:
N- 1A
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Proof of the above lemma proceeds similarly as for Lemma 4.1.

Another type of pseudo-white multisine random time-series may be defined by taking
additionally A|21 =Q0ora=0.

Lemma 4.3 Assuming that:
1 <w(uT) = A2 (uiT e [0,2ir)j is the power spectral density of a real-valued white noise;

2. An=Aforn=1,2...,y —1 and the value of A is chosen so that:

(4.»)
3. Ag= A?_:O orgo=a =0,

then the corresponding extended SMRS is a pseudo-white multisine random time-series of
type 2 (PWSMRS2) and:

1. Its periodogram is:

2 1

$uu(fim) = A253 tm- n)+ Hm ~ (N - n))]. (4-15)

71=1
wherem =0,1,..., N —1
2. Its mean value is ,M{u(i)} = £{u(i)} = 0.

3. Its autocorrelation function is given by:

[ ~Y ift=0,N,...
E{u(i)ufi - N} = Ruu(r) =~» (4.16)
" vl ()71~ otherwise
/m |ts variance is:
~o N - 2A
A (4-17)
O

Proof of the above lemma proceeds similarly as for Lemma 4.1.

Mean values of the PWSMRS1 and PWSMRS2 are both equal to 0 but their autocorre-

{ﬁtionlfunctions axe not equal to O for all lags different from integer multiplicity of N. For
ese lags:

« the autocorrelation function of PWSMRS1 has a small constant value and

 the autocorrelation function of PWSMRS2 exhibits oscillatory behaviour with small
amplitudes.

When N —»00:

» either the PWSMRS1 and PWSMRS2 autocorrelation function values tend to zero
for all lags t > 0;

 either the PWSMRS1 and PWSMRS2 converge in distribution for N —»00 to the
Gaussian WSMRS (GWSMRS) g(i) with zero mean and the variance y-:
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Example 4.1 Using a standard linear congruential random number generator with shuffling

[82], 100 different 128-sample equally distributed on [0, 2tt) white noise time-series realisa-

tions t28(»)> (k = 1,2,..., I00j were generated, see Fig. 4-1 for an example. The unbiased

estimate of the autocorrelation function and unwindowed periodogram of this time-series

realisation with removed mean value are shown respectively in Figs 4-2 and 4-3.
Autoregressive models:

= IT«" (4-19)

where et(i) is a hypothetical white noise with the variance a2, were fitted to all 128-sample
time-series realisations 437a{i) using the Least Squares identification method [13]. The mean
values and standard deviations of the a a n d a\ estimates are shown in Tab. 4-1-

Table 4.1
Parameter Estimates
Time-series ak, | °k
True white noise 0.000 1.000
0i28(0 -4.63-10“3(9.32-10-2) 0.990 (1.30-10-1)
«1” (0 -6.71 <10-4 (0.83 m10-2) 1.008 (1.76 *10-4)
*1” (0 -6.50 m10~3 (0.77 -10“2) 0.998 (2.24 m10-4)
SE£28(0 -2.46 m10-4 (0.85m10“2) 0.992 (1.77 -10-4)

Mean values and standard deviations (in parentheses) for 100 parameter estimations of AR
models for an equally distributed on [0,2ir) white noise generator ¢28(i), WSMRS ?j.28(i),
PWSMRS1 x£28(i) and PWSMRS2 ffE28(i); k = 1,2,..., 100

Table 4.2
Parameter Estimates
Time-series ak,i ak,2 °k
Simulated -1.500 0.700 1.000
VI28(i) -1.499 (1.20-10“2) 0.699 (1.34'10"2) 1.007 (8.22 +10“4)
4 28() -1.496 (1.20- 10-2) 0.703 (1.35 10-2) 0.998 (8.42 m10“4)
<i” (0 -1.499 (1.18 m10~2) 0.703 (1.30 1Q“2) 0.991 (8.14-10“4)

Mean values and standard deviations (in parentheses) for 100 parameter estimations of
second-order AR models excited by WSMRS ( 28(i))> PWSMRS1 (s[28(i)) and PWSMRS2
(*i28(0); *=1,2,..., 100

This standard linear congruential random number generator with shuffling was used
to generate 63-sample time-series realisations applied as phase shifts to synthesise hun-
dred 128-sample WSMRS realisations u[28(i), (k = 1,2,..., 100j with the variance 1. An
example of the resulting 128-sample WSMRS realisation, the unbiased estimate of its au-
tocorrelation function and unwindowed periodogram are shown in Figs 4-t, 4-2 and 4-3,
respectively.

Autoregressive models were fitted to all 128-sample time-series realisations u\28(i) using
the Least Squares identification method and the AIC criterion [56] to determine the models
order. The results of this simulated identifications are presented in Tabs 4-1 and 4-2.

All WSMRS realisations were used to generate 100 second-order AR time-series reali-
sations y128{i) (k —1,2,..., 100j:
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Fig. 4.1. A 128-sample white noise time-series realisation generated by using a standard
white noise generator (a) and a WSMRS (b)

The models:
128/1.000 /

VK A = 1000+ a*,1*-1+ afg2z-2en A 217

with ek(i) being another hypothetical white noise with the variance erfk were fitted to the
time-series using the Least Squares identification method [13]. The mean values and stan-
dard deviations for estimates of the model parameters a*i, ak2 and a\ are shown in Tab.
4.2

This simulation and identification experiments were repeated for the 128-sample reali-
sations of PWSMRS1 and PWSMRS2 with variances equal to 1. Examples of unbiased
estimates of their autocorrelation functions (Fig. 4-2) show that correlation properties of
the resulting PWSMRS1 and PWSMRS2 are indistinguishable from the properties of the
WSMRS. The presence of correlations is apparent from the results of fitting first-order AR
models to the 100 realisations of PWSMRS1 or PWSMRS2 (Tab. 4.1). All 128-sample
PWSMRSI and PWSMRS2 realisations were also used to generate the corresponding hun-
dred second-order AR time-series realisations with parameters as in (4-20). The obtained
results (Tab. 4-2) differ only slightly from those achieved for WSMRS.

The Gaussianess is an asymptotic property of WSMRS amplitudes for any given time
instant i which holds for N —00. This feature of GWSMRS was tested by finding biased
normalised autocorrelation estimates for WSMRS realisations at the time instant i = O for
the case of finite N. In order not to invoke the ergodicity assumption, averaging was not
performed in time but in the sample space.

Normalised biased autocorrelation function estimates for 100 segments of M (M —
32,64,128,256,512J realisations of the N —M-sample WSMRS for the time instanti = 0
have been calculated. In each segment the samples were numbered from 0 to M - 1, its lag
being the shift between the sample numbers. In Tab. 4-3 the mean square values of auto-
correlation estimates for lags 1 and 2 calculated on the basis of this 100 data segments are
compared with the values of the hypothetical variance for white noise. For real-valued white
noise time-series of the length M such tests result in the autocorrelation functions for all
lags asymptotically normally distributed with zero mean and with the variance jj .
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Fig. 4.2. Unbiased estimates of the autocorrelation function for 128-sample white noise
time-series realisations generated with a standard white noise generator (solid
line), WSMRS, PWSMRSI and PWSMRS2 (dotted lines)

Table 4.3
Variance of
M I\} autocorrelation
Lagl Lag2

32 0.0312 0.0370 0.0298
64 0.0156 0.0152 0.0146
128 0.0078 0.0069 0.0071
256 0.0039 0.0037 0.0040
512 0.0019 0.0016 0.0017

Mean square values for biased autocorrelation function estimates of WSMRS realisations
for the time instant i = 0 for 100 simulation experiments

The small difference between the calculated and hypothetical values should be noted. It
implies that Gaussianess is very good approximated for even small ones as well as for large
number of samples by white multisine random time-series.

42 MULTIVARIATE MULTISINE WHITE NOISE

4.2.1 Ergodic Case
Bivariate %&-lag white multisine random time-series

When the power spectral density matrix of a bivariate white noise is approximated by
the periodogram matrix of the extended BOMRS, a bivariate orthogonal white multisine
random time-series [66] is obtained. It is characterised by the autocorrelation function
matrix which for a number of lags behaves exactly like correlation function matrix of the
bivariate white noise. This time-series is called bivariate y-lag white multisine random
time-series (BOWMRS):
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0.5 1.5 2 2.5 3.5
Frequency

Fig. 4.3. Unwindowed periodograms for 128-sample white noise time-series realisations
generated with a standard white noise generator (a) and WSMRS (b)

Definition 4.3 An extended bivariate orthogonal multisine random time-series x(i) is
said to be y -lag white if its correlation function matrix £{x(i)xT(i —r)} = Rxx(r) =

[Rxrx,{T)]r,3=12 for ,aSs T = 0) 1) *=-, vjr —1 is the same as for bivariate white noise corre-
lation function matrix - its elements satisfy the conditions:

fF ift=0
Rxixi (*) — RXIXIiT) — (4.22)
0 ifr=1,2,...,% -1
RX% (") = RXXi(t)= 0. (4.23)

The spectral and correlation properties of the BOWMRS are:

Lemma 4.4 Assuming that:

1 &w(juiT) = A21 (1>T £ [0,2iv)j is the power spectral density matrix of a real-valued
bivariate white noise;

2. An=Aforn=1,2,...,y —1 and the value of A is chosen so that:

NTA2
A2; (4.24)

3. Ag—An — and o —d—rgj

then the corresponding extended BOMRS is a bivariate y -lag white multisine random
time-series (BOWMRS) and:
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1. its periodogram matrix is $Bu(jQm) = diag [$,rUr("m) + "®]r=12" wrere for
m=0,1,...,N —1:

$fiU)(fim)=A2||S(m)+ Y Wm*“n)+£m~(N ~")) + -y )3>
nne”"\{o,nf}
(4.25)
$u2u2(fam) = a2 £ [6(m - n) + Am- (V- n))], (4.26)
SineAT]i

2. its mean value vector is

M{n(i)} = £{u(i)} = (4.27)

3. its correlation function matrix is £{u(i)uT(i - r)} = RuuM —diag [AUur(i")]r=ii2,

where fort = 0,1,..., oo:
I/r —0,y, ...
Rui«i(r) — (4.28)
0 otherwise
Yp ifr=0,N,..
i a2 fT-N_.m 4-29
A U2u2(t) -Vf 0 279 ( )
0 otherwise
4. its variance matrix is given by:
AR N —2
Ouu= 2fdia3 | .1 (4.30)

Proof: This lemma can be proven similarly as Lemma 4-1 when it is noticed that for ne

zero or even holds: t
N> N nr—0UN u.
Y, ejnn'T= (4-31)
ne=0 0 otherwise

and that for na odd holds:

% ifr =0,iV,...

JV-i
N tr-N3N (4.32)
~T 0iT-T°T ’--
0 otherwise
so that:
) A gionoT | ™ “ejnneT (4.33)
(g210) 3 0

When N -y oo, the variance matrix of the BOWMRS converges to 'AZJ and its mean
value vector tends to a zero vector.
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Bivariate $-lag pseudo-white multisine random time-series

Each of the BOWMRS elements is an  -lag WSMRS. When values of its zero- and (or)
Nyquist-frequency amplitudes or the corresponding phase shifts are chosen as equal to 0, the
resulting BOMRS becomes an ~-lag orthogonal pseudo-white multisine random time-series.

Definition 4.4 An extended bivariate orthogonal multisine random time-series x(i) is said
to be np-lag pseudo-white if elements of its correlation function matrix £{x(i)xT(i —)} =

R-xx(r) = [Rxrx, (T)]rj=12for I°gs t = 0,1, —1 satisfy the conditions:
Crs ifr =0
Rxrxr(T) = Sa — , (4'34)
| O tr=1,2,...$- 1
where r = 1,2, |7r(r)| < 1 and:

Rxix2(r) —RrRijni~r) = 0. (4.35)

The properties of the BOWMRS for the case of A0 = 0 or $8 = 0 are given by:
Lemma 4.5 Assuming that:

1. &vv(juT) = A2l (uiT 6 [0,2ir)) is the power spectral density matrix of a real-valued
bivariate white noise;

2. An= A for 71= 1,2, —1 and the value of A is chosen so that:
NTA2
4 = A2 (4.36)

3. AO =0or+®9=0andAn =" anda =

then the corresponding extended BOMRS is a bivariateQ-lag pseudo-white multisineran-
dom time-series of type 1 (BOPWMRS1) and:

1. its periodogram matrix is * u(jQm) = diag [$®Ur(fi7d) + jo] _ , where for
m=20,1,..., N —1;
$?2w1(fim) = A2 £ [Sm- n) + S(m - (N - ti))] -F\26(m - vy), (4.37)
ot}

$fU2(fim) = A2 [m ~n)+ Sm- (N - ti)], (4.38)

2. its mean value vector is Ai{u(i)} = £{u(i)} = o.
3. its correlation function matrix is £E{u(i)uT(j - N} = RW (0 =diag{RUU(T)]r=1 2,
where forr = 0,1,..., 00:

N-2A + N
—ft-ZT  */r=10) 2)eee
Ruiui(r) — (4.39)

~TJ7¢‘2r otherwise

YT ifr =O0,N,...
RUVI(™Y) — * g ' (44<)

0 otherwise
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4. its variance matrix is given by:

A2 N -2

Cuu = ~fdta3 (4.41)

O

Proof of the above lemma proceeds similarly as for Lemma 4.4.
A second type of bivariate pseudo-white multisine random time-series can be obtained

assuming additionally that An, = Oora = 0:

Lemma 4.6 Assuming that:

1 *vv(juT) = A21 (uT € [0,2rc),) is the power spectral density matrix of a real-valued
bivariate white noise;

2. An=Aforn=1,2,...,%-1 and the value of A is chosen so that:
NTAZ_ 23 (4.42)

3. Ag=An =0o0rde=a=0;
2

then the corresponding extended BOMRS is a bivariate lag pseudo-white multisine ran-
dom time-series of type 2 (BOPWMRS2) and:

1 its periodogram matrix is = diag |*urur(“m)+ J0]r_12> where for
m=20,1,...,N —1L
$flUlI(nm) = A2~ [6(m- n) +S{m- (N- n))}, (4.43)
us(fim)= A H [6{m- n) +6(m- (N - 7)), (4.44)
nneAfJ
2. its  mean value vector is .M{u(i)} = £{u(i)} = o.
3. its  correlation function matrix is E{u(i)uT(«—r)} = RW(r) = diag[RUrUr(T)]
forr =0,1,..., 00:
N -4 A ifr =
N 5T ifr =0,f,
RUMIN(T) — (4.45)
-wa[l + (-1)t]t™ otherwise
A ifr =0,N,...
R — A HT-K N (4.46)
0 otherwise
J. its variance matrix is:
) A N-4 (4-47)
Cluu = N
O

Proof of the above lemma proceeds similarly as for Lemma 4.4.
When N -> 00, either the BOPWMRS1 and BOPWMRS2 correlation function matrices

tend to zero matrices for all lags r > 0.
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Example 4.2 To generate a bivariate orthogonal Q-lag white multisine random
time-series realisations, two series of random phase shifts realisations are necessary. How-
ever, the randomness of those series can rather be poor and they don need to be orthogonal:
the proposed approach is randomising the u”™(i)]r outcome mainly thanks to the flat-
ness of the spectra and orthogonalising it thanks to the choice offrequencies present in each
time-series. This effect is particularly striking for short time-series.

Table 4.4
Identification Parameter Estimates
Method ak1 ak,EQ
LS 430 10'3(0.130) 1.57-10-3 (0.148)
AC 4.45-10-3 (0.130) 1.5M 0-3(0.145)

Mean values and standard deviations (in parenthesis) for 100 parameter estimations of AR
models computed via the Least Squares (LS) and via normalised autocorrelation function
(AC) for white noise realisations <€Bui(n) and &4R(n) (t = 1,2,...,100) generated by
using the standard linear congruential random number generator Rani

A standard random number generator Rani with shuffling [82], was used to generate 100
different 128-sample equally distributed on [0,2iv) white noise time-series realisations, the
first half to be used as the ¥®ul(n) phase shifts, the second half to be used as the 444.2(n)
phase shifts (k = 1,2,..., I00j. The diagrams of unbiased autocorrelation functions and
cross-correlation function estimates for two 64-sample phase shifts realisations (Fig. 4.4)
are presented in Figs 4-5 and 4-6, respectively.

To each of the 100 different 64-sample subseries the following autoregressive time-series

14 al]{,l’ ; A U (4-48)

tiddw = i?(allC\z (4‘9

with e*'u’ (ra) and e£12(n) being hypothetical white noises were fitted using the Least Squares
identification method [13]. The normalised autocorrelation approach (AC) was used in turn
to determine another batch of estimates for the AR coefficients. The mean values and
standard deviations of the af'“1 and a£™2 (k = 1,2,..., 100,) parameter estimates derived
by both approaches are shown in Tab. 4-4m Both phase shift series were in turn used to
generate 100 different 128-sample BOWMRS realisations ug28(t) (k = 1,2,..., 100).

Unbiased autocorrelation functions and cross-correlation function estimates for a reali-
sation of the BOWMRS (Fig. 4-4) are shown in Figs 4-5 and 4-6, respectively.

To each of 100 different 128-sample bivariate 64-lag whitemultisine random time-series
realisations an autoregressive model was fitted using the Least Squaresidentification method
and the AIC criterion [56] for order determination. It always resulted in first-order AR
models:

UE8() = r+ag,*-*6*17 (4'5°)

W81 = i+ ajfr»-1~ 0, (451)

where e£‘(i) and e£2(i) are hypothetical white noises. The normalised autocorrelation ap-
proach (AC)was used inturn to determine another batch of estimates forthe AR coeffi-
cients. Themean values and standard deviations of the a®j and ak\ (k=1,2,..., 100)
parameter estimates derived by both approaches are shown in Tab. 4.5.
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a) 0)

b) d)

Fig. 4.4. Phase shifts time-series ~64Ul(re) (a), $64’ui(n) (b) generated by using the Rani
and BOWMRS elements m12s(0 (c), 1ij28~) (d)

Table 4.5
Identification Parameter Estimates
Method ttk,1
LS 9.83-10“6 (0.155) -5.67- 10-5 (0.113)
AC 6.35 10“5(0.150) 2.23 10-4 (0.114)

Mean values and standard deviations (in parentheses) for 100 parameter estimations of AR
models computed via the Least Squares (LS) and via normalised autocorrelation function
(AC) for the BOWMRS elements u[Z(i) and u\*$(i) (k = 1,2,..., 100) with phase shifts
generated by the Rani

The results of this simulation and identification experiments clearly demonstrate the
dramatic improvement of the BOWMRS properties as compared with the original Rani
phase shift time-series.

Biased autocorrelation function estimates were calculated for 100 different 64-sample
time-series realisations and lags 0,1,..1 0. Mean values and mean square values for biased
autocorrelation function estimates are presented in Tab. 4-ti-

It should be noticed that the variance of autocorrelation estimates is lag dependent. This
variance groves with the increase of the lag. Mean values of the estimates are near equal to
zero.

Gaussianess of the BOWMRS is an asymptotic (N -» 00) property for any given time
instant i. This property was tested for the time instant i = 0. In order not to invoke the
ergodicity assumption, averaging was not performed in the time-domain but in the sample
space.

Let us determine M = 100 realisations, each consisting of N = 64 samples of values
u®4(0) and uf4(0) ofa BOWMRS ub4(i). The samples were numberedfrom 0 to 63. For each
realisation the normalised biased autocorrelation function was calculated, its lag being the
shift between sample numbers. This was used in turn to calculate the mean value and mean
square value of the autocorrelation functions. Tab. 4-7 shows results of those calculations
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Fig. 4.5. Unbiased estimates of autocorrelation functions for phase shifts 064“1(n) (a),

464'(n) (b) (solid lines) and BOWMRS elements u]28(i) (a), u\28(i) (b) (dash-
dot lines)

for lags from 0 to 10.

For any time instant the biased autocorrelation function estimates for M real-valued
white noise samples are for all lags asymptotically normally distributed with zero mean and
with the variance -j-r, which in our example is equal to 0.01 for M = 100.

The small difference between the calculated and theoretical values should be noted. It

follows that BOWMRS is a very good approximation of Gaussian bivariate white noise even
for small values of N.

Gaussian Multivariate W hite Noise

When the power spectral density matrix of a multivariate white noise is approximated
by the periodogram matrix of an extended MOMRS, the corresponding time-series is an
extended white multivariate orthogonal multisine random time-series (MOWMRS). For
p = 1,2 (WSMRS and BOWMRS) constant frequency bin spacings can be kept throughout
the entire frequency range [0, 2tt) and whiteness holds for finite TV-sample time-series. This
property cannot be, unfortunately, extended for MOMRS having more than 2 elements.
Correlation matrices of MOWMRS synthesised and simulated on the basis of the power
spectral density of a p-variate white noise with the number of elements p > 2 coincide only
asymptotically for N —o00 with the correlation matrices of a p-variate white noise. Asymp-
totically, the MOWMRS is a Gaussian multivariate orthogonal white multisine random

time-series (GMOWMRS). Its spectral and correlation properties are given by the following
lemma:

Lemma 4.7 Assuming that:

1 $vv(ju)T) = A2 (uiT € [0,2it)j is the power spectral density matrix of a real-valued
multivariate white noise;
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Fig. 4.6. Unbiased cross-correlation function estimates for phase shifts q64U(ra) and
$64’'Uxn) (solid line), and BOWMRS elements uj28(i) and u\2a(i) (dashdot line)

2. A, = Aforn=1,.2, —1, Agq=An =y, ¢o= = 2 and e value of A
converges to 0 for N —00 in such a way that

= A2 (4.52)

then the corresponding extended MOMRS u(i) with the consecutively circularly ordered fre-
quencies converges indistribution for N —»00 to a Gaussianmultivariateorthogonal white
multisine randomtime-series of type 1 (GMOWMRS1) g(i) =[<7r(*)]r'=i,2p with zero

mean vector and the variance matrix —'ﬁl -
g(t) € AsAf(o,S_?l). (4.53)

and the GMOWMRSI correlation function matrix converges to £{g(i)gT(* ~ r)} =
Rgg(r) = dia9[RgrBr(T)]T=i,2 p. where forr =0,1,...,00:

Rgrgr(l) — W . (4.54)
0 otherwise

O
Proof: The asymptotic expressions for the correlation functions of MOMRS elements were
derivedfor r = 1,2,... ,p as:

Rurur(T) = £ Z [eInnT + ejn(N' n)T] + RoAr)

= A1 ,en(r-D)T £ e*P(n-rr + £fAQV-n+nT + (4.55)

nn€r,p



68 Multisine White Noise Approximation

Table 4.6

Lag Autocorrelation Estimates
u™ uf

1.000 (0.00-10-4 1.000 (0.00 10-4)
-0.028 (2.59-10-4 0.003 (2.77-10~4)

0.030 (3.71-10-“ -0.065 (3.59-10-4)
-0.031 (6.83-10-4)-0.002 (7.33-10“4)

0.026 (8.30-10~4)-0.067 (7.25-10-4)
-0.035 (9.00-10-4)-0.003 (8.49-10-4)

0.029 (1.25-10-3)-0.058 (1.22-10“3)
-0.029 (1.32°10-3 0.002 (1.43-10“3)

0.034 (1.11-10-3 -0.055 (1.24-10-3)
-0.030 (1.33 10-3 0.005 (1.50-10“3)

0.024 (1.67-10-3 -0.057 (1.94-10“3)

© 00 ~NO U WN RO

=
o

Mean values and mean square values (in parentheses) for biased autocorrelation function
estimates of BOWMRS for 100 identification experiments - N = 64

The RUrur(T) can be approximated for N » k, N » p and N -> oo by:

: A2 . jOpir
RepghiTh= il NR Y '~V (4.56)
This implies, taking into account (2.5), that:
G ifr=0
RorgT(r ) — (4.57)

0 otherwise

The MOWMRS mean value vector is:

n ex20 - 459)

The corresponding variance matrix is given by:

-uu = fydia6 [,,;]r=ii2 p, (4.59)

where nr is the number of elements of the set \ {0}. When N -> oo, the mean value

vector tends to a zero vector and nT approaches It implies that <2u tends to ~ | vector.

4.2.2 Nonergodic Case
N-lag pseudo-white multisine random time-series

When the power spectral density matrix of a multivariate white noise is approximated by
the expected value of the periodogram matrix of an extended NMOMRS, a nonergodic

multivariate orthogonal iV-lag pseudo-white multisine random time-series (NMOPWMRS)
may be synthesised:
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Table 4.7

Autocorrelation Estimates
for O-time instant realisations

«i*(0)

1.000 (0.00-10"2)
-0.046 (1.42- 10"2)

0.018 (1.40 - 10-2)

0.020 (1.60-10"2)
-0.010 (1.48-10"2)
-0.014 (1.22-10%2)
-0.021 (1.39-10-2)
-0.003 (1.42 -10%2)
-0.013 (1.32-10-2)
-0.007 (1.23-10%2)
-0.022 (1.50 - 102)

U(0)

1.000 (0.00 *10-*)
-0.055 (1.42 +10"2)
-0.018 (1.38-10-2)

0.018 (1.62 -10"2)
-0.017 (1.29-10-2)
-0.011 (1.29 -10%2)
-0.023 (.40 +10-2)

0.000 (1.53 +10-2)
-0.007 (1.23 10"2)
-0.012 (1.25- 102)
-0.015 (1.41 +10-2)
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Mean values and mean square values (in parentheses) for biased autocorrelation function
estimates for 100 64-sample segments of uf4(0) and u®4(0)

Definition 4.5 An extended nonergodic multivariate orthogonal
time-series x(i) is said to be an N-lag pseudo-white if its correlation function matrix
E{x()XT(@i - r)} = [E{xr(i)x,(i ~ T)}r,j=i,2..Pfor la@ T = 0,1,... ,N - 1 satisfies the

following conditions:

r2

E{xT(i)xr(i- N} =

7r(r)r2

forr=12,...,p and |7r(r)| < 1;

ilr=0

£{xT(i)x,(i - N} = 0,

forr,s =1,2,...,pandr " s.

The properties of NMOPWMRS are given by the following lemmas:

Lemma 4.8 Assuming that:

ift—1,2,..—1

random

(4.60)

(4.61)

- &w{juT) = A21 (1jT 6 [0,2it)J is the power spectral density matrix of a real-valued
multivariate white noise;

2. Al]n= A forn= 1,2,

that:

3. Arfi=0or<vo=0forr=1,2,..,,p;

mArM=Y an*a =5 forr = 1"2>e--iP;

then the corresponding extended NMOMRS u(t)

pseudo-white multisine random time-series (NMOPWMRS) and:

1. its expected value vector is £{u(j)} = o.

—landr=1,2,...,p and the value of A is chosen so

(4-62)

is a nonergodic multivariate N-lag
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2. its correlation function matrix is E{u(t)uT(t —r)} = [E{ur(t)ua(i —r)}]rJ=12 v,
where forr = 0,1,...,00:
E{uT(i)ur(i - n} ifr =s
E{ur(i)u,(i-r)} = (4.63)
0 ifr/ s

E{uT(i)uT(i —r)} is the autocorrelation function of the rth NMOPWMRS element:

N - 1A2
£{ur(ijur(i - N} = (4.64)
TlTA‘ otherwise
3. its variance matrix is:
E{(u(i) - E{«(OP)(«() - E{u(@)}T} = (4.65)

Proof:
1. It follows immediately from the assumption 3 and from Lemma 2.8.

2. It follows from Lemma 2.8 that £{u(t)ur (i - r)} = diag${ur(i)ur(i - r}jr=12 p.
This ends proof when it is noticed that the rth (r - 1,2,...,p) element uT(i) of
NMOPWMRS u(t) is a PWSMRSI (see Lemma 4-2).

3. It follows from the NMOPWMRS correlation function matrix.

Lemma 4.9 Consider the extended NMOPWMRS.

1. Its periodogram matrix is $Ju(j!!m) = (jHrn)]J , where for
L r3 ra=12,...p
m=0,1,...,N - 1:
= (° +jO)S(m)
+A2 J2 [(cos(™,n- 4>n) ~j sinfer,n - <4=n)) 6(m - n) - (cos(d>r,,, - </yn)
+jsm(<j>ri,, - <p,n))i(m - (N - n))] + (A2sin§¥z sin z +jO)S(m- (4.66)

2. Its mean value vector is .M {u(i)} = o.

3. Its correlation function matrix is RW(r) = [Ruru,(f)Ird=i2 p, where for
r=0,1,...,00:
A2 . . .
Rurti,(T) —jyy 7~ cos(finr+ <rn- <£,)+ (~1)Tsin4Td sings N . (4.67)
4. Its variance matrix is 0-2u = k2ruJriJ=li2i.,.., where:
NT y '\ cos(<>,.,, - 48 + sin <b»5| sin <t>»5l (4.68)
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Proof of the above lemma follows immediately from Lemma 2.7 and Lemma 2.9.
The expected value of R Lu(r) is the diagonal matrix:

[ $~x£1 ifr=0,iV,...
£{Ruu(-)}=s (4-69)
(o otherwise

Gaussian multivariate white multisine random time-series
The extended NMOPWMRS turns asymptotically for N -» 00 into a Gaussian multivariate

white multisine random time-series, which is ergodic:

Lemma 4.10 Assuming that:

1 $vv(juiT) = A2/ (uiT G[0,2it)j is the power spectral density matrix of a real-valued
multivariate white noise;

2. Arn= A converges to 0 for N -> 00 in such a way that forr = 1,2,.. .,p:

NTA2
=n,(to), (4-70)

Wheren=1,2,..N— 1;

3. Ar0= %<r2n =0orgf0=a=0forr=1,2,...,p;

then the extended NMOMRS u(i) converges in distribution for N —00 to an ergodic,
Gaussian multivariate white multisine random time-series of type 2 (GMOWMRS2) g(i) =

[ffr(*)]r=i 2 p with zero mean vector and the variance matrix fAerl:

S(i) € AsSSio, )- (4-71)

Additionally the correlation function matrix £{g(i)gT(i-r)} of the GMOWMRS2 converges
to:
(Li ifr=0
£{9(0gT(*~n)} = Rgg(n)= 1| . (4.72)
l o ifr>0

Proof of the above lemma follows immediately from Lemma 3.2 and Lemma 3.3.



Chapter 5

Simulation of Gaussian Random
Processes

This chapter is concerned with simulation of Gaussian random processes. Simulation
schemes based on the proposed approach to random process synthesis and simulation are dis-
cussed, including a proposition of simulation time-scale contraction. The proposed schemes
are illustrated by simulation examples.

5.1 SIMULATION SCHEMES

It follows from the previous sections that the statistical properties of multivariate multi-
sine random time-series synthesised based on the given power spectral density matrix of
a random process to be simulated behave, asymptotically with the number of approxima-
tion nodes N —* 0o, exactly as these for the corresponding true Gaussian random process.
In computer simulation experiments there is no possibility to perform simulations for an
infinite N. To simulate random time-series, a finite value of N must be chosen. This choice
influences the statistical properties of the synthesised multisine random process approxi-
mations. However, the original power spectral densities and autocorrelation functions are
approximated very precisely by the corresponding properties of the synthesised multisine
random process approximations, even for small values of N. The influence of finite N can be
seen while variances of parameter estimates obtained in multiple repeated simulation exper-
iments are compared with the corresponding theoretically calculated Cramer-Rao bounds
for the true Gaussian random processes.

From the spectral factorisation theorem follows that results of parameter estimation
for time-series obtained directly from the given power spectral density diagram and from
the corresponding discrete-time filter excited by a multivariate orthogonal white multisine
random time-series are comparable [24], [28]. It implies that discussion of the Cramer-Rao
bounds for the results of parameter estimation for power spectral density defined mul-
tivariate multisine random processes may be done by analysing only the results for the
corresponding multivariate orthogonal white multisine random time-series.

Let / be the number of consecutive samples taken from a synthesised WSMRS with
the period N (I < N). It is well known [13] that, for a real-valued Gaussian white noise
time-series of the length /, estimates of its normalised autocorrelation function for all lags are
asymptotically normally distributed with zero mean and the variance j. For the WSMRS,
variance of the normalised unbiased autocorrelation estimator

Rudt) _ | E'=oufiju(i- r)
*«k(0) 1~T £'=0"2%

is lag dependent. The smallest value of this variance is for the lag r = 1. The variance
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Ruu(h) may be approximated by the following formula:
Ruu(0)
Auu(l) (5.2)
Ruu(O f-D 2"
© 1+ U4

It is obvious that the above expression is also valid for each element of the NMOPWMRS.
2

Ruu( 1)

,Ruu{0)

for all elements of MOWMRS is

The variance £ of the normalised autocorrelation function estimator (5.1)

Ruu(l)
*Ruu(O) I-1)2
-/ +1

(53)

Analysis of the above expressions leads to the conclusion, that using multisine random
time-series to simulate Gaussian random processes, the two simulation schemes may be
proposed:

case | « N so that
1+ f{I,N,p) = 1, (54
where:

for SMRS, NMOMRS and NMMRS

f(I,N,P) = (5.5)

(- 12 for MOMRS
4--i+ i

This implies that variances of the autocorrelation function estimator for elements
of the power spectral density defined multivariate multisine random processes are
comparable with the corresponding values of the Cramer-Rao bounds for the true
Gaussian random processes. For the given length / of a random process realisation to
be simulated, the period N of the corresponding multisine random time-series may
be chosen using the following approximation:

I for SMRS, NMOMRS and NMMRS
N > (5.6)
A~ for MOMRS

where k is the relative error, in the variance of normalised unbiased autocorrelation
function estimator (5.1) for elements of the multivariate multisine random time-series,
with respect to the Cramer-Rao bound, i.e.:

Ruu(l)
Auu(0O)
Kk = (5.7
7 1+

W . N,p)

In this case an /-sample realisation of the power spectral density defined multisine
random process u(t) may be obtained by using the non-destructive zoom FFT pro-
cedure [81]. Assuming that $ is an integer number, the /-sample multisine random
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process realisation may be calculated by performing y- /-sample inverse finite discrete
Fourier transforms:

f1 f-i
u(i) =Y, ¢gn,i £ U(ft(/m Fq)ynm\ (5.8)
9=0 771=0

where U( ) is a realisation of the spectrum of a multisine random process synthesised
for a given power spectral density matrix of the random process to be simulated using
rules presented in Chapter 3.

e case / « N (I < N) in which the variances of autocorrelation function matrix elements
estimates for the power spectral density defined multivariate multisine random pro-
cesses are always much smaller than the corresponding Cramer-Rao bounds for the
true Gaussian random processes. The results of autocorrelation estimation behave as
for the true Gaussian random process with the number of samples

- y2y *1 +fW p)- (5-9)
Ruu(1)
*Kuu(O)

It means that to simulate an / -sample time-series representation by using the classical
Gaussian white noise random number generator you can simulate the corresponding
/-sample (/ < /) multisine random process realisation with the same statistical proper-
ties. This is an interesting property of the power spectral density defined multisine
random time-series which may be called simulation time-scale contraction. The si-
mulation time-scale contraction allows us to reduce simulation effort radically. It is
especially important in real-world experiments when test times are limited by the
properties of system under tests.

5.2 EXAMPLES

The proposed approach to the synthesis and simulation of Gaussian random processes given
by their power spectral densities is illustrated by the following examples:

Example 5.1 / = 256-sample realisations of the following third-order AR time-series from
Example 3.1:
1.00
VA “ 1.00- 2.002-1+ 1.45z-2- 0.35.Z-3 £5'10)
with unit variance were simulated by using:

e its time-domain representation as a discrete-time linear filter excited by the white
noise e(i) obtained from a standard Gaussian white noise generator (SGWNG) or by
a white multisine random time-series WSMRS with the period N = 256;

« its frequency-domain representation as the power spectral density diagram (Fig. 3.1),
which was approximated by the periodogram oj a multisine random time-series with
the period N = 256,262144. For N = 262144 the non-destructive zoom FFT was

used.
The period N = 256 ("j- — 1 and the relative error k = 0.996) corresponds to the
contracted time scale I' “ 65281. For N = 262144 (j- = 1024 and the relative error

k = 0.001) the contracted time-scale is equal to the original one (I = 258).
Each simulated N - 256-sample third-order AR time-series realisation was identified
using the Least Squares identification method [13]. The mean values and standard deviations

Examples 7%

Table 5.1
Parameter Estimates
Parameter (CRB) N = 256 N = 262144
SGWNG WSMRS SMRS SMRS

-2.00 (0.058) -1.99 (0.053) -2.00 (0.006) -2.00 (0.006) -2.00 (0.058)
145 (0.104) 144 (0.095) 145 (0.012) 145 (0.010)  1.45 (0.099)
-0.35 (0.058) -0.35 (0.053) -0.35 (0.008) -0.35 (0.006) -0.35 (0.058)

Mean values and standard deviations (in parentheses) of the third-order AR time-series
model parameter estimates obtained for 100 simulation experiments using the Least Squares
identification method - / = 256

(in parentheses) of the estimated parameters for the third-order AR model in 100 simulation
experiments are presented in Tab. 5.1.

It is worth to note that the method based on approximation of the power spectral density
diagram by the SMRS periodogram gives results which are comparable in accuracy with those
produced by the time-domain method with the WSMRS excitation.

Example 5.2 The bivariate orthogonal random process v(i) given by the following power
spectral density matrix

1.00 + jO ;

“v(juT) = 1.64-1.60cosuT 0+Jo

0+jo e2cos(uT) +jQ (5.11)

was simulated by using the proposed approach. The $ vv(ju>T) was approximated by the
expected value of NMOMRS periodogram matrix. Its | = 1000-sample realisations were
obtained from the corresponding MOMRS with the period N = 4096,65536,524288. This
choice of the period N corresponds to the contracted time-scale | ~ 1324,1016,1002, re-
spectively.

The bivariate AR time-series:

Az v(i) = e(t) (5.12)

was identified for each simulated I-sample random process realisation using the Least Squares
identification method [13], [56]. The mean values, standard deviations (in parentheses) of
parameters estimated in 100 simulation experiments for the orthogonal AR model with the
structure of the matrix A(z~1) chosen as

A(-1) = 1.00 0.00 L “h 0.00 -t 4 0.00 0.00 . 0.00 0.00 .3
' 0.00 1.00 000 «» 0.00 322 Qa8
(5.13)
and the corresponding Cramer-Rao bounds (CRB) are presented in Tab. 5.2.
The orthogonality of the simulated random process realisations was examined by identi-

fying a nonorthogonal AR model with the following structure of the matrix A(z_1)

1.00 0.00 1 a2 0.00 0.00 000 000 -3
A (0 = 000 100 T a1 ax 0.00 T 000

a22
(5.14)
The results are presented in Tab. 5.3.
It follows from the above tables, that in simulation experiments for 1 ss N (N = 4096,
y- = 4) the standard deviations of the estimated parameters are much smaller than those
which result from the Cramer-Rao bound. For interpretation of the identification results the
simulation time-scale contraction proposition may be used. In the case of N equal to 65536
('y- = 65 and the relative error k = 0.015j the variances of the estimated parameters are
very close to the Cramer-Rao bounds. The same is true for the period N - 524288.
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Table 5.2
Parameter Estimates
Parameter (CRB) N = 4096 N = 65536 N = 524288
alJi (0.019) -0.798 (0.018) -0.798 (0.017) -0.798 (0.018)
a2 (0.031) -0.993 (0.026) -0.991 (0.035) -0.999 (0.033)
a2 (0.042) 0.481 (0.034) 0.478 (0.041) 0.484 (0.041)
a2 (0.031) -0.130 (0.024) -0.124 (0.030) -0.127 (0.031)
Mean values and standard deviations (in parentheses) of the orthogonal AR model parame-
ter estimates obtained for 100 simulation experiments - | — 1000
Table 5.3
Parameter Estimates
Parameter (CRB) N = 4096 N = 65536 N = 524288
(0.019) -0.797 (0.018) -0.797 (0.017) -0.798 (0.018)
a}2 (0.021) 0.001 (0.022) 0.000 (0.020) 0.000 (0.016)
ah (0.019) -0.001 (0.021) -0.002 (0.020) -0.001 (0.020)
a2 (0.031) -0.992 (0.026) -0.990 (0.035) -0.998 (0.033)
a2 (0.042) 0.481 (0.034) 0.477 (0.041) 0.484 (0.044)
al2 (0.031) -0.130 (0.024) -0.124 (0.030) -0.127 (0.030)

Mean values and standard deviations (in parentheses) of the nonorthogonal AR model
parameter estimates obtained for 100 simulation experiments - | = 1000

It follows from the simulation and identification experiments that multivariate random
process realisations simulated using multivariate multisine random time-series very precisely
reconstruct the statistical properties of the original Gaussian random processes.

Chapter 6

Multidimensional Multisine
Random Processes

In this chapter, an extension of multisine random time-series (1-D case) concepts presented
in Chapter 2 to multidimensional (Af-D) case is given. Scalar and multivariate Af-D multi-
sine random processes are formally defined and their independent variable- and frequency-
domain properties are established. It is shown that M-D multisine random processes inherit
properties of 1-D multisine random time-series.

The defined M-D multisine random processes are used to synthesise and simulate
wide-sense stationary M-D random processes given by their power spectral densities.
Asymptotic properties of the obtained Af-D multisine random approximations are discussed.

6.1 FUNDAMENTALS

Definitions of Af-D multisine random processes are closely related to the Af-D discrete
Fourier transform defined for a finite number of data.

Let x(iu) ((i,,) = .. ,»Af)) be an Af-D series represented by its Ni ¢ M2meNm
values given for all independent variable Af-tuples (iu) GX M, where:

XM= {0,1,..., Vi —1} X{0,1,...,i2—1} x x {0,1,..., —1}- (6.1)
The corresponding Af-D finite discrete Fourier transform of z(i,,) is given by:

N j-1 Nu-1
X(SIlvmv) = £ eee £ *(< )*->£-. tW >\ (6.2)
*1=0  *Af=0

for all harmonic frequency M-tuples (fium u) = (Qxrax,n2mz2, .. - €A where:

Arg = {O ,«!,... .M - Dn1}x{0,n2)...,(JVa-)ft2}x---x{0,n MI...,(JVjif-)nM },

6.3
(j12llm v)= (jilimi,jSI2m2,...,jSIM'rnM), and foru = 1,2,...,Af: e
. i denote fundamental relative frequencies (bins),
e m, (mv=20,1,..., Nu) denote the consecutive harmonics of these frequencies.
The inverse M-D finite discrete Fourier transform is:
1 NST N o M
X(t,) =-sr— (6.4)

E E
/=1 vm=0 m\f=0
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The M-D finite discrete Fourier transform can be applied to synthesise and simulate
w -o random processes exactly like it was done in the 1-D case. The main building block
in this is the M-D sine series:

x(iu) =A(nj Si[‘gg&»nuiv +<ﬂ<§))> (63

Where a~n » (cra.y = ¢zii.N?,. ...« ) > is adeterministic amplitude ofthe w - o sine series
(j4(n,,) € TV) and 4>(nu) is a phase shift.

If the M-D sine series is represented by ~ \n i- ®my . values given for all (*,) £ XM,
then its M-D finite discrete Fourier transform is calculated as follows:

N\—1 Nm -~ M M

X (jflumv)= E """ E A(n,)sin(E ft-'«-"** + A(n,)e_J" ~'“n'm!"
(i )ﬂ:()«Af:()()g:1 (n,.))

A Ni— NM-1

=% * E -E
J *1=0 <0
=~ (n ’)gjn i) ei*<n,) JJ <5(m, - n,) - [1 «(m, - @V, - n,)) (6.6)
il=1
where use has been made of:

A n ( ndl if (*,) €X"
E " E e =< 6.7)
*I=0 >m=o (0 otherwise

and Xg* = {O,NIt...} X {O,N3,...} X meX {O,NM, mm}o

The spectrum X (j of the real-valued M-D sine series satisfies, for all harmonic
frequency M-tuples (f2vmv) e the following condition:
*(j(air - num,,)) =X {-jnvm,,). (6.8)

The M-D sineseries is represented in the relative frequency range [0, 26)m by two lines.
This implies that todefine a sum of the M-D sine series (an M-Dmultisine random process)
having spectrum lines defined for all frequency M-tuples (flum v) 6 asetN M (AfM C
A™) of the frequency M-tuples (Q”my) of the corresponding M-D sine series components
included in the sum should be defined. If Ni, N2, ..., Nm are all even then the set N M
with minimum number of the elements (fi,ra,,) can be defined for:

¢ the 1-D case [28], [32], [34], [66] as:
Arl= {o.fil,...,filr- = 1t}. 6.9)

In the set A1 there are two special frequencies at which two spectral lines are placed.
The set AQ of these frequencies is:

A = {0,*}. (6.10)

e the 2-D case in two ways - either

AT2= {{o,ftlv .. A(ATj- D} Xjft2,2ft2,, D} u {>ni- s} x {0,°}}, (6.11)

or

N2={{fii,2ft!,...M y ~)9}x{°’n2-- D} Uloiit] X jo,ft2,... ,ith. (6.12)
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In the sequel, only the first definition of the set N 2is used. In this definition the last
(the second) frequency variable covers the range [0,it].

The set Af2 can be constructed on the base of the corresponding set (6.9) for the 1-D
case as:

A= {{o,n,....ft7-1)} x {ft2,2fi2,...,0 ~ -1 )} UAALX {0,*}} . (6.13)

The set Al-2 contains four special frequency 2-tuples at which two spectral lines are
placed. Their set Ng is given by:

Afj = {0, it} x {0, it} = {0, it}2. (6.14)

the 3-D case in three ways. For the case when the last frequency variable (the third)
covers the frequency range [0, it], the set A"3 can be obtained recursively by using the
set Af2 as:

AT3= {{o,fti,... M Ni- D}x{o,ft2,....Ft~-1)} x |fi3,2ft3,... -3

UAMx o, it]]. (6.15)

The set A-3 contains eight special frequency 3-tuples at which two spectral lines are
placed:

Al = {0, it} x {0, it} x {0, it} = {0,it}3. (6.16)

Generally, for the M-D case the set N M can be constructed recursively using the corres-
ponding set A’'M_1 for the (M —1)-D case as:

N M o= {{0A ... ftiGVi- |)] X ««X |JO,ftM -i,- me,SIm - {N m - i ~ |)_|
X|ftm 2 fta tee, f t j 1)} UArM~Ix {o,tt}} , (6.17)
where:
Noo= {0« L, « N = *} (6.18)

In this set there are 2M special frequency M-tuples at which there are two spectral lines.
Their set is:

Aff = {0,it}M . (6.19)
Each frequency M-tuple (f2,m,) is related to the absolute frequency M-tuple (ai,,) by
({lunv) = (u>,T.), (6.20)

where T,, is the sampling interval of the uth independent variable.
In the sequel, scalar and multivariate M-D multisine random series are defined using

the sets AfM and Af<f. It should be emphasised that the defined M-D multisine random
series inherit properties of the corresponding 1-D multisine random time-series.



80 Multidimensional Multisine Random Processes

6.2 m-op SCALAR MULTISINE RANDOM PROCESS

Definitions

The basic real-valued M-D scalar multisine random series (SMRSm-£>) is defined in the
independent variable domain as:

Definition 6.1 The basic SMRSm~d is defined by a sum of M-D sines including a constant
component:

M

uBM = Y  4(n,)Sin(E +0(n,,)), (6.21)
(17,.MgA'M "=

where (i*) € XM andforv = 1,2,...,M:

denote fundamental relative frequencies,

e n,, denote the consecutive harmonics of these frequencies,

~(n,,) are deterministic amplitudes of the M-D sine components (A*n” 6 U), <f,,) are
phase shifts, of which is deterministic and the remaining phase shifts are random,
independent and:

« uniformly distributed on [0,2it) for (/2,,n,,) 6 ,

« Bernoulli distributed B {£5rc+ «}) for (fli/«,) € Ngl1\ {(0)}.

O
The basic SMRSm_d consists of N\ sN2mmNm samples. This SMRSM-C caji be defined in
the frequency-domain by its M-D finite discrete Fourier transform [5] as:

M M
n«(mv-(JVv- ni)) .
=i ir=i
(6.22)
where (fl,,mu) e
Expanding all independent variable ranges up to i,, = 0,1,..., Mforu—1,2,..., M, an
extended SMRSM-D is obtained, i.e. the extended SMRSM-D is defined for all independent
variable M-tuples (i,,) € X£f, where:

X%=1{0,1,...,00} x {0,1,...,00} X *++X {O,1,...,00}. ((533

The extended SMRSM-D is periodic with the period M-tuple (N,,) = (N1,N2,..., Nm)- It
implies that the extended SMRSM-D belongs to the space of M-D periodic signals [48] with
the period M-tuple (7V,,) and the inner product:

Nl-1 NwM -1
Y YO iR (*-). (6.24)
1=0 *u=0
where 'Ui(iy), «2(1") are two M-D periodic signals with the period M-tuple (JV,,).
The spectrum U (jfl'vm 'v) of the first q\N\ 922 m--"m Nm samples of the extended
MRSm_d is related to the UB(jfl,, mv) by:

. I[n" 19.UB(jfl,,mu) if(nIlmt)e MM
U\jn'umv)= : (
I O+ jO if (fl'vm'v) t ATM
where f_ 0J'y = Q forv —1,2,..., M denote the relative fundamental frequencies for

the qiNi mg2N 2 mm<m JVM-sample series and mlv = 0,1,..., quNu- 1 denote the consecutive
harmonics of the j/th fundamental frequency in the range [0,2ir).
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Properties
The spectral properties of the basic SMRSm £) are given by:
Lemma 6.1 Consider the basic SMRSm~d . Its periodogram is given by:

M
$2,(tt,m,) = | 4j42) sin2~(Q J j ti(mu)
M M
+ Y Ain,,) 6(m,, - n,) + JJ 577, - (Nv- 7i,)
M
+4 E A(n,)sin2a |1 _ 5 > (6.26)
(rt,n,,)s"*“\{(0)} =1

where (/2"m”) € N$1m

O
Proof: The proof of this lemma proceeds in the same way as for Lemma 2.1. It follows
from the periodogram definition [60] that:

**Ne m,) =S{S f € UBUfi,,mv)\2} =g fI~-||7B (j* m V)|2 (6.27)
I /=1 ) U=l Vv
is a deterministic function.

O
The statistical properties ofthe extended SMRSm*“d obtained for the ensemble averaging
are given by the following lemma:

Lemma 6.2 Consider the extended SMRSm~d mFor each M-tuple (i,,) £ X*£:
1. its expected value is
£{*(*N} =" (0)sin"(0)- (6.28)
2. its autocorrelation function is:

£{u(i,,)u(i,, - t,)} = " 0)sin27(0)

1 M M
+ 2 A Athu)cos(‘Einin, Tu)+ Y, (-~ =*T"(n" )Y nil)Sm2a,
(«,r»,)EATMAF* I7pn,,)s"M{(0)}
(6.29)
where (r,,) e X*£ and:
1 ifElun,, = it
(6.30)
0 ifQunv=0
O

Proof of the above lemma proceeds similarly as for Lemma 2.2.

It follows from this lemma that the extended SMRSm~d is a wide-sense stationary
(homogeneous) [50] multidimensional random process, i.e. its expected value does not
depend on the location of (i,,) and the corresponding autocorrelation function depends
only on the vector (its oriention and lenght) joining the two points (i,,) and (iu- r,).
Any change of the assumption about distributions of the random phase shifts <fi,) 'n
the extended SMRSM-D definition would result in an extended SMRSM*® for which the
expected value and autocorrelation function will depend on the independent variable (i,,).

The following lemma presents properties of the extended SMRSM-D obtained for the
independent variable domain averaging on any particular series:
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Lemma 6.3 Consider the extended SMRSM D.

1. Its mean value is
= A(Osin0(O). (6.31)

2. lts autocorrelation function is:

Ruu(tu) = Ad)sin20(0)

1 M M
+ 2 Y A(n,)OOS(E a‘n°W)+ E
(<2,n,)eVM\ATSA "=1
(6.32)
where (t,) € XEE and T](Elunv) is given by (6.30).
Proof: The proof of this lemma proceeds similarly as for Lemma 2.3, where:
¢ the mean value of u(i,,) is calculated as:
. u N Q- gM N M -x
M{ti(i,,)} = lim---lim —77--------- E V" ou(i,,)
/=1 i1=0 ,M=0
= =1 f%, 120 tve0 = gy A UB™N = Asinno). (6.33)
« the independent variable domain averaged autocorrelation function of u(iv) is defined
as:
j «JV1-1 <imvml
Ruu(t,,)= lim"eeUm -~  ~ E " E -r,,)
11k=i 9i/d»i/ <i=0 iM=0
i N -1 NM -1 M
=um NT E mmE *S.(n*i»»)«,/'S~i (6.34)
/=1 lyuxVmi=0 mM=0
|

It follows from Lemma 6.2 and Lemma 6.3 that the extended SMRSM-D inherit proper-
ties of the 1-D SMRS, i.e. the extended SMRSm~d is a weakly ergodic multidimensional
random process.

6.3 ~m -D MULTIVARIATE ORTHOGONAL MULTISINE
RANDOM PROCESS

6.3.1 Ergodic Case
Definitions

Following the MOMRS definition, each element uT(iv) (r = 1,2, ...,p) of an M-D multi-
variate orthogonal multisine random series (MOMRSm-d) is a sum of some of SMRSM"*
M-D sine components with the constraint that the same frequency M-tuple may not appear
in more than one MOMRSM-D element and each SMRSM-D M-D sine component belongs
to one and only one MOMRSm_d element. It is formalised by the following definition:

M-D Multivariate Orthogonal Multisine Random Process 83

Definition 6.2 The basic MOMRSm d is defined by the p-dimensional multivariate series

uB(i,) = ,_“f(i")J D , where the rth MOMRSm~d element is given by:
r=1,2,..., p
M
“2(**)= E ~(n,)8in(E + ~ny,)- (6-35)
(«-n,)EAL *=]

AfMp is the set of all frequency M-tuples (J?,ti,,) present in the rth MOMRSm~d element
ur(i,,) and:
<f UN%vu eemuM? = U M. (6.36)

These sets are pairwise disjoint:
=9 (6.37)

fors~ t, s,t=1,2,...,p. Additionally, (i,,) 6 XM andforv =1,2,..., M:
. = jf- denote fundamental relative frequencies,
« n, denote the consecutive harmonics of these frequencies,

A(n,,) aredeterministic amplitudes of the M-D sine components £11), are
phase shifts, of which <>" is deterministic and the remaining phase shifts are random,
independent and:

 uniformly distributed on [0, 2tv) for (S7un,,) 6 N M\ Mg1,
« Bernoulli distributed B {aill+ <*}) for (J*n,,)e "\{ (»)).

|

Thespectrum of  the basic MOMRSWE> is given inthe frequency-domain for
the (relative) frequency range [0,2it)w by the p-dimensional vector UM(jftum,,) —
’UB(j flum u)J\r_I 2 of M-D finite discrete Fourier transforms with the rth element given

by:

nM pr M M
UB(fijmy= ~» " E Mn*)e*nu)ll*K -"J-n *K -Ne-n,,))
3 (37.n,)eA™ "=1
(6.38)
where (J?”m,,) 6 Af~.
Elementsof the basic MOMRSm“d can be regarded as scalar real-valuedSMRSM D.
The fact thatelements of the MOMRSm"d have no common frequencyM-tuples implies
orthogonality of its elements for the ensemble averaging:

E{iir(ti)u3(tW} =0 (6.39)
as well as the independent variable domain averaging:
j qiNi-1 gMNM- 1
I§\ 0 urMv. {iu) =0, (6.40)

rii/=i ,

where r A s, r,s = 1,2,...,p and 4,?2>-<M= 1,2,...,00.
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Properties

The periodogram matrix of the basic MOMRSmM-z) is given by the lemma:

Lemma 6.4 Consider the basic MOMRS”~D. Its periodogram matrix is &Bu(j

™ -
- JraziZ..p >where for EN™:

( Surur(~ m»)+i° ifr—s
tUrU.tin *Tn<) = { (6-41)
[ 0+]jO ifr/ s
A, r(firrat) is the periodogram of the rth MOMRSm~d element:

QurUrit2*™sy) = QurUri*2’

- rMm M
niliKT, " 2\t s(m, - nu)+ 3} 6(m, - (N, - nu)
il=i
M M
+n NV, Y1 All’l,,)sinzan R P (6-42)
"= (17,,neA7T\avVi{(o)} *=j
where:
f n”™i NvTUA(Qsin2*(Q)n " ! if (0) £
*2rur(n i'mi')=S (6.43)
1° */(0 )e N

O
Proof: 77ie proo/ o/ the above lemma proceeds similarly as for Lemma 6.1, when it is
noticed that the periodogram matrix of MOMRSm~d is:

*uulU nvmyv) = Eﬂ’l‘lll"I .V B(jnimIH)VTB(-jn vm v)?]
J:

"M T
= VB(inumv)VTB(-jfl,, mv). (6.44)

O
The properties of MOMRS”“B which result from the ensemble averaging are given by:

Lemma 6.5 Consider the extended MOMRSm~d . For each M-tuple (i,,) £

1 its expected value vector is £{u(t,)} = [E{tir(*i/)}]Ir=12 v<where:

( A(0)sin §f0) if (o) £
£{uT(i,)} = | . (6.45)
[0 if(°)? K NP

2. its correlation function matrix is £{u(il)u:r(iZ-T 1)}=p{ur(iPtiJ(i1-T t)}rJ=12 p,
where for («,) £

(<IN (*il TV} ifr —s
(6.46)

0 ifr~s
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E{“r(*i)“r(*f - t*)} is the autocorrelation function of the rth MOMRSm d element:

~ M)} = nin}
+0 Y A(n,)cos(5Z "n“N)+ Y (-DHE"*T"(n")i4(,1Sinaa,
»=1 («,,n,,)6)\AVhA%\{(0)}
(6.47)
where 7/(fl*n”) is given by (6.30) and:

( A(o)sin2*(0) if (°) 6 K MF
£{u°(iv)u°(i, - t,)} =1 (6.48)

10 if(0)?KM
O

Proof of the above lemma proceeds similarly as for Lemma 2.2.

It follows from this lemma that the extended MOMRSmM 7) is a wide-sense stationary
multidimensional multivariate random process. Similarly, as for the scalar case of mul-
tidimensional multisine random series, any change of the assumption about distributions
of the random phase shifts <>« in the MOMRSmM £) definition results in an extended
MOMRSjW n for which elements of the expected value vector and autocorrelation function
matrix are functions of the independent variable (*,,).

The independent variable domain averaging on any particular extended MOMRSm_d
results in the following lemma:

Lemma 6.6 Consider the extended MOMRSm~d .

1. Its mean value vector is A4{u(i,)} = [M{ur(iu)}]r_12 , where:

{ A(©)sin0() if(o) £
M {uTiu)} = 1 [ (6.49)
{0 if(0)?K NP

2. Its correlation function matrix is Ruu(ti,) = [Ruru,(T *)]r,s=i,2...pi where for (r,,) £

X%:
RurUr(Tu) ifr=s
(6.50)
0 ifrns
Rurur{Tu) is the autocorrelation function of the rth MOMRSm~d element:
Rnrl (TI) — WU (TIY)
1 M M
+0 Y A(n,) cos(En,n,r,)+ £ (=)™t n™ ™ (n,,)sin2a,
"=1 (/12,,™eArdvivWM{(0)}
(6.51)
where THp.unu) is given by (6.30) and:
[ A\o)sin2™MO) if(°) e KD
< UK )= . (6-52)
lo if(0)? K \P
a

Proof of the above lemma proceeds similarly as for Lemma 6.3.
It follows from the above lemmas that similarly as MOMRS, the extended M O MRSM-£i
is a weakly ergodic multidimensional random process.
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Frequency M-tuples distribution

The consecutive circular ordering of frequency M-tuples for multidimensional multisine
random processes is done taking into account the Mth frequency axis. This ordering is
denoted by the upper index c in symbols Af*p* (r = 2,...,p). The frequency M-tuple
(ftun,) GAIM is a member of the set mAJj™* (r = 1,2,..,,p) if:

r = timmodp+ 1 (6.53)
Thus defined circular ordering allows us to synthesise scalar (p = 1) and bivariate (p = 2)

multidimensional white multisine random series for which whiteness holds for finite sample
representations. It is a consequence of a constant bin spacing along all frequency axes.

Forp = 1 [Af» — AfM) the constant bin spacing equal to fix, fl2,..., is kept
throughout each relative frequency axis in the range [0,2ir), respectively.
When p = 2, a multidimensional bivariate orthogonal multisine random process

(BOMRSM-D) u(i,,) = [ur(i,,)]r=li2 is obtained, where:

e the uf(iv) element contains the M-D constant component and M-D sine components
with frequency M-tuples from the set

K 2 = {{OA, «sM *i- D} x seex {o,nW_i,... ,'Im-iJVm-i-1)}
x {2nM,4fiM,... ,0m ("-2)} UATM~' x {o,i}} . (6.54)
The frequency bins along frequency axes u\T\,.. are equal to

respectively. The Mth frequency axis is sampled at even har-
monics of n”. Its frequency bin is equal to 20.m .

» the uB(iv) element contains M-D sine components with frequency M-tuples from the

set:
= - 1)] x emex oo ~Dj
X|nM,30M v .,njw (A" --1)]]. (6.55)
The frequency bins along frequency axes U\T\,..., are equal to
fti,..., respectively. The Mth frequency axis is sampled at odd harmo-

nics of Qm- Its frequency bin is also equal to 2CIm .

6.3.2 Nonergodic Case
Definitions

Consider an M-D multivariate random series with the elements ur(t,,) (r = 1,2,..,,p and
p > 1) being M-D scalar multisine random series for which the same relative frequency
appears in all elements of the multivariate series. This condition implies nonergodicity of
the multivariate series. The elements of the NMOMRSmM“® have common frequencies but
the independence of its M-D sine components random phase shifts implies orthogonality
of its elements for ensemble averaging if constant components of NMOMRS elements are
equal to 0. In the sequel, thus constructed multivariate series are called nonergodic M-D
multivariate orthogonal multisine random series (NMOMRSm_d). The NMOMRSm_d is
defined as:
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Definition 6.3 The basic NMOMRSm d is defined by the p-dimensional multivariate se-
ries uB(i,) = Ju®(t,)j  , where the rth NMOMRSm~d element is given by:

M
ur M - Ar,(n,,)Sin(53ft-'n-*- + ~,(n,,))> (6.56)
#=1

where (i,,) GXM andforv =1,2,.. . .M:
» Slu —jf- denote fundamental relative frequencies,
« n,, denote the consecutive harmonics of these frequencies,

AT(nu) are deterministic amplitudes of the M-D sine components (Ar*n” 6 1Z), §¢,(nw are
phase shifts, of which iFT.{o) are deterministic and the remaining phase shifts are random,
independent and:

¢ uniformly distributed on [0,2ir) for GAfM \ATst,

¢ Bernoulli distributed B {a,t + a}j for (S7,,n,,) GAfgl\ {(0)}.

O
The basic NMOMRSm_d is given in the frequency-domain for the (relative) frequency
range [0,2ir)M by the p-dimensional vector UB(iJ2,,m,) = \UB(jSIvm v)\ e of its
M-D finite discrete Fourier transform with the rth element given by: o
-™ M M
- e arm, A"»)U S(mv-n,)- S(m,,- (N,,- nu)
Ut =
(6.57)
where (8,,m,,) GAT™,
Properties
The periodogram matrix of the basic NMOMRSm_d is given by:
Lemma 6.7 Consider the basic NMOMRSm D. Its periodogram matrix is &Bn(jf 2 =
o . ne
(jfi.m ‘)ir,a=I,2,...,p' where for (fiuTnv) GAfAf:
ftm NUV f M
$uru,Uni'rn®) = vzlai"4Ari(O)i4,i(O) sin €¥,(0) sin OS,S):)‘IJ A(rn®)
M
+ X)  Ar{n,)A4n,) (cos(Ort(T) "3,(Tl,) j Sn(%r,(nl) f1 ~(rmu - 111)
(fivnu)€SfuMtfEL
M
+(c08(&.,(5s) - 4>.{nU)) + j sin(Or,(n,) ~ <k,(n,))) n ~"m))
U=
M
+4 Ar,(ni,)ASi(ni,) sinOr(w)smOi>N)n 5m* - n*")f (6-58)
(rt,,n,)e.V$ \{(0)} '3 73 *=| J
O

Proof of the above lemma proceeds similarly as for Lemma 6.4.
It follows from the above lemma that expected value of $Bu( j f | is the matrix

= [F{$fru.(i*m”™M}]rj=12 p, where:
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its diagonal elements are:

£{*?rUr(r2,,m,)} = {(4A2(o)sin20r,(o) +jO) I'\f 6{mv)

»
v 1=

rMm M
JJ S(m,, - nv) + S(m,, - (Nv- nu))

M

R VT MURALRAS B g (659)

forr=1 , 2 {numyv)eAfEH\
« its off-diagonal elements are:
YW MT ( M
— ~n N (4Ar,(0)AJj(0)sin 0r,(0) sin<pi(0) + jO) JJ b(mv)
w=

\%
M M
s+ B (+jo)  B(mMv-n)+ 3) <§m,- (Nu- nu)
M
+4 £ (o+io)n 6(m, - n,) >, (6.60)
(«»n.)6 AM{(0)} «=i J
forr,s = 1,2,...,p, r/ s, (J2,m,,) € A/,

If all =0or <0 =0 (= 1,2,...,p) then the € {*rU(nvmu)} is a diagonal
matrix.

The properties of NMOMRSm_d which result from the ensemble averaging are given
by:

Lemma 6.8 Consider the extended NMOMRSm~d . For each M-tuple (iu) €X":

1. itsexpected value vector is € {u(tw} = [E{ur(*i/)}]r=1 2 p>where:
£{ur(i,)} = Ar,(o) sin 0r,(0). (6.61)
2. its correlation function matrix is £E{u(iJ)uT(ti,--Ti)}=(E{u,.(*i,)ul(i1-T i/)Jjra_12 p>
where for (r,,) e X *:
ur(iv)ttr(tv - tv)} ifr=s
(6.62)
No(ojnro) *n0r(o)«*n<E.(0) ifr”s
E{uT(i,,)ur(il/- rv)j is the autocorrelation function of the rth MOMRSm~d element:
E{«(*,,)«(», - )] = AR{0) sin2+¥j(0)
1 M M

+2 Y Ar,(n,,)cos( E n“n“rM)+ 1] (-1) £ =>™(n*")< (,, DSin2a,
(«,,n,,)eArM.V|1 =1 J7,,n,,)eArdvi{(0)}

(6.63)
where TAfi,,n,,) is 8it>en by (6.30).
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Proof of the above lemma proceeds similarly as for Lemma 2.2.
When the independent variable domain averaging on any particular extended
NMOMRSm~d is analysed, the following lemma can be formulated:

Lemma 6.9 Consider the extended NMOMRSmM~d .

1 Its mean value vector is ,M{u(i,,)} = [Al{«r(*i/)}]r=i,2 p Lwhere:

M {uT(i,)} = wr,(0)sin0r,(O. (6.64)
2. Its correlation function matrix is Ruu(t,,) = [EUU(T,,)]rJ=12 where for
(t,) 6 X«:
Ruru.(TI) = ~.r,(0)Aj,(0) sin Or,(O) sin 0Ji(O)
2 A
+2 Y Ar,(n,)A.(n.,) cos(E SlvnvTu + 4>r,(nu) - 4>,,(nu)

(J7un,,)eA"MA/SM <l

+ E (- DA AT (n ) ATr(n,)AL(n1)sin0r (w,sin0 ,nv (6.65)

(fl,,n,,)edtfI*\{(0)}
where T)(Slunu) is given by (6.30).

O
Proof of the above lemma proceeds similarly as for Lemma 6.3.
The expected value of RUu(t,,) is the matrix £{RUWu(tN} = [E{-R u,(T,)IrJ=12 ,
where:
* its diagonal elements are:
R utut(t u) = Ar,(0) si¥2”r.(0)
1 M
+2 Y Al(n,)Q0S(Y ,n T u)+ £ ()£-iT™ (nh">A2(n"sin2a
(«<r»>m) 6;VMANB/ | ] (fi,,n,,)YEAFM{(0)}
(6.66)
forr=12,...,p;
« its off-diagonal elements are:
P-uruA'rv) = jdr,(0)'4»,(0) sin ~r,(0) sin ¢s,(0) (6.67)

forr,s =1,2,..,,pand r* s,

It is worth to note that "R uu”)} = E£{u(*,)uT(t1-T D} If Ar*0) = 0 or Orilc) = 0
(r=1,2,...,p) then the £E{RWu(T<)} and £{u(i*)ur (i* —t,,)} are diagonal matrices.

6.4 M-D MULTIVARIATE NONORTHOGONAL MULTI-
SINE RANDOM PROCESS

Definitions

The basic nonergodic multivariate nonorthogonal multisine random series (NMMRSm_£))
is defined by:
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Definition 6.4 The basic NMMRSm d is defined by the p-dimensional multivariate series

us (i,) = | w=l2..p’ where the rth (r=1 , 2 NMMRSm~d element is given
by: 124y
ufM =53 Y Arnt(nw)sin(51 " n viv + + WA, («,,)), (6-68)
<=I(/2i,n,)€.VM #=1

where (iu) 6 XM andforv =1,2,...,M:
% denote fundamental relative frequencies,
* nu denote the consecutive harmonics of these frequencies,

and Ar (i(hv) are deterministic amplitudes of the M-D sine components (Art"TI* £ 12),
44,(nu) and 9r.t,(n,,) are phase shifts, of which st>tfa)) and y=Tt,(nu) aTe deterministic and the
remaining phase shifts <tt(wv) are random, independent and:

e uniformly distributed on [0,2iV) for gUM\ Afgl andt =1,2,..,,p,
e Bernoulli distributed B {a, tc+ a}) for JeAfg*\{(0)} andt = 1,2
O
The basic NMMRSm~D is defined in the frequency-domain by the p-dimensional vector
UB(jflumu) = |UB(jQ um u)}'r=I2 p of its M-D finite discrete Fourier transforms with
the rth element given by: o
TP@ERM V=Y 4 n 6(mu—nu)
=1(37,Ti,)gATM i/=i
M
n S(mu- (Nv- n,)) (6.69)
u=i

where (J2°m”) £ AN,

Properties

Similarly as for the 1-D NMMRS, the periodogram matrix &Bu(jf2,,mu) of the basic
NMMRSm £> can be written as:

$uutinvm =K (jnim,,)$*p(jn,,m,,)K*(jf2vm,,), (6.70)
where:

 elements of the matrix K.(jf2vm v) = [KUU(j» mi/)ri3=i, 2 p are given by:

At,, (o) sin (I, + ¥or»,0)+j0 if {n,,m,,) = (0)

Kurlh \ K if (fi.ro,) £ AfM\ Mgl :
Av.lrn,) sin(a + ¥rs,(m,)) +j0 if (B,,m,) £ Afjf\ {(0)}

(6.71)

the matrix is the periodogram matrix of a NMOMRSm d with ampli-

tudes of all sine components chosen so that £E{$pp(jrium I)} = I.
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The above spectral factorisation of the NMMRSm d periodogram matrix allows us to write
the M-D finite discrete Fourier transform UB(jf2Imu) of NMMRSm_d as:

UB{jflumu) = K(jnvmVv)P(jnvm v), (6.72)
where (3(jflI*m~”) is the M-D finite discrete Fourier transform of a NMOMRSm-° with
amplitudes of its M-D sine components chosen so that £ {$Bf)(jfi,,m,,)} = I. It is obvious
that:

f {*2utf«*TO»)} = K (jnum u) K \jn vm v). (6.73)

The statistical properties of NMMRSm £) can be analysed similarly as it was done in
Chapter 2 for the corresponding 1-D NMMRS.

6.5 SYNTHESIS AND SIMULATION

Synthesis and simulation of multidimensional multisine random processes follow the cor-
responding procedure for the 1-D multisine random processes. For a given deterministic
amplitudes of M-D sine components of multidimensional multisine random processes, phase
shifts for constant components, parameters of Bernoulli distributions, the corresponding
spectrum is synthesised and a realisation of the basic multidimensional multisine random
process approximation may be obtained using any M-D Fast Fourier Transform algorithm
[5]. Additionally, inspite of random phase shifts, the periodogram and correlation function
matrices for weakly ergodic or expected values of periodogramand correlation function
matrices for nonergodic multidimensional multisine random processes are deterministic,
real-valued functions. They are uniquely defined by the amplitudes of M-D sine compo-
nents, phase shifts for constant components and parameters of Bernoulli distributions. It
implies that like in the 1-D case, shapes of multidimensional multisine random process
periodogram matrix elements can be fitted to shapes of any given power spectral density
function matrix elements of M-D multivariate random process. This allows us to extend the
proposed synthesis and simulation method of 1-D wide sense stationary random processes
to the M-D case.

Let v(i,) be an M-D wide-sense stationary, real-valued multivariate random process
with the power spectral density matrix = [*n.»,(i«1T|,)]r,s=i 2 p> which

satisfies, for (T v) £ [0, 2it)'w, the following conditions:
Sw{ju,, Tu)= $vv(i(a'r-wlT,)) (6.74)
and:
I*w (i«i/Ti»)|| < 00, (6.75)
where:
YYAV.U AT ). (6.76)
r=I 3=1

It is assumed that its autocorrelation function Rvv(t,,) for all M-tuple lags (r,,) with the
elements |r,| > r*o (v = 1,2,...,N —1) satisfies:

Rw (t,) = o. (6.77)

The power spectral density matrix <W(ju>vT u) may be approximated by a periodogram
matrix (or expected value of the periodogram matrix) ofthe corresponding multidimensional
multisine random series with amplitudes of its M-D sine components chosen so as to make
values of the periodogram matrix (or expected value of the periodogram matrix) equal to
the corresponding values of power spectral density matrix of the original multidimensional
random process for some equally spaced frequency M-tuples from the range [0,2ir)M. It can
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be interpreted as multidimensional sampling of the elements (rrs=1,2,....,p)
in the frequency-domain. When n,, sampling points (approximation nodes) are chosen for
the i/th frequency axis in the frequency range [0,2t), the multidimensional sampling does
not produce aliasing [21] under spacings A,, between the samples along this axis are such
that:

A, < A0, = (6.78)

When maximum spacings AO,uare chosen, the original power spectral densities $,,tX>w1T i/)
may be recovered from their sampled values (periodograms of approximating multidimen-
sional multisine random series) by using an M-D generalisation of the sine function:

*W.(i»,TY= £ £ <&,,,(M,,m,) n sinc(® ~ - Aymil)) . (6.79)
' J

mi=-00 71M=—00 u—\ v

Asymptotic properties of the synthesised and simulated multidimensional multisine ran-
dom process approximations of wide-sense stationary multidimensional random processes
given by their power spectral density matrices are briefly summarised in the sequel. It
should be emphasised that proofs of presented lemmas proceed similarly as for the power
spectral density defined multisine random time-series (see Chapter 3).

6.5.1 Ergodic case

When the power spectral density matrix of an M-D causal, wide-sense stationary mul-
tivariate orthogonal random process is approximated by the periodogram matrix of
a MOMRSm-£) with the consecutively circularly ordered frequency M-tuples and ampli-
tudes chosen so as to make values of elements of the periodogram matrix equal to the
corresponding values of the power spectral densities of the original random process for
some frequency N-tuples from the range [0,2it)N, the obtained extended MOMRSm_d turns
asymptotically for (N ,) —(00) into an M-D Gaussian multivariate orthogonal multisine
random process:

Lemma 6.10 Assuming that:

1 &vv(jtji,,Tu) —diag\$vTvT(y),, Tu) + jO]Jr=12 p is the power spectral density matrix
of an M-D wide-sense stationary, orthogonal, real-valued multivariate random process
with zero mean vector and the variance matrix \y - §Rndi=2 . Where:

Qirwr = -(ZQTV\J_N irig(l/\flri Ty J/O --% vrvr(tavTv)d(uiTi)---d(wjvT]v); (6.80)

2. A(ni/) converges to 0 for (A/*) —*(o00) in such a way that for (J?,,n.,,) e A'lt® \ Afgl
A2 M
Il/ll N"T» =~ . r (fism»), (6-81)
3. A(nu) = 0 for (/2,,n,,) e Als* or =a=0,

then the extended MOMRSm~d u(i,,) with the consecutively circularly ordered frequency
M-tuples converges in distribution for (N,,) —#(oo) to an M-D Gaussian multivariate
orthogonal multisine random process of type 1 (GMOMRS1m~d) g(iu) = [ffr(*i/)]r=i 2

with zero mean vector and the variance matrix jjCrv:
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Additionally the correlation function matrix £{g(i)gr (i, —ru)}
GMOMRS1m~d converges to:

£{g(i)gT(*i/ - =wm)}} = Rgg(T,,)

Rgg(T,) of the

i r2* [t M n
= (2k§lr3ni[[}-\'\./]|-u-50/ JOva ,»T7cos(J2 uu"T:vlT,)d[yJ\T{) m-d(WMTM)= -R v\\//(t,,),
(6.83)
where (t,) € X™ .
O

6.5.2 Nonergodic case

Similarly as for the previous ergodic case, the power spectral density matrix of an M-D
causal, wide-sense stationary multidimensional multivariate orthogonal or nonorthogonal
random process with finite powers of its elements may be approximated by the expected
value of periodogram matrix of a multidimensional nonergodic multivariate multisine ran-
dom series with amplitudes of M-D sine components chosen so as to make values of the
expected value of its periodogram matrix equal to the corresponding values of power spec-
tral density matrix of the original random process for N\Ni mmm  frequency M-tuples from
the range [0,2iv)M. The extended multidimensional multivariate orthogonal or nonortho-
gonal multisine random series obtained from application of this approximation criterion
turns asymptotically for (N,,) —(00) into an ergodic Gaussian multivariate orthogonal or
nonorthogonal multisine random process. In the sequel, their properties are briefly sum-
marised.

Multivariate orthogonal multidimensional multisine random processes

Lemma 6.11 Assuming that:
1. <Swv{juluT u) — diag[$VVr(w,,Tu) - jO]r=12 is the power spectral density matrix
of an M-D wide-sense stationary, orthogonal, real-valued multivariate random process
with zero mean vector and the variance matrix = [02,r]r=12 , where:

alrvr- 9 W 1M r{) [ eem/ Fvrvr(ui'T v)du)IT1)---d (UNTN)\ (6.84)
11,,= Jo Jo

2. ATnu) converges to 0 for (2V,,) — (00) in such a way that for (n*nu) € Ajv\Afg

A2 M
n N»T*= *»rv,(iw,T,,), (6.85)

v-\
s. AT(nii) = 0 for (n,,n,,) e A or =a- 0,
then  theextendedNMOMRSm~d u(i,,) converges in distribution for (iV,,) —%00) to
an M-D ergodicGaussian multivariate orthogonal multisine random  process of type 2
(GMOMRS2m~d) g(tu) = with zero mean vector and the variance matrix
(]

g(t,,) e AsAf(o,<r\y). (6.86)
Additionally the correlation function matrix £{g(iu)gT(iu - rv)} of the GMOMRSm~d
converges to:

E{g(*)gT(¥/ ~ t,)} = Rgg(T.)
N y2ir 2K AN

= (“r}l(\(/ ”M. Irpu J/0 ---J/o w (juuT v)cos{"\ii]\N\/TvTv)d{u|T{)---d{uMTM), (6.87)

where (r,,) 6 X ~.
]
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Multivariate nonorthogonal multidimensional multisine random processes

Lemma 6.12 Assuming that:

1 4nv(ju>uTy) - [$vfu,(iw,/21)]rs=12 p ts the power spectral density matrix of
a wide-sense stationary, real-valued multivariate nonorthogonal multidimensional ran-
dom process with zero mean vector and the variance matrix ct2v = [c2W rj=12
where:

=,0
2.

; "l Avrv.CwAXwiTi) » s{uNTN), (6.88)

-r
rc 11,=11uJO Jo

2. forr,t = 1,2, ...,pvalues of Art(ni/) converge to 0 /or (iVV) —» (00)in suc/i a way
that for (fi,,»,,) € Nn \ J*s :

= #vv(i«?rin); (6.89)

Ari(n,) = 0 for (.r2,,n,) e ® or0r(O=a=0,

then the extended NMMRSm~d u(i,,) converges in distribution for (N,,) —* (0o) to
an ergodic Gaussian multivariate nonorthogonal multidimensional multisine random pro-
cess (GNMMRSm~d) g(i,,) = [<fr(*i)]r=1i2 p w*th zero mean vector and the variance ma-
trix <mV:
g(*i/) € As.V(o,ctdv). (6.90)
Additionally the correlation function matrix £{g(tl)g7(i* —t,,)} o/ the GNMMRSm~d
converges to:
"{g(0gr (*v- T%)} = Rgg(T")

N Par P
= NVfj-iM "rn [/ mom cosi"T~AdM )..w m ), (6.91)
Uir=iJ 40 =

where (t,) €

Chapter 7

Multidimensional W hite Noise
Approximation

This chapter addresses a direct extension of the 1-D white noises synthesis and simula-
tion results presented in Chapter 4 to the multidimensional case. Multidimensional scalar,
bivariate and multivariate white multisine random series are discussed.

71 SCALAR WHITE NOISE

When the power spectral density of the M-D white noise is approximated by the periodo-
gram of SMRSm-D, an extended multidimensional (iV”")-lag white multisine random series
(W SM RSA”) is obtained:

Definition 7.1 An extended M-D scalar multisine random series x(i,,) is said to he
(N,,)-lag white if its autocorrelation function for lags ¢«., £ XM is the same as the M-D
white noise autocorrelation function, i. e.:

(r2 il(r,) = (0)

E{x(iu)x(iv- rv)} = Rxx(t,,) = (7.1)
(o if(r,,)eXM\{(0)}

a
The statistical properties of WSMRSm_d are given by the following lemma:
Lemma 7.1 Assuming that:
1 = A2 ((ojyTy) 6 [0,2it)M) is the power spectral density of a real-valued
M-D white noise;
2. At~ = A for (fiyUy) GAFM\AfGL and the value of A is chosen so that:
A2 M
— 1J NUV= A (7.2)
U=}

3mA(n,,) =4 f°r (" R») ~"Msland 0(0) = a = f;
then the extended SMRSm~d is an M-D white multisine random series (WSMRSM D) and:
1 its periodogram is given by:

N i-1 N M-1 M

*Z(n*mr) = A2 £ eeof£ |l S(M»~n-)> (7-3)

m=o rijvf=0 u=i

where (flvm u) e
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2. its mean value is:
= £{u(i,)} =1 A A2 (7.4)

3. its autocorrelation function is:

/=1y

£{iv)u(iu- t,)} = Ruu(t,,) = (7.5)
0 otherwise
Proof: The proof of this this lemma proceeds similarly as for Lemma 4-1, i.e.:
1. It follows immediately from the assumptions 1, 2, 3 and from Lemma 6.1.
2. It follows Immediately from Definition 6.1.
3. Application of (6.34) to (7-3) results in:
sfu(iu(iu-Tu}=Rufy=— Y 'Y v '-v 1l
mi=0 nmjvf=0 ni=0 n\f=0i/=I
A2 Ni-1 NM-1
=4Y" Y )
mi=0 mM=Q
This ends the proof when (6.7) is taken into account.
O
When (7V,,) —(00), the WSMRSM D converges to a Gaussian WSMRSm_d g(iv) with
zero mean and the variance =~ ------ .
n"iTv-
g{iuyeAsN(0,--_~» ). (7.7)

I/=1
7.2 MULTIVARIATE WHITE NOISE
7.2.1 Ergodic Case

M-D bivariate (N\,..., Nm-i, ~O-lag white multisine random series

When the power spectral density matrix of an M-D bivariate white noise is approximated
by the periodogram matrix of the extended BOMRSM-D, an M-D bivariate orthogonal
white multisine random series is obtained. It is characterised by the correlation func-
tion matrix which for a number of M-tuple lags behaves exactly like the correlation func-
tion matrix of M-D bivariate white noise. This series is called multidimensional bivariate
(Ni,..., Nm-i,—2)-lag white multisine random series (BOWMRSm_d):

Definition 7.2 An extended M-D bivariate orthogonal multisine random series x(t,,) is
said to be (Ni,..., Nm-i,M-)-lag white if its correlation function matrix RX(Ti/) =

E{X(*,,)XT(*, - t,,)} for lags ¢=.» 6 XM~l x jo,1,...,~ -1} is the same as for the
M-D bivariate white noise correlation function matrix - its elements satisfy the conditions:

( T2 i/(t,,) = (o)
Rxtxi(Tif) = Rxix2{Tv) — S . (7.8)
[0 if(r,)eXM~"x{o,I,....~-I\{(0)}
RXixii.Ti,") ~ Rx2G(""v) = 0- (7-9)

O
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The spectral and correlation properties of the BOWMRSM u are the following:

Lemma 7.2 Assuming that:

I- &v\{jwvTu) = A21 ((wuTv) 6 [0,2i\)M) ) is the power spectral density matrix of
an M-D real-valued bivariate white noise;

2. Ain \ = A for (QyTLy) £ MM\ N<? and the value of A is chosen so that:

A2
~T W = A2, (7.10)

S- A{nA~ 4 for ("M 6Msland”0)=a= $i

then the extended BOMRSm~d is a bivariate (N\,..., Nm-i, )-lag white multisine ran-
dom series (BOWMRSM-D) and:

1. its periodogram matrix is - diag [8®Ur(/7"mt/) + j'o] A, where for

M M
$?2U{num,,) = A21 JJ 6{mu) + [J 6(mu- n,)
M M
+ ELf(TY~ (NI/ ~n") + v n §mre- n' (7.11)
U:[l (ii"noe”ruto)}*«! 3 )
rM M
$fU (tt,m,)=A2 Y 12 i(mu- nu)+ 6(mv- (Nu- n,)) , (712
2. its mean value vector is
X2
sM{u(t.)} = £{u(t.)} = (7.13)
3. its correlation function matrix is £{u(iy)u(iy - r,)} = RUu(Ti/) =

diag[RUrUr(Tu)]rzzl 2, where for (ru) £ X%:

N if(r,,)exM-"x{o ,~,...}

(7.14)
0 otherwise
if(r,)exm
Ru?u2 (V1) —
"n fe J(T) 6 [ ] (,15)
0 otherwise
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Proof: This lemma can be proven similarly as Lemma 4-4m R should be noticed that for all
M-tuples (ni,ri2, eesi"M-i, nb) with nM zero or even it holds that:

AV E
53 ... E |3 N T+nn« T')
"1=0  nM_!=0 n"=0

if(TI)) e x™~1 x {o, ..}
(7.16)
0 otherwise
and for (tij, n2,..., tim-1, Ti*f), where M is odd it holds that:
Ni-1 % -i-INk-I
53... 53 53 ~(E",
«1=0 «M-2=0n~"=|
t™
(7.17)
otherwise
so that:
Ig'—l % 1 w iVi-1 Nm-2
3 13 = £... 53 53 nn,,T,,+nni,TM)
ni=0  "M=0 ni=0  nM_i=On"=0

N,-1 MV ,-INM-1 ”

+ 12 mm 12 12 ) Ik,r" +In«™) (7.18)
ni=0 nM_,=0n’ =I|

Elements of the basic Vi ¢ jV2ee¢iVAf-sample BOWMRSM D have the mean val-

w2 and 0, respectively. The corresponding variances are equal to
s \IY1*D nutl

anc® 9|-fjw—rp~  When (N,,) —& (00), the variance matrix of the

\2
BOWMRSA"-0 converges to A— 1, and its mean value vector tends to a zero vec-
¢ 21L=i Tv

or.

Gaussian Multivariate W hite Noise

When the power spectral density matrix of an M-D multivariate white noise is approxi-
mated by the periodogram matrix of the extended MOMRSm~d , an extended M-D white
multisine random series (MOWMRSm-d) is obtained. For p = 1,2 (WSMRSm-d and
BOWMRSm~d ) whiteness holds for finite N\ m)\2 m sl'\V/~-sample series. Correlation matri-
ces of MO WMRSM-~D with the number of elements p > 2 coincide only asymptotically for
(7V,) — (00) with correlation matrices of an M-D p-variate white noise and asymptoti-
cally the MOWMRSm-c is an M-D Gaussian multivariate random series. Its spectral and
correlation properties are given by the following lemma:

Lemma 7.3 Assuming that:

- *w(ju,,Ty) = A21 f(u>,T,) 6 [0,2«)" is the power spectral density matrix of an
M-D real-valued bivariate white noise;
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2. A(n® = Afor(nunv) 6 Af \Afg and the value of A converges to 0 for (7V,,) —(00)
in such a way that:
A2 M
T n N»T»=*2- (7-19)
U=

S. A(nu) - Y f°r Ne»nv) € Afgl and 0(0) = a = %,

then the extended MOMRSm~d u(i,,) with the consecutively circularly ordered frequency
M-tuples converges in distribution for (N u) —»(00) to an M-D Gaussian multivariate
white multisine random series of type 1 (GMOWMRS1m~d) g(i,,) = [ffr(*i)]r=i 2 p with

zero mean vector and the variance matrix m- w 1:

g(i,,) € AsAf(o, -

pU?LiT, )" (7.20)

Its correlation function matrix is £{&{iu)gT{iu- r,)} = Rgg(r*) = [ES5,(T,.)]r =12
where for (t,,)) € X™:
RgrgriT*) ifr =s
RgrgXTu) — (7.21)
[0 ifr/ s

The autocorrelation function RgrgT(Tv) of the rth GWMOMRSm~d element converges to:

Rgrgr(Tv) — (7.22)
0 if{Tv) / (0)

Proof: The proof of this lemma follows immediately from Lemma 6.10 when it is noticed
that the mean value vector of u(i,,) is:

X{u(iM)} = ! w2 0,.. .0 (7.23)
ns5vy
The corresponding variance matrix is:
2A2 roi
Ruu(0)=r B w ~ ~ 7 * (7'24)

where nr (r —1,2,...,p) is the number of elements of the set AT?**\ (0). When (iV,,) -+
N

. N . .
(00) , the mean value vector tends to a zero vector and nr approaches rr W It implies
\2
that Ruu(o) tends to A——1 vector.
VIl,/=i Tu

7.2.2 Nonergodic Case
M-D(7V/™)-lag pseudo-white multisine random process

When the power spectral density matrix of an M-D multivariate white noise is approximated
by the expected value of the periodogram matrix of extended NMOMRSm-d, a nonergodic
multivariate orthogonal pseudo-white multisine random series (NMOPWMRSm £’) is ob-
tained.
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Definition 7.3 An extended M-D nonergodic multivariate orthogonal multisine random
series x(t,,) is said to be (N”-lag pseudo-white if elements of its correlation function matrix
E{x(t,)xT(t, - t,)} = [E{XT(,,)x,(iv- T,)}ri,_It2 pfor lags (t,,) 6 XM satisfy the
following conditions:

(r2 if(Tu) = (0)
E{xT(i,,)xr(iu- t,)} =1 (7.25)
i 7rK)r2 if(t*) € XM\ {(0)}
forr=a1.2....,p and yreceny < 1
£{xr{i,,)xaii, - r,)} =0 (7.26)

forrs=1,2,.. .,pandr/ s.

O
The statistical properties of the NMOP WMRSm_d are given by the following lemma:

Lemma 7.4 Assuming that:

1 &vv(jfillmv) = A2/ f(cjyTy) £ [0, 2k)m) is the power spectral density matrix of
a real-valued M-D multivariate white noise;

2. Ar (nii) = A for (n”n,,) 6 AfM \AJ~gl and the value of A is chosen so that:

A2 a
T _|/|_ = A> (7.27)
il=i

3- Ar{0)=0or #i{o)=0forr=1,2,...,p,
4¢ Arn,) =y f°r (fli'n») €Ms \{o} anda = f,

then the extended NMOMRSm~d uf(t,) is an M-D nonergodic multivariate (N I/)-lay
pseudo-white multisine random series (NMOPWMRSm~d) and:

1. its expected value vector is <f{u”*)} = o.

2. its correlation function matrix isE{\i(iv)aT(il-*rl)} = [E{tir(i)ud(i,,-T ,)}r=12
where for (r,) e X":

{ur(tv)ur(tv- t,)} ifr=s
r (7.28)

] ifr~ s
E{ilr(i,,)iir(*,—")} is the autocorﬁ\llﬁtion function of the rth NMOMRSm~d element:

LN ™2 e R Xg
g{ur{ivyuTiu- Ty)} = ,=ii,> 1%=i Ik (729)

0 otherwise

Proof:

1. It follows immediately from the assumption 3 and from Lemma 6.8.
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2. It follows from the assumption 3 and Lemma 6.8 that the NMOPWMRSm d cor-
relation function is f{u(tYuT(%,- <.y = dtag{ur(iv)ur(iy —rv>ir=12 . This
ends proof when it is noticed that the rth element ur(iu) of NMOPWMRSm~d u(i,,)
is a WSMRSm~d (see Lemma 7.1) with the removed expected value £{ur(iy)} =

J/uiLiK TvX2
The independent variable domain averaging on any particular extended
NMOPWMRSm*“d results in:

Lemma 7.5 Consider the extended NMOPWMRSm~d.

1. Its periodogram matrix is ~uu(i*i/m*) = . LU U”*u rny}r\3:I 21p where for
(num u) 6 J\$E:
Af
$Zu,tin ‘Tn°) = (°+i°) 11
M
+%2 E (c o s -0s,(n,)- jsinrn,)- O»(n,))) If S(m, - nu)
M
+(cos(Or,(Ty) - <t(n,,)) + j 8in(0ri(n,) - &,(..,,))) 11 L)
J=
M
+ E (*2sin4r  sin  (iCj +jO) JJ rf(m,, —nv). (7.30)
B,n,,)eVM\{(0)} ir=i
2. /fa mean value vector is: =o.
3. Its correlation function matrix is RWi(Ti/) = [Ruru,(Tv)}rJ=12 p. wliere for
(t.) €
. A2
Rnrua(Tj) — y ! A@s (E $lunvTu  EYnv) 45,(n,))

niti” B,n,)EATMAA ==

(7.31)

where is given by (6.30).

Proof: The prooffollows from Lemma 6.9 when Ar (ni/) defined by the assumptions 2,3,4
of Lemma 7.4 are used.

The expected value of Ruu('r?) is the diagonal matrix:

Nv-1 MA2 [ \r vwW
; Mt 0
iR n (7.32)

0 otherwise

£ {Ruu(t,)} = n
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M-D Gaussian multivariate white multisine random series

The extended NMOPWMRSw-D turns asymptotically for (Nv) —(00) into an M-D er-
godic Gaussian multivariate white multisine random series:

Lemma 7.6 Assuming that:

1 = A21 ((u>,TY) S [0,2it)Mj is the power spectral density matrix of a
real-valued M-D multivariate white noise;
2. ATriu) = A for g Mm \ Mcf and the value of A is chosen so that:
A2 M
T n N»T»= A2> (7-33)
u=\

3 AT,(n,,) = 0 or 0ri(0) = a = 0 for (n,,nu) € ,

then the extended NMOMRSm~d u(t,) converges in distribution for (N,) —» (00)
to an M-D ergodic Gaussian multivariate white multisine random series of type 2
(GMO WMRS2m~d) g (»,,) = [<fr(*iNJr=1 2 p with zero mean vector and the variance matrix
A2

n" 1T,, ]

sMeAsM (o,-"— ). (7.34)

/=1 1U

Additionally the correlation function matrix £{g(t")gr (i* —T,,)} of GMOWMRS2m~d con-
verges to:

nM2T 1 '/(T»l = (°)

Meg(Mgr (v T} = Rgg(TY ;1517 : (7.35)
] if{ru)t{o)

Proof of this lemma follows immediately from Lemma 6.11.

Chapter 8

Conclusions

An efficient synthesis and simulation method of wide-sense stationary scalar and multiva-
riate one- and multi-dimensional random processes, given by diagrams of their power spec-
tral densities, is presented. The method is based on approximating the power spectral densi-
ties by periodograms (or expected values of periodograms) of multisine random time-series
or multidimensional multisine random processes with deterministic amplitudes and ran-
dom phase shifts. The periodograms are used to synthesise spectra of the corresponding
multisine random processes. Transforming the synthesised spectra by the inverse finite
discrete Fourier transform gives the simulated multisine random process approximations.
It was shown that multisine random process approximations thus obtained have spectral
and correlation properties very close to those of the original wide-sense stationary random
processes. Asymptotically, they turn into Gaussian random processes.

The proposed approach is applicable if only the power spectral density diagrams of
random processes to be simulated are given. There is no necessity to solve the spectral
factorisation problem in order to calculate the corresponding parametric approximation. It
is especially important for random processes which have nonrational power spectral densities
[78] or (and) which are multidimensional [15], [59], [20] because accuracy of the parametric
approximation is crucial in reconstructing of the properties of original random processes.

The proposed method, when applied to power spectral densities of white noises, al-
lows simulate different types of interesting scalar and multivariate orthogonal, white,
pseudo-white or asymptotically white, ergodic and nonergodic, time-series and multidi-
mensional random processes.

An extension of the proposed approach to the generation of wide-sense stationary
continuous-time band-limited random processes, defined also by their power spectral den-
sities, has been presented.
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SYNTHESIS AND SIMULATION OF RANDOM PROCESSES

Summary

This monograph presents an approach to the synthesis and simulation of wide-sense
stationary random processes given by diagrams of their power spectral densities. The ap-
proach is based on multisine random time-series, which are sums of discrete-time sines with
deterministic amplitudes and random phase shifts.

The essence of the presented approach is to approximate the power spectral density
by the periodogram of a multisine time-series with amplitudes chosen so that for a given
number of equally spaced frequencies from the range [0,2it), the periodogram is equal to
the original power spectral density. The periodogram may be used in turn to construct
the corresponding spectrum provided the phase shifts for each sine component are chosen.
It is well known, that any periodogram corresponds to infinitely many different multisine
time-series with different phase shifts. In the proposed approach, the phase shifts are
used to define properties of the multisine random time-series in the time-domain. This
concludes the synthesis part of the procedure. To simulate the synthesised time-series with
predefined spectral properties, the spectrum with the chosen phase shifts is transformed
into the time-domain using the inverse finite discrete Fourier transform.

In Chapter 2, time- and frequency- domain definitions of scalar as well as different mul-
tivariate multisine random time-series are introduced. Their statistical properties, resulting
from ensemble and time-domain averaging, are discussed. The weak ergodicity of multisine
random time-series is examined. It is shown that periodograms of weakly ergodic multisine
random time-series as well as expected values of periodograms for nonergodic multisine
random time-series are uniquely defined by amplitudes of their sine components. This idea
is behind the proposed random process synthesis and simulation method.

Chapter 3 is devoted to the synthesis and simulation of multisine random time-series
defined by their power spectral densities. In the presented approach, the power spectral
density matrix of a multivariate wide-sense stationary random process to be simulated is
approximated by the periodogram of a multivariate multisine random time-series with sine
component amplitudes chosen so as to make values of the periodogram matrix (or expected
value of the periodogram matrix) equal to the corresponding values of power spectral density
matrix of the original random process for some equally spaced frequencies (being approxi-
mation nodes) from the range [0,2it). This approximation criterion can be interpreted as
sampling of the power spectral density matrix in the frequency domain. A lower bound on
the number of approximation nodes (samples of multisine random time-series to be sim-
ulated) follows from the reconstruction criterion. Statistical properties of the synthesised
multisine random process approximations are determined. It was shown that such multisine
random process approximations converge to ergodic Gaussian multisine random processes
for the number of approximation nodes tending to infinity. The proposed approach is illus-
trated by examples of simulating and identifying scalar and multivariate random processes
given by rational and nonrational power spectral densities. An extension of the proposed
random process synthesis and simulation method to the generation of wide-sense stationary
continuous-time band-limited random signals, given also by their power spectral densities,
is included.

Multisine white noise approximations obtained by using the proposed random pro-
cess synthesis and simulation method are presented in Chapter 4. The following cases
are discussed: weakly ergodic scalar and bivariate white and pseudo-white multisine ran-
dom time-series which are asymptotically Gaussian, weakly ergodic multivariate orthogonal
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asymptotically Gaussian and white multisine random time-series, nonergodic multivariate
orthogonal white and pseudo-white multisine random time-series which are asymptotically
ergodic and Gaussian. Their whiteness is compared for finite and infinite periods of mul-
tisine random time-series. Asymptotic Gaussianess of the synthesised multisine random
process approximations is discussed. Simulation examples are included.

Simulation of Gaussian random processes is the subject of Chapter 5. Simulation
schemes based on the proposed approach and rules of computer simulation are established,
including a proposition of simulation time-scale contraction. The proposed schemes are
illustrated by simulation examples.

In Chapter 6, an extension of multisine random time-series ideas given in Chapter 2 to
a multidimensional (M-D) case is presented. Scalar and multivariate M-D multisine ran-
dom processes are defined and their time- and frequency- domain properties are established.
Similarly as for the 1-D case, definitions of M-D multisine random processes are closely re-
lated to the M-D finite discrete Fourier transform. A set of the frequency M-tuples of the
M-D sine series such that a sum of the M-D sine series has its spectrum lines defined for
all frequency M -tuples present in definition of the finite discrete Fourier transform is a key
to define M-D multisine random processes. It is shown that the multidimensional multisine
random processes inherit properties of the 1-D multisine random time-series. The defined
M-D multisine random processes are used to synthesise and simulate wide-sense stationary
scalar and multivariate M-D random processes given by their power spectral densities. The
synthesis and simulation follow the corresponding procedure for 1-D multisine random pro-
cesses. Asymptotic properties of synthesised M-D multisine random process approximations
are discussed.

The problem of synthesising and simulating various types of scalar, bivariate and multi-
variate ergodic and nonergodic multidimensional white multisine random processes is sum-
marised in Chapter 7.

SYNTEZA | SYMULACJA PROCESOW LOSOWYCH

Streszczenie

W monografii przedstawiono podstawy teoretyczne oraz zastosowanie nowej metody syn-
tezy i symulacji stacjonarnych w szerszym sensie proceséw losowych na podstawie wykresu
ich gestosci widmowej mocy. Zaproponowana metoda korzysta z wielosinusoidalnych syg-
natéw losowych, ktére sg sumg harmonicznych sktadowych sinusoidalnych o deterministycz-
nych amplitudach i losowych fazach.

Punktem wyjscia proponowanej metody jest definiowanie procesu losowego w dziedzinie
czestotliwosci za pomocg periodogramu wielosinusoidalnego sygnatu losowego. Amplitudy
poszczegolnych sktadowych sinusoidalnych sygnatu wielosinusoidalnego dobierane sg tak,
by jego periodogram byt rowny gestosci widmowej mocy procesu losowego dla pewnej
liczby réwnoodlegtych czestotliwosci z zakresu [0,2ir). Na podstawie tak zdefiniowa-
nego periodogramu dokonuje sie syntezy widma amplitudowego i fazowego sygnatu wielo-
sinusoidalnego. Przedstawienie periodogramu za pomocg widma amplitudowego i fazowego
jest jednoznaczne w odniesieniu do widma amplitudowego i niejednoznaczne w odniesieniu
do widma fazowego: ten sam periodogram mozna uzyska¢ dla jednego okre$lonego widma
amplitudowego i nieskoriczenie wielu r6znych widm fazowych. Owa niejednoznaczno$¢ wyko-
rzystano do ksztattowania wiasnosci wielosinusoidalnych sygnatow losowych w, dziedzinie
czasu. W wyniku odwrotnego przeksztatcenia Fouriera widma zespolonego (z widmem am-
plitudowym determinujgcym periodogram i widmem fazowym determinujgcym wiasnosci
losowe w dziedzinie czasu) otrzymuje si¢ proces losowy o zatozonych wiasciwosciach wid-
mowych.

W rozdziale 2 zdefiniowano skalarne i wektorowe (ortogonalne i nieortogonalne) wielo-
sinusoidalne sygnaty losowe w dziedzinie czasu i czestotliwosci. Poréwnano ich wiasnosci
statystyczne, analizujac wyniki usredniania po zbiorze realizacji i usredniania w dziedzinie
czasu. Na tej podstawie dokonano podziatu wektorowych wielosinusoidalnych sygnatow
losowych na ergodyczne i nieergodyczne. Wykazano, ze periodogram dla ergodycznych
wielosinusoidalnych sygnatow losowych oraz wartos¢ oczekiwana periodogramu dla nieer-
godycznych sygnatéw wielosinusoidalnych przyjmujg wartosci deterministyczne jednoznacz-
nie okreslone poprzez amplitudy sktadowych sinusoidalnych. Konsekwencjg tej witasnosci
jest mozliwos¢ dowolnego ksztattowania periodogramu (lub jego wartosci oczekiwanej)
poprzez wybdr amplitud sktadowych sinusoidalnych.

W kolejnym rozdziale przedstawiono algorytmy syntezy wielosinusoidalnych sygnatéw
losowych zdefiniowanych za pomocag macierzy gestosci widmowych mocy oraz ich symu-
lacje z wykorzystaniem odwrotnego przeksztatcenia Fouriera. W prezentowanym podejsciu,
macierz gestosci widmowych mocy stacjonarnego w szerszym sensie procesu losowego,
ktory ma byé symulowany jest aproksymowana przez macierz periodogramu wielosinusoidal-
nego sygnatu losowego o amplitudach skfadowych sinusoidalnych dobieranych tak, by jego
macierz periodogramu (lub jej warto$¢ oczekiwana) byta rowna macierzy gestosci widmowej
dla pewnej liczby réwnoodlegtych czestotliwosci z zakresu [0,2-ir). Takie kryterium aproksy-
macji interpretowane jest jako probkowanie gestosci widmowej mocy w dziedzinie czesto-
tliwosci. Z warunku rekonstrukcji gestosci widmowej mocy na podstawie periodogramu
wynika dolne ograniczenie na liczbe weztow aproksymacji (okres wielosinusoidalnego sygna-
tu losowego). Wykazano, ze gdy liczba weztéw aproksymacji wzrasta do nieskoriczonosci,
wielosinusoidalne sygnaty losowe stajg sie asymptotycznie gausowskie, a te ktére byty nie-
ergodyczne stajg sie asymptotycznie ergodyczne. Przedstawiona metoda zilustrowana jest
przyktadami symulacji i identyfikacji skalarnych i wektorowych proceséw losowych zadanych
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w postaci gestosci widmowych mocy bedacych wymiernymi i niewymiernymi funkcjami
czestotliwosci. Zatgczono réwniez propozycje rozszerzenia powyzszego podejécia na przy-
padek generacji ciagtych proceséw losowych zdefiniowanych réwniez poprzez gesto$¢ wid-
mowa mocy.

Rozdziat 4 poswiecony jest wielosinusoidalnym sygnatom losowym otrzymanym
w wyniku aproksymacji gestosci widmowej mocy biatego szumu. Analizowane sg przypadki
skalarnych i wektorowych, ergodycznych i nieergodycznych sygnatéw wielosinusoidalnych
0 wiasnosciach biatego szumu. Poréwnywana jest ich ,,biatos¢” dla skohczonego i nieskon-
czonego okresu sygnatu wielosinusoidalnego. Dyskutowana jest réwniez ich asymptotyczna
gausowskos¢. Rozwazania sg zilustrowane przyktadami.

Tematem kolejnego rozdziatu jest zastosowanie wielosinusoidalnych sygnatéw losowych
do syntezy i symulacji procesow gausowskich. Na podstawie analizy warunkéw symu-
lacji komputerowej oraz wiasnosci wielosinusoidalnych sygnatéw losowych zaproponowano
schematy symulacji proceséw gausowskich.  Zaproponowane schematy zilustrowano
przyktadami.

W rozdziale 6 uogélniono definicje jednowymiarowych (1-D) wielosinusoidalnych pro-
cesow losowych analizowanych w rozdziale 2 na przypadek wielowymiarowy (M-D). Zde-
finiowano M-wymiarowe skalarne i wektorowe wielosinusoidalne procesy losowe. Podobnie
jak poprzednio, ich definicje sg $cisle powigzane z M-wymiarowa skoriczong dyskretng trans-
formatg Fouriera. Kluczem do zdefiniowania M-wymiarowych wielosinusoidalnych proceséw
losowych okazato sie skonstruowanie takiego zbioru M-tek czestotliwosci, by odpowiednia
suma M-wymiarowych sinusoid posiadata linie widma dla wszystkich M-tek czestotliwosci
wystepujacych w definicji transformaty. Analizujac wtasnosci statystyczne M-wymiarowych
wielosinusoidalnych proceséw losowych stwierdzono, ze dziedziczg one wiasnosci ich jedno-
wymiarowych odpowiednikéw. Konsekwencjg tego jest mozliwo$¢ przeprowadzenia syntezy
1 symulacji stacjonarnych M-wymiarowych proceséw losowych zadanych poprzez gestosé
widmowa mocy tak samo jak dla sygnatéw 1-D. Podsumowano wiasnosci asymptotyczne
tak otrzymanych M-wymiarowych wielosinusoiadalnych sygnatéw losowych.

W  kolejnym rozdziale przedstawiono wyniki syntezy M-wymiarowych wielo-
sinusoidalnych aproksymacji M-wymiarowego biatego szumu. Analizowano przypadki
skalarne i wektorowe.






