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PREFACE

Due to the current proliferation of ICs the need of more and more powerful design tools is
becoming apparent. It spans from basic synthesis up to sophisticated verification for all design
levels. Great effort has already been made to cover this need in digital domain. In the
analogue domain, however, circuits are usually designed and verified at the device level,
despite the fact that device verification level is very CPU intensive. In particular, the analogue
or mixed A/D simulation of large systems performed at the so-called SPICE-level suffers
from an excessive amount of computer resources even when provided with some speed-up
mechanisms. Hence, following the top-down design strategy, the analogue modelling and
simulation adequate also for higher levels of abstraction are actually important objectives. On
the other hand, high-level, rough models are usually no more sufficient. Consequently, a new
generation of models/macromodels (e.g. functional level) tend to comprise more
specifications, in order to provide a designer with more detailed verification results prior to
step down to lower design levels. Clearly, timing specifications are of particular interest in
most cases. Since the respective timing models are usually based on differential equations,
their typical implementation requires very CPU-time consuming procedures.

Recently, a novel piecewise linear (PWL) approach has been proposed to cope with this
problem [DAB94, DAB95, DAB99F], It can be applied to analogue or mixed analogue/
digital networks represented mainly at the functional level. The PWL approach feature: the
PWL signals, inertial building blocks as basic modelling units and the explicit simulation
algorithm to solve network equations. Also digital primitives can be performed accurately
using a similar PWL technique [RUA91, DAB96K] rather than logic states. However, the
PWL approach cannot be easily extended to complex digital blocks defined by behavioural
description, since it is difficult to propagate adequately the non-Boolean values (rise, fall)
through behavioural models [BRE76, ARM88], Hence, for an inner part of the complex
digital model the behavioural description based on logic states is preferred, whereas the input
and output stages of it use the PWL technique, when interfacing with analogue models. In
fact, they play a role of analogue-to-logic and logic-to-analogue converters that enable signal
propagation between the analogue- and digital domain.



Over the last five years the primary ideas evolved to more advanced macrosimulation
techniques covering a spectrum of PWL macromodelling issues and the relevant simulation
algorithms. They comprise feedback loops or high-order analogue blocks, and on the other
hand, the PWL waveform relaxation or “error-compensated” PWL approximation. An effort
has been made to implement the PWL approach in VHDL as well.

The purpose of preparing this book was to summarise the work and experience gained with
PWL macrosimulation over that period of time. Several people contributed to this work. The
author would like to thank his colleagues of Silesian University of Technology, Dr. Jacek
Konopacki who developed some primary models and assisted during the early simulation
experiments, and Dr. Andrzej Pulka who performed the VHDL implementation.

Special thanks are given to Prof. Adam Macura who headed the Division of Circuit and
Signal Theory at Institute of Electronics, Silesian University of Technology over the past
three decades, for his fruitful encouragement to writing this monograph.
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No. 8T1IB 04 113 is also gratefully acknowledged.

Finally, the author would like to thank his wife and daughters for their patience and
understanding during the many days and weekends spent on preparing this monograph.

CONTENTS

1 INTRODUCTION 11
L1 LeVvels Of SIMUIATION oot 12
1.2  Evolution ofelectrical simulation.... et et e et e e e abeeeaeeeabeeebeeebeeaateeans 14

1.3 PWL simulation......nn.
1.4  Outline ofthe monograph

2 PWL MACROSIMULATION TECHNIQUES 21
2.1 Concept of PWL macroSimulation ... e 22
2.2 PWL simulation by standard algorithms........cccooiiiiiiiiiie e 23
2.3 Simulation by PWL approXimation teChNiQUe.......ccooeiriiriieiincereee e 29
2.4 Enhanced TR tEChNIQUE.......ciiiiiieee e e 35
2.5 PWL approximation-based against TR-based techniques........cccoceovveiniiiiniinnnnens 43
2.6 Other macroSimulation ISSUES ..o e 47

3 MODELLING OF SIMPLE FUNCTIONAL UNITS 49
3.1 Voltage comparator macromMOdel. ... 50

3.2 Amplifier macromodel
3.3 Logic gate macromodel

4 MIXED-MODE PWL/LOGIC MACROSIMULATION 58
41 SIimulation algorithm ..ot 58
4.2  Mixed-mode interfacing and synchronisation. ..o 61
4.3 MacrosSimulation eXamMPIe. ..o s 64

5 SUPPORT BY RELAXATION TECHNIQUE 68
51 Waveform relaxation PWL algorithm ... 68
5.2 Equation-based against behavioural Mo dels. ..o 72
5.3 Waveform relaxation and one-segment relaxation for analogue sub-systems . . . 73

5.4 SIMUIAtION @XAM PIES ... i 84



6 SYNTHESIS OF COMPLEX ANALOGUE MODELS 89
6.1 Error accumulation and model refinem ent. ... 89
6.2 Synthesis with basic building BIOCKS ccuiiiiiiii e 95
6.3 Second order building D10 CK S o 102
7 IMPLEMENTATION ISSUES IN VHDL 106 SPIS TRESCI
7.1 Concept Of VHDL PWL M OdE it 106
7.2 SErUCTUTAl @S CIIPTION oot e e 108
7.3 Other iMmplemMeNtatioN ISSUES ..o 110
7.4 Simulation examples 115
8 SUMMARY 119
1 WPROWADZENIE 11
REFERENCES 121 1.1 POZIOMY SYM ULBCitiiiiiiiitiiieiieeiietee e teetet et ee et se st e tes et esaes st ess et es st enses s esas s aesenaanasens 12
1.2 Ewolucja SymuUlaci @18 KIIY CZNE [ttt ettt e eeenaee e ees 14
ABSTRACT 129 1.3 Symulacja 0dCiNKOW O -lNTOW A ..o 16

1.4 Plan monografii

2 ODCINKOWO-LINIOWE TECHNIKI MAKROSYMULACJI 21
2.1 Koncepcja symulacji odcinkowo-liniowej.......ccceocicnnnne

2.2 Symulacja odcinkowo-liniowa algorytmami standartow ym i......cc.ceeinneienenne. 23
2.3 Symulacja odcinkowo-liniowa technikg aprokSym acji.....ccccoeierineriinenieniinenesieseene 29
2.4 Udoskonalona technika trapezoéw.... .35
2.5 Poréwnanie techniki aproksymacyjnej z technikami trapezow .......ccccccvevevnieeeniieniennnns 43
2.6 Inne zagadnienia M akroSYmM UlA Cjiu et 47
3 MODELOWANIE PROSTYCH MODULOW FUNKCJONALNYCH 49
3.1 Makromodel KOmparatora Na P i€ Cia couiiiiiieiieeie ettt 50
3.2 MaKromodel WZMACNIACZ@ cocicieiiririieiieiieeie ettt ettt et sr ettt nn e 52
3.3 Makromodel bramki 10 giCZ N € ittt 55

4 MAKROSYMULACJA TCHNIKA MIESZANA
ODCINKOWO-LINIOWO/LOGICZNA 58
o R N [ Ko T A {1 =3 VA 1 (WU - U o] 1 PRSP PRUPRRROY
4.2 INterfejsS i SYNCRTONIZACA cuiiiiiiieiieeeie e et
4.3 Przyktad makrosymulaciji..

5 WSPARCIETECHNIKA RELAKSACYJNA 68
5.1 Odcinkowo-liniowy relaksacyjny algorytm Sym UlacCji.....ccocoenriieniniiiee e 68
5.2 Modele oparte o rownania i modele behawioralne. ... 72

5.3 Relaksacja przebieg6éw i pojedynczych segmentéw dla struktur analogowych . . 73
5.4 PrzyKtadY SY M U T C ittt et st b e 84



10

6 SYNTEZA ZLOZONYCH MODELIANALOGOWYCH 89
6.1 Akumulacja btedu i KOrekcja M 0 d @ 1U ..ccoooiiiiiiiiiiecie e 89
6.2 Synteza z wykorzystaniem podstawowych BIOKOW .....cccoviiiiiiiiiiiiccee 95
6.3 BIOKI ArUGIEQO FZ € 0 U ottt ettt sb et 102

7 ASPEKTY IMPLEMENTACJIW JEZYKU VHDL 106
7.1 Koncepcja modelu odcinkowo-liniowego w $rodowisku V HD L 106
7.2 Opis strukturalny 108
7.3 Inne aspekty M akroSY M UTA C i i 110
7.4 Przyktady SYMUIACHT oottt st s et e e e b e sbaesebe s 115

8 PODSUMOWANIE 119
LITERATURA 121
STRESZCZENIE 130

1. INTRODUCTION

Modelling and simulation play a major role in the process of designing electronic circuits. By
using a simulator, a designer is able to evaluate the performance of the design prior to enter the
expensive manufacturing process. As the algorithms became reliable and the models mature,
simulators along with other nowadays CAD tools have completely replaced the traditional
breadboarding techniques, in particular when designing VLS| circuits.

Basically, there are two main approaches to simulating an electronic circuit. The first assumes
the circuit to be a continuous dynamical system, usually described by a set of differential
equations with electrical variables such as voltages or currents. The involved circuit simulator
after resolving this set o f equations numerically is expected to provide detailed waveforms at the
circuit’s nodes and branches. Beside this so-called transient analysis, also other tasks exist in
circuit simulation, such as DC analysis, AC analysis or Fourier analysis. For a particular circuit
analysis usually individual algorithms and models are required [CHU75, RUE86, MCC88,
OGR95],

The other approach to simulation makes use of some prescribed discrete states of the circuit
rather than of continuous node voltages or branch currents. The in-between states are ignored in
this simulation, so it is only adequate for a limited class of circuits. These, however, are the most
popular digital (or logic) circuits. The relevant digital (or logic) simulation is based primarily on
simple logic operations (Boolean or multiple-valued) with dynamics modelled by delaying the
signal transitions between the discrete levels [SZY76, BRE76, DEM81, HAY82, BRY87,
SAL94],

The logic simulation and the circuit simulation, also referred to as electrical, began to emerge in
1950s following the use of the first computers. Until 1970s each of them has been developed
separately [PED84]. The early logic simulation has been oriented merely towards gate-level and
register transfer-level modelling, whereas the circuit simulation towards transistor-level
modelling, usually for analogue circuits.

The need of more efficient simulation tools has been stimulated by the progress in technology
and designing o f ICs. Several new concepts have been developed and incorporated into existing
simulation techniques (e.g. partitioning, relaxation, ordering, macromodelling) [BOY74, RAB79,
RUES86, WHI87, VAC93]. Also a new simulation level, the switch-level, adequate for MOS
digital networks has been proposed and implemented in several ways [BRY87, KIM 88,
RA089],

At present the VLS| designing is a hierarchical process, which starts usually with a high-level
behavioural (and/or architecture) description of the circuit based on primary specifications. The
synthesis proceeds “top-down” by translating this high-level description to lower levels such as
register/functional level, gate-, switch-, transistor level and it terminates at the physical-mask
level. The synthesis is accompanied by design verification that concerns design rules checking
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electrical rules checking and predicting ofthe circuit performance. Simulation tools must support
the latter task. Since the verification is performed at different design levels, the needed
simulators (including models/macromodels) must span from lower- to upper levels of
abstraction. Moreover, to cope with mixed A/D circuits the required class of algorithms and
models must be substantially enlarged as compared to purely digital designs.

1.1 Levels of simulation

To enter the designing process a complex circuit is initially described at the behavioural level in
a hardware description language such as VHDL, VHDL-AMS or HDL-A [IEE93, IEE98,
ANA94], Some virtual components of the circuit (system) to be designed may be defined as
structural- or behavioural blocks. The structural blocks define interconnections between blocks,
whereas behavioural describe a set o f operations to be performed in the system. After compiling
the model code, a behavioural simulator can be used to verify the system input/output behaviour.
This simulation might be used e.g. for verifying of the system timing for a signal processor or
checking a communication protocol for a local area network. In this phase o f designing, specific
internal structures are not considered.

At the register-transfer level (RTL) the system behaviour is mapped into a structure of functional
blocks such as ALUs, MUXs, registers, DACs or sample-hold amplifiers. Simpler units like
logic gates might be accepted as well. Primarily, the term RTL has been reserved for digital
systems [BRE75], At present it covers additionally mixed A/D systems, and hence, it is
alternatively called the functional level [RUA91]. At this level, simulation is used to verify
correctness of register transfers, ALU operations or interfacing with analogue functional blocks
and propagation of analogue signals. The functional level (or RTL) simulation is well suited to
evaluate alternative architectures of the system to be designed. In typical cases, however, the
timing specifications it provides are rather crude. Certain failures, such as races and hazards for a
digital subsystem or incorrect waveforms (e.g. ringing, overshoot) for its analogue counterpart
might not be detected.

Gate-level or (logic) simulation is used to verify the logical correctness of the digital network,
when represented by logic gates such as inverters, NANDs, NORs of flip-flops. The simplest
models use two Boolean logic states, accomplished by unknown state X and high impedance
state Z, if applicable [BRE76, RAG89]. Most gate-level simulators adopt event-driven and
selective-trace algorithms to make use oflatency o f the digital network. That is, if a change ofa
logic signal occurs (called the event) at the gate input, the gate output needs to be evaluated.
Otherwise, it is said to be latent, and no CPU time is spent on this gate. In fact, all gates (called
thefan-outs) with input connected to the node, where an event occurred are scheduled to produce
atransition at the output after the prescribed delay time. To control the logic events a time queue
or time wheel is used. This kind of simulation is capable of detecting glitches, races or hazards.
An important application of gate-level simulation is fault simulation performed in order to
determine which potential circuit faults (usually stuck-at faults) could be detected by given test
patterns. More subtle effects arising for MO S circuits like bi-directionality or charge sharing can
also be modelled at the expense of more logic states introduced. However, there are two
problems with this approach. These are: low accuracy of the obtained simulation results and
extra work required to translate the design to a form suitable for the simulator. That is, in some
cases extra gates must be added to the original gate structure to meet the simulator requirements.
As a consequence, a drawback also appears during the layout verification due to inconsistency
between the two databases [KON95].
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For the MOS digital circuits the switch-level simulation is preferred. The switch-level logic
simulators model a MOS circuit as a set of nodes connected by transistor switches [HAY82,
BRY84, BRY87], Node voltages are represented by a few discrete logic levels, usually 1, 0, X
and U (uninitialised). The switch model of a transistor is controlled by a voltage level applied to
its gate. Transistors are assigned discrete strength values that reflect channel conductances when
fully on. Additionally, the nodes are considered to provide capacitive charges. Hence, they are
assigned the so-called sizes. The power- and ground node are assigned the maximum size,
whereas the other nodes smaller sizes accordingly to their relative capacitance values. Switch-
level simulators usually partition the transistor network into channel-connected components
(rather than into logic gates), which consist o f transistors connected by drain- and source nodes.
The signal paths they constitute (a path begins at power- or ground node) are then examined to
determine node states. Like in a gate-level simulator, also here the event-driven algorithms are
exploited. The interaction between different paths occurs only at transistor gate terminals. This
approach allows to model mutually coupled elements (bi-directionality), charge sharing or pre-
charged busses. Some rough timing specifications can be incorporated as well. However, precise
timing information is not usually provided.

This has led to the development of switch-level timing simulation, sometimes referred to as
switch-level simulation oriented electrically (rather than logically). Several approaches have
been used to perform this kind of simulation [CHW75, TER83, KJM88, RA089, VIS91,
KON95]. The switch-level timing simulators seem to bridge the existing gap between electrical
and logic simulation, since these simulators apply simplified (in different ways) methods of
electrical simulation to digital networks. A variety of methods have been used to provide timing
delays: table look up, empirical equations, RC trees, Asymptotic Waveform Evaluation (AWE)
or inverter analysis techniques. More accurate results may be obtained with the so-called
variable-accuracy timing simulation [TSA86, KIM 88, VIS91] that also is considered as a kind of
switch level simulation. A comprehensive overview of the switch-level simulators is given in
[KON95],

Electrical simulation (or circuit simulation) provides the detailed timing waveforms of a circuit.
It is mainly involved with the transistor level of a design. At this level a circuit is represented by
RLC elements, diodes, transistors or voltage- and current sources. The circuit equations might be
arranged with the modified nodal-analysis technique based on the Kirchhoff laws, and next
solved with a stable implicit integration method followed by the Newton algorithm, finally
supported by the sparse Gaussian elimination [NAG75], Electrical simulation is the most
accurate, but requires large memory resources and the longest CPU-time as compared to the
other simulation levels. Besides, circuit simulation has to cover other needs, typical in designing
ofanalogue circuits, such as DC characteristics, frequency behaviour or temperature analysis.

The different simulation levels can be compared as shown in Table 1.1 [SAL94]. The relative
run-time cost and accuracy is provided for a hypothetical digital VLSI circuit. Clearly, the
progression from behavioural level to electrical level provides an increase in accuracy at the
expense of more CPU-time required. On the other hand, the maximum size of the circuit to be
simulated decreases while the accuracy of simulation increases. This table reflects, to some
extent, also the hierarchical designing process.

Apparently, the analogue circuits have not been addressed at the gate- and switch-level
simulation. In fact, when extended to mixed A/D circuits, those levels are adequate to cover a
class of analogue macromodels [BOY74, RUE78, RAB79, CAS91] as well, although circuit
simulation technique is usually used for them. Observe that this gives rise to the mixed-mode
simulation. On the other hand, in order to distinguish from the transistor level, the analogue
macromodel-level might be considered too. Clearly, this classification is by no means strict.
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Table 1. Relative cost and accuracy ofdifferent simulation levels

Level Relative Capability and Accuracy
Cost

Behavioural 1 Algorithmic verification, some timing information
RTL/Functional 10 Functional verification, some timing information
Gate 100 Functional verification, first-order timing information
Switch 1000 Functional verification, first-order timing information
Timing 10000 Detailed waveform information, variable accuracy
Electrical 1000000 Most accurate form of simulation

There are several reasons for using two or more simulation levels simultaneously. One common
situation arises for mixed signal A/D circuits, as mentioned above. In this case analogue portions
of the circuit might be treated with a circuit (electrical) simulator, whereas the digital
counterparts, with a logic or timing simulator. Clearly, an interface between different domains
would be required for this mixed-mode simulation. Besides, an ideal simulator for VLSI circuits
could be thought as one, which merges the speed and efficiency of logic simulators with the
accuracy and detail ofa circuit simulator. Usually, the detail and accuracy provided by the circuit
simulator are required only for some critical portions ofthe circuit. That is, a simple gate-level or
switch-level simulation is adequate to verify the most circuitry of the digital VLS| design, while
some portions, such as sense amplifiers in memory circuits or sub-circuits, tightly coupled via
transmission transistors, might require more detailed modelling- and simulation level.

Basically, the CPU-time can be substantially reduced with the mixed-mode simulation by
choosing computationally less expensive models whenever it seems to be reasonable [SAL94],
Different levels of the design hierarchy can be addressed simultaneously. For example, at the
RTL level the gate-level logic models can be used with no need of an extra interface. Hence, this
kind of simulation is referred to as mixed-level simulation. Recently, also the mixed-domain
simulation has been introduced, e.g. to simulate switched-capacitor circuits [CHA92, SAL96]. In
this approach the Laplace s- or z-domain can be combined with the time domain.

1.2 Evolution of electrical simulation

The standard circuit simulation, as implemented in SPICE2 program [NAG75], has two
drawbacks when applied to large circuits. First, the sparse-matrix solution time grows super-
linearly with the size of the circuit. Second, different circuit variables tend to change at very
different rates. The standard simulator forces then every differential equation to be discretized
with the smallest time step relevant to the fastest-changing circuit variable. This approach
becomes particularly inefficient, when most of the circuit variables are inactive i.e., are not
changing at all.

Several techniques have been invented and applied to avoid solving large sparse matrices and
allow different equations of the system to use individual time steps when integrated. These
techniques fall in two classes: direct decomposition and relaxation based (or indirect). The direct
methods (or tearing, as they are called) use the factorisation at linear- or nonlinear equation level,
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and are aimed at retaining the convergence and stability properties of the standard circuit
simulation [RAB79, HAJ80, DEM87], However, the tearing decomposition methods seemed to
influence the standard circuit simulation less than the relaxation-based techniques.

It was the orientation towards MOS technology that has fastened the role ofthe relaxation-based
simulators [NEW84, WHI87]. In fact, they all exploit the key feature of MOS circuits, i.e.
unidirectionality. MOS transistors are in principle unidirectional because the gate of the device is
insulated from the drain and the source of the device. It means that, if the effects of small
capacitances between the gate and the other terminals of the device are neglected, then the gate
voltage is independent o f the voltages at those terminals.

The relaxation technique was first used in the simulator MOTIS in 1975 [CHW 75] although it
was not recognised as a relaxation simulator at that time. In MOTIS the Jacobi-semi-implicit
integration method was exploited and accompanied by table-look-up transistor models. The
speed-up obtained, as compared to standard simulation, was up to two orders of magnitude with
a relatively good accuracy to verify the timing of signals. Hence, it was called the timing
simulator.

The improved MOTIS, MOTIS-C [Fan78], used the Seidel-semi-implicit integration algorithm.
This simulator proved to be more efficient than MOTIS when the circuit equations were
processed in the order that follow the signal flow in the circuit. However, in MOTIS-C the
equations were ordered arbitrarily before being processed. The program SPLICE [NEW79] was
the first, which introduced dynamic ordering of circuit equations via the event-driven and
selective-trace algorithms adopted from gate-level logic simulation. A concept of the analogue
event had to be applied.

Unfortunately, feedback-loop circuits or circuits with tightly coupled nodes (by floating
capacitors or transmission transistors) exhibited instability when analysed with Gauss-Seidel or
Gauss-Jacobi semi-implicit integration algorithms. Various methods have been investigated to
overcome this drawback. The most important of them were suppose the iterated timing analysis
(ITA) [SAL87] and one-step-relaxation (OSR) [HENS85], which implemented the Gauss-Seidel-
Newton algorithms. ITA greatly improved the capabilities of nonlinear relaxation methods by
carrying the outer relaxation loop until convergence as opposed to simple timing simulators. ITA
was implemented in SPLICE3 simulator [SAL87], OSR performed additionally carrying the
inner linearisation loop until convergence. Speed-up factors up to two orders of magnitude have
been reported for those simulators as compared to the conventional approach.

At the same time, it was also noted that relaxation techniques might be applied not only for the
solution of algebraic nonlinear (or linear) equations but also directly the solution of differential
equations describing the circuit. This gave rise to the waveform relaxation technique (WR)
[LEL82], which solves equations with respect to variables that are functions of time
(waveforms), unlike the other relaxation methods which compute vector of variables. The Gauss-
Seidel and Gauss-Jacobi algorithms have been used in the waveform relaxation. The latter is
particularly well suited to parallel computing [WHI185] implemented in RELAX2 simulator. WR
algorithms proved to converge under mild assumptions when applied to MOS circuits. However,
several refinements have been introduced to the WR to improve the convergence and reduce the
CPU-time required [DEB87, WHI87], These include partitioning, ordering, latency and
windowing techniques. On a single processor the speed-up factor was shown to be up to an order
ofmagnitude for large circuits as compared to standard simulation.

A key aspect of decomposition-based simulation techniques is that the computational overhead
needed rises almost linearly with the problem size, whereas the standard simulation features an
exponential dependence. Various decomposition approaches reflect also a kind of hierarchy in
circuit description as shown in Fig. 1.1 [VAC93].
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Direct H Relaxation-based

decomposition J*"-L decomposition
Tearing Gauss-Seidel

Block LU Factorisation Gauss-Jacobi

Fig.1.1. Application of decom position to circuit simulation

Observe that a hole is present on the direct decomposition side at the level of differential
equations, because at this level it becomes similar to relaxation-based (indirect) decomposition.

Another important aspect involved with simulation is the macromodelling [BOY74, RUE78,
RAB79, BR088, CAS91], The primary goal of macromodelling is to reduce substantially the
CPU-time of simulation. Clearly, some reasonable constraints had to be imposed on
macromodelling, such as qualitative and quantitative similarity feature, good numerical
possedness and predictive ability [CHU80]. As a result, macromodelling provides a trade-off
between speed and accuracy. There are several approaches that can be used in macromodelling:
network reducing/simplification, approximating of terminal characteristics, curve and table
fitting or mathematical functional modelling (build-up technique). Almost all simulation levels
exploit macromodelling, although in some cases it is not emphasised, so that the modules
(subcircuits) used are simply referred to as “models” rather than “macromodels”, like in case of
gate-level simulation.

1.3 PWL simulation

Several simulators make use orpiecewise linear (PWL) techniques. The primary goal of PWL
techniques is to avoid the linearisation step i.e., the Newton-Raphson iterations used in standard
circuit simulation. Several algorithms are available for this purpose [CHU75, CHU86, BOK87],
Basically, each nonlinear element is represented by PW L equations so the simulation algorithm
only deals with linear systems of equations. Careful monitoring of changes of PWL regions to
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avoid numerical inconsistency becomes an important task. Due to linear models (equations) this
simulation has better convergence than standard simulation, and supports component modelling
at all levels of abstraction.

The PWL approach has also been used for waveforms to improve the efficiency of signal
representation in mixed-mode and mixed-level simulators. Additionally, unification of models
could be exploited in some cases.

Van Stiphout et al. implemented a PWL mixed-signal simulator PLATO that used an event-
driven approach for transient analysis [VAN9O0], The events are grouped into two classes: PL
events and dynamic events. PL events occur when a vector reaches the end of a PWL region.
Dynamic events are generated if the integration step size for a particular model becomes invalid
(the integration step sizes are adjusted to maintain accuracy and efficiency as the simulation
progresses). The efficiency of this event-driven approach was increased by discretisation of the
event times and thereby reducing the number of separate events. Further improvements to
efficiency were made by forcing the related circuit blocks to use the same minimum step size,
reducing the recomputation o f step sizes required.

Kevenaar and Leenaerts use similar methods to PLATO in their simulator called PLANET that
exploits system hierarchy to run more efficiently [KEV91]. Unlike previous PWL simulators,
PLANET partitions a system into a set of subcircuits that can each be represented by a small
matrix of PWL equations. Each subcircuit can be solved independently allowing the optimum
integration time steps to be used. The subcircuits are connected together by a set of topological
equations describing the system hierarchy. The advantages of this approach over non-
hierarchical methods increase with the complexity ofthe simulated system. Some comparison to
SPICE estimates for a simple OpAmp macromodel are given.

Kruiskamp and Leenaerts used PLANET for simulating circuits with PWL macromodels they
derived [KRU96]. Analogue and A/D circuits are addressed at transistor- and macromodel level.
A behavioural approach is used to obtain the macromodels. Because a similar data format is used
for all models, mixed-level simulation can be performed by applying a single simulation
algorithm.

Rsim is an experimental switch-level simulator that was developed by Terman [TER83]. Rsim is
capable of simulating large MOS circuits up to three orders of magnitude faster than SPICE. Kao
and Horowitz added PWL models to Rsim to form a new simulator called Mom [KA094],
which preserves the efficiency of Rsim for digital circuits but improves the accuracy for more
“difficult” subcircuits. These include CMOS dynamic RAM sense amplifiers, ECL logic gates or
BiCMOS buffers. For such circuits Mom is as good as a mixed-mode simulator combining
circuit simulation with switch-level timing simulation.

Griffith and Nakhla have used PWL waveforms in a novel simulator for nonlinear frequency
dependent circuits [GRI92]. This simulator is designed for transient analysis of high-speed
(microwave) circuits where improperly terminated connections can adversely affect the
transmission of signals. The connections cannot be simulated correctly by conventional lumped
impedance interconnect models and must use distributed transmission line models instead. These
models are only defined in the frequency domain. The simulator replaces nonlinear terms in the
circuit equations by a set of PWL time-dependent waveforms. This reduces the nonlinear
equations to a linear equation that can be solved in the frequency domain. The transient response
is obtained from frequency domain solution using inverse Laplace transform.

Cottrell used PWL waveforms to create a behavioural mixed-signal simulator [COT90]. Its
analogue models represent the transfer functions associated with analogue functional blocks such
as amplifiers, filters, comparators and D/A converters. The model ports are unidirectional and are
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either classified as inputs or outputs. Passive RLC elements are not allowed. Analogue signals
are classified as voltage or current PWL waveforms. Transfer functions specified in the
frequency domain are converted to the time domain, using inverse Laplace transform before
simulation. Then the responses are solved with Forward Euler integration algorithm and local
truncation error control. Each model can use an individual time step. The local truncation error
reflects the second derivative ofthe waveform that is next simplified to PWL form. A speed-up
oftwo orders of magnitude as compared to SPICE has been reported.

Visweswariah and Rohrer have used PWL and piecewise constant waveforms in a prototype
event-driven simulator called SPECS [VIS91]. The simulator uses empirical table models of -V
characteristics to represent electronic devices. Voltages are PWL waveforms while currents are
represented by piecewise constant waveforms. The simulator assumes that circuit only consists
of voltage-dependent current sources and linear capacitors. All the table models are evaluated
with a single time queue. Events correspond to the time instants that current waveforms change
level and voltage waveforms change rate. Feedback loops cause events to be rescheduled
resulting thereby in occurrence of iterations. A mechanism to assure convergence of the
iterations has been introduced. For digital MOS circuits the simulator was shown to run up to
200 times faster than SPICE, depending on the number o f segments used in the models.

Ruan et al. used PWL waveforms to represent voltages in a functional multi-level simulator
[RUA91], This simulator was designed to operate with both analogue and digital functional
blocks. It uses an event-driven approach and predicts the time of a new event from the gradient
of signal waveforms. Logic gate models operate directly on PWL waveforms, and are provided
with an adequate inertial delay mechanism including capacitive loading effect. The delay
depends also on input rate. Since unknown logic states are avoided by using continuous PWL
waveforms, the digital circuitry can be connected directly to the analogue portion of the circuit,
and no signal conversion is required for this simulator. Interval algebra is used to evaluate the
initial conditions in a circuit. The simulation results presented are optimistic, however, more
complicated digital blocks can be modelled only at a gate level. Besides, the timings that the
analogue models provide seem to be rather rough, despite the fact they can strongly influence the
overall circuit behaviour.

The latter work was the primary inspiration to the author, and to overcome the drawbacks
observed, a new PWL simulator has been proposed in [DAB94] and next improved in [DAB95,
DAB99F], It is a prototype functional-level simulator provided with efficient analogue
macromodels, which model timing specifications and basic nonlinarities of the functional units
[DAB96K]. In contrast to other PWL simulators, mentioned above, an explicit analysis
technique based on approximation is proposed to proceed the macromodels. Complex digital
units are allowed as behavioural logic models, since the PWL approach cannot directly be used
for them. A virtual interface between PWL- and digital domain is defined within the simulator.
Since the PWL macromodels save the CPU-time, this simulation technique can be also used in
iterative processes required for simulation of feedback loop structures [DAB97W, DAB99W].
Most of those approaches have been implemented in VHDL as well [DAB98D, DAB98E,
DAB99],
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1.4 Outline of the monograph

The underlying objective of the work presented was to develop analogue macromodels and a
supporting simulation technique capable of verifying effectively complex electronic designs at
the functional level. The models were expected to represent basic timing/frequency
specifications and be computationally as efficient as possible, approaching to some extent the
models used in logic simulation. In order to verify the functionality o f mixed-signal A/D designs,
the prospective macrosimulation technique and the logic simulation were assumed to be
compatible.

As a result, simple, yet accurate models have been derived, and explicit formulas have been
proposed to evaluate their timing responses. As compared to the standard analogue simulation a
number of small integration steps usually produced to solve for the involved differential
equations, have been replaced (whenever possible) with a few linear segments due to the
accuracy imposed. Consequently, with the reduced number oftiming points, those models might
be viewed as discrete objects, and hence, could be treated like gates in logic simulation using the
event-driven analysis technique.

The author’s work cited in the previous section is summarised and discussed thoroughly in the
following chapters of this monograph. It was intent of the author to provide a clear and unified
description covering possibly all issues of the PWL approach to macrosimulation at the
functional level. Some new results, not published so far, such as Section 2.4 or Chapter 6, are
also included.

The organisation of the book is as follows. In Chapter 2, a concept of the PWL approach is
introduced. The nonlinear characteristics of analogue units are assumed to be of PWL type. A
class of unidirectional basic building blocks is used to model the transient effects. Basic
integration algorithms common in analogue simulation are investigated for analysing effectively
the building blocks. To overcome the drawbacks observed a novel method that converts the
smooth time responses o f those blocks into PWL waveforms is proposed. For this purpose a non-
iterative approximation algorithm is derived. A refinement patterned after the PWL
approximation algorithm is added to the standard trapezoidal rule, so that it can be exploited as
an alternative tool. The PWL approximation- and the trapezoidal rule-based techniques are
compared, and their pros and cons are discussed. Finally, also other building blocks useful in
analogue modelling are addressed.

In Chapter 3, the PWL macromodels of simple functional units, such as comparator or amplifier
are derived. Second order effects relevant to their timing specifications are accounted for. The
model performances are compared with the respective SPICE estimates.

Mixed-mode simulation using the PWL technique is addressed in Chapter 4. A concept of the
PWL event is introduced and the event-driven simulation algorithm is formulated. It is based on
the event scheduler- and time-queue concept, primarily only used in logic simulation. Interfacing
between the PWL- and logic domain is also discussed. The chapter is accomplished by a
simulation example obtained with the prototype mixed-mode simulator.

In Chapter 5, feedback loop structures are shown to be critical for the PWL simulation in a
sense that they may require iterations. To support the PWL technique the waveform relaxation
(WR) is used, since it also operates on waveforms. The convergence and stability properties
ofthe WR-based PWL algorithm are considered. A few theorems are formulated and proved
resulting in a convergence criterion of practical use. The simulation examples are included as

well.
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Chapter 6 refers to the synthesis problems arising with higher-order analogue models. An
effect of the PWL error accumulation is emphasised in this chapter. To compensate for those
errors a refinement is introduced to the PWL model and followed by the corresponding
modifications in the approximation algorithm. Also the second-order building blocks are
introduced to simplify the synthesis and reduce the approximation errors. Parallel and tuned
cascade structures are proposed to perform the synthesis. In case of cascade structures the
trapezoidal rule-based PWL algorithm is found to be more accurate than its approximation-
based PW L counterpart.

Chapter 7 is concerned with implementation of the PWL models and algorithms in VHDL.
Since the PWL models may be viewed as discrete objects, they are well suited to be
implemented in this discrete environment. The basic building blocks are defined as
behavioural VHDL models (entities) based on the explicit formulas available for those blocks.
More complex PWL models are supported by structural approach. Besides, the digital nature
of VHDL facilitates modelling mixed signal A/D networks. However, additional signal
conversions between the PWL- and standard logic domain are required in this case. Practical
simulation results illustrate this approach.

Chapter 8 provides final conclusions and a summary to all the chapters.

2. PWL MACROSIMULATION TECHNIQUES

Two main issues, model representation and signal processing, should be addressed to characterise
an approach to macrosimulation technique. At the functional simulation level, analogue units like
amplifiers, adders, comparators or D/A converters are dealt with rather than transistors or circuit
primitives, e.g.: resistors, capacitors, etc. Hence, the functional-level models make usually use of
basic algebraic operators to characterise the static behaviour, and simple inertial blocks or
integrators to perform the transient effects.

In this chapter a concept of piecewise linear (PWL) macrosimulation technique is developed. An
analogue network (sub-system) is assumed to be composed of the so-called basic building blocks.
In the presented approach each of these blocks is usually provided with some algebraic operator
and an inertial (or integration) mechanism that together form a unidirectional unit This is
adequate not only because of the functional level addressed here, where the bi-directional loading
effects might be neglected, but also because of the MOS technology commonly used when
designing complex A/D networks. It is well known that the input impedance of a MOS transistor
gate is high, and so is the input impedance of any functional block o f a system in typical cases.

Using additionally some explicit formulas to evaluate the timing responses of those blocks, a
similarity between such a problem statement and the logic simulation can be observed. In fact,
logic simulation proved to be the most efficient computationally as compared to other simulation
techniques. Hence, it is useful to adopt the basic highlights of logic simulation, such as event,
selective trace and time queue to the macrosimulation technique derived. As those issues have
already been introduced in mixed-mode simulation [SAL94] (as mentioned in Section 1.2), the
presented approach is not entirely new. Here, however, the simulation becomes even more CPU-
effective because of the PWL technique used (both for DC characteristics and signal
representation), the unidirectionality assumption and timing analysis performed with explicit
formulas as opposed to standard approaches used for sets of differential equations.

In order to take advantage o fthe mentioned above mechanisms as much as possible the analogue
signals are postulated to take the PWL form. In fact, this choice is as a kind of tradeoff between
the number of evaluations (points computed) per block output, and the accuracy required to
match shapes of the output signals. Apparently, the PWL representation ofa smooth waveform is
more accurate than the step function-based representation, and as compared to the quadratic case
fewer computations per point are required. Besides, at this level of abstraction it seems
reasonable to sacrifice some accuracy for the reduced number of integration steps to be done,
unless unrealistic results are produced. As a consequence, the resulting time steps are expected to
be relatively large, so the number of steps to be done should be relatively small.
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From the broader perspective, the application ofthe event-driven mechanisms adopted from logic
simulation to simulation of an analogue network may be viewed as arelaxation technique, where
the blocks are analysed due to signal flow. In particular, using the selective trace approach
corresponds to the Gauss-Seidel algorithm in a sense that the component blocks are taken for
analysis separately. These terms will be explained in Chapter 4 in context of using a mixed
technique (PWL/logic) to simulation of A/D networks.

2.1 Concept of PWL macrosimulation

In most cases the real analogue units consist of subcircuits that exhibit inertial or integrating
properties. Therefore, any macromodel of an analogue unit can consist ofa few such building blocks
to mimic the timing behaviour, the DC transfer function and the output loading effects.

Assume the constitutive relation for the basic building block in the form of

Tx + x = f(x blp) (2.1)
where /[m) denotes its static (DC) characteristic represented as a PWL function, and T is the time
constant (Fig.2.1). To obtain a pure static block, its dynamics have to be removed by letting T=0 in

eqn.(2.1). On the other hand, when capacitive loading effects at the output jc must be accounted for,
the time constant takes the form of

T=RS(C0O+CY) (2.2)
where C,, is a charging capacitance at the output and C,, Rs are respectively the internal output

capacitance and resistance. Equation (2.1) can be generalised into a multiple input case, e.g. for a
multiplier or adder.

Using a PWL signal x,,p, asuperposition/]**)] provides some signal u(t), which is of PWL form
too. Hence, u consists of some PWL segments, each limited by two subsequent breakpoints

and defined as: u,{t) = wo+ /= - //), te[ ti, ti+l], Observe that those breakpoints have their origin in
the breakpoints either o fx”~ or ofthe/() function.

A number of integration algorithms are available to provide a solution for (2.1) [CHU75, OGR94],
However, as the analysis procedure has been assumed to work with relatively large time steps, only
the so-called A-stable integration methods are well suited for this purpose. The most popular ofthem
(used in standard analogue simulation) are backward-Euler (BE), trapezoidal rule (TR) and 2nd order
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Gear algorithm (G2). In fact, most circuit simulators use these algorithms for their guaranteed
stability properties so that their step sizes can be selected based on accuracy estimates only. For the
purpose of analysing the structure ofblocks, each defined by (2.1), those algorithms are expected to
take preferably an explicit form of

xk = «,(<*)»**] (23)

or similar to it, where xk, xkt are estimates of the exact solution x(tk), jc(/*-i), accordingly. The
integration step hk=tk-tk\ > 0 and /*A_ie[ U, fw]. Besides, hk should be calculated with respect to
the accuracy imposed.

Recently, also a novel, so-called PWL approximation algorithm has been proposed to solve
explicitly for (2.1), like (2.3) does [DAB95, DAB99F], The PWL algorithm is based on the exact
solution of (2.1) and makes use of a unique non-iterative approximation procedure to provide the
relevanttiming response in a PWL form rather than the original smooth waveform.

Consequently, all the analogue signals propagating through a network are assumed to be ofthe PWL
form, and any explicit analysis procedure (ofthe mentioned above) may be applied subsequently to
the component blocks, like in gate-level logic simulation. As will be shown, the mechanisms typical
oflogic simulation may be adopted in those PWL approaches to assure maximum effectiveness.

In this context, in the remaining of this work, any model composed of the basic building blocks
(block) with PWL input- and PWL output waveforms, obtained by discretisation, will be referred to
as the PWL model. In fact, the PWL output of each building block is obtained by discretisation. In
case of the PWL approximation-based algorithm the smooth solution of (2.1) is discretised, and
hence the relevant PWL waveform is generated. Unlike this, standard numerical algorithms used in
PWL modelling discretise the differential equation, so that the relevant discrete solution is provided
directly.

In the following sections, first the application ofthe mentioned above standard algorithms (BE, TR,
G2) to solve for (2.1) is investigated. In this case the obtained discrete points are assumed to be
breakpoints constituting the PWL output waveform. The local truncation error mechanism is used to
control the accuracy ofthat PWL solution, like in typical applications. The TR algorithm is shown to
be well suited to work with relatively large steps as opposed to the BE and G2. Next, the new PWL
approximation-based technique is derived in detail. A refinement patterned after the PWL
approximation algorithm is added to the TR, so that it can perform large steps too, and can serve as
an alternative PWL approach. The PWL approximation- and the TR-based techniques are compared
in accuracy and the computational overhead required. Finally, other macrosimulation issues
pertaining to additional building blocks such as integrator or multiplier are addressed.

2.2 PWL simulation by standard algorithms

In order to investigate the application ofthe mentioned above standard algorithms to solve for (2.1),
first we invoke the relevant recurrent formulas [CHU75, OGR94]:

XK = hkxk + XK t for BE algorithm, (2.4a)

Xk =~ (xk+**_)+xk for TR algorithm, (2.4b)
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xk = Poxk t alxk\ + a2xk-2 for G2 algorithm, (2.4c)
where 120 = MK > Aq) 5 = (krhk)2 . A
2%* 4+ A*_| hk_I(2hk + »A_)) hk_l1(2hk + A*_j)
and the integration steps are: hk= tk- tkx, = [*., - 2. Consequently, **, jc*_i, **.2 are estimates

of the exact values of x(tk), x(tk\), x(tk2), respectively. A similar relation holds for the time
derivatives as well. The formulas (2.4) could be instantiated for the basic building block and put into
the form like (2.3) as follows.

Assuming xk ~ x(tk), xk « jc(tk), and by definition/]*;,,"*)] = uk, from (2.1) one obtains

X(tk)z rp~X()x Lkaxk_1<*
so that:
K1 + -€ «*
xb = for BE algorithm, (2.5a)
L.+ hk
T
1~ + + 4>
a* = for TR algorithm, (2.56)
i+15

2T

alxk-t +a2xk 2+ P
xk = for G2 algorithm (2-5¢)

1+ —
T

The formulas (2.5) are of practical use when supported by the local truncation error (LTE)
mechanism to control the actual step size A*. The LTE is defined in general as sk = xk - x(tk),
and in terms ofthe Lagrange rest ofthe Taylor function expansion (provided the former point xki
matches perfectly the exact value je(/*_i) ) it equals:
hi
sk = ~~ x (2)(0k) for BE algorithm, (2.6a)

A3
£k = — x<3)(@k) for TR algorithm, (2.6b)

ek - "Pork  aiMk-y x [i1){6k) for G2 algorithm, (2.6¢c)
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where 6k e (tk_I, tk). As the precise value of 9k is unknown, a commonly used practice is a

substitution 9k = tk_x. Consequently, the required step size A* can be obtained from (2.6) by

2e
putting the assumed accuracy £$for £ke.g.,, hk = —-—5 , for the BE algorithm, where

U@l

12 “t-i) g R (rr-l k-1T ~ k=l k-1
C()(lk'lg' ('t I)Z, ( ) T T ir% + X .
Apparently, in case of (2.6a) and (2.6b) solving for A* is a simple task, whereas it appears

cumbersome for (2.6c). To cope with this problem first rewrite (2.6c) using the definition for
and a2 (shown above) as

6(2hk + A*_))
The step size for G2 algorithm can be found directly from (2.6c* for the assumed accuracy £0 -

ex and xMAffk) » f--— ~)1 » —rk-iT + uk \— **_j_  using e.g. the Newton-
dty T ) T3

Raphson iterations. However, this approach is not computationally efficient, so a simpler method
would be useful.

For this purpose, here a two-step predictor-corrector method is proposed. In particular, the
2 *
predictor assumes fixed step i.e., hk= hk\. Hence, ek = X (3)(0k) and the predicted step A*«

may be found from
4.5

"0 ~ 3
K(3)(tt- , i

Next, the corrector evaluates the resulting LTE based on (2.6c")
f2tu | u
hko(hkQ + hk-1) r @3>, X

O ko ALY

and provides the actual step A* from the relation

VA*oy 0

Now, we apply the above formulas to analysing the basic building block (2.1) for some test signals.
The unit step u(t) = 1(f) that is a special case a PWL segment, and the normalised linear input u(t) =
/1 (0 are used. For brevity the time constant T is normalised too.
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The relevant simulation results are presented in tables 22a-c and 2.2a-c for the accuracy o f oi = 0.05
and 3)= 0.1, respectively. Note that e* = xk- x(/K) is here, in fact, a total error rather than the local
truncation error, since except of the first step xA , * x(tk™ ). Additionally, for G2 algorithm the

LTE estimate is presented based on (2.6c). Observe also that the G2 algorithm needs support in the
first step because xkj is not available in this case. The TR is used for this purpose.

Apparently, the BE algorithm produces much smaller steps than the other two techniques. On the
other hand, the second order algorithms TR and G2 are oscillatory inclined. In case of step
responses, the overshoots or ringing can be observed for them. In a physical sense, this may be
viewed as an unrealistic result. Detailed comparison shows those effects to be much smaller for the
TR approach. Besides, the TR does not accumulate errors 8* (as opposed to G2); it produces the
largest steps, and is computationally more efficient than the two-step G2 algorithm.

The shaded cells (in the tables) emphasise error values that are bigger than £o or correspond to
unrealistic, in a physical sense, results i.e., overshoots or ringing in the step response. As shown, the
TR algorithm is best suited for the timing analysis performed as compared to the other two methods.
Because of it in the remaining of the monograph it is preferred over the BE and G2 methods.
Moreover, observe that the total errors ekofthe TR are much smaller than so(Tables 2.1b and 2.2b).
Hence, the TR might be expected to keep the accuracy imposed with even larger steps, if a more
precise step control mechanism (based so far on (2.6b)) were used for it. A solution of this problem
is proposed in Section 2.4.

Table 2.1a. Time responses of test block obtained with BE algorithm for = 0.05
« = I(<), x(0)=0 «=/+1(0, x(0) =1
k tk hk Xk X«k) E* k h hk Xk X(‘K) e*
0.316 0.316 0.240 0271 -0.031 | 0.224 0.224 0.858 0.823  0.035

2 0.679 0.363 0.422  0.493 -0.050 2 0.468 0.244 0.813 0.720

3 1.102 0.423 0.608 0.668 3 0.741 0.273 0.798 0.694
4 1.607 0.505 0.740  0.800 4 1.049 0.308 0.857 0.749
5 2.227 0.620 0.840 0.892 5 1401 0.352 0.999 0.894

6 3.018 0.791 0.911 0.951  -0.040 6 1.820 0.409 1.234 1.137

7 4.078 1.060 0.957 0.983  -0.026 7 2.296 0.486 1.581 1.497

B 5.603 1.525 0.983 0.996 -0.013 8 2.888  0.592 2.067 2.000

9 8.028 2.425 0.995 1.000 -0.005 9 3.635 0.747 2.738 2.688 0.050
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Table 2.1ft. Time responses oftest block obtained with TR algorithm for So= 0.05

«

k tk

1 0.843

2 1.981

3 3.731

4 8.140
5 13.988
6 22.422

= 100,

0.843
1.138
1.750

4.409
5.848

8.434

*(0)=0
x k X {tk)
0.593  0.570
0.888  0.862
0.993  0.976
.1.003 1.000
0.999 1.000
1.000

£*

0.023

0.026

0.017

0.003

-0.001

0.001

0.669

1.513

2.654

4.408

8.817

14.665

« = /-1(0, JC(O) =1

0.669

0.844

1.140

1.755

4.409

5.848

X k

0.666

0.918

1.764

3.415

7.814

13.667

x(tk)

0.693

0.954

1.794

3.432

7.817

13.665

Table 2.1c. Time responses oftest block obtained with G2 algorithm for ssx= 0.05

«=10, a@)=0
k 4 hk

1 0843 0.843

1.654 0.816
2917  1.258
6.481 3.564
7.728 1.247
9.792 2.064
13.261 3.469

LTEk

0.050

0,048

-0.047

-0.060

-0.048

-0.048

x k

0.593

0.859

0.997

xitk)
0.570
0.810
0.946
0.998
1.000
1.000

1.000

0.023

0.033

0.007

-0.003

tk

0.669

1.265

2.069

3.227

10.965

11.738

13.477

«=1o1()),

hk

0.669

0.596

0.804

1.158

7.738

0.773

1.739

LTEk

-0.051

-0.048

-0.048

0.047

0.082

0.047

x(0)= 1

Xk

0.666

0.771

1.244

2.226

9.879

10.675

12.466

s*
-0.027
-0.035
-0.030
-0.017
-0.003

0.002

X(tk) e
0.693 -0.027
0.829
1.322
2.306
9.965
10.738

12.477 -0.012
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Table 2.2c. Time responses oftest block obtained with G2 algorithm for t<= 0.1

Table 2.2a. Time responses o ftest block obtained with BE algorithm for £ 0.1 .
P g «=1(0, *(0)=0 «= /100, *(0)=i

k tk hk LTEK Xk  X(tk) Sj k tk hk LTEK Xk  X(tk) e

«= 1 x(0) =0 u=t@), x(0)=1
B - : 0.704 -0.047
Xk X(tk) ik hk XK Xek) g+ 1 1063 1.063 0.694 0.655 0.039 0.843 0.843 0.657
2 2217 1154 0099 0973 0891 0.082 1659 0.816 -0.100 0.940 1040 -0.099
0.309  0.361 0316 0316 0.836 0774  0.062
"""""" 5173 2.956 0.094 0.994 2919 1260 -0.096 1902 2027 -0.125
0551  0.627 0679 0363 0794 0693 0.101 3
6.603 1. -0.113 0999 0.057 6401 3.482 0094 5280 5404 -QJ25
0731  0.808 1103 0424 0886 0767 0.119 4 1.430 Q
8765 2.162 -0.096 1000 o0.013 7661 1260 0012 6596 6.662 -0.066
0.856  0.919 1608 0505 1129  1.009 0.120 °
12.306 3541 -0.096 0.996 1000 -0.004 9733 2072 0096 8720 8733 -0.013
0934 0975 2228 0620 1549 1443 0.J06 6

6 5.434 1.741 0.976 0.996  -0.020 6 2.967 0.739 2.178 2.070 0.108

7 8321 2887 0994 1000 -0006 7 3941 0974 3047 2979 0.068 2.3 Simulation by PWL approximation technique

8 14095 5774 0999 1000 -0001 8 5315 1374 4359 4324 0.035 Recently, a new algorithm has been proposed to calculate a PWL response for the building blocks
used, neither with overshoots nor ringing [DAB95, DAB99F] as happens for standard algorithms
with large steps. To give insight in this approach assume that x(0) = xo and for a given input segment
j\ximp(t)\ = «(/) = M+ rt, te[0,/,]. Hence, solving for eqn. (2.1) gives an explicit formula for x

consisting o f the transient and the steady state components

9 281237 14142 1000 1000 0.000 9 7.447 2132  6.461 6.448  0.013

Table 2.2b. Time responses o ftest block obtained with TR algorithm for eo= 0.1
X(t) = (x0-uO0+rT)e~"T+r(t-T) + «0 (2.7)

H=1(0, AT(0)=0 «=11(0, *(0)= i

The main objective here is to get a PWL approximation of (2.7) to enable further propagation ofthe

k tk hk Xk X(tk) s* k tk hk Xk X(tk) E* signal jecin alinearised form.

For this purpose first split the time interval [0, t,,a\ into subintervals [0, fi], [/j, /Z» s [tn, W |- For
each subinterval [/,, foi] a segment of a PWL approximating signal xrmis defined by its end points
that are assumed to lie on the curve jc. Hence xujti) = x(ti) and */,,,(/,+0 = x(/*h)- In fact, given /-, the
time instant /,+i has to be found (Fig.2.2).

1 1.063 1.063 0.694 0.655 0.039 1 0.843 0.843 0.657 0.704  -0.047
2 2.640 1577 0.964  0.929 0.035 2 2.063 1.165 1.263 1317 -0.054

3 5858 3218  1.008 0.997 0.011 3 3880 1.817 2.890 2921 -0.031 . ) )
To control the accuracy of this approximation, the Chebyshev measure may be used. It has been
found the most advantageous to develop an efficient approximation algorithm presented below.

Consequently, our objective can be formulated as an optimisation task, that is to maximise the

4 11171  5.313 0.996 1.000 -0.004 4 8.812 4,932 7.808 7.813 -0.015

5 17865 6.694 1.002 1.000 0.002 5 15506 6.694 14.508 14.506 0.002 distance d = with some constraints and given
Maximise d : {d = /i+l - ti+l <fm} (2.8a)
ti+l
P(ti,ti+,) = Max [x(/)-*,,.(/)| (2.8b)
IR
p(ti> ti+) * (2.8c)
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where p(t/, ti+l) is the performance index and /)m is an arbitrarily chosen constant (approximation
accuracy).

Fig. 2.2. PWL approximation ofoutput signal

The approximation process may be viewed also as a kind of signal conversion presented in
Fig-2.3. The first block in this diagram is usually the mentioned above inertial building block (or
integrator) defined by (2.1), whereas the other one is the approximator. The latter outputs the
PWL segments, which are defined by subsequent breakpoints [/*, *(/*)], [/**, jc(/4+11, .... In this

case a formal notation would be xtn = L(x). The structure shown will also be referred to as the
approximation-based PWL model.

Consequently, for anetwork modelled with basic building blocks (each provided with operator/.(+)),
all the links between analogue units take the form of PWL signals obtained, in this case, by
approximation. The PWL signals propagate from the block outputs to the inputs of their fanout
blocks. Each of them is processed separately following the order of signal flow (selective trace).
Clearly, the resulting PWL output L(x) becomes an input xinp o f the relevant fanout blocks.
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During simulation it is important to calculate the subsequent points [/M, -*(/*+)] in an efficient way
and possibly avoid iterations that all typical optimisation procedures are based on. Therefore an
explicit algorithm to solve this problem could be proposed.

The preliminary approach to resolve (2.8) avoiding transcendental equations was based on
quadratic approximation for x [DAB95]. By means of the Taylor series expansion, and using the
normalised time r = t/T for r, = tJT= 0 one obtains

X,{r) = *0 ~“»+rT T*+ (hO-jcO)r + x0 (2.9)
The truncation error introduced by omitting in (2.9) the third order Lagrange rest is
Q(f3):"°~*g~" t3, re(0,r) (2.10a)

To control a range of the quadratic approximation (2.9), eqn.(2.100) can be reformulated, like in
case of (2.6). The maximum allowed time r, for xqto hold can be found from

t =3 6E£a------- (2.106)
VI*o-«b+'r |
where fa is an estimated value of the maximum allowed truncation error. In this approach the
constraint condition given by (2.8a) has to be modified by putting f/+ie(<, f; + ta]m

The relevant approximator works in two steps. First, the time rais computed from (2.106) to find the
range of an acceptable quadratic approximation for the original response. In the second step an
attempt to set the PWL segment is made, so that it possibly covers the full range of >a (for the end
point ofthe segment we would have T\ = ra). If the Chebyshev distance p(0, ra) between xu,, and x
exceeds the prescribed approximation accuracy /w , then the boundary point rt has to be re-
evaluated from the simple proportion

(2.11)
VP(°>0

because x is close to the quadratic waveform xq. Otherwise the primary evaluation for zi holds. The
next PWL segment can be found in the same way after the time shift r<—(r- Ti) is performed. Since
the original smooth waveform is almost quadratic for r e[0, r,], no iterations are necessary to find
the distance p(0, r0) and the segment length r\ (the other boundary point for the actual segment is
defined for 2= 0) [DAB95].

Unfortunately, the PWL waveforms achieved by this approach tend to be sub-optimal according to
criterion (2.8). In practice, the lengths of resulting PWL segments are limited by the quadratic
approximation range r,, rather than by w , as happens mainly in case of flat parts (slowly changing
fragments) of the exponential waveforms. As a consequence, those segments are shorter than they
could be and fit much better to x than required and could be expected from /w

The mentioned above drawback gives rise to search for a more efficient approximation technique
adequate to replace the preliminary algorithm in the remaining of this work. One way would be
using a higher order polynomial rather than the quadratic approximating function (2.9). In this case,
however, the major advantage that comes out from employing the explicit formulas to calculate ra
and T\ would be lost. Instead, CPU intensive algorithms (such as Newton-Raphson) to solve for the
arising nonlinear equations would be required.
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Fig. 2.4. Distance function AX=| x - X/,, | against normalised time r

An actual approach to solve for the formulated optimisation task (2.8) will be presented below
[DAB99F]. For this purpose define the relevant distance function Ax(-) to make use of the pure
maximum condition for it

A* (0 = |x(r)-xUn(r)\ (2.12)

Since x Bhcrosses through jeOand *(<i), i.e. f,= 0, tM = h (see Fig.2.2), then based on (2.7)
-M O = (X0-uO0+rT) (ew 1)-(eT~1)— (2.13)

Because it is a differentiable function forr e (0, ri), letting dAXIdr = 0 obtains

r'=1n "5 (2.14)
for which Ax reaches its maximum value (see Fig.2.4), A A Jj )
1
Ax(r*)=la0- «o+rTIx .. . (1-1n— — -1 (2.15)

Note that A~r*) = p{0, ri) (see eqn. (2.8b)). Hence, letting AJ j) = pTX gives the required relation
between the approximation accuracy p,,x and the maximum allowed time r\ (normalised segment
length) with respect to the criteria of (2.8). Now, eqn.(2.15) can be rewritten in the form

A
l-er l-e
=1- 1-In 2.16
\xa-un+rT\ ( )

The left-hand side of (2.16) may be referred to as a relative approximation accuracy , Whereas
the right-hand side is a monotonic function defined as <p(j\) that asymptotically approaches 1
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(Fig.2.5). Using the reciprocal of this function O = < , the optimisation task (2.8) can be solved
directly

Prmx
Ti =ct>( Pmxr)’ \XO-UO+rT\ (2.17a)

and an alternative notation, according to the step count, would be

P
=® ( Pmxr) T (2.176)

where <r¢ = r/+, - t- is alength of f-th normalised segment along the time axis. Based on (2.17a)
the subsequent approximation breakpoints may be achieved assuming that each segment begins at
tt= 0 and ends at = TyT. In other words, the time shift r <(r- tj) is performed before the next
PWL segmentis computed. It follows thatjco and «o have to be updated for each PWL segment, i.e.
the next xo can be found from (2.7) by means ofthe substitution: jco *x(t\T), and the next UQin the
same way: /o «— «o+ rriT).

NORMAL ISED SEGMENT LENGTH

Fig. 2.5. Relative accuracy against normalised segment length

However, some exceptions exist. From (2.16) and Fig.2.7 one can see that for/w > 1 the
function is not defined. In practice it is the case that Ax< pnXfor any r > 0, this usually happens for
very slowly changing exponential waveforms. Then areasonable action in the PWL algorithm is the
substitution: rj <r-Tmx. The other case is for x> UO+ rT = 0, when X changes linearly in time with no
transient component (see eqn.(2.7)). Here, T\ <+t*« also. Clearly the same substitution holds for the
ri computed from (2.17) if its value exceeds the maximum allowed time t,,x. Remember that iv cis
either atime instant, for which anext PWL U segment is applied to the block input, or it is the end of
simulation. This discussion may be summarised by a PWL algorithm depicted in Fig. 2.6.
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repeat
ifJO- «0+ rT< >0and |x0- u0+ rT\ >p,x
then {I"1* *&Pma)\
if Ti> Tnrthenr, «-iw}
elserit-rn;
xk<-x(T,T); X,,*-xk
«O<—(u0+rTiT);
<F<-([*-i+Tir);
keH{A+1)
rim (rmx- T1)i
until Tmx= 0

Fig. 2.6. Algorithm for PWL approximator

The result of this algorithm is two sequences {/*} and {**} that define the PWL output waveform of
any inertial building block. A look-up table and linear interpolation are used to calculate the values
of the < function. The same method is used for the exponential function when computing
subsequent values ofx*. Apparently, as opposed to the preliminary PWL algorithm, this is a one-step
approach in a sense that the segment length is determined directly from the ® function with no need
ofthe initial approximation required previously.

TIRE

Fig. 2.7. Time response x (dashed line) and its PWL approximation xu, (T=2 and 0.08)
against excitation u consisting oftwo segments for <e[0, 2) and te [2, 10]

Now, observe how the length of subsequent PWL segments change. For brevity we define the
actual amplitude of the transient component as sk = xk- uk+ rkT. Then for the A-th segment the
relation (2.17) can be rewritten as follows
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IW (%) = 1T 1 (2-18)

Moreover, from (2.7) we have:
S*H = (2.19)

It is easy to see that the sequence {Is*!} is decreasing, whereas the { ak} is increasing, since ak=
<D(Pmx/ 1s*1) and is amonotonically ascending function. For sufficiently large values of index k,
the sequence {s* }approaches zero, so that { xk } approaches uk -rkT. Thelatter effect agrees
perfectly with the case ofthesmooth waveform x defined by (2.7) thatapproaches[iin(r (t - T)]
when t approaches infinity.

Table 23. Time points of PWL segments for different approximation accuracy

Pmx *e(0,2] <e(2,10] No of
first segmentofu second segment ofu segments

0.02 0.42 0.88 1.41 2.00 2.53 3.15 3.88 4.77 5.93 7.56 10.00 4+7

0.04 0.61 1.32 2.00 —_ 2.78 3.75 5.04 6.95 10.00 - — 3+5

0.08 0.89 2.00 — — 3.16 4.79 7.57 10.00 - — — 2+4

0.16 1.33 2.00 J— — 3.75 6.92 10.00 — — J— 2+3

Some results obtained with the actual PWL approximator are presented in Fig. 2.7 and in Table 2.3.
A tradeoff between the approximation accuracy Pmx and the number of PWL output segments may
be observed. Last segments with end points att= 2 and t - 10 are limited by the length of the input
segment u, and are the only non-optimal segments. Consequently, they are shorter than they could
be owing to relation (2.17) and fit much better to the original curve x than the former PWL
segments.

2.4 Enhanced TR technique

As mentioned in Section 2.2 the standard TR method might be expected to work with larger steps
retaining the accuracy imposed, if a more precise step control mechanism were used for it. The
existing drawback is in the LTE estimate originating from the third order Lagrange rest (2.6b). To
cope with this problem, we invoke the definition for the LTE and expand its both components xk and
X(tk) into the Taylor series around hk= 0. For (2.56) obtains

Similarly, based on (2.7) and the notation of Section 2.3 for er*= hkIT
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x(k) = (**1 - «*1 + rk tT)e T + rkt(hk-T ) + uk x (2.21)

so in terms ofthe Taylor expansion for (2.21) holds

*('*) = **_> +("~k_i - **_i)y +(r”_’T_ uk_t+~k * ., ) o +
(2.22)
Consequently, from (2.20) and (2.22) the LTE appears to be
£k = o _*(**) =
-05{h 215 (h (2.23)
k-3) = ih L(£\ +zH.(*L\ S (h, '
3! 51 U J 61!
When dividing both sides of (2.23) by (x*_j - uk_, + rk_1T) the resulting formula resembles

perfectly (2.15) in a sense that the normalised step hkIT is mapped into the relative accuracy, as
well. Hence, by putting ek= £o, in (2.23) a function like (2.17) might be established

- ®TR (£o0r) > (2.24)
Fr-i * «*-1+ rk-J\

Since the right-hand side of (2.23) is an infinite sum, the relation (2.24) can be picked-up based
directly on the difference xk- x(/t) for any set of parameters: xt.u «*., /o*,, T provided xk, = x(tki).
Hence, it follows

xk ~x (tk)

(2.25)
T) 1+rk-J

The result of it is shown in Fig. 2.8. Note that the <btr resembles the <>function of Fig. 2.5, but it
rises slightly faster than <> for the relative accuracy below some 0.7 and slower otherwise.
Moreover, the PWL algorithm presented in Fig.2.6 can be adopted for the enhanced TR method,
provided the <>function is replaced by <$tr, and T\ represents hkIT. Consequently, as opposed to
standard approaches, now the enhanced TR algorithm is able to also perform very large steps, when
flat fragments of x(i) are faced. Like in case ofthe PWL approximation algorithm, the step hkIT is
limited by the end of the actual input segment «({/). In particular, when the transient component
amplitude |[xkr u,.+ rk,T\ becomes smaller than 3> i.e. for > 1, the algorithm yields a step
corresponding to the end-point of «,(/). To prove correctness of this (in particular for very large
steps), observe that the resulting error ek does not exceed the distance &-i between jc*, and the
asymptotic line that is approached by *(/). Indeed, based on (2.7) the asymptotic line is

lim xX(t) = u0 +r(t- T)
I->00

Hence, the distance to this asymptote at tk\ is

skl = **-i - l«0 + rk-i(‘k-i ~ T)] = **-i - "*-i + rk.yT
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RELATIVE ACCURACY C»r

Fig. 2.8. Relative accuracy so, against normalised step size

Fig. 2.9. Time response jc(dashed line) and PW L response XU, obtained with actual TR approach (T=2
and £6=0.08) against excitation U consisting oftwo segments for fe [0, 2) and te[2, 10]



On the other hand ek may be evaluated from (2.23), and now it can be rewritten as

but <&TK{hk/T) < 1 and hence, |sk | < |8k_x\.

Table 2.4. Simulation results corresponding to Fig.2.9.

k tk Xk X (tk) Ek

1 1.576 0.881 0.961 -0.080
2 2.000 1.407 1.472 -0.065
3 3.896 3.075 3.020 0.055
4 7.014 3.885 3.794 0.091
5 10.00 3.983 3.954 0.029

In Fig.2.9 the relevant simulation results obtained with the technique proposed are shown as a PWL
waveform. As compared to Fig.2.7 fewer PWL steps are performed here, and the resulting errors ek
= depicted in Table 2.4, are shown to accumulate slightly only in some cases. For 1the
resulting error S\ = so, since x0=x (f0, so it is a perfect LTE. On the other hand, for k=2 and k=5 the
errors ek are less than eo, since the related steps hkIT are limited by the time instants of 2 and 1o0.
However, for some in-between points x"{t), such that tk<t < tM, the distance Ix”it) - x(tk | appears
much larger than £> Because of it, one would find the above approach to be inconsistent giving, in
this way, rise to a more comprehensive analysis of the TR algorithm. As a consequence, further
refinement o fthat method might be expected.

To cope with this problem, observe that the trapezoidal rule performs a kind o f a quadratic estimate
forjc [OGR94, Chpt.8]. To see this invoke again (2.4b) relevant to the basic TR approach

xk = **_j + y (** +**-i)

Note that this formula assumes the time derivative x{t)to be linear for tki < t< tk. By comparison to
the general rule of

xk = + \x(t)dt (2.26)
one obtains
(1) = i*_. + xxoxx_% (- ) (2.27)
K
and hence
xTr(1) ~ xk-1+ Xxk-I(*_**-1) + * 'ﬂikk 1N~ **1)2 (2.28)

where the index TR is used to distinguish from the original waveform x. Apparently, (2.28) is a
guadratic estimate with the error rising monotonically from 0 for tk\ up to eofor tkdue to (2.24).
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Fig. 2.10. Original response x against quadratic estimate x TRand relevant PWL segment xu,

To evaluate the distance between xu,, and x in the Chebyshev sense, first the distance between xjr
and the xu,, will be found (see Fig.2.10)

. + Xt
Alk = Max |[x,in(t) - xTR(t) = ~ XTR(tk-1+ *)

xk ~ Xk-1 *K o+ 3M*-i A (2.29)
2 8 *

* - - *_ _
Uk~ x K- Ukt +xt_t 1*A-1 - «*-1 + rk~J\
8T 8+ 4—
T

Observe that Ai* is likely to become large for a large time step hkIT or large amplitude of the
transient component of x. Now, using (2.29) the approximate distance between xu, and x may be
found as follows (Fig.2.10)

A* =  Max  Xiin(t) - x(t) A%~ XTR(k-1+y)- *(*1+y) (2.30a)

and based on (2.66) one obtains

Ul
XIRAK-1+ 2) A*-1 + 24 5.
XTR (h)~ (KY

where Ix TR(tk) - x(tk) | is the LTE equal £0, and hence the relation between A* and sois
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rj *»or |
nx * (2.30b)
8+4 N »

This result can be used to establish a direct mapping o f A* onto hkIT, so that the time step could be
controlled by the relative distance between xu, and x rather than by the LTE (as used in standard

approaches). Thus, after dividing (2.306) by |jc*_, - uk_t + rk_XT | and using (2.24) one obtains

(2.31)
+rk-J 8+ 4 —

NORMALISED STEP SIZE

Fig. 2.11. Relative accuracy Ao, against normalised step size

It is easy to see that (2.31) defines a function of ItkIT, which is depicted in Fig.2.11. The left-hand
side of (2.31) (i.e. function values) may be referred to as the relative distance between xthand * for

* e (**-i>fk) «In fact' the reciprocal of(2.31) is of interest and it can be denoted in briefas

— ®TReNeor)i Or - (2.32)
**-1 - Uk +rk-J |

where Ao is the absolute accuracy imposed, and Aor is the corresponding relative accuracy. Unlike
the functions ® and ®T#, here, the relative accuracy exceeds 1 for large time steps. Although the
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fragment of ®rae where Ao, > 1is of use, performing a step that matches the end-point of «,(/)
rather than the actual value of ®r«, would be preferred in this case. Apparently, with this approach
we follow the previous algorithm as it appears to be more effective.

Fig. 2.12. Steps performed with <R and <DIr against PWL response for enhanced
TR algorithm

repeat
ifxo- «o+rT< >0and [xa- ud+ rT \> fo
then {ak*-<&TR{£fay,
if 0*> JWthen 0*« Tnx)
else
xk*-x(akT)-, !,,*-(t0+ 0i,T); (* first step *)
ifo*<Tm
then {k*~<k+1)M\o j , &),
if 0*> Xnxthen oj <—iw
xk < -x(<rkT)-, tk*-( ta+ <kT)} (* second step *)
Xo*-Xk;
«» - ("o+ r<kT)\
to—tk
A<-(*+1);
Tmx*~(Tmx- &',
until Tm =0

Fig. 2.13. Enhanced TR algorithm

By using the function <$TRewe tend to keep the relevant PWL solution closer to x than possible with
the @tr In fact, the additional accuracy constraints (2.32) are imposed on the Chebyshev distance
A*. The idea standing behind it is that for a given point jc*_i, the enhanced TR algorithm would
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perform two steps, the first one (shorter) based on the <o Tre , and the other one based on <1+ mThe
breakpoints obtained, i.e. x* andx*+l, lie on the same curve x«r.

In fact, by combining those two mappings, the resulting PWL waveform (with extra breakpoints)
appears to be well “balanced” against the original smooth solution x, in a sense that the distance
between x and the overestimated parts ofxu,, and the underestimated parts, respectively, are almost
the same, provided £& = Ao (see Fig.2.12 ). Besides, this feature prevents PWL error accumulation

when modelling analogue structures composed of multiple building blocks. This problem will be
discussed in more detail in Chapter 6.

Fig. 2.14. Time response X (dashed line) and PWL response xKxobtained with enhanced TR approach
(T=2 and £6=0.08) against excitation u consisting oftwo segments for/e[0, 2) and /e[2, 10]

Table 2.5. Simulation results corresponding to Fig.2.14.

k u Xk x{tk) £k

1 0.896 0.328 0.348 -0.020
2 1576 0.881 0.961 -0.080
3 2.000 1.407 1.472 -0.065
4 3.146 2.562 2.575 -0.013
5 3.896 3.075 3.020 0.055

6 6.001 3.713 3.658 0.055

7 7.014 3.885 3.794 0.091

8 10.00 3.983 3.954 0.029
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In this context the enhanced TR algorithm could be formulated as shown in Fig.2.13. The symbol
o* stands for the normalised step, and the accuracy equal £o is imposed both on the LTE = ek and
the distance A*. Observe also that the second step is conditional here, and it is only performed
provided the first step does not reach the end-point due to the input segment.

The application of the enhanced TR technique related to the latter example (of Fig.2.9) is
presented in Fig.2.14 and Table 2.5. The distance between x and X/,,, for the breakpoints and the
in-between points is kept close to the accuracy assumed. However, it is only guaranteed for the
initial segments, for which jc0= jc(/0 as explained in Fig.2.12. Otherwise it is likely to decrease or to
accumulate moderately (Table 2.5). Clearly, the enhanced accuracy is obtained at the expense of
increasing the number PWL breakpoints as compared to Fig.2.9. In fact, following the algorithm
ofFig.2.13 only three points (for k = 1,4,6) are new here (compare Table 2.4 and 2.5).

2.5 PWL approximation-based against TR-based techniques

In this section a comparison between the PWL approximation algorithm, the standard- and the
enhanced TR algorithm is presented.

First, observe that the PWL approximation-based algorithm delivers a waveform that fits perfectly to
the original response x at boundary points o fthe PWL segments, i.e. x(0) = x,,(0) and x(r,) =x,Jj,)
(see Fig.2.2 or Fig.2.7). Those segments correspond to the steps performed by the TR techniques.
However, the way to control the step/ segment size is completely different for them. In the PWL
approximation approach the segment length r, is calculated from the <5 function, and the
approximation errorp (0,ri) (maximum distance between x and x/it fort = t* < Ti) never exceeds the
assumed accuracy pmx- In contrary to this, the both TR techniques use the local truncation error
(LTE) step control that plays a role of some approximation accuracy, and is an estimate rather than a
real distance between x(f*) and the computed value x*. Moreover, this distance is estimated assuming
con-ect value of the starting point. As a consequence, the starting point x*., (except o f the first point)
introduces an error that tends to vary from step to step, and in some cases to accumulate resulting in
a global error, unlike in the PWL approximation-based algorithm. Besides, an extra step is produced
using the O>TRe function to keep the accuracy for the in-between points. The relevant PWL errors
corresponding to the waveforms given in Figs.2.7 and 2.14 are depicted in Fig.2.15. Apparently, in
case of the enhanced TR, the errors are balanced better for the convex and concave part of the
waveform, although the error amplitudes tend to accumulate temporarily and are larger than those of
the PWL approximation technique.

Next, our attention will be focused on step/ segment lengths produced by the relevant algorithms
assuming the same values of soand/w Moreover, to assure a kind of compatibility between PWL
approximation-based and the TR algorithms, for a given segment we denote T\T as hk. In fact, using
the notation for the standard integration techniques introduced in Section 2.2, the formula (2.21)
could be used directly

Hk

xk = (eFk] o «*ei 4 rk-iT)e T o+ rF-i(A-T ) 4 (2.33)
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For completeness the formula (2.5b) defining the TR techniques can be invoked too, and rewritten in
the form of

h h
(1~ ~ZMxk-\ + + >'k-\hk)
N — (2.34)

The comparison between the PWL approximation-based and the TR-based techniques could be
performed as shown in Tables 2.6a,b and 2.1a,b. The unit step input and linear input are applied to
(2.1) with T= 1, like in Section 2.2.

Apparently, in case ofslowly changing fragments ofx much more steps are required for the standard
TR technique than for the two others. When the transient component ofx becomes smaller than p nix
or eq, the PWL algorithm and the enhanced TR can provide a segment (step) of any size. In practice,
however, it means that the end-point o f the actual input segment «*(/) is reached, denoted in Tables
2.6a,b and 2.la,b as tmx (shaded cells). The errors of the PWL approximation-based algorithm at 4
are not shown, since they are zero at the breakpoints. On the other hand, the effects of overshooting
or ringing that feature the TR algorithms are emphasised as shaded cells as well.

Table 2.6a. Step responses of test block obtained with PWL approximation-based and TR-based
algorithms (« = 1(f) and jt(0) = 0)
PmX= Co = 0.05
PWL Standard TR Enhanced TR
A Ik hk Xk tk hk Xk i tk hk Xk £
1 0758 0758 0.531  0.843  0.843 0593 0023 0759 0.759 0550 0.018

2 1.984 1.226 0.862 1.981 1.138 0.888 0.026 1.167 1.167 0.737 0.049

3 5.474 3.490 0.996 3.731 1.750 0.993 0.017 2.905 1.738 0.982 0.037

4 8.140 4.409 0.003 3.645 2.478 1.028
5 - - - 13.99 5.848 0.999 -0.001 0.978") -0.022
6 - - - 22.42 8.434 1 0.001 - - - -

*) obtained for =20
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Table 2.6b. Step responses of test block obtained with PWL approximation-based and TR-based

algorithms (« = 1(<)and x(0) = 0)

PmxT~ £0 —0.1
PWL Standard TR Enhanced TR
A tk hk Xk tk hk Xk Et tk hk Xk £
1 1174 1174  0.691 1.063 1063 0.694 0.039 1147 1147 0729 0,047
2 4442 3268 0985  2.640 1577 0964 0.035 1682 1.682 0914 0.100
s . v 58% 3218 1.008  0.011 v o tm tli 1069*) 0.069
4 - 1117  5.313  0.996  -0.004 - _
5 - - - 1787  6.694 0.002 - - _ -
6 - - - 26.30 8434  0.999  -0.001 . . - -
*) obtained for tnx= 20
Table 2.7a. Responses to linear input obtained with PWL and standard algorithms (u = | -1(/) and
“(0)=1
Pmr £)= 0.05
PWL Standard TR Enhanced TR
A tk hk Xk tk hk Xk £t tk hk Xk £k
1 0505 0505 0.712 0.669 0.669 0.666 -0.027 0509 0509  0.697 -0.014
2 1182 0677 0795 1513 0.844 0918 -0.035 0867 0.867 0.657 -0.050
3 2.210 1028 1430  2.654 1140 1764 -0.030 1.740 0.873 1.050 -0.041
4 4410 2200 3.435  4.408 1755  3.415 -0.017 2180 1314 1344  -0.062
5 4 u-u W T 8.817  4.409 7.814 -0.003 4569 2389  3.555 -0.035
6 - - - 1467 5848 1367 0002 5723 3543  4.677
7 - - ] 2136 6.694 2036 -°001 1 t,u tmrti  19.034,) 0.034

*) obtained for tm = 20
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Table 1.1b. Responses to linear input obtained with PWL and standard algorithms (u =t -1(f) and
*(0)=1

Pmx~ —0.1
PWL Standard TR Enhanced TR
k h hk Xk tk hk Xk £k tk I’k Xk £k

| 0.758 0.758 0.695 0.843 0.843 0.657 -0.047  0.759 0.759 0.659  -0.036

2 1.984 0.791 1.259 2.063 1.165 1.263 -0.054 1.167 1.167 0.690 0.099

3 5.474 0.884 4.482 3.880 1.817 2.890 -0.031 2.905 1.738 1942 -0.073

4 w+ M {“” 8812  4.932 7.808 -0015 3645 2478 2589 -01!
is i L
5 - . 1551  6.694 1451  0.002 et 0.044
R - *
6 . - - 2394 8434 2294 -0.001 -

*) obtained for l,,2 =20

The even steps performed by the enhanced TR algorithm are much larger than the subsequent steps
of the standard TR because of using the <>« mapping. The odd steps, produced by the <»tre, are
shorter but allow to keep the distance (approx. £fo) between the resulting PWL segments and x. In
contrast to this, the standard TR method appears to be inconsistent, in a sense that the in-between
points ofthe PWL segments tend to be out of control as discussed in previous section (Fig.2.10). As
the enhanced TR is only slightly inclined to accumulate the local errors, it could compete with the
approximation-based approach.

The computational overhead of the methods can be estimated by making a comparison between
(2.33) and (2.34), and taking into accountthe step/ segment length control mechanisms. As many as
9 and 11 simple operations (+,-,*) are required when using (2.33) and (2.34), respectively.
Additionally, (2.33) requires one exponential function evaluation that can be performed effectively
with table look-up technique. Similarly, to calculate the segment/ step, the PWL approximation-
based and the enhanced TR-based technique use accordingly the functions <D, <BTr, <l*™, all treated
with table look-up method. The standard TR exploits the formula (2.6b) including the root
extraction, for which the table look-up might be used as well.

Apparently, the PWL approximation algorithm saves 2 simple operations, but it requires an extra
exponential function evaluation as compared to the TR algorithms. For binary search, with n
segments used to define the exponent, at most log2« comparisons are required [RAL71]. Using 16 <
n < 32 gives log < 5 (with an average less than 4). As a result, the CPU time that the PWL
approximation algorithm needs to calculate a point, takes some 10% longer. In practice, however, as
it performs fewer points than the TR algorithms (as shown above), the effective speed of the PWL
approximation-based and the enhanced TR-based algorithm is usually the same.
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Fig.2.15. PWL errors relevant to waveforms of Fig.2.7 (dashed line) and Fig.2.14 (solid line) obtained
with PWL approximation based technique and enhanced TR technique, respectively (/>,*,=£0=0.08)

On the other hand, the advantage of the PWL approximation-based approach is that it follows
perfectly the original smooth solution, as opposed to the TR-based technique with unrealistic
overshooting or error accumulation appearing in some cases (solid line in Fig.2.15). Ultimately, only
the PWL approximation-based and the enhanced TR-based algorithm will be used in the remaining
ofthis work.

2.6 Other macrosimulation issues

Because of their inertial nature most analogue units may be modelled with basic inertial blocks.
Besides, the amplifier macromodel presented in the next chapter will be shown to require an extra
dynamic element, i.e. the slope limiting module. Also some other effects encountered in analogue
circuits need special treatment. In this section, attention is focused on signal multiplication and
integration. From the point of view ofthe PWL approach, both effects may be regarded as special
cases.

Assume an effective input signal in form: u = uo+ rt. For the output signal x of an ideal integrator
we have the formula

X(t)=j(u Ot+'~-)+x0 (2.35)

where T is the integrator time constant and xO0 is the initial value of x. If the linear segment xu,,
crosses x at (0, x0) and (tu x(t{)), then A* = |xun- x | as a strictly quadratic function reaches its
maximum value A ~ = |rt\ |/(87) att = h/2. Thus by letting Pmx = &x the maximum PWL
segment length may be obtained
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W tt

where p,,x is an arbitrary approximation accuracy (in Chebyshev sense).

Observe that the segment length t\ is constant for a given input slope with no respect to actual values
ofa:and u. In particular, for r = 0 the integrator output is a perfectly linear waveform, so that t\ =
Thus the basic PWL approximation algorithm also holds, but in this case the «» function must be
replaced by formula (2.36).

The enhanced TR algorithm can be applied too. For this purpose note that

1
xk = -«* (2.37)

Hence, by invoking (2.46) one obtains
Yk = ¥k-iw T e - %kl B MR i ox (2.38)

Observe that (2.38) matches ideally (2.35) so the relevant LTE is zero, andthemappings 4>rR and

4>Ff are not applicable in this case. As a consequence, to control a step here, theformula (2.36) can

be used as well. Because of it when addressing an integrator, no difference between the PWL
approximation-based and the enhanced TR-based algorithm can be found.

A similar result may be obtained for an ideal multiplier. When its output satisfies a formula X =
au\u2and the input signals are respectively U\ = wor + rxt, nR= «02 + H, we have

x(t) = fl«oico2 +«(«0i'2+ «oeri )t +arir2t2 (2.39)

Since the maximum value of the distance function is \ jmx= a | r,r2\t\I\, the formula for the PWL
segment length takes the form of

*>:2\/airfr2l (24°)

Additionally, a realistic multiplier macromodel should be provided with an inertial block as its
output stage.

In the context of this section, it is to be pointed out that another PWL approximation-based
algorithm can be used too [KRU96, CHEG66], In that case the obtained points **/,(*,) are no longer
assumed to lie on the original curve X; so X is in some sense interlaced by X Lhwaveform. However,
the corresponding approximation algorithm is efficient only for quadratic curves, and it requires a
CPU intensive optimisation procedure otherwise. Moreover, no unique solution is guaranteed
[CHU86],

On the other hand, observe that the enhanced TR technique provides a kind of approximation
crossing the original waveform X (for inertial blocks). This results in erroneous overshooting in some
cases, but the method is less prone to error accumulation, when cascade structures are considered.
We will address this problem in Chapter 6.

3. MODELLING OF SIMPLE FUNCTIONAL UNITS

At the functional simulation level analogue units, like amplifiers, adders, voltage comparators
or multipliers are dealt with. For the purpose of modelling by means of the PWL technique,
their DC characteristics should also be represented in a PWL form. Based on the building
blocks introduced in Chapter 2, basic timing/bandwidth and DC specifications including some
nonlinear effects, like saturation, are feasible [DAB96K, DAB99F]. However, there is a
distinction between the functional-level macromodels (models) and the SPICE-like
macromodels composed of physical elements (such as transistors, diodes) or controlled
sources [BOY74], In contrast to those electrical-level macromodels, the functional-level
macromodels tend to comprise the involved external circuitry (usually the feedback elements)
within acommon unit. Feedback loop elements (if exist) are, in some sense, hidden inside the
model. From electrical point of view it also means that the PWL signals represent voltages and
the blocks used for synthesis are assumed to be unidirectional so that currents are usually not
accounted for. Electrical effects that require bi-directional signal flow (such as for transmission
gates or coupling capacitors) should be avoided by means of incorporating them into the building
blocks, like in case ofthe tight feedback loops.

In principle, a functional-level analogue macromodel might be thought as a structure composed
ofbasic building blocks such as the inertial block, integrator or the purely static block. Typically,
two building blocks connected in cascade might constitute a simple model. Those blocks
represent usually the front-end and the output stage of a real analogue unit. When possible, the
relevant specifications are assigned to individual blocks separately, e.g. large signal- and small
signal behaviour or delay- (involved with saturation) and rise/fall effect.

On the other hand, it has been shown [RUA91, KRU96] that basic logic functions, performed
typically by logic gates, can also be implemented by simple analogue operations along with
some delay mechanism when PWL signals are assumed to be their arguments. However, this
approach cannot be easily used for behavioural models of complex digital units, which usually
make use of the Boolean- or a multiple-value algebra (e.g. 1,0,X,Z). Hence, for complex mixed
A/D networks the mixed signal simulation is preferred [SAL94], Clearly, the PWL- and the logic
models (used in the presented approach) require signal conversion, when signals have to
propagate between them. As a consequence, the effective outputs of logic models driving
analogue units are ofthe PWL type as well.

In this chapter the PWL macromodels of voltage comparator, amplifier and logic gate are
addressed. Their detailed time/frequency specifications are taken into account and the introduced
previously basic inertial building blocks are used for synthesis. Finally, a performance of the
macromodels derived is shown by a comparison to the respective SPICE estimates in the time
domain.
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3.1 Voltage comparator macromodel

For a comparator that switches its output between two voltage levels the delay effects are
essential. A few factors influence the comparator time delay: input initial polarisation, input
overdrive and loading effects at the output. Also an intrinsic delay must be accounted for. To
represent the delay effects caused by the input signals a cascade of two building blocks and a
delay mechanism can be used

TO+x + x =
Tiy + y = fi(x)

where uinfl denotes the differential input signal. The nonlinear function/o() enables one to
represent the initial polarisation and the overdrive effect, whereas/i(-) is a PWL approximation
of the comparator DC characteristics (Fig. 3.1). Within a short range xe[V., V4] it rises with a
constant gain oi(U OH- UOI)I{V+- K). Forx> V+ft(x) = UOn and forJt< F.:/,(*)= UOL. The
functionfo( ) does not influence the DC characteristics, since it rises with the gain koequal unity
for uinpe[U., U+], and U. < V., U+> V+ In fact, the bigger the initial polarisation and the less the
input overdrive, the longer the time required to leave the saturation zone in the second block.
However, in order to limit an impact ofthe large initial polarisation on the delay time, the gain A0
outside the range [t/_, U+] must be substantially reduced.

To match the typical timing specifications for a voltage comparator we assume a step function
for Ui,p, so that it changes from Uato Ub. In the steady state for uinp- Ua\ uOi= UOI and for uinp=
Ub: uQut= Uoh-By putting/0J7a) =/, andfo(Ub) = fb, the step response o f the first block takes the
form

x(t)y=fa+ (/,-1*) e-"[T° (3.2)

Hence, the time required for the second block to leave the saturation zone (i.e. for X to rise in
time fromf ato V.) can be found from: = TO\n[{fb-f @)l(fb- V)].

Moreover, for large overdrives at the input the signal X rapidly crosses the active zone [V., V4]
(see A/i in Fig.3.1), so that

F\ x (*)] - Uol + (VOH - UOL)I(t-tdi) (3.3a)

y(t) * UOL + [{UOH-UOL){1- Y] I(t - tds) (3.36)
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The time constant T\ can also model the capacitive loading effect at the output similarly to (2.2).
The rise delay time forj; to change from U ol to the threshold voltage level U th can be calculated
from tdr= Ti\n[{UOH- UO){Uoh- Uth)]- In particular, for CMOS circuits usually UTh= (Uoh +
Uol)ft and we have tdr= T\ In2. Finally, the output signal uQdcan be obtained by using the delay
mechanism

u,uAO = y(t-tdi) (3-4>

where tdi is the comparator intrinsic delay time.

Fig. 3.2. Comparator step responses to different initial polarisation

Fig. 3.3. Comparator step responses to different input overdrive

The total delay time of this macromodel is the sum of saturation delay, rise/fall delay and
intrinsic delay: td= tds + /*m+ tdi The simple synthesis concentrates on a limited class of step-
input signals. On the other hand, the macromodel behaviour derived represents in some sense
the physical phenomena in areal comparator circuit. Hence, it is said to possess the predictive
ability feature [CHUB80] and is expected to also work well for slowly changing input signals.

Based on the formulas derived the estimates of the macromodel parameters (To, T\, ko, U.,
U+, tdi) can be found. Preferably a careful scaling procedure should be used for particular
comparator specifications to obtain the optimal parameter set [CAS91], Slowly changing
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input signals can be also considered. However, no claim is made regarding macromodel
suitability to ideally mimic the real comparator behaviour for all situations.

Here, the macromodel performance for the LM 311 comparator is illustrated loaded at its output
by a IOpF capacitance and a pull-up resistance of 2kO. The optimal parameter set, obtained by
the scaling procedure to match SPICE macromodel estimates, is (105ns, 33ns, 0.2, -20mV,
+20mYV, 5ns). In Figs. 3.2 and 3.3 the time responses to the step inputs obtained with the PWL
approximation-based technique are presented. The impact o fthe inputinitial polarisation may be
seen in Fig.3.2 (-30mV and -IOOmV respectively with +5mV overdrive). The discrepancy
observed between PWL- and SPICE waveforms in their upper part can be neglected in a typical
application, e.g. when the comparator drives a logic gate. Consequently, in Fig.3.3 the time
responses to different input overdrives are given (+10mV and +20mV respectively with -I0OmV
initial polarisation). For comparison, the accurate SPICE estimates are plotted with dashed lines.
In addition, in Fig.3.4 the macromodel response to slowly changing input signals is shown. Both
inputs rise linearly within atime interval of (0, ljis) from -30mV and -10OmYV respectively up to
+5mV. The respective SPICE estimates are also plotted (dashed line).

Fig. 3.4. Comparator time responses to slowly changing input signals

The simulation speed-up obtained as compared with SPICE macromodels is up to 1000 times for
Pmx = 0.08V and up to 500 times for/w = 0.02V. Similar results can be obtained with the
enhanced TR approach. It is to be pointed out that this speed-up comes out not only of using the
explicit PWL analysis, but it is also due to the functional level of abstraction used as opposed to
the detailed macromodelling in SPICE. Nevertheless, the above comparison seems to be
reasonable and may serve as an indirect comparison with other techniques, since SPICE is
usually viewed as akind of standard in analogue modelling.

3.2 Amplifier macromodel

For an amplifier the macromodel synthesis procedure is much simpler. Usually the following
specifications must be accounted for: gain, dominant pole, saturation, output resistance and slew
rate. For small input/output signals a fully linear macromodel is sufficient. However, to cover a
full range ofinput amplitudes the nonlinear function” ) and a special slope-limiting mechanism
(SLM) [DAB99F] must be used. The SLM does not begin to act until 1A«,, |> utk, where A is

an initial increment of the input signal (when starting from the quiescent point) and ulh denotes
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the threshold voltage that puts the amplifier input stage into saturation [SOL74]. Consequently,
each linear segment of with amplitude above this threshold is checked for the slew-rate (SR)
parameter. |f the segment slope \dujdt\> SR/k, its value is reduced to the limit SR/k (k is the
amplifier gain) and the next PWL segments are shifted appropriately along the time axis to avoid
time discontinuities (see Fig.3.5).

TIME [secj xia-3

Fig. 3.5. Functioning of slope limiting mechanism for small input (*=50)

TIM  (fee) 1«3

Fig. 3.6. Amplifier time responses for k=50 (SR=0.5 V/ns,/i=IMHz)

The segment shifting holds well for relatively small input amplitudes. However, when the input
signals are larger, a different procedure is preferred for the SLM. In this case the amplifier input
stage is deeply saturated, so the output continues to slew although the actual input slope does not
exceed SRIk any more. To follow this effect, the SLM has to decide how to proceed with the
slowly changing segments (which follow the fast one). For this purpose, at the time instant for
which the slope limiting is likely to stop (for smaller amplitudes), the difference u-ylk is
checked. If it is smaller than the next segments are shifted (as mentioned earlier). Otherwise,
the SLM does not change the slope SR/k at its output until the original signal u is crossed (see
Fig.3.6). As a consequence, the remaining u need not be shifted.

As well as the SLM, two cascaded inertial blocks are required. The first gives gain and the
dominant pole, whereas the other one serves as an output stage. Denoting the signal obtained
from SLM by w*ta for the first block we have



54

Tox + x = kuin, when \kuin\ < Um (3.5a)

ToOx + x = Uos, when Jan*, | > U, (3.5b)

where To is the inverse of a dominant pole frequency <00 (Ta= |/ta0) and Ucs is the output
saturation voltage. For the second building block

Tty + y = X (3.6)

where y = uQU is the amplifier output signal and T\ depends on the output resistance Rouy, and
output capacitance Cautas well as a capacitive load C/.

In Fig.3.5 the functioning of the SLM for a relatively small signal is shown. The uin signal
consists of four PWL segments. Slopes of the first two segments exceed SR/k, but the SLM
limits only the slope ofthe second one above the threshold voltage Hr* = 80 mV. It corresponds
to a noninverting amplifier (bipolar transistor) with SR = 0.5 V/*s, closed loop gain k=50 and
€00=125600 rad/s(/i=IMH z). Slopes of the following segments need not belimited since they
are less than SR/k, and they are simply shifted along the time axis.The solid linedenotes the
original input signal and the dashed line the limited one. In Fig.3.6 the amplifier output
waveforms for uinare given (the PWL approximation is not plotted for clarity ofthe diagram).

TIM C.ac] *oo»

Fig. 3.7. Functioning of slope limiting mechanism for large input (A=10)

Fig. 3.8. Amplifier time responses for k=10. PWL waveform is not plotted for clarity of diagram
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The u au solid line has been obtained with the SLM, whereas the uQJ solid line without it. For
comparison the SPICE estimate ofthe u au is also plotted (as the dashed line).

For other values of k (Arao=const.) the time responses for various input signals also give a
good approximation to SPICE estimates. In Figs.3.7 and 3.8 another example of the input and
output waveforms for A=10 is given. A slope of the first input segment is limited after
crossing uh. When the output of SLM (dotted line in Fig.3.7) reaches 0.4V, the difference
between u (solid line) and the feedback signal ylk (dashed line) is checked. Since in this case
it is approximately 160 mV, the SLM output continues to rise with no change of slope until u
waveform is crossed. Next, it follows u segments. The corresponding amplifier time response
is shown in Fig.3.8. For comparison the SPICE macromodel estimate is plotted with dashed
line.

By means of this approach the PWL simulation of the amplifier is also up to three orders of
magnitude faster than SPICE.

Using a more natural way to represent the slew-rate effect, as with a closed loop OpAmp
[SOL74], leads to a problem of tight feedback. The input of the nonlinear SLM no longer
depends on the initial Aw,, but on the difference u”ylk. In this case the presented PWL
approximation algorithm requires an iterative approach to maintain accuracy. However, because
ofits slow convergence for tightly coupled loops [NEW84, DEB87], it is undesirable to give up
the simple approach used here. On the other hand, this will result in some loss of accuracy,
particularly when narrow pulses are applied to the amplifier input.

3.3 Logic gate macromodel

At the functional simulation level, logic units like registers, counters, multiplexers or memories
are dealt with rather than gate primitives. In fact, also simple gates can play important role in a
digital (or mixed) system and hence, they may be viewed as a special case of the functional unit.
Moreover, they perform the fundamental logic operations that all logic units are based on. Using
the PWL approach [DRY85, RUA91] to logic gate modelling we define:

AND (xi,x2,...) = Min (jcj,jc2,...) (3.7a)
OR(xv x2,...) = Max(xl,x2,...) (3.76)
NOT (c) = VL + V,, -x (3.7¢)

where VL, VH, are respectively the low- and high-level logic voltage. Apparently, the right-hand
side operations in (3.7) are well suited to proceed with PWL signals, which are in this way
equivalent to multiple-value logic signals. In addition to Boolean L and H, at least two extra
states R (rise) and F (fall) are required (accomplished by X as uninitialised state). Consequently,
any logic signal may be represented as an ordered set ...,(4 s*)> (<<H, sj),... where ti < /;+i and s* *
Sj are different logic states. In particular, the R- comes usually after the /.-state and the F- after
the //-state. Some changes are forbidden, e.g. //-»/? or//-»L.

An equivalent PWL signal can be obtained by using constant voltages for the Boolean H- and
/-state, and linearly changing voltages for R- and F-state. For some signal (see Fig.3.9)
defined as the sequence: (/0, L), (t\, R), (h, H), (13, F), (t4, L) the voltage rate of itsrising edge
that comes at ti isequalr=(V H- VL)I(t2- 1\) > 0. Consequently, for the falling edge coming at
ti, we have r = (VL~ VH)I(tj,- h) < 0. Moreover, to handle some unknown states we assume the
rising and falling edges to start or stop at any intermediate value V/, so that VL<V t< VH.
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In addition to the formulas (3.7), the PWL logic gate macromodel needs a slope acceleration
mechanism [RUA91], so that the output rate is

ra=P rinp, ra e \Fnu > (3.8)

This rate is limited by for the falling- and by Rmx for the rising edge as stated. The
coefficient (Sis chosen individually for each type of a gate. If Csis a self-capacitance of a gate
and COis its fanout capacitance, the output rate rais reduced

C 3.9
C,+Cn (3.9)

To propagate Ujrpwith a new slope ra, the corresponding primary PWL events are replaced with
the new ones as shown in Fig. 3.10.

Fig. 3.10. PWL signal conversion in logic gate

The delay time depends on the input rate rinp and also on CO (not only on r<p as assumed in
[RUA91]). To calculate the delay time tdfor MOS gates we use the formula with a product ofthe
mentioned above parameters considered as its argument [CHN 88]

td = Co'f(C 0'rinp) (3n0)
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The functions /{m) are obtained individually for different gates based on SPICE estimates
[ZAJ98] and are implemented in a form oftables to support the look-up technique.

This model may be referred as fully behavioural with a logic function defined by eqns.(3.7), and
timing specifications defined by eqns.(3.8) through (3.10). In contrary to this, using a more
natural approach one comes to structurally oriented modelling. As a result the timing part of the
behavioural model can be represented with the inertial building block, as shown in Fig.3.11.
Clearly, this model needs careful parameter adjustment to meet the specifications, and should be
provided with the PWL approximator at its output. Alternatively, the inertial block can be
discretised due to the enhanced TR algorithm.

On the other hand, the enhanced structural model of a logic gate, in which the delay time and
output slope time may be distinguished, can be patterned after the comparator macromodel
derived in Section 3.1.

Basically, those macromodels are limited to simple gates. For more complicated units different
approach is used to describe their logic functions and delays as well. In this case the input- and
output stage of a unit are separated from each other, so that the output rate depends only on CO
(egn.(3.9)), and rais assumed to be a constant. Consequently, the delay time can be represented
as a sum of: the input-stage delay td, intermediate-stage delay  and output-stage delay tdo.

= tdi + td + tio (3.11)
where t<ti=f\{rinp), /<*= const, and /* = /2(C0).

Also the formulas (3.7) alone are insufficient. In fact, they can be accepted in modelling the input
and output gate stages of a complex unit. In this case they usually play a role of virtual
converters between the logic- and PWL domain, whereas for the internal part of the unit a
behavioural description is preferred. This problem is discussed in more detail in Chapter 4.



4. MIXED-MODE PWL/ LOGIC MACROSIMULATION

Since it is difficult to propagate non-Boolean states through complex logic blocks, using a
mixed-mode technique to macrosimulation of mixed A/D networks seems to be a reasonable
approach. In particular, in this context we address the intermediate values V/e(Vi ,VH)
performed by the PWL approach. Because of it, for complex logic blocks logical modelling
would be preferred. Hence, the relevant mixed models would require logic-to-PWL and PWL-
to-logic signal converters [SAL94], As compared to previous work, the fully unified PWL
treatment of A/D networks, introduced in [RUA91], is no longer applied here. In contrast to
that unified approach, using the mixed-mode technique enables behavioural logic modelling
that is not limited to the gate level. In fact, at the functional simulation level behavioural logic
modelling is indispensable for several reasons: abstraction from unnecessary details (also
from model inner structure that might be unavailable prior to step down to a lower design
level), capability of emphasising functional specifications and compactness of model
description.

In this chapter, techniques used for mixed-mode PW L/ logic macrosimulation are addressed.
Algorithms that the prototype mixed-mode simulator is based on are presented and their most
distinguishing features are emphasised. The logic-to-PWL and PWL-to-logic virtual converters
are discussed in detail as well. Finally, the chapter content is accomplished by a simulation
example ofahalf-flash A/D converter, performed as a mixed model.

4.1 Simulation algorithm

As mentioned in Section 1.1, modem simulation techniques, in particular the mixed-mode
simulation, tend to adopt mechanisms typical of logic simulation [BRE75]. The common use
of event-driven and selective-trace modes proved to be a unifying mechanism in mixed-mode
simulation [SAL94]. Following that experience, in the presented mixed PW L/logic approach
the same principles are exploited.

To establish this kind of simulation, a time-queue and an event-scheduler are introduced. As
opposed to logic simulation, special attention must be paid to the PWL simulation when
defining an event. Observe that the PWL-events can be generated by subsequent breakpoints
(4, VK in a natural way. In fact, two subsequent points (tk, VK, (/*+,. Vk+l) are required for an
event to be determined at the time instant tk In practice, this event can also be defined as a
change ofthe corresponding rate rk= (VkH- VK)I(tk - 4) assigned to (tk, VK.

Whenever the event at a block output occurs, it is possible to schedule all of its fanouts to be
processed (blocks directly controlled from that node). Since the only blocks that are processed
are those which are affected directly by the event, this technique is referred to as selective-
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trace. Following the selective-trace principle, only the active parts of the simulated network
are analysed. Active blocks generate events (accordingly PWL- or logic ones) each time they
produce a new PWL breakpoint or make atransition to a new logic state, respectively. Thus,
processing an event means analysing the fanout blocks adjacent to their input node, activated
recently. The fanout blocks are found from the fanout table that is available after compiling a
network netlist. Consequently, the analysis follows (traces) the signal propagation, whereas
the remaining (latent) parts ofthe network are skipped (and if inactive at all, need only to be
initialised). As a result the relevant blocks are scheduled and next processed due to the signal
flow in a network. Also self-scheduling of a PWL block is required when the output produces
a new event. Clearly, in this case the block has to be processed further to follow its transient
behaviour, regardless any new events at the block input occur.

Fig. 4.1. Time queue as indexed list

The event-scheduler controls the order of simulation based on a time-queue, which is
organised as an indexed list (see Fig.4.1). The time-queue contains time-point headers that
point to queue-entries grouped into true event-lists (including names of blocks to be
processed), each assigned to a given time-point. PT denotes the present time pointer. If a new
event is encountered, the corresponding fanout blocks can be added to the queue thanks to the
list of time-point headers and an extra pointer that points to the end of an event-list. This
structure differs from the standard time-queue indexed list in that the time-point headers are
arranged as a list rather than a vector (array) where time instants are integer multiples of some
prescribed time-step At [SAL94], Using the list seems to be a more reasonable approach.
Otherwise, a very fine At would be required to schedule PWL events, resulting in a large
number oftime-point headers, with most of them pointing to no events.

An algorithm for processing the PWL-event is depicted in Fig.4.2, where Etis a block to be
analysed and tk is a time of activation (current event). First, the current input xinp and
previously predicted output state of Ej are identified. The actual segment of xinp is converted
into the u segment (as defined in Section 2.1), and the amplitude Vk is updated due to the
relation between tk and tnexx which represents the output breakpoint predicted previously. If tk
= (next, the predicted output Vned is taken as the actual output Vk. Otherwise, Vk has to be
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PWL event processing(Et, tk)

{ get_input&state ( Eit tk); (* input and predicted output segment *)
convert_input_segment( Ei>tk); * u-f(x,m *)
wftnext> t)  VKk* [Wexdt- (vnext" Vk-})'(trex - tK)/(t,oxt

else Vk<- Vntxt; (* tex =tk *)
get_next_point; (* find next breakpoint (Vrex, trex) *)
out (Vk tK (* update output *)
out_next<-(Vnaa,tned); (* predict next output *)
if (Etactive) (* output of Ei changes for t> tk *)

{ schedule ( Eit trex); (* self-scheduling *)
schedule ( PWL_fanouts( Et ), tk);
schedule ( logic_fanouts( E, ), tk+ At); (* if threshold crossed *)
if (fanouts( E t) already scheduled for t* > tk or for /* > tk+ At)
unschedule ( fanouts( E i), t*)

Fig. 4.2. Processing of PWL event in mixed-mode simulator

recomputed. Next, the PWL analysis is performed using the approximation-based or the
enhanced TR-based algorithm. Only the nearest PWL breakpoint (Vnex, tnex) is computed (i.e.
Vnext, tnext are updated) and the resulting output segment is defined by the boundary points (Vk,
tk) and (Vrext, tnext)- Then Ei is scheduled (placed into the queue) to be analysed again for tnext
> tk. Observe that PWL-type fanouts are scheduled for tk, whereas the logic-type fanouts not
until the logic threshold is crossed, i.e. for tk+ At.

To avoid undue backtracking, the event-scheduler controls carefully the incoming PWL
events (breakpoints). In particular, if an event appears at tk, and tk < t*, then the previously
scheduled event at t* for the fanout block is discarded, the new event is scheduled for the
instant 4 , so the block output will be updated for tk.

A slightly different algorithm is required for logic events associated with behavioural logic
models. It is because logic units differ substantially in their behavioural functionality. The
other reason is that the particular logic inputs of a model feature usually different
specification, and different violations may occur for them (such as spikes, setup or hold time
violations). Hence, reporting of violations are incorporated into a logic model. Besides, the
source o f activation must be recognised to proceed an event effectively (see Section 4.3).

The overall simulation flow is presented in Fig.4.3. The blocks are analysed subsequently
within the main simulation loop for the actual simulation time tk. After all events (blocks)
from the relevant list have been processed or cancelled (discarded) the list becomes empty,
and it should be removed from the queue. Since a size ofthe time queue is limited, some later
events are placed on an extra list, called remote list to avoid overflow. The remote list plays a
role of a buffer, and if any list is removed from the time-queue, a new list of pending events
(if exist) from the remote list can be put into the queue. Finally, the time is advanced to
continue simulation.
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initialisesimulation
{ compilenetlist; compileinputstimulus;
arrange_time_queue; arrange_remote_list

}

tk<—0; (* reset simulation time *)
repeat
enter_time_queue (tk);
while (eventjist notempty )
{ identify_block;
if (PWL_type ) PWL_event_processing ( Eit tk)

else logic_event_processing ( Et, tk)

}

add_pending_events_to_queue; (* from remote list *)
increment_simulation_time ( /*)
until (tk= ts)

Fig. 4.3. Main algorithm for mixed-mode PWL/ logic simulator

The main algorithm is used to also establish the initial conditions in a network to be
simulated. In this case the analysis begins with ze/o-PWL initial conditions, logic X-states
(uninitialised) by default and constant external inputs, all together assumed as a starting point.
Once the PWL signals stabilise (stop changing) at the rate r < rmi,, ~ 0, and all A'-states are
replaced by determined logic states, the pure simulation may begin. Clearly, predefined initial
conditions may be introduced as well.

4.2 Mixed-mode interfacing and synchronisation

An interface between the PWL- and logic sub-simulator plays an important role. After
compiling a netlist, all PWL-units with fanout of logic type are equipped with PWL-to-logic
converters, and vice versa, logic units that control PWL-type blocks, with logic-to-PWL
converters. The relevant converters that provide this interfacing are, in fact, virtual objects
since they do not represent directly any physical elements in a network. Basically, at lower
levels of abstraction the virtual converters are dependent on technology (e.g. TTL, ECL,
MOS), and when defining, one should pay special attention to the loading or bi-directional

coupling effects [SAL94, DAB96K].

Here, at the functional level, this task appears much simpler unless detailed timing is required.
On the other hand, the nowadays designs are oriented mainly towards MOS circuits, for
which bi-directional coupling might usually be neglected, and capacitive loading effects are
crucial. These, in turn, can be effectively modelled with the basic building blocks as stated in
Section 2.1. Floating elements such as transmission gates cannot be represented separately
and should be incorporated into the blocks (as mentioned earlier). As a consequence, the
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required logic-to-PWL converter can be based on the PWL-model of a gate (Section 3.3),
where some standard value for the slope ra may be assigned to a corresponding logic event.
However, this kind of conversion is somewhat cumbersome. That is, a logic block should
output the respective logic event at the time instant, for which the resulting PWL segment
should start (rather than matching directly the logic delay due to voltage threshold). The
principle oflogic-to-PWL conversion is shown in Fig. 4.4. The thin line represents logic input
to the converter, whereas the thick line its PWL output (with slopes rouy, defined as in Section
3.3). The logic events occur at the time instants t\ through t3. Apparently, they come earlier
than they would come unless the conversion were required for the logic block (see At\ for the
event at t\).

To process an event, the logic-to-PWL converter should recognise its logic input and actual
state. In particular for tu the converter updates the output as (VL, t\), and computes the next
breakpoint to appear AtR later with the amplitude VH. Then, the scheduler schedules the
relevant fanouts to be processed for t\, and the converter itself to be processed for (Vh,
li+Alr).

The converter may be treated as a kind ofthe building block. An algorithm for processing a
logic event in the logic-to-PW L converter is depicted in Fig.4.5. First, an actual output state is
recognised using the state variable. For example, the state variable is reset from ‘0’ to R' to
indicate that the output begins rising when the input changed from 0 to 1. Next, suppose that
the logic input changes from 1 to O before the amplitude Vh is reached. Consequently, the
converter is scheduled and processed for that time. In this case, tne¢ (computed previously) is
found to be bigger than the actual event time tk, so the output is updated as (Vk, tk) and the
next breakpoint with the amplitude VL is calculated (state is reset to ‘F). Unless the logic
input is too short (such as in Fig.4.4), the amplitude VH is reached as the nearest event to be
processed, so for this event we would find tk = trex (state is reset from ‘R’to ‘1’). To define
the PWL output segment, the variables out and outjiext are updated.

Clearly, the PWL-to-logic conversion is simpler since it is a conversion from lower- to higher
level of abstraction. This involves removing unnecessary details from the PWL waveform.
The resulting logic signal switches between 0 and 1 after crossing the prescribed logic
threshold V,h. In Fig.4.6 the input and output signals ofthe converter are plotted respectively
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case state of
‘0: { Vk<—VL; state *—R’;
tnai<r- tk+ ; Vnix, = VHY;
‘1 { VKk<—VH; state <- ‘F;
et tk+ Atf; vret~ VI }
‘R7if (et > tk) {Vk+-[V H-r R(<,,, -<*)]; state <-'F;
tnext*- [tk+ (Yk~ VLyrF\, Vid = V)
else { Vk<- VH; state *- ‘1’;
et* tal, vre{—Vifj}
JE if (et > tk) { Vk<- [ VL+rF(/,«, - tK) ]; state
et [tk+ (Vh- YRIr, 1; het= VH)
else { Vk<r- Vi, state <- ‘O;
tred ted, et~ °/ '}
end case;
out <—(yKk, tk) (* update output *)

outnext (Vhext >trext) (* predict next output *)

Fig. 4.5. Processing of event in logic-to-PWL converter

with the thick and thin line. However, when precise timing is required, the PWL-waveform
slope should be taken into account to compute the delay tdiof the logic front-end stage (see
eqn.(3.11) ). The PWL-to-logic converter has a built-in mechanism to check for crossing the
logic threshold. If a PWL segment crosses the level V,hthe corresponding time instant is
calculated (e.g. t\ in Fig.4.6) and a logic event for the fanout block(s) is scheduled at that

time.

Fig. 4.6. Principle of PWL-to-logic conversion
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4.3 Macrosimulation example

For illustration a simulation example of an A/D converter is presented. The results have been
obtained by means of the prototype mixed-mode functional-level simulator, presented in this
chapter. As stated, the simulator is event-driven, where the subsequent PWL breakpoints (Vj,
ti), like the logical (Sk tk), are defined to be events. Scheduling ofthe events is based on the
time-queue mechanism.

In Fig.4.7 a functional structure of the eight-bit half-flash A/D converter is given. Here, the
behavioural specification is also necessary to define the macromodels, particularly for the
digital units. Three-valued logic ( 1, 0, Z ) plus uninitialised X-state are used to cope with
their timing specifications, e.g. the hold- or set-up time [BRE75, SAL94], For the T/H, the
amplifier macromodel is used together with a memory mechanism and a switch that performs
multiplication of two PWL signals (the input and the control one). Also the MUX
macromodel is based on switches and the inertial block at its output. For the A/D flash a
signal divider and comparator macromodels are used to provide a 16-state PWL signal. The
resulting 4-bit data N3..NO is obtained with a digital decoder modelled by behavioural logic
description. Its front-end is provided with a PWL-to-logic virtual converter. The Ctrl unit is
modelled behaviourally as well. For the D/A a mixed model is used so that logic-to-PWL
conversion is required for it.

Fig. 4.7. Structure of A/D half-flash converter

To give insight into the macrosimulation technique used, the models of D/A and R1 will be
presented in more detail. As the D/A converter merges the digital and analogue functionality,
it is reasonable to incorporate the logic-to-PWL conversion into the D/A model. The
constitutive relation for the D/A may be expressed as

Ua=A U .i2kqt (4.1)

*:0
where AU is the resolution. The gk parameters are set either to 0 or tol with respect to the
digital input Q3..Q0. Note that each component of (4.1), i.e. Uk= AU-2kgk, can be represented
as the logic-to-PW L converter driven by Qk, and the output changing between Vtj = AU-2k
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if (state = ‘steady’ ) { Vk<- Vnex; state < ‘R /F;
Kexi At/-decimal(Q3.Q0);
tnex,*-[tk+\V*exl- ¥k! ra}}
else (* state= 'R/F *)
if (tnixi>1k) { Yred  Ynet»

e - AC/-decimal(Q3.Qo);

Yk [Yrmed ra ret~"a) Sgn(Vnext” Vnextl) >

mext+ [tkd\VA-VR/rg)

else { Vk<-Vrex ; state <- ‘steady’-, (* tred = tk*)
tred*  tad}
out <- (K*, /*); (* update output *)
out next<- (Vnnt, trex)\ (* next output *)

Fig. 4.8. Processing of event in 4-bit logic-to-PWL converter

and VL = 0. However, as logical events for the bits Qo through Q3 are assumed to occur
simultaneously (are synchronised by the WRH signal), a single 4-bit logic-to-PWL converter
would be sufficient for them. As compared to the model shown in Figs. 4.4 and 4.5, here the
fixed levels Vh and Vi should be replaced with the actual voltage levels calculated from (4.1).
When a logic event occurs on Q3..Q0at t,, the converter is scheduled (based on the fanout
table) to be processed Ata later, i.e. after the prescribed delay of the input stage. Once the
simulation time is advanced to tk = (tj + Atd), the converter is popped from the time queue to
perform the analysis. An algorithm for the relevant logic-to-PWL conversion is presented in
Fig.4.8. Here, the state variable can be set either to 'R/F (when the converter output is
changing) or to Isteady’ (when the actual voltage level has been reached). The updated
variable Vred provides the output amplitude of the next breakpoint to appear for If the
output is changing and the current event precedes the end of the current output segment (i.e.,
tnea > tk ) then the actual output Vkis recomputed. Next, the output segment is defined using
out and out next variables. Finally the scheduler will schedule the relevant fanout block for
the current time tk, and the converter itself for

Logic- out Inertial

S>
to-PWL PWL Block D/A

output

63..00

Fig. 4.9. Structure of D/A model
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A complete model of the D/A unit composed of the 4-bit logic-to-PWL converter and the
PWL inertial block is presented in Fig.4.9. A model of the inertial block follows the algorithm
presented in Fig.4.2.

The other model, concerning the R1 register is depicted in Fig.4.10. When an event occurs at
the register data input (N3..NO) or strobe input (WRH), the involved active variable is set to
'input’ or ‘strobe’, respectively. Once the R1 model is popped from queue, the value o f active
indicates the reason for activity. Apparently, active = ‘output' is preceded by the active
strobe. The model checks for timing specifications, such as setup or hold time, and it reports
the relevant violations when necessary. However, no ambiguity for the register output is
introduced in that case. To follow this idea, some indeterminate state U would be required
that, on the other hand, tends to spread in a network. As a consequence, the timing obtained is
likely to be even more indeterminate in some cases [ARM88, BRE76], The scheduling of
logic events used here resembles that ofthe PWL model (Fig.4.2)

case active of

‘strobe’: if (strobe = 1) and ( data <> data in) (* rising edge *)
{ data <- data in, tnm<-(/* + tnohr);
schedule( Reg, trex ); active <- ‘output (* selfscheduling *)
getjastjnput; if (tk- tlasld,pu, < Atselup)

report( ‘setup time violated for’, Reg, ‘at’, tk)

}
else if ( strobe = 0) { gct_last_strobe; (» falling edge *)
*f(Jk" tiasi Srde Afffrobe )
report( ‘strobe width violated for’, Reg, ‘at’, tk)
}
‘input': { getjaststrobe; if (tk- tlaa,,nbt < Athold)

report( ‘hold time violated for’, Reg, ‘at’, tk)

}
‘output”: { data out <- ( data, tk);
schedule( Fanouts( Reg), /*);
if ( Fanouts( Reg) already scheduled for t* > tk)
unschedule( Fanouts( Reg ), t* )

end case;

Fig. 4.10. Processing o f logic event in register model

Some ofthe simulation results ofthe A/D model are shown in Fig.4.11. The logic signals also
have been represented as PWL waveforms (with standard slopes) in order to enhance a
qualitative similarity ofthe model behaviour.

A careful analysis ofthe relevant waveforms allows one to verify the assumed functionality of
the A/D converter. When the RD signal changes from low to high, the T/H unit switches into
the hold mode and the 3-state register outputs the old data DO7. Next, on the first falling clock
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edge the high nibble is written into the R1 register (the M U X transmits so far the signal Uh).
The high nibble QO3 is fed back via the D/A, amplifier and M U X to the A/D flash input. This
loop closes after the MUX switches to the amplifier output and the A/D provides the low
nibble. On the next falling clock edge, first the output register turns into the high impedance
state, next the high and low nibbles are written together into this register, and the T/H starts to
follow the input signal. If RD remains high the output register is transparent and a new data is
available atits output DO7 (see change 92H -> F1H). In this case the Rdy signal turns to high.

The input signal Uin rises and falls linearly between OV and 5V and is sampled 4 times. The Um
is the most complicated waveform shown, since for some time interval it follows the Uh and
otherwise the amplifier output. After switching the MUX, first it changes rapidly and next it
slews due to the amplifier slew rate equal 15V/|is. For the accuracy ofthe PWL waveforms/w =
50 mV has been chosen. The PWL approximation-based algorithm has been used.

Observe that a kind of feedback structure is faced in the above example. The blocks
constituting the feedback loop are of analogue, digital or mixed A/D nature. As the digital
components switch between logical 0 and 1, the overall loop gain turns to zero. Hence, the
signal amplitude within the loop does not change free. It is particularly useful during
simulation, since no iterations are required to process such a loop. Observe also that blocks
with switching output are typical of most feedback loops in A/D circuits (that are usually
clocked). There is, however, a class of feedback structures for which the iterative approach
appears indispensable. This problem w ill be discussed in Chapter 5.

To put the mixed PWL/logic approach into a broader perspective, the relevant
macrosimulation technique has been developed in VHDL [ASH90, LIP91] as well. The
VHDL implementation will be presented in detail in Chapter 7. It appears that the
experimental simulator presented in this chapter (as a dedicated one), performs by 30% faster
than the VHDL simulator used.



5. SUPPORT BY RELAXATION TECHNIQUE

The techniques outlined in Chapter 4 proved to be effective for a typical A/D simulation task
performed at the functional level. The system to be modelled should consist of unidirectional
blocks. These should embody the existing local couplings, which here are not allowed to be
represented separately. As observed in Section 4.3, the presented techniques are capable also
ofsimulating some feedback loop structures with no need of iterations.

In practice, however, there are global feedback loops of analogue nature that should be
modelled, as they are (i.e. explicitly), to represent adequately the network behaviour. In this case
the iterations cannot be avoided, and the PW L simulation algorithm supported by the waveform
relaxation (WR) seems to be a suitable technique for this purpose. Although the WR is said to
suffer from slow convergence when feedback loops are present (in particular for circuit-level
simulation [NEW84, DEB87, WHI87]), the resulting CPU times for the WR-based PWL
simulation are fairly moderate. It is because the PWL algorithm is very time effective (as shown
in Chpt. 3), and additionally, in some cases the number of iterations can be substantially reduced
with the windowing technique [DEB87, WHI87].

In this chapter we discuss an application of the waveform relaxation (WR) to the PWL
simulation technique [DAB97W, DAB99W], The feedback loop structures are shown to be
critical for the PWL simulation in a sense that they may require iterations. The chapter is
organised as follows. To support the PWL technique the WR is introduced, since it also operates
on waveforms. Next, the convergence and stability properties ofthe WR-based PWL algorithms
(approximation-based and trapezoidal rule-based) are considered for homogenous models, all
described by a system of differential equations. Mixed A/D models are addressed as well.
Different feedback loops are discussed: the analogue ones, the self-switching loops and the
clocked loops that tend to behave like networks with no feedback. Finally, the simulation
examples of practical networks, i.e. the telemetric receiver and the digit-to-frequency converter
(D /f) are presented.

5.1 Waveform relaxation PWL algorithm

If a precise value of a signal to be fed back in a loop structure is unavailable, the simulation of
such aloop must be organised as an iterative process. This happens usually in case of analogue
loops, for which all the involved loop units are active simultaneously. Following the selective
trace technique the Gauss-Seidel relaxation algorithm seems to be well suited for this purpose.
To discuss this problem consider a system composed of n basic building blocks (generalised
blocks) with multiple inputs, all described by uniform state-space equations:

xk = fk(xI,x1, ...xn, u), k =1,2, .. n (5.1)
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where/* : E"XE m-> ffi. for te( tO, tdogp) are PWL functions, and u(t)eM mdenotes here a vector
of external input PWL signals. The standard Gauss-Seidel scheme applied directly to (5.1)
(also referred to as the waveform relaxation Gauss-Seidel) proceeds as shown in Fig.5.1
[WHI87]. The upper indexj stands for the iteration count.

j «-0;
guess waveforms *°(/), t e [to, tt,d] such thatjc°(/0) = mx
repeat {j <- (/'+ 1);

foreach (ke [1,.n])

solve
XK — fK(X{>eeee**>**+I* _xn , u)

for (jz{(t)\ te [fO, ted]) with the initial condition */(0) = al/0;

}

until (max max \x&(l) - x[~ ()l < e)
1<k<n te\ta,tilop| 1

Fig. 5.1. WR Gauss-Seidel algorithm for solving eqgns.(5.1)

The WR Gauss Seidel algorithm converts the problem of solving a coupled system of n first-
order differential equations, such as (5.1), to the problem of solving n separate differential
equations, each containing a single variable. The outer loop of the algorithm is the Gauss-
Seidel iteration which requires that the latest values of the relaxation variables be used to
solve each equation in the inner loop. Each equation in the inner loop is a single differential
equation that can be solved using any numerical integration method.

The standard WR Gauss Seidel algorithm can be enhanced by rearranging the order of
equations in the inner loop according to the signal flow. It is, in fact, an event-driven analysis
where only active variables need to be updated. This is referred to as the selective-trace as
mentioned earlier.

Similarly, the Gauss-Seidel technique can be superimposed on the main simulation procedure
shown in Fig.4.3 to arrange a relaxation loop for the mixed PW.L/logic approach. As a
consequence, the local event-driven simulation process has to be repeated until the related
waveforms converge to some limit. In this case the waveforms would consist of a single
segment or of a few PWL segments due to the windowing approach used, which is a technique
where the analysis time is divided into intervals [DEB87, WHI87]. In this way the
convergence can be enhanced, since the accumulation of waveform errors is limited in time.

An algorithm for WR-based mixed PWL/logic simulation is shown in Fig. 5.2. The
windowing technique is applied. Within each window the WR Gauss-Seidel iterations are
organised as the while-loop. As compared to the algorithm of Fig.4.3, here, each analysis
(iteration) provides PWL/logic waveforms matching the actual window rather than a single
PWL segment. Once the analysis of a block for the actual window is completed, the next
block is popped from queue for that window. The analysed blocks need extra scheduling due
to the outer simulation loop unless convergence of the iterated waveforms is reached. Besides,
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active blocks should be scheduled for the next window before the analysis for the actual
window is completed.

initialisesimulation
{ compilenetlist; compileinputstimulus;
arrangetimequeue; arrange_remote_list

}
repeat
while (queue_not_empty) (* outer simulation loop *)
{ reset_time_for_window(Ar);
repeat (* inner simulation loop *)
enter_time_queue (tk);
(* Process ablock *)
(* within actual time window *)
until end_of_window(Ar);
check_for_convergence;
if (no_convergence) schedule block
inc(Ar)

until last_window_processed

Fig. 5.2. WR Gauss-Seidel algorithm for mixed-mode PWL/ logic simulator

When processing within the outer simulation while-loop, only selected waveforms need
checking for convergence, and usually checking for one waveform per network loop is
sufficient (other waveforms follow the loop constraints and converge as well). Following this
also a single block per network loop needs to be scheduled at the beginning of the actual
window (when not converged), whereas the other loop elements are scheduled in the inner
simulation repeat-loop, once that block is processed.

In order to discuss the convergence of the WR-based PWL algorithm, consider again the system
of basic building blocks described by equations (5.1). Using the PWL approximation-based
approach each block is provided, in some sense, with the PWL approximator as shown in Fig.
2.3. Hence, denoting by L(xk) the PWL approximation of xk (PWL output of A-th block),
eqn.(5.1) can be rewritten in form

*k = fk\L (x1),L(x2),...L(xn),u], k=1,2,...n (5.2)

Observe that this notation only makes sense when the operators L(-) are provided with explicit
arguments, so solving for (5.2) should be performed in terms of relaxation. To cope with this
problem the algorithm of Fig.5.1 can be adopted, referred to as the WR Gauss-Seidel PWL
algorithm (approximation based). Basically, the WR algorithms converge under mild
conditions [DEB87, WHI87], Based on it, a formulation of a similar convergence theorem for
the relevant WR-PW L algorithm is feasible.

For this purpose denote the vector [xi; Xj, .. x,]T by x, and introduce an exponentially
weighted norm on C(( t0, tBop),. ]R")

[x |* = Max e-M\x(t) |, A>0 (5-3)
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Theorem 5.1 ( 1st convergence theorem ): For a system defined by eqn.(5.2)
the WR Gauss-Seidel PWL approximation-based algorithm converges
uniformly in the norm (5.3) with some A > Ao, if the functions {/*} are
continuous and Lipschitz with respect to their arguments on te{ to, tstop )m

Proof: Applying the Gauss-Seidel scheme to eqn.(5.2) we obtain
1="fk [L(x{+]),L(x2+]), ...L(xi+l),L (x&+I),... L(x,]), «], k=1,2,...n (5.4)

wherej is the actual iteration number.

For brevity denote the time derivative of x by z, and introduce an integral operator I(z) = x.
Now, the iterative eqn.(5.4) may rearranged to a general form

zJ+l = <p[LI(zJ+]),LI(zj),u) (5.5)

In order to show that (5.5) is a contraction, observe that since the functions {/*} are Lipschitz,

vis Lipschitz as well. Hence, for the norm (5.3)
|z'+1-z*+1L < K,\LI(z,+x)-L I(z k+x)\x + K2\LI1(zJ)-L I(z k)\\x (5.6)

where Ki,K 2are positive constants andj, k stand for iteration indexes.

The operator/(¢) may be shown to be Lipschitz too [WHI87, ch.4]:

(zy)-1(z*)]] = Max e~* )[zJI(T)-zk(r)ldr
U J«c)

< Max e N \eXT\e XN\zi(r)-zk(r)\]dr (5.7)
0 "

l-e-"'.-"1 a | .o1.1,,
zJ-z k
X [ U

The same holds for {**}, since {**} = {/*} are continuous. Consequently, as xk= L(xK) for
the PWL breakpoints ( see (2.8)), the operator L(.) satisfies also the Lipschitz condition with
some positive constant M, i.e.:

1L (xJ)-L (x K\ < M\\xi-x k\ (5.8)
Next, substituting (5.7) and (5.8) ( both forj, k and (/+1), (A +1)) to (5.6) one obtains
W\Z'+-z k+ll < tFIM||/(z'+)-1(z* +)||A + Ar2M||/(zJ)-/(z*)|L

< KiM--\\zi+l-zk+\ + KM U\zJ-zk\

and after rearranging

M +i—z*+llLJ < K*M— \zJ-z k| (5.9)
tr A-KM 1 w

For sufficiently large A ( Ao = (K\+K-i)'™M ) the global constant in (5.9) is less than 1 so that
(5.5) is a contraction for the weighted norm | | * , and {zJ} converges uniformly to a unique
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fixed point by virtue of the contraction mapping theorem [WHI187], Obviously, since for each
iteration jco) = x(to), the {.*/} sequence converges as well.n

A similar discussion can be performed also for the Gauss-Jacobi scheme, particularly well
suited to parallel computing, which is not addressed here.

To summarise, the WR Gauss-Seidel PWL algorithm is guaranteed to converge under mild
conditions imposed on the functions {/*} in Theorem 5.1. However, only equation-based
models defined by (5.1-5.2) have been considered. Besides, the relation A > Ao is of little
practical use, since the constants Kt,K2and M are hardly available. Hence, this relation may
be viewed as an implicit condition, which only reflects some other convergence condition of
practical use that would be of interest. A detailed discussion regarding some more stringent
convergence condition as well as the application of Theorem 5.1 to mixed-mode PWL/logic
modelling will be presented in the following two sections.

5.2 Equation-based against behavioural models

Apparently, for mixed A/D networks represented at the functional level we deal with mixed
models, which do not obey the system of homogenous equations, such as (5.2). However, the
equation-based model may be shown to be equivalent to a mixed model, i.e. PWL-equation-
based for the analogue part and behavioural-logic for the digital part of a system.

For example, consider a gate model shown in Fig.3.11. The two-argument maximum value
function Max( m, ¢) followed by the PWL DC-transfer function/) driving a unity gain linear
inertial block is a well posed PWL macromodel of an OR or NOR logic gate, which can be
described by a single equation

Tx3+x3 = f[Max(L(XI),L(x2j)\ (5.10)

and L(x3) provides the PWL output. Such a model can mimic the basic logic and timing
behaviour of a gate; in particular, the delay time and the inertial effects caused by spikes or
glitches at the input. More accurate macromodel, in which the delay time and output slope time
may be distinguished, requires one inertial block more (with saturation). In this case the first
one is responsible mainly for the delay time, whereas the next one in the cascade, for the slope.
The cascade structure needs careful parameter matching as mentioned in Section 3.1 regarding
the voltage comparator.

On the other hand, one can produce the correct time response ofthe one- or two-equation-based
gate model (mentioned above) that is a subsystem of (5.2) by means of an equivalent
behavioural model with PWL inputs, such as defined by eqns.(3.7) through (3.10). Clearly, all
situations pertaining to the input/output signals that are involved with the equation-based model
must be foreseen and built into the behavioural model to assure its consistency.

Similarly, since a complex digital unit consists of simple gates, the respective subsystem of
(5.2) is able to represent its model as well. As a consequence, rather than to solve for that
subsystem, equation by equation, one prefers an equivalent behavioural model (of a unit) with
the same time responses as the origin (or very close to it).

By virtue ofthe above discussion and the results of Section 5.1, we conclude that the waveform
relaxation algorithm applied to structures with different models (PWL- for analogue parts and
behavioural models for their digital counterparts) also converges with respectto Theorem 5.1, if
the behavioural models and the original ones are equivalent.
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Observe that the behavioural models are viewed in this context only as a tool to solve for the
subsystems of the differential eqns.-based models. Clearly, in practice, the adequate behavioural
models (at the functional level) are developed directly from the specifications, and usually there
is no need to account for the original block structure described as the subsystems of (5.2).

5.3 Waveform relaxation and one-segment relaxation
for analogue sub-systems

In order to address the distinctive features of the WR-based PWL algorithm, first consider a
second order low-pass filter shown in Fig.5.3. As it is an analogue feedback structure, its
simulation should be organised as an iterative process, for which the algorithm depicted in
Fig.5.2 can be used. Observe that for Q > 0.5 this structure cannot be replaced with two inertial

blocks in cascade.

The WR Gauss-Seidel PWL algorithm (approximation-based) starts with the actual linear
segment, given by the input stimulus. When propagating through the both blocks, it is usually
partitioned into smaller pieces. The resulting segment lengths are at most equal to the input
ones. After a few iterations the length of the actual segment (time-step size) stabilises in a
loop at some minimum. In fact, for each block its input segment length and the corresponding
output segment length are the same. Usually, the PWL segments approach their final lengths
during the early iterations, when large WR errors propagate through the loop. The obtained
segments are relatively short, so that the final PWL accuracy of the waveforms is usually
better than the assumed one.

Some of the simulation results for the Bessel filter are given in Figs.5.4 and 5.5. The filter
specification is as follows: Q = 0.577,/,= 1.274,/= 1kHz, pmx= 50mV, co0= 'litfrfc - 8004
rd/s. To enhance the convergence speed of the WR, the windowing technique is used. The
windows: [0, 0.2ms], [0.2ms, 0.7ms], [0.7ms, 1.7ms], [1.7ms, 2.2ms] and [2.2ms, 3ms] are
generated by the respective input events. The first window is not of interest since the network
is latent in it. For the WR convergence accuracy of IOmV and PWL accuracy pnx= 50mV, the
obtained number of iterations for the second- through the fifth window is respectively: 7, 13,
7, 11. Some of the iterative waveforms are depicted in Fig. 5.4, where the numbers shown
correspond to the subsequent iterations. Observe also that in some windows (Fig.5.5) a
relatively large number ofthe PWL segments occur (i.e., 9 in the third window and 6 in the
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Fig. 5.4. Some of PWL iterative waveforms for bi-quad low-pass filter, pnx= 50mV

Fig. 5.5. Final PWL waveforms for bi-quad low-pass filter forpm= 50mV

last one) that result in a better PWL accuracy than the assumed one. For comparison, if pmx =
20mYV, the number of iterations per window is respectively: 6,11,6,9 with the corresponding
number of segments: 4, 15, 4, 9.

On the other hand, if the windows are halved, the iteration count per window for pmx= 50mV is
as follows: 6+6, 8+100, 6+6, 7+6. Apparently, with the number of 100 iterations for the window
[1.2ms,1.7ms] the process becomes almost unstable. In this case the algorithm attempts to yield
a large segment length (since |jcO- u0O+ rT \is very small), which then is reduced to match the
window size. Indeed, for very small values of the expression |*0- u0 + rT | for the inertial
block, or | r/T | for the integrator, the PW L algorithm yields relatively large time steps (due to
the approximation formulas (2.17) and (2.36)), which are likely to make the relaxation
process unstable.

Moreover, it should be observed that even well posed iterations give rise to accumulation of
the PWL approximation errors. In fact, any smooth output waveform is either under- or over-
estimated by the PWL approximator for a given time segment. Thus, multiple propagation of
a waveform in a loop causes the effect of error accumulation (global errors arise). When the
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PWL breakpoints are taken into account, those global errors are usually different from zero,
unlike the local PWL errors (defined in Sec.2.1).

For the low-pass filter presented above, the resulting global errors are depicted in Fig.5.6. The
error function is defined to be a difference between the PWL output uQu, (when brought to
convergence) and the original response u0 (obtained without PWL approximation).
Fortunately, those errors may be kept low using p ™ ofreduced value, as shown, and they are
usually less than pmJl at the breakpoints, and less than Pmx otherwise. The results obtained
with the TR-based technique are very close to this.

Fig. 5.6. Global WR-PWL errors corresponding to waveforms of Fig.5.5
obtained forp =50mV (solid line) and =20mV (dashed line)

The problem of error accumulation will be emphasised in Chapter 6. Here, we focus on the
convergence of the WR-PWL algorithm. However, before addressing the latter problem, we
would consider another approach to windowing.

It is the dynamic windowing where a window size follows the actual segment length. That is,
the first window for the first block is generated by the actual events involved with the input
stimulus, whereas in the next iteration the window size for that block follows the iterated
PWL segment provided by the feedback loop (and is usually shorter than the former one)..
Apparently, it is a special kind of waveform relaxation where each waveform consists of one
PWL segment. Hence, this technique can be referred to as one-segment relaxation (OSR).
This approach is, in some sense, equivalent to the one-step relaxation mentioned already in
Section 1.2. Applying OSR to the filter of Fig.5.3 results in reducing the number of iterations
(unless instability is faced). The number of iterations per one-segment window for /jm =
50mV is respectively: 4,4,3,7,6,7,7,6, ... resulting in the average as much as 5.7 (iterations per
window). However, more CPU time might be required to perform the whole simulation as
compared to the case of windows, each comprising a few PWL segments.

For example, using the windows: [0, 0.2ms], [0.2ms, 0.7ms], [0.7ms, 1ms], [I1ms, 1.4ms],
[1.4ms, 1.7ms], [1.7ms, 2.2ms], [2.2ms, 2.6ms] [2.6ms, 3ms] with the average number of
segments per window equal 3.2, results in the average number of iterations per window as
much as 7.5. The total CPU time for this windowing is by 20% less than that of OSR technique.
Despite this, OSR might be viewed as auniform approach to iterative PW L simulation, which is
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particularly useful in implementations that are not well suited to the WR, such as VHDL (see
Chpt.7).

To summarise, a balance exists between the potential gain due to the windowing approach and
the additional computations and storage required in managing the windowing solution. This
problem has been investigated e.g. in [DAB91E]. However, no technique has been reported so
far to provide optimal windowing in general case.

To discuss the convergence of the relaxation iterations, express formally the PWL
approximation procedure by the operator /.(m), so that the filter structure may be described by

X, = U, L(x2)

(5.11)
— X2+ XxX2=L(xXXx)
(9]

where L(x,) and L(x2 are respectively the PWL output ofthe integrator and the inertial block.
First, the OSR technique, defined above, will be considered. As mentioned earlier, the length
ofa segment propagating through the loop stabilises after a few iterations at some value /*, so
that L(x,) =jc,(0) + [*,(/*) - x,(0)] f//*. A similar relation holds for L(x2. Consequently, with
respect to (2.7) and (2.35), for they-th one-segment Gauss-Seidel iteration we have

x{+i("*) =*,(0)+*0q {[«,, - *2(0)-*»(f,); x2(0) t]dt

X T\t') = xx(0)+ (/+)-*,(0) Q) (5.12)
t* oon

+[wr2(0)-ar,(0) + \e
and after simple manipulations

t a0

x{+H?)-xIV)=-12 r -A-a-e 8 )HXL(IM-xI(M] (5.13)

Now, by virtue of the contraction-mapping theorem the Gauss-Seidel iterative process
performed on a single segment converges when

I -V (1 < | (5.14)

This inequality (solved numerically) holds for t* < 0.505 ms, which is the maximum allowed
segment length that assures the WR-PWL approximation-based algorithm to be convergent.

Similarly, we would consider the application of PWL TR-based technique. Clearly, the L(-)
operator in (5.11) should be replaced with the trapezoidal rule:
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where xkis an estimate ofx(tk, and hkstands for the actual time step, common for both blocks
(as already explained). Hence, one obtains

Xtk = [“I»('*) + ~ Xlk ~
1-°~)x 2kx+ " {x£ + (5.15)
rJH _
2k i+ ««A*
2Q

where x jkl represents the TR estimate of x,(4) for the y-th Gauss-Siedel iteration. After
simple manipulations
(Q0phk) 2
xtf - x{k = - +r~ (x{k-xtf) (5.16)

Next, following again the contraction-mapping theorem the TR-based iterations converge when

<1+ (5.17)
4 2Q

Solving (5.17) for hKyields hk < (1 + + 42 2)/(<y06) * Hence, for the filter specification
used, we have hk< 0.466 ms that is relatively close to the result obtained from (5.14).

To put this discussion into a broader perspective consider an /i-th order system composed of
the basic building blocks, i.e. inertial blocks (labelled with index k) and integrators (index s):

Tkxk + xk = fk \L(xXx), L(x2),.. L(xn),ul, Aed{l,..li} (5 18)
Tsxs = f,[L (XI),L(x2),... L(xn),u], Se (I, ./}

wherefkl s: EnxEm E for te( t0, tdgp) are PWL functions, and w (/)e Imdenotes the vector
of external PWL input signals. Apparently, the filter from Fig.5.2 is a special case of (5.18).
Next, assume that at some driving point the functionsf kand/j take the form of

fm= fmo + tam,xl +bmu, m=1,...n (5.19)
1=1, i*m
In Section 5.1 the general convergence conditions for the WR-PWL algorithm have been
given. Here, a more stringent convergence conditions for a system described by eqns.(5.18)
and (5.19) with respectto the WR PWL will be presented.

First, observe that with the definition (5.19) we assume the input of the m-th block to depend
only indirectly on its xmoutput. As a consequence, the resulting matrix A=[am,] has zeros on
its diagonal. Further, assume A to be irreducible [VARG63]. Typically, it means that the
analogue system (5.18) does not fall into two (or more) sub-systems in cascade. For
illustration, see Fig.5.7, which is an example of a reducible system.
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In other words, there exists some global feedback loop comprising all the sub-blocks in the
irreducible system, and hence, at some driving point the iterations tend to approach some limit
segment length t*, which is same for all the involved building blocks.

0 0 g O 0 a b ¢
e 0 d d 0 e
A = f ! - f A1
h 0 0 U 0O 0 O g 0 a 2
b a ¢ 0 0 0 h o0
Fig. 5.7. After reordering of variables: and next , A becomes upper

triangular block matrix corresponding to cascade block structure (so A is
reducible); however, the matrices An, Ai2 A2 themselves represent
irreducible subsystems

Based on it the following theorem may be formulated:

Theorem 5.2 ( 2rd convergence theorem ): For any irreducible system
composed of the basic building blocks, defined by egns.(5.18-5.19), the OSR
Gauss-Seidel PWL algorithm (approximation based) is convergent for any

initial guess {xMm} if
n
) nt=1,...n (5.20)
/=1,iVin
where for at least one m the inequality must be strict, and
r

-
Sm-Lk-— Il-eT for inertial blocks, (5.214a)

t
gm=-zzr for integrators, (5.216)

m

where t* denotes the PWL segment length, common for all blocks in the
system.

Proof: Forthe PWL operator one obtains

= 5.22
dt tn ( )

where tn is the segment length computed for i-th block. Next, invoke eqns.(2.7) and (2.35), so
thatthe PW L solution for (5.18), for the current output segment, may be represented as

xk(t) = (xk0 - uk0 + rkTk)e~"Ti + rk(t-T k) + uko , k 6 {l,...ii}

MO = Ko0+7 " + 2Jr * (523)
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where for each block

« dL( x,) ,
«mo=/mo+ | ««/w<>> r,= Z am — m=1,.«
/=, m /=1,i*m dt

and without loss of generality we assume u = 0. Using the Gauss-Seidel relaxation scheme,
(5.23) may be rewritten as

**41(0 = (**o - *ko)e~"Tk
L R N & L Ll L LG U T (5.24)
\
rCo0 v 4T Ty P& g Kos el

Since the system is irreducible, during iterations the segment lengths ta approach some limit t*
(common for all blocks), for which the iterations are expected to converge. Hence, putting (5.22)
into (5.24) for t = t* it follows

xift') =(xk0-u kO)e T

Xj+I(t')- xi0 . £ xj(t )-x1I0
; “ A 7T~

T,eTk +t’ - Tk |; an fTT + 2 / { (5.25)
'2ftl *[+V ) -* . *I(O -*(
XrO) =XN+ - “)]-»- B —
T, 2T. A t t
k,se {1,...n}

and after simplifications
f

k-1
4 +(f)= 1-?(I-e ) S_aB*/+l(/*)+/:*T+iakix{(t')\+/3k,

= (5.26)
\i=1 iz i+l
Now we represent the eqns. (5.26) in a matrix form
xJH = Ljci+l+ Ux7+ < (5.27)

where L and U are respectively the strictly lower- and the upper triangular matrices
0 0o o0

«21 0 0

L = Diag[gx, g2, .. £,]

««l «»2
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0 a,2_ w «l«

U = Diaglgj, 92, g gn] . ° «2«
0 0 . 0
t — t*
where 8 =1--f(l-< ? 7)) forinertial blocks, and gm = for integrators. Hence,
it follows
xJ+i = (I-Lr'U~+a-D"V (5.28)

and by virtue the basic matrix theory [VAR63, Chpt.3] the iterations (5.28) converge for any
initial approximation j°, if the matrix ( 1-L-U ) is strictly diagonally dominant or is
irreducibly diagonally dominant. Since A is irreducible and

Diag[gv g2, .. gn]mA = L+ U, (5.29)

(1-L-U )isirreducible aswell, so it should be irreducibly diagonally dominant, i.e.

n
I"Em »1=1,.../
i'=l, ivm

where for at least one m the inequality must be strict.D

It may be observed that the convergence condition (5.20) holds for sufficiently small t*, since
gmdefined by (5.21a,b) are ascending functions with respect to t*.

Applying the obtained result to the low-pass filter described by eqgns. (5.11), it follows
I>co00Q i'/2 (5.30a)

-<Qat*

Q) (5.306)
a Ot

Since (5.27b) holds for any t* > 0, the condition (5.30a) is crucial. However, it appears to be
stronger than (5.14). For the considered Bessel filter, from (5.30a) obtains t* < 2/((00Q) =
0.433ms ( the former resultwas t* < 0.505ms ). In fact, the derived conditions correspond to
each otherin a sense that the product of (5.30a) and (5.306) yields perfectly (5.14).

In practice, when nonlinear PWL functions are used in models, a multiple checking for the
condition (5.20) may be cumbersome. So, it seems reasonable to reduce the resulting segment
length without checking, if too many iterations occur.

When using the enhanced TR algorithm as an alternative to the PWL approximation-based
technique, Theorem 5.2 can be adopted to provide a convergence condition as well. Replacing
the operator L(-) in (5.18) and (5.19) by the trapezoidal rule, yields
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¥otl =
1+A

2T,
o /I:1aUX jy +/:£+1a kix 1i + =Lk (5.31)
i+ A
21V
. j-i
B0 240 + bR[«(l) + «(_)] + X aslkj+l + X arxjf + £
' 27" =1 (=3+1 1=11*s
k,s e (1,..«}

where X £] represents the TR estimate of xjt,) for the y-th Gauss-Siedel iteration. After

simplifications (5.31) reduces to

A

o7, L .
ki o T.akixu | + TL<*kixh t Pk
i=i =%+
1+ - (5.32)
IT,
hl 5-1
X = ‘Lasixijl + | asixh *vys k.,se {l,..«}

¢ = ;. jLasxijl+ |2

From (5.32) one can pick up the relevant coefficients gm = . 1+2A for inertial

blocks, and gm = —— for integrators. Apparently, when using those gm coefficients, the

convergence condition (5.20) applies to the PWL OSR TR-based technique as well (compare
(5.32) to (5.26)). Moreover, observe that the convergence condition for the integrating blocks
does not depend on the PWL technique used (i.e. approximation-based or TR-based).

For the low-pass filter considered before, the convergence condition is identical to (5.30a),

i.,e. 1> co0Qhi 12, whereas the other condition is trivial as it holds for any positive step

ie. 1 . Observe also that a product of those two inequalities yields

2Q
perfectly (5.17).

Next, we would consider stability of the PWL OSR algorithm. For this purpose assume a
stable linear system composed ofthe basic building blocks, defined in a unified form

Diag [TlyT2, ... T,,] mx(t) = Ax(t), *0) = *0 (5.33)
where A e E"x', *(/) e IR, all T,> 0, and)i>n&)x(t) = 0.Applying the PWL OSR algorithm

to solve for (5.33) results in an integration scheme o f general form
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** 4+ =H xk > X0 = -*(°) (5-34)
where Xk is an estimate of the exact solution x(4). We would prove that ,IA:—T xk = 0, too.
®

Although (5.33) covers both inertial and integrating blocks, for simplicity of the proofall the
blocks will be considered as integrators (the proof for general case appears difficult). Clearly,
any integrator provided with a local feedback (when au = -1) represents an inertial block.
Consequently, the matrix A is no more assumed to have zeros on its diagonal. It is to be
pointed out that in this case Theorem 5.2 holds as well, provided the condition (5.20) is
modified to the form

il- gmamm * Sm_ « = Ipeeeg (5-35)
*=1iVm
To see this, note that L in (5.27) is not strictly lower triangular in this case, but it contains
some non-zero elements (gmamm) on its diagonal.

Theorem 5.3: For any irreducible and asymptotically stable system defined
by eqgns.(5.33), the region of stability ofthe OSR Gauss-Seidel PWL algorithm
is the same as for the convergence o f the relevant relaxation iterations.

Proof: Both approximation- and TR-based technique will be addressed. First, applying the
PWL operator to (5.33) we have

T,x,(t) = 'ZaslL(x,(1)), (5.36)
i=i

that may be viewed to represent a network of n PWL integrating blocks. Hence, based on the
Gauss-Seidel scheme and using (5.22) for L(-) one obtains (like in (5.25))

— k vl
= Xgk ]
ts /=i
(5.37)
V.o, xik+l ~ xik , V-, xiktl = xik -
2-t a si s 2-j asi * S = n
IT, H i=s+1
where represents the PWL estimate ofx,{/tH) for they-th iteration, and hk= 44 -4 is a

common time-step for all blocks. Observe that (5.37) also holds for the TR-based approach
(compare (5.37) with (5.31)), so no extra proofis required in that case.

If the relaxation iterations are brought to convergence, following the condition (5.35), then for

all © */.*'+i = *[,*+i = *; *+j - so that
j A n
N+ LR . s=1l.n (5.38)
i=I /=i
Next, putting (5.38) to the matrix form
'S / \
1 1 ftj. . 1 1
1- ~ Diag "z192 ~zr WA X1 = 1+ —Diag ~ Jee* ®A (5.39)
J 1 Tn_ / | 2 Jl Tn_ /
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Hence, the integration matrix due to (5.34) is

A\ \

( "y 1 1 1
H = 1—-——2—Diag =A 1+“>Diag _J A (5.40)

\ Jl Tn. \% Jl Tn. >

To assure stability of the algorithm, all the eigenvalues X, of H should be placed inside the
unity circle, ie. | | <1 for i = 1, .. n. Observe also that as (5.33) represents an

asymptotically stable system, all the eigenvalues S; of Diag[T{ 1, T2l ... T~1J* A should

belong to the complex open left-half plane, i.e. Re(s,- ) < 0. Since the relation between the
eigenvalues X, and s-follows eqgn. (5.40), one obtains

Hie
X- = 1-— s i+—2-5i <1, /=12, .n (5.41)

and hence, S -1 that holds for any A* > 0. Thus, the convergence

condition for the relaxation iterations is sufficient for the OSR Gauss-Seidel PWL algorithm to
be stable. O

Finally, we would address the relation between convergence of OSR and WR. For linear
systems the both techniques correspond closely to each other. To discuss this, the following
theorem can be cited due to [WHI87, Chpt.6],

Theorem 5.4: Let a consistent and stable multistep integration algorithm be
applied to a linear system ofthe form

Cji:(f) = A;t(f), x(0) = x0

where C,A e IE"", C is nonsingular; and x(t) e R”. Assume further that the
Gauss-Seidel algebraic relaxation algorithm is used to solve the linear algebraic
equations generated by the integration algorithm (e.g. trapezoidal rule). Given a
sequence of timesteps {hk}, the Gauss-Seidel algebraic relaxation algorithm will
converge at every step, for any initial guess, if and only if the global-timestep
discretised Gauss-Seidel WR algorithm, generated by solving iteration equations
with the same multistep integration algorithm and the same timestep sequence,
converges for any initial guess.

Consistency means here that the local truncation error (LTE) goes to zero as the time-step
A*-> 0. With respect to Theorem 5.4 the PWL OSR algorithm may be viewed as a kind o fthe
algebraic relaxation, and the PWL WR as the corresponding global-time-step discretised WR
algorithm (all Gauss-Seidel) satisfying the respective assumptions. As explained earlier, when
simulating an irreducible system, the PWL WR/OSR algorithm tends to work with a common
(i.e. global) time-step. Hence, by virtue of Theorem 5.4 we conclude that the convergence
condition (5.20) (or (5.35)) holds not only for OSR, but also for the WR Gauss-Seidel PWL
algorithm (approximation-based or TR-based) when applied to a linear system.

The above theorem also applies to nonlinear systems if it is assumed that an arbitrarily close
initial guess for each ofthe relaxation schemes is available [WH187, Chpt.6]. Although this is
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not a realistic assumption, it does indicate that even for nonlinear systems the OSR and WR
present very similar time-step constraints for an analysis method.

5.4 Simulation examples

In the previous section merely the feedback loop systems of analogue nature have been
addressed and shown to be critical for the simulation process. On the other hand, as opposed
to such loops, the loop structure including mixed A/D components (also referred to as
switching or clocked) does not tend to be permanently closed. Instead, for a given portion of
time only a part ofthat loop is active.

The reason may be two-folded: blocking the signal propagation by an external clock or zero
gain of one of the loop elements. The latter case usually pertains to units that are modelled
with an ideal switching DC transfer function. As a consequence, Theorem 5.2 is not
applicable to mixed A/D structures in typical cases (which are not irreducible), and the
segment lengths produced by the PWL algorithm during simulation are not critical for them.

Nevertheless, proper using of the windowing technique seems still to be essential for the
mixed A/D loops. If it is possible to predict the boundaries of the subsequent periods of
activity (assumed to be the time windows), the WR (or OSR) performed for those loops can
converge even in a single iteration (Example 2). For clocked systems, fixed time windows
that match the clock period are usually the best choice. This applies e.g., to the system
presented in Section 4.3, when treated with the WR technique.

Example 1.In Fig.5.8 a model of the frequency division-mode telemetrie receiver is shown.
Fourth order digitally controlled band-pass filter is used. Each section of the filter is provided
with an 8-bit DAC, which may be viewed here as a linear loop element (Fig.5.9). The control
part of DAC follows the fundamental formula: UDAC = X a&‘ &U, where i=0..7 and AU
represents the converter resolution proportional to reference Vr (see also Sec.4.3). The a,
parameters are set either to 0 or to 1 with respect to the control bits < after the prescribed
delay time. In this way the multiplying DAC is defined as a mixed-signal model. Its output
stage is assumed to be an inertial block with controlled gain equal did,, and time constant TDAC
Clearly, the digitally controlled 4-th order band-pass filter is of particular interest here for its
feedback structure. The time constants TDACand T, may be viewed to represent some parasitic
elements, usually not available directly at this level of abstraction. Thus, by putting TDAC= 0
and 73= 0 atransfer function for the single-section filter takes the form of

11 B QT — ) S - L N — <5742)

By comparison to the standard-form transfer function we obtain

g—d 1, q2_d ) tia—'klj

d~  TX2 « d,  T2k2

which make a low-pass filter of variable centre frequency ft>o, variable selectivity Q and
constant bandwidth A<u_3dB =k!T x.
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Fig. 5.8. Model offrequency division-mode telemetrie receiver

Fig. 5.9. structure ofsingle section band-pass filter

Apparently, the loop structure of Fig.5.9 represents an irreducible feedback system, and when
using the PW L approximation-based technique, due to (5.20) for either section obtains:

1>— 2, 1> — 1, for the integrators, (5.43a)
27-, 2Ty
_t'
I>_Si(1_eT)).*, for the amplifier, (5.43b)
I1=(1_Imc_@_eTAC for DAC. (5.43c)
t dfrx

The condition involved with DAC may be neglected, since didB < 1. The same holds for the
amplifier, if k < 1. Hence, t* < Min{T,, 27V), and for the given parameter set [Tu T2 T3 Kk,
d~*c] = [1.6ns, 1.6lis, 15ns, 1, 256] obtains: t* < 1.6jis. This result enables us to define a
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segment length limiter for the PWL approximation-based algorithm to assure its stable
operation.

Similar convergence conditions can be obtained for the PWL TR-based relaxation (see (5.32))

h- h
1N —r w2, 1> o1, for the integrators, (5.44a)
IT
in t— k, for the amplifier, (5.441)
1+A -
2T3
h.
1" — TDW, ~d~' fOrDAC (5.44c¢)
1+
2Tdac

Some of the simulation results are given in Fig.5.10. First, the centre frequency/« of band-
pass filter is adjusted to 100kHz, next it changes between 33kHz and 100kHz due to control
signal d (55H and FFH). The input stimulus has two components of 33kHz and 100kHz
frequency each with modulated amplitude of +1V. Adet signal is obtained from a simple
behavioural model o fthe amplitude detector.

To enhance the rate of convergence the windowing has been exploited with windows
matching the temporary period of the input stimulus. For the PWL accuracy of 50mV and WR
accuracy of IOmV the number of required iterations varies between 7 and 15 for different
windows. Using OSR reduces the number of iterations, but the total CPU simulation time is
increased by 10%. For the TR-based approach (as an alternative to the approximation-based)
almost identical results have been obtained.

Fig.5.10. PWL waveforms for frequency-division mode telemetrie receiver
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Some other improvement of the convergence speed might be expected with the successive
over-relaxation approach [0GR94 Sec.3.4, VARG63]. In this case

Xj+tl = (l-a))xJ+ a iJH (5.45)

where the relaxation factor <ue(l, 2), and x'+l = F (x '), which denotes the basic Gauss-
Seidel relaxation scheme.

The WR/OSR-PWL simulation of the standalone filter has been also compared to SPICE
estimates showing very close matching in waveforms (approx. 2%) with speed-up
approaching two orders of magnitude.

Example 2. A functional-level model of the digit to frequency (D/f) converter is depicted in
Fig.5.11. The feedback loop consists of the multiplying DAC, inverting integrator and voltage
comparator with hysteresis. The comparator (provided with the inertial block) delivers
alternatively a positive- or negative-value reference signal Ur to the DAC. Apart from the two
switching points (£Vth in DC characteristic) the comparator features zero gain, so the
convergence condition (5.20) is not applicable here. The model of DAC is similar to that of
Example 1.

In Fig.5.12 some of the waveforms obtained for the D /f converter are plotted. For constant
input the comparator delivers a square wave of stable frequency proportional to the input digital
word. Since the period of switching can change, there is no easy way to adjust an optimal size
of the time windows for the WR. For example, if the events at the input D07 are used to
define the window boundaries, the number of iterations for atime window equals the number
of signal changes (between -Ur and +Ur) at the comparator output within this window. In this
case for the first window, starting at f=0 and ending on the first change of D07, obtains 7
iterations (the last one is only to check for convergence). In the next window as many as 17
iterations occur.

Moreover, during the initial iterations the integrator tends to produce very large amplitudes at
its output, unless it is provided with a limiter. For example, in the first iteration of the first
window U1 falls linearly until the window end is reached (with no limiter). In the second
iteration, it falls only until the comparator threshold is crossed and UD changes to negative.



Next, Ul rises linearly as long as the window boundary is again reached, (i.e. partial
convergence is observed for each iteration [DEB87]).

Fortunately, the OSR performs much better in this case as its takes advantage of the partial
convergence. The initial window follows the first two events on D07, but once the comparator
switches at its output, a new event occurs and limits the window size for the following blocks. In
other words, the windows match the actual PWL segments. For the windows where UD remains
constant, the one-segment waveforms converge in only two iterations. Otherwise, when UD
changes between a positive and negative value, more iterations are required for that window, e.g.
three to five iterations for Ur = 2V, Vth = 0.5V, PWL accuracy of 50mV and relaxation
accuracy of IOmV. As a consequence, the CPU-time savings obtained with OSR are as much
as 30%. This result is mainly due to the partial convergence. That is, it comes out from
avoiding unnecessary iterations over the former PWL segments that already converged, as
opposed to the WR with windows comprising more segments.

Fig.5.12. PWL waveforms for D /f converter

6. SYNTHESIS OF COMPLEX ANALOGUE MODELS

In this chapter we perform a synthesis of complex PWL models relevantto higher order linear
blocks. These usually represent some analogue filters used in mixed A/D systems to be
designed. Nonlinearities, such as saturation or slew-rate can be incorporated as well. Unless
the architecture of such functional units is defined, one is free to represent them in a most
suitable way to assure effectiveness of the macrosimulation process used. Hence, making an
abstraction from the prospective architecture ofthe unit seems to be useful. As a consequence,
the discussed problem has a few aspects.

First, the higher order models are inclined to accumulate the PWL errors when modelled with
basic building blocks arranged in cascades or loop structures. In this case an attempt can be
made to reduce or to compensate for the resulting global errors, already mentioned in Section
5.3.

Second, loop structures may be avoided by developing second-order PWL building blocks at
the expense of more complicated formulas required for those blocks but with no need of
iterations. Clearly, no loop error accumulation occurs then.

Third, in some cases parallel configurations could be preferred over cascade configurations
that usually tend to accumulate the PWL errors. On the other hand, the flexibility in designing
of cascades (i.e. ordering of sections and gain assignment) opens some new area for
optimisation ofthe PWL models to be derived.

In some applications we would find the TR-based models to perform better than their
approximation-based counterpart. Particularly, the cascade structures and second-order
building blocks are meant in this context.

6.1 Error accumulation and model refinement

In order to investigate the effect of error accumulation consider a simple loop structure
composed of a single integrator, which output is fed back directly to the input via the PWL
approximator. Such amodel can be described as

= " (6.1)
« = uin- L(X)
where x denotes the smooth output, and the PWL input of the network. Observe that
without the approximator egns.(6.1) make a perfect inertial block of unity gain and time
constant equal T. In practice, the inertial building block defined in Chpt.2 would be preferred
over this loop structure. Here, however, it serves as an analytical example.
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Assume the input Mn- rt (r > 0), and jc(0)=0. Invoking eqns.(2.35-36) we observe propagation
of the resulting first PWL segment in the loop (i.e. during iterations). Its length is

f, = vy / r , and hence, this first segment ends at
8TPx
xii, =
1 2T 27 (6.22)
For the second iteration one obtains um = rt - 4pmj!t\ = (r - *» so if prix< r7/2
2 | STp
then t(2) = | 1174 > *{"* = t\, and the algorithm retains the former segment length t\.
2 Pmxr
Thus,
T-Pmx'
(r
IT rT
and next B> =417 (1 - IPmx, 2Pmxh (6.2¢)
vV rT rT
sothatforp ™ < rT!2 the segment length remains unchanged, i.e. t\k) = tx = and
[
X? = lim xj*> = - 4p»
Al ] p (6.3)
i+Jan
rT
On the other hand, the original value jc(/,) obtained from (6.1) without operator £(¢) is
*(/,) = r7-e r +r(/j-7) = rT m(e' T -1)+J 8TPmxr (6.4)

Table 6.1. Global error £j and maximum error £mx against approximation accuracy pm
and the involved correct value x (tt)forr=T= 1

Pmx* 10‘3 f,x10'3 X (ty) x10'3 £\x 10'3 W<10'3
5 200 19 0.55 4.9
10 283 37 14 9.6
20 400 70 3.7 18
50 633 164 11.8 43
80 800 249 20.8 65
100 J 894 303 26.9 78
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Now, define the global error for the first breakpoint coming at t\ as ej = jc" - x(tx). The

resulting values of £\ for different pmx are shown in Table 6.1. The parameters r and T are
normalised, i.e.r = T= 1.

As shown, those errors might be kept low with the reduced value of which in turn results

in reducing the corresponding segment length. On the other hand, the involved maximum

errors = Max jxlin{t) - x(t) |, which are more important, are less than the accuracy
<e[0r]

assumed. Apparently, the loop structure tends to reduce the amplitudes of PWL errors as
compared to the accuracy assumed, although some errors for breakpoints arise. However,
when needed, it is possible to compensate for this kind of error at the expense of some extra
calculations.

To discuss this, first consider a cascade structure of two integrators lo, |i depicted in Fig.6.1.
Assume the output ofthe driving integrator to be

(0 =+0(0)+ (“0'+~"r~) (6.5)

Now, we can calculate the exact response of li to x0(t) rather than to the PWL approximation
£[.*0(0], which in this case is overestimated (i.e. x0(t) <L[x0(0] fort<t\)

XX(t) = (0)+*0(0)5r + (6.6)

2771 6707,

Consequently, for /, = J 870pnt; / rB one obtains £,(*,) rather than *i(*i), which would be
the response to Z.[xo(/)]. To take advantage of this refinement £,(f) should match the

standard quadratic response x 1?(/) such as (6.5), i.e.

(6.7)
7, 27,
By letting jellf (tt) = x I(tl) an equivalent input slope is
r = “o,VI (6.8)
' 70 370
) 1l ft o )
Otherwise, we would have r = — + -2-1-, which is the slope of L[x$(t)} obtained from (6.5).
~o 270

Apparently, rg< r, so that the PWL overestimation of xo(t) is reduced. In fact, the obtained
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linear approximation [*0o(0) + rot] crosses Jio(t) at some tq <t\, splitting the PWL segment in
two parts, one overestimated and the other underestimated, unlike Z[jto(f)]. In this way, we
would find this technique to provide the PWL approximation, which is balanced better,
against the original waveform, than that of the standard operator L (). As a result, x X[f) fits
better to the original response (/) than Jti(/) as stated above.

Observe that before using eqns.(6.6-6.8) the parameters jco(O), m0, fo. To must be passed from
the integrator lo to li. By means of such a refinement one can compensate for the PWL errors
arising at breakpoints.

Consider again the loop structure defined by (6.1). Using the same input rt (r > 0), and
jc(0)=0, the first iteration yields

*e> - (G-Qa)

like in eqn.(6.2a) but w=rt- r?/(27), so that

») _or (ttf o r-it] m _ If (f)2

By letting jc{2) = one obtains the equivalent slope r%2) =r-(l —”). Next, for the

third iteration

rmt2 t
i]Y=rt— ------ =rt-r(l-—-—)—-, and
1T 37 27"
2k —)() (3) .,
f»> , M iL - ar*'* | " JLE L
i 2r 6T 2T
Again jcj3) =ij3) implies rfj3) = r m1- — + 2]. Apparently, if — <1 (p”™ < 9r77 8),
3T  (37) 3T
then
r- = lim <> = — (6.10)
1+A
3T
V» _ vY A APmx Kin
o~ » * o+ ('IUI.T ! !

orT

Using the formula (6.11) the compensated PWL breakpoint errors, defined as
£u = x*“ - x(t]), can be evaluated (see Table 6.2). As compared to the previous results,

summarised in Table 6.1, the errors £y are reduced here 5.5 times for pnx = 0.100 up to 27
times forpmx = 0.005. Apparently, the maximum errors enx are also reduced. Since E\ and E\,
reflect alinear componentin s(t), so fmx« £W —(fii - £ir)/2.

Moreover, observe that in this case the TR-based algorithm would perform in the same way,
since the basic PWL model of an integrator makes use of formulas common for both methods.
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Table 6.2. Compensated global error £ir and maximum error £mxagainst approximation
accuracy/>, and the involved correct value x(tl)

PmX* 103 f[x10'3 £ (fi)x10'3 £\rX10"3 W x10 '3
5 200 19 0.02 47
10 283 37 0.07 9.0
20 400 70 0.27 16.4
50 633 164 1.4 37.6
80 800 249 3.3 56.0
100 894 303 49 67.6

Based on the experience gained with an integrator it is possible to enhance the PWL
approximation procedure of Fig.2.6. However, a formula for computing the exact response
as well as the way of passing waveform parameters from input to output of the inertial

block need separate derivation.
To cope with this problem assume an inertial input waveform in the standard form
*0(0 =*0oe~"T +ro({~T0) + «o (6-12)

where s0 = jt#(0) - uO+ r0TO. The corresponding time response of an inertial block (of unity

gain, time constant T\ and without PWL approximator) is provided with two transient
components

1 (0=[1(0)- «0 +r,To+r.)-~ rk -"/r
1 (0=[1()- «0 *+r,(To +r.) *OrM r

(6.13)
I7i
+roU~(To +7|)] +«0
On the other hand, an equivalent standard response may be assumed as
*u (0 =[*,(0)-*0(0) +rierll«-"/r>+rle(t-T 1)+ x0(0) (6.14)

and xu (t1) = *i(?i), where t\ is found from (2.17) for p ~ =/>,,/] *i(0)-x 0(0) +r0c7i |,

where roecorresponds to PW L approximation of (6.12). Hence, one obtains
n <M+ T0 c~tiTt _ |
Tz - ©15

Clearly, eqgns. (6.14-6.15) are required to proceed x Ic(/) further.

Similar formulas can be derived for a quadratic input waveform, such as (6.5) that represents
the inertial block driven by an integrator. In this case



that enable to put *,(/) into the standard form of (6.14).

The enhanced PWL approximator relevant to the inertial building block is given in Fig.6.2.
As opposed to the procedure of Fig.2.6, here the input waveform must be recognised for
shape (quadratic or exponential), and the involved shape parameters must be passed to the
model. The actual segment length is evaluated based on ua and the equivalent r coming from
the driving block. Consequently, to compensate for PWL errors, the PWL breakpoints are
calculated either with eqns.(6.14-6.15) or (6.14), (6.17), and a new equivalent r is calculated
using (6.8) or (6.15). In practice, the input waveform can be identified based on the fan-in
table, available after the netlist is compiled.

identifyinputshape;
select_formula_x;  (* to compute x (r,7) *)
repeat
if*o- «o+ rT<> 0and |x0- uO+rT\>pnc
then {r, <-<I>(/w);
ifr,> Tnathen ri «—r"}
else
xk*— x {T\T)\ JD<—xk\
How—(« ot 'ti7’);
I»e-(IA-i+r.1);
K« k+ 1)\
o (e )i
compute_equivalent_r;
until rmx= 0

Fig. 6.2. Algorithm for enhanced PWL approximator

Using the enhanced approximator for the loop structures allows reducing the PWL global
breakpoint errors as well as the maximum errors. Some of the results obtained for the 2nd
order Bessel filter (already discussed in Section 5.3) are shown in Fig.6.3 (the same input
stimulus has been applied).

The compensation mechanism affects mainly the error component relevant to PWL
breakpoints, and the maximum error amplitudes are reduced by some (£j - eX)/2. However,
the required CPU simulation-time is approximately as much as twice of that with the standard
approximator (as compared to the results of Sec.5.3).

On the other hand, as opposed to integrators, the inertial blocks do not need this kind of error
compensation when processed with the TR-based PWL technique. It is because the TR (and
in particular the enhanced TR) provides self-compensation, as shown in Section 2.4 (see
Fig.2.12). In practice, when applied to cascades, the TR-based PWL technique and the
enhanced PWL approximation technique produce very similar results (except of overshoots in

Fig. 6.3. Reduced global WR-PWL errors corresponding to waveforms of
Fig.5.4 obtained with enhanced PWL approximator for pnr =50mV
(solid line) and p~ =20mV (dashed line).

some cases, shown in Sec.2.5), but the latter requires more computations. Because of it in the
following section we will take advantage of the TR-based PWL technique to keep the global
PWL error low, in particular for cascade structures.

6.2 Synthesis with basic building blocks

At the functional-level a linear analogue unit can be adequately defined by the transfer
function. Nonlinearities may be incorporated too, as shown in Chapter 3. For the purpose of
modelling with the PWL technique, some synthesis procedures relevant to RC active filters
could be used. A variety of approaches exist [BIA79], which account for such aspects as: a
number of required active elements, sensitivity to RC elements’ variations, flexibility of
tuning, power consumption etc. However, if an abstraction from the prospective architecture
ofthe unit can be made (as suggested earlier), most o f those design aspects might be omitted,
and in this case mainly the resulting model structure is of interest. On the other hand, different
synthesis issues arise. These are complexity of a model (i.e. of computations), PWL error
accumulation and need for iterations when feedback loops are required.

We start with a simple synthesis pertaining to the second order transfer functions. A quality
factor of Q > R (i.e. for complex poles) is assumed. For instance, the standard low-pass
function may be decomposed as follows

®0Q
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By virtue of the signal-flow graph theory, the latter result corresponds to the feedback loop

structure, already discussed in Section 5.3 (Fig.5.3). Similarly, for the high-pass transfer
functions one might obtain

1
THP(5) - (6.19)
(©n
I +-2--(1 +
Qs S
For completeness the band-pass filter is also considered
0, 1
,-B o+
Top(s) - . "0 on (6.20)
s+ +S—_ +0), (s~ +1)+1 1+ 1
a,, co0
N L,
<Y,

The respective structures composed of the basic building blocks are presented in Figs.6.4 -
6.5. The corresponding PWL models are provided with the approximators attached to the

output of each building block. Alternatively, those blocks can be discretised with respect to
the TR algorithm.

Fig. 6.5. Functional model of bi-quad band-pass filter
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The above decomposition may be regarded as a special case of the continued fraction
expansion that in general case results in multiple feedback structures [BIA87]. However,
neither the continued fraction expansion nor other techniques oriented towards multiple
feedback structures are recommended for complex models. Clearly, it is because o f the need
of iterations, which for a high-order transfer function would result in slow relaxation
convergence, and hence, very CPU-intensive simulation. In contrary to this, cascade- and
parallel structures could be taken into account [DAB99S].

For this purpose consider atransfer function of the form

H(S) = T— \mooomm fomeees i -, n>m (6.21)
b0 + bxs + ... + bn xs +S

If the poles of the transfer function are available, H(s) can be expanded into a sum of partial
fractions (single poles are assumed for simplicity)

= A, = ResH(s) (6.22)
MS-Si *=i,
Clearly, the components with real poles represent inertial blocks with the time constants equal
(-1/s,), excluding the poles equal zero that correspond to integrators. On the other hand, for the
pairs o f conjugate poles the second order structures, such as (6.18-6.20) are adequate.

Moreover, if the zeros of H(s) are known, a cascade connection (often used for practical
filters) consisting ofthe first- and second order blocks can be exploited

) . (< )
(s-si)(s-sj)...(s-s.)
Clearly, the conjugate zeros should be grouped into pairs as well, to match realistic building
blocks.

To make some comparison consider a simple example of the two-pole low-pass transfer
function with Q < 'A. In this case it can be represented with its time constants

H 2(S) = -----mememeeee- (6.24)
2W (I+sr,)(l+sr2)
Three PWL models will be investigated for (6.24): parallel structure, cascade structure
I/(I+s7Y) — I/(1+ sr2) and reversed cascade structure 1/(1+s72 —>|/(1+iTi), each provided
with the PWL approximator. For the parallel structure one obtains

B 4+ — A e (6.25)

H 2(s) = — —
2 T{-T 2 1+ s7¥% r2-r, 1+sT2

The PWL models’ performance is exemplified in Figs.6.6-6.10 for T\ = 2ms and T2 = 1ms
and the approximation accuracy o fpmx= 80mV.

In the lower plot of Fig.6.6 the waveforms Jc,, x2of the cascade (exact responses of the 1s-
and 2nd stage, respectively) against uin are shown. The PWL responses are not presented for
clarity of the diagram. The upper plot shows the PWL errors £i(/), E2(t) relevant to
jci(/), Je2(/), respectively. Apparently, E\ is zero-valued at breakpoints, and its amplitudes
are equal to pmx (with the exception of the “closing” segments that end att = 2ms and t =
10ms), whereas e2 exhibits the effect of temporal error accumulation, and it varies between
-130mV and +113mV.



98

Fig. 6.6. Exact responses of cascade stages against input waveform (lower
plot), and corresponding PW L errors forpm =80mV (upper plot)

Fig. 6.7. Exact responses of reversed cascade stages against input waveform
(lower plot), and relevant PWL errors forp® =80mV (upper plot)

The waveforms involved with the reversed cascade structure are shown in Fig.6.7.
Apparently, the amplitudes ofe2 are here less than those of the primary cascade, and its range
is ((110mV, +86mV). In fact, the second stage plays, in some sense, arole of a dumping filter
for £\. Clearly, the reversed structure is more effective because of a larger time constant in the
second stage (2ms). Observe also that the dumping works better for the fast changing portions

ofthe waveform.
The latter model can be enhanced further, when using stages of diversified gain. The

corresponding results for the reversed cascade of 2/(I+s*Ims) —» 0.5/(I+s-2ms) are shown in
Fig.6.8, where e2 varies between -107mV and +54mV. Similar results for the cascade of

5/(l+s-Ims) —»0.2/(l+s-2ms) are shown in Fig.6.9 (with£2e(-89mV, +28mV)). Since the
approximation accuracy here is the same (80mV), so are the amplitudes of e\. However, as
compared to the case of equal-gain stages, the errors ei are damped the stronger, the less the
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second-stage gain. For sufficiently small gain of the second stage (sufficiently large gain of
the fist stage, respectively) one could expect the errors not to accumulate (compare E\ and e2
in Fig.6.9). On the other hand, atrade-offexists. The arising large amplitudes at the first stage
output cause an increasing ofthe number of PWL segments. As a consequence, this approach
is equivalent to reducing o f A I s o here, the dumping is rather poor for the slowly changing

partof jc,.

Fig. 6.8. Exact responses of reversed cascade stages with diversified gains (*i = 2 and
ki = 0.5) against input waveform (lower plot), and corresponding PW L errors

forp,x =80mV (upper plot)

PWL errors forp~ =80mV (upper plot)
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The performance of the parallel model is depicted in Fig.6.10. As opposed to the cascade
structures, here the PWL errors relevant to parallel branches of the model are independent
from each other, and moreover, are likely to compensate when summing the branch signals.
As a consequence, the resulting PWL output errors are within (-68mV, +79mV). However,
the effect of error compensation is not a general rule for parallel models. In some cases error
accumulation can occur as well.

Since the error compensation is not guaranteed for the parallel structures, we conclude that the
properly arranged cascade models provided with decreasing stage-gains and increasing stage
time constants (through a cascade) seem to be more reliable than their parallel counterpart.
Clearly, this conclusion is not strict. After all, the error reduction may be obtained at the
expense of reduced segment sizes for any model discussed by using the enhanced accuracy
Pmxm

Fig. 6.10. Exact responses of parallel model branches Jt, ,x2 and output jc3

against input waveform (lower plot), and corresponding PWL errors for
Pmx=80mV (upper plot)

Different behaviour can be observed for the cascades when using the enhanced TR technique.
The relevant waveforms are shown in Figs. 6.11 and 6.12 and can be compared to Figs. 6.6
and 6.9, respectively. Here, the PWL errors at the first stage tend to accumulate temporarily as
opposed to the PWL approximation-based method. On the other hand, the TR-based response
is balanced better against the original waveform x, than thatofthe standard operator L(-). As
a consequence, the resulting error amplitudes at the output stage are usually less than those
obtained with the operator L(-). In Fig. 6.11 the error E\ at the front-end stage varies between
-120mV and +91mV, whereas e2is reduced to (-84mV, 77mV). Similarly, the PWL errors of
the reversed cascade with diversified gains (Fig. 6.12) are ct e (-167mV, 171mV) and e2 e
(-58mV, 80mV).

From the latter results we conclude that no manipulations on cascade structure are required to

keep the PWL errors at the cascade output low. The enhanced TR approach appears more
reliable than its approximation-based counterpart, as far as the error accumulation at a cascade

101

Fig. 6.11. Exact responses of cascade stages against input waveform (lower
plot), and corresponding PWL errors obtained with enhanced TR for

f0o=80mV (upper plot); Tx=2ms, T2= Ims and k\ = k2=1

Fig. 6.12. Exact responses of reversed cascade stages with diversified gains
(ITi = 1Ims, T2= 2ms and kx= 5, k2 = 0.2) against input waveform
(lower plot), and corresponding PWL errors obtained with enhanced
TR for s0=80mV (upper plot)

output is considered. However, it not the case of the front-end stage, for which the
approximation-based algorithm proceeds perfectly and no error accumulation occurs then. On
the other hand, the enhanced approximation-based PWL technique (derived in Sec. 6.1) that
reduces the effect of error accumulation is computationally much more intensive. As a
consequence, atradeoffis faced here. |fjust the output of the cascade is of interest, using the
enhanced TR technique seems to be the best choice.
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6.3 Second order building blocks

As mentioned above, to synthesise higher order models provided with pairs of conjugate poles
the second order structures are required. Although global feedback loops may be avoided, the
second order blocks of Q > /2 introduce local loops that when simulated give rise to iterations
as well. Clearly, it is of interest to develop some alternative models to simplify the simulation
process, so that no iterations would be necessary.

For this purpose consider a second order low-pass filter defined by the equations
Txi:, = uin —x2

tox2 + x2 = *, (6.26)

where T\ = I/(w 0Q), T2= Q/cogand x2is the output. Non-zero initial conditions are assumed:
*i(0), *2(0) and Ui, - M+ rt. Hence, the solution appears to be

m*1(0 = ( P\ cos + P2sincot)e St + r(t-Tx+T2) + u0

(6.27)
*2(0 = (aicos<y, +a2smcoxt)e~5 + r(t- Tx) + u0
where
al = x20) - hO + rTx
*,(0) *2(0)E «q$ - cog
+r
T2 &0 au coxcol
Pi = a\+ T2{coa2- Sax)
Pi = 2- T2(@>xtx+ Sa2) (6.28)
~ 1
O =
co = (onil -
4Q2

Although (6.27) is an explicit formula, it seems impossible to derive an approximation
algorithm patterned after the PWL approximator of Fig.2.8. It is because (6.27) gives rise to

transcendental equation when formulating the maximum condition for the corresponding
distance function A*.

Fortunately, the algorithm based on quadratic approximation given in Sec.2.3 is of use (see
eqgns. (2.9-2.11)). Thus, following this idea the formula for x2in (6.26) can be replaced by

dy 1 doy

y.() =JQ + t o+ (6.29)
dt 2 dt2 10

where for simplicity we puty =x2, and
dy
= a2cox-a x8 +r
dt 10
d
=4 = ax(52-tox)-2 a 2cosS
dt2

Moreover, the third order Lagrange restis
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A3
® (f3) = [3coxS(axcox+ a2S )-(a 2c0? + a x53)]--—, te (0,t) (6.30a)

Hence, to control the range t, o fthe quadratic approximation for.y, (6.30a) can be converted to

ta = 3 j (6.306)
VA3coxS (axoox+a 2S) - (a 200x + a6 3)\i

where e, is an estimated value of the maximum allowed truncation error. The performance
index relevant to the segment of length equal tais

= y(la/z')—y(o)+2A 2) (6.31)

Finally, if p(0, ta) > Pmx then the actual segment must be reduced due to the formula

t =t . rm* (632)
1 “ U (o,t.)

The algorithm of quadratic approximation applies in this case without any other modifications.

Clearly, the model defined by eqgns. (6.26) is equivalent to the transfer function TLp {s) given by
(6.18). The same approach may be used to derive the second order high-pass and band-pass
PWL building blocks.

Apparently, the involved formulas (6.27-6.30) are much more complicated than those used for
the first order building blocks. However, despite the large number of operations necessary for
second order PWL building blocks, the resulting CPU simulation times are fairly moderate for
them as compared to models using the simple first order blocks that have to iterate. As a
result, during simulation the second order blocks perform approximately by 20-50% faster
than their feedback loop based counterparts (with the number of iterations ranging between 8-
12). Clearly, since the loops are eliminated, the involved PWL error accumulation is avoided.

The TR-based second order PWL models are even more efficient. To see this, recall
eqns.(5.15), which correspond to (6.26). Here, the iteration index7 can be dropped

«hQhk )
luin(tk) + uin(h-\) ~ * 2* *2,%-11

w <6-33>

* ok =
2Q

After manipulations (6.33) can be rearranged to the explicit form of

4Q + 200hk - Q(coOhk)2 - 4co0hkQ 2
XX, = meeeeeneeee LA-l + Q Xilk 1
+ 2000hkQ2 + Q ~ hk )\[Uin{tk) + Uin(tk x)] (6.34a)
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4wOhk 4Q -2a)0hk -Q (co0hk)2
2A 1A+ n X 2,
. (6.34A)

+ 6tegil_[Uim(tk) + Uinitt_j}]

where Z) = 4Q + 2<y0/i* + Q(a>0hk)2.

As many as 30 elementary operations per step are required to calculate the response as
compared to some 60 in the previous case. However, also here one can hardly develop an
effective time-step control, such as that of the enhanced TR. Because of it the standard
formula (2.6b) will be adopted as follows

hk —inf | ~NL2E# [ji xjJ-1+* (6.35)

where the third derivatives can be found by differentiating (6.26) that yields

@) _ ALrLr o+ (A2 ~ T 2Uk_I
" (TJ2)2
(6.36)
) tfd 1-r, + TRRT2 - r,)*,. %, + (T )2« A - T?T2uk_x
x I, k-\ ~ .
(Tj2y

and uk_t = «,,(**_,), Ti = 1/(0)oQ), T2= Q/co0.

The latter model will be preferred over the quadratic approximation-based model defined by
formulas (6.27) - (6.32), since it is computationally more efficient, although the time-steps hk
appear to be shorter than the involved PWL segments, governed by eqns.(6.27-6.32). The
CPU time required is by 20-30% shorter in this case.

To summarise, consider a 6thorder Chebyshev low-pass filter arranged in cascade. The cut-off
frequency of 30kHz is assumed and the overall gain equal unity. The characteristic
frequencies and quality factors are as follows [BURS89]: axu= 190.710 rd/s, Q\ = 6.513, <02
= 144.8T03rd/s, 02 = 1.810, «03 = 74.7-10 rd/s, Q3 = 0.684. Moreover, to reduce error
accumulation between filter sections their gains are assumed to be: k\ = 5, Kb6= 1, A3= 1/5.

The high-g section (front-end) appears very sensitive to Pmx (so) when modelled as a loop
with first order building blocks (even with error compensation). In Fig.6.13 the waveforms
relevant to the high-g section are depicted for p,m = IOOmV. Apparently, the results obtained
by the second-order building block are entirely under control as opposed to the feedback-loop
model, for which the PWL approximators may strongly influence the self-oscillatory
behaviour. Very similar results are obtained with the TR approach. Fortunately, the
discrepancy in waveforms observed could be substantially reduced when using the accuracy
of50mV or less, both for the approximation-based and the TR-based technique. In this case all
those filter models, including that of the second order building blocks, yield almost same
results. In Fig.6.14 the response of the complete filter is given. Relatively small PWL errors
(< 70mV) accumulate at the cascade output.
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7. IMPLEMENTATION ISSUES IN VHDL

In this chapter, a description of the implementation ofthe PWL approach in VHDL is given
[ASH90, LIP91]. In fact, the PWL models may be viewed as discrete objects, and in this
sense they are well suited to be implemented in a discrete environment. Besides, the explicit
formulas that the PWL models are based on make their behavioural representation feasible
[DAB98D, DAB98N, DAB99], As a consequence, the standard VHDL provided with some
mathematical and PWL function-packages proved to be sufficient for this purpose. In
particular, one can benefit from the digital nature of VHDL, when modelling mixed-signal
A/D networks. This kind of modelling can be supported at the expense of additional signal
conversions PW L-to-logic and logic-to-PWL, as mentioned in Chapter 4. Apparently, prior to
those efforts, some work has already been done, however, in most cases only standard
algorithms have been implemented in VHDL [HAR91].

7.1 Concept of VHDL PWL model

Since the PWL basic building blocks are at the bottom of the hierarchy in the functional-level
modelling, it is useful to describe them behaviourally. On the other hand, complex models
composed of blocks defined behaviourally might be described as structural models. For
example; an inertial block might be declared as shown in Fig.7.1.

entity [Inertial_Block is

generic (

Pmx, X0 :real; - voltage
TimeConst :real; - time
Gain :real
)
port (
R, 00 in real; — rate,voltage
Tend cin time;
Rout, X1 cinout real; -- rate,voltage
TendOut cinout time

end Inertial_Block;

Fig. 7.1. Inertial block declared as VHDL entity module

The generic constants define parameters of an inertial block, whereas the entries encountered
in the port list provide an interface for the entity module, and as required in VHDL, are all of
class signal. One could expect a PWL waveform to be represented adequately as a collection
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of pairs (tk, Xk), like a logic signal i.e., by a single VHDL signal declared. Because of the
PWL algorithm, the breakpoint (tk+i, **+i) would be required in advance, i.e. when the actual
simulation time equals tk. Unfortunately, a VHDL simulator is not capable of identifying the
next point (4+i, Xk+i) unless the simulation time is advanced to tk+l- Also the time instants /*,
/*+i cannot be accessed directly. To overcome this drawback, two artificial signals more are
introduced that provide the VHDL model (at tk with the actual PWL segment rate r and the
time instant tk+i o f the next breakpoint.

The signal names used in the model declaration correspond to notation exploited in previous
chapters. Tend and TendOut denote the following PWL time breakpoints (end of segment) at
the input and output, respectively.

The implementation part of the entity inertiai_Biock is depicted in Fig.7.2. It is a
behavioural model arranged as an architecture body including a VHDL process. The process
is activated initially during the initialisation phase of simulation (with initiai=true). After
executing all the statements, it is suspended. When an event occurs on any of the signals from
its sensitivity list (i.e. the value of the signal changes), the process is resumed, and execution
repeats from the beginning (with Initial=false). The PWL input waveform is identified by
r (representing the slope) and Tend (representing the end of segment). |f the resulting output
segment is shorter than the input one then the additional signal selfstrobe is used to resume
the process for the given input segment.

architecture behaviour of Inertial_Block is
signal SelfStrobe :boolean;
begin
process (R, Tend,SelfStrobe)
— variable declarations(...)
begin
if Initial then — model initialisation
Initial :“false;
-9
else
R1 := R;
Tmx := time_to_real(Tend);
TO := time_to_real (NOW);
Start := false
if SelfStrobe"Stable then
Xactual := X0; Uactual := 00;
else
Xactual := XI; Uactual := 01;
end if
end if;
— calculation of time step T1 (...);
— calculation of Xactual,Uactual (...);

Tstep := real_to_time(T1);
X1 <= Xactual after Tstep; — update signals
Ul <= Uactual after Tstep; -- for next breakpoint

Rout <= (Xactual-Xlast)/TI;
TendOut <= (NOW + Tstep) after Tstep;
if (Tmx > TO+T1) then — (out segm)<(in segm)
SelfStrobe <= n o t(SelfStrobe) after Tstep;
end if;
end process;
end behaviour;

Fig. 7.2. Architecture body of inertia! block model arranged as VHD L process
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To assure clarity of the architecture body a few fragments of the VHDL code have been
omitted. Nevertheless, some distinctive features relevant to this implementation can be
observed. Firstly, the actual values o f signals (transactions) are assigned to variables to enable
further calculations (e.g. Ri:=R). Special functions time_to_real and reai_to time are
used to obtain Tmx,TO and Tstep respectively, since VHDL is a strongly-typed language
[IEE93], and operations on variables of different type are not allowed. To check whether the
process has been activated with the input segment or self-strobed, the attribute 'stable of
Selfstrobe is used. The signals relevant to the output are updated concurrently.

The other building blocks might be implemented in a similar way. By defining them as
entities one can easily decompose a complex model, and assure adequate communication
between the connected components. In particular, the connected components are executed
concurrently when activated with the same signal (because o f processes included).

7.2 Structurai description

When the entity is used in a design, its generic constants must be specified and the signals
connected to module ports. This procedure is referred to as component instantiation and must
be preceded by component declaration. In this case, the declared component can be thought
as a template defining a virtual design entity, to be instantiated later within the architecture
body. An example of a component declaration referred to the inertiai Biock presented
above is given in Fig.7.3.

component Inertial_Block

generic (

Pmx , X0 creal; — voltage
TimeConst :real; — time
Gain creal
)
(
R, UO cin real; — rate,voltage
Tend cin time;
Rout, X1 cinout real; — rate,voltage
TendOut inout time
)i

end component;

Fig. 7.3. Inertial block declared as VHDL design component

Now, assume the component inertial_Block might be used to model a simple two-stage
amplifier with a front-end gain equal 10 and dominant pole 1MHz, and the output stage gain
equal 2 with dominant pole 5MHz. In this case, the respective model should be provided with
some virtual inputs and outputs corresponding directly to the signals declared in the port list
in Fig.7.3. Such amodel can be performed as shown in Figs.7.4 and 7.5.

In Fig.7.5 the amplifier is declared as an entity two_stage_ampiifier defining external
ports. The architecture body ofthe model is of structural type. It comprises a declaration of
internal signals (ri,xi,ti) and of the component inertial_Block , which is next
instantiated to arrange the amplifier stages. The latter are labeled with identifiers: Front_end
and output_stage. In the both instances generic- and port map specifications are given,
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which pertain to model parameters (pmx, gain, time constant, initial condition) and structure
connections (provided by signals), respectively. Nanoseconds are assumed as simulation time

units.

Rin D R1 Rout”
Uout

Uin X1 Output =20

........... » Front end b stap o

Tin T1 9 _.Tout. >

----------- w e W

Fig. 7.4. Signal flow between components of two-stage amplifier model

entity Two_stage_araplifier is

port (Rin,Uin cin real; - [V/ns].[V]
TendlIn cin time; - [ns]
Rout,Uout inout real; -- [V/ns], V]
TendOut dinout time); - [ns]

end two_stage_amplifier;

architecture block_structure of Two_stage_amplifier is
component Inertial_Block

generic (me,XO creal; - [V]
TimeConst :real; -  [ns]
Gain creal
)
port (R,UO in real; -- [v/ns],[V]
Tend in time; - [ns]
Rout, X1 tinout real; - [Vv/ns],[V]
TendOut linout time - [ns]
)
end component;
signal R1,X1 :real; — internal signals [V/ns],
signal T1 ttime; - [ns]
begin

Front_end: |Inertial_Block

generic map (Pmx=>0.05, TimeConst=>159,
gain=>10, X0=>0);

port map (R=>Rin, UO=>Uin, Tend=>Tendln,
Rout=>RIl, X1=>X1, TendOut=>TIl);

Output_stage: Inertial_Block

generic map (Pmx=>0.05, TimeConst->32,
gain=>2, X0=>0);

port map (R=>R1, UO=>X1, Tend=>TI,
Rout=>Rout, XI=>Uout, TendOut=>TendOut);

end block structure;

Fig. 7.5. VHDL model of two-stage amplifier composed of inertial blocks
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7.3 Other implementation issues

In this section we address the VHDL implementation of analogue feedback loops and
interfacing between PWL and logic models. Basically, the involved modelling problems have
already been discussed in terms of the general PWL approach. So here, we concentrate only
on the implementation issues specific to VHDL.

First, invoke the bi-quad filter of Fig.5.3, which represents a typical tight feedback loop
structure. In VHDL such a model might be thought as an entity using three components:
integrator including a subtractor, inertial block and control block, all arranged as processes
(Fig.7.6). The Control_block process is responsible for performing iterations that, in fact, are
not supported by a VHDL simulator. Because of it the model must be somewhat “tricky”.
Since the simulation time could not be stopped during iterations, the so-called delta’s
generation is used. It means that after each iteration the simulation time is advanced
automatically by delta-time (increment, which depends on a resolution declared in a
simulator). As a consequence, the resulting total time increment for a well-posed model, with
alimited number of iterations, can be neglected. In this way the PWL segment obtained after
the iterations are brought to convergence is correct.

Rin Integrator Rl Inertial R2
. block
Jn____~  process JERNES 12
process
1i
Act Control
¢ block
*e
process

Fig. 7.6. Communication between three processes constituting model o f bi-quad filter

Clearly, the simulation algorithm must conform to rules of the VHDL simulator. Using the
one-segment relaxation scheme (OSR) seems to be indispensable here, since the VHDL
simulator is only capable of processing the event next to the actual simulation time. As
explained before, in OSR each iterative cycle proceeds for a single PWL segment, regarded in
VHDL as an event. In contrary to this, in WR a multi-segment waveform would be
represented by a sequence of upcoming events that cannot be processed jointly by the VHDL
simulator with respect to the WR rule.

In Fig.7.7 an architecture body ofthe Controi_biock, arranged as a process is shown. The
process is sensitive to the signals supplied by the inertial biock, and when activated it
checks an actual PWL segment for convergence. Unless the assumed accuracy is reached, the
Control_block activates the process of the integrator component and forces the next
iteration (signal Act). Finally, when the end of iterations is detected, it yields correct signals
relevant to the filter output, and updates the involved internal signals. When the simulation
time advances to (Now+Tstep), the signal Act activates the loop (Integrator process) again, so
the self-strobing mechanism (shown in Fig.7.2) may be omitted.

architecture behaviour of Control_block is
begin
process(R 2,T2)
— variables® declaration (...)
begin
if Initial then
— Initialization of the variables (...)

else

Difference := abs((X2actual - Xlast)/X2v);
Xlast = X2actual;

it (Delta > Difference) then

X2 <= X2actual after Tstep;
T2 <= T2actual after Tstep;
X1 <= Xlactual after Tstep;
T1 <= Tlactual after Tstep;
Act <= n ot (Act) after Tstep;
else

X2 <= X2actual;

T2 <= T2actual;

X1 <= Xlactual;

T1 <= Tlactual;

Act <= no t (Act);

end if;

end if;
end process;
end behaviour;

Fig. 7.7. Architecture body ofcontrol block arranged as VHD L process

Next, consider the problem of interfacing between the PWL- and the logic domain. The
principles of the relevant conversions have been presented in Section 4.2. Following them the
VHDL models might be developed as shown below. The Boolean logic is assumed to avoid
ambiguity having its origin in unknown logic states, when converting to the PWL domain.
Moreover, some unknown states that might be generated by a PW L-to-logic converter during
the rising- or falling edge of the signal should be avoided as well. Apparently, an
unnecessarily produced unknown state tends to spread through the digital part of A/D system
and may appear at the analogue input again. Detailed analysis of such a model is rather
difficult.

Instead, a trade-offis recommended. Converters that model inertial delay, rising/falling edges,
and provided with two logic levels, seem to be a reasonable solution. From electrical point of
view we address here mainly MOS circuits, for which electrical loading (bi-directional
coupling) is a second order effect. On the other hand, the accuracy of the functional-level
models is usually limited by assumption, and hence too many details should not be expected.

In Fig.7.8 a logic-to-PWL virtual converter is presented. Once a logic event appears at its
input, the conversion begins. If the actual PWL segment rises or falls (Ractuai /= o), the
output waveform is updated for the actual time instant now. Then, the time step delta is
calculated to locate the next PWL breakpoint at viow or vhigh. Finally, all the output signals
are updated. However, the last value of TendOut cannot be updated, since the simulation time
has moved forward. Fortunately, the breakpoint at to precedes the faulty value of TendOut
and overrides it, when applied to the input of any analogue block. For the same reason the
generic parameter dt should be large enough to avoid discontinuities in the PWL waveform.
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entity Logic_to_PWL is
generic (slope_neg,sXope_pos :real;

Vliow,Vhigh creal;
dt time
)s
port (Logic_in :in std_logic;
Rout,Uout cinout real; -
TendOut cinout time

)
end Logic_to_PWL;

architecture behaviour of Logic_to_PWL is

variable delta,Unext,Ractual treal;
variab le Slope,Tact,TO creal;
variable Tstep,Tactual time;
begin
process (Logic_in)
begin

if Initial then

- rate
— voltage

rate, voltage

— voltage,rate
-- rate,time

— initialisation of variables and signals (...);

else

Tactual := TendOut;
Uactual := Uout;
Ractual := Rout;
it (logic_in = "1%) then
Unext := Vhigh;
Slope := Slope_pos;
else Unext := Vlow;
Slope := Slope_neg
end if;
if (Ractual /= 0)) then — update Uactual for TO
Tact := timetoreal(Tactual);
TO := time_to_real(NOW);
Uactual := Unext + Ractual*(TO-Tact)
end if;
delta := (Unext - Uactual)/Slope;
Tstep := real_to_time(delta);
Tstepl := Tstep + dt;

Uout <= Uactual, Unext after Ts
Rout <= Slope, 0 after Tstep;

tep;

TendOut <= (NOW+Tstep), (NOW+Tstepl) after Tstep;

end if;
end process;
end behaviour;

Fig. 7.8. VHDL model of logic-to-PWL converter

When instantiated as a VHDL component, the model should reflect the rise- and fall delay
time of the driving logic model via its generic parameters. Following the basic definition for

the rise delay time one obtains

and for the fall delay AtHL = — —

(7.1)

(7.2)
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Based on the waveforms shown in Fig.7.9, observe how the converter works. When the logic
event occurs at ty, the PWL breakpoint at this time instant is not defined yet, so it is added to
the waveform using the actual value of uout, since Ractuai=o at to- Unlike this, the value
used for the breakpoint to be added at U requires updating (Ractuai/=0). The value of unext

that has been projected at t3 is increased by (Ractual* (TO-Tact)), where to = U, Tact = t$
and Ractual is the segment rate at tj. Apparently, ts should be replaced by U, but the

simulator does not allow this.

Note that the converter is capable of damping all short logic pulses applied to its input.

Fig. 7.9. Inertial delay performed in logic-to-PWL conversion

As mentioned in Section 4.2, the PWL-to-logic converter is simpler. It might be implemented
as a VHDL entity including a process, too (Fig.7.11). In this case, the PWL signals drive the
logic output. The process used is sensitive to the input segment rate, and it proceeds when the
PWL waveform can be expected to cross the logic threshold, as shown in Fig.7.10. After
computing the amplitude of the end point, the relevant segment is checked for crossing the
threshold V., Next, when applicable the respective delay delta is calculated, and a
transaction on the logic output signal is scheduled.

Fig. 7.10. Logic transactions scheduled for In, ta, to during PWL to logic conversion

For the waveform shown in Fig.7.10 the first two segments are not capable of projecting a
transaction at logic output. The process finds the segment starting at t\ to cross the logic
threshold. Hence, the first logic transaction is scheduled to occur at t,\.



entity PWL_to_logic is

generic (Vth creal); -- voltage
port (Rin, Uin in real; — rate, voltage
TendlIn cin time
Logic_out cout std_logic;

)
end PWL_to_logic;

architecture behaviour of PWL_to logic is

variable delta, TO, Unext creal; — time, voltage
variab le Ractual ,Uactual creal; — rate, voltage
variable Tstep time;
variable Convert :boolean;
variable Logic_next :std_logic;
begin
process (Rin)
begin
Convert := false;

if Initial then
-- initialisation of variables and signals (...);
else
Ractual :
Uactual :=
Tactual := time_to_real(TendlIn) ;
TO := time_to_real (NOW);
if ((Uactual < Vth) and (Ractual > 0)) then
Unext := Uactual + Ractual*(Tactual - TO);
if Unext > Vth then
Logic_next := "17;
Convert := true;
end if;
end if;
if ((Uactual > Vth) and (Ractual < 0)) then
Unext := Uactual + Ractual*(Tactual - TO);
if Vth > Unext then
Logic_next := "0
Convert := true;
end if;
end if;
if Convert then
delta := (Vth - Uactual)/Ractual;
Tstep := real_to_time(delta);
Logic_out <= Logic_next after Tstep;
end if;
end if;
end process;
end behaviour;

Fig. 7.11. VHDL model of PWL-to logic converter
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7.4 Simulation examples

To be compiled successfully, the model units need support by packages providing all the
required predefined data types, subprograms, functions, etc. These are in particular the
analogue package analogpg, defining analogue operations, and the PW.L-approximation
package pwl_appr. Both are put into the work library. Besides, the standard library called std
with two packages standard and textio, and the library ieee are needed.

As a consequence, a typical unit described in this chapter, allowing logic and/or PWL
operations might be declared completely using a scheme depicted in Fig.7.12. The clause use
provides the visibility of the items’ names declared inside packages, whereas the clause
lib rary - the needed visibility of the name ieee. The libraries std and work are visible by
default.

library 1EEE;

use IEEE.std_logic_1164.a11;
use std.textio.all;

use std.standard.ali;

use work.analogpg.aii;

use work,pwl_appr.ii;

entity name is
generic (...);

port (...);
end Name;

Fig. 7.12. Complete declaration scheme of VHDL unit supporting
PWL/logic mixed-mode modelling

A complex structure might be partitioned using entities, which are referenced and instantiated
within a higher-level entity. Basically, the lower-level entities describe behaviour (of inertial
block, integrator, logic gates etc.), whereas the higher-level entities describe structure. The
entity used as an upper-level module with architecture composed of lower-level modules
declared as its sub-components have been exploited in the examples presented below.

The overall structure of such a model is shown in Fig.7.13. As abasic VHDL implementation
it proved to be sufficient, although a more sophisticated configuration might be used as well.
It can be simplified further when putting all the lower-level entities into a library package.

Below we give two simulation examples obtained with the V-System simulator [VSY94]. In
both cases mixed-signal A/D networks are represented to emphasise the flexibility of VHDL.

Example 1. In Fig.7.14 a block diagram of the successive approximation A/D converter is
shown [DAB98D], It consists of three units: the voltage comparator, the successive
approximation register (SAR) and the D/A converter. Eight-bit version of this model has been
implemented. The comparator model is based on two-stage cascade of inertial blocks. This
structure is capable to mimic adequately the comparator timing specifications including the
influence of initial polarisation and overdrive at its input (as discussed in Section 3.1). The
D/A converter makes also use of the inertial block at the output. Its control part follows the
fundamental formula Uou = S 2' arAU, where i = 0..7 and AU represents the resolution (here
16mV). The a, parameters are set either to 0 or to 1 with respect to the digital input of this



full description of lower-level entities

C -2 );

declaration of upper-level entity
()
entity UpPpper is
generic (...):
port {...);
end upper;

-- referencing library packeges

architecture Structure of upper is

(o=m); — variables and internal signals declaration
sub-components®™ declaration referred to lower-level entities
component module 1

(... ); — generic and port lists
end comoponent;

— declarations of remaining components

begin
MI - module_1
(mm); — generic and port map
M2 - module_2
( - > — generic and port map

— instantiation of remaining components

end Structure;

Fig. 7.13. Overall structure of VHDL models used for simulation examples

Fig. 7.14. Functional-level block diagram o f successive approximation A/D converter

unit. Since this operation is physically involved with switching of signals inside the converter,
any change of the a, coefficients is controlled by their own drivers, which are modelled as
digital objects with a prescribed inertial delay. In this way the D/A unit is defined as a mixed-
signal entity. On the other hand, the SAR consists exclusively of logic components, and its
behaviour is defined at RT-level of abstraction.
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Besides, the comparator- and the D/A unit are provided with the PWL-to-logic and logic-to-
PWL virtual converters, accordingly, to assure interfacing between the std logic- and the
PWL domain. The complete model is a nested entity structure, which comprises 430 lines of
VHDL code, excluding the packages analogpg and pwl_appr.

*V/-System - IWuvh]

Fig. 7.15. Waveforms SAR A/D converter obtained with V-System

Some of the timing waveforms obtained for the A/D converter model are shown in Fig.7.15.
Constant input signal Ux is assumed. The converter is reset when Start = 0. Then the
successive approximation proceeds following the active signal Clock.

The signal names on the left are given in the order corresponding to the waveforms plotted.
The simulation process depends heavily on the clock signal, which when inactive simply
breaks the existing feedback loop. As discussed in Chapter 5, no iterations are required in that
case.

Example 2. This example invokes the half-flash A/D converter presented in detail in Section
4.3. Like in Example 1, the VHDL model of this converter constitutes a nested entity
structure. The top-level entity Half flash consists of eight components representing the
functional units of the converter (Fig.4.7): Track_hold, Control_unit, Differential
amplifier, Analog_multiplexer, DA_converter, AD_Tflash, Register_1 and
Tri state register. The required virtual converters providing interface between the PWL-
and the std_logic domain are their sub-components, like the inertial_block. The VHDL
model of Half flash includes 1040 lines of code without the packages analogpg and
pwl_appr.

Samples of the waveforms obtained with the V-System simulator are given in Figs. 7.16 and
7.17. The names of PWL signals Ul, U2, U3, U4, depicted on the left, correspond to the outputs
of track-hold, D/A converter, differential amplifier and multiplexer, respectively. The input
PWL stimulus is denoted as bl/xpwl.
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Fig. 7.16. Waveforms of half-flash A/D converter obtained with V-System

p*V System ¢ (Wovftd
Library B-wa Bot Qpwn» a«ip

-lal «l;

BREAK | STEP) OYER|
flte m Curs.0, ' 8 Sl
['0 lcir *i
O /rd =a
0 IBdyso . n
0O J«* * > U ..L 'n _I |
] Iwrh « 0 n - n
D /W *0 - ri, —  Jn. ~_ Tn
O /bl/xpMI * 0 '
{3 /m - s.81937

Fig. 7.17. Waveforms of half-flash A/D converter obtained with V-System

As compared to the prototype PW L simulator, presented in Chapter 4, the V-System performs
by 30% slower. In the main context, however, it does not seem to play the VHDL
implementation down. In fact, the VHDL implementation may be viewed as an effort of
putting the PW L macrosimulation technique into a broader perspective.

8. SUMMARY

A macrosimulation technique for the modelling of analogue networks and mixed-signal A/D
systems at the functional level has been presented. MO S circuits have been addressed mainly.
Their component units are assumed to be unidirectional, however, capacitive loading effects
are allowed. Basic nonlinearities may be incorporated as well. The signals of analogue units
are represented as piecewise linear waveforms and when applied to the models they closely
approximate the real timing behaviour. Computation of the PWL time responses has been
formulated as an approximation task, which may be solved efficiently with no need of
iterations that all standard approximation algorithms are based on. As an alternative approach
the trapezoidal rule provided with the enhanced step control mechanism is introduced. It
appears particularly useful when applied to cascade structures of analogue blocks.

Some o fthe macromodels have been implemented within a prototype event-driven functional-
level simulator, where the subsequent PWL breakpoints play a role of simulation events. The
obtained PWL waveforms of commonly used analogue units were shown to closely match the
respective SPICE estimates with a simulation speed-up of two to three orders of magnitude.
However, as mentioned earlier, no claim is made regarding the PWL models suitability to
perfectly mimic the real circuit behaviour for all situations.

Some drawbacks arising for analogue feedback loops and cascade structures are evident. In
this case the PWL approximation errors tend to accumulate temporarily, but they can be
reduced in a few ways. First, the enhanced PW L approximator allows compensating for those
errors to some extent at the expense of extra computations. Second, the analogue loops may
be avoided if a designer is not interested in having insight into the loop. For example,
complex analogue filters can be synthesised using cascade or parallel structures composed of
second and/or first order building blocks. The ordering of sections in a cascade due to their
filtering properties, and proper gain assignment influence substantially the resulting global
PWL errors as well. In case of cascade structures, however, the trapezoidal rule-based models
prove to perform better than their approximation-based counterpart.

On the other hand, when dealing with mixed A/D networks, a mixed mode simulation
technique is preferred. For digital units usually behavioural logic models are used. As a
consequence, these models require logic-to-PWL and PWL-to-logic signal converters. The
possible ambiguity having its origin in unknown logical states may be avoided by means of
relatively simple converters’ models. In this way, the fully unified PWL treatment ofthe A/D
network, introduced in [RUA91], is no longer applied here. Nevertheless, a distinctive feature
thatthe PWL and logic models have in common still remains. In fact, all those models may be
viewed as discrete objects, so that their implementation in a discrete HDL environment is
feasible.
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The VHDL implementation was expected to put the PWL approach into a broader
perspective. Several models have been successfully developed in VHDL as discrete objects.
Explicit formulas available for PWL timing enable defining the basic VHDL entities as
behavioural models, for which the PWL breakpoints are referred to as simulation events. The
models are supported by extra analogue and PWL approximation packages. The procedures
and functions used may be viewed as a kind of behavioural decomposition, whereas the
VHDL entities correspond to structural decomposition in this modelling. Besides, one can
benefit from the digital nature of VHDL when modelling mixed-signal A/D systems.
Although the new extension to VHDL, the VHDL-AMS [BER95, VAC97], oriented towards
analogue- and mixed systems seemed to be better suited to PWL simulation, it has not been
used because oflack of AM S tools during the course ofpreparing this work.

Since the presented macrosimulation technique saves the CPU time, it is also well suited to
work within iterative processes. This is of particular interest, when dealing with non-clocked
systems featuring global feedback loops. In this case the waveform relaxation has been shown
to suit well to the PWL macrosimulation. Because local couplings are not used in the PWL
modelling, only global feedback loops are responsible for the occurrence of iterations. Despite
the slow convergence ofthe WR in some cases, the CPU simulation time remains moderate,
since the PWL algorithm is very time effective. However, for too large segment length it can
suffer from non-convergence or instability. The derived convergence conditions enable to
evaluate the maximum stable segment length for linear analogue feedback loops. For other
feedback structures direct segment length reduction is useful if too many iterations occur. The
properly used windowing technique is shown to be essential for the WR process since the
accumulation of WR error may be limited in time. In some situations one-segment relaxation
(OSR) appears to be more efficient than WR. In case ofthe switching (or clocked) loops the
number of required iterations may be substantially reduced, and even a single iteration is
possible. Moreover, as compared to SPICE, the speed-up obtained for analogue loops with the
WR-PWL simulation is up to one hundred.

Apparently, a variety of issues relevant to the PWL approach to macrosimulation of analogue
and mixed A/D systems have been addressed in this monograph. The presented results
validate this method over a wide range of applications. In this context the PWL approach
proves to be efficient. Finally, also other applications ofthe PWL technique supported by the
waveform relaxation begin to emerge. These are for example regular structures such as RC-
trees [KON95, DABOO] used for interconnect timing verification of VHDL designs, or
cellular neural networks [ROS95], In both cases the respective models might be decomposed
into a set of inertial blocks, and analysed with explicit formulas relevant to the PWL
techniques.
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Piecewise Linear Approach to Functional-level

Macrosimulation of Analogue & Mixed A/D Systems

Abstract

The monograph deals with an analogue macromodelling technique oriented towards
functional-level simulation of both analogue and mixed analogue-digital networks/systems.
Based on a briefoverview of the actual simulation, the relation of the developed approach to
the existing modelling and simulation techniques is presented. The signals are assumed to be
piecewise linear (PWL) waveforms. A class of nonlinear (PWL) inertial building blocks is
introduced for modelling. The proposed macromodels are accurate in their timing behaviour
and computationally efficient, since an explicit algorithm to obtain the waveforms is used
based on a PWL approximation of original smooth time responses. Alternatively, an enhanced
trapezoidal rule is introduced. Practical macromodels of particular functional analogue units,
such as an amplifier or a voltage comparator, are derived in detail and their performances are
compared with SPICE estimates. Also the PWL approximation technique is compared with
the enhanced trapezoidal rule.

A prototype event-driven, selective-trace simulator is used to verify the PWL approach by
macrosimulation examples of practical A/D systems. For this purpose a concept of the PWL
event is introduced. A virtual interface between the PWL- and logic domain is defined to
support this kind of simulation. Digital units are modelled mainly as logic behavioural blocks.

To overcome the problems with feedback loops the PWL technique is supported by the
waveform relaxation (WR). A PWL-WR algorithm is formulated and implemented as a
prototype tool. Several examples of practical networks/ systems including feedback loops are
considered. Practical convergence and stability conditions relevant to the linear case are
derived as well. Besides, the feedback loop models and cascade models are shown to
accumulate the PWL errors. To reduce this effect several methods are proposed, such as PWL
model refinement, second-order building blocks (to avoid local loops) or tuned cascade
structures. The latter are particularly well suited to synthesis of higher order analogue blocks,
such as filters. In some of those cases the required computational overhead is increased. For
cascade structures the trapezoidal rule-based PWL technique is shown to perform better than
its approximation-based counterpart.

An implementation of the PWL macrosimulation technique in the discrete VHDL
environment is presented, too. The basic building blocks are defined to be VHDL entities
provided with a behavioural body due to the explicit formulas available to proceed these
blocks. Analogue VHDL packages are used. For complex analogue models a structural
approach is used. The digital nature of VHDL facilitates the implementation of mixed A/D
systems at the expense of the interface added to provide a link between the PWL- and
standard-logic domain. Practical examples verified with aVHDL simulator are included.



Zastosowanie techniki odcinkowo-iinowej do makrosymulacji
systemoOw analogowych i analogowo-cyfrowych

na poziomie funkcjonalnym

Streszczenie

Monografia poswiecona jest technice analogowego makromodelowania, ktéra zorientowana
jest na symulacje analogowych i analogowo-cyfrowych uktadéw/systeméw reprezentowanych
na poziomie funkcjonalnym. W oparciu o zwiezly przeglad metod symulacyjnych dokonano
poréwnania zaproponowanego podej$cia z istniejgcymi technikami modelowania i symulacji.
Przyjmuje sie, ze przebiegi czasowe sg funkcjami odcinkowo-liniowymi. Jako baze
modelowania wprowadza sie klase nieliniowych (odcinkowo-liniowych) blokéw inercyjnych.
Zaproponowane w ten sposéb makromodele sa doktadne w sensie swoich odpowiedzi
czasowych, a takze efektywne obliczeniowo, poniewaz do otrzymania odcinkowo-liniowej
aproksymacji oryginalnych, gtadkich odpowiedzi wykorzystujg bezposredni (jawny) algorytm
obliczeniowy. Alternatywnie wprowadzono w pracy udoskonalony algorytm trapezéw.
Szczegdétowo wyprowadzone sg makromodele praktycznych modutéw funkcjonalnych, takich
jak wzmacniacz czy komparator napiecia. Jako$¢ tych modelijest porownana z odpowiednimi
estymatami uzyskanymi w oparciu o symulator SPICE. Takze sama technika odcinkowo-
liniowej aproksymacji zostata poré6wnana z udoskonalonym algorytm trapezéw.

Do weryfikacji podejscia odcinkowo-liniowego w oparciu o praktyczne przyktady
makrosymulacji uktadéw/systeméw A/C wykorzystano prototypowy symulator sterowany
zdarzeniami. Wprowadzono koncepcje zdarzenia charakterystycznego dla przebiegéw
odcinkowo-liniowych. Zdefiniowany zostat réwniez wirtualny interfejs pomiedzy dziedzing
sygnatéw odcinkowo-liniowych i sygnatdw logicznych. Cyfrowe bloki sa modelowane
zasadniczo behawioralnie.

W celu rozwigzania probleméw powstajacych przy symulacji struktur ze sprzezeniem
zwrotnym wprowadzono dodatkowo technike relaksacji przebiegéw. Algorytm tgczacy obie
techniki zaimplementowano w postaci prototypowego narzedzia. Przeanalizowano wiele
praktycznych struktur zawierajgcych petle sprzezenia zwrotnego. Dla przypadku liniowego
sformutowano praktyczne kryterium zbieznos$ci algorytmu iteracyjnego. Pokazano ponadto,
ze struktury ze sprzezeniem zwrotnym oraz kaskady blokéw majg tendencje do
akumulowania btedéw majgcych swe zrédto w zastosowanej aproksymaciji. Dla zredukowania
tego efektu zaproponowano kilka metod, takich jak korekcja modelu i algorytmu
aproksymacji, wykorzystanie do syntezy blokéw drugiego rzedu (co pozwala unikng¢
lokalnych sprzezen) oraz zastosowanie strojonych modeli kaskadowych. Ostatnie dwa

rozwigzania nadajg sie dobrze do syntezy blokéw analogowych wyzszego rzedu, typowo
filtrow. Wigkszos¢ jednak z wymienionych rozwigzan wymaga zwiekszonego naktadu
obliczen lub dodatkowo powoduje komplikacje modelu. Na tym tle udoskonalony algorytm
trapezéw okazuje sie by¢ bardziej efektywny obliczeniowo, w szczeg6lnosci w zastosowaniu
do struktur kaskadowych.

W pracy przedstawiono takze implementacje techniki makrosymulacji odcinkowo-liniowej w
dyskretnym $rodowisku VHDL. Podstawowe bloki funkcjonalne zdefiniowano w jezyku
VHDL jako moduly behawioralne (entity), co byto mozliwe dzieki dostepnosci wtasciwych
dla nich, jawnych (bezpos$rednich) wzoréw. Wykorzystano w tym celu analogowe pakiety
jezyka. Dla ztozonych modeli analogowych zastosowano podej$cie strukturalne.
Modelowanie struktur mieszanych A/C w $rodowisku VHDL jest utatwione oczywiscie
dzieki jego zasadniczo cyfrowemu przeznaczeniu. Wymagane jest jednak wprowadzenie
wirtualnego interfejsu pomiedzy dziedzing sygnatow odcinkowo-liniowych oraz logika
standardowg. Dotgczone sg rowniez praktyczne przyktady uzyskane w oparciu o symulator
VHDL.






