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Introduction
Modern control systems must meet performance requirements and mean

time acceptable behavior even in the presence of abrupt changes in their 
dynamics due, for instance, to random component failures or repairs, en
vironmental disturbances, dramatic changes in subsystem interconnections, 
sudden changes in the operating point of nonlinear plant etc. This can be 
found, for instance, in control of solar systems, robotic manipulator systems, 
aircraft control systems, large flexible structures for space stations (such as 
antennas, solar arrays), etc. If abrupt changes have only a small influence 
on the system behavior, classical sensitivity analysis may provide an ade
quate assessment of the effects. When the variations caused by the dynamic 
changes significantly alter the behavior of the system, a stochastic model that 
gives a quantitative indication of the relative likelihoods of various possible 
scenarios would be preferable. In some cases the relevant stochastic model 
may consist of a linear system with coefficients depending on certain stochas
tic process. Such models axe called jump linear systems. They first appeared 
in the literature in papers [70] and [49] for continuous time systems. Since 
then much has been done and a good summary of the results obtained up 
to 1990 may be found in monograph [82]. Nevertheless still there exists a 
number of open questions in this area and many results need refinement and 
improvement. To justify the interest in analysis of this class of control sys
tems let us focus attention on the exemplary situations in which the theory of 
jump linear systems seems to be the most applicable approach for solving the 
problem. In order to increase the reliability in the presence of emergency of 
failures, the control system must provide some kind of fault tolerance. Since 
von Neuman, we know that redundancy is the basic ingredient in building a 
reliable systems. The fault-prone control systems have attracted a significant 
research effort and the basic structure of a reliable system with redundant 
actuators and sensors, which is now agreed upon is presented in the Figure 
0.1.

To analyze the behavior of such a system we clearly need a description of 
the occurrence of failures and their influence on the process. Consider, for 
example, a duplex system where two redundant controllers, C\ and C2 are 
used in parallel to control the plant P. Excluding partial failures of a com
ponent, four regimes of operation, can be associated to  Figure 0.2 depending 
on which controller has failed: 

regime 1 Ci C2
regime 2 Q  C2
regime 3 Q  C2
regime 4 Ct C2
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Fig. 0.1. A reliable control system

Fig. 0.2. A duplex control system

Failures thus appear as discrete events tha t cause a transition, or a jump,
of the regime. These events being random, axe characterized by transition
probabilities (pi(n),p2(n),ps(n),p4(n) ) , where p* (n) is the probability of
regime to be i at moment n. It is reasonable to assume that pi (n) depends
on the state of regime at moment n — 1 and does not depend on states of
regimes at moment k < n — 2. In this way we describe regimes as a Maxkov 
chain with transition probability

7

where pij is the probability that the regime is i under condition that the 
previous regime was j .  A classical model in reliability theory is given as

P  =

-2 A A

0

0

0

-A A —2AA „ - A A

0

0

— e  

0
- A A

0

-2A A 1 — 2e-AA +  e 
1 — e~XA 
1 — e-AA 

1

—2AA

where A A is the individual failure rate of C\ and C'2 at time interval A. In 
writing P  a simultaneous failure of C\ and C'2 was excluded (the transition 
from 1 to 4 has zero probability) which corresponds to the realistic situation 
where failures are rare events and the occurrence of a simultaneous failure 
is highly unlikely. The failures manifest themselves through a modification 
of the actuator-process-sensors cascade in figure 0.2. Typically, the failure 
of a sensor introduces a bias or a drift in one of the measurement variables. 
Similarly, a failed actuator might produce a constant action on the process 
regardless of the command signal it receives. A physical fault in some parts 
of the plant also modifies the dynamics.

Yet another example of this kind has been discussed in [18]. This example 
deals with reliable control system design. The control system is described by

x ( k  +  1) =  Ax  (k ) +  B  (r ( k )) u ( k ) ,

where

A = 2,71828
0

B( 2)  =

0

0.36788

1.71828
0.63212

B( l )  = 1.71828
-0.63212

1.71828
0.63212

B(4) =

£ ( 3) =

0 0 

0 0

1.71828 0
-0.63212 0

This model captures the failure/repair events for a reliable system with two 
actuators, in which actuators may fail and need to be repaired. State 1 
of r(k) represents the case that both actuators work well, states 2 and 3 
represent the case where one of actuators fails and has to be repaired, and 
state 4 represents the case where both actuators fail. Let pf  and pr denotes 
the failure rate and repair rate, where the actuators repair and failure events 
axe independent, then the probability transition matrix of Markov chain r[k) 
is given by

(1 - p f ) p r  

( 1 - P f ) ( l - P r )

P r P f

(1 - P r ) P f

( l - p / ) 2 

(1 - P f )
( l - p f ) p f

L Pf

(1 ~ P f ) P r  

Pr
(1 - P f )  1 - P r  

(1 - P r ) P f

Pr
Pr  (1 -  Pr)  

Pr  1 -  Pr  

(1 - P r ) 2
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It is thus seen tha t fault-tolerant control systems are naturally described
in terms of Cartesian product of a discrete random jump variable accounting
for the occurrence of failures, and the more usual variables in continuous
space representing the plant dynamics, i.e. in the terms of system with 
jumps in parameters.

Another example of this kind was discussed in [92]. Consider a linear 
system

x  (t) =  Ax{t)  +  Bu(t)
with

r 1 1 n ' i  ( TA  = B  =
0  1 (0.1)

~ J  I

The control which minimizes the quadratic cost
r o o

/ (x'(t)Qx(t) +  u'{t)Ru(t)) dt
J  o

with

is given by

where

R =

u(t) = - K x ( t ) ,

K  = 1

0
u  J

The closed loop system is asymptotically stable. In real system the state 
vector x  is not available. Instead of x  we have y -the sensor observation of x  
which is related to  x  through the relation

y(t) = Lx(t),
where

L = h

0
L.

The system (0.1) remains stable for control

u ( t ) =  - K y ( t )

if Zi >  I2 > Assume that because of sensor failure there is no feedback
from Xi i.e l\ = 0, and the system becomes unstable. Taking into account the
possibility of failure of the sensors one can propose as a model the following 
system

x  (t ) =  Ax(t)  +  B(r(t))u(t),

9

where the random variable r(t) takes one of four values 1, 2, 3, 4 and takes 
value 1 if both sensors work properly, 2 if the first sensor is broken, 3 if the 
second sensor is broken and 4 if both sensors are broken. The matrices 5(1), 
B(2), B (3), B (4) are as follows

0 0 

0  l 2

B{ 3) =  B h  0 

0  0
, 5(4) =  0.

Again we axe led to a hybrid model with continuous dynamics variables 
perturbed by random transitions of a regime variable which is discrete.

Further discussion of this kind of applications may be found in the fol
lowing references [93], [94], [17], [95], [96].

In [98] an application of hybrid models of the similar structure has been 
proposed to control a solar thermal receiver. In this paper a solar 10 MWe 
electrical generating system has been described. This system has been build 
in California desert. A field of movable mirrors is used to focus the sun’s 
energy on a central boiler. One of the most important control loops in the 
boiler is the steam temperature regulator which controls the feedwater flow 
rate to maintain the proper outlet steam temperature. The steam temper
ature regulator has been designed on the basis of a lineax dynamic model 
which evolving from both analytical and empirical studies of the dynamic 
behavior of a solar-powered central receiver. A difficult problem is posed 
by the motion of clouds over the heliostats. On a partly cloudy day, the 
clouds tend to cover the helistats for a time that is quite short when com
pared to the dominant system time constants. These sudden changes in 
isolation may be frequent and are essentially unpredictable. The relevant 
system model, depends on the isolation level, thus changes in a discrete and 
appaxently random fashion. Another anomaly is created by the cloud action. 
The perturbation variables in the system refer to a set of nominal operating 
points of the nonlinear equation of the system motion. The system variables 
axe continuous across discontinouities in insolation, while the insolation level 
changes discretely.

In recent years concern with the safety of air traffic near crowded air
ports and tragic accidents have prompted research into more sophisticated 
radar tracking algorithms which could help air controllers monitor incom
ing and outgoing aircrafts. A specific difficulty appears where there exists a 
heavy traffic of small highly maneuverable private aircrafts interfering with 
commercial jet liners.



10

In a  military context, a related problem is the so-called evasive target 
tracking problem where it is desired to keep track of an object which is 
maneuvering quickly in an attempt to evade its pursuer. The performance 
of the tracking system heavily depends on the accuracy and sophistication 
of the model used to describe the target dynamics.

The first element of the model is based on motion equations, relating 
variables like horizontal position, heading speed, bank angle or flight path 
angle. Physic provides a set of differential equations in R n, where n  is the 
number of variables we retain.

A well-known problem when multiple targets are to be tracked is asso
ciating of radar data to the various tracks, which might be difficult when a 
clutter of signals in a  given region exists. However, another less usual phe
nomenon is of primary interest here, namely the effects of sudden changes 
in the acceleration of the target. The trajectory can be divided into several 
sequences when the aircraft flies with (almost) constant acceleration, bank 
angle and flight path angle; regimes of flight typically considered are ascend
ing flight after take-off, turning, accelerated flight, uniform cruise motion or 
descending approach flight. The transitions between these regimes are dis
crete and depend primarily on the pilot decision which are in turn influenced 
by weather data, mission controller indications and on-board information 
such as fuel consumption, etc. or perception of the threat. Depending on the 
current regime of flight chosen by the pilot, the coefficients of the dynamic 
model have to be adjusted.

Of course evasive maneuvers are chosen to confuse the pursuer, and are 
therefore characterized by frequent, large, irregular and seemingly irrational 
acceleration changes. Figure 0.3 shows a typical realization where sudden 
acceleration is induced by the occurrence of a point process. From the tracker 
point of view, these transitions are perceived as random, and a model which 
makes the least use possible of other a priori information is a hybrid stochastic 
model with continuous dynamics perturbed by random transitions of a regime 
variable.

Further discussion of this problem is given in [8]-[10].

11

regime 

3 *

2 

1

acceleration
À

speed

-*► t

Fig. 0.3. Typical acceleration changes

Other important applications of jump systems are presented for example 
in the following papers: [85] (placement of failure-prone actuators on large 
space structures), [3], [16], [21] (control of manufacturing systems), [80], [100] 
(analysis of transient electrical power networks), [62], (economic policy plan
ing). Athans in [7] suggested that this model setting also has the potential 
to become a basic framework in posing and solving control-related issues 
in Battle Management Command, Control, and Communications (BM/C3) 
systems.

Most of the published results deal with continuous-time systems. This is 
natural because the process variables are continuous. However modern digital 
applications require discrete-time models. The purpose of this work is to 
present a comprehensive treatment of mathematical aspects of controllability, 
stability, and linear quadratic problem for discrete-time jump linear systems. 
In fact various topics for continuous and discrete-time systems are covered 
in parallel. It is often believed tha t results for continuous-time systems are 
also valid for discrete time systems, but it is not always true. Discrete-time 
systems have their own specification, and there exists a number of crucial 
and profound differences between the continuous and discrete-time systems.
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Controllability belongs to this class of problems. The differences will be 
transparent to  the reader throughout the book.

The work is organized as follows: In Chapter 1 we introduce the system
and establish basic notation. Several concepts of controllability of jump
linear systems and the relations between them are discussed in Chapter 2.
Material of this chapter summarizes the author’s results published in [27]-
[29]. In Chapter 3 the problems of stability and stabilizability are considered
and in Chapter 4 the linear quadratic problem is investigated. The most
important results of this chapter are published by the author in [31] and [33].
Next chapter summarizes the investigation of the work. At the end there
is an Appendix where some useful notions from Markov chains theory are 
presented.

I would like to  thank warmly my colleagues from Control Theory Unit 
of the Department of Automatic Control Silesian University of Technology 
Gliwice for many stimulating discussions, continuous support and encourage
ment in my research.

This work has been supported by KBN grant No 4 T i l  A 012 22 in the 
period 2002 - 2003.

Chapter 1

D iscrete-tim e jum p linear
system s

By discrete-time jump linear system we understand the following system:

x (k +  1) = A  (r(k )) x (k) +  B  (r(k )) u  (k) ,  (1.1)

where x(k) € R n denotes the process state vector, k — 0 ,1 ,..., u(k) € R m 
is the control input, r(k ) is a Markov chain on a probability space (fi, JF, P ) 
which takes values in a finite set S  — {1,2,..., 5} with transition probability 
matrix P  =  [p (i , j) \ l]€S and initial distribution it =  [p (i)]ig5 • Furthermore, 
for r(k ) =  i, Ai A(i) and £* := B(i)  are constant matrices of appropriate 
sizes. Denote by x (k, xq, tt, u) the solution of (1.1) under the control u, with 
initial condition x0 at time k — 0 and initial distribution of the Markov chain 
7r. In the case when the initial distribution is Dirac it takes the form

p(io) =  1 and p(i) =  0 for i 7  ̂*o (1.2)

for some i0 G S, we will denote the solution of (1.1) by x (k, x0, i0, u ) . In case 
of no control (B(i) = 0, i G S) the appropriate solutions will be denoted by 
x (k ,xo,7r) and x (k, xo,io), respectively. We will consider only deterministic 
initial condition rr0. The control u — (u(0), t i ( l ) , ...) is assumed to be such 
that u(k) is measurable with respect to the a —field generated by r(0), r ( l ) , ..., 
r(k). That is, the control is causal. The assumption of causality of the control 
may be expressed alternatively by stating that the control u(k) is of the form 
fk {r (0), r (1 ),..., r (A;)). It is worth to  notice that even if the control is of the 
form u(k) = fk (r (k)) the solution x (k, x0, it, u) is not in general a Markov 
chain, however the joint process (x (k,Xo,n,u) ,r(k)), which takes values in 
R n x  S,  is a Markov chain for any control of the form u(k) — f k (r (k )).

In this formulation the state of the system (1.1) is hybrid. It consists 
of two parts: x  which is continuous and r  which is discrete. For example,

13
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in target tracking problem x  contains target location variables (position and 
velocity), and the discrete variable r  represents presence of a manoeuvre, 
target classification (friend or foe), etc. In this example u will represent the 
tracker platform orientation command.

By In we denote the identity matrix of size n. For a square matrix A  we 
denote by p(A) the spectral radius. For a random variable X  and a a —field 
To we denote by E X  the expectation and by E  (X | Tq) the conditional ex
pectation. When the a —field To is generated by certain random variable 
Y  we write E ( X \ Y ) .  Moreover for conditional expectation of the form 
E  ( X | r(0)), where r (0) has distribution ir, we introduce symbol EnX  and in 
special case when tt is a Dirac distribution of the form (1.2) we write EioX.  
We use similar convention for conditional probability denoted by P  (• | A ) , 
when A = (r(0) =  io} we write Pi0 (•).

We introduce also the following notation which is used in formulation of 
controllability results in chapter 2.

F(k,  k ) =  InXn

F(k, I, ..., i;) =  A  (jifc_i) A (ik—2) ••■A (i;) ,

for all k > I >  0, ik- 1 , € S

F(k,  I) = A ( r  (k — 1)) A ( r  (k — 2)) ...A  (r (I) ) ,  k > I > 0,

F„(k,l) = E n ( F { k , l ) \ r ( l - l ) ) , k > l > l  

F n{k,0) = EnF(k,0)

Ww (k ) =  E* J 2  F n(k, t + 1 )B  (r( t)) B'  (r(t)) F [(k , t  + 1) (1.3)
t= 0

Using this notation we can write the solution of (1.1) in the following form

k- 1
x  (k , x0, 7r, u) = F(k,  0)xo +  ^ 2  F  (k, t +  1) B  (r (t )) u (t ) , (1.4)

t= 0

or
x  (k , x0, 7r, u ) = F(k,  0, r(k  -  1),..., r(0))x0+  (1.5)

fc -i
F  (k, t +  1, r(k  -  1),..., r(t +  1)) B  (r (t)) u(t)  , k >  1.

i=0

We also use the following notation

S[N) =  {*o, - ,  iN-  1 e  S  : p(io)p (i0, h )  ...p {iN- 2, iN- i )  > 0} (1.6)
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siN) is the number of elements of S ^ \  and in the case when the initial 
distribution 7r is of the form p(io) =  1, and p{i) — 0 for i ^  io we will write 
s [ ^ \  and instead of S „ ,  and f ^ ,  respectively. It will be convenient
to have the elements of ordered in a sequence. In that purpose let order 

the elements of the set
S N =  {(io,..., i n -  1 ) : i0, •••, i n -  1 € 5}

as follows
(io, 1) 1, •••> 1, 1) i (io, 1,1, •••> 1,2 ),..., (io, 1,1, ••■> 1, s ) , •••

(i0, 1 , 1 , 2 , 1 ) ,  (i0, 1,1,..., 2 ,2 ),..., (i0, 1,1,..., 2, s ) ,...

(io, •••> l ) , (^o, •••) 2 ),..., (io, •••> s, ^) ■

Withdraw all the elements (io, ...,i/v_i) such that

p(io , i i )  . . .p (ijv_2 ,iN -i)  =  0.

The sequence of all elements of S io obtained in this way is called the natural
order in the set and it is denoted by Fix a number N  >  0 and a 
sequence (io, i i , ..., ijv-i) of elements of S. Consider a matrix column blocks 
which are numbered successively by sequences: io, S ^ \  ..., and the block
(i0,ii,-..,ifc), k =  0 ,1 ,.., N  -  1 is given by

F(N, k , ijv—1 ,

and the others are equal to 0. Denote the matrix obtained in this way by 
C  (io, ii, •••,ijv -i) and by G(io) -the matrix consisting of all C (io,ii, --^iN-i)
(as row blocks numbered by S ^ )  for (i0, i i , î v—1 ) £ . Moreover by

=(N)H(io) G R nSi0 xm let denote a matrix row blocks of which are numbered by 
the sequence S^N\  the block (i0, i i , ..., i n -  1) ,  is given by F(N,  0, ijv-i, •••, io)- 
For example in the case when S  = {1,2}, N  — 3 and p ( i , j ) > 0 for all 
i , j  G S  and p(l) =  1, we have

<7(1,1,1)
C(  1,1,2)

G(l) = C( 1,2,1) 
<7(1,2,2) J

(1) (1, 1) (1, 2) (1, 1, 1) (1, 1, 2) (1, 2 , 1) (1, 2 , 2) 
A iB i  0 B\ 0 0 0]

\A2A\B\ A2B\ 0 0 B2 0 0]
\A\A2 B 1 0 A1 B 2 0 0 B i 0]
[AlBx 0 A 2B 2 0 0 0 B 2]
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m  =

A*
A 2A \
A 1 A 2 A 1

L a $A i

Moreover let f [ k\  ..., / «  e  R nk denote the vectors defined by

'  e, '

fl =
et

ei . j

Ä-times eh I = 1 , n

where e \ , ..., en is the standard base in R n. Let us denote

A™ =  { ^ c  3 ™  : ((to ,r(l), . . . , r(N  -  1)) a ) > « }

and by x  denote the number of elements of X  E A!£\ For each X  E 
let G x  (io) be the submatrix of G (i0) that consists of the blocks C  (a) for 
a  E X  and for (3 E S ^

and

Aß =  {a; 6 n  : (r(0), r  ( 1 ) , r  (N  -  1)) =  ß} . 

60 (i0) =  min [ p io(Aß) : ß  e  S ^ ] J  .

(1.7)

W ith each a  E S („ \  a  =  (z0, we associate a  deterministic ti
varying system

(1.8)

time-

x (k +  1) — A (k) x  (k) + B  (k) u (k) , N  -  1 >  k > 0, (1.
9)

where

( A  ( k ) , B  (A;)) =  (A  ( ifc) , B  (**)), N  — 1 >  k > 0, 

and we call it a deterministic system which corresponds to a.

Chapter 2 

Controllability

Since the early work on state-space approaches to control systems analysis, it 
was recognized that certain nondegeneracy assumption were useful, in partic
ular in the context of optimal control. However, it was until Kalman’s work 
[63] that the property of controllability was isolated as of interest in and of 
itself, as it characterizes the degrees of freedom available when attempting 
to control a system.

The study of controllability for linear systems has spanned a great number 
of research directions, and topics such as testing degrees of controllability, 
and their numerical analysis aspects, axe still a subject of intensive research.

The idea of controllability of jump linear systems has been already dis
cussed in the following papers [27], [28], [29], [58], [66], in discrete time 
case and in [34], [82], [60], in continuous time case. The origin of idea of 
controllability discussed in the papers [66], [82], [60], namely the idea of 
e —controllability with probability 8  comes from papers [40], [65], [102] where 
general stochastic systems have been considered. In [58] the authors dis
cussed the original idea of reaching given taxget in random time, and under 
different assumptions on the time they obtain different types of controllabil
ity. In fact they appear to be equivalent (see section 2.4 ). The problem of 
reaching target in the fixed time is disused in [27], [28], where in the first 
paper the target is a given value of expectation of the state and in the second 
one a vector. In this chapter we propose certain new ideas of controllability 
and we make a comparison with the existing ones.

This chapter is organized as follows. In Section 2.1 we study the weakest 
of the concepts of controllability for jump linear system namely the problem 
of controllability of the expectation of the final state (controllability with 
respect to the expectation). The main result of this section, Theorem 1 gives 
a necessary and sufficient condition for this type of controllability. Most of 
the results are from [27]. In the next section our attention is focussed on the

17
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possibility of reaching any deterministic target value from given determin
istic initial condition in given time with prescribed probability (stochastic 
controllability with probability <5). We have also investigated several varia
tions of this problem such as: the case when the target or initial condition 
are zero (so called controllability to  zero or from zero), and the case when 
we want to achieve only certain neighborhood of the target. Section 2.3 is 
devoted to the special case of stochastic controllability with probability 6 
namely to the case 6 =  1. Most of the analysis tools presented here were 
taken from [28]. Whereas in Sections 2.1, 2.2 and 2.3 the control horizon is 
fixed, in Section 2.4 we consider the concepts of controllability when the time 
of achieving the target value can be a random variable. The results of this 
section are partially published in [29]. Finally in Section 2.5 the relationships 
between the introduced types of controllability axe explained as well as the 
comparison with existing results is made.

2.1 Controllability with respect to expecta
tion

In this chapter we propose a definition of controllability indicating the pos
sibility of reachability of any given value of the expectation of the final state 
in given time.

We start from the following theorem:

T h eo rem  1 For a fixed initial distribution tt of the Markov chain the fol
lowing conditions are equivalent

1. Matrix Wn (N) is invertible (definition of Wn (N) is given by (1.3)).

2. For all x i G R n there exists a control u such that

E nx (N ,  0 , 7r,u) — x\. (2.1)

3. For all xo, X i  G R n there exists a control u such that

E nx  (N, x 0,tt,u) = x\. (2.2)

P roo f. (1 => 2) Assume that the matrix Wn (N) is invertible. Fix the target
vector x i  G R n  and consider the control in the following form

u (k ) =  B '  (r ( k ) )  F'„(N, k  + 1 )W ~1 (N ) X \ .  (2.3)

This control is causal and using (1.4) the solution of (1.1) can be expressed 

as
E^x (N,  0, u) = 

E n £  F  (N, t +  1) B  (r (t)) B 1 (r (t)) F \N ,  t  + 1 ) W ?  (AT) z x =
t=o

E„ £  E  ( F  (N, t + 1) B  (r (t)) B'  (r (t)) F \ N , t  +  1 )W ~l (AO x ,| r  (t)) =
t= 0 *

E w Z E ( F ( N , t  + l ) \ r  (t)) B  (r (t)) B'  (r (t)) F \ N , t  +  l ) W ?  (N) x ,  =
t=o

E  T l N - t + i ) B ( r  (t)) b '  (r (()) f '( /v , t  + 1 )  J  w ; 1 (JV) u  =  x u
(2.4)

where the following properties of conditional expectation were used

E ( E  ( | | , ) )  =  E( ,  E  ( ( /  (*?)!*/) =  E  («| rj) f  ( , ) .  (2.5)

The equality (2.4) shows tha t the control given by (2.3) is such that (2.1) is 

satisfied.
(2 =>• 3) Suppose tha t (2.1) is satisfied. Fix xo, x x G R n and let u  be such 

a control that
E nx ( N , 0 ,7r, u) — x i — E nF(N,  0)a:o 

by (1.4) it is equivalent to 

X\ -  E nF(N, 0)x0 = E irNy£ F  (N, t + l ) B { r  (t)) u (t )
t =o

and consequently

X! =  E n ^F ( N , 0)xo + F  (N, t  + 1) B  (r ( t ) )  u (t)^j

=  E nx  (N, x0, n , u ) .

The last equality shows that (2.2) is satisfied.
(3 1) For the purpose of getting contradiction suppose that 3 is satisfied

but there exists nonzero vector g G Rn such that

g'W(N)g  =  0. (2.6)
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Using the definition of W  (N ) we have 

g 'W(N)g = g' ( e

X:  E  (g 'F ( N , t+  1 )B  (r(t)) B' ( r ( t ) ) T ( N , t  + l)g) = 
t =o

x ; 1E | B / ( r ( t ) ) 7 ' ( j v >* + i ) < / | 2 .
t=0

The last equality together with (2.6) implies that

E  ||B' { r { t ) ) f { k ,  t  +  l)Pf  =  0, t  =  0,..., N  -  1 

and consequently

P  (B '  (r ( t ) )F ' (N , t  + l)g = 0) = l , t  =  0 , . . ,  AT -  1. (2.7)

By (2.2) there exists a  causal control u(k), k  =  0,..., AT — 1 such that

g = £ ? £  F ( N , t  + l ) B ( r ( t ) ) u ( t )  =
t=o

E j : F ( N , t + l ) B ( r ( t ) ) u ( t ) .
t=o

To obtain the last equahty property (2.5) and causality of control law has 
been used. This together with (2.7) implies

g'g = g'E  £  F  (N, t  +  1) B  (r (t)) u (t) = 
t =o

E Y ^ g ' F ( N , t  + l ) B ( r ( t ) ) u ( t )  = 0
t =o

and consequently g = 0. This contradicts the assumption tha t g ^  0. ■

D efin ition  1 I f  one of the conditions 1-3 of Theorem 1  is satisfied then we 
call the system (1 .1 )  n —controllable with respect to the expectation at time 
N  (n —CW RE at time N ). I f  the system (1.1) is tt—CW RE at time N  for  
each initial distribution then we say that it is controllable with respect to the 
expectation at time N  (CW RE at time N ).
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Theorem 1 gives the necessary and sufficient conditions for i t — CWRE 
at time N , moreover the proof is constructive in the sense that the control 
which governs the expectation to the desired value is explicitly given but the 
disadvantage is that the condition is difficult to check. A sufficient condition 
easier to check but non constructive in the sense that it does not give the 
control is presented now.

C oro llary  1 I f  there exists a sequence (io, ...,ijv-i) £ such that

rank B i N - i

N - 1

A i N _ x B i N _ 2 . . .  A ^ B i 0

j = i

=  n (2.8)

then the system is tt—CWRE  at time N. (At — A(i), Bi = B(i)). 

P roo f. We have the following property of the integral

E Z >  f  ( i{u)P{dw),
J  A

(2.9)

for any nonnegative random variable £ and any measurable set A. Let con
sider (2.9) with A  = A a (see, (1.7) for definition of A a). Then by the definition 
of W7r(N)  and (2.9) we have

k- i
W (N )  = E J 2  F ( N , t +  1 )B (r(t)) B'  (r(t)) F (N, t +  1) =

t=o

E  X T (N ' t +  ^ B  B ' ^ t + 1)p ^  -

E  /  F ( N , t  + l ) B ( r ( t ) ) B ' ( r ( t ) ) F \ N , t  + l)P{dw) = 
t - o  A a

N ~ \

BiN _i AiN_1B{N_2 ... A^B.,
3= 1

*0 X

N - 1

IT A ijB u
3= 1

The last inequality together with the assumption (2.8) implies that Wn(N) 
is invertible and the Corollary follows from point 1 of Theorem 1. ■

The next example shows that deterministic controllability of each pair 
(Ai, Bi) is not a necessary condition for system (1.1) to be CWRE at time 
N.
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E x am p le  1 Consider system (1.1) with a two-state form structure. Let 
p( 1) =  p (2) =  0.5, p( 1 ,1) =  p(2,2) = p(2,1) =  p( 1,2) =  0.5, and

A i  =
0 2 
1 1 , A 2

2  l  

1 0
, B 1 = , B 2 =

I f  we put io — ii — ... =  ijv-i =  1 for N  > 2, then we have 

P(io)p{i0, i i )p( i i , i2)...p(iN- 2, iN-i )  =  (0.5)^
and

rank
N - l

1 ^ i N- i B i N _ 2 . . .  A i . B io
3=1

=  2 .

J
By Corollary 1, we conclude that the system is CW RE at time N  for each 
N > 2 .

T h eo rem  2 The following conditions are equivalent

1. Matrix W7r (N ) is invertible (definition o fW v (N) is given by (1.3)) for 
each initial distribution t t .

2. For all X \  G R n and all initial distribution t t  there exists a control 
sequence u(k), k  =  0,..., N  — 1 such that

E nx  ( N , 0 , tt, u ) =  x i . (2.10)

3. For all xo, X \  G R n and all initial distributions tt there exists a control 
sequence u(k), k = 0,..., N  — 1 such that

E n x  (N , x 0 , tt, u ) =  x 1. (2.11)

4- For all x q , X i  G R n and all io G S  there exists a control sequence u(k), 
k  =  0,..., N  — 1 such that

F r(o)=i0x  ( N , x 0 , io ,  u )  =  x i . (2.12)

5. For all X \  G R n and all io G S  there exists a control sequence u(k), 
k — 0,..., N  — 1 such that

E r(p)=i0x  ( N ,  0, io ,  u ) =  x x . 

6. Matrix W r(o)=iQ ( N )  is invertible for all i0 G S .

(2.13)
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P roof. The equivalence of the conditions 1-3 follows from Theorem 1. The 
equivalence of conditions 4-6 may be established in the same way as the 
equivalence of conditions 1-3 in proof of Theorem 1. Moreover implication 
(1 =>■ 6) is straightforward. Therefore to complete the proof it is enough to 
show that (6 => 1). For this purpose fix initial distribution n and choose the 
element i0 of S  such tha t p(i0) > 0. By the theorem of total probability we 
have

W„ (N) =  X X ( 0)=i (N)p(i)  > Wr(0)=io (N)p(io).
i e S  i

To obtain the last inequality the fact that matrices Wx are nonnegative def
inite for all i G S  has been used. This inequality implies that W7T (N)  is 
positively definite because Wio (TV) has such a property and p(io) > 0. ■ 

The next example shows that deterministic controllability of each pair 
(Ai, Bi) is not a sufficient condition for n —CWRE at time N.  We have already 
shown (Example 1) that deterministic controllability of each pair (Ai,Bi) is 
not a necessary condition for tt—CWRE at time N.  However, Corollary 1 
guarantees that controllability of at least one deterministic system corre
sponding to a  G S[N) is a sufficient condition for tt—CWRE at time N  but 
it is not a necessary condition. It is possible (see, Example 3) that the de- 
terministic system that corresponds to each a  G S w is not controllable in 
the deterministic sense and the system is 7r—CWRE at time N.

E xam ple  2 Consider system (1.1) with a two-state form structure. Let 
p (l) =  1, p ( 2) =  0, p( 1, 1) =  p ( 2 , 2) =  0, p ( 2 , 1) =  p (  1, 2) =  1, and

' 0 1 ' 0 0 ' r o 1 r 1 1
0 0 IO

II

1 0 > Bi —

1

1 
r—

1

«

, B 2 —

—
1 

o
1

To test tt—CWRE  at time N  observe that F ( N , l ) is in this case a constant 
random variable and

E F ( N , l)B (r(l)) B' (r(l)) — 

F(N , l )E (B (r ( l ) )B ' ( r ( l ) ) )  = 0 0 

0 0

Consequently Wn(N) —  0 and the system is not tv— CWRE at time N  for 
each N  though each pair (A i ,B i ) , i = 1,2 is controllable, and consequently 
it is not CW RE at time N  for each N.
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E xam ple  3 Consider system (1.1) with a two-state form structure. Let 
P (  1) =  1, P i 2) =  0, p( 1,1) =  p(2,2) =  p(2 ,1) - p( 1 ,2) =  0.5, and

A\ = 1 0 

0  1
, A 2 = 0  0 

0  0
, B i  = , B 2 =

 /2)
Then S v = { (1 ,1 ) ,(1 ,2 )}  and neither the deterministic system that corre
sponds to the element (1,1) nor the one which corresponds to the element 
(1,2) is controllable in the deterministic sense. However,

Wn( 2) =

and this system is tt-C W R E  at time 2 .

1 1

1 3 >  0

2.2 Stochastic Controllability
In this paragraph we examine a concept of controllability idea of which is to 
steer any deterministic initial condition to  a given deterministic target value 
at given time with prescribed probability. We have the following definition:

D efin ition  2 We say that system (1.1) is stochastically controllable with 
probability 8 at time N  (  SCW P 8 at time N  )  if, fo r all x0, x\ G R n there 
exists a control u  such that

Pn (x (N, x0,tt, u) = xi)  > 8. (2-14)

Analogically, we say that system (1.1) is SCW P 8 at time N  to zero (from
zero) if, for all x q  G R n (x\ G R n) there exists a control u such that

Pn (x (N, x 0, 7r, u) =  0) >  6 (Pn (x (N ,  0,7r, u) =  0) >  8)  (2.15)

In  the case when 8 =  1 we say that system (1-1) is directly controllable (DC) 
at time N  (DC at time N  to zero, DC at time N  from zero).

The next theorem reduces problems of SCWP 8 at time N  and DC at 
time N  for system (1.1) with initial distribution of the Markov chain it, to 
problems of SCWP 8 at time N  and DC at time N  for system (1.1) with 
Dirac initial distribution.

T h eo rem  3 Suppose that fo r each i G 5  system (1.1) with P (r(0 ) — i) =  1 
is SCW P 8 (i) at time N  (SCWP 8 (i) at time N  to zero, SCW P 8 (i) at time
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N  from zero) then for initial distribution 7r of the form P  (r(0) =  *) =  p(i), 
i G S  it is SCW P 8 at time N  (SCWP 8 at time N  to zero, SCW P 8 at time 
N  from zero), where

*  =  5 X W » ) -
tes

Moreover system (1.1) is DC at time N  (DC at time N  to zero, DC time N  
from zero) for all initial distributions 7r i f  and only i f  it is DC at time N  (DC 
at time N  to zero, DC time N  from zero) for all Dirac initial distributions.

Proof. The proof is a straightforward consequence of the theorem of total 
probability and we will show only the part about SCWP 8 at time N. Fix
xo,Xi G R n. For each i G S ^  let

u® =  (u(<)( 0),u(i)(l) ,...u w (iV — 1))

be such a control tha t u^(fc) is of the form f k (i, r  (1 ),..., r (k)) and

P  (:r (N , x 0, i , u ^  = x i|r(0 ) =  i) > 8(i). (2-16)

Let define a new control u — (w(0), w(l), ...u(N — 1)) by

u (k ) = fk ( r ( 0) , r ( l )  , . . . , r ( k ) ) .

Then from the theorem of total probability and (2.16) we have

P(\\x(N,xo,Tr,u)  -XiH > 0) =

P  (H® (iV>o,7r,uw ) - * i | |  > 0  r(0) = i)p( i)  > Y ,P ( i )8 (i)-
i e s l 1'

The last inequality completes the proof. Following the same line of reasoning 
the remaining part of the Theorem may be proved. ■

Having in mind the previous result we may restrict our considerations to 
system (1.1) with initial distribution of the Markov chain being a Dirac one, 
without losing generality and in the remainder of the section it is assumed
that the distribution is of the form: P  (r(0) =  i0) — 1.

The next theorem contains necessary and sufficient conditions for SCWP 
8 at time N  as well as SCWP 8 at time N  from zero and to zero.

T h eo rem  4 System (1.1) is SCW P 8 at time N  from zero if and only if  
there exists X  G A \6̂  such that

rankG x  (io) =  rank Gx (io) f i X) , for all I =  1 , ( 2 - 1 7 )
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System (1.1) is SCW P 8 at time N  to zero if  and only if  there exists X  E  A (̂«)
. J. J  VO k J K S  VY ±  V  UjO UOIIOZ, i y  l/KJ /C /O / V  OJ LOIOUj U l L t y  LJ U IO O IC - C  J U L d b d  S \ .  d

such that
Im Hx  (io) C Im Gx  (io),  (2-18)

and it is SCW P 8 at time N  if  and only if  there exists X  E  A io such that

rankG x(io) =  rank

and

Gx(} o) ft

(«)
UIOZ>l C  CsJUOObO y \ .

(f )l , for all I — 1, ...,n , (2.19)

Im Hx  (io) C Im Gx  (io) • (2.20)

Before entering the formal proof let us briefly discuss the main idea. Since
—(-A0the set S io - of all possible sample paths of the Markov chain at time N  

is finite, therefore the family A ^  consisting of all subsets of sample paths 
with probability of being taken greater or equal 8 is finite too. Therefore 
the question about SCWP 8 at time N  can be reformulated, similarly as 
for deterministic system, as a question about existence of a solution of a 
finite set of linear equations. Nevertheless now we must take into account 
the constrain tha t control u(k) at time k may depend only on the variables 
r (0 ) ,...r(k ) and should be independent of r(k + l), . . . ,r(N).  In the proof we 
obtain this by the proper definition of matrices Gx(io) and H x  (io) ■
P roof. Suppose that system (1.1) is SCWP 8 at time N  from zero. Then 
for each y E R n there exists a control sequence w(0), . . . ,u(N  — 1) such that

u (k ) = 9k (io, r  (1) , . . . , r (k)) ,k  = 0 , ..., N  — 1,

and
Pio (x (N, 0, i0, u) = y ) >  8, (2.21)

am to R m, k =  0,..., N  — 1.

B(y) = {u E C i : x ( N ,0 ,  i0, u ) =  y}

 (fc)
where gk is a function from S io to R m, k =  0,..., N  -  1. Let us define

and
X ( y )  =  { (z0, r ( l ) , . . . , r ( i \ r -  1)) G S \ y  E  B(y)} 

then X(y)  E  A ^  and for ( i o ,  ...,i//_1) E  X(y)  the following holds

N - 1

)  ] F  ( N ,  t  +  1, i f f —i , . .. ,  i j + i )  B  ( i ( )  g i  ( io , •••, it) ~  V-  
t=o

It means tha t the system of equations

Gx(y)(io)v = z, (2.22)
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where

x(y) times

has a solution for t  = y. Denote by V  (X  (y)) the subspace of all t E  R n such 
that the system of equations (2.22) has a solution. From SCWP 8 at time N
from zero we obtain that

(J  V ( X (y ) )  = R* (2.23)
y € R n

Since the set A ^  is finite, then consequently

{X (y) : y E  R n}

and
{ V ( X ( y ) ) : y E R n }

are finite as well. Then (2.23) implies tha t Rn is a union of finite number of 
linear subspaces, but it is possible if and only if one of them is the whole Rn. 
Therefore there exists yo E  R n such tha t V ( X  (y0)) =  Rn. This clearly forces
th a t the system of equations

^ ( j / o ) ( i o ) ^  =  2 ,

where

x  times

has a solution for each t E R n. Since vectors 
of the space

_(as(w>)) i _  i  n  form a base 
J i  > 1 ’ ’

'  t '

e  R n x ( y 0 ) : t E R U

t -

Kronecker Capeli Theorem (see e.g. [14]) implies that (2.17) holds with X  — 

X M ■Suppose now that (2.17) holds for some X  E  A 0 . Again by Kronecker 
Capeli Theorem the set of equations

Gx (io)v =  z
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y '

z = *

y .

> x  times

has a solution for each y G R n. This fact implies that for each y  G R n and
each (i 0, . . . . iw ^ )  g X  there exists a sequence gk ( i0, ...,ifc ) , k — 0 , N  -  1 
such that

AT—1

^ 2  F ( N , t  +  ...,it+1) B  (it) gt (i0, =
t = o

If we define the control

y-

u _  /  9k (io,r(l)... ,r(k))  if (i0,r( l). . . ,r(k))  G X k 
\  0 if (i0,r(l)...,r(A:)) £ X k

where

Xk — {(<o, •••>**) : (io, •••,ifc,ifc+1 ) •••)ijv—i) £ X  for some ik+1 , ...,iN -i G 5} 

then

Pio ( x ( N ,0 , i 0,u) = y ) > 6

since X  G A .̂ Consequently system (1.1) is SCWP 5 at time N  from zero.
Suppose th a t the system (1.1) is SCWP 5 at time N  to zero. Then for 

each y G R n there exists a control sequence u(0), . . . ,u(N — 1) such that

u (k ) = 9k (io, r  (1 ),..., r (k)) , k  = 0,..., N  -  1,

and

Pio (x (N, y, i0, u) = 0) >  6, (2.24)
—(&)where gk is a function from S lQ to R m, k =  0,..., N  — 1. Let us define 

B (y) := {u  G Q : x  (N, y, i0, u) = 0}

and

X  (y) =  {(io, r ( l ) , ..., r (N  -  1)) : u  G B(y)}

then X  (y) G A {fJ  and according to (1.5) for ( ^ , . . . ,^ - 1) G X  the following 
holds

N - l

J 2  F  ( N , t  + l , i N_i, ...,it+1) B  (it) gt (i0, . . . , i t) = - F ( N , 0 , i N_1} ...,i0) y.
t = 0
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The last implies that

- HX(y) (io) V € ImGxts) (*o) •

Let us denote by V  (X  (y))the linear subspace of all t G R n such that

Hx{y) (io) t  e l m  GX(y) (io) •

Prom the SCWP 6 at time N  to zero we know that

u V ( X  (»)) = n r .
y € R n

Following the line of reasoning after (2.23) we conclude that there exists 
y0 G R n such that V ( X  (y0)) =  R n and (2.18) holds with X  — X  (y0). 
Assume now that the condition (2.18) holds for some X  G «4.^. This means 
that for each xQ G R n there exists v such that

—H x  (io) x o — Gx  (io) v

This in turn  implies that for each (io,..., i^ - i)  £ X  there exists a sequence 
gk ( i o , - , i * ) , k = 0, . ..,N  — 1 such that

N - 1

J 2  F  (N,  t  +  1 ,  i j v - i ,  • • • ,  i t + i )  B  (it ) gt ( i 0 , . . . ,  it) =
t = 0

—F  (N, 0, ijv - i,..., io) xo-
If we define the control

/ t,\ _  /  9k(io,r(l). . . ,r(k))  if (i0,r(l)...,r(fc)) G X k 
0 if ( i o , r ( l ) . . . , r ( k ) ) i X k

then
Pio ( x ( N ,x 0,io,u) = 0) >  6

since X  G Afç . Consequently system (1.1) is SCWP 6 at time N  to zero. In 
the same way we can show the part about SCWP 6 at time N. M

Remark 1 Suppose that the system is SCWP 6 at time N  and let X  G 
A ^  be such that (2.19) and (2.20) hold. It easy to conclude that for each 
a £ X  the deterministic system that corresponds to a is controllable. In 
fact conditions (2.19) and (2.20) are much stronger. They imply that if  we 
fix x0,xi G Rn, anda,/3  G X  of the following form a = (i0,ii ,  . . . , iw-i) , 
P =  (jo, j i ,  j iv - i) , i/ =  ji for I = 0,..., k then it is possible to construct the 
controls ua — (1^ ( 0), ...,ua(N  — 1)), up — (u[3(0), ...,up(N — 1)) which steer 
xq and X\ in deterministic systems corresponding to a and (3, respectively 
and the controls are such that ua(l) — up(l) for I =  0,..., k.
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In the previous papers devoted to e—controllability with probability 8 the 
definition is formulated as follows (see [40], [65], [66], [81], [102]):

For all x0, x \ G R n there exists a control u such that

P  (||x (N, x0, i0, u ) -  :ei|| <  e) >  S.

The first impression is that this definition is less restrictive than SCWP 
<5 at time N. The following theorem establishes the equivalence between this 
definition for xq — 0 and SCWP 8 at time N  from zero.

T h eo rem  5 Fix e > 0. I f  fo r all x\ G R n there exists a control u such that 
P  (||x (N, 0, *o, u) — £ i|| <  e) >  8 then system (1-1) is SCW P 8 at time N  
from zero.

P roo f. We will prove th a t if for all Xi G R n there exists a control u  such 
tha t

P  (||a: (N, 0, z0, u) -  Xi|| < e) > 8, (2.25)
then there exists a control u such that

P (x (N ,  0, io,u) = x i) > 8, (2.26)

The proof of the rest is similar. Suppose tha t (2.26) does not hold. By 
Theorem 4 it means tha t for each X  G A ^  there exists yx  G Rn such that

tx  £  Im G x (io),

where

x  times.

(which cannot be dense because R x is finite dimensional) then there exists 
y e R n such that

d is t[zx ,lm G x (io)] > ek,
where

Vx )
tx  =

J
Since the family A fo] is finite and Im Gx  (

(2.27)

’ y "
-2* = I

. y  .

> x times

and k = max {x  : X  G A f^  j  . By the assumption (2.25) we know that there 
exists a control u such that

Pio (B) > 8, (2.28)
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where
B  =  {a; G f2 : | |x  (N, 0, i0, u) -  y\\ < e} . 

>From the definition of A (fJ  and (2.28) we see that

X  := { (r(0 ),r (1 ) ,... ,r  (AT -  1)) : w G B }  G A ? -

Now let enumerate the elements of X  according to  the natural order in S - ^ , 
so

X  i •••) i 
and let xak. be the value of x (N, 0,io,u) on Aafc. (x (N ,0 ,io ,u) is constant 
on A ai). Then

v G Im G x (io),

where
x r

v =
x■<*k= 

x  J

and

\ \v - z x \ \  - E l
2 = 1

X.’«fc. ■yf < ex.

However, this contradicts (2.27). ■

R em ark  2 In a very similar way we can show that if  for all x q , x i  G Rn ( 
xo G Rn) there exists a control u such that

P (\\x (N ,xo ,io ,u ) - x i | |  <  e) > 8

(P(||x(iV,a:o,io,ti)|| < e) > 8, ) then system (1.1) is SCWP 8 at time N, 
(SCWP 8 at time N  to zero).

2.3 D irect controllab ility
The case 8 = 1 of SCWP 8 at time N  deserves special attention. Therefore 
we have introduced the notion DC for this type of controllability and now 
we will focus our attention on it.

Since s \ y  is a finite set, there exists a number <50 > 0 such that

s t V) =  f°r all 8 > 80. (2.29)

Having that in mind we obtain necessary and sufficient conditions for DC at 
time N  from Theorem 4. They are given in the following Corollary.
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C oro lla ry  2 System (1.1) is DC to zero at time N  if  and only if

Im H-(N) (i0) C Im G-x(n) (i0)
*0 *0

System (1.1) is DC from zero at time N  if  and only if

№ ) ]

(2.30)

rankG-x(N) (io) =  rank 
b i0

G-(N) (io) fi
*K>

(2.31)

for all 1=1, ...,n. System (1.1) is DC at time N  if  and only if

№rankG-(N) (ïq) =  rank
*0

G^(n) (io) f

and
Im H-z(N) (i0) C ImG-(N) (i0) 

*0 ^*0

(2.32)

(2.33)

fo r all 1 = 1 , ...,n.

From this theorem it is clear that (1.1) is DC at time N  if and only if it 
is simultaneously DC to zero and from zero.

When we consider the system without jumps it is well known that con
trollability from zero implies the controllability to zero and that inverse im
plication is not true. The next example shows that for the system with 
jumps the 7 r— direct controllability from zero does not imply the 7 r— direct 
controllability to zero.

E x am p le  4 Consider the system (1.1) with S  =  {1,2}, N  = 2, 

A\ —
1 2 ' ’ - 1 2 ’ 0 ' ■ o "
3 1 to II

1  - 1 ,  Bi — 2 , B 2 = 1

p(i) > 0, p ( i , j )  > 0, i, j  € S.
 / 2\

According to the notation we have (for simplicity we omit the index S io in 
G(i) and H (i))

G (l) = ' <3(1,1 )
<3(1,2 )

A \B \ B\ 0 
A 2B\ 0 B 2

‘ 4 0 0 '
2 2 0
4 0 0

_ - 1 0 1  _
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and

0 ( 2 )  =
<3(2,1)
<7 (2 , 2) _

■ 2 0 0 ■
A \B 2 B i 0 1 2 0

A 2B 2 0 B 2 2 0 0
- 1 0 1 .

and it is easy to check that condition (2.31) is satisfied. The control which
r col 1

steers zero initial condition to

u (0) =

u ( l )  =

at time N  =  2 is given

if

if

r (0) =  1 

r (0) =  2

i f  r (0) =  l , r ( l )  =  1

i f  r (0) =  l , r ( l )  =  2

if  r(0) =  2 , r ( l ) = 2  ‘

v , ,  i f  r (0) =  2 , r ( l )  =  1

Prom the other hand the system is not tt—DC  to zero at time 2. In fact we 

have

4 0) +
x‘°>

’ 7 4 ■ ' 3 - 4  '

H (l) =
6 7 
5 0 ,H (  2) =

- 2  3 
1  0

- 2  1  . - 2  5

and

but

’ 1 1  ‘ ' - 1  '
13
5
1

G H ( 1 ),
1
1
3

' 1 1  ‘ ' - 1  '
13
5
1

^ <7(1)>
1
1
3

e H (  2)

i  <3(2).

E xam ple  5 Consider the system (1.1) with 5  =  {1,2}, N  — 3,

A 1 =
0  1  

1  0

1  0  

0  1
, a 2 —

V  [ p ( * J ) W ,2  =

, B !  = ,B o  =

0.3 0.7 
0  1



I f  the initial distribution is o f the form  ir : p(2) =  1, then the problem is
 / 3 )

trivial because S 2 — {(2 , 2 , 2)} . Consider the case when p (l)  =  1 . We have 

^ 3) =  {(1 , 1 , 1 ) ,  (1 , 1 ,2) ,  (1 , 2 , 2)}

and

P i  ( - 4 ( i . i , i ) )  =  0 -0 9 , P i  ( - 4 ( i , i ,2 ) )  =  0 .2 1 , P i  (-4 (1 ,2 ,2 ) )  =  0 .7 . 

Moreover fo r  0.09 >  <5 >  0

4 5) =  { s f \  {(1 , 1 , 2) , (1 , 2 , 2)} , {(1 , 1 , 1 ) , ( 1 , 2 , 2)} , {(1 , 2 , 2 )} ,

{(1 , 1 , 1 ) , ( 1 , 1 , 2)} ,{ ( 1 , 1 , 2)} ,{ ( 1 , 1 , 1 )}}, 
for  0.21 >  <5 >  0.09

A ?  =  {SS3), {(1 , 1 , 2) ,  (1 , 2 , 2 )} , {(1 , 1 , 1 ) ,  (1 , 2 , 2)} , {(1 , 2 , 2)} , 

{(1 , 1 , 1 ) , ( 1 , 1 , 2)} ,{ ( 1 , 1 , 2)}},
for  0.3 >  6 >  0.21

A ?  = { s f ,  {(1 , 1 , 2) ,  (1 , 2 , 2)} , {(1 , 1 , 1 ) ,  (1 , 2 , 2)} , {(1 , 2 , 2)} , 

{(1 , 1 , 1 ) , ( 1 , 1 , 2)}},
fo r  0.7 > 8 > 0.3

4 «) =  j s < 3 ), { ( 1 , 1 , 2 ) ,  ( 1 , 2 , 2 ) } ,  { ( 1 , 1 , 1 ) ,  ( 1 , 2 , 2 ) } ,  { ( 1 , 2 , 2 ) } ,

for  0. 79 > 8 >  0.7

{ ( 1 , 1 , 2 ) ,  ( 1 , 2 , 2 » ,  { ( 1 , 1 , 1 ) ,  ( 1 , 2 , 2 ) } }

fo r  0. 91 >  6 > 0. 79

{ ( 1 , 1 , 2 ) , ( 1 , 2 , 2 ) } }

for  1  >  6 > 0. 91

A ^ ^ { S ? } .
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c  (1,1,1) =

C (  1 , 1 , 2) =  

C (  1 , 2 , 2) =

G(l) =

0 1 0 0 0 0 
1 0 0 1 0 0

1 0 0 0 0 0
0 1 0 0 0 0

0  0  0 0  0  0

1 0 0 0 0 0

0  1  0  0  0  0

1 0  0  1 0  0

1 0 0 0 0 0  

0 1 0 0 0 0
0  0  0  0  0  0

1  0  0  0  0  0

0  1  

1  0

1  0

0  1

0  1

1  0

H( 1) =

Let us first discuss the problem of DC at time 3. From the structure of the 
matrix C  (1 , 2 , 2) we see that conditions (2.17) and (2.18) can not be satisfied 
with X  such that (1,2,2) 6 X  and therefore the system is not D C at time
3. Moreover it is not SCW P 6 at time 3 for all 8 > 0 .7, because for 
each such 8 and X  G ^4^ we have (1,2,2) G X . Now for  0.7 <  8 < 0.79 
we see that conditions (2.17) and (2.18) could be satisfied only with X  =  
{(1 ,1 ,1), (1,1,2)} . However, we have

G *(l) =

0 1 0 0 0 0 
1 0 0 1 0 0  

1 0 0 0 0 0 
0 1 0 0 0 0

with rankG xi 1) =  3

and
rank  [ G * (l) /i(x) ] =  4.

So the system is not SCW P 8 at time 3 from zero for 8 = 0.7. Moreover we 
have

Im iïx ( l)  =  Im

0

1

1

0

C lm G x (l)



36 CHAPTER 2. C O NTRO LLABILITY

therefore the system is SCW P 6 at time 3 to zero for 6 = 0.7. Finally no
tice that conditions (2.17) and (2.18) are satisfied with X  = { ( 1 , 1 ,2)} and 
therefore the system is SCW P 6 at time 3 for all 6 < 0.79, because for such 
6 we have {(1,1,2)} E A^p.

2 .4  C on tro llab ility  a t random  tim e

In this paragraph we will discuss the problem of controllability at random 
time. The idea of the next definition is taken from [58].

D efin ition  3 The system (1.1) is t t — weakly controllable, if  for all х0, х г e 
R n there exists a control и and a random time т a. s. finite such that

Р ^(х(т ,х0,тт,и) =  Zi) >  0; (2.34)

t t — controllable, if  this probability can be made equal to one; i t — strongly con
trollable i f  it is weakly t t — controllable and ETXo>Xl <  oo, fo r each xq, x \ E R n 
where

TXOtX1 = min {к : x  (к , x0, тт, и) =  х г} . (2.35)

Analogically, we introduce the concepts o f t t -weak controllability, t t -  control
lability and тт-strong controllability to zero and from zero. As usually in the 
case o f Dirac initial distribution t t  o f the form  p  (го) =  1 we will say about 
io-weak controllability, io-controllability and io-strong controllability. I f  sys
tem (1.1) is tt-weakly controllable, tt-controllable or тт-strongly controllable 
(to zero, from zero) fo r all initial distribution t t  we will call it weakly control
lable, controllable or strongly controllable (to zero, from zero), respectively.

R em ark  3 From the definition it is clear that t t —  controllability (to zero, 
from zero) implies t t —  weak controllability (to zero, from zero). It is also 
true that t t — strong controllability implies t t — controllability. To prove this 
statement suppose that (1.1) is tt—strong controllable. Fix xq, x \ e R n and 
let control и be such that ETXOiXl < oo with TXOtX1 given by (2.35). Suppose 
that

Р ^[х(Т ХОуХ1,х 0,тт,и) = X i) < 1 .

Then

where

P „  ( A ) >  0 ,

A  { ^  E Q  . X  (TX0 >Xl, X q , TT, и) Ф  X i }

(2.36)
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Moreover for lo E П we have

TX0>Xl =  oo. (2-37)

(2.36) together with (2.37) implies that ETX0<X1 =  oo. This contradicts the 
assumption about tt—strong controllability. Of course the same is true for  
tt—strong controllability to zero (from zero) and tt—controllability to zero 
(from zero).

The next theorems show that the problem of tt—weak controllability (to 
zero, from zero), can be reduced to the problem of io~weak (to zero, from 
zero) for io such tha t p(io) >  0.

T h eo rem  6 System (1.1) is tt—weakly controllable (to zero, from zero) if 
and only i f  there exists г0 E S ^ \  such that (1.1) is i0—weakly controllable (to 
zero, from zero).

P roo f. We will prove only the part about tt—weak controllability the proof 
of the rest is very similar. Suppose tha t there exists i0 E S £ \  such tha t (1.1)
is го—weakly controllable. Fix x0, X \  E R n, then there exists a control и and
a random time r io a.s. finite such that

Pio  (x ( T io , x 0 , i 0 , u ) =  х г ) >  0 .

The control is of the form

u =  (u(0),w (l),...),

where u(0) is a  constant random variable, and u(k) for к > 1  is of the form 
fk (io ,r(l), ...,r(fc)). Let us define a new control sequence и =  (й(0),й(1),...)

by
=  (  /fc(*o, r ( l ) , ..., r(k)) if r(0) =  г0

[ 0  if r (0) 7  ̂г0

Then by the theorem of total probability we have

P-IT (x (Тг0,Хо,ТТ,й) =  XX) > Pn ( X (т;0, X0, TT, й) =Жг|г(0) =  г0) p(i0) =

Pio ( x  ( r iQ, x 0 , i 0 , u )  =  r r i ) p ( i o )  >  0 .

It means that system (1.1) is tt—weakly controllable. Suppose now that (1.1) 
is tt—weakly controllable. Fix x q ,  x \  E R n and let a control и and a random 
time т are such that

Pn ( X  (r, X 0 , TT, U) = X \ )  > 0.
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Again by the theorem of total probability we have

0 < P„(x (t, x0,7r, u) =  Xi) =

J 2  P ir(x(T ,x0,TT,u) = x i |r ( 0 )  = i)p(i) =  
i t s ?

J2  P i(x (T ,x 0,i ,u )  = x 1)p(i).
i t s P

From the last inequality we conclude tha t at least one of the number

Pi {x (T ,x0, i ,u ) = X i ) , i e

is positive, say i0, and therefore (1 .1 ) is i0—weakly controllable. ■
The next two theorems establish the relationships between n — control

lability (to zero, from zero), 7r— strong controllability (to zero, from zero)
and i — controllability (to zero, from zero), i — strong controllability (to zero, 
from zero).

T h eo rem  7 System (1-1) is ir— controllable (to zero, from zero) i f  and only 
i f  fo r all i G S ^  system (1.1) is i —controllable (to zero, from zero).

P roo f. As previously we will prove only the part about n — controllability. 
Suppose tha t (1.1) is 7r— controllable. Fix xo, x\ G Rn and let a control u 
and a random time r  are such that

Pn (x ( t , x 0,tt,u) = xi) =  1 . (2.38)

By theorem of total probability we have

Pn (x (t , x0, tt, u) =  xx) =  Y2 P n (x (T ,x 0,TT,u) =  x i|r(0 )  = i)p(i) =

J 2  Pi (x (T ,x 0,i ,u )  = x i)p (i) . 
i € S P

If one of the numbers Pi (x (r, x0, i, u) = xi), i £ S ^  was strictly less than 
1 , then the right hand side of the last equality would be less than 1  too. 
However the left hand side is by (2.38) equal to 1 , therefore

Pi (x (t, x0, i, u) =  xi) = 1

for all i G S^1). This means that system (1.1) is i —controllable for all i £ 
Suppose now that (1.1) is i —controllable for all i G S ^ .  Fix x o , x\ G R n and 
let a control Ui,i G and a random time t{ are such that

Pi (x (n , x0, i, u) — xi) =  1.
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The control Ui is of the form

Ui — (Ui ( 0 ) ,  U i( l ) ,  • • • ) ,

where Ui(0) is a constant random variable, and Ui(k) for k >  1 is of the form 
f k(i, r ( l ) , ..., r(k)). Let us define a new control sequence u =  (tZ(0), u ( l ) , ...) 
by

u(k) =  fk(i, ^(1), r(k)) if r(0) =  i for i G S ^ .

Define a random variable r  by

r  =  min {k : x  (k , xq, tt, u) — Xi} .

By the theorem of total probability we have

P  [t  < oo) =  ^2  P  (t  < oo| r(0) =  i)p(i) =  
i e s P

P {T i<  oo)p(i) = 1

and
( x  [ t , X q , 7T, U j  =  X i )  =

Y  P it  ( x ( r , X o , 7T , u )  =  X ^ T ^ )  =  i) p(i)

^2  P i(x (T ,x 0, i ,u ) = x i ) p ( i )  = l. 
i€ 5 i1J

It means tha t (1.1) is tt— controllable.

T h eo rem  8 System (1.1) is tt—strongly controllable (to zero, from zero) if 
and only if  it is i—strongly controllable (to zero, from zero) for all i G S ^ .

We omit the proof, because it can be done using a very similar technique 
as in the proofs of the previous two theorems.

Having in mind the previous three theorems and the Definition 3 we can 
formulate the following remark.

R em ark  4 System (1.1) is weakly controllable ( controllable, strongly con
trollable) i f  and only if it is i—weakly controllable ( i—controllable, i—strongly 
controllable) for all i G S. The same is true for controllability of all these types 
to zero and from zero.
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The next theorem shows that to check weak controllability or weak con
trollability to zero it is enough to check i —weak controllability or i —weak con
trollability to zero for recurrent state i G S  (see, Definition 12 in Appendix).

T h eo rem  9 System (1.1) is weakly controllable (to zero) if  only if for each 
recurrent state i (1-1) is i—weakly controllable (to zero)

P roo f. We prove only the part about weak controllability, the proof for 
weak controllability to zero is very similar. If the system (1.1) is weakly 
controllable then according to the definition it is i—weakly controllable for 
each i G S  and in particular for all i recurrent.

Suppose now that (1.1) is i —weakly controllable for all recurrent i. Fix xo, 
x\ G R n, an initial distribution it and j  G S ^ .  Then according to Theorem 
55 in Appendix there exists recurrent state io which is accessible from j  in
a.s. finite time. Due to our assumption for each xo, x\ G R n there exists a 
control uXOtXl =  (uXOjX1 (0),u XOiX1 ( l ) , ...) and a random variable r  a.s. finite 
such that

Pio (x (T ,x 0,io ,uXOiX1) = x i )  > 0.

Next let Ti0 be the time of the first visit in state i0 (see Remark 9 in the 
Appendix). We know that r io is a.s finite. Define new control sequence 
u = (u(0) ,u ( l ) , ...) by

u ( k )  =  j  0  fo r  k  <  r i0
\  uXOtX1(k -  r io) for k > r io ’

where xq = x  ( r io, x 0, io, 0) , then it is clear that

Pn (x(T  + Tio,x 0,Tr,u) = X i) > 0

and r  +  Tio is a.s. finite, so (1 .1 ) is weakly controllable. ■
Notice tha t the proof does not work for controllability from zero. The rea

son is tha t even if we take x0 =  0 we cannot guarantee that x (rio, x0, io, 0) =  
0 .

Our next goal is to show that weak controllability, controllability and 
strong controllability are equivalent. We will show the equivalence in the 
following way: first we will show a necessary condition for weak controllability 
(Theorem 10) and next we will prove that this condition is sufficient for strong 
controllability (Theorem 11). According to Remark 3 this means tha t the 
three concepts are equivalent.
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T h eo rem  10 The necessary condition for weak controllability and weak con
trollability from zero of the system (1.1) is that for all closed communicating 
classes C  of S  there exists a sequence (io, ..., ir - i)  G CT such that

p(ia,ii)...p(iT-i,i'T-\) > 0

and
rank L — n,

where

L =  [F (T ,T )B iT_1} F ( T ,T — l , i T- i)B iT_2, F(T , l , i r _ i ,  . . . , i i ) 5 io] .

P roo f. We prove only the part about weak controllability the proof for weak 
controllability from zero is very similar. Suppose tha t the system is weakly 
controllable, fix a closed communicating class C  of S  and i0 G C. For each 
T  =  1,2,... denote

C T  =  { ( io ,  — i r - i )  £  C T  : p ( i 0 , i i ) . . . p ( i r _ 2 , i r - i )  >  o j

so Ct is the set of all possible sample paths of the Markov chain which start 
from io. For ct = (io, ...ir - i) £ Ct define a subspace

Q  ( c t )  =

Im [F(T, F (T ,T  — l , i T- i)B iT_2, F ( T , \ , iT- \ ,  . . . ,i i)5 io|

of R n. Assume th a t for all T  =  1,2,... and all Ct  G Ct

dim Q (cT) <  n. (2.39)

By the Cayley-Hamilton Theorem the set

{Q (ct ) : T  =  1 ,2 ,..., ct G Ct } 

is finite. This together with (2.39) implies that there exists

x  G R n\  (J  U  <2(cr). (2.40)
T = 1,2,... c t €.Ct

The io —weak controllability means tha t for x  there exist a control u and a 
random time r  a.s. finite such that

P ( A ) > 0 ,
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where

A  =  jo ; € Г2: ^  F  (r, £ +  1, r(t +  1 ) , r ( r  — 1)) 5  (r (t)) и  (t) =  x j  

Denote
=  {w £ f i : т (cu) = T } ,T  — 1,2,...

Since r  is a.s. finite then there exists T0 such that

0 <  P  (ftTo П A) =

P  ^ E  F  (To, t +  1, r(T0 -  1),..., r(t +  1 )) В  (r (t)) и (t) = x j  =

( rp̂ _

E  F  (T0, t  +  l,r(To — 1), ...,r (t +  1 )) 
t=0

В  (r (t)) и (t) = x| r( 1) =  *i, ...r(T0 -  1) =  iTo- i)  x 

P  (r( 1 ) =  <i, ...r(T0 -  1) =  iTo_i)

This implies th a t there exists Ст0 =  (го, i)  £ C'to such that

E  F ( r 0, t  + 1 ,гГо_1 ,...,г4)  B ( r ( i ) )u ( i )  =  x.
t=o

It contradicts (2.40). ■

T h eo rem  11 I f  fo r all closed communicating classes С  of S  there exists a 
sequence (го, . . . , ir - i)  £ С  such that p (io ,* i).-P (ir-2,*T-i) >  0 and

rank L  = n  (2.41)
where

L =  [F (T ,T )B ij,_1, F (T ,T  — l , i T- i) B iT_2, F(T, ...,* i)5ioj 

then the system (1.1) is strongly controllable.

P roo f. Fix a closed communicating class С  of S, (xo,io) £ R n x С  and 
x  e  R n and assume that the condition (2.41) holds. According to  Theorem 
9 it is enough to  show that (1.1) is го—strongly controllable. By assumptions 
there exists T0 and cTo =  (го, ..Лт0- \}  £ Ст0 such that

rankQ (cTq) -- n.
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It implies tha t Q (ct0) Q '(cTo) is nonsingular and for all x0 £ R n we can
define the sequence of vectors uio(xo),..., n,T 1  (x0) £ Rm by

[u'o(x0) ,...,u 'T_i (x 0)]' =

(Q (сто) Q' (его))“ 1 Q' (ct0) (x -  F(fc, 0,г0, ...iTo-i)xo) .

Consider the control й  given by the following algorithm
Step 1 : If r(n) = i0 put I = n, u(n) =  uio (x(/)) and go to step 2, otherwise 

put u(n) =  0 and go to step 1
Step к : (к =  2,..., T  -  1) If r(n) =  г*—i put u(n) =  uifc_1 (x(Z)) and go to 

step к +  1 , otherwise put Ti(n) =  0 and go to step 1
Step T  : If r(n ) =  гГ_1 put й(п) =  u1T l (x(l)) and stop, otherwise put

u(n) =  0 and go to step 1 
Consider the random time

7li0,...iT_1 =  minO > T : r ( l -  1) = iT- i ,  •••, r(l - T )  =  г0}.

By Theorem 62 in Appendix we know that

^ ( ^ o , . . . i T _ 1 | r ( ° ) = j o )  <  OO

and
OO

P  {X (Г1ъ,...1г-1’Х0>30,Ъ) = x ) >  E  P  = l) = h
l = T

because on each set we have

x { n i o , . . . i T _ 1 , x o J o , u )  = x

■
As we have mentioned before from Theorem 10 and Theorem 11 the 

following theorem follows:

T h eo rem  12 For system (1-1) the weak controllability, controllability and 
strong controllability are equivalent. Moreover each of these conditions is 
equivalent to the following: for all closed communicating classes С of S  there 
exists a sequence (го, .. . ,ir - i)  £ С such that ,p{iQ,i\)...p(iT--z,iT-\) > 0 and

rank L  =  n. (2.42)

where

L = [ F (T ,T )B iT_1, F (T ,T  — l , i T- i ) B iT_2, F(T, l , i T- i ,  ...,ii)B io\ .
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R em ark  5 From Theorem 10 we know that condition (2-42) is a necessary 
condition for weak controllability from zero and from Theorem 11 that it is 
a sufficient condition for strong controllability, and in particular for strong 
controllability from zero. Therefore weak controllability from zero, controlla
bility from zero and strong controllability from zero are equivalent, and they 
are equivalent to (2 -42)  too.

R em ark  6 Having in mind the interpretation of condition (2-42) for deter
ministic time-varying system that corresponds to the sequence

( i 0 , . . . , i T - i )

(see, (1.1)) we can reformulate the condition for weak controllability, control
lability and strong controllability by saying that for all closed communicating 
classes C  of S  there exists a sequence

(io, ..., i r - i ) G C

such that
p ( io , i i ) . . . p { iT- 2, i T- i )  >  0

and the deterministic time varying system that corresponds to

( i 0 , . . . , i T - 1 )

is controllable in the deterministic sense.

We can use the same arguments as in the proofs of Theorem 10 and Theo
rem 1 1  to show that for system ( 1 .1 ) weak controllability to zero, controllabil
ity to zero and strong controllability to zero are equivalent and each of them 
is equivalent to the following: for all closed communicating classes C  of S  
there exists a sequence (io, . . . , i r - i )  G C  such th a t p ( i 0 , i i ) . . . p ( i T - 2 , i T - i )  > 0 
and the deterministic time varying system that corresponds to (io,..., ir - i )  is 
controllable to zero in deterministic sense. Therefore we have the following 
result.

T h eo rem  13 For system (1-1) the weak controllability to zero, controllabil
ity to zero and strong controllability to zero are equivalent. Moreover each 
of these conditions is equivalent to the following: for all closed communi
cating classes C of S  there exists a sequence (io, .. . ,ir - i)  G C such that 
p(*o,*i)—p(*r-2,* r- i)  >  0 and

I m F ( r ,0 , îT_i,...,îo ) C Im [F (T ,T )
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It appears tha t the properties of i-strong controllability and i-strong con
trollability to zero are properties of class of state. More precisely we have 
the following theorem.

T h eo rem  14 I f C is a closed commutating class of state and system (1.1) is 
i-strongly controllable (i-strongly controllable to zero) for certain i G C then 
it is j-strongly controllable (j-strongly controllable to zero) for all j  G C.

P ro o f. Let Tj denotes the time of the first visit to  state j  starting from i 
defined as follows Tj =  min{fc >  1  : r(k) = j }  for P  (r(0) =  i) =  1. Since i 
and j  are recurrent, then (see Remark 9)

E  (t j | r(0) = i) < oo. (2-43)

Fix x0, Xi E R n. ' From the assumption about i-strong controllability we
known that for each x0 G R n there exists a control uxo and a random time 
Tx0 a.s. finite such that

Pi (x ( r ,x 0,i,u ) = xi) = 1 

and E TXOjXl < oo, for each x q ,  x\ G R n where

Tx0,Xl = min {k : x ( k ,x 0,i,u ) = x i} . (2.44)

Define a new control u by

( u \  _  /  0  f ° r  k  <  T j
\  Ux(rj,x0,i,u) (k -  T j ) for k > T j

Then it is clear that

Pj (x (Tj + r ,  x 0, i, u) — Zx) =  1

and
Txajxi — mm {k . x  (k, xq, j, u) — X\} ^  Tj -f- TXOtX̂ .

Therefore by (2.43) and (2.44) we have ETX0:Xl < oo. The proof for i-strong 
controllability to zero can be done in similar way. ■

The equivalence enables us to consider in the remaining part only the 
concept of strong controllability or strong controllability to zero.

To demonstrate our considerations we present an example.
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E xam ple  6 Consider the system (1.1) with S  =  {1 , 2 , 3 , 4 , 5},

A\ — 0  1 

0  0

A a =

A 2 =

' 0  0  

0  1

0  1  

0  0

! A 5 -

B \  = , B 2 = 0

0
,B 3 = 1

0

, ^ 3  =

0  0  

1  1

,  =

0  1 

1  0

,B 5 =

i,j—1,2,3,4

> (1 ,1 )  p (l,2 ) p( 1,3) 0 0
0 1 0  0 0 
0 0 p(3,3) p(3,4) p (3 ,5)
0 0 p (4 ,3) p (4 ,4) p (4 ,5)
0 0 0 p (5 ,4) p(5,5)

All elements not denoted by 0 are nonzero entries. The state space of this 
chain consists of two closed communicating classes o f recurrent states {2} 
and {3,4,5} . The state 1 is a transient state.

The system is not strongly controllable. It follows from Theorem 12. I f  
we take C  =  {2}then there is a unique sequence (io, G CT such that
p(io, *i)---p(*r-2> * t-i)  >  0, namely (2,..., 2) and by Caley-Hamilton Theorem

rank  [F (T ,T )B 2 F(T, 1,2, ...,2)B2] =  rank [B2 A 2B 2\

but
rank [B2 A 2B 2\ = 1.

For the same reason the system is not 2-strongly controllable. According to 
Theorem 14 problems of i-strong controllability for i — 3 ,4 ,5  are equivalent. 
Using this theorem for sequence (3,3) G £3^ we have

rank [B3 A 'i  B-t 1 =  2

and the system is i-strongly controllable for i — 3,4, and 5.
Now let us discuss the problem of strong controllability to zero. We use 

theorem Theorem 13 with (2,2) G S2  ̂ and obtain

Im .F(2 , 0,ii  =  1 , ...,i0 =  1) =  Im A l  =  {0}.

Moreover because i —strong controllability implies i—strong controllability to 
zero we know that the system is i—strongly controllable to zero for i = 2 ,3 ,4 ,5  
and by Theorem 13 it is strongly controllable to zero.

2.5. COMPARISON AND DISCUSSION 47

2.5 C om parison  and d iscussion
Assume that the initial distribution 7r is given as p(i0) =  1 and try  to discuss 
the relationships between 7r—CWRE at time N , SCWP 6 at time N  and 
7T—strong controllability. First notice tha t if the system is SCWP 6 at time 
N  for each recurrent i0 then according to Remark 1 there exists a  G S io 
such that the deterministic system which corresponds to a  is controllable. 
Therefore by Corollary 1 the system is CWRE at time N  and strongly con
trollable. Example 3 shows that CWRE at time N  does not imply strong 
controllability. It also demonstrates that neither strong controllability nor 
CWRE at time N  implies DC at time N. It is so because the necessary con
dition for DC at time N  is tha t all deterministic systems corresponding to

—( N)each element of S\ are controllable and we have systems without this prop
erty which are CWRE at time N  (Example 3). Moreover, when we consider
a Markov chain with one class of transient states then the existence of one
element in S ^  ,such that the corresponding deterministic system is control
lable, is enough for the strong controllability. Finally, when we have a system 
which is strongly controllable then there exist natural N  and 6 > 0 such that 
it is SCWP 6 at time N  and, according to the above considerations, CWRE 
at time N. In fact for fixed x\, x2 G R n from the strong controllability we 
conclude that there are a control u and an almost sure finite random variable 
T  such that

P ( x ( T ,x 0,io,u) = x i)  =  1. (2.45)

Since T  is a.s. finite there exists at least one natural number N  such that

p  (T = N ) := «5 > 0. (2.46)

From (2.45) and (2.46) we conclude that the system is SCWP 6 at time N.



Chapter 3 

Stability

Stability is a qualitive property crucial for functioning of all systems both 
natural and man-made, and it is usually the first requirement to be consid
ered in practical applications. Therefore much more results are available for 
stability of jump linear systems than for controllability.

A natural approach to study stability of stochastic systems is to adopt 
techniques used for checking stability of deterministic systems such as the 
second Lyapunov’s method. A stochastic version of the Lyapunov’s second 
method was developed almost simultaneously in [15] and [64]. In [72] and
[55] the stability properties of general stochastic systems has been systemat
ically investigated. Kozin in [68] clarified many confusing stability concepts 
and gave a nice explanation of the relationships among various stochastic 
stability concepts. Certain generalization of the Lyapunov’s second method 
has been proposed in [11], [12]. Basing on this extension some sufficient con
ditions for almost sure sample stability of continuous time linear differential 
equations with random time-varying communication delays can be found. 
This approach has been used to  study the stochastic stability of jump linear 
systems in [71], [88], [89], [61], [46], [82].

It is noted in [68] that almost sure stability does not imply moment sta
bility. The opposite statement is true. However second moment stability 
criteria, which are easy to check, for almost sure stability are to conserva
tive. This has been illustrated in [84] and [69], where it is shown that the 
regions of second moment stability are considerably smaller than the ones for 
almost sure stability. Practically we are interested in the stability of individ
ual sample paths of the system rather than the stability of their moments. 
Therefore, almost sure stability is a more useful concept than moment sta
bility. In [5], [6] the Lyapunov exponent method has been suggested as the 
best method to obtain tightest criteria for almost sure stability for general 
stochastic system. This approach has been adopted to jump linear systems

49
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in [47], [44], [48]. It seems from this approach that the almost sure stability 
problem for jump linear systems can be completely solved by determining 
the sign of the largest Lyapunov exponent. However the determination of 
the sign of the top Lyapunov exponent, is a very complicated and computa
tionally difficult task as demonstrated in [45]. Thus, the estimation of the 
largest Lyapunov exponent becomes a very important research area.

In [4] relationships between sample path and moment stability for a spe
cial class of continuous-time jump linear systems was described. Similar 
results for discrete-time jump linear systems with jumps forming sequence 
of independent identically distributed random variables was announced in
[39], however as shown in [41], the main result is incorrect. The possibil
ity of using the approach from [4] to discrete-time jump linear systems was 
discussed in [78], where it was heuristically shown that the approach from
[4] cannot be used for discrete-time jump linear systems. The main result 
of [4] states tha t the 6-moment largest Lyapunov exponent is differentiable 
and its derivative at zero is just the largest sample path Lyapunov exponent. 
For one dimensional jump linear systems it was in [38] and [46] proved that 
almost sure stability is equivalent to 6—moment stability for certain 6. The 
generalizations of this result for multidimensional discrete-time jump linear 
systems was presented in [44]. These results are very important, however 
they do not help to check almost sure stability of a particular system. It is 
so because there is no explicit formula for the largest 6—moment Lyapunov 
exponent and consequently the value of its derivative at zero cannot be eval
uated. The lack of conditions to check the almost sure stability as well as 
6—moment stability is undoubtedly the most important challenge of further 
investigation.

From the point of view of LQ theory, which is discussed in the next chap
ter, 6—moment stability for 6 =  2 is crucial. The 6—moment stability for 
6 =  2 , called also mean square stability is the best developed concept of sta
bility for jump linear systems. In the literature we may find many necessary 
and sufficient conditions for this type of stability (see [24]). This conditions 
are given in terms of spectral radius of certain matrix to be less than one or 
in the terms of existence of non-negative definite solution of a set of linear 
matrix equations. The set of equations is called a coupled Lyapunov equa
tion. Numerical properties such as sensitivity of coupled Lyapunov equations 
are discussed in [35] and [37]. Another characterization of the mean square 
stability is in terms of spectral radius of a certain matrix to be less than 
one. However, the large size this matrix causes problems. In [36] an up
per bound for the spectral radius is found. The computation of the bound 
are numerically simpler but gives only sufficient conditions for mean square 
stability.
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This chapter is organized as follows. In the next section we introduce 
different types of stability and discuss their basic properties. In Section 3.2 
the results for one dimensional systems are presented. The best developed 
concept of stability, namely mean square stability, is discussed in Section
3.3. Sections 3.4 and 3.5 are devoted to almost sure and 6—moment stability, 
respectively. Finally in Section 3.6 the relationships between the introduced 
types of stability as well as general discussion are made.

3.1  D ifferent con cep ts o f  s ta b ility
We define different concepts of stability for the uncontrolled discrete jump 
linear system:

x  (k +  1 ) =  A  (r(k)) x  (k) , k > 0 (3.1)

We discuss the following concepts of stability.

D efin ition  4 System (3.1) is said to be

1 . 7T—almost surely stable (n—ASS), if for all x0 G Rn ,

P* (  lim ||x (iV, x0, 7r)|| =  0 )  =  1
\ N —>oo J

If it is 7T—ASS for all initial distributions 7r then we say that it is almost 
surely stable (ASS).

2. 7r, 6—moment stable (n, 6 — MS), if for all xq G R n,

lim ^  ||a; (Â , ar0, tt) ||6 =  0
N —>oo

If it is 7r, 6—MS for all initial distributions 7r then we say that it is 
6—moment stable (6—MS).

3. 7T—mean stable, if for all xq G R n,

lim E^x (N, xo, 7r) =  0 .
TV—» oo

If it is 7T—mean stable for all initial distributions 7r then we say that it 
mean stable.

The next theorem reduces investigation of stability (where stability is de
fined in one of the ways 1-3) to 7r—stability for each Dirac initial distribution
7T.
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T h eo rem  15 System (3.1) is

1 . ASS if and only if it is tv—ASS for all Dirac initial distributions 7r.

2. <5—MS if and only if it is 7r, 8—MS for all Dirac initial distributions 7r.

3. mean stable if and only if it is 7r—mean stable for all Dirac initial 
distributions 7r.

P roo f. We prove only the first point. The proof of the rest is very similar. 
Implication follows from the definition of ASS. To prove the opposite 
implication let fix an initial distribution 7r and an initial condition x 0 E R n. 
Prom the theorem of total probability we have

Pn ||x (N, x0, tt)|| =  0 )  =

Y , P  (  lim l|z(-W,£0,i)|| =  0 r(0) =  < )p(z) =  ]£ p (i)  =  1.
i e s  v v- +°° /  ; c ci€ 5

It is interesting that problems of ASS and <5—MS may be reduced to 
problems n —ASS and 7r, 6—MS, respectively, for one initial distribution 7r, as 
it is shown in the next theorem.

T h eo rem  16 System (3.1) is

1 . ASS if and only if it is 7r—ASS for certain initial distribution 7r such 
that P ( r (0) =  i) > 0 for all i E S.

2. <5—MS if and only if it is 7r, 8—MS for certain initial distribution n such 
that P (r(0) =  i) > 0 for all i £ S.

P roo f. We prove only the first point. The proof of the rest is very simi
lar. Implication => follows from the definition of ASS. To prove the opposite 
implication let assume that system (3.1) is 7r—ASS for certain initial distrib
ution 7r such that P(r(0) =  i) > 0. Again by the theorem of total probability 
we have

1 =  Pn (  lim \\x (N, x0, 7r)|| =  0 )  =
\ I \ — >00 J

J 2 P i i im ll*W®o,*)ll =  0 r(0) =  *)p(*) (3.2)
f ts  /

By Theorem 15 it is enough to show that

p (  lim ||x(JV,Zo,i)|| = 0  r ( 0) = i  )  =  1\ N —+ oo  /
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for all i E S. Suppose that there exists io E S  such that

P  (  lim ||2 (iV,x0,z0)|| =  0 r(0 ) - i 0 )  < 1.
\ N —> oo J

Then by the assumption tha t P (r(0) =  i) > 0 for all i E S  we have

Y ^ p (  J i m  | | x ( i V , x o , z ) | |  =  0 r ( 0 ) - i | p ( i ) <  X M * )  =  L  

f ts  Vjv^ °°  j  its

This contradicts with (3.2). ■
In the next example we show that Theorem 16 is not true for mean

stability.

E xam ple  7 Consider system (3.1) with S  -  {1,2} 

P  =
1  0  

0  1
, A t  =  1, A 2 =  - 1 .

Then for initial distribution ir : P (r(0) =  1) =  P(r(0) =  2) =  | ,  we have

ETrx(N,Xo,n) =  0, N  > 1 

and this system is n — mean stable. Whereas for initial distribution 

7F : P(r(0) =  1) =  1, P(r(0) =  2) =  0,

we have
E ^x(N , xq, ft) = x0, N  > 1  

so the system is not mean stable even though it is n —mean stable for certain 
positive 7r.

The 8—MS has a kind of monotony property given by the following The
orem.

T h eo rem  17 I f  (3.1) is 8—MS then it is 8'—M S for all 8' < 8.

P roo f. Fix io E S , and consider initial distribution n as follows

P (r(0 ) =  z0) =  l.

If g : R  —* R  is convex and X  is a random variable such that E X  exists then 
by Jensen inequality we have

E iog (X ) > g(Ei0X ).
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Eio ||x (N, £0, i0)||6 >  (E io ||x (N, a:0î ô)||5 ) 

and consequently if
E io | |x ( A ' ' , x o , i o ) | | <5

tends to zero then, so does

El0 ||x(Ar,x0, i o ) f .

3.2 S ta b ility  o f  scalar sy stem s

In this chapter we consider the scalar version of system (3.1). In this sim
plest case we are able to present necessary and sufficient conditions for all 
introduced types of stability.

Fix a positive number S and introduce the following notations

¥><«(*) =  E ( |i ( * ) | , i W iH ))

‘ \ k )

tp(s \ k )  =  :

Ds = diag [|^(*)l*]i=1 

The next Lemma presents a recurrent formula for (p(k).

L em m a 1 For every natural k we have

ip ^ (k  + l )  = P 'D 6̂ 6\ k ) .  (3.3)

P roof. For fixed i £ S  and natural k we have

^ ( f c  +  l) =  E ( |x (/c  +  l ,x 0,io)|'5 l{r(fc+i)=i}) =

E  (|A  (r(fc))|<5 |x (k , x0, *o)|* l{r(fc+i)=i}) =

J 2  E  ( |4  {r(k))\s \x (k, x0, i0)\6 l {r(fc+1)=i}l {r(fc)=j}) =
j £ S
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E  (l® (k, Xq, Îo)| l{r(fe+l)=i}l{r(fc)=j}) —
j e s

\A  O') I6 E  (l* *0, *o)|* l{r (*)=*}) Pji =

J l \ A { j ) \ S ^ 6)( k ) p j i .  
j z s

This justifies (3.3). ■
This technical Lemma enables us to formulate necessary and sufficient 

conditions for 6—MS of scalar systems.

T h eo rem  18 The scalar system (3.1) is 6—MS if and only if

p (P ’D6)<  1.

P roo f. Because of the equality
771 l _  n .  _  _• \ | 6  _  V '

(3.4)

E|x(fc,a;o,io)|S =
jes

and positivity of <pf\k) the 8—MS is equivalent to  the following condition

lim <p̂6\ k )  — 0 .
k —> 0 0

But by (3.3) it is possible if and only if p (P'Ds) <  1. ■
An immediate consequence of the proof is the following remark.

R em ark  7 I f  scalar system (3.1) is 8—MS then for each xq G R there exist 
constants c > 0 and 0 <  a < 1  such that

E \ x ( k , x o , i o ) f  < cak.

R em ark  8 Since for any square matrices X , Y  of the same size we have 
p ( X Y )  = p ( Y X )  and p {X )  = p (.X '), therefore p (P'D S) =  p (P D6).

Another characterization of 8—MS is given by the next theorem.

T h eo rem  19 The following conditions are equivalent to 8—MS of scalar sys
tem (3.1)

1. for all positive numbers Q(i), i G S  there exist positive numbers R(i), 
i E S  such that

{Is -  PDs)
■ R( 1 ) ' ' 0 (1 ) '

. . _ Q(s)
(3.5)



56 CHAPTER 3. STA B IL ITY

2. there exist positive numbers Q(i), i E S  and R(i), i E S  such that (3.5) 
holds.

The proof of this theorem is an immediate consequence of the following 
general result about matrices with nonnegative entries.

T h eo rem  20 I f  A  =  [ a ^  .= 1  n is such that a^ > 0, i, j  =  1,..., n then the 
following conditions are equivalent

1. p ( A ) <  1

2. for all positive numbers Q(i), i E S  there exist positive numbers R(i),  
i E S  such that

(Is -  P D 6)

rH 
 ̂

‘
1

' Q (1 ) '

1--
---

-

1- . Q(s) _
(3.6)

3. there exist positive numbers Q(i), i e  S  and R(i), i e  S  such tha t (3.5) 
holds.

P roo f. Suppose that p (A) < 1 . Fix positive numbers Q(i), i E S  and define

Q( i)
Q =

L Q(s) .
(3.7)

According to the assumption that (I  -  A)  is invertible and it implies that

( /  -  A) = A n.
7 1 = 0

If we define

R  =

by

then R(i) > 0, i £ S  and

Д(1)

R(s)

OO

R  = E A nQ,

E R s, (3.8)

n = 0

( /  -  A) R  = Q.
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The implication (2 =»• 3) is obvious. Suppose now that there exist positive 
numbers Q(i), i E S  and R(i), i E S  such that (3.5) holds. Then with the 
notation (3.8) and (3.7) we have

(I -  A) R  = Q.

and consequently
A R  = R  -  Q < R, (3.9)

where the last inequality is understood as inequality for all coordinates. Now 
we use the following fact about a matrix with nonnegative entries (see [56]). 
If A  is a matrix with nonnegative entries and x > 0 is such that Ax < ax,
then p (A) <  a. This fact together with (3.9) implies that p (A) < 1. ■

In the next theorem we present necessary and sufficient conditions for 
ASS for ergodic Markov chain.

T h eo rem  21 Suppose thatr{k) is ergodic with limit distribution tv =  (7ti)ieS ■ 
Then the scalar system (3.1) is ASS if  and only if

|A ( i ) r ... |Л М Г  <  1 . (3.10)

Moreover, i f  (3.10) holds then x(k,  x0, i0) tends to zero at an exponential rate.

P roof. Denote by r;(fc) the time of the Markov chain r(k) being in state 
г € S' up to moment k, i.e.

к

Ti(k) =
1=0

By Theorem 59 we know that

T i ( k )  lim —-— =  7Tj.
k—> 0 0  К

Therefore for each t0 6 S

hm iln|®(fc,a:o.*o)| (|-A(l)|ri(fc)... |A(s)|Ts(fc)) =

lim In (|A(jf)|) =  J2  *3 ln ( M M
k^°° jes k jes

and it is clear that if (3.10) holds then lim \x(k, xq, го) | =  0 a.s. and the
к —►oo

convergence is at an expotentional rate. Moreover, if |^4(1)j71̂1 ... ^ ( s )!^5 > 1,



then lim \x(k, x0, io) I =  oo. To complete the proof it is enough to show thatk—too
if

| ^ ( i ) r . . . |A ( s)r* =  i  (3.11)

then
lim sup |x(A;, xo, io)| =  oo.

fc—>00

Suppose tha t (3.10) holds. Then, we have

X > i M W ) l )  =  ° (3-12)
j€ S

and also
x(k  +  1 ) =  |A (l)|Tl(fc)... |4 (« ) p (fc) |x(0)| =

I®(0)1 exp ( J2 1W0=J}ln (W ) l ) ) =
\ jeS i=o )

|x(0)| exp ( 5 Z ^ l M 0=j}ln(|A 0 ) |) j  . (3.13)
\i=o jes )

By Theorem 60 we conclude from (3.12) that

( S t o S j € » l « l ) - « l n  (1X0)1))

1T " P  v s m i i w  =  *■ a -s -

for certain positive constant a. Thus

N

hmsup ]T  1 M0=j} ln ( № ) l )  =  °°> a-s->
N-*oo t=0 j€ S

and consequently by (3.13) we conclude that

lim sup \x(k, Xo, io)| =  oo.
fc—>oo
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In the rest of this section we assume that r(k) is ergodic with limit dis
tribution 7r =  (7Tj)ieS. Denote by r(k), k — 0,1... sequence of independent 
identically distributed random variables such that

P  (r(0) =  i) = 7Ti, i 6 S.
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Of course r(k) is also an ergodic Markov chain with transition probability 
matrix

7 T j . . .  7Ts

p =  ; ;

TT\ . . .  7Ts

and limit distribution 7r =  ■ Together with (3.1) we will consider a
scalar system governed by r(k) and given by

x ( k  + 1) =  A( r ( k ) ) x ( k )  , k  > 0. (3-14)

Theorem 21 says that (3 .1 ) is ASS if and only if (3.14) is ASS. Such an 
equivalence is not true for 6—MS as the following example shows.

E xam ple  8 Consider system (3.1) with S  = {1,2},

P  = , Ax =  a, A 2 = b.

The limit distribution is tt : tt\ — -jj, ir2 = For (3.14) we have

En \ x ( N , x 0 , 7 t ) \ s  =  (Ev |,4(r(0))|5) ^  1 x0 = {\a\s nx + \b\s x0,

and therefore (3.14) is 6—MS if  and only if

By Theorem 18 system (3.1) is 6 - MS if and only if

(3.15)

1  >  p(PDg) =  p I  a6 J bs 4 4

I  w 6 + 1 + à \ / ( 16 |a|25+ 26416,5 |a|* f  9 |fe|26)-
For 6 = 1, a =  2, b = 0.1 we have |a |6 ^  +  |è|Â -pf — 1.1 > 1 and

± |a |fi +  ^  \bf + ^ y ( l 6 |a |26 +  264|&|*|a|fi +  9 \b\2S) = 0.7963 < 1.

Therefore (3.1) is 6—MS whereas (3.14) is not 6—MS.

The next theorem describes the relationships between S—MS and ASS.
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T h eo rem  22  Suppose that r(k) is ergodic. The scalar system (3.1) is ASS  
if  and only i f  it is 8—MS for certain 6 > 0 .

In the proof of this Theorem we will need the following Lemma from [46]. 

L em m a 2 For n > 2, let

-  Hx H2 •  •  •  Hn ]  ,

where Hj is the j th  column of H. Let 6 =  [ 1 1 ••• 1 1 £ R n. Suppose
that the entries of H  satisfy hi > 0, hij > 0, and J2m^i'lim <  K  for all
i , j  = 1 , ...,n  with Yl,m+i him < hi for some i. Then

1. det H  = (—l )nr] for some rj > 0

2. det [ Hi . . .  Hj- i  b Hj+ 1 . . .  Hn ] =  (—l) n - 17 j for some 7 j  >  0
and all j  =  1 ,..., n.

P roo f. Suppose tha t the system (3.1) is 6—MS then according to Remark 7

OO

< 00 .
fc=0

Let
£ =lim sup \x (k, x0, z0) | ,

k —*00

then from Markov’s inequality, we have tha t for any c >  0, the following 
holds

/ O O O O  \

P ( £ > c )  = P l f )  1J {w : |x (m ,x 0, i0)| >  c} I <
\ n =  1 m = n  J

0 0  / 0 0  \

P  ( U  '■ \x(rn ,xQ,i0)\ > c} I <
m = n  \m = n  J

0 0  I  0 0

P ( { u  : |x(m,a:o,io)| >  c}) <  — E  \x (m ,x0, i0)\S n=+° 0 .
m=n ^ m =n

Thus with any c >  0, P (£  >  c) =  0 and therefore P  (£ = 0) = 1. This
provides that system (3.1) is ASS. Now we show that ASS implies S—MS for
certain 6 > 0. For that purpose we will point 3 of Theorem 20. Namely we

r  - Ä 1

hni

h n  ■ ■ • h i n 
—h2 • • • h2n

hn2 ■ ■ ' hn
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show that for certain 6 > 0 equation (3.6) with Q(i) — |vl(i)|‘5 has a positive 
solution R(i), i € S. Multiply from right equation (3.6) by Dg1 to obtain

T , ( 6a \A (i)\~6 - P a )  R(j)  = i , i e S .
j z s

(3.16)

If we denote 

then we have

- 6

lim =  0
s Z 0  6

and equation (3.16) may be rewritten as follows

X )  ( % ■  +  (S]n | A ( z ) |  +  Oi(S)) Sij) =  - 1 ,  

i e s

where — Pij — Sij. Since

P'

(3.17)

7Ti " 7Tl

. 71-3 . . ^  .

therefore

Q'
TTl

7r .

=  0 , (3.18)

where Q =  [qlJ]l =1 s, and consequently det <5 =  0. Denote by Qi the matrix 
obtained by striking out the z-th column and z-th row of the matrix Q. 
Equation (3.18) implies that rankQ = s — 1, and therefore there exists zo € S  
such that OiiQ ^  0, where a r =  det Qz. Notice that equation (3.18) may be
rewritten as follows

Q'i*0

7Tl - V i o l

io
Qio 20—1

"̂io+1 Qiq io+1

Qi0 s

and by Cramer formulas we have

^"*0 • Qn j  =  — o ij, j  e  s .



The ergodicity assumption implies tha t ttj > 0 and this in turn implies in 
light of the above formula that ctj ^  0 for all j  G S  and that the ratio

— =  constant (3.19)

is constant. Observe tha t matrices Qj, j  & S  satisfy the assumption of 
Lemma 2 and therefore

a { = ( - l ) s_1Ci.
This together with (3.19) implies

cti =  (—l) s - 17riC, i G S

for certain positive c. Using this equality and the properties of determinant 
we obtain

det [qij +  (filn |i4(i)| +  <*($)) 6ij]iJeS = J2  (^ ln M O I +  °«(^)) a* =
ies

f o ^ ^ l n  |A(i)| +  o(8), (3 .20)
ies

where

l i m ^  =  0 .«-»o 8
ASS implies th a t 7Tj In |^4(i)| < 0 and by (3.20)

det [qij +  (6 In |4 (i) | +  Oi(6)) 8 i j ] i J e S  ±  0 

for small 8 , therefore (3.17) has a unique solution given by

z>(i\ _ ___________— det Fj (8)___________
det [qij +  («5In |i4(f)| +  Oi(6)) 8ij]i jeS ’

where Fi(8) is the matrix obtained by replacing zth column of 

[qij +  ( 6 In |A (i) | +  O i ( 6 ) )  8 i j ] i  j & s

by 1 1 • • • 1  j . Denote by Gi the matrix obtained by replacing zth

column of Q by f 1  1  • ■ • 1 1 . Again by the properties of determinant we 
have

det Fi(8) = det Gi +  o(l).
Moreover by Lemma 2 we have

detG j =  (—1  )s- \
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for positive 7 i and therefore

R(i) =
det [q^ +  (<51n|A(z)| +  Oi(6))

-  ( ( - l j - ^ i  +  o ( l) )  >Q
^ c E i € S 7r* l n l'A (0 l + ° ( 5 )

for small 8. ■

3 .3  M ean  square stab ility
In this paragraph we study the special case of 8—MS, namely the case of 
8 = 2 called in the literature mean square stability. This type of stability 
deserves special attention for the following two reasons. Firstly, mean square 
stability is the only case of 8—MS for which there exists testable necessary 
and suficcient conditions due to possibility of using the stochastic version 
of the Lyapunov’s second method. Secondly, mean square stability play a 
crucial role in one of the most important optimal control problems namely in 
linear quadratic control problem. This is demonstrated in the next chapter.

The following necessary and sufficient conditions for second moment sta
bility of jump linear system have been proved in [61].

T h eo rem  23 For system (3.1) the following conditions are equivalent

1. system (3.1) is mean square stable

2. for all xo G Rn and there exists a constant c such that

OO

E r ( 0 ) = i 0 ||x(iV, X0,z0)||2 < C, for all i0 G S
N = 1

3. for all xo G R n there exist constants c > 0 and 0 < a < 1 such that 

r (o)=Erio)=i0 ||x (N, a?o,zo)||2 < caN, for all i0 G S  and iV =  0,1,...

4. for each symmetric positive definite matrices Qi, i G S  there exists 
solution Hi, i E S  of the following coupled Lyapunov equation

i A  = Qi, i G S. (3.21)
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The third point of the theorem brings testable conditions for the second 
moment stability. Next theorem, which is taken from [24] describes mean 
stability in terms of spectral radius of the following matrix

Ad = (P' 0  In2) (diag (A{ 0  Ai ) ) , 

where X  0  Y  is the Kronecker product of matrices X  and Y.

T h eo rem  24 System (3.1) is mean square stable if and only if

p(Ad) <  1. (3.22)

Condition (3.22) requires calculating of eigenvalues of the matrix which 
is of very high dimension (sn2). Therefore one may be interested in sufficient 
conditions which are given in terms of matrices of lower sizes. The next 
theorem supplies such a condition. Denote by Ai(X) the largest eigenvalue 
of symmetric matrix X.  Denote the set of all eigenvalues of a square matrix 
X  by a ( X ) . The following properties of Kronecker product are used in our 
further consideration. The proof may be found in [75].

T h eo rem  25 I f  A \ and A 2 are m x m and B \, B 2 are n  x n then we have

(A-[A2) 0  (B \B 2) =  (Ai 0  B{) (A 2 0  B 2) . (3.23)

Moreover, for a complex polynomial p(x , y) =  Y%i=o ckixkyl of two variables
and for square matrices A  and B  we have

a ( cu A>C ® &  ] =  {P(x > y ) : x e < r ( A ) ,  y G <r(B)} . (3.24)
\k,i=o /

T h eo rem  26 The discrete time jump linear system is stable if

i= i

In the proof we need the following lemma from [83].

L em m a 3 Let X , Y , Z  G R nxn with X  = X \  Y  =  Y '.T hen the following 
inequalities hold

Ai {X  +  Y ) < Ar (X) +  Aj (Y ) , (3.25)

max0 |Ai(Z)| <  y / x^ZZ ' ) .  (3.26)
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P roo f. Prom the properties (3.23) of Kronecker product we have

( A A ' )  ® (AiA') = (Ai 0  At) (Ai 0  Ai)' (3.27)

This together with definition of Ad implies

A ,A 'd = ( P P )  ® ( p  ( ( A 4 )  ® (A A )) )  ■

By (3.24) the eigenvalues of X  0  Y  are equal to \ i (X)Xi(Y) ,  and therefore
the spectrum a (AdA'd) has the following form

|a * ( P P /)Ai ( j 2  ( ( ^ 4 )  ® ( 4 4 ) ) )  •• 1  < A: < n, 1  <  / <  n2 j  . (3.28)

(3.27) shows tha t (A 4 ) 0  (4 4 ) is symmetric and nonnegative definite so 
we can use (3.25) to obtain

A, ( E « A A ) ® ( A A ) ) )  < E A i ( ( A A ) ® (A A ))  (3-29)
\i=l / i=1

Applying (3.24) again we get

Ai ( ( 4 4 )  0  ( 4 4 ) )  =  A? ( 4 4 )  (3-30)

Using (3.28), (3.29) and (3.30) Ai (AdAI^con be bounded as follows

Ai (AdA'd) < Xi(PP')  £  A2 (A A 'i) . (3.31)
2 = 1

Now from (3.26) and (3.31) we obtain

max |A<(Aj)| <  Ax (AdA'd) < . 
2= 1 , ...}8 \

A i(P F )E A ?  (AA'i).
i=  1

The proof is complete. ■
The coupled Lyapunov equation (3.21) plays a crucial role in mean square 

stability of jump linear systems. Therefore now we present some of its prop
erties.

The first result shows that (3.21) can be derived in four equivalent forms. 
This theorem has been shown in [24]. To present this theorem it is convenient 
to introduce the following notation. For any matrices Li, i G S  of size n x n 
let S

T\j (Li, ...,L S) = y^pijAjLjA'i
i= i
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T2j ( Z q , Ls) — 'Y^pijA!iL jA i 
j=1

T3j (L i , ..., Ls) = Y^P ijA jL iA j 
2 = 1

T ij (Li, •••, Ls) = Y^PijA’jLjAj
j = i

T h eo rem  27 The following conditions are equivalent to mean square stabil
ity o f system (3.1)

1. For some positive definite Hi, i e  S  and Qi, i £ S  and some integer 
1 <  rj < 4, we have

Hi - T vi (H1, . . . ,Hs) = Qi.

2. For any positive definite Qi, i £ S  and any integer 1 <  r/ <  4 there are 
unique positive definite Hit i £ S  such that

Hi -  TVi (H i, ..., Hs) = Qi.

For rj = 2 we obtain equation (3.21).
In real world the model parameters of the system are not known pre

cisely, for example they come from certain estimation procedures. In such 
situation we are interested in the difference between the solution with true 
parameters and the solution with approximate ones. In the next theo
rem we present upper bounds for the norm of this difference in terms of 
degree of accuracy of the coefficients. This theorem is taken from [35]. 
Similar results for continuous time case may be found in [37]. To present 
this result let introduce the following notations. In the space made up of 
all s-length sequences of matrices H  = ( H i , H s) of size n x  n  we con
sider the following three norms ||t f  ||j =  £ ‘=i M , II#ll2 =  \/U = i \\Hi\\2, 
ll^lloo =  m ax{ |№ || : i — 1 , •■■,'S} , where ||ifj|| is the operator norm of Hi.

T h eo rem  28 Suppose that system (3.1) is mean square stable. Let H  =  
(H i, ..., Hs) be the solution of (3.21) for certain positive definite matrices Q =  
(Qi, . . . ,QS). Suppose that A  =  ( A i , ..., A s) andQ = (Qi , ..., Qs) are perturbed 
by matrices A A  = ( A A ,  ..., A A S) and A Q = (AQU ..., A Q S) , respectively, 
such that Qi +  A Qi; i £ S  are positive definite and system

x (k +  1) =  (A (r(k)) +  A^4 (r(k))) x  ( k ) , k >  0
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is mean square stable. Then the disturbed Lyapunov equation

Hi -  (Ai + A A <)' ( i > A j (A  +  A A ) =  Qi + A Qi, i e  S.

has a solution Hi =  Hi +  A Hi and we have

\\H + AH \\2

IIA gIL
||Jf +  A ff ||c

<  M l  „ \ / S  K ,

< H K aoo I -̂ voo

ii< 3+ a q ii ,

IIAQIU
|| Q + AQ\\2

IIA Q IL  

WQ + WWoo

+ b  ,

+ c  ,
where

A = Y1  ||A A ||(2 ||A || +  ||A A ||) max {pij
.—f  J —1 »•••»"
2 = 1

B =
\

y :  IIAAII (2 II All +  l|AA
i=1 \

Y ,P ij
J= 1

C  =  max IIAAII (2 ||A || +  ||A A ||)

and Hi, i £ S  is the unique solution of (3.21) for Qi = I, i £ S  and

^ i  =  E ( i  +  IIA +  AAII2) ,
i=1

Ko = Y  ( l  +  H A  +  A A I I 2) 2, Koo =  m a x s ( l  +  | | A  +  A A | | 2)  •

For the standard Lyapunov equation many bounds for the solution are 
proposed in the literature. The surveys of such results can be found in [87], 
[67], [74], [30]. The reasons that the problem to estimate upper and lower 
bounds of these equations has become an attractive topic are that the bounds 
are also applied to solve many control problems such as stability analysis [77], 
[91], time-delay system controller design [86], estimation of the minimal cost 
and the suboptimal controller design [76], convergence of numerical algo
rithms [2], robust stabilization problem [20]. Eigenvalue bounds can be also 
used to determine whether or not the system under consideration possesses 
the singularly perturbed structure. An excellent motivation to study the
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bounds together with a survey of results for Lyapunov equation is given in
[52] (Section 2 .2). The authors advocated the results in this area by saying 
tha t sometimes we are just interested in the general behavior of the under
lying system and then the behavior can be determined by examining certain 
bounds on the parameters of the solution instead of the full solution. The 
result of this kind for coupled Lyapunov equation is presented now. Here 
we assume that for a symmetric matrix X  of the size n x n the eigenvalues 
Afc(X) are numerated in such a way that

Ai (X ) > \ 2 ( X ) > . . .  > A n (X ).

T h eo rem  29 For the eigenvalues Xk (Pi), k =  1  , ...,n ,z € S  of positive 
definite solution P i,i G S  of (3.21), the following inequalities hold

E A fc( P i) < E A fc( Q i) +
fc=i fc=i

^ ( Qt —  <3-32)J 1 -  max Ai (AjA'j) max ZiesPij

for I = 1 , if  max; Xi (AjA))  max E iesPij <  1 , and
j £ S  \  j £ S

I I

^ n - k + 1  ( P i )  >  5 2  An-fc+1 ( Q i )  +
fc=1 fc=l

( min Pij] min A„ ) ------~ ^ s E/ =1 Ara~fc+1 (Qi) , (3.33)
U s  p ’)  * s  >) j .  ^  An (A jA'j) nun EissP ij K ^

for I =  1 , ...,n , i f  min Xn (AjA' )  min EiesPij < 1 -

In the proof we need the following result from [83].

L em m a 4 Let X ,  Y  6 R nxn with X  = X ', Y  =  Y7, X, Y  > 0. Then the 
following inequalities hold

k +j- i  ( X Y )  < Xi(X)Xj ( Y ) , i f i + j < n + 1 (3.34)

Ai+j-n. (XY) >  Af(X)Aj (Y ), i f  i +  j  > n  +  1 (3.35)

E  Afc (X +  Y)  < J 2  Afc (X) +  £  Afc (y ) (3.36)
k = 1 fc=l fc=l

i I I

52  An-fc+i ( x  +  y )  >  5 2  An—fc+i P 0  +  E ^ - * + i O T -  (3.37)
k=  1 fc=l fc=l

3.3. M EAN  SQUARE STA B IL ITY  

P roo f. Denote
F i  =  5 2  P i j P j

j£ S

From (3.21) it follows, by using (3.36) and (3.34), that

E  a ,  ( « )  <

E M « 0  +  E  ** № 4 )  =  E A*№<) +  E A*
fc=l fc=l fc=l fc=1

<  1 2  A f c  ( Q , )  +  A ,  ( A A ' )  5 > ( F ) .

l 

1
fc=l * = 1

Applying (3.36) to (3.38) implies

E A k № ) < E f p « E A* (p>)'
*•=1 i e s  \  fc=i 'fc=l j€ S  \  fc=l

Combining (3.39) with (3.40) yields to

E M f i ) <
fc=l

5 2  Afc (Q i) +  max Ax 5 2  ( p #  1 2  A fc (P i ) )  •
fc=i jes V fc=i /

Summing up the above inequality over i 6 S' we have

E E M * ) : s E I > « < ) +
ies fc=i ies fc=l

2

max Ai ( A j A ' j  ) E E  P ij 1 2  Afc №/)
J'eS  v i e s  j€ S  V fc=i

E  E A* W<) +  ■ w Ai E  (  ( E p<>) E  № )
f e w  » s  ' f c l

E E A* W<)+ T S 1 Al ^  fe1 S?,i) § £  (P,)
ieS fc= i

(3.38)

(3.39)

(3.40)

(3.41)

69
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Solving this inequality with respect to E ies E L i  ^k (Pi) and taking into 
account that

max Ai (A j A ' )  max E ^ j  <  1
i£ S

jes

we obtain

E  E  A* (Pi) <  ~ eg/ E ^ \ Afc {Ql) . (3.42)
i€Sk=i 1 -  max \ i  (AjAjJ  max EiesPij

(3.39) implies also that

E  A* (Pi) <

E  A* (Qi) +  (AiA'i) ( e  (pH E  A* № •))) <
k=i \ jes \  k=l /  /

*  ̂ /  \    i

E  Afc ( Q i )  +  ( Pi j  A i ( A A ' )  E  E  A* ( P i )  • ( 3 -4 3 )
k=l V J '  j€S' fc=l

Applying (3.42) to the right hand side of (3.43) we have (3.32).
To proove (3.33) observe that the use of (3.27) and (3.35) to (3.21) gives

i i i

E  An-fc+l (Pi) ^  E  A«-fc+l (Qi) +  E  An-fc+l (A'iFiAi) =
fc=1 fc=l fc=l

I I

E  An-*:+1 (Qi) +  E  ^n—k+l (F{AiA't) >
k=1 fc=l

I I

E  A«-fc+i (Qi) +  A„ (AiA'i) E  ^n-fc+i (Fi) >
k= 1 k= 1

i i
E  An-fc+i (Qi) +  nun An (AjA'j) J 2  K - k +1 (Fi) . (3.44)
k=i k= 1

Summing (3.44) over i E S  we have

E E An -fc+i (Pi)>
i € S  k=1

I I

E E A» -fc+i (Qi) +  min An E  E  An-fc+i (- î) • (3.45)
i€5fc=l i€5 fc=l

Applying (3.27) to  (3.38) leads to

E  K - M  (Fi) >  E pv  E  V w  (P i) . (3.46)
fc=l J'6S k=l

Combining (3.45) with (3.46) yields to

E  E  An~k+i (p^ - E E  A«-fc+i (Qi) +
i e s  k= l  ie s  k= l

x„ (AjA'j'j e  f  E  Pv E  Â -fc+i (-fj) ] =
i e s  y e s  fc=i /

i
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min A„
j e S

E  E  A«-fc+i (QO +
fc=l

min An (Aj  x ; ) e ( ( e p « ' ) e  An—fc+i (Pj)
j € S  je S  \  \i€ S  /  fc=l

E  E  A«-fc+l (Qi) +
i€S  fc=l

I

min An (A  4 )  min E ^ j  E  E  An—fc+i (Pi)-
i€S  i€Sfc=l

Solving this inequality with respect to E ies Efc=i An-fc+i (Pi) and taking 
account that

we obtain

into

min An (AjA'j ) nun E ^  < 1
j e s  v j z s  ,e5

E E x - w ( p , ) > - - ^ s f % % i±L^ — - (3-«)
f t s ^ i  1  -  mm An (A,-A'- J nun E ies Pij

Combining (3.44) and (3.46) we conclude that 

I i

E  A™-fc+i (Pi) — E  An —fc+l (Qi) "t"
fc=1 fc=l

Applying (3.47) to the 
(3.33). ■

/  \  1 
( min p^  ) min An (Aj A ' )  E  E  A«-fc+i (p i) •
V j e s  V  j e s  V

) to the right hand side of the above inequality we obtain
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3 .4  A lm o st sure s ta b ility

It is well known that in practical applications, what is observed is sample 
path behavior rather than moment behavior, therefore almost sure stability 
is much more desirable than any moment stability. However, the analysis 
of almost sure stability is much more difficult than moment stability, this 
is why in the literature there are much more results for moment stability 
(especially second moment stability). Although moment stability, as we will 
see, implies almost sure stability, the stability criteria for high moments (say, 
second moment) as almost sure stability criteria are too conservative to be 
useful in practical applications. Prom our discussions in Section 2.2 about 
one dimensional systems, we know that almost sure stability is equivalent to 
stability of certain small moments. Therefore it is reasonable to use lower 
moment stability to study almost sure stability. In this section, we will devote 
our effort to the study of almost sure stability.

When relations between ASS and stability of matrices A x are considered 
the first impression could be tha t if each matrix A, is stable then system 
(3.1) is ASS. The next example shatters this expectation.

E xam ple  9 Consider system (3.1) with n =  2 , s = 2,
1
2 
0

,a 2 —
n

Suppose that the Markov chain has the transition matrix of the form

P  = 0  1 

1  0

Then for initial distribution ir : P ( r (0) = 1) = 1 we have
N

x (2N, Xq,7t) =
0 I I  I

Xq -

1  I
!  I
3 15

N
X q .

Because matrix
1  1 
5 I
3 15

has eigenvalue ^  +  ^V T l5  > 1 , therefore

Jirn^ ||x(27V,x0,7r)|| - oo,

for xq ^  0 and by Theorem 15 this system is not ASS, although both A± and 
A 2 are stable.
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Quite opposite situation is also possible e.i. each matrices Ai are unstable 
but the system (3.1) is stable. This is demonstrated in the next example.

E x am p le  10 Consider system (3.1) with n  =  2, s = 2,

2 1 \ 2 o '
A ,= 6 3

IIcs

----
1

O

1
j

Suppose that the Markov chain has the transition matrix of the form

P  = Pll  P\2 
P2\ P22

where pij > 0 for all i , j  e  {1,2}. Observe that

A \A 2 — 0

Then for initial distribution n : P (r(0) =  1) =  7Ti >  0, P(r(0) =  2) =  7r2 >  0 
we have

Pn (x (N  +  1, Xq, 7r) =  0) =  1 for N  > t ,

where

Since

therefore

t — min {A; : r(k  +  1) =  2, r(k) =  1} . 

Ptt ( t  <  oo) =  1 ,

Pr (  lim x ( N , x 0, tt) =  0̂ ) =  1\N—*oo J
that means that the system is re-ASS. By Theorem 16 it is ASS, even though 
both A \ and A 2 are unstable.

To understand the possible difficulties arising in the analysis of ASS better 
consider the following example.

E xam ple  11 Consider system (3.1) with n  =  2, s =  2,

A( 1) =
0 a 
b 0

,A (  2) =
a  0

0  /3

Suppose that the Markov chain has the transition matrix of the form

P  =
0  1

P 1 ~ P
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Then

and

p n  __
P + ( - P ) n

1 +P
-n- l + ( - P ) n- p - 1+p

- 1 + ( - p ) n
1+p

l + p ( - p ) n 
1 +p

p n
1

1 + p  1 +p

. 1+ p  1+ p

Consider the initial distribution : P  (r(0) =  1) =  1. Let 0 =  T\ < r 2 < ... 
be the times n with r(n) = 1 and

Vk = Tk+1 -  r k -  1, k  =  1,2... .

In this notation r k is the moment when r[n) visited state 1 for the k-th time 
and r]k is the time of being in state 2 after k-th visit in state 1. Then for 
each I £ N  there exists exactly one k (I) such that r k(i) <  I < r k(i)+i- With 
this hint we have

i

X ( l ) := n ^ ( r W) = A( l )A^(2)A( l ) . . .Ar'k~' (2)A{l)Al- Tw(2) ,
2= 0

because, according to the structure of P  we know that after each visit in state 
1 the chain goes to state 2. Observe that

A ( l )A m(2) = 0 aßm 
bam 0

and hence

X( l )  =

0 di(l)
d2{t) 0 

d3{l) 0
0 d4{l)

for k(l) = 2s(l) +  1 for some s E N  

for k (I) = 2s (I) for some s £ N

where
di(l) =  Gs(0+ V (0q,E‘S  vh- i j3l~Tm

d2(l) =  asW6s(i)o:S‘=i_N2<̂ E ’=N2<- i Q,i--rfc(o 

d3(l) - as(i)^(0a E ’=l_1 ̂ / j E 'S n2i-ia i-Tk(i)

dA(l) = as{l)bs{l)a ^ ‘=i ̂ - i  ̂ E 'S “ 1 p l~Tm)

Prom Theorem 59 in the Apenndix with function f  given by / ( 1 ) =  0 and 
/ ( 2) =  1  we obtain

E i= i  n i a .c

k—>oo 1 + p
(3.48)
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and therefore
v ^ s ( 0  „  \
2-,i= 1 V2i —1 a ç  ±

I l->oo  2  ( 1  +  p )

v ^s(0 _ 1  v  1
JL i= 1 T/2i ax

/ I *oo 2 (1 +  p)

We also know ([50], Lemma 12, p.85)

k ( I ) a.c P

(3.49)

(3.50)

and

therefore

I l—*oo 1 + P

T  k(l) a .c  i 

I I—>oo ’

PS ( 0  a .c  

l î->oo 2 (1 + p )

i 2  ̂fc(Z) a x
/  I—*oo

0

(3.51)

(3.52)

Using these we get

a ®(0+! {,*(*) a E *= i ß E ’=l ß l Tm

p . . 1

a.c  

I—>oo

■ In |afe| + • In |a/3|
2 (1 +  p) ' 2 (1 + p )

and the same limit have all the other logarithms of the nonzero entries of 
X(l).  So the sufficient condition for 7rx—ASS is

It is also clear that if

|a,6| 2(i+p> \aß\ ïCi+pi <  1 .

|a6| 2(!+p) |cc/3| 2(1+p) > 1

then ||X(Z)|| ^  oo and the system is not tt\-A S S .  The case
I —*  OO

| a 5 | 2(i+P) | a / 3 | 2 ( i+ ^  =  1

requires further investigations.
Consider now the initial distribution n2 is P  (r(0) =  2) =  1.

ir
i=o

x ( l )  : = I ] i ( r ( i ) )  =  AVl(2)A(l)A 'l2(2)A(l)...,
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because of the structure o f P. Now we have

A m(2)A(l) = 0 a ma 
(3mb 0

and hence

X( l )  =

where

0 dx(l)
d2(l) 0 
d3(l) 0

0 d4(l)

for k(l) =  2s(l) fo r some s £  N  

for k (I) = 2s (I) +  1 for some s £ N

dx(l) =  as« + v 2l/3i - r fc(i)

d2(l) = a < % ^ +1a ^ l ~ \ , ip Z : ^ v 2i- la i-rk(l)

d3(l) = as^ b s^ a ^ i= i  1 ’»»-i /3E,’=! V2ia i-Tk(l)

dA(l) = a3̂ b s^ a ^ = l  /jE 'i 'i-1  ̂ i- i p l~Tk(i)

Using (3-48)-(3.52) we get

7 to
o '< 0 6 « i ) + i a E £ > - ‘ t o  t o - . a i - r . r o a.c 

I—too

p
2(1 + p )

In |a6| + •In |o;/3|
2 (1 + p )

and the same limit have all the other logarithms of the nonzero entries of 
X(I).  So the sufficient conditions for n2—A SS  is the some as for 7rx—ASS.  
We also know that if

|a fc |2 (i+P) |ck/312 (i+p) >  1  

then the system is neither 7Ti —ASS nor -k2—ASS. The case

|a.6 | 2<1+p) |a/3 |2(i+pT  =  1

requires further investigations. By Theorem 15 we conclude that the system 
is A SS  if

\ab\ 2(!+p) \ot(3\ 2(!+P) < 1 .
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Now we present several sufficient conditions for ASS. To present the first 
result let introduce the following notation. For a positive integer v we define 
the stochastic process rv(k), taking values in S v, as

rv(k) =  (r (kv -1- v — 1) ,..., r (kv) ) , k =  0 ,1 , ... .

Clearly rv(k) is a Markov chain and for iv, j v £ S v,

iv =  (iv—1) •••) *o) , jv  =  (.jv—1) Jo) i

the transition probability of rv(k) axe

P (iv, jv) — P  {rv(k "h 1) =  jv  |̂ 1>(̂ 0 =  iv ) =  

P ( iv - l , j o ) p ( j o , j l )  - P ( j v - 2 , j v - l )  ■

Suppose that the Markov chain is ergodic then there exists a limit distribu
tion:

Um p ( n , i , j ) = i r j

and therefore
l i m p ( n , i v j v )  =  7r~v ,

where
7IX  =  * j a P ( J o J l )  " ' P  ( j v —2 ,  j v —l )  •

Now for all iv € S v, iv = (iv- i, *o) we define

A i v =  A i v_ 1. . .A i 0 .

T h eo rem  30 [24]Suppose that the Markov chain is ergodic. I f  for some 
positive integer v and some matrix norm ||*|| we have

n il I I7

l k  i l ,v < 1

then system (3.1) is ASS.

The next result is taken from [42].

T h eo rem  31 I f  there exist positive definite matrices Qi} i £ S  such that

A  ( X'A>iQj A ix \ K  ,  ,
f f i f l r s a r - J  <1'

fo r all i £ S  , then system (3.1) is ASS.
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The last theorem has been generalized.. To present this generalization 
we introduce the following notations. For positive integer m, sequence Q =  
(Qi, •••, Qs) of positive definite matrices of size n  x  n ,  vector x  G R n and 
states G S  denote

v ( i , m , , j 1, . . . , jrn, Q , x ) =  

x'A'iA ,j l ...A,jrn_1QjmAjrn_1. ..An  A lX \  «fa
x 'Q i X

and

r  ( i , m , Q , x ) =  n II -  II
Jl=l .72=1 jm = 1

The following generalization of Theorem 31 has been proved in [79].

T h eo rem  32 I f  there exist positive definite matrices Qi, i G S  and positive 
integer m  such that

sup T (i , m, Q, x) < 1 , 
ll*ll=i

fo r  all i G S  , then system (3.1) is ASS.

The fact tha t Theorem 32 is a generalization of Theorem 31 is demon
strated in the next example.

E xam ple  1 2  Consider system (3.1) with n =  2 , s =  2 ,

>1 ( 1 ) =
y/2 0 
0 a ,A (  2) = a 0

0 y/2

with a > 0. Suppose that the Markov chain has the transition matrix o f the 
form

'  0.5 0.5 
0.5 0.5

Let try to use Theorem 31 with Qx =  Q2 = I • Then

P  =

sup
j = i

x'A'xA xx \ Pli
x 'x =  sup 

11x 11=1

x' [ 2 0

0 a? X

>
x 'x

' 1
/ 10CM1

' 1  '
0 0 a2 0

'  1  '

/

'  1  '

1--
---

---
---

O

1--
---

--

1

O

1

=  2

and we can not say that the system is stable. When we use Theorem 32 for 
m  = 2 with the same Qx and Q2 we have
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f l f l  ( \ PuPl j
11x11=1 ' ’ ' ’ ' x 'x  )  =  2 \ /2a

and

sup
11* 11=1 J= \ 2 = 1

A  A  ( x lA'2A',A,A2x \ n m ‘ r
" P . n n  J x ) = 2^ “ -11*11=1 j = 12=1 \  x x  /

Therefore this system is stable for

V 2
a < 4

(3.53)

Notice also that in this case Theorem 32 gives also necessary conditions for 
almost sure stability. It is not difficult to observe that stability of the system 
is equivalent to stability of one dimensional system

x(k + 1 ) =  a(r(k))x(k)

with a(l) =  a and a(2) =  y/2. Because in our case the Markov chain is 
ergodic with limit distribution

7T : 7Ti =  7T2 =  0.5,

therefore by Theorem 21 it is stable i f  and only i f

1  >  1 0 ( 1 ) 1-  | a ( 2 ) | -  =  ( a ) 0 *5  ( x / 2 ) “ ' 5

and this is possible only if (3.53) holds.

Another sufficient conditions for ASS may be obtained from our consid
eration about one dimensional systems. It is given in the next theorem.

T h eo rem  33 Suppose that the Markov chain is ergodic with limit distribu
tion

(7Ti, . . . ,  7Ts )

and suppose that for certain matrix norm ||*|| with the property ||XY|| <  
||X || ||F || we have

I I A i r  | | A p . . . | | A i r  < 1 .

Then system (3.1) is ASS.
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P roo f. By the property of the norm we have

||A(r(JV))X(r(AT -  l))...A (r(0))|| <  № < ' '>  ||X2| r !(' , >... ||X .|r-<" ) , 

where

T i ( k ) ~
2 = 0

Therefore

j f e ^ M M r ( W ) ) A ( r ( J V - l ) ) . . . A ( r ( 0 ))H  <  

wlim i l n l l / l . i r «  l l^ p W ... W f "  =

2 2  * i 111 P i l l -  
» = 1

In the last step we use Theorem 59. By the assumption the right hand side 
is negative and therefore

||A (r(A T))^(r(JV -l))...X (r(0))|| -  0, a.s.
— >oo

this implies ASS of (3.1). ■
We can also use the consideration about one dimensional systems to ob

tain necessary and sufficient conditions for ASS of (3 .1 ) in case when matrices
A(i), i G S  can be simultaneously diagonalized. This is done in the next the
orem.

T h eo rem  34 I f  matrices A(i),  i G S  can be simultaneously diagonalized to 
the following form

T - M ( t ) r  =

Aa (*) 

0

0

A n (i)

then

1 . system (3.1) is 5—MS  if  and only i f

p (p 'd P ) < n

where
DsV) = diag [|A„(i)|5].
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2 . i f  in addition r(k) is ergodic with limit distribution i t  =  (7r,)ie5 then 
system (3.1) is ASS if  and only if it is 8—MS for all 8 < 80 for certain 
80 > 0 and this is equivalent to the following

|A„(z)|7ri ... |A„(i)|,r* <  1, v = 1,..., n.

P roof. Under the assumption of the Theorem 8—MS (ASS) of (3.1) is 
equivalent to 8—MS (ASS) of each scalar systems

x(k  +  1 ) =  \ v(r(k))x(k), v = 1 , ...,n.

Therefore the conclusion follows from Theorem 18, Theorem 21, and Theorem 
22 . ■ .

We have obtained this result as a simple consequence of our one dimen
sional consideration. It can be generalized, however it requires deeper analy
sis. It is natural to expect that if the matrices pairwise commute then the 
stability problem should be easier. If the matrices A(i), i G 5  can be si
multaneously diagonalized then they pairwise commute, therefore the last 
theorem includes the case of commuting matrices. However if A(i), i G S  
pairwise commute then it does not guarantee simultaneous transformation 
to a diagonal form, but then according to [56], there exists a unitary matrix 
T  such that they can be transformed by this similarity transformation to the 
upper triangular forms. The next theorem deals with such a situation.

T h eo rem  35 Suppose that the Markov chain r[k) is ergodic with limit dis
tribution 7r =  (tFj)-eS. and that the matrices A{i), i G -S' can be simultaneously 
transformed by a similarity transformation T  to upper triangular form

T  A (i)T  =

Ai(l) *
0 Aj(2)

0 0 Ai(n) J

, i E  S. (3.54)

Then, a necessary and sufficient condition for almost sure stability of system 
(3.1) is

|A i(Z)r |A2( I ) r . . . |A a( 0 r < l ,  (3.55)

for all I = 1 , ...,n.

For the first time this theorem appears in [43] as a necessary sufficient of 
ASS in case of r(k) being a sequence of independent and identically distrib
uted discrete random variables. In this paper the necessity of this conditions
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for n =  2 has also been shown. Next in [41] the necessity of this conditions 
for n > 2 has also been shown in the case of a sequence of independent and 
identically distributed discrete random variables. It appears that this proof 
works also with slight modifications for ergodic Markov chain. This is done 
below.
P roo f. We start with the proof of necessity of condition (3.55). If the system
(3.1) is ASS, then all elements of matrix

A  ((r (k )) A  ((r(k  -  1 )) ...A ((r(0))

tend to zero almost surely when k  tends to infinity. In particular all diagonal 
elements do so. Therefore ASS of (3.1) implies ASS of each of scalar systems

yi(k +  1) =  Ai(r(k))yi(k), i £ S.

This in light of Theorem 21 implies (3.55).
Now we show the sufficiency of (3.55). W ithout loss of generality, we 

can assume that all A(i ), i £ S  are in upper diagonal form (3.54). Let b be 
the upper bound of the absolute values of the off-diagonal elements of A(i), 
i G S.  Consider the following jump linear system

x(k  +  1 ) =  A(r(k))x(k),  (3.56)

where
|Ai(l)| b ••• b ]
0 |Aj(2)| ••• b

0 ••• 0 |Aj(n)|

It is straightforward to verify tha t ASS of (3.56) implies ASS of (3.1). We 
show that (3.55) implies ASS of (3.56). Let

G(k ) =  A {(r(k)) A  ((r{k -  1 )) ...A ((r(0)) =

’ 9n(k)  g12(k) ••• gln(k) '
0 322(k) g2n(k)

. 0  • • • 0 gnn(k) _

The ASS of (3.56) is equivalent to the fact that all elements of G{k) tends 
almost surely to zero when k tends to infinity. To proceed, we use induction 
on the n. If 7i  =  1 , G(k) tends almost sure to zero by Theorem 21. Suppose 
that it is true for n  — 1. Because of the triangular structure of G(k) and

A(i) =
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the induction hypotesis, it is sufficient to show that for n the elements of 
the last column of G (k)  are converging to zero almost surely. Prom G{k) =
A  ((r(fc)) G (k  — 1 ) we obtain recursive formulas for the elements of the last
column

n

gmn(k) — |Ar(fc)(m)| gmn(k  1) -I- 6 ^  ' gi+\ n(k  1), I 1 ,2 ,, n  1 (3.57)
l=m

g n n { k ) — | Ar (fc) (? i) | g n n ( k  1 )

Again by Theorem 21 assumption (3.55) implies that gnn(k ) tends almost 
surely to zero at an exponential rate. Therefore, there exists 0 < pn < 1 and 
random variable M n such tha t for all k

9nn{k) 5; M npn .

Now, we use an induction argument on the index m  of gmn(k) to  show that 
for each 1  <  m  < n, there exists a 0 < pm < 1 and random variable M m 
which is a  polynomial in the variable k  such that for all k

9mn{k) <  M mpkm. (3.58)

From this, we can conclude that gmn(k) tends to zero almost surely for all 
1  <  m  < n. We proceed as follows: Suppose that for some 1 <  m  < n, there 
exists M m, Mm+!,..., M n and pm, pm+1,...,pn < 1, such that (3.58) holds. We 
show that (3.58) holds for m  — 1. From (3.57), we have

Tl

9m—in(k') — |Ar(fc)(77i 1 )| gm -in(k  1 ) 4" b ^   ̂ gi+i tn(k  1 ) —
l=m—1

|Aj-(fc)(Jin 1 ) 11Ar(/._i) (771 1 ) | ... |Ar(j) (771 1 ) j gm—in(0)-l-

fc-i
b 2 2  \x r(k){m -  1)| |Ar(fc_i)(77i -  1 ) | . . .

1= 1

|Ar(/+1 )(jTl 1 )| (gmn(l 1 ) "1“ -gnn{l 1 )) "t"

b (gmn{k -  1) +  ...gnn(k -  1)). (3.59)

We see that the last term almost surely converges to zero at an exponential 
rate because of the induction hypotesis. Actually, let

M m_x =  max Mi and ~pm_ x - max pv
m < l < n  m < l < n
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We have

b (9 m n { k  1 ) +  •■■9nn{k 1 )) <  nbM m —i  i^Pm—l )  • (3.60)

By Theorem 21 we also know that the first term in (3.59) tends to zero almost 
surely at an exponential rate so there exists Mm_i > 0 and 0 < pm_i < 1 
such tha t

|Ar(fc) ( m  1)11Xr(k—i ) (m  1)| ... | ( m  1)| gm—in(0) ^

Mm- 1 (̂ pm- i j  ■ (3.61)

Now we_ consider the second term in (3.59). Again by Theorem 21 there 
exists Mm_! >  0 and 0 <  pm_x <  1  such th a t

Let

| A r ( f c ) ( m  -  1 ) |  | A r ( f c _ 1 ) ( m  -  1 ) | . . .  | A r ( J + 1 ) ( m  -  1 ) |  <  M m _ i  ( p m _ i )

P m —1 m ax , P m —1) P m —1}

k-l

and
M 'm- 1 =  max Mm_i, Mm_i} .

Then, it follows tha t the second term in (3.59) satisfies the inequality

k—1
6  5 2  l^r(fc) ( ^  1) A r(fc —1 ) ( ^  1) ...

2 = 1

Ar(Z+l)(^ 1 )| (9mn(.l 1 ) "I" ■■•dnn(l 1 ))
fc- 1   k_t

b 5 2  M m-1 ( j > m - ( MmPm  ^  •••■Â nPn)  ^
2 = 1

n b i M ^ f k ^ y .  (3.62)

Combining (3.60), (3.61) and (3.62), we conclude tha t there exists 0 <  pm < 1
and random variable Mm_! which is a polynomial in the variable k such that 
for all k

9m—\n{k ) ^  M rn—iPm_i.

This completes the proof. ■
From this theorem we see tha t under the assumption on the simultane

ously upper triangularisation stability of each matrices A(i), i G S  implies

3.4. ALM O ST SURE STA BILITY 85

ASS of the system. We have already noticed (see Example 9) that in general 
it is not true.

Now we will use the Lyapunov exponent method to study ASS of (3.1). 
The main idea of this method is to examine formulae

lim ^  In \\A ((r{k)) A  ((r(k -  1 )) ...A  ((r(0))||Ac—»oo AC

o r  1
lim — In ||x (A:,xo,7r ) | | .k—*oo k

The first question is if the limits exist, next how they depend on the initial dis
tribution of the Markov chain, the choice of matrix norm, and (in the second 
case) on the initial condition x0. Another problem is that even though all ma
trices A(i), i G S  are nonzero the product A  ((r (k )) A  ((r(k — 1)) ...A ((r(0)) 
may be a zero matrix (see Example 10). To deal with the last problem we 
extend ln(*) as follows

ln(:r) =
\ ln(x) for x > 0 

—oo for x  =  0 
oo for x  =  oo.

The next theorem collects main results about Lyapunov exponents presented 
in [48], [90], and [51].

T h eo rem  36 Suppose that all matrices A(i), i G S  are non singular, and 
the Markov chain r(k) is ergodic. Then the limits

lim i  In ||A ((r(k )) A  ((r(k  -  1 )) ...A ((r(0))|| (3.63)
k—*oo /C

and
lim \ e * In \\A ((r(k)) A ((r(k -  1 )) ...A ((r(0))|| (3.64)

k—>oo AC
exist and are finite constants, they do not depend on the matrix norm and 
initial distribution 7r and they are equal. Moreover if  the limit is negative then
(3.1) is A SS and if it is greater then 1 then (3.1) is not ASS. In addition 
there exists a proper subspace L of R n such that for all x 0 G R n\L  the limit

lim \  In ||a; (k, x0, 7r)|| (3.65)fc—>c© k

exists and does not depend on the initial distribution tt as well as on the vector 
norm and is equal to (3.63) and
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max lim — In llx ( k , x n ,  7r)II . 
x0# O fc -o o fc  11 V ’ 11

D efin ition  5 The common value of (3.63), (3.64), and (3.65) is called the 
largest sample path Lyapunov exponent of system (3.1).

Theorem 36, even though very interesting from theoretical point of view, 
is useless in practical development of stability unless we can calculate the 
value of the largest Lyapunov exponent or even its sign. Some results in this 
direction are presented in the next section in the context of relations between 
the Lyapunov exponent just introduced and <5—moment Lyapunov exponent. 
There is one more problem with this approach to almost sure stability. The 
above theorem leaves as unsolved the case of zero Lyapunov exponent. It 
is worth to notice tha t our consideration about one dimensional systems is 
based on the idea of Lyapunov exponent. However in this case we were able 
to present explicit formulas for the largest Lyapunov exponent as well as we 
were able to deal with the case of zero Lyapunov exponent.

3.5 8 —m om en t sta b ility

This section is devoted to study of the concept of 8—MS of system (3.1). We 
start with the following property of <5—MS.

T h eo rem  37 The following conditions are equivalent to 8—MS of system
(S.l).

1. there exist constant M  > 0 and 0 < p < 1 such that

En\\x (k , x0,Tr)\\6 < M p k (3.66)

2. the series YlkLo ll® (k :x o, tt) H5 converges for all x 0 E R n and all 
initial distributions it.

P roo f. It is clear that (3.66) implies that E* ||x (k, x0, 7r)||6 converges 
and the convergence in turn implies 8—MS of system (3.1). Suppose now 
that system (3.1) is 8—MS. Let 7Ti, i £ S  be the initial distribution of the 
Markov chain which is defined by the i-th row of the matrix P  and let 7r be 
any initial distribution. From the 8—MS, we have

Jim m gcB.,| |y l((r(t))X (W *:-l)) .. .X ((r(0)) ||( =  0.

Then for any 0 <  r] <  1 given, there exists an integer m such that

m a x i ^  | |A ( ( r (m -  l)) /l((7 -(m -2 )) ...y l((r’(0))||6 <  rj.

By the time homogeneous property, there exists an M  > 0 such that for any 
0 < q < m  and k, we have

max E Vi \\A((r(k + q ) ) A ( ( r ( k -  1)) ...4 ((r(0 ))||6 <  M.
1 <2<S

Let k  =  pm  +  q, where 0 <  q < m,  then we obtain, using the time homoge
neous property again,

E „ \ \ A ( ( r ( k ) ) A ( ( r ( k - l ) ) . . . A ( ( r m 6 < 

K  IIA  ((ir(jpm -I- q)) ...A {{r(pm))\\6 ...

\\A ((r(pm -  1 )) ...A  ((r((p -  l)m ))||6 x 

| |A ( ( r ( m - l ) ) ^ ( ( r ( A ; - l ) ) . . .^ ( ( r ( 0 ))||5 =

5 2  PioPioh '' 'Pipm+q — 1 ipm+q 11-̂  (ipm+q) . . . A  (i  pm) || X

2o,..., tpm+q

(ipm —i )  . . . A  |  x  ... | |A  ( im —i )  . . . A  (io) || =

5 2  PioPioil"-Pipm-2ipm-l | | ^  ( V n - l )  . . . A  ( * ( p _ l ) m ) |  x  •••
20,..., ipm—1

P t w O . ^ M l f x

( 1 2  Pipm-l,ipm ---Pipm+q-lipm+ql\\A (ipm +q) • •■ A ( iprn)\\ j  =

5 2  Pi-oPi-ah'-Pipm-lipm-i | | ^  ( i p m - l )  - " A  ( i ( p - l ) m  ̂|| X.. .  

P ( * m - l )  . . A ( i 0) | | 6 X

II^Mflr)) - A ( K 0) ) | | '<

E n i  - A ( ( r (0 ))H 5 X

5 2  PioPtoil | | ^  ( * p m - l )  " . A  ( i ( p - l ) r n )  || X . . .

W A ^ m - x )  . . .^ ( io ) ||6 .
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We can repeat this procedure p  times to obtain

E„  \\A ((r ( k )) A  ((r ( k  -  1)) . . .A ((r(0 ))||fi <  M r f  <  M i r

where M\ - Mr~™ and r\ =  r m .  This shows th a t S—MS of system (3.1) 
implies (3.66). ■

The theorem enables us to show the following relationship between 6—MS 
and ASS of system (3.1).

T h eo rem  38 I f  system (3.1) is 6—MS then it is ASS.

P roo f. Let £ =  l im s u p ^ ^  ||x (k, x0, 7r)|| , then from Markov inequality, we 
have that for any c > 0 , the following holds

/  oo oo \

P ( t  > c) < P  ( f |  0  {||x(fc,x0, 7r)|| >  c} ) <

/  O O  \  oo

p  U  {||2C (fc,a?o,tt)|| > c} < 53 •P(ll*Ob»*o,*r)|| > c) <
\ m = n  J  m =n

1 oo

— £  E * ||a; (n»,a;o, w)||tf 0
^ m =n

The last step is true because of point 2 of Theorem 37. Thus P  (£ >  c) =  0 
and consequently P  (£ =  0) =  1. ■

Further relations between S—MS and ASS are given in terms of 6- mo
ment Lyapunov exponents. Before we present the formal definitions of the 
S- moment Lyapunov exponents we need the following analogue of Theorem 
36.

T h eo rem  39 Suppose that all matrices A(i),  i 6  S  are non singular, and 
the Markov chain r(k) is ergodic. Then the limit

g(6) = Um i  In B , ||X ((r(k ) )A  ((r(k -  1 )) ...A ((r(0) ) f  (3.67)

exists and is a finite constant, it does not depend on the matrix norm and 
initial distribution ir. Moreover i f  the limit is negative then (3.1) is 6—MS  
and if  it is positive then (3.1) is not 6—MS. In addition there exists a proper 
subspace L  of R n such that fo r all x 0 e  R n\L  the limit

(3.68)
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exists and does not depend on the initial distribution it as well as on the vector 
norm and is equal to (3.67) and

lim i  In E„ ||A ((r(k )) A ((r(k -  1)) ...A ((^(O))!!5 =
k—>oo AC

max lim 7  l n ^  ||x (/c,xo,7r)||6 .
10 5 ^0  fc—>00 K

The proof can be found in [39]. This theorem, similarly as Theorem 36, 
is very interesting from theoretical point of view, however is useless in prac
tical development of stability unless we can calculate the value of the largest 
Lyapunov exponent or even its sign. The important difference between this 
theorem and Theorem 36 is that now the case of zero Lyapunov exponent is 
not left as unsolved. This is because of Theorem 37.

D efin ition  6 The common value g(8) of (3.67) and (3.68) is called the 
largest 8—moment Lyapunov exponent of system (3.1).

Now we present a connection between 8—moment Lyapunov exponent 
and sample path Lyapunov exponent.

T h eo rem  40 Suppose that all matrices A(i), i G S  are non singular, and 
the Markov chain r(k) is ergodic. Then the function g(8) is differentiable 
from the right at 8 =  0 and gl(0+) is largest sample path Lyapunov exponent 
of system (3.1).

The proof of this theorem can be found in [44].
We end this section with certain sufficient condition of 8—MS which is a 

straightforward consequence of Theorem 18.

T heo rem  41 System (3.1) is 8—MS if there exists a matrix norm ||*|| such 
that ||XV|| <  ||X || ||Y|| for all matrices X  and Y  and

p ( P ' D s) <  1,

where
D6 =  diag [P (* )l|5]i=1) s
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3 .6  C om parison  and  d iscu ssion

In this paragraph we give a summary of our results on stability of jump linear 
systems. We have discussed three types of stability: ASS, 8—MS and mean 
stability. On the base of Example 7 we can say that idea of mean stability 
is rather useless from practical point of view. The relations between ASS 
and 8—MS axe not explained completely. We know from Theorem 38 that 
8—MS implies ASS. Moreover by Theorem 40 if all matrices A(i), i E S  axe 
non singular, and the Markov chain r(k) is ergodic and the largest sample 
path Lyapunov exponent is negative then ASS implies 8—MS for small 8. 
However we do not know, except of the one dimensional case, if ASS implies 
tha t the largest sample path Lyapunov exponent is negative. We belive 
th a t it is the case. Unfortunately we do not have testable necessary and 
sufficient conditions neither for <5—MS nor for ASS. There are two exceptions: 
one dimensional system and mean square stability (8—MS fox 8 = 2). For 
one dimensional systems the easy to  check conditions for ASS are given by 
Theorem 21 and for 8—MS by Theorem 18 and Theorem 19. The necessaxy 
and sufficient conditions fox mean squaxe stability axe presented in Theorem 
23, Theorem 24. In the special case when all matxices can be simultaneously 
txansfoxmed to uppex txiangulax foxm we can also present necessary and 
sufficient conditions for 8—MS and for ASS, this is done in Theorem 35. 
Under more xestxictive assumption that all matxices can be simultaneously 
txansfoxmed to diagonal foxm we are able to explain completely the relations 
between 8—MS and ASS as in Theorem 34. Interesting approach of Lyapunov 
exponent to develop ASS and 8—MS is discussed in Theorems 36 and 39. 
However these results are useless in practical development of stability unless 
we can calculate the value of the laxgest Lyapunov exponent ox at least its 
sign.

Chapter 4 

The jum p linear quadratic 
regulator

The objective of this chaptex is to study one of the optimization pxoblems 
fox j ump lineax systems, namely optimization of quadratic cost functional. 
Such pxoblem is called JLQ pxoblem ( J  for jump, L for lineax dynamics, 
Q fox quadratic cost). It is well know that the solution of standard LQ 
problem has a model solution. The optimal control has a feedback foxm 
and the feedback matxix can be easily found by solving Riccati diffexence 
ox Riccati algebxaic equations. The conditions fox existence of a solution 
of these pxoblems axe also well known and they axe given in the form of 
easily checkable conditions of controllability, stabilizability, observability or 
detectability of suitable subsystems. One can expect similar results for JLQ.

Historically, the first papers about JLQ problems axe [70], [97] and [101]. 
These papexs dealt with continuous time systems under diferent assumptions. 
One of the first solutions to the discrete time JLQ was presented in [13] for 
finite time interval and in [23] for infinite time interval.. Further discussion 
of this problem may be found in [1], [25], [58], [53]. In all these papers 
time invariant version of JLQ problem has been considered. The first papers 
studing time-vaxying JLQ pxoblem axe pxobably [31] and [33].

When we compaxe the results on the standard LQ with the ones on JLQ 
we can find many similarities. The solutions has the feedback foxm, the 
feedback matrices axe defined in texms of a certain type of quadratic matxix 
equation which is called coupled Riccati equation. The sufficient conditions 
fox existence of the solution axe given in texms of pxopexly defined stabi
lizability and detectability. The closed loop system is stable undex cextain 
conditions though stability is undexstood in the mean squaxe sense. The 
pxoblem is that from the practical point of view we are interested in almost 
sure stability and as we know from our previous considerations mean squaxe

91
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stability implies almost sure stability however opposite statement is not true. 
It means th a t the JLQ technique can be too conservative to find a regulator 
which ensures almost sure stability. This is also a reason why we should 
look not only for sufficient conditions for existence of JLQ problem but also 
necessary. Such a new condition is proposed in Definition 7 and Corollary
3. In the next section we present different formulations of JLQ problems. 
In Section 2 the simplest JLQ problem, namely JLQ problem on finite time 
interval is considered. Next, in Section 3, we consider noise free JLQ prob
lem on infinite time interval. It is shown that a  solution of this problem 
exists if and only if certain coupled difference Riccati equation has a global 
and bounded nonnegative definite solution and this in turns is equivalent to 
optimalizablity (see Definition 7). This result is a significant extension of 
previous ones where only sufficient conditions for existence of the solution 
are presented and only in time invariant case. Because of the significancy 
of the coupled Riccati equation in JLQ theory we study its properties in 
Section 4. In this section a very important question about stability of the 
optimal closed loop systems is addressed also (see Theorem 45). In the case 
of time invariant systems the role of the coupled difference Riccati eqaution 
is played by a coupled algebraic Riccati equation. Properties of this equation 
are studied in Section 5. Section 6 is devoted to  JLQ problem for systems 
with additive disturbances. Basing on the nonuniquness of the optimal con
trol in this case it is shown that for time varying systems with coefficients 
tending to certain limits the optimal control may be realized in the form of 
time invariant feedback. For the standard systems results of this kind has 
been discovered in [26]. A discussion of presented results is given in the last 
section.

4.1 P rob lem  form ulation

The system under study in this chapter is described by the following state 
equation:

x(k  +  1) =  A k{r(k))x(k)  +  B k(r(k))u(k) +  Ck(r(k))w(k),  (4.1 )

where, as previously, the state x(k)  £ R n, the control u(k)  £ R m. w(k),  
k =  0 , 1 ..., is a second order independent identically distributed sequence of 
n —dimensional random variables with E w( k ) — 0 and Ew(k)w'(k) — I. They 
represent disturbances. We also assume that processes r(k), k = 0 ,1 ,... and 
w(k), k = 0 ,1 ,... are independent. The sequences of matrices of appropriate 
sizes A k(i), B k(i) and Ck(i) are bounded for each i £ S. In the case of Ck{i) =
0 for all i £ S  and k =  0,1... the system (4.1) is referred as a noise free system
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and in the opposite case as a noise system. To introduce the cost criteria 
consider sequences Qk (i ) £ R nxn and R k (i) £ R mxm, i E S , k  = 0, 1, ... of 
symmetric nonnegative and symmetric positive definite matrices, respectively 
and symmetric nonnegative definite matrices K (i) £ Rnxn, i £ S. We assume 
that sequences Qk (i ) , R k (i) and R ^ 1 (i) are bounded for each i E S. In 
this chapter we consider only the initial distribution it of the following form 
P  (r(0) =  i0) =  1 for certain io £ S. The optimal control problems we 
consider in this chapter are defined as follows.

Problem 1: JLQ problem on finite time interval. For given N  find a 
control sequence u  =  (u(0),..., u (N  — 1 )) such tha t the cost functional

J  (x0, 7r, u, N)  = (K{r{N))x{N) ,x(N))  +

E 22 (Qk (r (k))x(k)>x(k)) +  (Rk (r(k))v,(k),u(k)) , (4.2)
. fc=0

takes the minimum value.
Problem 2: Noise free JLQ problem on infinite time interval. For the 

noise free system (4 .1 ) find a control sequence u =  (u(0) ,u ( l ) , ...) such that 
cost functional

Jn f  (so, ̂ =

lim E
N —>oo

N

22 {Qk (r (k )) x(k) ,x(k))  + (R k (r(k )) u(k),u(k))
k = 0

(4.3)

takes the minimal value.
Problem 3: Noise JLQ problem on infinite time interval. For the noise 

system (4 .1 ) find a control sequence u =  («(0), - u ( l ) , ...) such tha t cost func
tional

J  (x0, 7T,m) =

lim — E
N —*oo N

N

22 (Qk (r (fc)) x (k ) ,x (k )) +  (R k (r (k)) u(k) ,u(k))
.k=0

(4.4)

takes the minimal value.
We also consider the time invariant cases when the coefficient of (4.1) and

(4.2)-(4.4) do not depend on k.
It is clear that to solve any of the Problems 1-3 it is enough to solve the 

appropriate problem with 7r being Dirac distribution, therefore in our further 
considerations only such problems axe discussed.



4.2  JLQ  p rob lem  on  fin ite  tim e  interval

The solution of the JLQ problem on finite time interval is given by the 
following theorem. The proof for the noise free system can be found in [23] 
and for the noise system in [59].

T h eo rem  42 The optimal control law for the JLQ problem on finite time 
interval is given by

u(k) =  - L k(r(k))x(k), i  E S, k =  0,..., N,  (4.5)

where for each i E S, k = 0,..., N  the optimal gain is defined as

L k(i) =  ( Rk(i) +  B ' ^ F ^ B ^ y 1 B'k(i)Fk+1(i)Ak(i), (4.6)

where
Fk+i(i) = YjPi jp k+i{j) (4.7)

i t s

and the sequence of sets of symmetric nonnegative definite matrices

{Pk(i) : i £ S } , k  = 0 , . . . , N - l

satisfies the equation

p k{i) = A'k(i)Fk+1(i) (A k(i) -  B k(i)Lk{i)) +  Qk(i), k = 0,..., N  -  1, i E S
(4.S)

with terminal conditions P/v(i) =  K(i ) , i  e  S.
The value of the optimal cost is given by

(Po{io)x0, x 0) +  q0(i0) (4.9)

where qk(i), k = 0,..., N  satisfies the recurrent formula:

Qk{i) = U)Pa + T , tr  ('C'k(i)Pk+i(j)Ck{i)) (4.10)
jes

with terminal conditions qN(i) = 0,2 6 S.

For convenience we introduce the following notation: The right hand side 
of (4.8) is denoted by f ( k ,P* , i ) i.e.

f (k ,  P*, i) = A k(i)Fk+i(i) (A k(i) — B k(i)Lk(i)) + Qk(i)-
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The notation P* in f (k ,  P*,i) means that /  depends on all matrices Pj, j  E S. 
Moreover, let

P (kN\ i ,  K{*)) = PN-k(i), k = 1, N, i E S (4.11)

where Pk{i) is given by (4.8). Again the notation K (*) means that Pk ' (i, K(*)) 
depends on all matrices K(j ) ,  j  E S. Using this notation we can rewrite equa
tion (4.8) as

(4.12)

(4.13)

P {kN)(i, K(*)) = f ( N  -  k, Pj£l(*, K(*), i) ,  k = 0 ,..., N  

or equivalently

PlN\ i , K ( * ) )  = f ( l ,P[+!(*,K(*) , i ) , l  = N ,..., 0

P iN )( i , K  W )  =

and initial (terminal) conditions

P0(w)(i, K ( , ) )  =  K(i),  (PfP ( i , K ( , ) )  = i £ s
Moreover, the minimal value of the cost functional (4.2) is equal to

( P f } (r0,K{*)) x0, x 0) +  qN(r0), (4.14)

where qk(i),k =  0,..., N  is given by

* ( i )  =  E * - i W K  +  E t r  {C N -k (i)p k - l ( J ,K ( * ) ) C „ _ i ( i ) )  ( 4 .1 5 )
j & S  j e S

with terminal conditions %(i) =  0. From the proof of Theorem 42 in [23] the 
following formula in the noise free case can be deduced:

J  (x0, io,u,N) = ( P ^  (io,K{*))x0, x 0) -

E  ({K(r(N))x(N) ,x(N)})  +

E  (Rk (r(k )) («(A:) -  L k{r(k))x(k) ) , (u(k) -  L k(r(k))x(k))) (4.16)
.fc=o

E

and

E
-N - 1

E  (Qfc (r (fc)) x{k) ,x (k)) + (R k (r (k )) u(k),u(k))
k=l
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r(l) =  i ,x(l) = xi] -

{P (N-i(h K(*))xh x,)  -  E  (K (r(N ))x(N ), x ( N ) ) , (4.17)

where u is given by (4.5), L k(i) by (4.6) and u is any admissible control. In
troduce also the following terminology. If there exists a sequence of matrices 
P ( k , i), k =  0,1,..., i £ S  such that

P(k, i )  = A'k(i)Fk+1(i) (A k(i) -  B k(i)Lk(i)) +  Qk(i) (4.18)
where

L k(i) = (R k(i) +  B k(i)Fk+1(i)Bk(i)^ B'k(i)Fk+1(i)Ak{i),

and
F k ( i )  =  Y , P i j P ( k i i )  

je s
then equation (4.18) is called a coupled difference Riccati equation and the se
quence P(k,  i), k = 0,1 ,..., i £ S  will be called its global solution. Moreover, 
if this sequence is bounded then we call it a global and bounded solution. If 
a solution has the property P(k, i )  < P(k, i ) ,  (P ( k , i ) >  P( k , i )) k = 0,1, 
i £ S  for any other solution P(k,  i) then it is called a minimal (maximal) 
solution.

4 .3  N o ise  free JLQ  prob lem  on  in fin ite  tim e  
in terval

The primary concern of this section is to establish sufficient and necessary 
conditions for the existence of optimal control for the time-varying noise free 
JLQ problem on infinite time interval. For this purpose we introduce the 
following definition.

D efin ition  7 The noise free system (4-1) with cost functional (4-3) is called 
optimizable if, for all (io,x0) £ S  x  R n there exists control u such that 
Jnf(xo,io,u) < oo . I n  such situation we say that

(Ak(r(k)) ,Bk(r(k)), Qk(r{k)), R k(r(k)),r(k))

is optimizable.

The concept of optimizability is an extenstion of concept of stabilizability 
in the sense tha t stabilizability implies optimizability and oposite implication 
is not true. It will also appear tha t optimizability is a necessery and sufficient 
condtion for existence of the solution of time-varying noise free JLQ problem 
on infinite time interval
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T h eo rem  43 I f  noise free system (4-1) with cost functional (4-3) is opti
mizable then the limits

l i m ? l JV)M )  =  P (M )  (4-19)
N —> oo

exist for all k =  0,1,... and i £ S. P( k , i ) is a global and bounded solution of 
(4-18), and P ( k , i ) is symmetric and nonnegative, and P ( k , i ) is the mini
mal nonnegative definite global and bounded solution of (4-18). The optimal 
control is given by

u(k) =  - L k(r(k))x(k), i  £ S , k  = 0, ...,N , (4.20)

. where
Fk{i) = E P H P ^ j )

J6 s

Lk(i) = (Rk(i) + B ; ( № +i ( № W ) _1 B'k(i)Fk+l(i)Ak(i) (4.21)

and Jnf ( x0, i0, u ) =  (P (0, z0) £0, £0)- On the other hand, if  there exists non
negative definite global and bounded solution of (4-18) then the noise free 
system (4-1) with cost functional (4-3) is optimizable.

P ro o f. For 0 <  Ni < N2 fix (*0,x 0) € x S  x  R n and consider the cost func
tionals J(xo,io,u, Ni)  and J(xo,io,u, N 2) both with K  (i) = 0, i £ S. Then 
it follows easily from the form of the cost functional that J(xq, io, u, N\) < 
J(xQ,i0,u, N 2) and then from (4.17) we conclude that

0)x„, 0)xo, x „ \ , (4.22)

for k =  0,..., N\.  By (4.14) and the optimalizability conditions we conclude 
tha t there is a constant c > 0 such that

i f ° M ) < c (4.23)

for all N, k = 0, ...N, and i £ S, N. From (4.22) and (4.23) we conclude that 
the limit P(k, i )  in (4.19) indeed exists and P( k , i ) =  P'  (k , i ) , P ( k , i ) >  0 . 
Moreover, since the constant in (4.23) does not depend on k and N,  P( - , i ) is 
bounded. Taking the limit in both sides of (4.13) we see that P(-,i) satisfies 
this equation so P  (k, i) is a bounded and global solution of coupled difference 
Riccati equation (4.18).
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To show that P{k , i )  is the minimal nonnegative global and bounded 
solution of (4.18) we introduce another nonnegative global and bounded so
lution of L{k, i ) ,  and consider Pj.N\ i , L ( N , * ) )  the solution of (4 .12 ) with 
initial conditions

P^N\i ,L { N ,* ) )  = L{N, i) ,  i e  S.

Since the solution is unique and, since L{-,i)  satisfies (4.12 ), we have 

P!cN\i ,L (N ,* ) )  = L(k, i) ,  i e S

and k = 0, ...N. Furthermore, it follows tha t if we have two solutions 
P j^ fa K i i* ) )  and PiN\ i , K 2(*)) of (4.12) and if K x{i) < K 2(i) then

p W ( i ,  Ki(*)) < P {kN\ i , K 2(*)), i G S.

This property implies that P  {k, i) < L( k , i). So P  {k, i ) is the minimal non
negative global and bounded solution of (4.18).

To solve the optimal control problem fix (i0, x 0) e  S x  R n and consider the 
cost functional J ^ ( x 0, i0,u, N)  with K  (i) = 0, i G S  and j W { x 0,i0,u, N)  
with K  (i) = P  (N, i ) , i G S.  Then apply control (4.20) and use the fact that

J {1)(x0, i0, u , N )  < J {2\ x 0, i0, u , N)

and tha t u is optimal for J (2)(z0, i0, u, N).  We see that

J w (x0, i0, u , N )  < j W ( x 0, i0, u , N )  =  (P{N, io ) x0, x 0),

The right hand side is independent of iV, so

J{x0, i0,u) =  hmo J w (x0,i0, u , N )  < ( P ( N , i 0) x 0, x 0) . (4.24)

On the other hand we have

J (xQ, i0,u) = lim J w (x0,i0, u ,N )  >
N —+oo '

( PoN) (*o. °) ^0, Xo) =  (P (o, io) x0, x 0) . (4.25)

(4.24) and (4.25) show the optimality of u.
Now suppose that there exists nonnegative definite global and bounded 

solution P  (k , i ) of (4.18). Fix (io,Xo) G S  x  R n and consider again the cost 
functional J (1)(a:o,zo,u, N)  and J ^ ( x 0, i0,u, N).  Then applying the control 
(4.20) we conclude from (4.24) that J(x0, i0, u ) <  oo. It means that the 
system is optimizable. ■

The following corollary is a straightforward consequence of this theorem.

C oro llary  3 The solution of Problem 2 exists if  and only if the system is 
optimizable.

In the time invariant case Theorem 43 reduces to the following result.

T h eo rem  44 Consider the noise free system (4-1) unth cost functional (4-3) 
under assumption that sequences Ak(i), Bk(i), Qk(i), and Rk{i) are constant
for each i G S  and equal to A(i), B(i),  Q(i), and R(i),  respectively. This
system is optimizable if  and only if  there exists a nonnegative definite solution 
of the coupled algebraic Riccati equation

P(i) = A( i )F{i )  (A(i) -  B(i)Hi)) )  + Q(i), (4.26)

where
H i) = (.R(i) +  B'(i)F(i)B(i))  B'(i)F(i)A(i).  (4.27)

^ ( 0  =  H2p v p U)- (4-28)
j e s

I f  such a solution exists then there exists a minimal solution Pmin(i) and the 
optimal control is given by

u(k) = —L(r(k))x(k), i  G S, k =  0,..., N,  (4.29)

where
L(i) = (i?(z) +  B' ( i ) F( i ) B( i ) y  B '(i)F(i)A (i). (4.30)

F(i) =  Z P v P™nU). (4-31)
j e s

and
Jnf { x o, i0, u) = {P {i0) s 0, xq) . (4.32)
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4 .4  C oupled  difference R iccati equ ation

In this chapter we discuss several properties of the coupled difference Riccati 
equation. We start with the following extension of definition of stochastic 
stability.

D efin ition  8 The system

x{k +  1) =  Ak(r(k))x(k), (4.33)
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is called eorponentially stochastically stable i f  E\\x(k)\ \2 < abk for certain 
constants a > 0 and 0 < b < 1  and all initial conditions x0 € R n and all 
initial distributions it. It is called stochastically stable if

OO

E £ | K &)||2 < oo
fc=0

In such situations (A k(r(k)), r{k)) is called exponentially stochastically stable 
and stochastically stable respectively.

D efin ition  9 The noise free system (4-1) is called exponentially stochasti
cally stabilizable i f  there exists a feedback control

u (k ) =  - L k(r(k))x(k)

such that Lk (i) is bounded for each i E S  and for the resulting closed loop 
system

x(k  +  1) =  (Ak(r(k)) -  B k(r(k))Lk (r(k))) x(k)
is exponentially stochastically stable. In such situation we will call —L k(rk) 
the exponentially stochastically stabilizable feedback and the triplet

(Ak(r(k)) ,Bk(r(k)),r(k))

exponentially stochastically stabilizable.

It is clear that exponential stochastic stabilizability implies optimaliz- 
ability, so from Theorem 43 it is a sufficient condition for the existence of a 
nonnegative definite global and bounded solution of coupled difference Ric- 
cati equation (4.18). However this assumption alone does not guarantee that 
the solution is unique. Moreover the optimal control given by (4.20) may 
lead to stochastically unstable system. To present a condition for uniqueness 
of the solution and for exponential stochastic stabilizablity of the optimal 
closed loop system we introduce the following definition.

D efin ition  1 0  Consider the following system

x(k  + 1 ) =  A k(r(k))x(k),

y(k) =  Ck(r(k))x(k).
It is called exponentially stochastically detectable if

(.A'k(r(k)),C'k(r(k)) , r(k))

is exponentially stochastically stabilizable, and the triplet

(Ak(r(k)), Ck(r(k)),r(k))  

is called exponentially stochastically detectable in this case.
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Now we axe ready to formulate the main result about existence and 
uniqueness of the global and bounded nonnegative definite solution of cou
pled difference Riccati equation (4.18).

T h eo rem  45 Suppose that

(A k(r(k)) ,Bk{r(k)),r(k)) 

is exponentially stochastically stabilizable and that

( A k{r(k)), ^<2fc(r(fc)),r(A:)) (4-34)

is exponentially stochastically detectable. Then the coupled difference Riccati 
equation (4-18) has a unique global and bounded nonnegative definite solution. 
Moreover the optimal feedback gain for the noise free system (4-1) with cost 
functional (4-3) given by (4-20) is stochastically stabilizable feedback.

Before we present the proof notice that if Qk(i) = Gk{i)Ck{i) for cer
tain matrices Ck{i), then the concept of detectability may be used to justify 
asumption (4.34).

In the proof we need the following technical Lemma. It may be justified 
in the same way as Proposition 3 in [54].

L em m a 5 Suppose that (Ak(r(k)),r(k)) is exponentially stochastically stable 
and that the n-dimensional random variables f[k) ,  k =  0, 1 ,... are such that 
£E£Lo ll/M II2 =  c < oo, then for

z(k  +  1) =  A k(r(k))z(k) +  f (k) ,  z(0) =  z0

we have
OO

E £  lk(fc)||2 < uE IM 2 + /3,
k= 0

for certain constants a  and /3.

We are now ready to prove Theorem 45 
P roof. As we have already noticed stabilizability implies optimizablity, 
and by Theorem 43 we know that there exists nonnegative definite global 
and bounded solution P ( k , i ) of (4.18) which is the minimal solution. We 
first show that under the control given by (4.20) the closed-loop system 
is exponentially stochastically stable. From detectability assumption there 
exists a bounded matrix sequence Mk (i) such that

Ak{r(k)) +  Mk(r(k))^/Qk(r(k)),r(k) )
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is exponentially stochastically stable. The solution x  of (4.1) which corre
sponds to the control given by (4.20) satisfies

x(k  +  1) =  (^Ak (r (k)) +  Mk (r(k )) yjQk(r(k))^j x  (k) +  f ( k)  (4.35)

where
f ( k )  = B k (r (k )) u(k) -  M k (,r(k)) \ jQk{r(k))x (t)

It follows that

||/(fc)||2 <  ||Bk (r(k ))||2 ||S(fc)||2 +  ||Mk (r(A;))||2 |y /Q ^ ( k j jx (k )

£  (Rk (r (k )) u(k),u(k))  +  n Qk(r(k))x(t), sj Qk(r(k))x(t)^j <

8 R k (r(k )) u(k), u(k)) + ^ Q k(r(k))x(t),  yjQk( r (k ) ) x ( t ) ^  (4.36)

where 8 = max (^, /x) , ||Bfc (i)|| < /i, \\Mk (i)|| < //, and a I  < R k (i ). From
(4.36) and by Theorem 43 we have

OO

E Y1 ll/(fc)l|2 ^  SJnf (xo,i0,u) = 8 ( P ( 0 , i 0) x 0, x 0) < 8v\\x0\\2 ,
k = 0

where 0 <  P  (k, i) < u l. Applying Lemma 5 to (4.35) leads to
OO

Æ Ë P W H 2 <  o o -
k = 0

It means tha t the closed loop system is stochastically stable.
Next we show that under the detectability condition the stabilizing so

lution P ( k , i ) is the maximal solution of (4.18). Fix (x0, i0) £ R n x  S  and 
denote by Ustab the subset of all admissible control sequences consisting of 
such control u , tha t the corresponding solution x  of (4.1) satisfies

OO

E J2\ \ z (k )\\2 < °°-
fc=0

Let P  (k, i ) be any nonnegative definite global and bounded solution of (4.18). 
From (4.16), we have

J  (x0, io, u , N)  =  ( P  (0, i0) x0, 2 o) -  E  { (P  (N, i ) x(N),  x ( N )^) +

E
■N- 1

(R k (r(k )) (u(k) -  Lk{r(k))x(k)) , (u(k) -  L k(r(k))x(k)))
k=0

(4.37)
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Hence for u £ Ustab it follows that

J(x0, io, u) = lim J  (x 0, i0, u, N)  = I P  (0, i0) x0, x0) +
N —+00 ' '

E E  (R k (r(k)) (u(k) -  L k(r(k))x(k) ) , (u(k) -  L k(r(k))x(k)))
,fc=o

Thus
J (x0, i0, u ) >  ( P  (0, i0) xq, xo) • (4.38)

Now consider u(t ) given by (4.20). Substituting it into (4.37) gives

J(xo, io, u) = (P (0, io) s 0, x 0) . (4.39)

Combining (4.37) with (4.38) implies P J 0 , i0) < P  (0, i0) . As we have noticed 
in the proof of Theorem 43 it implies P  (k , io) <  P  (k , io) for all k. Since the 
solution P ( - , i ) is simultaneously maximal and minimal, it is unique. ■

We demonstrated the use of this theorem on an example.

E xam ple  13 Consider the noise free system (4-1) n = 1, s = 2,

i4*;(l) =  ak, A k( 2) =  0.

%  =
(6k +  13) (2k +  3)

(k +  1) (4k +  9)

B k( 1) =  B k( 2) =  1 

Q*(l) =  Qk( 2) =  R k( 1) =  R k( 2) = 1 

Suppose that the Markov chain has the transition matrix of the form

P  =
1 l
2 2 
1  0

Taking

and

Lk( 1 ) =  ak

L k (2 )  =  0

in Definition 9 we see that the system is exponentially stochastically stabi- 
lizable and detectable. Therefore by Theorem 45, coupled Riccati equation 
(4-18) which takes form
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P(k,  2) =  1 ,

has a unique global and bounded positive solution. It is matter of straightfor
ward calculation to check that

p ( k ,  i) =  3 +  1
k + V  

P(k,  2 ) =  1 ,

satisfies this equation. Further the optimal feedback gain takes the following 
form

T ak (4k + 9)
L t W  =  6 * +  13

L t (  2 ) =  1 .

In the proof of Theorem 43 we have shown ( see (4.23) ) that under 
optimalizability condition the solution PkN\ i ,  0) of coupled difference Riccati 
equation with zero initial conditions satisfies the following inequality

<  c

for all N, k =  0, ...N, and i E S, N  and certain constant c. It appears that 
the result may be extended on the case of arbitrary initial conditions and 
this is done in the next Lemma.

L em m a 6 I f  the system (Ak(r(k)), B k(r(k)),r(k)) is stochastically stabiliz- 
able, then there exists a constant c({K(i )  : i E S}) such that

(4.40)

for any N  and k = 1, where Pfc(JV) (*,#(*)) is given by (4.12).

P roo f. Consider the noise free system (4.1) with cost functional (4.3). Let 
u be such that the closed loop system is stable and put

r(N )

E
- N - 1

E  {Qv{r{y))x{u),x{u))  +  {Rv {r{y))u(v),u{v))
.is=k

x(u) = x,r(u) = i]
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Then
( p f } (»„,*(*)) *o,*o)

=  V j f \ x , i )  < Jnf (x0, r0,u) + E  ( (K(ro)xN, x N)\r(0) = i0,x{0) = x0)

and consequently | PkN\ i ,  .ff(*))| < c ({K (i) : i E S '}). ■
Using this result for the time invariant system we can generaliz property 

(4.19) as follows (see [31] for details).

T h eo rem  46 I f  the system  {A(i ) ,B( i ) , i  E S} is stochastically stabilizable 
and the system  |A (i), \ jQ{i), i  E S j  is stochastically detectable, then for any 
initial values {Po(i) : i E S}  we have

lim Pk(i,Po(*)) = P(i),
k—>oo

where Pk(i, Po(i)),i E S  are given by time invariant coupled difference Riccati 
equation

Pk(i, P0(*)) =  A!(i)Fk-.i(i) [A(i) -  B( i )Lk(i)\ +  Q(i), (4.41)

Po(*,Po(*)) =  Po(0

where
Pfc-i(i) =  i(i»p o(*))

i e s

L k{i) =  (R(i) + B \ i ) F k- i ( i ) B ( i ) y 1 B ‘(i)Fk^{ i )A{i )  (4.42)

for k = 1,...,A^. and {P{i) : i E S}  is unique nonnegative solution of the 
coupled algebraic Riccati equation (4-26) and the convergence is uniform on 
the set

{P0(i) : ||Po(*)ll < c,i E S}  

for any positive constant c > 0 .

The next theorem, which describes the asymptotic behavior of the coupled 
difference Riccati equation in the case when coefficients have limits, is the key 
result in the proof of the fact that the optimal control for the time varying 
noise system on infinite time interval can be realized, in the time invariant 
feedback form in some cases.

T h eo rem  47 Assume that the sequence (Aff(j),  B^ i j ) ,  Qn (j ), R n U)) , 

A N(j ) e  R nxn, B N(j) E Rnxm, CN(j) E R nxn,
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QN{j) e  R nxn, R n U) e  R mxm, Qn (J) > 0, R n U) >  0 , j  e  S,

is such that the limits of A N(j), B N(j), QN (j),  R n U) when N  tends to
infinity, exist fo r each j  £ S  and R( j )  > 0, (A(i ) ,B(i ) , i  £ S) is stochastically
stabilizable, (A{i), \JQ(i), i £ S^is stochastically detectable, where

A(j )  =  lim A N(j), B( j )  = lim B N(j), (4.43)
TV —>oo N —>oo

Q( j )  =  lim QN(j) ,R{j )  =  lim R N(j), j  £ S, (4.44)
iV —>oo N —> oo

then

V m j f l : r t NHhK(*))  = P(i),  (4.45)
fc= 0

for any initial condition {K (i) : K(i)  > 0 , i £  S},  where P(i) is the unique 
solution of coupled algebraic Riccati equation (4-26).

P roo f. For simplicity we denote

L(A,  B,  F, R, Q) = A ' F A  -  A F B  (r  +  P 'P P ) - 1  B ' F A  +  Q.

Using this notation we can write

PkN\ h K ( * ) )  =  L( AN-k(i), BN- k(i), Fk-i(i), i?jv-fc(*)> QN-k(i)),  (4.46)

where
* £ 2 (0  =  (4.47)

j£S
Together with (4.46) we consider the following time invariant difference Ric
cati equation

Pk{i,K(*))  =  L(A( i ) ,B( i ) ,Fk-i( i ) ,R( i ) ,Q(i ) ) ,  (4.48)

where
Fk-i( i)  = J2Pi jPk- iU,K{*))  (4.49)

j£S
and

P°(j ,K(*))  =  K(j) .

Stochastic stabilizabihty of {A(i), B( i ) , i  £ S , k  £ N}  implies exponential sto
chastic stabilizability of {Ak(i), B k(i), i £ S , k  £ N}  (see Lemma 8 in [31]) so 
we conclude that there exists a constant

c({K( i )  : i £ S } )  > 0 ,
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such that
\\pkN\ i ,  if(*))|| <  c ({K(i) : i £ S } )  (4.50)

and
||P ,( i,n OT(* ,JrW ))|| < c ( { K ( i )  : i € S}), (4.51)

for all k , l ,N,  N  > k >  1. By (4.43), (4.50) and (4.51) for any e > 0 we can 
find No(e) such that

l|A(iV, k)\\ < e, (4.52)

for all N  > N0{e) and k =  1,..., N,  where

A (N,k)  = L(A( i ) ,B( i ) ,F№( i ) ,R( i ) ,Q( i ) ) -

L (A N- t ( i) ,B „ -k(i) ,F '" '( t ), R „ -t (i),Civ -*(•))■ (4.53)

It is easy to check that for any e > 0 there exists £ > 0 such that for any 
symmetric nonnegative definite matrices U, V  £ R nxn if

||[/|| < s x c({K(i )  : i £ S } )  max p ijt

and |IF11 < £, where s is the number of elements of the set S, then

max\ \W(U,V, i ) \ \<(e ,  (4.54)
i€ S

where

W{U, V , i) = L{A(i),  B ( i ) ,  U + V, P(z), Q(i)) -  L(A(i),  B(i),  U, R(i),Q{i)).

Now we prove, by induction with respect to k, that for any e >  0 and k there
exists a constant c{k) such that for any k,l, N,  N  — k — I > N0(e)

\\Z(N,k,l , i)\\  < c(k)e, (4.55)

where
Z(N, k , l , i )  = ~ Pt ( i , f f ’(».-K(*))) •

From (4.52) it follows that (4.55) is true for k =  1. We will prove it for k +  1 
assuming that(4.55) holds for k. By (4.52):

Pg}w (i,K{*)) =

L(j4jv-fc-j-i(*)> Bf f - k-i-i(i),  Fk+i+i(i), Pjv-fc-!-i(*)> QN-k-i - i(*)) =

L(A{i), B(i),  Fk+l+i(t), R(%), Q(i)) -  A (N, k + I) (4.56)
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and
\ \A(N,k + l ) \ \<s ,

for any k,l ,  N,  N  — k — I — 1  >  iVo(c). The induction assumptions (4.55), 
(4.54) with e replaced by c{k)e and (4.56) imply

P g l+l(i,K (*)) =

L ( A ( i ) , B { i ) , Y Pij (Pk ( i ,p[N\ i , K ( * ) ) )  +  Z ( N , k , l , i j )  ,R(i),Q(i)"j

- A  (N , k  + l) =

L ( A(i), B(i),  Y P v P k  (<,PiN\ h K { * ) ) )  +  J2P ijz (N > ^  hi) ,  R(}), Q (0 J
\  j e s  je S  J

- A ( N , k  + l) =

L  ^4(i), B(i),  Y P i j P k  (i, P{N\ i ,  K(*)))  , R(i),  Q(i))  +

W  ( E p^P* (h P iN\ i ,  K(*)j )  , Y .P * Z { N t k, I , i) , i  | -  A (N, k + l) = 
V 'eS  /

P fc+1 (i, i f ° ( * ,  K(*)))  + Z { N , k + 1, Z,z),

where
Z(iV, +  1 , l,i) =

W  ( Z P i j P*  (*> *(*)))>  E phz (n , k. 0 ,< ) -  A(iV, fc +  0
y e s  j e s  /

and

W  ( Y . P a p k f i ,P i(N)( * ,K ( * ) ) )  , Y , P i j Z ( N , k , l , i ) , i }  - A ( N , k  + l) 
yes  j e s  )

c(k +  l)e,

for c(k +  1) =  Cc(k) +  1- Hence (4.55) holds for k +  1 .
Now we are ready to prove (4.45). Fix a set of initial conditions

{ K ( i ) : K ( i ) > 0 , i e S }

<
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of (4.41) and a real constant 6 > 0. Then from Theorem 46 there is k0, such 
that

lift (<,«(*))--PWII<i («7)
for all k > k0,i  E S, and each initial value {Po(i) : ||-Po(*)ll < c(K(i))}  
For e = 2c(k0j take N0 according to (4.52). Then for each k , N  such that 
N  -  k > N0 +  k0 from (4.55) and (4.57) we have

!№ (< ,* ■ ( • ) )  -  f t  *■(*)))!+

||f t ,  ( i j f ' h . K M i )  -  P || <  S.

Moreover, by (4.50) we conclude

limsup —
N —>oo N

N

k= 0

<

limsup i f )  * ( . ) ) - P ( i
N —>oo JV fe=0

-, N - N 0

+ l im s u p -  Y .  \\HN\ i , K ( * ) ) - P ( i )
N —>oo -/V fc=fco+l

N

+  lim sup — E  \Pk P ^ )  =
N —>oo N k = N - N 0+ l

I  N - N 0

N - . oo N  k = h a .y l

but from (4.58) we see that

I  N - N 0

limsup — Ê  JP^N\ i , K (* ) )  -  P(*)|
N —*oo

<

fc=fco+l

N -  N0 - k 0lim sup
N —»oo N

5  =  0 ,

which yields the conclusion of the theorem.

(4.58)
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4.5  C oup led  algebraic R icca ti eq u ation

In this paragraph we study methods of solving coupled Riccati equation 
related to the time invariant systems. Having in mind the equivalence of 
exponential stochastic stability and stochastic stability for time invariant 
systems we have the following result from Theorem 45.

T h eo rem  48 Consider the noise free system (4-1) with cost functional (4.3) 
under assumption that sequences Ak(i), Bk(i), Qk(i), and Rk{i) are constant 
for each i £ S  and equal to A(i), B( i ), Q(i), and R(i),  respectively. Assume 
that

(.A(r(k)) ,B(r(k)) , r (k )) 

is stochastically stabilizable and that

( A(r(k )), y<3(r(A:)),r(fc)^

is stochastically detectable. Then there exists exactly one nonnegative solution 
of the coupled algebraic Riccati equation (4-26), control given by (4-29) is 
optimal and the minimal value of the cost functional is given by (4-32).

Observe that coupled algebraic Riccati equation (4.26) can be rewritten 
as follows

Qi + A!iFiA i -  X iFiB i (Ri +  B ' i F i B i ) B ^ A  -  Pi = 0. (4.59)

where Fz = J2jesPijPj- Assume that pa > 0. Under this assumption we can 
divide this equation by pti and consider a new coupled Riccati equation

Qi + A'iFAi -  XiFiBi ( /  +  B'iFiBi) _1 B ^ A  -  P< =  0 (4.60)

where Fi =  Pi + Pi jP j• Simply the following substittuion has been made

A  —> y/piiA , Bi -* ^/p~iBiRi1/2,pij —> (4.61)
Pa

The next Theorem taken from [32] presents lower bounds for the solution 
of (4.59). In order to present this theorem we introduce the following no
tation and constants: The eigenvalues Aj (X), i =  1 of a symmet
ric matrix X  G R nxn axe assumed to be arranged such that Ai (X) > 
A2 (X) >  ... >  An (X ) . Consider the following scalar functions /  (a, 6, c) =  
(—a +  y/a2 +  be) /b  for b ^  0 and denote
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pd =min {pij}

O! =min A „  (A'iA) -  1, tti =min {  ? >l6S ,6S li/i J
r =max Ai (BiB'i) , qx =  E  E  An-k+i (Qi) ■

ie 5  i€Sfc= 1

M i = Ax {BiB'i) pdad +  {pd -  1) AB {A'iAi) + Ax (BiB[) £  An_fc+i (Qi)
\  k= 1 /

ctd = f  (~ai  +  1  -  aiWi -  rqx (TTx +  1 ) , 2r  (Wi +  1 ) , 2qt )

N i = ( ^ 2  xn-k+1 (Qi)) (1 +  Ai (BiB'd PdOid) +  An (A'iAi) pda d 

9 (I, i) = f  (Mi,  2Ax (BiB'i) (1 -  Pd) , 2Ni)

T h eo rem  49 Let the positive definite matrices Pi, i G S  satisfy (4-60). Then

E  An-fc+i (P i ) > 0 ( l , i ) 
k= 1

(4.62)

for I =  1,..., n and i G S.

When we consider Z =  1  in (4.62) and take into account that for non
negative definite matrix X  we have X  > Xn(X)I ,  then we get the following 
matrix lower bound for solution of (4.62)

P l ~ A '1 \ Z & i P i j 0 ( l J )  +  0 ( h i )
+  BiB[ ) Ai 4- Qi, (4.63)

i G S. As an illustration of this result consider the following example. 

E xam ple  14 Consider (4-59) with the following parameters S  =  {1,2} ,

1  2 ' 1 - 1 ' 0 ' ' 1 '
Ax = 1 0

, a 2 = 0 0
, B\ — 1 , B 2 — 0

(P i j ) i , j £ S  ~
0.5 0.5 
0.5 0.5 , Q i  =  Q 2 —

1  0 
0  1
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Then the solution of (4-59) is

' 5.14252 65 5.8765969 ' ' 1.7757412 -0.77574
5.8765969 11.40916 5 and P2 = -0.77574 1.7757412

with

A i ( P i )  =  1 4 . 9 3 5 5 8 2 ,  A 2 ( P x )  =  1 . 6 1 6 1 0 9 9 ,  A i ( P 2 )  =  2 . 5 5 1 4 8  2 4 ,  A 2 ( P 2 )  =  1

and (4-63) gives (taking into account substtiution (4-61))

A i ( P i )  >  5 . 9 0 2 8 9  7 9 , A 2 ( P i )  >  1 . 3 8 3 1 8 7 8 ,

A i ( P 2 )  >  1 . 8 1 7 5 4  3 6 ,  A 2 ( P 2 )  >  1 .

Now we present numerical algorithm to solve ( 4 . 5 9 ) .  This algorithm has 
been proposed in [ 9 9 ]  and we will present it in a form of theorem. For a 
sequence of matrices X  =  (Xi, . . . ,XS) denote

$ i ( X )  =  J 2 P i j X j
j e s

for all i G S.

T h eo rem  50 Consider coupled algebraic Riccati equation (4-59) under as
sumption that

(.A(r(k)) ,B(r(k)) , r (k )) 

is stochastically stabilizable and that

( v P r W A k ) A (r (k )), \/<5(r(A;)),r(fc)j 

is stochastically detectable. Then the following decoupled Riccati equation 

P ^  = Qi + A ’1$ i (p /^ )  A + P n A 'iP ^ A i 

-  (piiATP^Bi +  A & i (Pt(r?)) B t)  x 

(R, +  B &  (P™) Bi +  p u B ' P ^ B ^ 1 x 

(pliA!iP ^ )B l + A !^ i ( P ^ ) B ) \  

where pj® = 0 , and P /^  =  ( P i i \  •••, P u i s  defined as follows

PW  =  0, P $ ) = PW  for j  = l , . . . , i - l
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and
p W )  =  p t n - V  f o r  j  _  i  +  i^ ^ s

has solution P ^  for all i G S. Moreover

lim P p ] = Pj
r)—*oo J •”

where (Pi:i G S ) is the unique nonnegative definite solution of coupled Riccati 
equation (4-59).

The recurrent algorithm desribed in the above theorem converges also 
when the initial condition P 'f  ̂ is any nonegative definite matrix such that 
p/°) <  Pi,i G S, where (Pj, i G S ) is the unique nonnegative definite solution 
of coupled Riccati equation 4.59. To design such initial conditions one may 
use inequality (4.63).

4 .6  N o ise  JLQ  prob lem  on  in fin ite tim e in
terval

In this section we assume that the Markov chain r(k) is ergodic with limit 
distribution 7r/(z). We start with the following counterparts of Theorem 44 
and Theorem 45 for the noise system.

T h eo rem  51 Consider noise system (4-1) with cost functional (4-4)- I f  the 
noise free system

(.Ak(r(k)), Bh(r(k)), Qk(r(k)), R k{r(k)), r(k))

is optimizable then control given by (4-20) is optimal for (4-1) with cost func
tional (4-4) and the minimal value of the cost functional is

E  E  *i(*)Pijtr (C'(i)P{j)C{i)).
i€ S  j€ S

The proof of this theorem, which is very similar to the proof of Theorem 
44 and Theorem 45, may be found in [31].

Now we consider time varying noise system (4.1) with cost functional 
(4.4) under the following assumptions

(a n U), B n U), Qn U), R n U)) ,

A N{j) G Rnxn, B N(j) G R nxm, CN(j) G R nxn,
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QN(j) e  R nxn, R N(j) e  R mxm, Qn U) > o, R N(j) > 0, j  e  S,

the limits of A N(j), B N(j), Qn U), R n U) when N  tends to infinity, exist 
for each j  E S  and R(j)  > 0, (A(i ) ,B( i ) , i  e  S) is stochastically stabilizable, 

is stochastically detectable, where

A(j)  = lim A N(j), B( j )  =  lim B N(j),
N —> oo N —+oo

Q(j)  =  lim Qn U), R( j )  — hm R N(j), j  E S ,
N —»oo N —+oo

The next Theorem shows that for the system with this property the optimal 
control for the time varying noise system can be realized in the form of a 
time invariant feedback gain.

T h eo rem  52 Under the above formulated assumptions the optimal control 
law for the time-varying noise system (4-1) with cost functional (4-4) is given 
by

uk =  - L ( i ) x k,i E S, (4.64)

where
L(i) = (.R(i) +  B \ i)F ( i)B ( i) 'y 1 B'{i)F{i)A(i).  (4.65)

F(i) = E P v P ti) (4-66)

and the set of positive-semidefinite symmetric matrices {P(i) : i E S}  is the 
unique solution of the coupled algebraic Riccati equation (4-26).

P roo f. From Theorem 51 and Theorem 52 we have for any control u =
K , . . . )

J(xo,u)  >^1^  ( (PnN) (r0, K ( * ) ) x 0, x 0) +

(4.67)

E  E  Ai)P ijtr  ('C'(i)P(j)C{i)).
iesjes

Since, as we know from Lemma 6, the family of matrices P ^ l ( j , K ( * ) )  is 
uniformly bounded with respect to N  and k = 1, Inequali ty (4.67) 
shows th a t the cost functional (3.27) does not take a value less than

E  E  (C{i)P<J)C{i)) •
ieSjes

j £ S  .
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The calculation similar to that in the proof of Theorem 2 in [25] shows that 
for the control given by (4.64)-(4.66) the cost functional takes the value

E  E  7T(i)Pijtr (C' {i )P(j)C(i )) . U
i€ S  j& S

As an illustration of the above theorem consider again Example 13 but 
now for the noise case.

E xam ple  15 Consider the noise system (4-1) n = 1, s = 2,

A k{l) = ak, A k{2) = 0.

a*:
\

(6k +  13) {2k + 3) 
(k + 1) (4fc +  9)

B k( 1) =  B k( 2) =  1, Cfc(l) =  Ck( 2) = 1 +
1

k +  1

Qk(  1) =  Qk{2) =  Rk(  1) =  Rk(2) -  1

Suppose that the Markov chain has the transition matrix of the form

P  =
1 l
2 2 
1  0

We see that the assumption of Theorem 52 are satisfied with

A (l) =  V3,A {  2) =  0.

5 ( 1 )  =  B(2) = 1 , 0 7 ( 1 )  =  C( 2) =  1  

Q (l) =  Q( 2) = R{ 1) =  R( 2) =  1 .

According to Theorem 52 the optimal time invariant feedback takes the fol
lowing form

L( 2) =  1.
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4 .7  C om parison  and d iscu ssion
The main result of Section 3, Theorem 43, is the first result in the literature 
about time-varying JLQ problem on infinite time interval. Also Theorem 45, 
which gives conditions for stability of the optimal closed loop system and 
for uniquness of global and bounded solution of coupled difference Riccati 
equation, has never been published. Both these theorems are extensions of 
results in [54], where only parameters Ak in (4.1) are random and the random 
changes are independent and identically distributed. In this case the Riccati 
equation related to this problem is simpler for analysis because it consists of 
one equation only, whereas in our case it is a set of equations.

The time invariant JLQ on infinite time interval has been solved in many 
papers [58], [59], [24] however under much stronger assumptions than those 
from Theorem 4.4. Moreover assumptions of this Theorem are also necessary 
for the existence of optimal control and therefore cannot be weakened

In Section 4 we present several properties of coupled Riccati equation. 
The conditions for existence and uniqueness of nonnegative definite global 
and bounded solution given by Theorem 4.3 have not been published, whereas 
its time invariant counterpart, Theorem 48, has been already proved in [24]. 
Theorem 47 deserves special attention. It enables to show that for time- 
varying noise JLQ problem on infinite time interval the optimal control can 
be realized in the time invariant feedback form under assumptions tha t the 
coefficients of the system and the cost functional converge ( see Theorem 4.8). 
Such a result for standard LQG problem has been shown in [26]. Results of 
this kind may by used in solving of adaptive control problems.

A ppendix

We use the following definition of stationary Markov chain.

D efin ition  11 Let (Q, T , P ) be a probability space and let S  be a finite set. 
A sequence {Xn)n(̂ o, where X n : Q —> S  is called a Markov chain with initial 
distribution t t  =  ( p ( i ) ) i e s  if  and only if t t  is the distribution of X q and for  
each natural n and any io,ii, ...,in £ S

P  (X n — in| X q = io, ..., X n—x = in- j) =  P  (X n =  in \ X n—\ =  in- 1 ) ,

whenever the left member is definite. I f  for fixed i , j  G S  the probability 
P  (X n = i\ =  j )  is the same for all n then the Markov chain is called 
stationary.

Since we consider only stationary Markov chains we omit the term sta
tionary and we use the term Markov chain instead of stationary Markov 
chain.

The matrix P  =  [p(z, j)] iij€5, where

p(i, j )  = P { X n = j \  = i )  = P ( X 1 = j\ X 0 = i)

is called transition matrix of the Markov chain and the distribution t t  of X q  

is called initial distribution of the Markov chain. Let denote

p{n , i , j )  = P ( X n = j \ X 0 = i ) = P ( X n+k = j \ X k = i ) .

It can be shown that
[ p ( M > j ) ] i , j € S  =  p n - 

Denote by f (n,  i, j )  the probability that the Markov chain will be in j  for 
the first time at n-th  step, given th a t it starts from i it is

f ( n , i , j )  =  P ( X k ^ j , 0  < k <  n , X n = j \ X 0 =  i ) .

117
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Now we present a list of definitions and theorems about stationary Markov 
chains. All of them axe standard results and can be found in any textbook 
devoted to stationary Markov chains, for example [57], [50].

D efinition 12 (Classification of states) A state j  E S  is said to be accessible 
from state i E S  if  there exists n such that p ( n , i , j ) > 0. States i , j E S  are 
said to communicate if each is accessible from the other. A subset of the set 
of all states S  is called a communicating class o f states if  all the states are 
accessible from the other. A communicating class is called closed i f  no states 
outside the class is accessible from a state inside the class. A state i is called 
recurrent or persistent i/EJJLi / ( n )M ) =  1 > otherwise it is called transient.

D efinition 13 A state j  is called to have period d if d is the greatest common 
divisor of all those n ’s for which p ( n , j , j ) >  0. A Markov chain is called 
aperiodic if  each state has the period equal to 1.

Theorem  53 I f  C is a closed class of states and i E C is a persistent state 
then each state j  E C is persistent.

Theorem  54 Set S  of all states o f the Markov chain can be divided in an 
unique way into disjoint sets T, C \ , ..., CT, where all the states in T  are tran
sient and each Ci is a communicating class of states. Moreover, all the states 
from Ci are recurrent and Ci are closed.

Theorem  55 For each state i E S  there exists a recurrent state j  E S  and 
a number n such that p(n , i , j )  > 0. Moreover, the expectation of the time of 
reaching j  is finite.

D efinition 14 A Markov chain is called irreducible i f  there does not exist a 
nonempty closed set other than S  itself.

Theorem  56 A Markov chain is irreducible i f  and only if for all pairs i, j
o f the state i is accessible from j.

Theorem  57 Let r] denote the time of the leaving of the set T  of transient
states, defined as follows to state

r] =  min{fc >  1 : r(k) £ T}.

Then
E  (rj\ r (0) =  i) < oo

for all i E C in particular

P  (77 <  001 r(0) =  i) = 1

for all i E C.
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Remark 9 Let Tj denote the time of the first visit to state j  E Cp, defined 
as follows Tj = min{fc >  1 : r(k) = j}.  I f  the state j  is persistent then of 
course

P (Tj <  oo| r (0 )  =  j ) = 1.
It can be shown that

P  (Tj <  001 r (0 )  — i) =  1 

for all i E Cp and E ( T j \ r ( 0 )  =  i) <  00.

D efinition 15 A Markov chain is called ergodic if  there exists only one close 
class of communicating states and it is aperiodic.

Theorem  58 I f  the Markov chain is ergodic than Jim p(n, i , j )  = TTj exists

for all j  independly of i and then the distribution ix =  (^i)i€s called limit 
distribution. The matrix

r 7Ti -  7TS

TT\ ... 7Ts

satisfies equations
P P  = P P  = P  = P 2.

Theorem  59 Suppose that the Markov chain is ergodic with limit distribu
tion (7Ti)ieS and let

f  : S  —> R n
be any function, then

i im • ^ E / ( r (s)) =  E 7ri/(*)>a-s-

Theorem  60 Suppose that the Markov chain is ergodic with limit distribu
tion (ni)ieS and let f  : S  —> R n be any function, then there exists positive 
constant a such that

EiLo f ( r ( s ) ) - N Z i z S Kif(i)lim su p    ,  =  1 , a. s.
N^00 V a N \ g \ g N

Theorem  61 Let r (n), n =  0,1,... be a Markov chain. Fix a number 
k and consider a sequence of random variables r(n), n  =  0,1 , . . . ,r(n) =  

(r(n), .. . ,r(k +  n ) ) . Then r(n), n =  0,1,... is a Markov chain with state 
space

S lk) = {(i0> ...ifc-i) e  S k : p(io,ii)...p(ik-2, ik- i )  > o} ,
and if the state space S  of r(n) consists of one close communicating class 
then so does the space ofr(n).
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In fact Theorem 61 in [57] is proved for k = 2 but the extension for k > 2 
is straightforward.

Prom Theorem 61 and Remark 9 one can easily get the following theorem.

Theorem  62 Suppose that the space of the Markov chain r(n) consists of 
one close communicating class then for each io, ---ik-i G S  such that

p (z 0 , i i ) . . . p ( i fc_ 2 , z fc_ i )  >  0

we have

^ ( ^ , . . . i fc- x | r (0 ) =  * ) <  0 0

where

rli0,...ik- i = min{Z > k : r(l -  1) = ik_ i, ...,r(l -  k) =  z0}.
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On control problems for jump linear systems 

Summary

In this book we consider the problems o f controllability, stability and optimal 
control with quadratic index for discrete-time linear systems with randomly jumping 
parameters. In the analyzed model the parameters are functions o f a Markov chain 
with finite state space.

First we study various concepts o f controllability and deliberately illustrate the 
relationships between them. For all proposed types o f controllability we present 
necessary and sufficient conditions as well as several methods o f synthesis o f control 
law that ensures reaching o f required goal. A first impression, when we consider the 
problem o f controllability for jum p linear systems, may be to reduce it to a problem o f 
controllability o f linear systems with time-varying parameters. However, one 
important problem arise in this approach. When we consider deterministic time- 
varying systems and we want to find a control that drives certain initial conditions to a 
final state in given time then starting from the first moment we know values o f  all the 
parameters up to the final moment. Whereas for jum p linear systems in each moment 
we know only the past values o f coefficients and the future values could be predicated 
with given probability. This causes that for jum p linear systems quite different 
approach must be used. The presented results significantly extend and complete the 
existing knowledge in the fild o f controllability o f jum p linear systems.

Stability o f jum p linear systems is the next subject discussed in this book is. 
We focus on two types o f  stability: moment stability and almost sure stability. For one 
dimensional systems we present full description o f both types o f stability together 
with relationships between them. Such complete solution is nevertheless available 
only for this class o f  systems. Next we present results on mean square stability. This 
special case o f  moment stability deserves special attention from the following two 
reasons. First, it is the only case o f  moment stability for which the necessary and 
sufficient conditions are known. Secondly, mean square stability is closely related to 
linear quadratic problem which is one o f the most important optimization problems. It 
is also interesting that conditions for mean square stability can be expressed in terms 
o f solutions o f properly definite set o f matrix linear equations. This set o f  equation 
called coupled Lyapunov equation is also investigated. Regarding almost sure 
stability, which is the most desirable from practical point o f view, only partial results 
are available. We present several sufficient conditions, however only for special 
commuting structure o f the matrix coefficients we can present necessary and sufficient 
conditions. Similar situation occurs for moment stability, i.e. in general, only 
sufficient conditions are known and some more specific results can be formulated 
under additional assumptions about commuting structure. We also discuss the 
Lyapunov exponent approach to stability problem. However, these results are purely 
theoretical unless methods for determining the sign o f the Lyapunov exponent are 
developed.

The last problem discussed in this book is the problem o f minimizing 
quadratic cost functional. It is called JLQ problem. The important difference between 
the results from the literature and those presented here is that we consider the situation 
when the coefficient o f the systems depend also on time. We start with the JLQ

problem on finite time interval. In this case the optimal control is given in the form of 
linear feedback with the feedback matrices depending on time and the state of 
Markow chain (the mode). The optimal feedback is given by a solution o f a set of 
quadratic recurrent matrix equations. This set o f equations is called recurrent coupled 
Riccati equation. Next we consider the situation o f an infinite time interval. In the 
case the solution does not always exists. The existence o f solution depends on the 
existence o f a global and bounded solution o f recurrent coupled Riccati equation. 
Therefore, next we investigate properties o f this equation. If we consider the case 
when the coefficients o f the system and cost functional does not explicitly depend on 
time the recurrent coupled Riccati equation changes into a set of algebraic quadratic 
matrix equations called coupled algebraic Riccati equation. Properties o f this equation 
together with numerical algorithm o f solving are also presented. We end our 
considerations with JLQ problem for jump linear system with additive disturbance. 
This problem is called noise JLQ problem. It is interesting that noise JLQ problem 
may have more than one solution. Basing on this property we show that for certain 
class o f time varying systems the optimal control can be realized in the time invariant 
feedback form.



O problemach sterowania układami liniowymi ze skokowo 
zmieniającymi się parametrami

Streszczenie

W  pracy  om aw ia  się zagadnien ia  sterow alności, stabilności i sterow ania optym alnego 
z  kw adratow ym  funkcjonałem  kosztów  d la  dyskretnych układów  liniow ych ze skokow o 
zm ien iającym i się param etram i.

W  rozdziale  1 zebrano  istn iejące koncepcje  sterow alności tak ich  układów  i 
zaproponow ano  pew ne now e defin icje  sterow alności. R ozw aża się zarów no sterow alność w  
ustalonym  czasie, ja k  i s terow alność w  czasie losow ym . N astępnie  przedyskutow ano 
zależności m iędzy  różnym i typam i sterow alności i d la  każdego z  n ich podano m etody syntezy 
p raw a ste row an ia  zapew nia jącego  osiągnięcie  w ym aganego celu . W yniki tego  rozdziału  w  
pełni ro zw iązu ją  p rob lem  sterow alności dyskretnych układów  liniow ych ze skokow o 
zm ien iającym i się param etram i.

R ozdzia ł 2  pośw ięcony  je s t  stabilności. R ozdział ten  rozpoczyna się od 
w prow adzen ia  różnych  typów  sterow alności i dyskusji p rostszych relacji m iędzy nim i. 
N astępn ie  d la  uk ładów  jednow ym iarow ych  podane s ą  w arunki konieczne i w ystarczające dla 
każdego typu stab ilności i dokłady  opis relacji m iędzy nim i. Jest to  je d y n a  k lasa układów , dla 
k tórej taki kom pletny  opis udało się uzyskać. S tabilność średniokw adratow a została 
szczególn ie  w n ik liw ie  op isana  z dw óch pow odów . Po pierw sze je s t  ona ściśle zw iązana z 
jed n y m  z najw ażniejszych  zagadnień  sterow ania optym alnego, a m ianow icie  z problem em  
lin iow o kw adratow ym . Po d rug ie  je s t  to  jed y n y  typ  stab ilności, d la  którego znane są  
efek tyw ne w arunki konieczne i w ystarczające. Z  punktu  w idzen ia  praktyki najbardziej 
pożądana je s t  stab ilność  z  praw dopodobieństw em  jed en . N ieste ty  otrzym ane w yniki nie 
rozw iązu ją  w  pełn i tego  problem u.

R ozdzia ł 3 pośw ięcony  je s t  p roblem ow i sterow ania optym alnego z kw adratow ym  
w skaźnik iem  jak o śc i. W  p ierw szej części tego  rozdziału  przedstaw iono  znane w  literaturze 
w yniki do tyczące przypadku sterow an ia  na  skończonym  przedziale  czasow ym . N astępnie  
przedstaw iono  now e w yniki do tyczące n ieskończonego horyzontu czasow ego. Is to tną  
no w o śc ią  w  porów naniu  ze znanym i pracam i je s t  rozpatryw anie sytuacji, w  której zarów no 
w spółczynnik i m odelu , ja k  i w skaźnika jak o śc i za leżą  od czasu. R ezulataty  te zostały  
osiągnięte  poprzez  analizę układu stow arzyszonych rów nań różn icow ych R iccatiego.
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