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Dealing with impulsive noise remains one
of the great challenges of modern engi-
neering. It is hard to model, predict, and

filter and yet it pervades the world, [146].

Preface

ITH breathtaking pace, computers are becoming more powerful and at the same time less
W expensive. Thus, the hardware needed for digital image processing is readily available.
In this way, image processing is becoming a common tool to analyze multidimensional scientific
data in all areas of natural science. For more and more scientists, processing of monochrome
and especially multichannel images is the key to study complex scientific problems, they could
not have dreamed to tackle only a few years ago.

Multichannel signal processing is of paramount importance in application areas such as
biomedicine, computer and machine vision, robotics, entertainment and multimedia applica-
tions, industrial inspection, remote sensing and many others. In all these areas the users and
system developers work with multidimensional data sets.

It is well known that humans and computer vision systems use color information to sense
the environment and that the correct perception of color can help in different tasks of image
understanding and pattern recognition. Unfortunately, noise and other impairments associated
with the measurement or the transmission apparatus can significantly degrade the value of the
color information carried by the digital images. This usually declines their perceptual fidelity
and also decreases the performance of the task for which the image was created.

It comes therefore as no surprise that the most common signal processing task is the noise
filtering. Noisefiltering is an essential part of any image processing based system, whether the
final information is used for human perception or for an automatic inspection and analysis.

The amount of research published in the last ten years indicates agrowing interest in the area
of color image processing and analysis. Furthermore, the surge of emerging applications such
as web-based processing of color images and videos, image retrieval systems indexing large
multimedia databases, enhancement of medical and biological images, digital archiving, cul-
tural heritage preservation projects and the proliferation of smart devices such as video-enabled
wireless phones, wearable computers and personal digital assistant tools, suggests that the de-
mand for new, more powerful and cost effective multichannel filtering solutions will continue.



The correction of the signal distorsions is a digital process, by which disturbances intro-
duced by the sensor system are rectified, with the goal being to obtain the image or generally
the signal, which corresponds as closely as possible to the output of an ideal imaging system.
Thus, correcting signal artifacts, in practice means adjusting the characteristics of the imaging
system to meet specific demands of the human observer or the computer vision system.

Digital image processing is based on the conversion of a continuous image field into equiva-
lent digital form. The synthesis of images from the signals arising from various sensor systems
is accomplished by a digital process directed to transforming the signal into a form allowing
visual or machine perception. The requirements for an ideal conversion system are usually ex-
pressed in terms of certain technical properties such as the resolution of the imaging systems,
photometric accuracy, quantization levels, intensity of intrinsic noise and many others.

Improvement of the quality of images has always been one of the central tasks of digital
image processing. In modem terms, improvements in sensitivity, resolution and noise reduction
have equated higher quality with greater informational throughput. Image noise is an unwanted
feature, which is either contained in the relevant light signal or is added by the imaging pro-
cess and it compromises a precise evaluation of the light signal distribution, which should be
measured.

The analysis of the image noise in digital image acquisition systems often focuses on ran-
dom noise sources, such as those associated with quantum signal detection (shot noise) and
signal independentfluctuations (dark current, readout noise). Other important source of image
noise is the inhomogeneity of the responsiveness of the sensor elements and signal disturbances
that introduce repeatable patterns into image data.

During imageformation, acquisition, storage and transmission many additional types of dis-
torsions limit the quality of digital images. Transmission errors, periodic or random motion of
the camera system during exposure, electronic instability of the image signal, electromagnetic
interferences from natural or man-made sources, sensor malfunctions, optic imperfections, elec-
tronics interference or aging of the storage material all disturb the image quality.

In the last years, the area of vector valued (multichannel, multispectral, multicomponent)
signal processing has dramatically increased. The leading edge of development and interest
is in the domain of remote sensing, but the classical color imaging still remains the preferred
research domain.

Typically, a color image is represented in each pixel by a three component vector. The vector
components quantify in general the amounts of pure red, green and blue that compose the local
color. These vector valued signals cannot be reduced to a stack of separately processed scalar
components, due to the inherent correlation between the channels.

In the literature, several noise reduction techniques have been proposed. They can be divided
into linear and nonlinear techniques.

Linear processing techniques have been widely used in digital signal processing applica-
tions, since their mathematical simplicity and the availability of a unifying linear system theory
make them relatively easy to analyze and implement. Unfortunately, most of the linear tech-
niques tend to blur structural elements such as lines, edges and fine image details and therefore
many multichannel image processing tasks cannot be efficiently accomplished by linear tech-
niques.

Image signals are nonlinear in nature, due to the presence of structural information and are
perceived through the human visual system, which has strong nonlinear characteristics. Non-
linear methods are able to preserve important multichannel structural elements and eliminate
degradations occurring during signalformation or transmission through nonlinear channels and
they proved to be efficient in the suppression of impulsive, Gaussian and mixed type of noise.

The most popular nonlinear filters are based on order statistics. However their common
drawback is that they ignore the temporal or spatial information of the signal samples. There-
fore many different techniques alleviating this problem have been proposed to date.

The algorithms developed by the author of this monograph are oriented towards the im-
provement of the efficiency of the standard filtering approaches and are especially focused on
the impulsive noise removal. The special emphasis is placed on the suppression of impulsive
and mixed noise, as the nonlinear techniques are especially well suited to this particular task.

HE purpose of this book is to present the state of the art in nonlinear color image noise

removal techniques and also to organize and integrate the authors’s original contributions

to the dynamic development of this field, scattered in numerous refereed scientific publications.

The book itself can be characterized as a monograph of author’s own solutions put on the back-
ground of the state of the art.

The content of this monograph is structured into seven Chapters. The first part of this book
is devoted to the overview of the problems of noise reduction in color images. Its purpose is
to give some insight into the fundamentals of color image processing and basic color image
filtering designs. This Chapter also covers the various color image noise sources, their models
and measures of the quality of image restoration.

The second Chapter is devoted to the adaptive schemes of noise reduction in gray scale
images, as many techniques primarily developed for monochrome images can be reformulated
to work in the multichannel domain. In this Chapter special emphasis is put on the weighted
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medianfilters and their optimization, as thisfilterfamily, extended to the vectorial case is con-
sidered in Chapter 3 and 7.

Chapter 3 presents an overview of the noise reduction filters used in color imaging. This
Chapter provides the state of the art in color imagefiltering and serves as a basis for the next
Chapters in which author’s original contributions are presented. In this Chapter the modification
of the central weighted median filter and the rank conditioned vector median filter are also
briefly outlined.

The next Chapter covers the anisotropic diffusion technique in the scalar and multichannel
case. The evaluation of the efficiency of this nonlinear technique shows that the approach, in
which the central pixel of the filtering window is excluded from the processing, yields much
better results and increases the robustness of the anisotropic diffusion method and its various
modifications. This observation is utilized in the design of novel efficient techniques of impul-
sive noise removal presented in Chapter 5 and 6.

Chapter 5 is devoted to the digital paths approach to color imagefiltering, originally devel-
oped by the author for the gray scale imaging using the concept of random and self-avoiding
walks. This novel technique, based on the exploration of the local neighborhood through digital
paths and on the utilization of thefuzzy concepts, can be seen as a powerful generalization of
the anisotropic diffusion approach introduced in Chapter 4. The performed simulations indi-
cate that the new filter class excels significantly over the currently used nonlinear multichannel
techniques especially in the case of mixed noise.

In the next Chapter the problem of nonparametric impulsive noise reduction in multichan-
nel images is addressed. A new family of filters for noise attenuation elaborated by the author,
based on nonparametric probability density estimation of sample data, is introduced and its
relationship to commonly used filtering techniques is investigated. Extensive simulation exper-
iments indicate that the presented family of filters outperform the standard techniques used to
eliminate impulsive noise in color images.

The last Chapter deals with the adaptive optimization of the weighted vector median filters
described in Chapters 2, 3 and also introduces the new technique based on the so called sigma-
filtering, which can be seen as an extension of the rank conditioned vector median introduced
in Chapter 3. This novel adaptivefiltering technique is based on robust order statistic concepts
and simplified statistical measures of vectors’ dispersion. Simulation studies indicate that the
presented filters are computationally attractive, yield good performance and are able to preserve
fine details, while efficiently suppressing impulsive noise.

1

Noise Reduction in Color Images

Visual information processing is increasingly becoming widespread as multimedia
becomes common in everyday life. With the expanding use of color images in multimedia
applications and the proliferation ofcolor capturing and display units, the interest in color
imaging is rapidly growing.

Very often the quality of color images is decreased by different types of noise distor-
tions. Noise can appear during the process of image acquisition, transmission and storage.
Therefore its removal or reduction is one of the most important image processing tasks.

This chapter presents the fundamentals of color image processing, describes the vari-
ous noise sources and its models, introduces the image quality measures and also describes
briefly some basicfiltering designs.

1.1 Introduction

HE perception of color is of paramount importance to humans since they routinely use
T color features to sense the environment, recognize objects and convey information. That
is why, it is necessary to use color information in computer vision, because in many practi-
cal applications the location of scene objects can be obtained only when color information is
considered, [66,117,157,229,246,250,267,419].

In many cases it is indispensable to remove the corrupted pixels to facilitate subsequent im-
age processing operations such as edge detection, image segmentation and pattern recognition.
To convey the desired information correctly, the noisy signal should be processed by a filtering
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algorithm, that removes the noise component, but retains the image structure. Therefore, the
goal of image filtering is the removal of unprofitable information that may corrupt any of the
following image processing steps.

The computer vision systems can consist of a variety of mechanical, optical, electronic
or chemical components, but all of them perform three basic operations: image acquisition,
signal processing and image formation. However, these processes do not occur without serious
problems. A number of undesired disturbances of the color image information result from the
interference between the original signal and noise process. Noise affects the image quality
level, decreasing not only its visual perception but also the performance of the task for which
the image was acquired. Thereforefiltering, the process of signal transformation into a more
suitable form for a given task, is needed.

The noise removal process can be divided into reconstruction and enhancement filtering.
In general, reconstruction filters utilize some knowledge about the type of image degradation,
whereas image enhancement techniques attempt to improve (mostly subjectively measured) the
quality of an image for human or machine interpretation. Both noise filtering and enhancement
of the colors and structural information of the image are usually viewed as pre-processing stages
in the image processing chain.

1.2 Fundamentals of Color Image Processing

The presence or absence of light is what causes the sensation of color. Light is a physical
phenomenon, but color perception depends on the interaction of light with human visual system
and is therefore a psycho-physiological experience, [117,118, 234, 267, 367]. Since human
high-intensity color vision is based on three types of photo-receptor cone cells, three numerical
components are necessary and sufficient to define a color, if appropriate spectral weighting
functions are used. The human cones respond to the short (Blue), medium (Green) and long
(Red) wavelengths. Therefore, a color can be specified by a three-component vector, (Figs. 1.1,
1.6). The set of all colors forms a multidimensional space called color space or color model,
[52,86,222,267,419].

Human perception of color is based on its lightness, hue and saturation, [66,118,248,267,
367,419]. Lightness is the perceptual response to luminance and distinguishes the gray levels.
Hue is a color attribute associated with the dominant wavelength in a mixture of light waves and
represents the dominant color as perceived by a human observer.

Saturation refers to the relative purity or the amount of white light mixed with a hue. Hue
and saturation together describe the chrominance and the human perception of color is basically
determined by luminance and chrominance, [118,235,271].

1.2 Fundamentals of Color Image Processing 13

To utilize color as a visual cue in multimedia, im-
age processing, computer graphics and computer vi-
sion applications, an appropriate method for represent-
ing color signals is needed. The color image acqui-
sition process consists in obtaining three monochro-
matic images representing the Red (R), Green (G) and

Blue  Blue (B) components of the observed scene, 661 and
B  the (R,G,B) triplet leads to an unambiguous formation
of a color image, (Fig. 1.6).

Electronic devices digitize and represent color im-
ages using the three basic RGB color primaries. RGB
based color models employ additive primaries and rep-

resent colors (defined as vectors in the RGB space, Fig. 1.1) as their combinations. Although
the RGB sensor basis is distinct from the human experience of colors, it is widely used in the

Fig. 1.1. RGB color space

color image acquisition and processing.

Mathematically, a Ki x multichannel image (Fig. 1.6) is a mapping 11 —»Zm repre-
senting a two-dimensional matrix of three-component samples (pixels), xt = (xlltxa, ..., xim)
G 1}, where | is the image domain dimension and m denotes the number of channels, (in the
case of standard color images, parameters | and m are equal to 2 and 3, respectively). Compo-
nents Xik, fork = 1,2,... mandi = 1 ,2 ,Q, Q = K\ mK-2 represent the color channel
values quantified into the integer domain ranging from 0 to (2s —1) levels, with B bits per
color channel. The process of displaying an image creates a graphical representation (Fig. 1.6)
of the image matrix, in which the pixel values are assigned particular colors. When s large,
it indicates high amount of the fc-th color primary in the vector X,. Green color channel {xt2} is
the most similar to gray scale representation x of the color image x, because xa has the largest
coefficient in the transformation to gray scales, [117].

Using the introduced nomenclature, each color pixel xt = (x",x&, x") is considered as a 3-
dimensional vector in the RGB cube. The magnitude MXj: Z2 —R + of vectors, defined as the
square root of the sum of squares of its components, constitutes a measure of their brightness.
The direction Dx< Z2 — §2 of color pixel vectors, where §2 is a unit ball in the R3 space,
describes their chromaticity.

The magnitude M and direction Dx. = (Dxn, Dxa, Dx23) corresponding to the sample x,,
fori=1,2,... ,Q, are defined as, [386]

mx = X = v (xinz+ (xiy2+ , (1.2)
ooV
A, = . e _ZK a3z for k=123 (12
m
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The color chromaticity CX : Z2—T may be defined as the point on Maxwell triangle T, which
constitutes a parametrization of the chromaticity space. In this way, each chrominance line is
entirely determined by its intersection point with the Maxwell plane, [117] where T is a triangle
in IR3, which intersects the RGB color primaries in the RGB cube comers, (see Figs. 1.1, 1.6).
Thus, the color chromaticity of the vector x*, fori = 1 , 2 ,Q, can be defined as the point
Cx, = (Cxn,cxi2,c xJ with coordinates given by

CXk—— — ., Chl+Cx2+ Cxa= 1, for k=1,2,3. (1-3)
a-ii -t- Xi2 - Xis

1.3 Color Image Noise and its Models

Because the acquisition or transmission of digital images through sensors or communication
channels is often inferred by different kinds of noise, [20,34,224,232,246,429] one of the aims
of the pre-processing techniques is its efficient removal, [111,226,231].

Noise attenuation is of great importance in various applications, like the enhancement of
biological images (for example cDNA microarrays, [90,95,348]), digital restoration of images
of fine arts, [39,169,321,323,325,327] old color movies enhancement, [153,388] quality im-
provement of images acquired by different sensors, and many others, (Fig. 1.7).

In many practical applications, images are corrupted by noise originating from different
sources. This mixed noise can be caused by faulty image sensors and errors due to image
capture, transmission or storage and is usually modelled by additive Gaussian noise with super-
imposed impulsive noise, [20,174,246].

Noise in an image affects its perceptual quality, diminishing not only its visual fidelity, but
also decreasing the performance of the task for which it was acquired, [412]. Noise introduces
random distortions into sensor readings, making them different from the ideal values and thus
introducing errors and undesirable errors in subsequent stages of the image processing based
system.

Noise in the image sequence may result not only from sensor malfunctions, but also from
electronic interference or flaws in the data transmission procedure. Faulty sensors, optic imper-
fections, electronics interferences, data transmission errors or aging of the storage material may
introduce noise components to digital images, (Figs. 1.2, 1.7). Considering the signal-to-noise
ratio over practical communication media, there can be also degradation in quality due to the
low power of the received signal. Image quality degradation can also be caused by applied pro-
cessing techniques, such as aperture correction, that amplifies both high frequency signals and
noise or demosaicing procedures performed in CCD sensors.

1.3 ColorImage Noise and its Models 15

The appearance of noise and its influence on the image quality, (Fig. 1.7) is related to its
statistical characteristics. Noise signals can be either periodic in nature or random. They can
be described in terms of the commonly used Gaussian noise model or they can be characterized
by abrupt local changes in the image data, which occur in the form of short time duration, high
energy spikes attaining large amplitudes and modelled by long-tailed distributions, [59,141,
382,383,430].

1.3.1 Frequently Occurring Noise Classes

As described earlier, the most common noise sources are sensors and transmission channel
faults, (Fig. 1.2). Both sources introduce different kinds of noise, which cause different visual
effects.

Sensor Noise

Image sensors can be divided into two categories, namely photochemical and photoelectronic
sensors, [136]. In photochemical sensors e.g. positive and negative photographic films, the
appearance of noise can be attributed mainly to the silver grain in the active film surface. This
so-calledfilm grain noise, is modelled as a Poisson or Gaussian process. In addition to the film
grain noise, photographic noise is due to dust that collects on the optics and on the films during
the developing process.

Photoelectronic sensors have an advantage over film in that they can be used to drive an
image digitizer directly. Two basic noise models are usually associated with image acquisition
Sensors:

« thermal noise usually modelled as additive, white, zero-mean Gaussian noise [246],

* photoelectronic noise [231], which is produced by the random fluctuation of the number of
photons on the light sensitive surface of the sensor.

The noise characteristics are strongly dependent on the type of sensors used. The typical
noise generated by the most commonly used CCD cameras include, [55,77]:

* Shot Noise associated with the random arrival of photons at the detector,

« Reset Noise caused by the conversion from the charge domain to the voltage domain by means
of a sense capacitor and source-follower amplifier,

« Output Amplifier Noise consisting of white noise, (thermal noise also called Johnson noise)

and flicker noise (also called /f noise),
* Clocking Noise caused by the number of clocks required to transfer the signal through a CCD
and process its output,
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Fig. 1.2. Frequently occurring noise corrupting color images

» Dark Current Noise resulting from the imperfections or impurities in the depleted bulk silicon
or at the silicon - silicon dioxide interface,

» Surface Dark Current caused by the generation centers at the sensor’s surface, (these centers
are surface states formed at the silicon - silicon dioxide interface),

 Bulk Dark Current attributed primarily to defects in the silicon, which generates dark cur-
rent non-uniformity (each pixel generates a slightly different amount of dark current) and dark
current shot noise (equal to the square root of the dark signal),

 Photo Response Non-Uniformity caused by the variation in light sensitivity of sensor’s ele-
ments, which results in a faint checkerboard pattern in a flat-field image.

Taking into consideration that the general notion of noise describes the amount of random
fluctuation in a given quantity, sensor noise should be considered as a 3-channel perturbation
vector in the RGB color space affecting the spread of the actual RGB vectors, [375]. Such noisy
samples can be characterized by a high angular distance to the neighboring samples. This can
represent a strong artifact, to which the human visual system is very sensitive, [284].

Transmission Noise

The noise encountered in color images cannot always be described by the commonly assumed
Gaussian model. Such noise is generated during the transmission and is frequently introduced
through bit errors, [20,49] i.e. random changes of bit values (from 1to 0 or from O to 1) in an
image digital representation.

Is it clear that the degree of such corruption depends on the frequency of the occurrence,
as well as the bit level, that is affected by noise. It is unlikely that most of the noise in a color
image will result in pure gray scale pixels. This would require the RGB color channels to be
corrupted in such a way that the distorted pixels have the same color components, i.e. with full
correlation among the color components. More likely is that the noisy vector will be composed
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of independent channel values updated for each corrupted pixel or the noisy vectors of the RGB
images will be only slightly correlated, [200,246].

1.3.2 Noise Models

The noise modelling and evaluation of the efficiency of noise attenuation methods using the
widely used test images allows the objective comparison of the noisy, restored and original
images, [99].

Applying the nomenclature used in [19], in which x, e ZI, x, = (m, xi2, ..., Xim) repre-
sents the observation (noisy) sample and o; e Z1 o*= (o,i, 0i2, = 0im) is the desired (noise
free) sample, the noise corruption is modelled as

Xi = oi + vi, (14

where \< = (vn, vI2)..., vim) is the vector describing the noise process, (e.g. thermal noise
mixed with bit errors) and i = 1,2,..., Q characterizes the spatial position of the samples
on the image domain. Note, that vt can be described as a signal-dependent noise or as noise
independent on the image signal.

Very often noise encountered in digital image processing applications has to be character-
ized in terms of random impulses. Thus, image filters should be able to suppress impulsive or
generally heavy-tailed noise.

Impulsive Noise Models

In many practical situations, images are corrupted by noise caused either by faulty image sensors
or due to transmission errors resulting from man-made phenomena such as ignition transients
in the vicinity of the receivers or even natural phenomena such as lightning in the atmosphere.

The impulsive noise is often generated by bit errors, especially during the scanning or trans-
mission over noisy information channels. In the case of gray scale images, the model of such a
corruption can be defined as, [20]

»jJ = | > with Probability 1-p, 5)
1 [ 1 — fcf, with probability p,

where p is the bit change probability, fc and *k{, forj = 1,2,..., B are binary values {0,1} of
5-bit original o~ sample and noisy sample xt given by

0i = K\2B~1 + 2B 2+ ... + kf~1& + kf, (L6)

Xi = ,kl2B-1+ *k?2B~2 + ... + *kf-121 + **f, @7
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In order to follow the corruption in the intensity domain, the above model can be simplified into
the random valued impulsive noise given by, [20,231]

O, with probability 1 —p,

. e (1-9)
Vi,  with probability p,

Xi= 3

|

where X, is the noisy image sample, ot denotes the original image sample, i describes the sample
location, M is the random value from the range [0,255] and p is the impulse probability.

In the caseof color images, thereexist some multichannel extensions of (1.8),[189,232,
246]. In thefirst salt& papper noise model (NM1), the noisy signal is achieved as follows,
[313,315]

§j, 02,Q3}, with probability p,
°inVi2,0i3}, with probability p, (1.9

" ,0i2, W3}, with probability p,
where X, represents the pixel in the corrupted image, oi —{0",0", ol3} represents the original
sample and vil, vI2,vi3 are random, uncorrelated variables taking the value 0 or 255, with equal
probability.

In the second model (NM2), [232,246,384,402,407] which reflects better the signal corrup-
tion and allows to simulate the correlation among noisy image channels, the sample distortion

is given by
Oi, with probability 1 —p,
{Vi,0i2,0i3}, with probability pxp,
g3}, with probability p2 R (1-10)

{otl,0i2,Vi},  with probability p3p,
{vi,Vi,Vi},  with probability P4p,
where p is the sample corruption probability and pi,pi,p3 are corruption probabilities of each
color channel, so that YIiPk = I-1 The impulses can have either large positive or negative
values and we assume that when an impulse is introduced, forcing the pixel value outside the
[0,255] range, clipping is applied to push the corrupted noise value into the integer range spec-
ified by the 8-bit arithmetic. Similar corruption model can be applied using the HSV image
representation, [155,402]

{Hi, Si, Vi},  with probability (1 —p),
NM3: X Si, Vi},  with probability pip,
{Hi,vi2,Vi},  with probability p2p, (1-11)
{Hi, Si, 1”3},  with probability p3p,
‘In this work, NM2 will generally deno{e\/fhe\l:jige\ﬁ\iﬁ}l,p* =wi§b,p<robahll.i,ty, B3> = 0 or 255.
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where p denotes the degree of impulsive noise distortion, J2 iPk = 1- In this noise model, vlg,
gq=1,2,3 is arandom variable in a small range, very close to the upper or lower bound of the
pixel’s HSV components.

Very often the noise model NM2, (1.10) is being simplified setting p4 = 1, [183,189]

\I Vi, with ;f:robabilit% P,
I Oi, with probability 1 —p,

NM4: X = (112
but in this model v4 = (vii,va,vi3) is now a noisy vector of random, uniformly distributed,
uncorrelated integer values, (channel intensities) in the range [0,255].

Mixed Noise

In many practical situations, an image is often corrupted by both additive Gaussian noise due
to sensors (thermal-noise), and impulsive transmission noise introduced by environmental in-
terference or faulty communication channels. Therefore, an image can be corrupted by mixed
noise according to the following model, [385]

vg, Wlth\[/:)r03b?2|||ty1(1 —), (1.13)

v/, otherwise,

where 0 is the noise-free color signal "h the additive noise vG modelled as zero mean, Gaus-
sian noise and v/ is the transmission noise modelled as multichannel impulsive noise, [246].

Measurement of the Color Image Quality

It is clear that subjective and objective evaluation of the image quality can be applied in pro-
cessing and non-processing context as well. In the filtering and enhancement applications,
subjective evaluation of image quality can be summarized into three main points, (Tab. 1.1):

* s the noise removed ?

This is the basic requirement of the filterdesign. The human visual system is very sensi-
tive to the presence of image distortionsand noise introduced into theimage inhibits the
correct understanding of the image information.

« Is the structural content (edges, textures and fine details) of the image preserved ?

One of the most important criteria in the subjective evaluation of filter performance is
the edge preservation. Image edges, which may be defined as discontinuities or abrupt
changes in color attributes, are important features, since they provide an indication of the
shape of the objects in the image. Maintaining the sharpness of the edges is as important
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as the removal of the image noise. The same holds true for fine image details. An image
devoid of details looks plain and unpleasant. Therefore, it is important for the filter to
distinguish the fine structures from the noise, so that they can be preserved during the
filtering process.

* Are there some color artifacts in the image caused by faulty processing ?

This requirement follows the classification of any imperfection such as blocking artifacts
or new color pixels, that were not present in the original (noise-free) image. The human
visual system is very sensitive to changes in color. Therefore, it is important to keep
the chromaticity (hue and saturation) unchanged while removing noise. The natural ap-
pearance of the color features of the scene must be preserved, while artificial contrast,
color drifts and other abberations that make the filtered image look unpleasant should be
avoided.

From this point of view it is evident that the noise removal tasks in color images may
be understood as a process of achieving the best balance between the above-mentioned cri-
teria. According to the image processing fundamentals, which describe the filtering as a multi-
criteria task, it is necessary to use at least two objective measures that correspond to the signal-
detail preservation and also express the noise attenuation capability. Moreover, certain objec-
tive criteria for the measurement of the preservation of color information should be used as
well, [24,118,195,283].

The Root Mean Squared Error (RMSE), Signal to Noise Ratio (SNR), Peak Signal to Noise
Ratio (PSNR), Normalized Mean Squared Error (NMSE) and the Normalized Color Difference
(NCD) are used in this work for the analysis of the efficiency of the described filters, [72,131,
135,145,246,288,401]. The objective quality measures are defined by the following formulas

Q m Q m Q
E E Kkik oik E E (xik oik: E ixik- 4K
MAE:|=|k21 MSE:|=1k:1 NMSE = i=1 k=1l
Qm Qm e m
Elkél(OIky
(1.19)
E E_(oikY
SNR = 10log10 le(ék_l PSNR = 20logjo ("===) (1.15)
E E fak - oik)
i=1k=1

where Q is the number of image pixels, and xlk, olk denote the fc-th component of the noisy
image pixel and its estimation at a pixel position i, respectively.

Since RGB is not a perceptually uniform space, [8,73] in the sense that differences be-
tween colors in this color space do not correspond to color differences perceived by humans, the
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Score  Overall evaluation of the distortion Noise removal evaluation

1 very disruptive poor
2 disruptive fair
3 destructive, but not disruptive good
4 perceivable, but not destructive very good
5 imperceivable excellent

Tab. 1.1 Subjective image evaluation guidelines

restoration errors are analyzed using the perceptually uniform color spaces such as CIE LAB,
CIE LUV and color difference criteria such as AE\, AE2 and Normalized Color Difference
criteria (NCD) are commonly used, [175,203,246,283]

ASi=~E£ |y j -UIxf +@¢t-axf+fa - ik | (1.16)
AE2="E | y/(lo- Lk)2+ K - k)2+K - k)2, (M7)
NCD! = QAEI NCD2= QAE?2 (1.18)

E /(1) 2+ K i)2+ (&)2 Zya(LO)2+ (<y + ()2

where L* represents lightness values and (a*, b*), (u*,v*) chrominance values corresponding to
original § and noisy (filtered) x, samples expressed in CIE LAB and CIE LUV color spaces. 2

It is worth noticing that the threshold value of AEX criteria established in [203,283] at
around 2.3 characterizes the limit of human sensitivity to color distortion. In terms of the differ-
ence between two colors, the human visual system is not capable to recognize a color difference
smaller than this threshold value and therefore the designed filters should decrease the color
difference between original and filtered samples just to this value or below.

In general, the criteria such as AEi, AE2 and respective NCD values, express well the
measure of color difference or chromaticity preservation, however they do not measure the
noise attenuation capability and signal-detail preservation of the noise filtering schemes. For
that reason, it is necessary to combine AEb AE2 based criteria with measures such as MSE,
SNR, PSNR etc. computed in the RGB or other color spaces. It can be easily observed that one
filter can produce low values of MSE, whereas its color chromaticity preservation capability
(expressed through NCD) can be significantly worse, and vice versa.

Although quantitative measures, such as AE\, AE2 and NCD are close approximations of
the perceptual error, they cannot exactly characterize the quite complex attributes of human
perception. Therefore, an alternative subjective approach shown in Tab. 11 is commonly used
for the estimation of the perceptual image quality, [246].

2In this work the N C D defined on the CIE LUV color space will be used.
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1.4 Color Image Filtering Designs

The filtering of image noise is an important part of any image processing system, whether the
final image is utilized for manual interpretation or for automatic analysis and therefore aplethora

of filtering techniques have been proposed in the literature, [230,231,234], (Fig. 1.4).

It is clear that there are some significant
aspects, which influence the design and se-
lection of the appropriate filtering technique.
A good filter for processing of color images

a should be designed mainly with respect to the

Input Output trichromatic nature of color image, its non-

Filter .oc linear characteristics and statistics of noise
~*B  corruption. According to the trichromatic na-

0 ture of color, the color image processing tech-
Fig. 1.3. Marginal (8) and vector processing (0)  niques can be divided into two main classes:

» Marginal (componentwise) methods, [257,430]

This framework operates on each color channel separately, (Fig. 1.3a). Since each processing
step is usually accompanied with a certain inaccuracy, making the output values different from
the desired ones, ignoring the correlation which exists between the RGB channels, the projection
of separately processed color channels into the color image output usually results in perceivable
color artifacts. Componentwise processing is appropriate in the case of highly decorrelated
color spaces (e.g. YCbCr used in the digital television, YUV in the Pal/Secam television
format, Y1Q in the NTSC television format or opponent color spaces, [66,200,311].

* Vector methods, [243,246]

In the vector processing of color images, the input samples are processed as a set of vectors.
Since natural images are characterized by high correlation between their RGB components, this
is an important feature that predetermines the success of vector processing.

An example of the distorsion caused by componentwise processing is shown in Fig. 1.5,
where impulsive noise has been added to a signal component and then the channels were sepa-
rately filtered by a median of length 5. The filtering removes the impulses on flat signal areas
but causes the edge shift to the left, if there is an impulse in front of it. As a result of the edge
shift, the output color sample will not be one of the inputs, [19,220].
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Besides the preservation of image colors, the filtering operators are required to preserve
salient image features, such as edges and texture and of course to remove noise. The most
common approach to the problem of noise reduction is the utilization of some kind of smoothing
operation, which filters out random fluctuations due to noise. The rationale of this approach is
the need to determine suitable values of image pixels, which are statistically close to the original,
uncorrupted color image signal, [231].

The smoothing approach is based on a spe-
cial type of sliding (moving, running) win-
dowW = {fc € Z* k = 1,2,..., N}, which
usually affects one image sample (mostly the
sample x xplaced in the center of the window)
at atime, changing its value by some function
of alocal neighborhood {x2,x2, ..., x"} de-
termined by W. Thus, the value of the esti-
mated sample depends on the values of image
samples in its neighborhood and the window
operator slides over the image to process in-
dividually all the image pixels.

It should be emphasized that the window
Fig. 1.4 Family ofnonlinearfilters size N influences considerably the performan-
ce of the filters. If a window size is large, the filtering techniques operate on a large supporting
area and in general they efficiently attenuate image noise. On the other hand, their detail preser-
vation capability is low, which results in image blurring. It has been widely observed [139,231],
that for small image corruption a 3 x 3 square filter window provides the best accuracy of the
local information estimation to achieve the trade-off between the noise smoothing and the image

detail preservation.

Following the robust estimation and order statistic theory, [78,233] the most popular mul-
tichannel filtering class operating on a window, sliding over the image domain, is based on
sample ordering. Performing the scalar ordering operation on a gray scale image, the atypical
image samples, are moved to the borders of the ordered set. Thus, the center of the ordered
sequence known as a median, [36,231] represents the sample, which has the largest probability
to be noise-free. The direct application of the median filter (marginal filter, [257,430]) to the
RGB color channels leads however to strong color artifacts, (Fig. 1.5).

If the noise corrupting the image is of impulsive nature, [20,246] e.g. bit errors and outliers,
filtering approaches based on the order statistic theory are often employed, [20,208,231,233].
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Fig. 1.5. Illustration ofthe difference between the marginal median and the vector median filtering

These nonlinear filters operate by ordering the multivariate samples inside a processing window
and their popularity lies in the ability to match the underlying statistical model and also in their
computational simplicity.

In the vector case, outliers are associated with the maximum extremes of the aggregated
distances to other input samples in the sliding window. For this reason, the output of the vector
filters based on ranking, is defined according to a specific ordering technique, [35,123,232,385]
as the lowest ranked vector in a predefined sliding window. Since the lowest ranked vector is
the sample of the input set, vector filters do not generate new color samples (color artifacts) and
such behavior is desirable due to the correlation that exists between the RGB channels. The
ordering scheme has been adopted by the most popular vector filters such as Vector Median
Filter, [19] and Vector Directional Filters, [397].

Numerous filtering techniques have been proposed to date for color image processing. Non-
linear filters applied to color images are required to preserve edges and details and to remove
impulsive and Gaussian noise. Edge information is very important for human perception. There-
fore, its preservation and possibly enhancement are very important subjective features of the
performance of nonlinear image filters.

1.4 ColorImage Filtering Designs

*, =60

image column spatial position /= (£, - DA, + k2

*n=124 %2123 image sample x, = (60,164,123)

color vecto)
Xi = (Xy!,Xj&Xj g
=(60,164,123)
I 1=,/(200)J +(182)2+(52)J = 275.3688 [»J =3(64)2+(164)J +(123)2=183.5647

Fig. 1.6. Color image processingfundamentals
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Adaptive Noise Reduction Filtering

b) In this Chapter, various adaptive imagefiltering techniques, primarily developedfor
the noise reduction in gray scale images are examined. The presented concepts can be
often extended to the multichannel case and directly applied as componentwise filtering
techniques, capable of removing noise in color images. As will be shown in the third
Chapter, very often the scalar techniques can be reformulated using the vector approach,
to exploit the inherent correlation among image channels.

The second part of this Chapter isfocused on the order statistics based filters and
presents the optimization of the weighted median filters, which will be used in the last

0 Chapter of this book.

2.1 Weighted Averaging Framework

OISE suppression in digital images has been a topic of considerable interest in the past
decades, due to its importance in numerous applications in various fields of computer
vision. The most frequently used noise reducing transformations are the linear filters, which
are based on the convolution of the image with a filter kernel of fixed coefficient. This kind of
filtering replaces the central pixel X\ from the pixel set [xi,x2)..., xN}, (Fig. 2.1) belonging to
the filter mask W containing N image pixels, with the weighted mean of the samples inside IV,
[118,207,369]. The filter output y is given by the convolution of the filtering kernel determined
by the weight coefficients {ipi,ip2, s iPn} with the pixels in W

d)

Fig. 1.7. Examples ofnoise appearing in: a) scanned images offine arts, b) digital photographs, c) digi-
tal images corrupted by transmission errors, (some ofthe image rows are distorted), d) DNA microarray
images, (two-channel images consisting of Red and Green components only). Each of the examples

N
consists ofan image and a zoomed part to better visualize the noise distorsions ="2 ||Ik. (2.1)
=1 k=I

J N
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X2 X3 x4
a) X5 Xi X6 b)

X7 X8 X9
8 8

Fig. 2.1. Thefiltering mask ofsize 3 x 3, with the pixel x\ in the center (a) and the directions between
the central pixel and its neighbors (b)

Linear filters are relatively simple and fast, but their major drawback is that they cause blur-
ring of the edges and suppress tiny details. This effect can be diminished incorporating a certain
kind of nonlinearity and adaptiveness into the weight coefficients, performing the averaging in
a selected neighborhood determined by the shape of the filter mask. The term adaptive means
that the weights change according to the image structure, which is to be smoothed. In this
way the adaptive smoothing can be seen as a nonlinear process capable of noise removal, while
preserving important image features, [120].

Different kinds of edge and structure preserving adaptive filter kernels have been proposed
in the rich literature on this subject, [43,70,109,118,150,250,421,427]. One of the simplest
nonlinear schemes works with a filter kernel weights expressed as 1

k= 1- 1 —XK\, for k —1,2,...,N. (2.2)

This filter takes with greater weighting coefficients those pixels of the neighborhood, whose
intensity are close to the intensity of the central pixel x\

- N N
y=-£(l-|la:i-xfd)xk, S=N-£ ¥Xi-xxe (2.3)
fc=1 k=2

This improves dramatically the detail preserving capability of the Averaging Filtering (AF)
scheme (2.1). Other similar designs, [164,206,275,409,410] do not take the central pixel into
consideration, which leads to a much more robust filter performance.

The gradient inverse weighted operator employs a similar structure and forms a weighted
mean of the pixels belonging to the filter window. Weighting coefficients depend on the differ-
ence of the gray scale values between the central pixel and its neighbors in W, [171,409,410]

v=s' g max{7)|ii-**1}" s==" max{ ,|x1- ’ (2'4)

where 7 is a parameter, which influences the degree of contribution of the central pixel to the
weighted sum.

"We assume here that the pixel values are normalized to the range [0,1].
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Local statistic filters constitute a class of linear minimum mean squared error estimators,
based on the non-stationarity of the signal and the noise model, [161,164-166]. These filters
make use of the local mean and the variance of the input set W and define the filter output as

y=x+a(xt—x) =ax\ + (1—a)x, (2.5)

where x is the arithmetic mean of the image pixels belonging to the filter window W and a can
be defined as the normalized correlation between two images: Xi = o+ Wi, X2 =0+ V2,

c - (m- (*>) fe - fa» ri (26)
(- (xpf2))2((Ix2- (x2)[2))2

estimated through, [173,231,374]

o= @®@+0.2 > w=jvn Sk~n QLT
n 1 k=1

k=1
a2=max{0,i2- a*} , a=max]jo,1- " ||, (2.8)

where <m> denotes the expected value, u is the local variance calculated from the samples in the
filter window and a2 is the estimate of the variance of the noise process. Ifu » an,thena * |
and practically no changes are introduced. When v < an, then a = 0 and the central pixel
is replaced with the local mean. In this way, the filter smooths with the local mean, when the
noise is not very intensive and leaves the pixel value unchanged when a strong signal activity is
detected. The major drawback of this filter is that it fails to remove impulses and leaves noise
in the vicinity of high gradient image features. Equation (2.5) can be rewritten as, [374]

y=axi+ (- a)x- 1—&0' (M1 oXi +x2+ ... +xN) , ipx = 1_10:':‘0-

and in this way the local statistic filter (2.5) is reduced to the central weighted average, with an
adaptive weighting coefficient ipi-

In [268,269] a powerful adaptive smoothing technique related closely to the anisotropic
diffusion, which will be discussed in Chapter 4, was proposed. In this approach, the central
pixel X\ is replaced by a weighted sum of all pixel contained in the filtering mask W

1' A i ) N R 2 2] ,
y= nfSCgiPka, with 5= - = exp Jk~|; !)f (2-10)
where gk is the magnitude of the gradient calculated in the local neighborhood of the pixel xk.

In [170] an adaptive smoothing technique based on the estimation of the directional gradi-
ents was proposed, (Fig. 2.2)

. 9



30 Adaptive Noise Reduction Filtering
where

1- 2(x/a)2 if IXI < al2,
= f(gK), k=Vk- aril, *>2, f(X)= 2(x2—)2 if a2 <|x| <a, (2.12)
0 if IX| > a.

Another efficient adaptive scheme, [290,300,301,
317,318,392] has been proposed as

VA \' Pk\ f wk~=*Ip1

fo=2
(2.13)

where pk denotes the topological distance between the
central pixel x\ and other pixels in W and /3i, /2 are
filter parameters. The important feature of
this algorithm s that it excludes the central pixel
Xi from the averaging.

Good results of noise reduction can usually be ob-
tained by performing the a-filtering, [25,166,172,421].
This procedure computes aweighted mean over the fil-
ter window, but only those pixels whose values lie within 7 «a of the central pixel intensity are
taken into the average. In this way, this filter attempts to estimate a new pixel value with only
those neighbors, whose values do not deviate too much from the value of X\

Fig. 2.2. Shape of the functions used in
[170], (2.12)

y=-|1i'Y\"kxk, for k : Xk—ii| <7<, (2.14)
k=
where S is the normalizing factor, {ipi,ip2, m», VVAj} are weighting coefficients, 7 is a design
parameter, (typically 7 = 2) and a is the standard deviation of pixels belonging to the local
window W or the value of the standard deviation estimated from the whole image.
Similar idea lies behind the filtering scheme defined as, [250]
X, if W\ —x\ >SS,

y= X (2.15)

Xi, otherwise.

If the difference between the central pixel and the local mean exceeds a specific threshold (de-
sign parameter) S, this filter determines as the output, the mean value of the pixels in W, other-
wise the central sample remains unchanged.

Maximum homogeneity neighborfilters, [163] divide the filter masks into a set of regions, in
which the variance of the pixel intensities is calculated. The aim of these filters is to find clusters
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of pixels, which are similar to the central pixel of the filtering mask. Their output is defined as
the mean value of the pixels belonging to the sub-window, in which the variance reaches the
minimum, [27].

The filter introduced in [163,260,393] divides
the 5 x 5 filtering mask into four sub-windows as
S B i s A depicted in Fig. 2.3a). In each of the subwin-
dows, the mean and the variance is calculated and
the output of the filter is the mean value of the
1 pixels from that square, which has the smallest
variance. To improve the efficiency of these fil-
m m 1 No 1 ters, another window placed in the middle of the
filtering can be added [393] and the partition of
the filtering window into nine sub-windows can
b * be performed, [213,214], Fig. 2.3b), c). Simi-
lar filtering structure has been proposed in [368],
l (Fig. 2.3d). This approach is in some way sim -
ilar to the technique which will be described
in Chapter 5, in which the filters based on digital
i f « i ft paths are introduced. Instead of looking for sub-
m m F EIDQL"E . windows with similar pixels, this novel technique
Sﬁa i fetl' investigates digital paths linking the central pixel
with pixels belonging to the filter window of size

determined by the practitioner, [313,322].

i1 The k-nearest neighborfilter proposed in [81]
- M I 8 .
X 111 replaces the gray level of the central pixel X\ by
1 L ri Z]ngt Jl the average of its r neighbors whose intensities

“IhAt PPl are closest to that of xi, [25], (r = 6 and a win-
SN' FFUfT dow of size 3x 3 was recommended in [206]).
u y E I The image noise can be also reduced by ap-
d plying a filter, which substitutes the gray scale
value of the central pixel, by a gray tone from the
neighborhood, which is closest to the average of
all points in the filter window W, (nearest neigh-
borfilter).

Fig. 2.3. Different sub-window structures used
in the filtering frameworks proposed in [163,
213]a), [213,214] b, c) and [368], d)
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2.2 Order Statistic Based Filters

It is evident that many image processing tasks cannot be efficiently accomplished by linear tech-
niques. Image signals are nonlinear in nature due to the presence of structural information and
are perceived by the human visual system, which has strong nonlinear characteristics. Unfortu-
nately, most of the linear and also nonlinear techniques based on the sample averaging, tend to
blur structural elements such as lines, edges, comers and fine texture details.

Nonlinear methods can preserve important structural elements and eliminate degradations
occurring during signal formation or transmission through nonlinear channels. Therefore, non-
linear filters based on the robust order statistics theory are probably the most extensively studied
class of image processing filters. Nonlinearity of the order statistic based filters lies in the sam-
ple ordering, which transforms the input set {xi,x2, ..., ijv} into the ordered sequence denoted
asi(i) < X(2) < wm< X(n)»where X(K) 6 {"I, %, s, %n}ifork = 1,..., N, denotes the fc-th
order statistic.

The ordering operation moves the atypical samples, often noise, to the borders of the ordered
set and provides the middle positioned samples of the ordered sequence as robust estimates.
Based on this property, the Median Filter (MF) is defined as 2, [12,108,231,279]

y = MED{xi,x2,....xn} =X(), p = (N + 1)/2, (2.16)

where X(M is the middle order statistic or middle positioned sample of the ordered set W =
{x(1),x(2),... X({jv)p» i(fc) < £y), for k < j. Choosing any order statistic x*) of W, for
k —1,2,..., iV, constitutes the output of the Rank Order Filter (ROF), [13,20,233]. It is
evident that the MF is a special case of the ROF, for k = p.

The MF filter is the most commonly used selection filters. It has the ability of attenuating
strong impulse noise, while preserving sharp edges. Its major drawback however, is that it
wipes out the structures, which are of the size of the filter window and this effect causes that the
texture of a filtered image is strongly distorted. Another drawback of the standard median is that
it inevitably alters the details of the image not distorted by the noise process, since the standard
median cannot distinguish between the corrupted and original pixels, and whether a pixel is
corrupted or not, it is replaced by the local median within a filtering window. As a result, after
the application of the median filter, the image noise is removed, but details are lost and artifacts
like streaks and blotches are produced. Additionally, the median filtered image is prone to edge
jittering, when the noise ratio is high. Therefore a trade-offbetween the suppression of noise and

2We assume a filtering mask with odd number of samples N .
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the preservation of fine image details and edges has to be achieved. This can be accomplished
in different ways, their goals is however always to diminish the filtering effect in image regions
not affected by the noise process, [34].

The MF is a maximum likelihood estimate (MLE) of location for the Laplacian distribution,
[122,231]. It has been proven, that statistical properties and the robust smoothing capability of
the median filter makes it very suitable for impulsive noise filtering. To adapt the order statistic
based filters to other noise distributions, the so called L filters have been introduced, (Fig. 2.4).

The L filters are estimators achieving the
compromise between the nonlinear operation
given by the sample ordering and linear opera-
tion given by the weighting of the sample data.
The L filter output is achieved as a weighted
sum of the ordered data. Thus, the correspond-

ing mean squared error will always be less than

Fig. 2.4. Lfilter structure or equaj t0 that achieved with the sample mean

or the sample median. The output of the L filters is defined as y = Ylk=i VicX(k), where
mmmipN are nonzero weighting coefficients, which can be optimized by minimizing

E[ICr=i Ne XK ~°%)7 = . (2-17>

where E[ o denotes the statistical expectation, o signifies the desired signal, >= {"i,... ,ipN}
is the weight vector and R is the correlation matrix of ordered noise components {v(ij, ..., (n)}.

A great advantage of the L filter class is that for a known noise distribution, it is possible to
choose the filter weights in such a way, that it becomes the optimal filter in the mean squared
error sense. In [375] adaptive L-filter structures exploiting temporal information have been
introduced. In this approach the filter takes the form

1—a
N (x()+ X2+ ...+ W «Zm)+ mm+ X(N)) = + (1- a)x, (2.18)
where only the median sample x*) is assigned a weight Vv
L filters represent an important generalization of MF, ROF, and a-trimmed mean filters. The
Q-trimmed mean filter has been introduced as the compromise between the median filters and
linear filters, since the AF suppresses additive Gaussian noise better than the MF and the MF
has better impulsive noise characteristics. The output of the Q-trimmed mean filter is given by

N—a+1l
1

N —2a , = XW-
k=a

Ve (2.19)
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In order to improve its signal-detail preserving characteristics and provide estimates closer to
the MF output, two modifications of a-trimmed mean filters have been introduced

N I'N

y W"ki_p kX1k) - , (2.20)

where weight coefficients ~ i, m, Viv are chosen as

fi, itI*x-*,1<{, o[ 11 it (221)
[0 otherwise, [ O otherwise,
where is the local median and x\ is the central sample of W. In the first approach, the

amount of trimming depends on the parameter &; (data deviating strongly from the local me-
dian are trimmed out). Since such data are usually outliers, this modification provides good
noise attenuation properties. The second modification in (2.21) allows to trim out the samples
deviating strongly from the central pixel. Such filter preserves well the edges and image details,
however in some applications its noise attenuation capability can be inefficient, [308].

Wilcoxonfilters are the most important filter family in the large class of R estimators. Since
the output of Wilcoxon filter is defined as

y = MED {Ji(h) + X()V2, forl<k <j <TV}, (2.22)

these filters are effective in the removal of additive Gaussian noise. However, they do not
preserve well edges because this filter structure is based on the averaging operation. A further
disadvantage of the Wilcoxon filter is its high computational complexity. It can be decreased by
introducing a parameter 5 which leads to its simplified structure

y = MED{[x(k) +X(j)\/2,, for 1™~ k <j <N\ (-k)< 6}. (2.23)

By varying the range parameter 6 from 1 to the window size N, the modified Wilcoxon filter
can perform a wide range of smoothing operations from median to the standard Wilcoxon filter.

One of the main disadvantages of the L filters and the above mentioned order statistic based
filter classes is that the ordering destroys the information about the local neighborhood struc-
ture. Therefore, their performance can be inefficient for larger window sizes. Also, the lower
performance is particularly evident in the case of non-stationary signals. Therefore, a modifi-
cation of L filters, which takes into account the information about the neighborhood has been
developed, (LI filters). Later, this idea has been extended to the nonlinear filters operating on
permutation lattices, [14,30-33,125].

Combining the rank-temporal relations with the linear nature of the weighted averaging,
makes that LI filters are capable of removing additive Gaussian, impulsive and mixed noise in
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digital images. However, these filters similarly as L filters, averaging based filters, Wilcoxon
filters, a-trimmed mean filters, etc., produce new samples, which can increase local distortion
of digital images. Therefore, selection filtering classes represent a better choice, especially
for images corrupted by impulsive noise. These filters select the output as one of the samples
belonging to W and their efficiency depends on the applied selection mechanism.

Weighted median (WM) filters constitute a class of the most natural selection filters. These
filters have been developed as an extension of the median filter and are characterized by sig-
nificantly improved detail preserving characteristics, [54,264]. In the WM filtering, based on
non-negative integer weights, the filter output is given by

y = MED{ip10xi, ipz<>, mm iPnOxn}, (2.24)
W tim es
where 0 is a duplication (replication) operator defined as w”xk = xk)xk, ... ,xK.

The WM filters can be designed using non-negative real weights. In such a case, the WM
output y e W minimizes the expression L(y) = kk —21e If 4k > 0, for k
1 V, and the function L(y) is piecewise linear and convex, then y is the sample from the
input set. In the case of positive real weights, the computation of WM filter output requires the
ordering of the input samples and a successive summing up of the upper weights corresponding
to ordered samples, until the sum exceeds half of the total sum of the weights. The WM filter
output is the sample corresponding to the last added weight, [424].

To adapt the weight coefficients to varying signal and noise statistics, the WM adaptation
algorithms, which originate from stack filter framework, [20,21,65,105,162,171,249] have
been developed, [422-424]. The aim of the optimal WM filtering is to find a WM filter with the
window size N, for which the error criteria such as mean absolute error MAE or mean squared
error MSE between the filter output y and the desired output o is minimized.

Recently, the WM scheme has been extended, [15,97] by assigning negative integer weights
to the input samples. In this way, the WM filters can be also used as a sharpening filter class.

To avoid problems connected with searching for optimal parameters, a simple and powerful
class of the Lower-Upper-Middle (LUM) smoothers has been introduced. The LUM smoothers
are a subset of the LUM filters, [124] which can be designed to simultaneously perform smooth-
ing and sharpening operations, [126,179,181]. The output of the LUM smoother is given by

y = MED {z(f0,xi,a(w *+i)} , (2.25)

where k = {1,2,..., Iz} denotes the smoothing parameter, x x is the central sample of the input
set, £(*) is the lower and x"k+1i) is the upper order statistic such that x*) < i(N-fc+i). (Fig.
2.5a). Other similar design assigns the median value to the central pixel if its rank in the ordered
sequence is lower than k or higher than N - k + 1, (Fig. 2.5b).
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a) b)

Fig. 2.5. Illustration ofthe construction ofthe LUMfilter defined by (2.25) (a) and the rank conditioned
filter, which assigns the median value p. to the samples with ranks lower than k or higher than N —k+ 1
(b), (adaptedfrom [125])

The LUM smoother can be equivalently expressed as the Central Weighted Median (CWM)
filter, [124,151,179] defined by

yk = MED{ipio x1,22,%ee,ay} = MED <{xi,x2,...,xN} U <xi,xi,.. .,x! (2.26)

where ipi is the weight associated with the central sample x\. The relationship between ipi in
(2.26) and k in (2.25) is given by: VI = N —2k + 2

It has been proven that definition (2.25) is more advantageous and useful than (2.26), espe-
cially interms of the computational complexity, [124] and the filter analysis, [178]. On the other
hand, the CWM definition (2.26) is widely used due to the popularity of the weighted median
framework, [67,68].

Using the more comprehensible form (2.25), the comparison of the lower xk and the upper
2(jv—feH) order statistic with the central sample xx from the filter window, forms the LUM
smoothing operation. If Xi lies in a range formed by these order statistics, it is not modified.
However, if Xi lies outside this range, it is replaced with a sample that lies closer to the median
Xp). Varying the filter parameter k, the amount of smoothing performed by the LUM smoother
can range from no smoothing, equivalent to the identity operation (k = 1) to the maximum
amount of smoothing provided by the median filter, (k = p). The first case preserves the central
sample Xu whereas the last one often results in image blurring. Therefore, the intermediate
values of k can provide a better trade-off between the smoothing and detail preserving LUM
characteristics.
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To employ an adaptive selection of k or tpi in dependence on the local image statistics of the
samples in W, a variety of selection mechanisms have been proposed to date, [68,179,185,215].
However, their common drawback lies in their low design flexibility. Therefore, the switching
median filters, [67,96,411,429] based on the compromise between the identity operation and
the robust MF, represent an interesting alternative, (Fig. 2.6).

The switching median filters can be viewed as an adaptive two-level LUM smoothers pro-
viding the maximum and the minimum amount of smoothing and the employed switching rule
is often defined by

if <> 5 then X\ isimpulse,

o (2.27)
else X\ is noise —free,

where 5 is a threshold value and ? denotes a simple relationship, (usually absolute difference)
between the central sample X\ and the samples inside W. If? > 5, then Xi is considered as noisy
and is being estimated by an appropriate filter. Otherwise, x\ is declared to be noise-free and
is being retained. This scheme confines the filter influence only to noisy samples and therefore
significantly reduces the estimation error of the output image, [68,151,223].

Another important filtering class based on
the order statistics is given by the permuta-
tion filters, [30,32] and their extensions such
as Rank-Conditioned Rank-Selection (RCRS)
filters, [125,171] and extended permutation
filters, [31]. These filters utilize the whole
potential of the permutation group theory and
the information about the rank and spatial (temporal) position of the samples inside W. How-
ever, due to extreme computational complexity, their practical use is significantly limited, al-
though a variety of methods for reduction of permutation group complexity have been intro-
duced, [32].

The majority of median filter modifications are implemented uniformly across the image,
thus they modify also pixels that are undisturbed by noise. As a result, they still tend to remove
details from the image or leave impulsive noise samples. To avoid excessive blurring of images
during filtering process, the Signal Dependent Rank-Ordered Mean (SD-ROM) filter has been
proposed, [3,4,209,210]. In the SD-ROM approach, the filtering operation is conditioned on the
differences between the input pixels and remaining rank-ordered pixels in the sliding window.

Fig. 2.6. Switchingfiltering concept

In this design, a vector containing neighbors xk of X\ from window W of size 3x 3 is
constructed. Assuming the ordering of neighbors of x\. x@) < X@3) X©), a rank-
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ordered mean mT= (i(5) + i(6))/2 and rank ordered differences p2,?3,?, %] are defined as

f if*l<rrv, f._2... 5 (22)
A XA B ifX\>mr,

The rank-ordered differences provide the information about the likelihood of corruption for
the current pixel. The purpose of the impulse noise detector is to determine whether the current
pixel is corrupted or noise-free. If a signal sample is detected as corrupted, it is replaced with
an estimation of the true value, based on the order statistics of the remaining pixels in the
processing window W, otherwise it is kept unchanged.

The SD-ROM filter output is defined as

_\<mr, ifgk>Sk, for A=2,..5,

= 2.29
[ H, otherwise, (2.29)

y

where S2, S3, 4,65 are threshold values, (S2 < S3 < $4 < S5). In other words, if the algorithms
detects Xi as a noisy sample, and any of the four thresholds is exceeded, the central pixel is
replaced by the rank-ordered mean mT, otherwise, it is kept unchanged. It is worth noticing that
this filtering procedure excludes the central pixel from the operation window.

2.3 Optimization of the Weighted Median Filters

Weighted median filters constitute an important nonlinear filtering class, [20,233]. Their robust
smoothing capabilities in noisy environments and flexible design, [226] in conjunction with an
optimization framework, [422,423] make this filtering class extremely attractive. Moreover, the
WM filters are computationally efficient because their implementation may take advantage of
binary operations, [21,22,416] and analysis, [182,426].

Let W[i) = {xi(i),i2(*)ie-m be an input set of gray scale image samples deter-
mined by a filter window W(i) of length N, where i = 1,..., Q denotes the position of the
filtering window centered in x{i). Let each input sample xk(i) from W (i) be associated with a
real valued weight tpk, for k —1,2,... ,N. The weighted median of the input set W(i) is the
sample y(i) 6 W(i) minimizing the expression Ylk=i Pk |y(*) —xk(i)\.

If each weight ipk is equal to 1, then the WM filter is equivalent to the MF, [231,233]. In
order to choose an appropriate weight vector, so that the WM filter would be able to remove
impulses and simultaneously preserve all desired image features, various optimization algo-
rithms, [420,423] that originate from the stack filter design, [75,422] have been developed. The
adaptive algorithms described here are based on linear and sigmoidal approximations of the sign
function.
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Given an input set W{i) and a weight vector ip = {ipi,ip2, mm\/n}, the WM output is
denoted as y(i) = y(\j),W(i)). The estimation of the desired signal o(i) is accompanied with
the estimation error e(i) = o(i) —y(i). The costfunction defined under the Mean Absolute

Error (MAE) or Mean Squared Error (MSE) is defined as
JmaeWJ) = E{\o(i)-y{ip,W(i))\} = E{[o(i) - y{ip,W(i))]2} . (2.30)

With the constraint of non-negative weights, the optimization problem can be expressed as
minimize Jmae{iP, i) or JmseW" *) subjecttoipk> 0, fork =1,2,..., N. (2.32)

Both cost functions are non-convex and under the assumption that the optimal weights are at
one of the local minima, the conditions for optimality can be derived as

N =WLIE <I'» - «*e ZE{«<<>-m>N 1 m 0-32)

where S denotes the sign function

f 1if X >0,

<${*}=<  0ifx= 0 (233)
[ -1ifx< 0,
and then
=2E{(«» - u «-34)

Assuming the MAE criterion, the necessary condition for the filter optimality is, [189]
S{o(i)-y(i)}»=0,A>0 A=1,2,...,7V. (2.35)

With respect to this analysis, adaptive WM algorithms based on linear, [422] and sigmoidal
approximation, [423] of the sign function S have been developed. Using the least mean squared
(LMS) method and the constraint of non-negative weighting coefficients, the adaptation step
related to Jmse is given by

ipk(i +1) = where {x} =

fo ifx<o
dipk T x (236

, otherwise,

is a projection function, which sets the negative values to zero. Replacing the statistical expec-
tation in (2.32) with the instantaneous estimates, results in the following adaptation formula

Mi+1)={&*)+2d  S{ofi) - y(i)}J . (2.37)
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Combining the principle of minimal LMS errors with the simultaneous principle of orthog-
onality, the adaptation formula (2.37) is redefined as

i>i + 1) = {VioW + 2e[o(i) - y()T[xK() - o(i)]}+ . (2.39)

Let us consider the sliding filtering window centered in position i, moving over animage do-
main. During the processing, the weight coefficients are adjusted by adding the contribution
of the samples multiplied by a certain regulation factor e. If the adaptive WM algorithm based
on the sigmoidal approximation of the sign function is considered, an adjustment of the filter
weights can be expressed as, [423]

ipk(i + 1) = [Vicw + 2efo(i) - yi)}<S{afc?) - y()}i (2.39)

where o(i) is the desired sample, y(i) is the WM output in the i-th iteration, eis the iteration
constant and <S{-} is the sign function approximated by the sigmoidal function (2.40)

S = re7- L (2-40)

Let us assume for a moment that {-}+ is an identity function, whose argument remains
unchanged. If Xk(i) 3> y(i) and e s positive, then the adaptation formula (2.39) is given by

+ 1) = ipk{i) + 2e[o(t) - y{i)], (2.41)

i.e. the importance of the sample occupying the A-th position in a supporting window W (i)
increases if o(i) is greater than the actual WM output y(i) and decreases if o(i) is less than
y{i). In general, the initial weight vector ip(1) can be set to arbitrary positive values, but most
advantageous is to start the weight adaptation with equal weights corresponding to the median.
Regarding the optimal value of e, it has been shown in [423] that the algorithm converges to
sub-optimal solution for sufficiently small positive value of e » 10-5.

In the case of adaptive WM filtering with the linear approximation, [422] the weight coeffi-
cients are updated as

ipkii + 1) = {VKW + 2e[X(V)() - i(i)(*)+

u\+

~20ofi) - Xk{i)|- £ VI(t)[*(Ne)(*) - 3(1)(*) - 2larfe(*)—as>(0l] (242)
=1

where k,j = 1,2,... ,7V, 2(at)(*) ar>d£(i)(i) represent the maximum and minimum of the input
set {xi(i),22 (i), .. ,xn (i)} respectively and e is the positive adaptation step-size, [422].

3

Overview of Noise Reduction Filters for
Color Imaging

Several nonlinear techniquesfor color image processing have been proposed over the
years. Among them are linear processing methods, whose mathematical simplicity and the
existence of a unifying theory make their design and implementation easy and attractive.
However, many filtering problems cannot be efficiently solved with linear techniques, as
they cannot cope with nonlinearities of the imageformation andfail to preserve edges and
image details. To this end, nonlinear image processing techniques intendedfor color image
filtering are presented. Nonlinear techniques are able to suppress mixed noise, preserve
salient image features and eliminate degradations occurring during image acquisition and
transmission through noisy channels.

3.1 Order Statistic in Color Image Filtering

NE of the most popular families of nonlinear filters for noise removal are order statistic fil-
ters, [155,231,233,246,396,403]. These filters utilize algebraic ordering of a windowed
set of data to compute the output signal using the theory of robust statistics.

The early approaches to color image processing usually comprise direct extensions of the
scalar filters to color images, (Fig. 1.3). Ordering of scalar data, such as samples of gray scale
images, is well defined and it was extensively studied, [231]. However, the concept of input
ordering, initially applied to scalar quantities is not easily extendable to multichannel data,
since there is no universal way to define ordering in vector spaces and therefore a number of
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different ways to order multivariate data has been proposed. These techniques are generally
classified into, [35,156,243]:

 marginal ordering (M-ordering), where the multivariate samples are ordered in each dimen-
sion independently,

* reduced or aggregated ordering (R-ordering), where each multivariate observation is reduced
to a scalar value according to a chosen distance metric,

» partial ordering (P-ordering), where the input data are partitioned into smaller groups which
are then ordered,

» conditional ordering (C-ordering), where multivariate samples are ordered conditional on one
of its marginal sets of observations.

Let the mapping 1} —Zmrepresents a multichannel image, where I is an image dimension
and m denotes the number of color channels. LetW = {x* 6 Z(;/c= 1,2,..., TV}represents a
filter window of a finite length N, where xi, X2, ..., x N is a set of noisy samples and the central
sample Xj determines the position of the filter window. Note that xkg, forq= 1,2,..., mis the
g-th element of the input sample xk = (xki,xk2, me, xkm).

In the case of color image filtering, the most popular filtering approaches are based on vector
ordering scheme defined through the ordering of aggregated distancefunctions or dissimilarity
measures. Such an ordering should:

* be useful from a robust estimation perspective, allowing the extension of the operations of
scalar order statistic filters to the multivariate domain,

* preserve the notion of varying levels of extremes that is present in the scalar ordering,

* take into consideration the type of the multivariate data being used.

Therefore, since the RGB color space is used throughout this work, the ordering scheme
should give equal importance to the three primary color channels and should consider all the
information contained in each of the three channels.

Based on these three principles, the ordering scheme that will be utilized here, is a variation
of the reduced ordering scheme, [246,258,385] that assigns a dissimilarity measure to the set
of samples in W. In this way the aggregated measure of a distance of sample x*, for k =
1,2,..., TV, to all other samples in the filtering window W

Rk = J2 N,P(xfexi). (3-i)

is used for ranking purposes. Note that p(-) denotes the chosen distance or dissimilarity func-
tion. The scalar quantities Ri,R 2,-.., R-n are then ranked in the order of their value and the
associated vectors are correspondingly ordered as follows, [145,232,246,385,405]

T2l) < 2) < +eo< R(r) < -mm< R(N) =>  X(1) -< X(2) XT < ... -< X(w). (3.2)
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Note that 7 e {Ri, Ri,..., Rn} and X(® e {x"xi,... xjv}, fork = 1,2,...,TV. The
proposed ordering scheme focuses on the relationships between the multivariate samples, since
it computes dissimilarity or distance between all pairs of data points belonging to W. The
output of the ranking procedure depends on the type of data used for the determination of the
aggregated distance i? in (3.1) and on the function p(xk, Xj) selected to evaluate the dissimilarity
or distance between the vectors x* and Xj.

According to the used dissimilarity measure, it is possible to differentiate the techniques
operating on the vector distance domain, [19,29,87-89,182,379,407], angular domain, [189,
192,236,239,395,397] or their combinations, [106,138,183,194,195,246].

3.2 Family of Vector Median Filters

Let us assume that each input multichannel sample x* is associated with the distance measure
N
Rk = |[x€-x,-||7, forlc=1,2,... TV, (3-3)
j=i
where |[x* —Xj||7 quantifies the distance among two m-channel samples xk = (xkl, ..., xkm)
and Xj = (Xji, ..., Xjm) using the Minkowski metric

Ixfc-xjll7 = “301 (34)
\9=1
where x kg is the <>thelement of xk and 7 characterizes the used norm. Note that the Minkowski
metric includes the city-block distance (7 = 1), Euclidean distance (7 = 2) and the chess-board
distance (7 = 00) as special cases.

The sample X(i) e W associated with the minimal aggregated distance R(i) € {Ri,...,Rn}
constitutes the output of the Vector Median Filter (VMF), which minimizes the distance to other
samples inside the sliding filtering window W, [19].

Nonlinear ranked type multichannel filters generally define the vector X(!) as the output
of the filtering operation. This selection is due to the fact that vectors that diverge greatly
from the data population usually appear in higher indexed locations in the ordered sequence
(3.2), [123,191,232,405].

The definition of the vector median is a direct extension of the ordinary scalar median defi-
nition with the appropriate norm utilized to order vectors according to their relative magnitude
differences, [19,40,79,85,289,391,430]. The output of the VMF is the pixel x*) € W for
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a) b)

Fig. 3.1. Construction of the cumulative distance: R\ = p(1,2) + p(1,3) + p(l, 4) + p(l, 5), (a) and
similarly the distance R3 associated with % equals R3 = p(3,1) + p(3,2) + p(3,4) + p(3,5), ()

which the following condition is satisfied

N N
'52p{xm ,xj) <'E£ip{xkxj), k=1,...,N. (35)
31 3=1

In this way the VMF consists of computing and comparing the values of Rk in (3.3) and the
output is the vector xk for which Rk minimizes the function R in (3.3). In other words, if for
some k the value Rk = X”Li p(xf Xj), is smaller than Ri — p(xItxj), and minimizes
the function R, then the original pixel Xi in the filter window W is being replaced by x k which
satisfies the condition (3.5), which means that k = arg min R . The construction of the VMF
is illustrated in Fig. 3.1, where the Euclidean distance is used, however different norms can be
applied for noise suppression using the VMF concept, [37,38,64,391].

Extended Vector Median Filter

The VMF concept may be combined with the linear filtering for the case where the median
is inadequate for filtering out noise, such as in the case of additive Gaussian noise. The filter
based on this idea, so called Extended Vector Median Filter (EVMF) has been proposed in
[18,19,121,220]. If the output of the Arithmetic Mean Filter, (AMF) is denoted as xamf then

N N
amf, if Wramf —xj|| < 5Z lixvm f —Xj||,
51 3=1 (3.6)

mF, otherwise.
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The output of the extended VMF is the same as that of VMF or AMF, whichever gives a smaller
value of the sum of distances. In smooth areas the EVMF outputs the average value of the
samples in W, whereas at strong signal transitions its output is the VMF.

a-trimmed Vector Median Filter

It has been observed through experimentation, that the VMF discards well impulses and pre-
serves to some extent image edges, [19]. However, its performance in the suppression of addi-
tive Gaussian noise, which is frequently encountered in image processing, is inferior to that of
the linear AMF. If a color image is corrupted by both additive Gaussian and impulsive noise, an
effective filtering scheme should make an appropriate compromise between the AMF and VMF.
The so called a -trimmed Vector Median Filter (aVMF) exemplifies this trade-off. In this filter,
the a samples closest to the vector median output are selected as inputs to an averaging type
of filter. The output of the a -trimmed VVMF, which is a modification of the a-trimmed mean
(2.19), can be defined as, [243,407]

1 [13
X-aWF = =2 x (@, (3.7)
a kA

with ordering defined in (3.3). The trimming operation guarantees good performance in the
presence of impulsive noise, whereas the averaging operation causes that the filter performs
well in the presence of short-tailed noise.

The class of filters based on order statistics is very rich. In addition to the filters discussed
above, it includes other filters such as the max/min vector filters or the L-vector estimators.
The L-vector filter family is an important generalization of the Vector Median Filter, [217] and
is closely related to the large class of robust scalar estimators called L-estimators discussed in
Chapter 2. These robust filters are modelled by means of weighting coefficients, which can be
chosen optimally according to the input noise intensity and its statistical characteristics, [218].

Crossing Level Median-Mean Filter

On the basis of the vector ordering and L-estimator concepts, an efficient technique called Cross-
ing Level Median-Mean Filter (CLMMF) combining the idea of the VMF and AMF can be
proposed. Let tpk be a weight associated with the fc-th element of the ordered set of vectors
X(i),X(2,... ,X(at), then the filter output is declared as y = "2k=Lipk X (g . One of the efficient
weight selection scheme is

k=< / MA#) (3.9)

where 7 is a parameter, (for 7 —» 00 we obtain VMF, and for 7 = 0 the filter reduces to AMF).
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Weighted Vector Median Filter

In [7,151,198,407,415] the VMF concept has been generalized and the so-called Weighted
Vector Median Filter (WVMF) has been proposed. Using the weighted vector median approach,
the filter output is the vector X(i) belonging to W, for which the following condition holds

N N
X AN (x(i)>x)) < k=1,...,N. (3.9
A

Ifipi > 1and = 1forfc= 2,..., TV, @, = {ipi, 1,1..., 1}), then the simplified Central

Weighted VMF (CWVMF) is obtained, [34,68,151,199,373]. In this way searching for the
vector xk satisfying (3.9) is equivalent to finding the smallest value of accumulated distances
Rk, and in this way the vector x k assigned to

N
Rk = ""2rpjP(xk,x.j), k=1,...,N, (3.10)
J=
with
N N N N
RI=vY.]"M Xi>Xj) =~V "IP(X1,Xj), Rk>1=Y"23P (Xk,Xj) = 1plp(xk,X 1)+ '~ Tp(Xk,Xj),
H 32 FH 3

(3.11)
can be found.

Fig. 3.2 lllustration of the CWVMF construction, in which the distance to the central pixel Xi is multi-
plied by the weightingfactor ipi

If Ri is larger than Rk>i, then the central pixel x xis being replaced by one of its neighbors
x k. The condition for the central pixel replacement is then Ri > Rk>i, which yields
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The difference between the VMF and CWVMF s that the distance between the central pixel
xi and its neighbors is multiplied by the weighting coefficient ipi, which privileges the central
pixel xi, as shown in Fig. 3.2.

Modified Central Weighted Vector Median Filter

An efficient modification of the CWVMF called Modified CWVMF (MCWVMF) was proposed
in [292,342,344]. The construction of this filter is to some extent similar to the WVMF proposed
in [7,151,180,193,407,415].

METHOD REF. NMSE RMSE SNR  PSNR NCD

[io-3] [@8] [dB]  [10-4]
AVF [231] 79317 12627 21006 26105 82745
VMF [19] 18766 6142 27266 32365 40467
CWVMF  [407] 12105 4933 29170 34269 19.019
BVDF [395] 24587 7.030 26093 3L1%2 41151
GVDF [395] 19474 6257 27105 32204 41773
DDF [138] 18872 6150 27.242 32340 40.237
HDF [106] 18610 6116 27.303 32401 41275
AHDF [106] 18310 6067 27.373 32472 41166
FVDF [240] 2251 6688 26527 31625 44686
ANNF [237] 26800 7.340 25719 30817 48009

MCWVMF  [292] 8950 4.034 30918 36.017 10.753
Tab. 3.1. Comparison of the efficiency of the MCWVMF with the VW, CWVMFF and other techniques,
using the LENA standard image contaminated by 4% impulsive noise, (NM2, p = 0.04), [292,344]

Let the aggregated distance Rk associated with the pixel x k be defined in a slightly different
way as in (3.10)

N N
Rk=]C A p(XdX) =~kj2pxk'x* =~kRk k=1,...,N. (3.13)
3 3

withVw* = W | 1,1 e 1} Vi € [0,1].
Then we obtain

N
R{= ®Ru and Rk>!= Rk, with Rk =Y"p(xb Xx.,), (3.19)
HA

and then the condition for the replacement of Xj is simply
ikRi> Rk, k=2,...,N. (3.15)

For = 0no changes are introduced to the image, and for #* = 1 the standard VMF
is obtained. If ipi E (0,1), then the modified CWVMF (MCWVMF) has the ability of noise
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removal, while preserving fine image details, (lines, edges, comers, texture) and it outperforms
the standard central weighted vector median scheme as shown in Tab. 3.1 and in Figs. 3.3,
34, [292,342].

It is easy to notice that the new filter is faster than the CWVMF, as the only weighting
is applied to the sum of distances R\. As a result, the new filter needs only one additional
multiplication compared with the VMF. The CWVMF needs 7 additional multiplications to
perform the weighting of the distances between Xi and all its neighbors. As a result the new
filtering scheme is faster than CWVMF and is also more efficient.

For the efficiency comparisons, the color test image LENA has been contaminated by impul-
sive noise ranging from 1%to 10%, (NM2). The comparison with standard filtering techniques
(Tab. 3.1, Figs. 3.3, 3.4) shows that the new filter outperforms significantly the VMF and also
the standard Central Weighted Vector Median Filter.

Thresholded Vector Median Filter

The VMF gives acceptable results for impulsive noise removal, but it has a severe shortcoming.

Namely it changes more image pixels than it is necessary, and thus causes excessive over-

smoothing. One of the possibilities to reduce this effect is to introduce a threshold value which

reduces the amount of changes introduced to the filtered image. This concept, similar to (2.15)

and (2.21) is used in the Thresholded Vector Median Filter (TVMF) which is defined as, [210]
f x(@), if Hxvmf-xjH >6,

*TVMF = < J.lo
[ Xi, otherwise, (3-10)

where xtvmf is the output of the TVMF filter, X(i) is the output of the VMF, x x denotes the
original image pixel, ||-|| denotes the vector norm and 6 is a threshold parameter.

Rank Conditioned Vector Median Filter

Another modificationof the vector median filter, socalled Rank ConditionedVector Median
Filter (RCVMF), which aims to alleviatethe excessive smoothing of the VMF is based on the
ordering of the accumulated distances, which implies an ordering of the vector samples

™, Rly we jRti -mm iRn _ " R@’ """ RM """ RN ~\1)
Xi, X, ... jX- ... XV X(), X2> 1) (1Y)
In order to decrease the number of samples replaced by the VMF, which are not distorted by the
corruption process, the following switching scheme can be applied

y (Xl if y ( X, if Rxe (3i8)
\ D> i A %),

\ AN AN )
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PSNR

a)
PSNR

b)

Fig. 3.3. Dependence ofthe PSNR on the j/'i valuefor the CWVMF defined by (3.9) and (3.12) (a) and ipi
in the modified scheme defined by (3.13) and (3.15) (b)for the LENA color image corrupted by impulsive
noise, (NM2, p = 1% — 10%). The difference between the modified central weighted scheme and the
classical approach is presented in Fig. 3.4
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PSNR

PSNR

A AN
b)
Fig. 3.4. Efficiency of the modified central weighted vector median filter (MCWVMF) in comparison b)
with the CWVMF, VMF and DDFfar the LENA image contaminated by impulsive noise (p — 1% —10%, Fig. 3.5. Dependence of RMSE (a) and MAE (b) on the r parameterfor the Rank Conditioned Vector
NM2), (a) and below the plot of PSNR versus weighting coefficients ip\ and tp* for the noise intensity Median Filter (RCVMF), (LENA, NM2, p = 1% - 10%), (VMF is obtainedfor r = 1)

p= 4%, (\M2), (0)
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Fig. 3.6. Hlustration of the efficiency of the MCWVMF in comparison with the VMF: a) part of the test
image FRUITS, b) test image corrupted by impulsive noise, (p = 0.02, NM2), ¢) MCWVMF output, d)
VMF output, €) andf) depict the difference between the original image (a) and (c), (d) respectively
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where r is a filter design parameter. For r = 1 this filter is identical with VMF, whereas for
+ = N no filtering is performed. Setting an appropriate value of the r parameter, a compromise
between the VMF and identity operation can be obtained. However, as can be derived from
Fig. 3.5 the optimal r value depends on the intensity of noise corruption. For small impulsive
noise intensity, r = 3 is a good choice, guaranteing a good trade-off between the cancellation
of impulses (Fig. 3.5a) and image detail preservation, (Fig. 3.5b). However, as the scheme is
not adaptive to noise intensity, its performance is not satisfactory and therefore in Chapter 7 an
adaptive modification of this algorithm will be presented.

3.3 Vector Directional Filters

3.3.1 Basic Vector Directional Filter

Within the framework of the ranked type nonlinear filters, the orientation difference between
vectors can also be used to remove samples with atypical directions. The Basic Vector Direc-
tional Filter (BVDF) is a ranked order filter, similar to the VMF, which uses the angle between
two vectors as the distance measure.

In the directional processing of color images, [216,239,244,395,397] each input vector x*
is associated with the aggregated angular measure

N \Y

Ak= Jra(xkxj), k=1,2,.. N,  a(xkxj) = cos"LA . (319

where a(xk, x3}) represents the angle between two m-dimensional vectors x* and X;.

The sample X(i) associated with the minimal angular distance A(i), i.e. the sample mini-
mizing the sum of angles with other vectors, represents the output of the BVDF, [395], (Fig.
3.7). A drawback of the BVDF is that since it uses only information about vector directions
(chromaticity information), it cannot remove achromatic noisy pixels.

3.3.2 Generalized Vector Directional Filter

To overcome the deficiencies of the BVDF, the Generalized Vector Directional Filter (GVDF)
was introduced, [395,397].

The GVDF generalizes BVDF in the sense that its output is a superset of the BVDF output.
The first vector in the ordered sequence using the angular distance constitutes the output of the
BVDF, whereas the first r vectors constitute the output of the GVDF

BVDF{xi,....xjv} = x(i), GVDF{xu...,xN} = {x(@@),... x(0)} 1<r < N. (3.20)



54 Overview ofNoise Reduction Filters for Color Imaging

The output of the GVDF is subsequently passed through an additional filter in order to
produce a single vector output. In this step the designer may only consider the magnitudes of
the vectors X(i),X(2),... ,X(T) since they have approximately the same direction in the vector
space. As a result, the GVDF separates the processing of color vectors into directional and
then into magnitude processing as the vector’s direction signifies its chromaticity, while its
magnitude is a measure of its brightness. The resulting cascade of filters is usually complex and
the implementations may be slow since they operate in two steps.

3.3.3 Directional Distance Filter

To improve the eficiency of the directional filters, another method called Directional - Distance
Filter (DDF) was proposed, [137,138]. The DDF is a combination of VMF and BVDF and is
derived by simultaneous minimization of their defining functions. Specifically, in the case of
the DDF, the distance inside the processing window is defined as

\JK/ N \ 1~K
C'w(X/-,Xj) AED (XX . (3-2i)

where a (x*, x; ) is the directional (angular) distance defined in (3.19) and the distance p {xk, xf)
can be calculated using the L7 norm. The parameter k regulates the influence of the angle
and distance components. As for any other ranked-order filter, an ordering of the Dk values
D(i) < D() < ... < ZAV), implies the same ordering of the corresponding vectors xk:
X(i) < X(2) x(n) , thus DDF defines the X(i) vector as its output. For « = 0 we obtain
the VMF and for k = 1the BVDF. The DDF is defined for k = 0.5 and its usefulness stems
from the fact that it combines both the criteria used in BVDF and VMF, [397].

3.3.4 Hybrid Directional Filter

Another efficient rank-ordered operation called Hybrid Directional Filter (HDF) was proposed
in [106]. This filter operates on the direction and the magnitude of vectors independently and
then combines them to produce a final output. This hybrid filter, which can be viewed as a
nonlinear combination of the VMF and BVDF, produces an output according to the rule

MF, if XVMF = X-BVDF,

e st) xbvdf’  °therwise > (3-22)

where xbvdf is the output ®mthe BVVDF filter, xvm¥ is the output of the VMF and | « ||
denotes the vector norm.

3.4 Fuzzy Adaptive Filters 55

chromaticity difference

on Maxwell
triangle
(VMF output)
(BVDF Rut)
1
Maxwell
Triangle

Hg. 3.7. The principle of the directional processing of color images: a) chromaticity difference between
two vectors X§ and xj , b) angular minimization property of the BVDF scheme

More complex hybrid filter, which involves the utilization of the Arithmetic Mean Filter
(AMF), has also been proposed. The structure of this so-called Adaptive Hybrid Directional
Filter (AHDF) is defined as

xvmf, if xvmf = xbvdf,
XAHDF Xj, if Y, |xt—xj|| < J2 |x&—xj||, (3.23)
k=1 (o=
otherwise,
where

HXVM FI ) AM || A
T B R lix Hr-levdf, (3.24)

\| [xbve>f] |/ \W-bvdfW

andxam + denotes the output of the arithmetic mean filter operating inside the same processing
window. Both hybrid filters are computationally demanding, since they require the evaluation
of the VMF and BVDF outputs, [143,144].

3.4 Fuzzy Adaptive Filters

The performance of different nonlinear filters based on order statistics depends heavily on the
problem under consideration, as the type of noise which is present in an image affects the filter’s
performance. To overcome difficulties associated with the uncertainty associated with the data,
adaptive designs based on local statistic have been introduced, [44,94,236,239,240,242].
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Such filters, utilize data-dependent coefficients to adapt to local image characteristics. The
weights of the adaptive filters are determined by fuzzy transformations based on features from
the local data. The general form of the fuzzy adaptive filters is given as a nonlinear transforma-
tion of a weighted average of the input vectors inside the processing window W

y = =/ferfcxk/"2i>Kk], (3.25)
vk =1 / \jfc=1 l k=1 |

where /(¢) is a nonlinear function that operates on the weighted average of the input set. The
relationship between the pixel under consideration and each sample in the filter window should
be reflected in the design of the filters weights. In the adaptive design, the weights provide
the degree to which an input vector contributes to the output of the filter. They are determined
adaptively using fuzzy transformations of a distance criterion at each image sample position,
[101,102,144,406].

In this framework the weights are determined by fuzzy transformations based on features
from the local filtering window. The fuzzy module extracts information without any a-priori
knowledge about noise characteristics. The weighting coefficients are transformations of the
distance between the vector under consideration and all other vector samples inside W. This
transformation can be considered to be a membership function with respect to a specific win-
dow component. The adaptive algorithm evaluates a membership function based on a given
vector signal and then uses the membership values to calculate the filter output. Adaptive fuzzy
algorithms utilize features extracted from local data, here in the form of a sum of distances,
as inputs to the fuzzy weights. In this way, the distance functions are not used to order input
vectors. Instead, they provide selected features in a reduced space; features used as inputs for
the fuzzy membership function.

Several candidate functions, such as triangular, trapezoidal, piecewise linear and Gaussian-
like functions can be used as a membership function. If the distance criterion described by (3.19)
is used as a distance measure, a sigmoidal membership function can be selected, [240,246]

fk = 7i [1+exp(A/)]-72, (3.26)

where Ak is the cumulative distance from (3.19), while 7 Xand 72 are parameters to be deter-
mined. The 72 value is used to adjust the weighting effect of the membership function and 71
is a scale threshold. If the Minkowski L1 metric is used as the distance function, the fuzzy
membership function with exponential form

ipk = exp (—REVT72) , (3.27)
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gives also good results, where Rk from (3.3) is a cumulative distance associated with the fc-th
vector in the processing window W using generalized Minkowski norm and 71, 72 are design
parameters.

Within the general Fuzzy Adaptive Filter framework, numerous filters may be constructed
by changing the form of the nonlinear function /(¢), as well as the way the fuzzy weights are
determined. The choice of these two parameters influences the filter characteristics.

3.4.1 Fuzzy Weighted Average Filter

The first class of filters derived from the general nonlinear fuzzy algorithm is the so called Fuzzy
Weighted Average Filters (FWAF). In this case, the output of the filter is afuzzy weighted output
of the input set and the form of the filter is given as

1 N N
y= s = ""2'Pk- (3.28)

fe=1 k=i
This filter provides a vector-valued signal which is not included in the original set of inputs. The
weighted average form of the filter provides a compromise between a nonlinear order statistic
filter and an adaptive filter with data dependent coefficients. Depending on the form of the
distance criterion and the corresponding fuzzy transformation, different fuzzy filters can be
designed. If the distance selected criterion is the sum of vector angles, the Fuzzy Vector Direc-
tional Filter (FVDF) is obtained, [240]. If the L7 norm is used as the distance criterion, a fuzzy

generalization of the VVector Median Filter is constructed.

3.4.2 Maximum Fuzzy Vector Directional Filters

Another possible choice of the nonlinear function /(¢) is the maximum selector. In this case,
the output of the nonlinear function is the input vector that corresponds to the maximum fuzzy
weight. Using the maximum selector concept, the output of the filter is a part of the original
input set. The form of this filter is y = x* with k = argmaxipj, j = 1,...,N. In other
words, as an output the input vector associated with the maximum fuzzy weight is selected. It
must be emphasized that through the fuzzy membership function, the maximum fuzzy weight
corresponds to the minimum distance. If the vector angle criterion is used to calculate distances,
the fuzzy filter delivers the same output as the BVDF, [240,246]. If the Ly is adopted as a
distance criterion, the filter provides the same output as the VMF. In this way, utilizing an
appropriate distance function, different filters can be obtained. Thus, filters such as VMF or
BVDF can be seen as special cases of this specific class of fuzzy filters.
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3.4.3 Fuzzy Ordered Vector Directional Filters

It is not necessary for the designer to use all the inputs inside the operational window to produce
the final output of the nonlinear filter. If desired, only a subset of the vector-valued input signals
can be used. The input vectors are then ordered according to their respective fuzzy membership
strengths. The form of the Fuzzy Ordered Vector Directional Filter (FOVDF) is given as

17 T
CZ,-TW--V«;> ~  "Vx(fc), (3.29)
fcH t=I

where ipk) represents the fc-th ordered fuzzy membership function, and ip(r) < ip(t-i) < «++, <
9 (). with being the fuzzy coefficient with the largest membership strength.

The above form of the algorithm constitutes a fuzzy generalization of the a-trimmed filters,
(3.7), [231]. Through the fuzzy transformation, the weights to be sorted are scalar values. In this
way, the nonlinear ordering process does not introduce any significant computational burden.
Depending on the distance criterion and the fuzzy membership function chosen by the designer,
anumber of different a-trimmed filters can be obtained.

The fuzzy transformations (3.26) and (3.27) are not the only way in which the adaptive
weights can be constructed. In addition to fuzzy membership functions, other design concepts
can be utilized for the task. One of such designs is the nearest neighbor rule, [237] in which the
value of the weight ipk in (3.25) is determined according to the following formula

(3.30)
V(N) ~ V()

where D7) is the maximum distance in the filtering window, measured using an appropriate
distance criterion, and is the minimum distance, which is associated with the center-most
vector inside the window W. As in the case of the fuzzy membership function, the value of the
weight in (3.30) expresses the degree to which the vector xX* is close to the center-most vector,
and far away from the worst value, the outer rank.

In [237,238] an adaptive vector processing filter named Adaptive Nearest Neighbor Filter
(ANNF) was devised utilizing the general framework of (3.25). The weights in ANNF are
calculated using the formula of (3.30), with the angular distance as a measure of dissimilarity
between the color vectors.

It is evident that the outcome of such an adaptive vector processing filter depends on the
choice of the distance criterion selected as a measure of dissimilarity among vectors. As before,
the L7 norm or the angular distance between the vectors can be used to remove samples with
atypical directions. However, both these distance metrics utilize only a part of the information
carried by the image vectors. As in the case of DDF, it is anticipated that an adaptive vector
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processing filter, based on the ordering criterion, which utilizes both vector features, namely
magnitude and direction, will provide a robust solution whenever the noise characteristics are
unknown, [74].

In [11,238] a novel distance measure was introduced

Jk = fﬂ!l-v fric. Xl A(Xfe.Xj) = (Mg “) {1~ s (||xfc‘|,| /]}xj 592/ » (331)

which takes into consideration both the direction and the magnitude of the vector inputs. The
first part of the measure ip is equivalent to the angular distance, (vector angle criterion) and
the second part is related to the normalized difference in magnitude. Thus, if the two vectors
under consideration have the same length, the second part of tp(xk, Xj) equals one and only the
directional information is used in (3.31). On the other hand, if the vectors under consideration
have the same direction in the vector space, the first part of ip(xk,xj), (directional information)
equals one and the similarity measure is based only on the magnitude of the difference part.

Utilizing this similarity measure, an adaptive vector processing filter based on the general
framework of (3.25) and the weighting formula of (3.31) was proposed in [238]. The so-called
Adaptive Nearest Neighbor Multichannel Filter (ANNMF) belongs to the adaptive vector pro-
cessing filter family defined through (3.25). However, ANNMF combines the weighting for-
mula of (3.30) with the new distance measure of (3.31) to evaluate its weights.

3.5 Nonparametric Adaptive Multichannel Filters

Based on the samples from the filtering window, an adaptive multivariate kernel density estima-
tor 1can be devised to approximate the samples probability density function >(x)

where m denotes the dimensionality of the measurement space and  is the data dependent
smoothing parameter, which regulates the shape of the kernel /C, [245,246].

The variable kernel density estimator exhibits local smoothing, which depends both on the
point at which the density is evaluated and on the information about samples in W. The choice
of the kernel function is not nearly as important as the smoothing factor h. Very often the
multivariate extension of the exponential kernel or the Gaussian kernel is selected.

‘Detailed description of the nonparametric estimation is given in Chapter 6.
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The non-parametric estimator can be defined as

y=E°» P— {Ix'~°W“} =f> . 333>
3

where xk are weighting coefficients and Xi is the central sample or its estimate obtained through
an appropriate noise filtering technique.

To obtain the required estimate, we must assume that in the absence of noise, discrete sample
vectors oft are available. This is not a very severe restriction, since in some cases such samples
may be obtained by a calibration procedure in a controlled environment, perhaps at a very high
signal-to-noise ratio conditions. In many image processing applications however, that is not
the case. Therefore, alternative suboptimal solutions are needed. In a first approach, we can
substitute the vectors ot in (3.33) with their noisy measurements.

The resulting Adaptive Nonparametric Multichannel Filter (ANMF) is solely based on the
available noisy vectors. Thus, the form of the ANMF is

(3.34)
fesl  E A mA{||xi-XjlI/hj}

A different form of the adaptive nonparametric estimator can be obtained if a reference
vector is used instead of the actual noisy measurement. The ideal reference vector is of course
the actualvalue of the multidimensional signal in the specific location underconsideration.
However, sincethe Oi vector is not available, a robust estimate, usuallyevaluated in a small
subset of the input vector set, is utilized instead. Usually the vector median x* is the preferable
choice, since it smooths out impulsive noise and preserves to some extent the edges. The median
based Adaptive Nonparametric Multichannel Filter has then the following form

N
=& /£ i!'iC * L . 3.35,
= E A {lixi- XM

This filter can be viewed as a double-window, two-stage estimator. First the original image
is filtered by a multichannel vector median filter in order to reject possible outliers and then an
adaptive nonlinear filter with data dependent coefficients is utilized to provide the final filtered
output.

A

Application of Anisotropic Diffusion to
Image Enhancement

Recently, growing attention has been given to the nonlinear processing of vector val-
ued noisy image signals through the anisotropic diffusion technique. Anisotropic diffusion
is a relatively new method derived from the scale space theory, which allows to reduce
the image noise without blurring the frontiers between image regions of different color or
brightness. In this Chapter some basic concepts of anisotropic diffusion are presented, its
efficiency is evaluated and it is shown how this technique can be modified, so that it can
better cope with the removal of impulsive noise in multichannel images.

This Chapter also presents an implementation of the anisotropic diffusion based on
theforward and backward diffusion concept, which allows to reduce the Gaussian noise,
enhance edges and better preserve important image structures.

4.1 Anisotropic Diffusion Framework

ery powerful filtering technique, called anisotropic diffusion (AD), has been introduced

by Perona and Malik, (PM), [227,228] in order to selectively enhance image contrast

and reduce noise, using a modified heat diffusion equation and the concepts of scale space,

[263,273,376,418,418]. The main concept of anisotropic diffusion is based on the modification

of the isotropic diffusion equation, so that the smoothing across image edges can be inhibited.

This modification is done by introducing a conductivity function that encourages intra-region
over inter-region smoothing.
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Since the introduction of the PM method, a variety of techniques have been elaborated
including multi-scale approaches [142,277], extensions to vector valued imaging [112,272],
multigrid methods [5], mathematical morphology inspired techniques and many others, [45,
98, 112, 147,201,221,270,282,394,425] and applied to the processing of 2D and also 3D
images, [83,133,160,387].
ym Diffusion is a transport process that tends to level out

concentration gradients and in this way it leads to the
equalization of the spatial concentration differences. The
elementary law of diffusion states that the flux density f is
directed against the gradient of concentration g in a given
medium: £ = —e VX, where c is the diffusion coefficient.

If we use the continuity equation

d d
X +vC=0, we obtain =X =V (cVa). (4.1)

Fig 41 Visualization of the ” X(E>Vit) denotes a real-valued function representing

anisotropic diffusion scheme, (i,j) the gray scale image, the equation of linear and isotropic
denotes the discrete image coordinates  diffusion is

V1) d2{C,ri,t) + d2x(£,Tj,t)

dt df2 drf 42

where f, f] are the continuous coordinates, t denotes time and c isthe constant conductivity
(diffusivity) coefficient.

Perona and Malik suggested that the conductivity coefficient ¢ should be dependent
on the image structure and therefore they proposed the following partial derivative equation,

(PDE)
dx(£,r],t)
dt
which can be expressed as a minimization of the energy £ on the image domain fi, [62,211]

= V [c(ETTVXETT] 43)

E(*)=[ re(IVzhdn, (44)
where T# ([Vrc|) is a regularization function that penalizes high gradients, while preserving
edges: (IVX]) = c(Va;)) |VXj , which leads to

dx % (|V )V~

sn=d., Vx| = div (c (IVX]) V&) = div 3>(X), (4.5)

where $(a:) = ¢ (JVx|) v x is the flux function.1

'For the sake of simplicity we will use <P(x) = —£(x).
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The conductivity coefficient c(f,7?) is a monotonically decreasing function of the image
gradient magnitude and usually contains a free parameter /3, which determines the amount of
smoothing introduced by the nonlinear diffusion process. Different functions of c(£,r)) have
been suggested in the rich literature, [5,9,46,63,262,274]. The most popular are those intro-
duced in [228], (Figs. 4.2, 4.11),

-1
= exp |v*£/%,2q)r a— 1+ I\/s(é,z??)r (4.6)
The conductivity function c(f, rj) is space-varying and it is chosen to be large in a relatively
homogeneous regions to encourage smoothing, and small in regions with high gradients to
preserve image edges, (see Fig. 4.3).

In one-dimensional case, the gradient and divergence expressions in (4.3) reduce to deriva-

tives, [112,159,172,253]

dt w ' dt @
Substituting discrete approximations of the derivatives, we obtain
_ I {c(f,t) ™ [*(Y+ f) -. X (Y- )] } « (4.8)
c( (X(C+AGC,1)-x(C,t))-c [ (f.£)-x(f-Af.£)]
(Atf
The conductivity values c(f + ~f,t) and c(f — can be determined as functions of the
discrete gradient approximations
(4.9)
B (4.10)
(4.11)
Introducing the notation
CR ApC{(+ 2 / Af2 Vv 2 (4.12)

VAX(C, t) = x(f +Af, t) - z(f, 1), VLX{£,t) =x{£ - Af,t)- x(f,t),we get

d
QIXA7A) = VIX(E, ) + cR VRX(L,t) = + $FI|A=L, (4.13)
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X(C.t+At) « x (£,1) + At 8IX(f,1) = x(f, 1) + At (SL+ $A) _ . _ (4.14)
The 1-D discrete formulation can be extended to the 2-D case
A d
| 1<"™0" | 0EX(C.N).Y) o c(E,V,1) TAX(E,T),1) (4.15)
+ x(f+AfT),)-xE7E)+
C(A02 . ~c( t - (x(fr],t)-x{E- AC,r),1))
' 1 c(C,V+ 9 (x (£,V+-Ar?,0 - X (£,'.7?,-t)) + (4.16)
(Atf —c(t,V~¥’t) (x(C,ri,t)-x(C,T)-Ari,t))
= cN(G,ri, t)VNx(C,Ti,t) + cs(C,Ti,t)Vsx(C,r),t) + cw(C, T} t)Vw x(C,ri,t)+
+CE(C,V,t) VEX{Cri,t) = SN+ 35 + + $e\A=1Ati=] 4.17)
CN = ¢(C,T1+ A/2, t)/Ari2, cs= c(cr)- A/2,t)/Ari2, (4.18)
cB=c(E+ A2,7Ti)/AT2, cw =c(C-A/2,r,,t)/Ae, (4.19)

VNx(C,r),t) = x(G,r)+Ar),t)-x(C,Ti,t), Vsx(t,ri,t) = x(*,ri—AT],t) —x(C,Tj,t), (4.20)

VEX(C,r],t) = x(C+AE, T},t)-x(C,ri,t), Vwx(C,nNtt)=x{C-AC,T],t)-x((;,r],t), (4.21)
and finally

x (Cirti+ At) Ria:(f,77,t) -1-At AEELAL » (4.22)

The filtering process consists of updating each pixel in the image by an amount equal to the
flow contributed by its nearest neighbors. The parameter At should be equal or less than 1/2 for
the 2-neighborhood (4.14) and less than 1/8 for the 8-neighborhood case (4.22) to ensure the
stability of the iterative process. The 2D anisotropic diffusion for the 8-neighborhood is illus-
trated in Fig. 4.1, where the intensity of the central pixel is modified by the flow contributions
from its eight neighboring points.

The discrete, iterative version of (4.3) can be written as

N N
XH=x\+A"2 =x\+ A2 4 [xk- x\], forstability A< A0 1 r, (4.23)
k=2 k=2 N

where t denotes discrete time, (iteration number), c[, k = 2,..., N are the diffusion coeffi-
cients in N —1 directions, (Fig. 2.1b), X[ denotes the central pixel of the filtering window, x[
are its neighbors and AD is the largest value of A(At in (4.14) and (4.22)), which guarantees the
stability of the diffusion process.

4.1 Anisotropic Diffusion Framework 65

It is quite easy to notice, [28] that this equation is similar to the adaptive smoothing
scheme proposed in [268,269] and [255,256]. Equation (2.10) formulated in an iterative way

N / N
441- £ ipkxi > (4-24)
k=1 !/ k=
can be written as
E Vfexi- X[ E 7K E Mx[ -x\) n
X =x\ + — —— =X\ +kal =x\ + (4 - x\), (425)
N N
£ E1X 2

where ipl are the normalized weighting coefficients. In this way, every adaptive smoothing
scheme based on the averaging with weighting coefficients can be seen as a special realization
of the general nonlinear diffusion scheme.

The equation of anisotropic diffusion (4.23) can be rewritten as

N
x+1=x\ j- af 4 +af 44, A<A0O= —— . (4.26)
k=2 k=2

Ifwe set [1—AY,k=24] = 0, then we can switch off to some extent the influence of the central

pixel x\ in the iteration process. This requires however, that in each iteration step the Ahas
to be a variable, dependent on the image structure, equal to A= [Efcl2ck] e The effect of
diminishing the influence of the central pixel can be however achieved in a more natural way.
Introducing the normalized conductivity coefficients Cj. = 4/ EH2  w'th EEL2CKt = 1,
the Eq. (4.26) takes the form

N N
X\H =x\(I-X) +X" Clxi, A=afd4, ae[0]1], (4.27)
k=2 k—=2

which has the nice property, that for & = 0 no filtering is performed: x*1 = x\ and for A= 1,
the central pixel is not taken into the weighted average and the anisotropic smoothing
scheme reduces to a weighted average of the neighbors of the central pixel xx
v
X\H =Y , ckxk- <4-28)
k=2

In this way the central pixel is being replaced by a weighted average of its neighbors and
the weights correspond to the similarity measures of the central pixel and its neighbors. This
scheme is very similar to the iterative approach proposed in [409,410], where a gradient-inverse
weighted noise smoothing algorithm was presented

xitl = ciz*+ £ ck4 . ct= max{7’I" S= max{7,\xk - Xi)}, (4.29
k=2 =l
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Fig. 4.2. Conductivityfunctions Ci, c2 (4.6) (a) and respective plots ofthefluxfunctions (b)

d) e) f)

Fig. 4.3. lllustration of the PM scheme: a) part of LENA image, b) image contaminated by Gaussian
noise ofa = 30, c) image restored with PM technique. Below respective 3-D visualizations, (d) - (f)

where 7 influences the contribution of the central pixel in the averaging, (small 7 value leads
to (4.28)). Scheme (4.28) is also quite similar to the approach proposed in [166] and to the
algorithm presented in [290]

Xi#l =AY 1 CkXK'  c*=exp] —2|jexp j » k=2,...,N, (430
which corresponds to the case of A = 1in (4.27). The robustness of this scheme is achieved by
rejecting the central pixel value of the filter mask, when calculating the filter output. This
technique is especially efficient when the image is corrupted by heavy impulsive noise process,
as will be shown in Chapter 5.

Setting A = 1in (4.27) produces similar effect as taking the largest possible value of Ain
(4.26), A0= 1/(N —1) which ensures the stability of the anisotropic diffusion process, [262].
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The good performance of the anisotropic diffusion scheme with & = 1is confirmed by Fig.
4.5, which depicts the dependence of the efficiency of the PM approach using the C\ conductivity
function on the /? and Aparameters for the gray scale LENA image distorted by Gaussian noise
of different intensity. In this Figure, it is clearly visible that the best filter performance in terms
of PSNR is achieved for Aclose to A0 = 1/8, (3x3 filter mask), especially in the case of images
distorted by Gaussian noise process of high 0. Such a setting of Aenables the diminishing of
the influence of the central pixel X\, which ensures the suppression of the outliers injected by
the noise process.

One of the drawbacks of the anisotropic dif-
fusion approach is that the optimal values of the
parameters (3 and Aare unknown. Although 5
can be calculated using some a priori knowledge
or can be estimated using some heuristic rules,

[57,168] the algorithm is relatively slow and re-
quires many iterations to achieve the desired so-
lution and also some stopping criterion is needed
to finish the iteration process, before the image
converges to the trivial solution, (average value
of the image pixels), (Fig. 4.4), [276,413,425].

. . Fig. 4.4. Visualization of the the development

Another dlsadvantage of the Perona-Malik ap- ofthe anisotropic diffusion process. Parts ofthe

proach is that this algorithm is not able to cope testimage PARROTS have been processed using

with impulsive noise and as a result the noisy im- the. standard PM multichannel anisotropic dif-

fusion scheme. The development of a selected

age goes through the diffusion process without image row and column through time (iterations)

perceptible improvement, (see Fig. 4.14b). is presented, (a). It can be observed that weak
edges are fused and only strong edges can be

In order to improve the eﬁiCienCy of the orig- preserved. Thefinal result obtained after 300 it-
inal PM scheme a regularized version was pro- erations is shown above, (b)
posed, in which the conductance coefficient is a function of the gradient convolved with the
Gaussian linear filter, [60,61]

= div[c(f,72,)Vx(f,72,0)], (4.31)

where c(f, 77,t) = /(|V Ga*x(C, 1], £)|), Gadenotes the Gaussian kernel with standard deviation
a, * denotes the convolution and / is a decreasing function. The advantage of this formulation
is that it is mathematically well posed in contrary to the PM scheme. However, the drawback of
this approach is that the image discontinuities tend to be blurred and the whole scheme leads to
a higher computational complexity of the anisotropic diffusion process, (see Fig. 4.14c).
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Fig. 4.5. Dependence d te efficiency d the AV scheme with the & ad C2 conductivity function m te Aand 0 parameters, (4.6), (4.23) using the test

gray scale image LENA contaminated with Gaussian noise d a = 10, a = D ad a = 9 h terms d PSNR for the third iteration
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In [219] the so called biased anisotropic diffusion has been proposed. This scheme differs
from the PM approach (4.23) in an additional term expressing the deviation between the initial
image x° and the filtered image x

?—X =V () Vi)+q[x°- X 4.32)

where a ia a parameter. The discrete, iterative scheme is then given by

N

o +a £4(4-4) +aXx -1 (4.33)
k=2
N
=4 1-AE 4 - Af 44 + Xaxei. (4.34)
f=2 =

Setting [1 —AJR k=24 —Aq] = 0 we are able to diminish the influence of the central pixel and
obtain the time dependent variable & = + "k=2 4) «Thus the iterative scheme, robust
to impulsive noise is given by

G+1==A*(E 4 4 +- 1) = (4.35)

The major advantage of this approach is that due to the bias term (x\—x\), the biased anisotropic
diffusion scheme converges to a steady solution, which preserves image edges, [112]. In the
case of very noisy images contaminated with mixed noise, the initial image x° can be replaced
by its appropriate estimate (mean, median), which allows to significantly improve the filtering
performance. Figure 4.6 depicts the dependence of PSNR on the iteration number fora = 0
equivalent to (4.28) and a = 0.2 in (4.35) for the LENA image contaminated by mixed noise
NMS5, (p = 0.04, NM2, a = 30).

a) b)

Fig. 4.6. Dependence of PSNR on the iteration numberfor a) a = 0, (4.28) and b) a = 0.2, (4.35),
(LENA image contaminated by mixed noise, p = 0.04, NM2, o = 30, C\, /3 = 20)
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4.2 Efficiency of the Anisotropic Diffusion Schemes

The properties of the image processing techniques, based on the anisotropic diffusion are deter-
mined by the conductivity function in the PDE equation, which defines the nonlinear diffusion
process. Changing the shape of the conductivity function, we can tune the anisotropic diffusion
filter to the image noise intensity and its statistical properties, in order to achieve optimal results
of the image smoothing, [46,47]. In this Section the behavior of the classical functions intro-
duced by Perona and Malik together with the Tukey’s biweight and Huber’s estimator, [204]
used in [46] is analyzed and the different filtering schemes are compared with the standard
approaches used for the reduction of Gaussian noise in digital images.

One of the attempts to alleviate the problems connected with the inability of the classical
anisotropic diffusion approach to suppress strong noise is the introduction of the so called robust
conductivity functions. In [46] robust statistic norms were chosen to design the anisotropic
diffusion process. However, these conductivity functions do not help increase the efficiency
of the filtering in case of strong Gaussian or impulsive noise. This is caused by the strong
influence of the central pixel in the filtering window on the development of the anisotropic
diffusion scheme.

o9 0) *($)
ClL[228]  exp(-350) R2(1“exp (-~)) - £l exp

c2, [228]

0O+wy n_g] (1+fa)
c5>[119] tanh  /(gB) log cosh ) R-2(ccsh (*)

e, [63 r’ (I + (»))'* (L+(«)T 1 B(R2+ g2T™*

Q, [110] 2A2(12+ ) 2 N M |)T 2B2 (g3 -B*) (R* + g>)-2

Tab. 4.1. Conductivityfunctions c(g), the appropriate energy 8(g) and derivative of theflux $(<-)

The function that impedes the smoothing across the edges in the anisotropic diffusion scheme,
is the diffusion coefficient. The conduction function c(g) is space varying, (depending on the
gradient magnitude g at a determined position) and is chosen to be large in homogeneous regions
to encourage image smoothing and small at edges to preserve them, (Figs. 4.2,4.3).
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Perona and Malik originally suggested two choices of ¢ (g)
ci(g)=exp{-(g//3)2/2]j, (@ =+ (@P)2 1 (4.36)

The constant P can be made adaptive, using the gradient estimator described in [57], where a
histogram of the absolute values of the gradients in the image is computed and (3 is usually set
to obtain 90% of its integral.

Apart from the PM functions, different types of conductivity functions have been proposed
over the years in the literature, [9,46,63,262], (Tab. 4.1). In [46] robust statistic norms were
chosen to define the conduction functions. The authors proposed there the so called Tukey’s
biweight function - 03(g) and the Huber's min/max function - 04(g)

M <R,

; (4.37)
otherwise.

«(.)=m( , GG) =

0, otherwise,

In order to compare the efficiency of the stan-

. . ee - . a d c2 G c4
dard anisotropic diffusion filtering schemes based

10 2834 2859 2851 28.08
20 2514 2549 2535 25.05
30 2301 2319 23.04 2296

on different conductivity functions, the LENA stan-
dard gray scale image was contaminated with zero-
mean, additive Gaussian noise of a = 10, 20 and
30 respectively. For each combination of Aand /3 Tah. 4.2. Optimal efficiency of the anisotropic
the diffusion process was iterated until the maxi- S\igllﬁzii%r:) r]c]igﬁ:;oisnestfr:g\‘;rg; sI?:SaII\IeRI'_EFI\(I)A: Itrr:]e
mum PSNR value was achieved. From all the com-  age diistorted by zero-mean additive Gaussian
binations of the filters” parameters the optimal val- noise of (0 = 10, 20, 30) using conductivity
ues of Aand /3in terms of PSNR for each conduc- functions Q, c2, G and @ wes used

tivity function was found and this value was treated as an indicator of the filter’s performance,
(Tab. 4.2), [340,345].

Figure 4.5 shows the filters’ efficiency in dependence on the Aand p values for Q and c
conductivity functions. It is easy to notice that the optimal values of the PSNR are obtained for
A« 0.1 for a wide range of the j3 parameter, which confirms the observation from the
previous Section, that the Aparameter should be close to A0, (A* close to 1).

The efficiency of the four filtering schemes shown in Tab. 4.2 was compared with some
of the standard filtering techniques listed in Tab. 4.3, [340, 345]. The simulations revealed
that for the images distorted by Gaussian noise of a = 10, 20 and 30, the ¢z function yielded
slightly better results than c\. The experiments have also shown, that the robust conductivity
functions G and G were not superior to the functions d and ¢z originally proposed by Perona
and Malik, which indicates that the shape of the conductivity function is not as important as
could be expected.
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The efficiency of the anisotropic diffusion decreases with the intensity of the Gaussian noise
and for a = 30 this filtering scheme is significantly worse than the simple «-trimmed mean,
which by the way performs better than the 3 x 3 median. This inability of the anisotropic diffu-
sion filters to suppress strong Gaussian noise can be derived from the fact, that strong impulses
introduced by the noise process are perceived by the filters as edges and are not eliminated,
which leads to a poor overall filter performance. This however can be alleviatedby dimin -
ishing the importance of the central pixel, as has been shown in the previous Section.

FILTER | 2 3 4 5 6 7 8 9

a=10 2737 2753 2618 2232 2506 23.07 25.66 23.30 28.59
o=gD 2631 2622 2535 2294 2373 2282 2409 2209 2549
=30 25.03 2473 2427 2193 2221 2248 2238 2245 2319

Tab. 4.3. PSNR results obtained with some ofthe standardfilters using the same distorted LENA images
as evaluated in Tab. 4.2: (1) a-trimmed mean with 2 excluded pixels, (2) a-trimmed mean with 4
excluded pixels, (3) moving average (3x3), (4) moving average (5x5), (5) medianfilter (3x3, 2 iterations),
(6) medianfilter (5x5, 2 iterations), (7) median filter (3x3), (8) medianfilter (5x5), (9) AD with c2

The extensive simulations revealed, that the robust conductivity functions do not improve
the filter performance, which indicates that the shape of the conductivity function is not crucial
to the filter efficiency and more effective scheme is needed in case of highly corrupted images.
Such a solution will be presented and evaluated in Chapter 5.

4.3 Anisotropic Diffusion Applied to Color Images

The extension of the anisotropic diffusion framework to the multichannel case is not a very
difficult task. Let x(f, 7,£) = [xr(f, rj, t),xg(£,r),t),xb(£,r), £]] denotes a color image pixel
at position (f, rf), where xr(f, r], t), xg(£,rj,t), Xb(E,r],t) are the red, green and blue channels
respectively. The PDE Eq. (4.3) can be written for the multichannel case as

Zr(£.) Fottrf)-

gt - V@StV DOLXE D zgey) T D
I

where i, v = 1(]|G |]) is the conductivity function, the same for each image chan-

nel, dependent on the magnitude of the local gradient ||G||, which couples the three color image
channels, [112,170,277,386,414]
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dxrhlr‘rt) V [orsfcf Vi ) Vav(F2£)]
SEED viever (f,M)Va:9(f,T/,)]

BEVMD  VICrgh(G,ri, HVXO(G, i1}

b0, dafT), o
duE) - QT o) - (439)

Estimating the local multichannel image gradient is one of the most important tasks, when
designing an anisotropic diffusion scheme. Many of the approaches devised for color images
are based on the vector gradient norm, [58,100,254,428]. Local variations of the color image
||dx||2 are expressed as

.
N gl2
ldxj2= S (4.40)

dr] @, o2 drj
oh - A de(",y)" A dxgoi)) + 9XI:j(i , r));
9 - Adxrd.n)y~ 2 ANXT)) (4.41)

Ne - (¥**>) (A ) +
The eigenvalues of the matrix [gkj]>«.; = 1,2

A OGNt fi2+ \](gll —9Th2+ 492 \ —qgll + 52- V (gll ~ 92)2+ 4ffia  ~ 42»
are the extremum of ||dx||2 and the orthogonal eigenvectors determine the corresponding vari-
ation directions. Based on the eigenvalues, different gradient norms leading to various PDE
schemes can be developed, [48,272,282,398,400].

Figure 4.4 shows the development of the multichannel anisotropic diffusion process. As
can be observed, this technique efficiently suppresses texture and low intensity Gaussian noise,
but preserves strong edges. However, the process has to be stopped, as the image after many
iterations is being heavily blurred and converges to the homogeneous image of the same color.

The anisotropic diffusion scheme has been generalized using the concepts of digital paths
and fuzzy adaptive filters, [200,295,306,313] 2. Instead of using a fixed window, this method
exploits connections between image pixels using the concept offuzzy connectedness. According
to the proposed methodology, image pixels are grouped together, forming paths that reveal the
underlying structural dynamics of the color image.

2The generalization of anisotropic diffusion will be described in detail in Chapter 5.
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4.4 Forward and Backward Anisotropic Diffusion

The conductance coefficients in the PM process are chosen to be a decreasing function of the
signal gradient. This operation selectively smoothes regions that do not contain high gradi-
ents. In the Forward-and-Backward diffusion (FB), a different approach is taken. Its goal is
to emphasize the extrema, if they indeed represent singularities and do not come as a result of
noise. As we want to emphasize large gradients, we would like to move “mass” from the lower
part of a slope” upwards. This process can be viewed as moving back in time along the scale
space, or reversing the diffusion process, [247]. Mathematically, we can change the sign of the
conductance coefficient to negative

A

= V [-c(f,7f) Vx(f, )], c(f,mt)>o0. (4.43)

However, we cannot simply use an inverse linear diffusion process, because it is highly unstable.
Three major problems associated with the linear backward diffusion process are: explosive
instability, noise amplification and oscillations.

One way to avoid instability explosion is to diminish the value of the inverse diffusion coef-
ficient at high gradients. In this way, when the singularity exceeds a certain gradient threshold, it
does not continue to affect the process any longer. The diffusion process can be also terminated
after a limited number of iterations. In order not to amplify noise, the inverse diffusion force
at low gradients should be eliminated and the oscillations should be suppressed at the moment
they are introduced.

The result of this analysis is that two forces of diffusion working simultaneously on the
signal are needed - one backward force needed for edge sharpening and the other forward one,
used for stabilizing oscillations and reducing noise. These two forces can actually be combined
into one coupledforward-and-backward diffusionforce with a conductance coefficient possess-
ing both positive and negative values. In [113-115] a rather ad hoc conductivity function that
controls the FB diffusion process has been proposed, (Fig. 4.7a)

1- (SANTL . 0 < g <Kkf,
cfb(s) = *[((g- kb/w)2M- 1] , kb—w <g <kb+w, (4.44)
0, otherwise ,

where g is an edge indicator, (gradient magnitude or the value of the gradient convolved with
the Gaussian smoothing operator), kf, kb,w,ii >72 are design parameters and a* = kf/(2kb),
(kf < kb controls the ratio between the forward and backward diffusion.
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Later another form of the diffusivity function was proposed, [116], (Fig. 4.7b)

Cfh{9) = 1+ (g/kfr ~ 1+ ((g-kb/w)2* (4'45)
In this work a more natural approach based on the widely used unsharp masking technique
is proposed, [291,307,338-340,352]. Let us define the unsharp masking operation, [132,167]

Y= x* 14S(x* | —x *Q) = x * [7(1 + 5) —Sq] , (4.46)

where / is the identity operator, Q is the Gaussian operator, * denotes the componentwise con-
volution of the multichannel signals and 5 is a parameter which influences the sharpening effect.

Fg. 4.7. Plots oftheforward and backward conductivity and flux functions proposed in [113-115] (2)
and in [116] (b)

The unsharp masking defined by (4.46) is equivalent to the anisotropic diffusion with a
conductivity function defined as

C{5,9,P) = | + —<5exp|— , (4.47)

which satisfies C(g = 0) = 1 However for 5 > 0, C > 1 which causes that the anisotropic
diffusion based on the direct extension of the unsharp masking method would lead to a highly
unstable scheme, which would very quickly collapse when used in an iterative way. Therefore
amore stable solution is needed, which can be provided by the scheme defined by

Yy=X*Q+5(x*Q\—x *Q), (4.48)

where Q\ and <2 are two Gaussian operators. The aim of Q\ is to suppress the image noise and
£2 is needed to perform the unsharp masking operation. Equation 4.48 can be rewritten as

y = X* [+ 5Qi - g2] =x*[{1+5Gi- <%)] (4.49)
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The anisotropic diffusion scheme based on (4.49) is then parameterized by 6 and Pi, p2

CS,gP) = (1+ <Sexp{—g2 (21?i)} — exp{—&2 (2/?f)} , (4.50)

where Pi < Defined in this way conductivity coefficient has the required properties: C(g =
0) = 1, C(@ > 0) < 1andlim9 00C(5) = 0. Setting the 6 parameter to 1 we obtain two
conduction coefficients directly based on the PM approach, [291,307,338]

clB ="exp” - - | | f-exp<; — (|}, c2fp = -mmmn— y - — (4.51)
1+UJ 1+UJ
Various modifications of the original diffusion scheme were attempted in order to overcome
the stability problems and different conductivity functions were proposed, (Tab. 4.1), [159].
Yet, most schemes, even when regularized to avoid the problems caused by their ill-posed for-
mulations, still converge to a trivial solution, (the average value of the image gray values for
monochrome case) and therefore the implementation of an appropriate stopping mechanism in
practical image processing is needed. In case of images contaminated by mixed noise, an effi-
cient way of enforcing the convergence of the iterative process to a stable state, is the usage of
the nonlinear cooling procedure, dependent on the image gradient values.
In this study the standard, but time-dependent PM conductivity functions are used, [339,
349,350]

1
. d{gt) = (4.52)
W{i)2
h £ {m)
to obtain newforward and backward conductivity functions, derived from the unsharp masking
technique
iB =2 e s D 4.53
G &P 212i(iys P 2132(£)2] (4.53)

1+(aw) 1+(W|)

where g = ||V x(f,rj, t)|| is the vector norm, Pj(n + 1) = Pj{n) ma, a G (0,1], Pj(2) is the
starting parameter, j = 1,2, Pi(n) < /3(n), where n is the iteration number.

This scheme depends only on two (in case of forward or backward diffusion) or three (in
case of FB diffusion) parameters: initial values of the two starting Pj parameters and the cooling
rate a. Setting a to 1 means, that there is no cooling in the system. As a decreases, the cooling
is faster, less noise is being filtered but edges are better preserved.

Figure 4.8 illustrates the dependence of the PM diffusion coefficients Ci(g,t) and c2(g,t)
on the iteration step n. The plots of the forward and backward diffusion coefficients C\fb(9,t)
and cXb (5,t) are presented in Fig. 4.9. In the FB diffusion process, smoothing is performed
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when the conductivity function is positive and sharpening takes place for negative conduction
coefficient values. If the cooling coefficient a is lower than 1, then the gradient threshold p(t)
decreases with time, allowing lower and lower gradients to take part in the smoothing process.
As the iteration step advances, only smoother regions are being filtered, whereas large gradients
can get enhanced due to local backward diffusion. The scheme converges to a steady state for
0 —*0, which means that no diffusion at all is taking place.

The experiments revealed that better results of noise suppression using the FB scheme were
achieved using the conductivity function c2 from the original PM approach. The efficiency
of the proposed technique is presented in Fig. 4.15, where two color images are enhanced
using the purely backward and FB anisotropic techniques. The ability of the new algorithm
to filter out noise and sharpen the color images is shown in Fig. 4.16, where the color test
images were contaminated with Gaussian noise (a = 30) and restored with the FB anisotropic
diffusion scheme. The comparison of the proposed FB scheme with the classical PM approach
is provided in Figs. 6.27 and 4.18. The results confirm good performance of the new method,
which could be used for the enhancement of noisy images in various applications, which are
based on color, shape and spatial image features.

The forward and backward anisotropic diffusion can be also obtained in a quite different
way. In the novel scheme, the conductivity function is defined as the derivative of the classical
PM flux function 4% (see Fig. 4.13b). In this way the conductivity function takes negative values
for g > 0 and approaches 0 for large values of the image gradient magnitude g. The important
feature of the FB scheme is that the parameter P is now time-dependent and is decreasing with
time (iteration), (Fig. 4.13). This causes that the maximum and minimum of the flux function
are approaching zero in successive iterations, which guarantees that the diffusion process
converges quickly to a non-trivial solution.

Fig. 4.11 shows the plots of the conductivity functions used in the PM approach c\, c2, [228]
and c5 [119], & [63] defined in Tab. 4.1. It can be seen that the c5and c6 conductivities
lead to convex energy functions, which is a condition for the regularization of the diffusion
process, [82,159]. As can be observed in Fig. 4.11 the PM conductivity functions g and c2
yield non-convex energy functions, which is the source of the stability problems of the PM
approach, [82,276,413]. Figure 4.12 depicts the conductivity functions, the fluxes and energies
for the FB scheme defined by (4.53). Note that the shapes of the functions defined by (4.53)
are quite similar to those shown in Fig. 4.13, which confirms the similarity of the two proposed
approaches. As can be seen the energy functions in Figs. 4.12 and 4.13 are like in the PM
scheme non-convex, (see Fig. 4.11) and the shapes of the conductivity functions are determined
by the term [L —g2/P2], (Tab. 4.1).
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Fig. 4.8. Dependence ofthe conductivityfunctions on the iteration step and the image gradientgfor the
‘cooled’ci and c2 conductivityfunctions, (forward diffusion, = 40, a = 0.8)

Fig. 4.9. Dependence of the forward and backward conductivity functions on the iteration number n
and the image gradient g for the c\fb and c2fb conductivityfunctions defined by (4.51) and (4.53) for
/3i(l) = 40, 132(1) = 80 and a = 0.5. Note, that because oflow a already in the second iteration, the

conductivityfunctions attain negative values

a) b) C)
Fig. 4.10. Comparison ofthe standard PM anisotropic diffusion scheme with the proposedforward and
backward diffusion (FB), @) parts of the test image PARROTS, D) output ofthe PM technique after 50
iterations, c) result ofthefiltering using the proposed FB design after 6 iterations
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b) )

Fig. 4.11. Plots of the conductivity functions used in the P-M approach ci, c2, [228] and Cs [119],
ce [63] defined in Tab. 4.1for the (3parameter decreasingfrom 60 to | (a), beside the appropriate plots

ofthefluxfunctions fi> (D) and the energyfunctions £ (c)



Fig. 4.12. Plots ofthe conductivityfunctions c vrv ana c2rn definedin (4.53)for the (3parameter decreasingfrom 60 to 1 with step-size 3 (a) and beside
the appropriate plots oftheflux $ (b) and energyfunctions £ (c)

a) b) c)

Fig. 4.13. Plots of the conductivityfunctions obtained through the derivative of theflux (= in Tab. 4.1) defined by PM conductivityfunctions c\ and c2
(a), beside the plots of the appropriateflux (b) and energyfunctions (c), (the 3parameter is decreasingfrom 60 to 1 with step-size 3)
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Fig. 4.14. lllustrations of the the development of the anisotropic diffusion process. The central part of
the images shows the result obtained after 300 iterations. Left and right parts show the evolution of
the column 25 and 325 ofthe 350 x 350 color LENA image distorted by mixed impulsive and Gaussian
noise, a) isotropic diffusion process (4.2), b) PM anisotropic diffusion with cj, (4.6), ¢) regularized AD
of Catte, [60,61], d) newfilter DPAF introduced in Chapter 5
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Fig. 4.15. Illustration ofthe proposed combinedforward and backward anisotropic diffusion scheme. At
the top: color test images, below images enhanced with the pure backward diffusion and at the bottom

images enhanced with the FB diffusion scheme
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Fig. 4.16. Effectiveness of the coupled FB diffusion scheme. Left column: color test images, in the

center: images contaminated with additive Gaussian noise (a = 30), to the right: images enhanced with
the proposed FB anisotropic diffusion scheme
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Fig. 4.17. lllustration of the efficiency of the FB anisotropic diffusion scheme, @) color test images, b)
images enhanced with the FB scheme. Figs. c) and d) depict the results obtained with the PM approach,
using the conductivityfunctions Q\ and G, respectively after 50 iterations
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5

Digital Paths Approach to Color Image
Filtering

In this Chapter a novel method of noise reduction in color images is presented. The
class offilters presented here, utilizes fuzzy membership functions defined over vectorial
inputs connected by digital paths. Instead of using afixed window, the new method ex-
ploits connections between image pixels using the concept of digital paths. According to
the described technique, image pixels are grouped together, forming paths that reveal the
underlying structural dynamics ofthe image.

The efficiency of the new filters is evaluated under a variety of performance criteria
and compared with the standardfilters. It is shown that, compared to existing techniques,
thefilters presented here are better able to suppress impulsive, Gaussian and mixed noise.
Furthermore, the computational analysis provided in this Chapter shows, that some mem-
bers of the newfilterfamily are computationally less demanding than the standard, widely
used vector medianfilter.

5.1 Connection Cost over Digital Paths

epending 0N the design principles and the computational constraints, the new filter
e) '[) D framework allows the digital paths exploring the image to be considered on the entire

Fig. 4.18. lllustration of the efficiency of the new filtering scheme: a) and C) test images and beside image domain, [298,299,302,319] or to be restricted to apredefined search area, [295,302,306,
images enhanced with the proposed method (b), (d). Below the evolution of the test image C) using the

standard PM scheme with the c2 conductivityfunction after 20 and 50 iterations (e), (f) 313-316]. The new approach focuses on the latter case.
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To facilitate comparisons with existing ranked type operations and to illustrate the com-
putational efficiency of the proposed framework, the path searching area is allowed to match
the window W used by the ranked type filters. However, instead of the indiscriminately use
of the window pixels, an approach advocated by the majority of existing multichannel filters,
the proposed here framework enables the formation of a number of digital path models, which
in turn are used to determine the coefficients of a weighted average type of filtering opera-
tion, [313,326,380].

The new filter class based on digital paths and connection cost, can be seen as a powerful
generalization of the multichannel anisotropic diffusion presented in Chapter 4 and an extension
of thefuzzy adaptivefilters described in Section 3.4. The filters discussed there are shown in this

Sectiontobe a special case of the new filtering scheme, when a digital path is degenerated
to a single step.

The path connection costs evaluated over all possible digital paths, are used here to derive
fuzzy membershipfunctions that quantify the similarity between vectorial inputs. The proposed
filtering structure is then using the function outputs to appropriately weight input contributions
in order to determine the filtering result. The proposed filtering schemes parallelize the famil-
iar structure of the adaptive multichannel filters and they can successfully eliminate Gaussian,
impulsive as well as mixed-type noise. However, thanks to the introduction of the digital paths
in its supporting element, the new filters not only preserve edges and fine image details, but can
also act as an image sharpening operators.

In order to perform operations based on the distances, we first need to precisely define the
notion of the topological distance. The concept of a topological distance between image points
is of extreme importance in many applications based on the distance transformation, which is
one of the fundamental operations of mathematical morphology, [50,51,154,172,251,285].

Let V be any nonempty set. We can measure distances between points in V, defining a real
valued function on the Cartesian product 'Dx'Dof'D. Let the functionp : V x V —#R be called
a distance if it satisfies: p(u,v) > o, with p(u,v) = whenu = v and p{u,v) = p(v,u), for
allu,v e VxV. Adistance is called a metric if additionally it satisfies the triangle inequality:
p(u,w) < p{u,v) + p(v,w), forallu,v,w e VxD, [149,259].

In digital image processing three basic distance functions are usually applied. 1fu = (uj,w2)
and v = (vi,v2) denote two image points (u,v « Z2), then we define the city-block distance:
p4(u,v) = \ui —Vi\ + \u2—v?2\, chessboard distance: ps(u, v) = maxd-Ui —vi|, \u2—v?2\) and
Euclidean distance: , . . .v) = [(«i —v ). + (U2— 1j2)2]5. Using the city-block and chess-
board distances we are able to define the two basic types of neighborhoods: 4-neighborhood
Ni{u) = {v :Pi{u,v) = 13 and 8-neighborhoodMs(u) = {v : p&(u,v) = 13.
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Leti « {4,8}, then two points u,v € Z. are said to be in At-neighborhood relation,
(denoted as <) or to be A™-adjacent if v € AfL(u) or equivalently u S Af(v). This Alt-adjacency
relation defines a graph structure on the image domain, called A™-adjacency graph. On the
graph, a finite ML=-path can be defined as a sequence of points (qo,qi, mmqv) such that for
Ae {1,2,..., »} the point gk 1 is A" adjacent to gk. A path is called simple if k = j implies
that gk -~ gj. This is a very important property of a path, as it means that a path does not intersect
itself or in other words it is self-avoiding, [71,202,320,322,370].

a) b)

Fig. 5.1. lllustration of the concept of digital paths and connection cost. The pixels a, b, c, d are
connected with the central pixel along paths, whose connection costs are minimal

Using the distances between neighboring points, which are called prime distances, [371] we
are able to define a distance between any two image points by following all admissible paths
linking those points and then taking the minimum of the total length over all possible routes,
which is the sum of the prime distances between the nodes of the paths. In this way, the distance
between two image points is the length of the path for which the sum of the prime distances
between the path nodes is minimal. For the city-block distance, the admissible paths consist
of horizontal and vertical moves only, whereas for the chessboard distance also the diagonal
moves are allowed. The prime distances for the two kinds of neighborhood are assumed in this
work to be equal to . .

Let us now introduce the definition of a geodesic distance, [252,266] assuming that R. is the
Euclidean space, W is a planar subset of R. and u, v are points belonging to set W. A path from
u to v is a continuous mapping Q: [a, ] —W, such that Q(a) = u and Q(b) = v. The point u
is considered as the starting point, while v is the ending point on the path Q, [51,84,152,261].

An increasing polygonal line Q on path Q is any polygonal line such that Q = {Q{gk)Yl=a,
a=@<,...,< gn=h. The length C of the polygonal line Q is considered to be the total sum
of its constitutive line segments £(Q) = where p(u,V) is the distance
between the points u and v, when a specific metric is adopted. A path Q fromu tov is called
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rectifiable, if and only if £(Q), where Q is an increasing polygonal line, is bounded. Its upper

bound is called the length of the path Q.

The geodesic distance pw(u, v) between points u and v is the lower bound of the length of
all paths leading from u to v which are totally included in W. If such paths do not exist, then
the value of the geodesic distance is set to 0o. In general pw(w, v) > p{u, v), however if the set
W is convex, meaning that there are no points on the line between u and v that are not members

of W, the geodesic distance verifies pw(u, v) = p(u, v).

The notion of a path can be extended to a lattice, which is a set of discrete points on the
plane, in our case the spatial locations of the image pixels. Let a digital lattice H = (x, Af) be

defined by x, which is the set of all points on the image domain fi and a neighborhood relation
N (< between the lattice points, [278].

A digital path Q = {<fjfc.. defined on the lattice L is a sequence of neighboring points
(Qk-1,Qk) € A= The length £(Q) of the digital path Q{g/t}JL, is simply Yll=i PH(Qk-i,gk),
where pn denotes the distance between two neighboring points of the lattice H and the geodesic
distance between g0 and g is the minimal length of £(Q).

Constraining the paths to be totally included in a predefined set W yields the digital geodesic
distance pw. In this work A*-neighborhood system (i = 4 or i = ) is considered, with a topo-
logical distance of 1 assigned to any neighboring points, and the set W will be the supporting

window of appropriate size. All paths considered in this Chapter are included in the filtering
window W, (Fig. 5.2).

© oty vj -
\ o | £
a)
./ [ ] \
a 9/ " \
b)

Fig. 5.2. Digital paths of a) length 2 and b) length 3, connecting two neighboring points within a
predefined window W ofsize 3x3, when the 8-neighborhood system is applied

Let us now adopt the following notation, which will help us define the distance functions
defined over geodesic paths. The starting point of a path will be denoted as q0 = (il jvom Its
neighbors will be denoted as g\ = (iUl,jvi), which means that the neighbors are the second
points of all digital paths originating at go. Then the third point of a digital path starting at go
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will be § = (il jV2) and so on, till the path reaches in - steps the ending point qv = {il;,jvri)-
In this way the sequences iui,..., iUt and jvi,..., j Vi uniquely define the digital path starting
at uio, vjo and ending at ulri,vjri. The set of all possible digital paths contained in W joining two
points u, v e W will be denoted as * w (u, v).

Two pixels u and v will be called connected (denoted as u m=>v), if there exists a digital path
QW(u, v) contained in the set W starting from u and ending at v. If two pixels at positions g0and
qv are connected by a digital pathQ"™ {go, si, ***, @} of length -7 then let AWr{qo, g\,... ,qv}
be a measure of the connection cost defined over the digital path linking the starting point g
and ending point qv, (/ is a nonnegative scalar function of vector variables)

{00, +m i@} = / {xjoomixA} =/

Bl meeSX UM V| o (5-1)

The connection cost AW'lover a digital path can be seen as a measure of dissimilarity between
color image pixels at points g0, gi,. . qv forming a specific path linking g and qv, [76,251,390].
Ifa path joining two distinct points u, v, such that xu = x v consists of pixels of the same channel
values, then the connection cost should be zero, otherwise Awv > 0.

Let us now define a generalized connection cost function, based on the Distance Transform
on the Curved Space (DTOCS), [251,390] introduced for the gray scale images. For two given
points ok and ok-i, k = 1,.,... , 7, which are in a neighborhood relation, let the generalized
distance between the two points be called connection cost defined on a hybrid spatial-color
space discussed in [148,366]

hw'l{gk-x,qk} = |[x%- x9t 11+ | *pW(Uk lifc-i), (5.2

where | establishes a proper weighting in the hybrid spatial-color space. The connection cost
of a whole digital path g0, gi, ..., qv will be then

AV {go, 9L, eee, g} = £ (lxe ~ x7-i 1+ £ pW{cK . B3~

As we will work with small filtering window, we will focus on the color space only, by set-
ting| = 0. Similarly to the gray scale case, we will call the minimal connection cost TIv*(u, v)
of a path of length -+ linking two points u,v s W, the --geodesic between the point u and v:
Twq(u,v) = min{A().- G'tiwv}.

In this way the ---geodesic is defined as the path of length -, which gives the minimal connec-
tion cost between two points linked by a digital path. If we take the minimum of the connection
costs generated by all possible paths joining two points u and v € W, then we obtain the gener-
alized multichannel geodesic distance between these points: Tw (u,v) = min,, {ruy?(u,u)} =
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min {A (r),.r € QH?(u,v),7 e N}. Tw{u,v) defines the multidimensional distance trans-
form, whichisa generalization ofthe DTOCS introduced in [390] for the gray scale
images, [313].

In general, two distinct pixel’s locations on the image lattice can be connected by many
paths, (see Fig. 5.2). Moreover the number of possible geodesic paths of certain length t] con-
necting two distinct points depends on their locations, length of the path and the neighborhood
system used, [50,51,172] .

5.2 General Filter Framework

In this work, general fuzzy filtering structure proposed in [236,240,242,313,377,379] will be
used. The general form of the fuzzy adaptive filters presented here is defined as a weighted
average of input vectors inside the processing window W

N N N

y = = (5-4)

k= k=1 k=1

The relationship between the pixel under consideration Xi and each pixel in the window should
be reflected in the decision on how to define the filter weights. In our case, the weights will be
determined using the similarity functions calculated over digital paths included in the processing
window W.

On the basis of the connection cost function concept, it is possible to define different classes
of similarity functions. The choice of a specific form of the similarity function yields different
filters of specific properties, which can be applied for a wide range of low level vision tasks.

Let us now define a similarity function ip, analogous to a membership function used in fuzzy
systems, between two pixels connected by all possible digital paths leading from u to v

ipve(uv) =jr f{ A™» (<}, (5.5)
k=1

where 4 is the number of all paths connecting u and v, A« -1 (u, v) is a dissimilarity value along
a specific path k from the set of all u possible paths leading from u to v and /(¢) is a smooth
function of A™v. By definition ipw'tt (u,v) returns a value evaluated over all routes linking the

starting point u with the endpoint v.
The smooth function / : (0 00) —+ R should satisfy the following conditions: / is a de-
creasing in (0; 00), / is convex in (0; 00), /(0) = 1, f (x) —»0, when x -* 00. Several
functions satisfying the above conditions have been proposed in the literature, [170,245,246,
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304,313,324,378]. However, the shape of the function is not of great importance and for the
impulsive noise removal good results are obtained using the exponential form of the function
/(*)’ [41]. Therefore we assume
U
ipw'v(u,v):"'o":%exP TART (usu)] >

where j3is the filter design parameter. For-» = 1and a square (3 x 3) window W the similarity

function ip is defined according to (5.3) as ipWl (u, v) = exp {—P\xu—x,,||}, and then if xu=

xv, AWl (u,v) = 0, ipw'l(u,v) = 1, and for ||Xu - X,|| =, ipw'l1—>0, [240,313,328,404].
A normalized form of the similarity function is defined as

b\ ipwv(u,v)
*M = EW «,»)’

where v #=u denotes all points v connected by digital paths with u which are contained in W.

Assuming that the pixel xuis the pixel under consideration, with xvrepresenting the pixel
included in the supporting element W, which is connected to x,, via a digital path, the proposed
filter output yu is given as

]pv_v‘r,(u, V) 59)
ipre{u, W

The filter output is the weighted average of all points xv connected by digital paths with
the pixel xu. As the pixel x,, is the ending point of a path leading from u, therefore this filter
structure is called D?A-Last (DPAL) as v is the last point on the path, (Fig. 5.3b).

5.2.1 Digital Paths Approach Filter Class

Another possible filtering scheme takes into account the similarity between the starting point @
and point <1 crossed by a digital path connecting pixel gpand its neighbor < with all points o
which can be reached in 7 steps from ¢ The aim of taking into account the points ¢, .. ., gv
when calculating the filter output is to explore not only the direct neighborhood of ¢pbut also to
use the information on the local image structure. This can be done by acquiring the information
on the local image features investigating the connection costs ofdigital paths originating at ¢
passing <1 and then visiting successive points, till the path reaches length 7. In this case, the
similarity function takes the form

*w" (u,l;) = ipw"™ (<7o,qi) = £/ {AW'V {9091, <& <&, **m «;}) , (5-9)
{28 1}
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where {q0,qi, 92, ..., g*} denotes all paths originating at u = g0 crossing v = q\ end ending at
g*, which are totally included in W and /(*) is a smooth function of AWTI.

By analogy to the previous Section, the exponential function will be used, and then the
similarity function takes the form

ipV, (U, V) =ipWT,(@QgD) =
{£3B <}

where 0 is the smoothing parameter.
Mn KIMS!
m =M=
B Si
Me E-«
N HI:-
a)

Fig. 5.3. In the DPAF and DPAL filters, the weights are assigned to the pixels surrounding the central
pixel xi and are determined in different ways. In the DPAF approach (a), the weights in (5.13) are
calculated exploring all digital paths startingfrom the central pixel and crossing its nearest neighbors,
then a weighted average of the nearest neighbors of the central pixel is calculated, (5.14). In the DPAL
approach, the weights are obtained by exploring all digital paths leadingfrom the central pixel to the
pixels contained in W (1) and then a weighted average ofall pixelsfrom W is calculated, (5.18)

exp[-~"-AW7{gb,9i,«5,-..,95}] , (5.10)

b)

A normalized form of the similarity function can be defined as

E  exp [-0 *AWi {g0,si <z +oe, 9}

N SN Co o eils
Ip (xy) =1ip [qo.ai) E exp [-/2+ A7{g0,91,92 --9"}] ’

where {o0,91,92-22>iJ} denotes a path joining u = g0 and qv, crossing v = glt whereas
{s0,0% 0., =, "} do not necessarily cross v = g\ when joining g0 and gn.

Assuming that the pixel xu at the position u = go is the pixel under consideration, with x,,
representing the pixel atv = gi, the filter output yuis given as

yu=y@p= we V¥ («, V) KV = T (o, 9i) X, , (5.12)

vas$u v<->U Q*<->qo
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and combining this with (5.11) gives
E exp [-0 mAw” {s0,ql,02,..., s *}]

N ' i
YU= y?° = 1 E "}exp [-OmA A {90,91>q"...,q;}] o (009 Xarm
{«% 9}
(5.13)
Using the notation from Chapter 4, we can formulate (5.13) as
N
v o= (5-14)

k-2
where ik, the normalized weighting coefficients, play the role of the generalized conductivity

coefficients from Section 4.1 and x k are the neighbors of xi, which is the central pixel in the
filter mask W.
The generalform of the anisotropic diffusion scheme based on the concept of digital paths

can be written as
N N

y = (I—AXi+ A*$>:x*, or xT = (I-A )% + A*X>S*i- (5-15)

Using the relation & = AYIk-. cke>(4-27) and taking paths consisting of one step only, the
classical form of the anisotropic diffusion scheme defined by (4.23) can be obtained.

Figures 5.4 and 5.5 show the dependence of PSNR on the Aand 0 values for the color LENA
image contaminated by Gaussian, impulsive and mixed noise for the classical multichannel PM
anisotropic diffusion scheme (Section 4.3) and the proposed DPAF, (DPA-First) filter defined
by (5.14). Especially interesting is the behavior of the plots as a function of A*. As can be seen,
for images contaminated by a noise process of high intensity, the maximum of PSNR is obtained
for A+ very close to 1, which means that it is favorable to omit the central pixel while calculating
the weighted average in (5.14). This was already noticed in [290,300], (2.13), where the central
pixel was not taken into the averaging process, which is equivalent to setting A* = 1. That is
why we set A = 1in (5.14) to define the new DPAF filter, (5.13), (5.14). The superiority of
this approach over the classical scheme is clearly seen in Fig. 5.4 and 5.5, where especially for
highly corrupted images, the difference in terms of PSNR is quite significant, (see also Tab. 5.4
and 5.5).

In a similar way the DPAL filter can be defined as

E exp [-0 mAWT {go,9i.95, eee>2%}] ox?*
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Fig. 5.4. Dependence ofthe efficiency ofthe PMAD (left) and DPAF (right) on the A* and /3parameters
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PSNR
DPAF, a =10
PSNR
DPAF, a = 20
DPAF, a = 30

for the color image LENA contaminated with Gaussian noise ofa = 10, a = 20 anda = 30
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Fig. 5.5. Dependence of the efficiency of the PMAD filter and the DPAF on the A* parameterfor the
color image LENA contaminated with: &) impulsive noise, (p = 0.12, NM2), b) mixed noise, (a = 30,
p = 0.12, NM2). Below the results obtained with the PMAD filter: ¢), d) and with the DPAF: €), ),
(rj = 2). As expected the maximum of PSNR is achievedfor A* close to |
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which can be written as
N

- A _ -
y =y 1" Xk (5-17)

Analogously to (5.15), we can introduce the general and iterative form of DPAL defined by
(5.16)

N N
y=(1- AOXIl + A Xfc, Xtl= (I-AVi + A *|>;xi, (5.18)
k- k=2
where ipl are the normalized weighting coefficients from (5.16).
., 8., . The concept of the DPAF and DPAL filters is presented in Fig.
. . 4, 5.3. The weights assigned to the pixels surrounding the central pixel
3 4 o+ 4M Xi are determined in different ways. In the DPAF approach, the
. . 4, weights in (5.13) are calculated exploring all digital paths starting
R S from the central pixel and crossing its neighbors, (Fig. 5.3a) and then

a weighted average of the nearest neighbors of the central pixel is
Fig. 56. The array de- calculated, (5.14).
picts the number of pos- . . .
sible paths of length » = In the DPAL approach, the weights are obtained by exploring all
> connecting the cen- digital paths leading from the central pixel to any of the pixel in the
ter point with the points

of window W, when 8 ) . . .
neighborhood system  is contained in that window is calculated, (5.18).

Although, both the schemes work on supporting windows of the
same size, determined by the number of steps ] and the kind of the neighborhood relation, the
DPAL has more powerful smoothing properties, as it involves all the pixels from the filtering
window W into the averaging process, whereas the DPAF determines the weighted output using
only its nearest neighbors. The efficiency of the new class of filters DPAF and DPAL will be
evaluated and compared with some of the standard filtering techniques in Section 5.3.

filtering window, (Fig. 5.3b) and then a weighted average of all pixels

5.2.2 Fast Filter Design

The computational complexity of the DPA filters depends on the path length -» and the number of
paths, which can be constructed in the supporting window W of size (k x k). It is easy to notice
that for large k, which may be required in certain applications, the computational complexity
of the filters makes them inapplicable. To decrease the computational burden, another filter
structure is introduced. In the Fast Digital Paths Approach (FDPA), the size of the window W
is set to (3 x 3) independently of the digital path length . It is possible to construct both the
fast DPAF and fast DPAL filters, however their properties are quite similar and therefore only
the filtering approach based on DPAL, (denoted as FDPA) will be investigated.
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Using the FDPA formulation, a number of interesting properties of the proposed filtering
structure can be observed. For example, let us assume that the parameter (3used in (5.6), is very
small (/7 —0). Then the weights in (5.8) reduce to ip* (u, v) = 4 (u, V) /n, where ui (u, V) is
the number of digital paths of length »» connecting points u and v, and n denotes the number of
all possible digital paths starting from u, which are totally included in W.

The convolution mask obtained through the DPAL framework, when /3 — 0 is depicted
in Fig. 5.6. The examination of the convolution masks reveals their similarity to the masks
obtained through Gaussian kernels, [23]. Therefore, the DPAL and also DPAF can be viewed
as a non-linear generalization of the Gaussian kernel based schemes, which are widely used in
many image processing tasks. It is worth noticing, that if we allow the path to return to the
starting point, the approximated form of the Gaussian kernel can be obtained.

5.2.3 lterative Behavior of the Filter Class

The parameter (3in (5.6), (5.10) regulates the smoothness of the similarity function. Since the
filtering structure of (5.4) is a regression estimator, which enables a smooth interpolation among
the observed, noise-corrupted image pixels, the parameter /? provides the required balance be-
tween smoothing and the detail preservation. Therefore, it is not surprising that the best results
are obtained when the smoothing operators defined in (5.8) and (5.12) are applied in an iterative
wnay.

Starting with low values of /? enables the smoothing of the image noise components. At each
iteration step, the parameter (3can be increased, following a procedure, mathematically similar
to that used in simulated annealing optimization algorithm. In particular, /3 can be increased
exponentially p(n) = p(n—) M, where n is the iteration number and a is a design parameter.
The increasing of /3 causes that after a few iterations no further changes are introduced to the
image, as for high /3the filter output is that pixel, which lies on the geodesic digital path in the
color space. The influence of a on the performance of the DPAL and FDPA filters is shown in
Fig. 5.8. The value of a is not critical for the efficiency of the new filter class, and a from the
interval [: ,. ] guaranteesfastfilter convergence and good filtering results .

5.2.4 Computational Complexity

Apart from the numerical behavior of any proposed algorithm, its computational complexity is
arealistic measure of its practicality and usefulness, since it determines the required computing

*Note that the increasing of the O parameter is equivalent to the *cooling’ procedure applied in Section 4.4 for
the construction of the FB diffusion scheme.
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power and processing time. A general framework to evaluate the computational requirements
of image filtering algorithms based on a fixed processing window is given in [38,243].

The requirement of this approach is that the filter window W is symmetric (k x k) and
contains k2 vector samples of dimension m. In most image processing applications a value of
k = 3is considered.

The computational complexity of a specific filter

\Y o2 3 4 o —
is given in terms of the total execution time needed

DPA : 56 368 2336

FDPA . 24 56 69 for a complete filtering cycle. The total execution

time T is calculated as T = E we mq, where 0 is the
Tab. 5.1. Number ofpossible simple digital number of particular operations required for a com-
paths n in dependence on path length 1 plete cycle, and we is the relative operation weight.

In the analysis of the filters the following operations are used: o« (additions), mu (multi-
plications), «; (divisions), sq (square roots), co (comparisons), ar (arc cosines) and e x (ex-
ponents). Mostly wAD is assumed to be 1, while other we values depend on the computing
platform. The determination of the weights of different operations is beyond the scope of this
work.

Since the structure of the new filters is not based on a fixed window, the methodology pre-
sented in [37,38,243] cannot be directly applied to evaluate the new filters’ complexity. The
complexity of the proposed filters depends mostly on the number of possible digital paths, which
in turn depends on the path’s type and its length. For a given path of length -, the number of
simple paths n can be easily evaluated. Table 5.1 depicts the number of possible paths corre-
sponding to the DPA and FDPA filters, [295,313,378,379].

FLTER AD MJ D SQ EX GO AR TOTAL

dpaz 947 228 56 ... 56 — — 1399
DPA3 8827 1478 368 1104 368 — — 12145
fdpaz 403 100 24 48 24 -_— 599
FDPA3 1139 230 5 168 56 — — 1649
FDPA,* 169 .. 24 9 24 — — 248
FDPA* 721 24 5% 9 % — — s
VMFE:x3 186 63 — 2 — — 278
VMFsxs 85 330 — 1.0 — 24 — 1319
BVDF3x3 375 210 21 21 —_— 8 21 656
BV D F5x5 1970 1100 110 110 —_— 24 110 3424
ddfsxs 540 282 .. 42 — s 21 914
DDF5x5 2785 1455 110 220 — 24 110 4704

Tab. 5.2. Number of elementary operations neededfor a complete processing cycle
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The complexity of the DPA and FDPA filters can be determined as follows:

F'iltering ofl pixel requires the computation ofall weights ipwri (see point 2), m {n—)
additions and m mn multiplications.

2.
Computation of all weights ipWv requires the computation of all similarity functions
o,V (see point 3), n divisions and (n —1) additions.

3
Computation of all similarity functions ipw"1requires fi computations of the distance
A Yv (see point 4), (n —1) additions, n multiplications and a computations of an

exponent.

4,

Computation of one distance along path j requires r) computationsof the Eu-
clidean distance, (ifthe L. metric is used) and - — ) additions.

5

Computation of one particular Euclidean distance requires m multiplications, 2m ad-
ditions and 1 square root.

Thus the total number of operations needed to implement the filters is
T = @r2ifi+sip+run- m —2) -aa + (n+ mn + 2]) MU+ Si-a i + N Mg + Si-ex . (5.19)

It should be emphasized at this point that the computational complexity analysis of the new filter
is based on a straightforward application of the described algorithms, without any consideration
of a particular implementation. However, it is possible to significantly reduce the computational
complexity of the proposed filters.

The analysis of the FDPA filtering algorithm reveals that the L. distance should be evaluated
7 times for each path of length --. If the total number of paths in the supporting window is n, the
number of L. norm evaluations is (n m-). However, most of these calculations are unnecessary,
since values already computed for other paths can be used. For example in a (3 x 3) window,
there are only 20 possible distances to be calculated. These values can be computed and stored
in order to be used to determine the path related weights for a neighboring pixel. Furthermore,
other techniques used to improve the performance of the VMF, [38,176] can be applied in the
DPA or FDPA filter design.

Table 5.2 summarizes the total number of operation for different filters, with DPA,, de-
noting the basic DPA filter of length 7., FDPA,, denoting straightforward application of FDPA
algorithms and FDPA* signifying the optimized version of FDPA. As can be seen, the fast
implementation of the proposed filter is computationally more attractive than the VMF and it
significantly outperforms the filters based on angular distances.
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5.3 Efficiency of the Filter Class

In this Section the performance of the new filter class is evaluated, comparing the results with
some of the noise reduction techniques listed in Tab. 5.3 using artificial and natural color images
corrupted by Gaussian and mixed Gaussian and impulsive noise.

The use of nonlinear filters in color image processing is motivated primarily by their good
performance near edges and other sharp signal transitions. Edges are basic images features,
which carry valuable information, useful in image analysis and object classification. There-
fore, any nonlinear noise reduction operator is required to preserve edges and smooth out noise
without altering sharp signal transitions.

To quantitatively evaluate the behavior of the proposed algorithms, two synthetic images
were prepared. To examine the performance of the new filters in case of an artificial step-edge,
a three-channel image called SQUARE of size (60 x 60) containing a square of size (30 x 30)
was generated, (Fig. 5.7a). Further, for the evaluation of the filter performance in case of a
ramp-edge, a synthetic test image called PYRAMID was constructed. The three-channel image
of size (90 x 90) contains a top-cut pyramid, which is used to simulate a ramp-edge, (Fig. 5.7¢).
The test image SQUARE was corrupted by multivariate impulsive noise following the model
NM2 given by (1.10) with the degree of contamination p = 0.1, (Fig. 5.7b). The test image
PYRAMID was corrupted by mixed impulsive noise withp = 0.1 and a = 20, (Fig. 5.7d).

The standard Digital Paths Approach (DPAF, DPAL) and the Fast Digital Paths Approach
(FDPA) algorithms were compared in terms of objective quality criteria with the VMF, AMF
and PMAD and other filtering techniques listed in Tab. 5.3.

In the DPAF, DPAL and FDPA filters, the paths of length r? = 2 with design parameters
setat/3= 20and a = 1.2 were used. The AMF and VMF operated on a filtering window of
size (3 x 3). Anisotropic diffusion filter used in the experiments denoted as PMAD is a vector
implementation of the PM anisotropic diffusion, (Section 4.1) which utilizes the conductivity
function G defined by (4.6), [112,228]. For the PMAD filter the parameters, which gave the
best results in terms of PSNR were used.

It should be pointed out that the parameters used for the FDPA, DPAF and DPAL were not
optimal and in majority of cases better results can be obtained for images corrupted by a specific
noise process. However, in practical situations the optimal values of the design filter parameters
are generally unknown and therefore the fixed experimental parameter values were used.

In case of images corrupted with Gaussian noise, the AMF as expected gave better results
than the VMF, but it blurred heavily the image edges. The classical PM anisotropic diffusion
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gives good results for images corrupted with Gaussian noise of low intensity, but it requires
many iterations till its performance can be comparable with the new filter class in terms of
objective quality criteria. In case of images distorted by strong Gaussian noise, the PMAD
approach is not able to suppress the spikes, which leads to a poor overall performance of
this filter, (see Figs. 5.9, 5.10).

The experimentations with images corrupted by mixed Gaussian and impulsive noise re-
vealed as expected, that the AMF filter introduces extensive smoothing into the image and
impulses are still visible as blurred blotches, [80]. The anisotropic diffusion, with parameters
used in the experiments does not blur the image edges, but it leaves impulses almost unchanged,
(of course when we increase the threshold parameter p in (4.6) we can smooth the noise out,
but then the PMAD will also destroy the image edges).

The VMF efficiently reduces the noise component, but tends to blur the edges and produces
color blotches in flat image regions, (see Figs. 5.9, 5.10 and 5.150, 5.18d). The results obtained
using the DPAF, DPAL and FDPA filters confirm their good properties in case of
images corrupted by both impulsive and Gaussian noise.

The new filtering structure gives satisfying results both in flat regions and also at image
edges, (see Figs. 5.9, 5.10 and also 5.15). The results obtained with anisotropic diffusion and
with filters proposed in this work are quite similar in case of images corrupted by low intensity
Gaussian noise. Both schemes provide efficient smoothing in homogeneous image regions and
achieve excellent edge preservation. However, the new filters achieve its goal much faster and
work efficiently, even when the intensity of the Gaussian noise is high, (Fig. 5.12).

For images corrupted with mixed Gaussian and impulsive noise, neither the VMF nor AMF
provide acceptable results. While anisotropic diffusion filter smoothes out only the Gaussian
noise component and AMF introduces blurring, the DPAF, DPAL and FDPA filters performance
is excellent. The new filters remove outliers introduced by impulsive noise, leaving the edges
of the objects almost unchanged.

The noise attenuation properties of different filters were examined using the color test image
LENA, which has been contaminated by Gaussian and mixed Gaussian and impulsive noise in
order to compare the new filters with the filtering techniques listed in Tab. 5.3. The test images
were contaminated by additive Gaussian noise of a = 30 and also by mixed noise (p = 0.12,
NM2, a = 30). As the results for LENA and PEPPERS are consistent, only the results obtained
with LENA image are reported.

The SNR, PSNR, NMSE and NCD image quality measures defined in Chapter 1 were used
for the comparisons. The results obtained using the new filtering techniques are compared with
the filtering algorithms from Tab. 5.3 in Tabs. 5.4, 5.5. For the denoising of both contaminated
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LENA images with the new filtering techniques, predefined parameter values were used: path
length » = 2,p = 10, q = 1.25. For all evaluated filters 10 iterations were performed and the
best result in terms of PSNR are presented in Tabs. 5.4, 5.5.

Figure 5.8 depicts the efficiency of the proposed algorithms, (DPAL and FDPA) in terms of
the NCD quality measure, as a function of the design parameters a and /3. It can be easily no-
ticed that both algorithms yield comparable results with a flat minimum of NCD, which ensures
their robustness to optimal parameter settings. The parameter a ensures quick convergence of
the proposed filters to a stable state and as can be seen in Fig. 5.8, good results can be obtained
forany a intherange [ ,- ].

Tables 5.4 and 5.5 indicate that the new filters yield especially good results in the case of
images corrupted by the Gaussian and mixed Gaussian and impulsive noise. In addition to
the excellent noise attenuation properties, the new filters restore the noisy images so that they
have well preserved, and even enhanced edges and comers, which make them useful for various
computer vision applications, (see Figs. 5.13, 5.14, 5.15, 5.18, 5.19).

The best results for the Gaussian and mixed noise attenuation, for the majority of existing
filters were obtained after many iterations, while for filters based on the digital paths concept
the best results were achieved in the second or third iteration, (see Fig. 5.12).

The comparison of the new filters efficiency with some of the standard filters is presented in
Fig. 5.11, where for different filters, the PSNR and NCD dependence on the amount of mixed
impulsive and Gaussian noise is shown. As the intensity of the noise increases, the quantitative
results obtained using the new filters become significantly better than those obtained by the
standard filters, (AMF, VMF, DDF).

The simulations revealed that in the case of both Gaussian and mixed Gaussian and impul-
sive noise, very good results were obtained using the GDF technique, presented in [398,399],
which is based on the gradient norm described in Section 4.3. The visual comparison between
the FDPA and the GDF introduced in [398,399] is shown in Fig. 5.17.

The high efficiency of the proposed filter class is also confirmed by Figs. 5.18, 5.19, Fig.
5.16 (removal of raster structure), Fig. 5.13 (restoration of artworks, [313,337]) and Fig. 5.14
(microarray image denoising, [190,303,348,378], Fig. 1.7).

In conclusion, from the results listed in the Tables and shown in the Figures, it can be
observed that the new filters, especially the FDPA filter, provide consistently good results. The
DPAF, DPAL and FDPA filters can be seen as universal filters able to attenuate different types
of noise, while preserving image edges and comers. Simulation results show that the new class
of filters yield favorable noise reduction results for various kinds of color images in comparison
with the standard adaptive noise removal algorithms, [295,306,313-315,333,348,377,377,404].
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Fig. 5.8. Efficiency of the a) DPAL and b)

FDPAfilters in terms of NCD and their de-
Fig 5.7. Test image SQUARE (a), corrupted byimpulsive  pendence on a and 0, (j = 2)for color
noise, (green channel) (b), test image PYRAMID (c), cor- LENA corrupted by mixed noise (p = 0.12,
rupted by mixed noise, (green channel) (d) NM2, a = 30), (n=3)
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Fig. 5.9. Three-dimensional representation ofthe results ofnoise attenuation in the green channel ofthe Fig. 5.10. Three-dimensional representation of the results of noise attenuation in the the green channel
SQUARE test image corrupted by impulsive noise, using the standard and novel techniques: a) AMF, b) of the PYRAMID test image corrupted by mixed Gaussian and impulsive noise using the standard and
VMF, c) PM-AD, d) FDPA, €) DPAL and €) DPAF, (five iterations, 1= 2) new techniques: &) AMF, b) VMF, ¢) PM-AD, d) FDPA, e) DPAL andf) DPAF, (five iterations, f] = 2)
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NCD[10'4 FILTER METHOD REF.
AMF Arithmetic Mean Filter [231,246]
VMF Vector Median Filter [19]
BVDF Basic Vector Directional Filter [395,397]
GVDF Generalized Vector Directional Filter [397]
DDF Directional-Distance Filter [138]
HDF Hybrid Directional Filter [106]
AHDF Adaptive Hybrid Directional Filter [106]
FVDF Fuzzy Vector Directional Filter [240]
ANNF Adaptive Nearest Neighbor Filter [237,238]
ANPEF Adaptive Nonparametric (Exponential) Filter [242,246]
ANPGF Adaptive Nonparametric (Gaussian) Filter [242,246]
Iml . 1. T ANPDF Adaptive Nonparametric (Directional) Filter [242,246]
0 e itensity o VBAMMF  Vector Bayesian Adaptive Median/Mean Filter [242,246]
Notse Inensty PMAD  Perona-Malik Anisotropic Diffusion Filter with G [227,228]
3) b) GDF Geometric Diffusion [398,399]
Noise intensity 1 3 4 5 7 . 9 10 1 1. 13 14 Tab. 5.3. Filters takenfor comparison with the proposed noise reduction techniques
Gaussian a S 1o 15 .0 25 30 35 40 45 50 55 60 65 70
|mpU|5iV€ [%] 12 3 4 5 6 7 8 9 10 11 12 13 14
FILTER NMSE SNR  PSNR NCD FILTER NMSE  SNR PSNR  NCD
Fig. 5.11. Comparison of the efficiency of the standardfilters with the new filter class in terms of a) (20-3] [4B] [dB] (10-4] [io-3] [dB] [aB] Lio-4]
PSNR and b) NCDfor different amounts ofnoise, (mixed Gaussian and impulsive noise, p = 0.01 - 0.12, NONE  420.55 13762 18.860 250.090 NONE  905.93 10.429 15528 305.55
NM2), c). EPM, (Escaping Particle Model) denotes apath model, in which with every step the Euclidean AMF  66.452 21.775 26.873  95.347 AMF 97444 20.112 25211  95.80
distance between the current point and the origin is increasing VMF 87.314 20.589 25.688 117.170 VMF 96.464 20.156 25.255 121.79
BVDF  279.54 15536 20.634 117.400 BVDF  336.46 14731 19.829 123.93
GVDF  76.713 21.151 26.250 84.876 GVDF  91.118 20.404 25.503 89.277
DDF 100.50 19.979 25.077  108.960 DDF 110.62 19.561 24.660 113.39
HDF  66.584 21.766 26.865 92.769 HDF  74.487 21.279 26.378 97.596
AHDF  60.166 22.206 27.305 91.369 AHDF  68.563 21.639 26.738 96.327
FVDF  57.466 22.406 27.504 77.111 FVDF  108.76 19.635 24.734 111.22
ANNF  63.341 21.983 27.082  82.587 ANNF 75,652 21.212 26.310 86.836
ANPEF 60.396 22.190 27.288  76.896 ANPEF 90509 20.433 25.532 97.621
ANPGF 60.443 22.187 27.285  76.890 ANPGF 90.523 20432 25531 97.603
ANPDF 58.389 22337 27.435 78.486 ANPDF  74.203 21.296 26.394 85.026
PMAD  41.434 23.826 28.925 69.482 PMAD 33955 14.691 19.790 113.65
GDF 34530 24.618 29.753  72.100 GDF  59.371 22.264 27.363 77.510
DPAF  42.873 23.678 28.813 82.814 DPAF  50.804 22.941 28.040 76.076
DPAL  43.005 23.665 28.800 77.932 DPAL  49.999 23.010 28.109 72.851
FDPA  44.913 23.476 28.611  84.918 FDPA 53573 22.711 27.809 78.666

Tab. 5.4. Comparison of the efficiency of the new Tab. 55. Comparison of the new algorithms with
Fig. 5.12. Plots of the PSNR in subsequent iterations for various filters applied to color LENA image algorithms with various techniques from Tab. 5.3, the techniquesfrom Tab. 5.3 using the LENA color
contaminated with Gaussian noise ofa = 30 (@) and mixed noise, (0 = 30, p = 0.12, NM2) (b) using the LENA standard color image corrupted by image corrupted by mixed Gaussian and impulsive
Gaussian noise ofcr= 30, [295] noise (cr = 30,p = 0.12, NM2), [295]
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3) b)
Fig. 5.13. Illustrative example of the application of the DPAFfilterfor the noise removal in artworks,
[313,337]: a) color image and below its zoomed part, b) the result of the DPAFfiltering

Fig. 5.15. Color test images LENA a) and PEPPERS b) with depicted regions of interest ). The chosen
image regions were contaminated by mixed impulsive (p = 0.12, NM2) and Gaussian noise ofa = 30
) b) (NM5), d) and then restored with the DPAF method (e) and with the VM (f)
a
Fig. 514, Illustrative example of the efficiency of DPAL filterfor noise removal in cDNA microarrays,
(see Hg. 1.7d): a) red channel image and below its zoomed part, b) the result of the DPAL filtering
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Fig. 5.16. Comparison of the efficiency of the VMF with the DPAF: a) test image (part of a scanned
map), b) VMF, (3 x 3 mask), C) DPAF, (3= 20,a = 1.25, ¢/ = 2, 3 iterations)

Fig. 5.17. Comparison ofthe GDF, [398,399] with the DPAF: a) test image HOUSE contaminated with ) ) ) ) ) _ _ _
impulsive noise (p = 0.1, NM2), b) GDF, [398, 399], C) DPAF, d) test image LENA contaminated with Fig. 5.18. Comparison of FDPA with VMF: a) test images, b) images corrupted with mixed noise,
mixed impulsive (p = 0.1, NM2) and Gaussian noise ofa = 30, €) GDF,f) DPAF, [313] (a = 30,p =005 NM1), ) VMF, d) FDPA, (3= 10,a = 1.25,v = 2,n = 5), [306]
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Fig. 5.19. Comparison of FDPA with VMF: a) test images, b) images corrupted with mixed noise,
(a =60, p =0.15 NML), c) W, d) FDPA, (3= 10,a = 12577 = 2,n = 5), [306]

6

Nonparametric Impulsive Noise Removal

In this Chapter the problem of nonparametric impulsive noise removal in multichan-
nel images is addressed. A new class offilters, developed by the author of this monograph,
based on the nonparametric probability density estimation of the sample data is presented
and its relationship to the commonly usedfiltering techniques is investigated.

The computational complexity ofthe newfilter class is shown to be significantly lower
than that of the Vector Median Filter. Extensive simulation experiments indicate that the
presentedfilters outperform the VMF, as well as other techniques currently used to elimi-
nate impulsive noise in color images.

6.1 Nonparametric Estimation

pplying Statistical pattern recognition techniques requires the estimation of the probabil-
A ity density function of the data samples. When designing a pattern recognition system,
nonparametric classification is often used, because nonparametric techniques do not assume
a particular form of the density function, since the underlying density of real data rarely fits
common statistical models.
Density estimation describes the process of modelling the probability density function of
a given sequence of sample values drawn from an unknown density distribution. The simplest
form of the density estimation is the histogram: the sample space is first divided into a grid, then
the density in the center of the grid cells is approximated by the number of samples that fall into
one bin. The main disadvantage of the histogram is its strong dependence on the chosen width
of the bins, the origin of the grid and in higher dimensions the sparse histogram occupancy.
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Nonparametric density estimation avoids this disadvantage by placing a kernel function on
every sample value in the sample space and then summing the values at each sample point. This
results in a smooth density estimates that are not affected by an arbitrarily chosen partition of
the sample space, [56,91,92,107,225,265,280,286,381,389].

The nonparametric approach to estimating densities can be introduced by assuming that the
color space occupied by the multichannel image pixels is divided into m-dimensional hyper-
cubes. If hfj is the length of an edge of a hypercube, then its volume is givenby = h™. If
we are interested in estimating the number of pixels falling into the hypercube of volume \jv,
then we can define the function

(X8 = L 1, if \Xk]\-< + j=1,...,17, ‘)
| o, otherwise,
which defines a unit hypercube centered in the origin, [92].

The function (||x —x || /Hn) is equal to unity if the pixel x k falls within the hypercube
Vn centered in x and is zero otherwise. The number of pixels in the hypercube with the length
of edges equal to hjv is then

and the estimate of probability that a sample x is within the hypercube is pn = Fn/(NVn),
which gives

This estimate can be generalized by using a smooth kernel function /C(-) in place of <-@in (6.1)
and the width parameter hn which satisfy

— —_ H — H NN —
/C(x) = 10—x), /C(x) > 0, J[ IC(x)dx=1:, and Nll—r*T(])O =0, NI|_rpooh = 00. (6.4)

The multivariate kernel density estimator in the -7:-dimensional case, can be defined as

R N B N N P I K (6.5)

with ICdenoting a multidimensional kernel function K : Rm —R, h\,..., hm signifying the
bandwidths for each dimension and N being the number of samples in the filtering window W .
A common approach to build multidimensional kernel functions is to use aproduct kernel

m 1 N m \

£(xi.-..,xm) = then pn(x) = — 5311 ( h Xkl ) « (6-6)
j=1 1 k= 3=1 - ni J
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The shape of the approximated probability density function depends heavily on the
bandwidth chosen for the density estimation. Small values of h lead to spiky density estimates
showing spurious features. On the other hand, too large values of h produce over-smoothed
estimates that hide structural features of the estimated probability density.

Very often a special case of the generalized Gaussian function is taken to obtain the non-
parametric estimate of the density probability, [6,104,242]

2
+7

£/t )= mexp [-y £ ) ), 6.7)
Cr@B(F es A Ir(1.5(1+7))\ A _ o
L= s (14PN 282 \r0.5(1+,)) Te=/

(6.8)
if - = 0 then we obtain the Gaussian, if ; = 1then the double exponential distribution is
obtained. For- —»—1 the distribution tends to be rectangular and for. « (—2,1) intermediate
symmetrical distributions are obtained. In the multivariate case, for. = 0 we obtain

r(X>=(w b ;eXP(-fc2r1m)" (6'9)
and the density estimate of the unknown probability density function at x is determined as a
sum of kernel functions placed at each sample x" belonging to the window W

2

N (hvw oA Goso)

The smoothing parameter h depends on the local density estimate of the sample data and its
form is of great importance for the nonparametric estimator, [26,134,140,351,363]. It can be
made adaptive and then

N h(¥ V HY
The resulting variable smoothing parameter depends on the local density estimate of the pix-
els in the filter window, [101-103,287,364,372]. An efficient method to make the estimator
adaptive was proposed in [241]

) E -t
ixR =N rss [|X¥- x*|, (6.12)
3=1
where r is a design parameter.
In [56] the results of Parzen were extended to the multivariate data and assuming the Gaus-
sian kernel, the formulas for the h parameter, which gives the optimal estimation with respect
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to the mean squared error were provided. For the color image samples (m = 3), the optimal h*
is obtained using the formula, [103,287,365]

h* = 0.53WV* | (6.13)

where b2 is the estimation of the Gaussian noise variance.
Choosing the Gaussian kernel function for K and assuming the lack of correlation between
the channels, the rule of thumb for the optimal bandwidth is according to [128]

= @(m+2) neioN aos, (6.14)

where a denotes the approximation of the standard deviation of the samples. In one dimensional
case (6.14) reduces to the well known, rule of thumb of Scott, [69,280,286,408]

h* = 1.06iV~SCT. (6.15)

A version which is more robust against outliers in the sample set can be constructed if the
interquartile range is used as a measure of dispersion, instead of the variance, [127,286]

h*= 0.79gN~i , (6.16)
where g is the inter-quartile range. Another robust estimate of the optimal bandwidth is
= 0.91IN~z, TZ=min (a, g/1.34). (6.17)
Generally the simplified rule of choosing the optimal bandwidth h can be written as
h\=CvVN "»i+4, (6.18)

where C is an appropriate weighting coefficient.

From the maximum likelihood principle and assuming the independence of the data samples,
we can write the likelihood of drawing the complete dataset as the product of the densities

wh)=n )20\ (hvar &P (JIXI7,Xfellls (6.i9)

As this likelihood function attains a global maximum at h = 0, in [93] a modified approach has
been proposed

C\h) = (6.20)

6.2 Similarity Based Filter Class 119

This function has one maximum for h, which can be found by setting the derivative of the
logarithm of C (h) to zero

I Xj-xt IR

a log £* (ft) fta
dh _ R
3=i E ) p N A S :L‘L‘l_)
A crude but fast way to obtain an approximate solution to (6.21) is assuming that the density

estimate of (s = ) on a certain location x in the feature space is determined by the nearest sample
only, [158,365]. In this way

exp g/-b » illl) (621
= 0. .

01 OgE*(A) 1 \\Itj - X felz _ to
dh N .~ hs N’ (6.22)

which leads to

N

\ i=i
where Xj represents the nearest neighbor of the sample xr In this work, a more general version

He=C ' [ (6.24)

with C being a tuning coefficient, will be used.

6.2 Similarity Based Filter Class

Let us assume a filtering window W containing N monochrome image pixels {xIt.. .,xN}
and let us define the similarity function ip : p,00) — K which is non-ascending and con-
vex in [0; 00) and satisfies ip(0) = 1, ipfoo) = 0. The similarity between two pixels of the
same intensity should be . and the similarity between pixels with minimal and maximal gray
scale values should be close to 0. A monotonically decreasing function ip(xk, Xj) of the form
ip(xk,xj) = ip(\xk —xj\) can easily satisfy the three required conditions.

Let us additionally define the cumulated sum ~ of similarities between a given pixel and all
other pixels belonging to the filtering window W. For the central pixel we introduce 4. and for
the neighbors of X\ we define  as

N N
~1 = Tip(xixj), Sk= E k=2,...,N, (6.25)
32 j=2,j°k
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Fig. 6.1. Similarityfunctions used as kernels of the nonparametric estimation, (6.26 - 6.28)

which means that for xk we do not take into account the similarity between xk and x\, which is
the main idea ofthe proposed algorithm.

The omission of the similarity value tp(xk, Xi) when calculating tyt, privileges the
central pixel xi, as ~ contains (TV— 1) similarities ip(xi,xk) and '/t for « > 1 has only

(TV—2) similarity values, as the central pixel x\ is excluded from the calculation of the sum
V , [294,304,305,309,356].

a) b) 0

Fig. 6.2. Dependence of the cumulative similarity values $ on the pixels’ gray scale valuefora window
containing a set of samples with intensities {15,24,33,41,45,55,72,90,95} using the Gaussian (a),
Epanechnikov (b) and the Triangle kernel (c)

In the construction of the new filter, the reference pixel Xi in the window W is replaced
by one of its neighbors if 'I''l < '1*, k = 2,..., N. If this is the case, then X\ is replaced
by that xk* for which k* = arg max 'I'*. In other words, X\ is detected as being corrupted if
T < k = 2,...,N and is replaced by its neighbors xk, which maximizes the sum of
similarities 'l' between all the pixels of W excluding the central pixel, [312].

The basic assumption is that a new pixel must be taken from the samples belonging to W,
(introducing new pixels, which do not occur in the filtering window is prohibited, like in the

IWe assurme that ip{Xj, Xk) = 0 for j = k
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VMF). For this purpose, the function ip must be convex, which means that in order to find a
maximum of the sum of similarity functions 'I', it is sufficient to determine the values of in
points xi,x 2, mm xn only, [293,309,354].

The presented approach, can be applied in a straightforward way to the multichannel images,
[53,101,309,372]. Now we can use the similarity function defined as ip{xk,xj} = ip(\xk —
Xj ), where || || denotes the specific vector norm and in exactly the same way we can maximize
the total similarity function 'I' for the vectorial case.

Several convex functions were examined, [293,296,310,329,357] in order to compare
the presented approach with the standard filters used in color image processing listed in Tab.
6.1. Good results (Tab. 6.2, Fig. 6.3), were obtained when applying the following similar-
ity functions, which can be treated as kernels of nonparametric density estimation, (Figs. 6.1,
6.23), [280,286]

tp™x) = exp | ,ip2(x) = + +x/h, hs (0;00), (6.26)
A = (t+g)*» = 1~ 1 arCtan(!) '~ = 1+exp{f}’he (Oi (627)
xpl(x) = 1- 1, i_ix<h' iBp)=expj- (0 | ,n 6 (0;00).
0, IT x > h,
(6.28)

It is interesting to note, that remarkably good results were achieved for thesimplest, linear
similarity function ip7(x), (Figs. 6.1, 6.2c), 6.3, Tab. 6.2), which allows toconstruct afast
impulsive noise removal algorithms, [305,310,330,334,336,358].

In the multichannel case, we have

N N
= E AW XX E  Mp{xkXj}, (6.29)
j=2 =2

where p{xj,xk} = [x-—x*|| and || *| is the L. vector norm, as it yields best results, (Tab.

6.3). Applying the linear similarity function ip7 we obtain
. Jl—/ox-x /i, for i, xk) <h
ip(j Xk} = i (-, PO X =T (6.30)
0, otherwise.

Then we have from (6.29) and (6.30) assuming that p (xj,xk) <h, forj,k=1,...,N
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Fig. 6.3. Dependence ofthe efficiency of the nonparametricfilter, based on the linear kernel tpj (6.28)
on the h parameter in terms od PSNR and NCD (a - d) for the LENA and PEPPERS color test images
%é)rzrélptg% gy impulsive noise, (NVK). Below the comparison ofthefilter efficiency using different kermels,
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Notation Filter Ref.
AMF Arithmetic Mean Filter [246]
VMF Vector Median Filter [19]

BVDF Basic Vector Directional Filter [395]
GVDF  Generalized Vector Directional Filter  [138]
DDF Directional-Distance Filter [137]
HDF Hybrid Directional Filter [106]
AHDF  Adaptive Hybrid Directional Filter ~ [106]
FVDF Fuzzy Vector Directional Filter [240]
ANNF Adaptive Nearest Neighbor Filter [237]

Tab. 6.1 Filters takenfor the comparisons with the proposed adaptive noise removal technicue

METHOD NMSE [10~4] RMSE PSNR NMSE [10"4 RMSE PSNR

AVF 82.863 12003 25917 ipi(x) 4,959 3157 38145
VMF 23.304 6842 31427 2(x) 5,308 3204 37.776
BVDF 29,074 7643 30.466 P3(x) 9,574 4387 35288
DDF 24,003 6944 31,288 PA(X) 5,064 3190 38054
HDF 22845 6775 31513 I5(%) 4717 3009 38307
AHDF 22,603 6739 31559 D6(x) 11.024 4707 34675
FVDF 26.755 7331 30827 p7(x) 4,693 3072 38384
ANNF 31271 7926 30.149 Tos{¥) 5,056 3163 38137

Tab. 6.2. Comparison of the new algorithm, based on different kernel functions with the standard tech-
niques, using LENA color image contaminated by 5% impulsive noise, (p = 0.05, NML)

LENA NMSE RMSE PSNR h perrers  NMSE  RMSE  PSNR h
NORM 1074 [dB] NORM  10-~4 [dB]
Li 5042 3183 38074 658 Li 9236 3888 36337 1014
12 4659 3060 38417 6.35 12 8426 3713 36736 937
Loy 5304 3266 37854 650 Loy 9960 4038 36.008 924

Tab. 6.3. Best results obtained with the new algorithm with ipi kernel for the LENA and PEPPERS
images using different Minkowski norms, (NML, p = 0.04)

In this way the difference between 'I'i and k=>1is

N

N -2 (6.32)
h . .
J=2 hor=2
=1- J'l* _N \P(XB>X) _ P(XeXi) - (6.33)
j=2
Ti—e> 0 if h> E[p(xLxi)-pOckxi)l k=2,...N. (634
J=2

If this condition is satisfied, then the central pixel Xi is considered as not disturbed by
the noise process, otherwise the pixel xk for which the cumulative similarity value ~ attains
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maximum, replaces the central noisy pixel. In this way, the filter changes the central pixel
only when it is detected to be noisy and preserves the original undistorted image structures,
[336,355].

The construction of the new filter is presented in Fig. 6.5 for the gray scale case and in Fig.
6.4 for the two-dimensional data. In the example provided by Fig. 6.5, (see also Fig. 6.2), the
supporting window W contains 9 pixels of intensities {15,24,33,41,45, 55,72,90,95}, (their
special arrangement in W is not relevant). Each of the graphs from a) to i) shows the dependence
of 'l and /i on the gray scale value, (I'’1 < 71'i), where 'I''xdenotes the cumulative similarity
value with rejected central pixel x\, on the sample’s intensity. Graph a) shows the plotof  and
‘I'fi for Xi = 15, plot b) for x\ = 24 and so on till plot plot i), which shows the graphs of 'I'j and
ty/i for = 95. The central pixel will be replaced in cases: (a), (b), (f) - (i), as in those cases
there exists a pixel xk for which < tyk. The continuous plots show that the extremum of the
similarity function */x is always obtained at points xk € W, which is an important feature of
this algorithm. Because the function 'I'/i is convex, the maximum can be found by calculating
the similarity values in N points only, which makes the algorithm computationally attractive.

It is easy to observe that the construction of the new filter is similar to the standard VMF,
[294,310,329,332,358]. Instead of the function Rk in (3.3), a modified cumulative distance
function can be used

h+ 3D pxkoxj), for k=,
j—2

Rk=1 N
XXxfc.x,-), for k=2,...,N,
32

and in the same way as in the VMF, the central vector Xi in W is being replaced by x*. such that
k* = argmin RK. It is easy to notice that the above construction is equivalent to the condition
expressed in (6.34). Now, instead of maximizing the cumulative similarity "1, the modified
cumulative distance Rk is minimized. In this way, the condition for retaining the original image
pixel is: Ri <Rk, k =2,..., N, which leads to the rule of retaining X!

N

-h +'22p(x1,xJ) <J2p(xkxj), k=2,...,N, (6.36)
j=2 j=2
Ri<Rk if />>EWXxi,Xj)-/3(xt,x,)], k=2,... ,N. (6.37)
i=2

The main characteristic of the new filter construction is the rejection of the central pixel xi,
when calculating Rk, k > 1, [294, 330,334,335]. This scheme, based on the leave-one-out
technique, is the most important feature of this algorithm. As the central pixel is suspected to
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be naisy, it is not taken into consideration, when calculating the distances associated with the
neighbors of Xj. In this way the filter replaces the central pixel only when it is detected to be
corrupted, while retaining the original undisturbed image structures. -

Fig. 6.4. Impulsive noise removal technique in the 2D case. Hg. a) depicts the arrangement of pixels
in Wand Hg. b) their nonparametric probability density estimation. FHgs. ¢) and d) present the density
plotsfor the cases when the central pixels xa and xb are removedfrom W. It can be seen that in thefirst
case c) the pixel xi = xa will be retained and in the second case d) the pixel x\ = xb will be replaced
by « . - Thepixel .. will be preserved, as in Fg. c) theplot attains its maximumat . o , but this maximum
is less than the maximumfor .. in Hg. b). Regarding sample .. » . its rejection causes that the maximum
is attained at xa and this pixel will replace the central pixel xb

As it can be easily observed, the parameter h in (6.34) and (6.35) strongly influences the
intensity of the filtering process. The fraction of pixels replaced by the new filter is a decreasing
function of h. The value of h has to be set by the designer, which can be seen as a drawback
of the presented technique, as some knowledge on the image structure and impulsive noise
intensity is required.

As already noticed, the VMF has the disadvantage of replacing too many uncorrupted image
pixels. This is improved in the new filter design by setting appropriate h values, which forces
the filter to preserve uncorrupted pixels, but still enables to remove corrupted ones. The subject
of automatic setting of h value is addressed in the next Section.

2Note that similar techniques, based on the rejection of the central pixel, were described in Section 2.1.
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6.3 Adaptive Filter Design

6.3.1 Filtering with Local Bandwidth Selection

To enhance the performance of the filter class proposed in the previous Section, the parameter
hin (6.26 - 6.28) and (6.34), (6.37) can be determined in an adaptive way, depending on the
image structure, properties and intensity of the noise process, by establishing local bandwidths
for the samples in the filtering window W.

Figure ¢ .« a) shows the dependence of the noise attenuation capability of the proposed filter
class on the bandwidth type h* and h2 defined by (6.18) and (6.24). Clearly the filter based
on the h2 outperforms the technique based on the h\ bandwidth for the whole range of used
contamination intensities, (p = 0.01 - 0.1, NM2).

Figure s & b) presents the dependence of the PSNR restoration quality measure on the kind
of the Minkowski norm. Surprisingly, the L~ norm yields significantly better results than the
L\ or L2 norms. This is due to the construction of the h2 bandwidth, which depends on the
nearest neighbor in the sliding filter window. This behavior is advantageous, as the calculation
of the »  norm is much faster than the evaluation of distances determined by L1, L2 norms.

Unfortunately, the efficiency of the filters based on the adaptive h\ and h2 bandwidths are
dependent, (especially for very small noise contamination) on the coefficient C in (6.18) and
(6.24). Figure s .« ) shows the dependence of PSNR for the filter based on 12 as a function of
C in (6.24). For low noise intensity, the parameter C should be significantly larger than for
the case of images corrupted by heavy noise process. However, setting C to 4 is an acceptable
trade-off, as can be seen in Figure s . d), which depicts the efficiency of the proposed filter in
comparison with VMF, AMF and BVDF. It can be observed, that although the C —4 is not
an optimal setting for the whole range of tested noise intensities, nevertheless the described
adaptive filter yields much better results than the traditional techniques. This is also testified
by Fig. 6.7, which compares the filtering results obtained by the filter based on adaptive h2
bandwidth, (C = 4) with the performance of the reference VMF filter.

Another drawback of the presented filter class is the high computational complexity of the
algorithms, caused by the need of adaptive calculation of the bandwidth for the changing set
of pixels in the moving filtering window. Although the calculation of the Loo is very fast,
however the calculation of (N —1) distances for each pixel position is time consuming and can
pose problems, especially in real time applications. Therefore a filter structure based on global
bandwidth, determined once for the whole image, is presented in the next Section.
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6.3.2 Technique Based on Global Kernel Bandwidth

The experiments performed on color images LENA and PEPPERS indicate that the PSNR
reaches its maximum for that value of the bandwidth parameter h, that leads to a number of pixel
replacements equal to the number of noisy pixels in the noise-corrupted image, [294,297,310].
Figure s ., which shows the performance of the adaptive filter and depicts the fraction of re-
placed pixels as a function of h, validates this observation. Such filter behavior suggests that
superior filtering results can be obtained by globally adapting the bandwidth h of the nonpara-

metric scheme to the image structure and noise statistics. In this way the Adaptive Nonparamet-
ric Filter (ANPF) works as follows:

1. Estimation of the fraction of corrupted pixels,
2. Finding optimal, global value of h,

3. Final filtering using the obtained optimal, global value of h.

Fig. 6.8. Dependence ofthefiltering results on the h bandwidth using the Gaussian kernel, for the LENA
and PEPPERS image with 11.5% of corrupted pixels, (NML, p = 0.04), below the dependence of the
fraction ofpixels replaced by thefilter on the h valuefor the noisy LENA and PEPPERS images
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In most applications the noise intensity is unknown and we need to find a robust estimator
of the fraction of corrupted pixels. In this work a pixel is considered to be undamaged by the
noise process, if among its eight neighbors, there exist at least r pixels which, are
close to it.

Two pixels are declared to be close if the L. distance between them, in the RGB color
space, is less than a predefined constant d. As has been experimentally evaluated, this estimator
works correctly, even for images with quite different structures. Table 6.4 shows the result of
the estimation of the noise intensity p, using the described estimator for two test color images
LENA and PEPPERS, with r = 1,2,3 and different fractions of the corrupted pixels p, (NM21).

The value of the distance parameter d used in the construction of the estimator is not critical,
as values of d in the range [40,60] give acceptable results. Figure 6.9 shows the dependence of
the PSNR for color test images LENA and PEPPERS, contaminated by impulsive noise (NML1)
on the r and d parameters. As can be seen good results are obtained forr = 2and d € [40,60],
(N =9). This is also confirmed by Fig. 6.10, which presents the filtering efficiency dependence
on the parameter d for r = 2, (3 x 3 filter mask).

One can also use such estimators as:

0 a pixel is considered to be undamaged, if among eight of its neighbors, there exist at least
one, (r = 1) which is close to it,

0 a pixel is considered to be undamaged by the noise process, if among eight of its neighbors,
there exist at least three, (r = 3) which are close to it.

These models also produce acceptable results, (see Tab. 6.4 b), but for obvious reasons
the scheme with r = 1 has the tendency to underestimate, while the model with r = 3 tends
to overestimate the impulsive noise fraction. It is also easy to observe that the value of r = 2
enables the preservation of lines and comers, and therefore this parameter was used for the noise
intensity estimation purposes.

As regards point 2, the constant h has to be set for that value, for which the percentage of
pixels changed by the new filter is equal to the estimated noise fraction p. In order to design a
fast filter implementation, the method of bisection can be used. This method allows to find the
root of an equation f(x) = 0in [a,+] providing that f(x) is continuous and /(a) -f{b) < 0. In
the case considered here

f{h)=i{h) - P, (6.38)

where - (h) is the fraction of pixels changed by the filter, dependent on h.

Although the algorithm may be of infinite length and may not converge to the optimal value
of h, it always provides a good approximation of the optimal h. To initiate the process, a starting
interval [a,b] and a predefined number of iterations should be provided by the designer.
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realp estimated p estimated p realp estimated p estimated p
t=. (LENA) (PEPPERS) LENA r=. r=3
0.01 0.0113 00122 001 0.0099 0.0158
002 0.0206 0.0216 002 0.0192 0.0253
0.05 0.0500 0.0510 0.05 0.0476 0.0547
010 0.0980 0.0986 010 0.0933 0.0103
020 0.1942 0.1964 0.20 0.1821 0.2016
0.40 0.3972 0.3973 0.40 0.3541 0.4301
0.70 0.7501 0.7504 0.70 0.5981 0.8472
a) b)

Tab. 6.4. Comparison of the real and estimatedfractions of the noisy pixelsfor d = 50; a) r = 2 (LENA
and PEPPERS, NM4) b) T= landr = 3 (LENA, NM4), [310]

For awide range of the fractions of noisy pixels (fromp = 0.01 to more than 0.5, NM1) and
various standard color images used for the evaluation purposes /(. )/(«) < o holds, so a long
enough interval is: a = 0, b= 4, (see Fig. & s ), [309].

In order to avoid the increase of the computational complexity caused by the estimator, the
following solution is recommended. For finding the optimal value of h, using the method of
bisection, not the whole image should be used, but only a small part of it, (we assume that
the noise process is stationary). For example, if an image is composed of 500 x 500 pixels,
taking randomly placed 25 x 25 square gives 625 pixels, which is enough for the purpose of the
estimation and determination of the optimal h value. On the other hand, it is only 0.25% of the

image pixels, so due to estimation and finding of the h value, (eight iterations) filtering time is
extended only by about - %, [310].

For the evaluation of the efficiency of the proposed filter, a number of simulations with
different noise models presented in Section 1.3.2 were carried out. The results obtained with
the ANPF were compared with a set of standard noise reduction methods listed in Tab. 6.1. The
Root of the Mean Squared Error (RMSE), Signal to Noise Ratio (SNR), Peak Signal to Noise
Ratio (PSNR), Normalized Mean Squared Error (NMSE) and Normalized Color Difference
(NCD) were used for the comparisons, [242,246].

The simulation results shown in Tab. 6.5, obtained using the noise model NM1, show that
the new filter framework excels significantly over the standard techniques, widely used in many
multichannel image denoising applications. The ANPF efficiency was also compared with dif-
ferent filtering techniques using the NM2 noise model, (Fig. 6.11) and its superiority over
traditional techniques was again confirmed. The satisfying results presented in Tab. 6.5, Fig.
6.11 are also verified by Fig. 6.12, where the described filter has been compared with VMF,
BVDF and DDF using noise model NM4 and the PSNR as the quality measure indicator.
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LENA NMSE RMSE PSNR PEPPERS NMSE RMSE PSNR
[10°4] [dB] [i0-4] [dB]

AMF 79.317 12627 26.105 AMF 108.650 13.338  25.629
VMF 18.766  6.142  32.365 VMF 27.570 6.719 31.585
BVDF 24587 7.030 31192 BVDF 47.944 8.860  29.182
DDF 18872 6.159 32.340 DDF 28.179 6.793 31.490
HDF 18610 6.116 32401 HDF 26.819 6.627 31.705
AHDF 18310 6.067 32472 AHDF 26.430 6.579 31.768
FVDF 22251 s 31.625 FVDF 33.337 7.388 30.760
ANNF 26.800 7.340 30.817 ANNF 45.115 8.595 29.446
ANPF 4659 3.060 38417 ANPF 8.426 3.713 36.736

Tab. 6.5. Comparison of the efficiency of the ANPF with the standard techniques, (Tab. 6.1) using the
LENA and PEPPERS standard color images, (NML, p = 0.04)

Another good property of the new adaptive filter is that the new filter can be applied in an
iterative way and that after the second or third iteration no further filtering is performed, (the
PSNR is not decreasing, as it is in the case of VMF), which indicates that the new filter reaches
very quickly its root, (see Fig. 6.13).

The good performance of the proposed adaptive filtering design is also confirmed by sub-
jective, visual comparison with the VMF presented in Figs. 6.14 - 6.20, using different noise
corruption schemes, [297,354,355,357]. It can be easily observed, that the new filter has a good
ability to distinguish between the corrupted and undisturbed pixel images, which is especially
visible when evaluating the filters’ estimation errors in Figs. 6.14e, f) and 6.15e, f). As shown
in Fig. 6.14 the new adaptive filter can be also successfully applied to gray scale images.

The adaptive nonparametric algorithm presented in this Section is based on the the concept
of the similarity between pixels, nonparametric estimation and the leave-one-out scheme, but
can also be seen as a modification and improvement of the commonly used Vector Median
Filter. The computational complexity of the new filter is significantly lower than that of the
VMF, especially when the 4-neighborhood system is applied. The presented comparison shows
that the new filter outperforms the VMF, as well as other standard procedures used in
color image processing in terms of objective and subjective quality measures.

The proposed algorithm is simple and fast and can be easily implemented. The
proposed robust method of the estimation of noise intensity, enables the tuning of the filter
design parameter h to the image structure and noise statistics. Thus, this filtering technique can
be applied in many applications, in which fast and reliable removal of impulses is required with
minimal image quality degradation.
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PSNR30
PSNR
9) 0
d i i ig. 6.10. for the number of close neighbors r = 2 on the distance parameter dfor
Fig. 6.9. PSNR dependence on the number of close neighbors r and the distance parameter d. For the Fig. 6.10. PSNR dependence _
evaluations LENA and PEPPERS images contaminated with noise NM4 were used. Good results are the color test images (LENA, PEPPERS, MONARCH, FRUITS, GOLDHILL, GIRL, a -f), contaminated

obtainedforr = 2 (N = 9Jand d e [40,60] with impulsive noise NV
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IMPULSIVE NOISE 1%

PSNR [dB] IMPULSIVE NOISE 3%

b)

PSNR [dB] IMPULSIVE NOISE 5%

Fig. «.//. Comparison of the efficiency of the adaptive nonparametric noise removalfilter ANPF with
the standard techniques: AMF, Symmetric Gradient Filter (SGF, (2.11), [170]), Marginal Median Filter
(MMF), VMF with norm L% VMF in Lab and Luv spaces, Adaptive Nonparametric Filter (ANPF),
marginal Rank Conditioned Median Filter RCMFm, r = 3, (Fg. 2.5 b)), Rank Conditioned Vector
Median Filter RCVMF, r = 3 (3.18)), BVDF, GVDF, DDF andHDF withnorm L2 (NVR)
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Fig. 6.12. Efficiency of the ANPF in terms of PSNR in comparison with the standard noise reduction
filters. Test color image LENA was contaminated by noise process NM4 with p rangingfrom 0.01 to 0.2
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PSNR
Iterations
PSNR
Iterations
PSNR
Iterations

Fig. 6.13. Dependence of the noise reduction efficiency of the ANPF on the number ofiterations, (LENA
color image contaminated with NIVi4)
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Fig. 6.14. Comparison ofthe efficiency ofthe VMFand ANPF: a) gray test image, b) image contaminated
by 2% impulse noise (NML), c) imagefiltered with ANPF, d) VMF output and below e),f) the absolute
difference between the original andfiltered imagefor both the ANPF, (left) and the W, (right)
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_ e) o ) Fig. 6.16. Comparison of the efficiency of ANPF with the VM. a) parts of the LENA, BARBARA and
F/g. 6.75. Comparison of the efficiency of the ANPF and VMF, (blue channel): a) test color image, b) GOLDHILL images, b) images contaminated by 2% impulsive noise (NML), c) images restored using the
noisy imege, (p = 0.02, NMY), ¢) imagefiltered with ANPF, d) VMF output and belowe),f) the absolute ANPF, d) the result of thefiltering with the VMF

difference between the original andfiltered imagefor both ANPF, (left) and VIVF, (right)
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Fig. 6.17. Efficiency of the ANPF, a) test image PORTRAIT [402], b) image degraded by p = 0.04
impulse noise (NM3, withpx=p2 =p3 =0.2, p4 = 0.4), c) ANPF output, d) VMF output

Fig. 6.19. Comparison of the efficiency of the VMF and the ANPF, (red channel), @) test image ROSE
[402], b) image contaminated by 6% impulsive noise (NM3, p = 0.06, with pa = 1), ¢) imagefiltered
using the proposed adaptive technique, d) output ofthe VMF

Fig. 6.18. Comparison ofthe efficiency of the ANPF with the VMF, a) test image CAFE [402], b) image

degraded by p = 0.03 impulse noise (NM2), C) imagefiltered using the ANPF, d) VMF output
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6.3.3 Fast Nonparametric Filter Design

The proposed here fast filter design is a modification of the filtering framework presented in
the previous Section and is based on the idea of the comparison of the image pixels contained
in a filter window W with their adjacent pixels, (direct neighbors). The filter output is the
pixel in W, which is most similar to its direct neighborhood contained in W. Therefore, the
estimated probability density function serves as a measure of similarity in the chosen color
space, [331,350,353,356,357,359]. If a pixel is similar to its neighborhood, the probability
density estimation for that pixel results in a relatively large value. Noisy pixels on the other
hand are almost always outliers from the cluster formed by adjacent pixels and therefore the
probability density estimation for those pixels results in relatively small values, [343].

X2 X3 Xa X2 X3 [x2]| X3 15 24 95 15 24 15 24
x5 [XT] x6 |x5| XI X5  Xi 3B 72 90 33 72 3R 72
X7 X8 X9 X7 x8 41 45 55 41 45

2) b) ) d o) f

Fig. 6.21. lllustration of the adjacency relation: a) the central pixel xi has 8 neighbors in 1V, b) the
pixel X has then 5 adjacent neighbors and x. has only three adjacent neighbors contained in W, c).
Beside an example ofthefiltering window with gray scale intensities related to Fg. 6.22 is shown (d -f)

Given a set of noisy image samples xi, x2, ..., x N from the filter window W, let ~ denotes
the adjacency relation between two pixels contained in W. Assuming the s -neighborhood sys-
tem, the central pixel has « adjacent neighbors, the pixels in the comers of W have 3 adjacent
neighbors and the remaining pixels have 5 adjacent neighbors determined by the ~ relation,
(Fig. 6.21). The sum of similarity values for the sample x k is then determined as

IN, -Xfc|| (6.39)
The filter output is defined as that xk for which T'(xfc) is maximal, (see Fig. 6.22). The total
similarity value ~(x”) is not normalized to bandwidth and number of sample values. The reason
is that the values of 'I'(xfc) for different xk are only used for comparison among each other
and omission of the normalization results in a significant performance gain, as it privileges the
central sample, which has the largest number of neighbors, (Figs. 6.21a, d).

The bandwidth in (6.39) can be determined according to (6.18) and hence depends on the
standard deviation b. Since b is computed using only pixels from the filter window, the band-
width is very sensitive to noise and may vary over a big range of values. As an option an experi-
mentally chosen fixed value can be used as bandwidth to avoid this effect, (Fig. 6.24), [358,362].
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P 005 005 005 o010 o0.10 010
FILTER MAE MSE NCD MAE MSE NCD
Noisy 254 3933 0.0415 510 790.2 0.0838
VMF 3.27 312 0.0387 342 342 0.0400
BVDF 381 398 0.0400 395 442 0.0412
DDF 339 328 0.0389 351 354 0.0400
HDF 342 312 00399 355 339 0.0412

Q 2Z,~ 079 115 0.0093 098 :0.. 0.0125
G,h = 55 0.42 11.8 0.0051 0.79 20.8 0.0100
G, Lu a 0.82 14.8 0.0101 1.16 249 0.0149
£,L2a 117 153 0.0138 123 217 0.0151
£, a 043 .06 00055 084 342 00128
T,L2. 045 140 0.0063 096 508 0.0159

Tab. 6.6. Filtering results achieved using the test image LENA contaminated by impulsive noise (NM2)
using different kernels with adaptive (a) and globally determined bandwidth n and different norms, (Q
denotes the Gaussian kernel, £ the kernel of Epanechnikov, £ the Laplacian kernel and T the linear,
Triangle kernel, see Fig. 6.23)

For the evaluation purposes, the color test image LENA was corrupted with 1 to 10 per-
cent impulsive noise, (NM2). The filter quality was measured using the Mean Absolute Error
(MAE), Mean Squared Error (MSE) and the Normalized Color Difference (NCD).

Tab. <.« and Fig. 6.25 show the results of a quantitative comparison between the described
fast filter scheme and the VMF as well as the BVDF, HDF and DDF, (Tab. s .1). For experiments
with fixed bandwidth an experimental value of h = 55 was chosen (Gaussian kernel), which
brought subjectively good results, (see Fig. 6.24). As can be seen from Tab. ¢ ., the noise
reduction capability depends to some extent on the choice of the filter kernel, (see Fig. 6.23)
and again good results were obtained for the Triangle kernel. Apart from the sometimes up to
a few times lower MAE and NCD values, compared with the vector median filter, the new fast
filter shows enormous improvements in detail preservation, (Figs. 6.26, 6.27).

The always very low values of MAE and NCD show that the new filter is clearly superior
to VMF, BVDF and DDF in terms of detail preservation for all applied filter settings. Another
advantage of the proposed filtering class is its very low computational complexity when
compared to the VMF. For the VMF, the calculation of 36 distances between pixels are needed,
whereas the new filter structure with fixed bandwidth requires only - » different distances, which
makes the new filter class interesting for real-time applications The remarkably good results for
the probability density estimation with fixed bandwidth can be used for very fast filtering, as in
this case there is no need to determine adaptively the variance of samples in W.
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Fig. 6.26. lllustration of the detail preserving efficiency of thefast filtering design in comparison with
) . . . L the VIVIF: @) parts ofthe LENA image, b) test images corrupted by impulsive noise (p = 0.05, NMR), ¢)
Fig. 6.25. Results obtained with the proposedfastfiltering technique in terms ofMAE, NCD and PSNR. fastfilter output using the Gaussian kernel and global bandwidth h = 55, d) VMF output
The plots show thefilter performance in comparison with the VMF, (LENA, p = 0—0.1, NM2)



Nonparametric Impulsive Noise Removal

Fig. 6.27. lllustration of thefast filter efficiency: a) test aerial images (green channel), b) images cor-
rupted by 10% impulsive noise (NMI), c)fastfilter output, d) VMF output, [346]

7

Adaptive Vector Median Based Techniques

In this Chapter a class of Weighted Vector Directional Filters (WVDF) and Sigma
Vector Median Filters (SVMF), which are based on the selection of the output sample
from the multichannel input set, are presented. The WVDF output minimizes the sum of
weighted angular distances to other input samples from the filtering window. Dependent
on the weighting coefficients, the class ofthe WVDFs can be designed to perform a number
of smoothing operations with different properties, that can be appliedfor specificfiltering
scenarios. The optimized WVDFs are able to remove image noise, while maintaining image
details preservation capabilities and sufficient robustnessfor a variety of signal and noise
statistics.

The multichannel SVMF is a novel adaptive filtering technique based on the robust
order statistic concepts and simplified statistical measures of vectors’ dispersion. The sim-
ulation results indicate that the presented algorithms are computationally attractive, yield
good performance and are able to preserve salient image features, while efficiently sup-
pressing impulsive noise.

7.1 Weighted Vector Directional Filters

AseD on the magnitude of vectors, filtering techniques process the color image according
to its brightness, whereas operating on the directionality of vectors, image filters take into

account the chromatic properties of the input samples, [196,200,246]. Therefore, the filtering
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techniques operating on the directional domain of color images are able to preserve their chro-
maticity. Since the human visual system is sensitive to changes in color and edge information
(indication of the shape and boundary of objects in the image), color chromaticity preservation
along with the noise attenuation is a fundamental property required in many applications such
as television image denoising, virtual restoration of artworks, satellite image processing, old
movie restoration, surveillance applications and many others, [1,8,39,49,157,200].

Recently introduced Weighted Vector Directional Filters (WVDF), [15,16,68,97,187,189]
employ non-negative real weight coefficients {":,” ., < m \Vat} associated with the input vectors
{xi,x2,... ,xN}. These filters pass to the output the vector y e IV, which minimizes the
aggregated weighted angular distance to other samples belonging to W.

This angular minimization approach is useful for the directional data such as color image
data. In [218] it has been proven that in the case of color images, filtering schemes based on
the directional processing may achieve better performance in terms of the color chromaticity
preservation than approaches operating on the vectors’ magnitude.

Let us consider the aggregated weighted distance Ak associated with the input vector xk

N
Ak=J2"ja(xk,xj), k=1,2,....,N, (7.1
3=1

where a(xk,xj) denotes the angle between vectors xk = {xkuxk2,xk3) andXj = (xjUxj2,xj3).
The ordered sequence of Ai, A2,..., A" isgiven as < A < ... < ™Nw) and the ordering
of ,4(B implies the same ordering of the input setxi,x2, ..., x N, which results in the ordered set
X (1),X(2), ..., x(A), where x (K is associated with A(K). In this way, the WVDF output is defined
as the lowest order statistic X(ij, which is equivalent to the sample minimizing the cumulated
angular distance. From this algorithm structure, it is evident that the WVDF output is restricted
to the dynamic range of the input samples and thus, it can never introduce new samples.

Let us assume that x (1) is the minimum vector and X(N) is the maximum vector of the input
set W. The WVDF output y(ip, W) is a function of the weight vector ip = {ipi,ip2, ..., ipN}
and it can be expressed as the sample y minimizing

N

y(®, W) =arg Y283a(y, *]). (7.2)

3=1
Then, the following is valid:

« the WVDF filter has N independent parameters, since its output y d e pe nd s on the
weight vector if),

« the WVDF output corresponds to one of the local minima of A(y),
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* the WVDF output y(ip, W) is always one of the samples of W and therefore it cannot intro-
duce any new outliers and color artifacts.

Each setting of the weight coefficients represents a unique filter, which can be used for
specific purposes. Using an optimization scheme, (Fig. 7.1) the weight coefficients can follow
the statistics and structural context of the desired signal and can be adapted in a required manner.

The purpose of image filtering is to estimate the desired signal o as precisely as possible.
To measure the similarity between the original image o and the filtered image y, a number of
different objective measures, based on the difference in the statistical distributions of the pixel
values, can be utilized, [37,38,64]. One of the most popular criteria is the Minkowski norm
given by

7

e;= O mill — 1~ vik Uik (7.3)
fc=1

where ;- denotes the norm parameter and Ok and ylk are the fcth elements of the original im-
age pixel ot and the filter output y{, (i = 1,2,..., Q), respectively. The error criterion (7.3)
expresses the loss in performance or error of the filtering operation.

As in most image processing problems, a noise

cost function, which depends on the mostly prosess corrupted filter
unavailable original image and the filter out-

put, will be used to penalize errors during the

filtering procedure. It is natural to assume

that if one penalizes filtering errors through

the cost function, then the optimal solution is

the function of the inputs, that minimizes the jj p~terjng prot=lem in which afilter is based

expected average loss E{ [0 —y[j7}, where on the minimization of the costfunction
E{-} signifies the statistical expectation.

With the constraint of non-negative weights, keeping the aggregated measure A* in (7.1)
positive, the optimization problem with inequality constraints can be expressed as, [17,188,189]

minimize J(i/> W) with subject to ~ >0, for k=12, (7-4)

Thus, the setting of the WVDF weight coefficients depends on the cost function J(ip,W),
which can be defined in many ways. It has been observed in [24], that J\ and J2 criteria are
useful in environments corrupted by impulsive noise and describe well the detail preservation
and noise attenuation capabilities of the optimized filters. Therefore, in this work the J\ and J2
cost functions are used

JINe,W) = E{Ho-yIlJ,  J2l>W) =E{||o-y||2}. (7.5)
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7.1.1 Angular Sigmoidal Optimization

Let {xj,x2,..., Xjv} be the input set of the m-channel samples and let o be the desired (original
or noise-free) image. Let us assume that each input sample x* « W is associated with the non-
negative real weight ipk, fork = 1,2, ,N. Then, we can modify the sigmoidal optimization
presented in Section 2.3, so that it can work within the multichannel framework, [186,189]

Mi+1)={Mi) +.eT[ot)- y(D)]S (T [x*@i) - y(iHD}+, (7.6)

where y(i) is the the output of the sigmoidally optimized WVDF (SWVDF) scheme related to
the actual weight coefficients ipi(i), ip”i),..., ips(i) at sample position i, (i = 1,..., Q) and
e denotes the iteration constant, (adaptation step-size), [424]. The notation x k(i) describes the
input sample with the fc-th position in the filter window W centered in x(i) = xi, T(-) denotes
the transformation

T(u— v) = Sea(u,v), where S(u,v)=| Al N v
L« ' IM < |,
S(-) signifies the sigmoidal function, {-}+ is a projection operation whichsets the negative
values to zero and a(u, v) is the angle between vectors u, v

E(x) = --——-- 1 += | X< n s
) 1+ exp (~x) , Uh 1 X, otherwise. )

7.1.2 Linear Optimization

Let us now consider the generalized linear approximation of the sign function H(-) in (7.8).
The extension of the algorithm based on the linear approximation of the sign function from the
scalar to the vector case, requires the determination of the maximum and the minimum of the
vector valued input set W and also the substitution of the absolute difference between two scalar
samples with the angle between two multichannel vectors.

Let the uppermost ranked sample x™) represents the maximum sample of the vector valued
input set W and let the lowest ranked vector X(i) minimizing the sum of weighted angles to
other input samples represents the minimum input sample. Thus, the update of the weight coef-
ficients in the adaptive WVDF scheme, based on the linear approximation of the sign function
(LWVDF) can be expressed as, [177,189]: ipk(i + 1) = {ipk(i) + 2e [r(xw - x(2)+

-20(0(*),Xfe(i))] - Y A~=LNe (xw - x(0) - 2a(x*.(i), Xj(2)]}+ (7.9)

where k,j =.,2,..., N, and eis the positive adaptation step-size.
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The restrictions of both adaptation algorithms (7.6) and (7.9) follow the WM optimization
framework. The adaptation step-size e should be set to a certain small value and the achieved
weight coefficients cannot be negative. For that reason, the negative weights are projected to
zero. The starting weight vector ip (1) in the iterative scheme of weights finding may be set to
arbitrary positive values, however all weights in the starting vector should have an equivalent
importance. Moreover, the proposed optimization schemes require a learning signal like in the
WM optimization.

In order to adapt the WVDF weight coefficients to the signal and noise statistics, LENA
color images contaminated with 2%, 5%, 10%, 15% and 20% impulsive noise were used as the
training sets, (NM4). All filtering results were obtained with a 3 x 3 square window, (N = 9)
and the proposed SWVDF and LWVDF optimization started with the same initial weighting
vector -0(1) = [1,1,..., 1,1], which corresponds to the BVDF operation.

The achieved optimization results are shown in Figs. 7.2, 7.3 (image restoration quality
measures) in dependence on the value of the iteration constant e, which ranged from ..-5 to
103. In the case of the SWVDF filter, the most appropriate e was found, (Fig. 7.2) to be around
0.1. For smaller e the SWVDF provides worse detail preserving characteristics and after some
critical point, which depends on the statistical properties of the training sequence, it converges
to an operation close to that one performed by the BVDF. . The obtained results indicate that
the performance of the WVDF based on linear approximation of the sign function, (LWVDF)
decreases with increasing value of e. The most appropriate value of e related to the LWVDF,
(Fig. 7.3) is found to be around 0.01.

Numerical results and comparisons are presented in Tab. 7.1. In this Table the compo-
nentwise MMF filter [430], standard VMF [19], BVDF [397] and DDF [138], Fuzzy Vector
Directional Filter (FVDF) [240,245], GVDF [395,397] and two Hybrid Vector Filters (HDF
and AHDF) [106] were compared in terms of performance with the optimized, (LWVDF and
SWVDF) and non-optimized filters, (WVDFi, WVDF2) with weights:

N NN

2 2 1
1 5 4
2 2 1

P W R

2
1
2

(WVDFi), (WVDF2).

The obtained results confirm that the proposed WVDF framework can be designed to pro-
vide an excellent trade-off between noise attenuation and signal-detail preserving character-
istics and the proposed technique outperforms the standard filtering schemes in terms of the
commonly used objective measures.

"Note that for e = 0 the iterations do not change the initial values of ip, and for tpk = 1,k = 1,..., N the
BVDF structure is retained.
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Fig. 7.2. Efficiency of the WVDF sigmoidal optimization, (SYWWDF) expressed through normalized qual-
ity measures dependent on the iteration step-size t. The training set was delivered by the image LENA
with: &) no corruption, b) 2% impulsive noise, ¢) 5% impulsive noise, d) 10% impulsive noise, €) 15%
impulsive noise, f) 20% impulsive noise, (N\VK). Note that e = 0 characterizes the BVDF output

Fig. 7.3. Efficiency of the WWDF linear optimization, (LWWDF) expressed through the normalized ob-

jective quality measures dependent on the iteration step-size e The training set was obtained through
the image LENA with: a) no corruption, b) 2% impulsive noise, ¢) 5% impulsive noise, d) 10% impulsive
noise, €) 15% impulsive noise, f) 20% impulsive noise, (NIVH)
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LENA PEPPERS
MSE NCD MAE MSE NCD
49.7 0.04420 3.248 43.1 0.04841 .
50.8 0.04031 3.169 43.9 0.04520 %
58.6 0.04073 3.740 60.7 0.04378 &
52.3 0.04023 3.182 44.6 0.04309 E
54.3 0.04834 4.068 51.4 0.05522 -%
59.2 0.04301 3.605 62.5 0.04855
51.8 0.04101 3.282 42.9 0.04413 %
50.4 0.04095 3.274 41.9 0.04413
47.7 0.03267 2.974 52.2 0.03449 g’
41.5 0.02826 2.197 38.1 0.02751 -
33.4 0.02569 2.296 37.6 0.02677 E
24.2 0.01885 1.876 33.9 0.02274 ©
P
LENA PEPPERS E
MSE NCD  MAE MSE NCD =
56.8 0.04893 3.579 53.9 0.05463 g—
56.5 0.04285 3.503 55.0 0.04935 §
67.6 0.04321 4.151 82.7 0.04844
57.3 0.04240 3.512 56.6 0.04749 g
59.5 0.05029 4.370 61.6 0.05946 )
66.8 0.04481 3.862 72.7 0.05091 %)
56.9 0.04344 3.626 53.6 0.04855 g‘
55.5 0.04339 3.614 52.4 0.04853 =3
58.2 0.03537 3.399 77.1 0.03932 'a
56.3 0.03138 2.659 65.9 0.03249 g
42.5 0.02810 2.642 55.2 0.03103 =
39.8 0.02192 2.330 67.3 0.02745 B
LENA PEPPERS é
MSE NCD MAE MSE NCD
87.9 0.06198 4.487 91.4 0.07266 E
80.3 0.04924 4.232 85.7 0.06008 £
107.8 0.04987 5111 152.9 0.06024 £
78.8 0.04834 4.254 90.4 0.05796 ©
80.4 0.05722 5.226 98.3 0.07394
83.4 0.04928 4.395 106.5 0.05771
80.4 0.05003 4.411 86.4 0.05998 =
79.5 0.04999 4.409 84.5 0.05996 a
106.8 0.04306 4.571 167.2 0.05317 E
131.6 0.04141 4.275 206.5 0.05033 LIQ_’

92.3

o

.03533 3.824 148.6 0.04467
136.1 0.03333 4.064 234.1 0.04648

Tab. 7.1. Comparison of the LWVDF and SWVDFfilters with standard techniques using LENA and
PEPPERS images corrupted with impulsive noise ofp = 0.05, p = 0.1 andp = 0.2, (N\VH), [189]
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To achieve the robust weighting coefficients used for the evaluation presented in Tab. 7.1,
the test image LENA corrupted by 10% impulsive noise, (NM4) was used as the training set. The
reason is that this image and the considered noise corruption represent a compromise between
the image features complexity and the degree of noise corruption.

Figure 7.4 shows that the SWVDF filtering techniques significantly outper-
form the standard multichannel filters including the widely used VMF and BVDF. Moreover,
the developed multichannel optimization is fast, saves memory space and is easy to implement.
After the sigmoidal optimization, the proposed SWVDFs are sufficiently robust and useful for
practical image processing applications. Future research will focus on the automatic setting of
the adaptation parameter e and the design of a versatile self-adaptive optimization, eliminating
the need for a learning signal.

7.2 Generalized Selection Weighted Filters

An important task in the nonlinear image filtering is the development of a unified theory, which
would generalize a variety of existing nonlinear filters and would provide a versatile optimiza-
tion framework. In this sense, a generalized WVDF technique for color image filtering, based
on the vectors’ directionality and a novel, angular multichannel optimization algorithms of the
WVDF weights are presented in this Section.

It is evident that due to the image non-stationarity, nonlinear techniques are best suitable for
image processing, [208,360]. Because of their efficiency, the nonlinear filter families, (Fig. 1.4)
are attracting much attention and are widely used in different image processing tasks. A major
theoretical and practical drawback of the nonlinear techniques is however the lack of a unifying
theory. This causes difficulties with the theoretical background related to nonlinear filters and
their generalization. This Section contributes to the progressive generalization of multichannel
filtering classes. The main emphasis is placed on the development of a unified framework for
the description and analysis of color image filters.

LetW = {xi,..., xjv} be as usual a set of multichannel vector valued samples spanned
by a filter window of length N and let X] be the central sample corresponding to the window
reference position. Let us assume that ip = [Vi, **e, &n]and ip = [ipi,..., ipN\ represent the
sets of positive weights, where the weights ipk and tpk, for k = 1,..., N, are associated with
the input sample x*.

Applying a minimization procedure, similar to the one used for VMF or BVDF, the gener-
alized Selection Weighted Vector Filters (SWVF) output is the sample X(j) € W minimizing:
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Filter SWVF Parameters Reference
WVMF kK —o [407]
WVDF = [189]

VMF |Fj(=1,<p(=1,K=0 [19]

BVDF  jpk= - <k=1«=1  [397]
DDF k= 1, Vk=1,«=05  [138]

Tab. 7.2. Special cases ofthe proposed SWVFframework

N \ /' N \

5 Ocpix()x®) £ > fa(x@)x*) . {7-1¢

k=l / U =i
where k is the power parameter ranging from 0 to 1 The weight coefficient ipk signifies the im-
portance of the input sample xk, based on the aggregated Euclidean distances and tpk measures
the contribution of xk, according to the aggregated angular distances. A design parameter k is
used to tune the overall filter characteristics in terms of its efficiency. The aggregated Euclidean
distance relates to the brightness of the vectors under consideration, whereas the aggregated
angular distance relates to the chromaticity of input samples.

Assuming, that

\1.K / N \ K

N
(> 11*>-*117 A<pja(xkxi) k= 1,2,..,7V, (7.12)

is the combined aggregated measure associated with xfg then the ordered sequence of Du ==,
Dn implies the same ordering of the input set i, ..., XN, which results in the ordered set X(i),
..., X(w), where Xfo) is associated with D(k)- In this way, the SWVF output is defined as the
lowest order statistic x”j, which is equivalent to the sample minimizing the expression (7.10).

A class of SWVF filters, [184,313,341] includes, (Tab. 7.2) a number of previously intro-
duced multichannel filters as their subclasses. These filters can be obtained by an appropriate
configuration of the design parameter k and the weight coefficients ipi, mmipN and <, ..., <pf.
Thus, the SWVF includes the WVMF, (for k = 0) and WVDF, (for k = 1) as basic subclasses.
Another simplification, (ipk = 1, ipk = 1, for k = 1,2,..., iV) leads to special cases such as
VMF (k = 0), BVDF (k = 1) and DDF (fc= 0.5).

In this way the SWVF filters constitute a wide class of multichannel filters. Each setting of
the filter parameters represents a unique filter, which can be used for specific purposes. Using an
appropriate optimization scheme, (Fig. 7.1) the weight coefficients can follow the statistic and
the structural content of the desired signal and can be adapted in a required manner. To simplify
the SWVF optimization and to provide better illustration of the weights adaptation, let us as-
sume the equivalence between the weight vectors tp and (p so that ipk = gk, fork = 1,2,..., N.
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Thus, we will make use of the weight coefficients ipi,ip2, mmipN only. These coefficients can be
adaptively determined, using the generalized multichannel sigmoidal optimization approach of
the standard WM filters, [189,423].

The development of nonlinear multichannel filters, [246] requires the determination of the
distance between multichannel samples and the sample ordering based on the aggregated dis-
tances. This operation requires additionally the polarity of the distance measure between two
multichannel samples.

Let us consider the generalized difference between two vectors u and v, (7.7)
T(u —v) = <S8y, Vv) [p(u, V)]1-K [a(u, V)]K, (7.12)

where <§(-) e {—1,1} is a polarity function given by (7.7). Note that the polarity function
introduced here, preserves the sign of the difference between the scalar image samples u and v,
since for scalar case, i.e. m = 1 and k = 0, the magnitude of u and v is equivalent to u and v,
respectively.

Given an input set W = {xi, x2,..., x«} and a weight vector ip = [ipi,ip2, ..., tPn], we
denote the SWVF output as 'y = y(ip, W). The loss in performance (error in the filtering
operation) can be defined as

e=|T(o-y)]|. (7.13)

One of the natural ways of choosing the weight coefficients ipi,ip2, mm-ipN is to require that
their choice should minimize the average cost or loss function. Therefore, the cost function of
the SWVF filtering is defined as

JswvFNe,W) = E{|T(0-y)|}. (7.14)

With the constraint of non-negative weights, keeping the aggregated measure (7.11) positive,
the optimization problem can be expressed as

minimize Jswvf(iP) , with subject to ipk >o, for k=1,2,...,N. (7.15)

During the optimization procedure, the sliding filtering window is moved over the image do-
main and the weight coefficients ipk, fork = . ,.,..., TVare adjusted by adding the contribution
of the samples multiplied by a certain regulation factor e

Mi + 1) = {Mi) +.cT [o(i) - y()] E (T X*(i) - y(DD}+ . (7.16)

where y(i) is the the output of the sigmoidally optimized SWVF filter related to the actual
weight vector ip at image position i and E(-) denotes the sigmoidal function.
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This iterative algorithm determines the weight coefficients with respect to the filter weights
obtained at the previously processed image sample. If T [o(i) —y (*)] is zero, then the filter holds
the detail preserving properties and all weights coefficients remain unchanged. 1f T[xj.(i)—y (<]
is zero, the input sample x* possesses the same noise attenuation and detail preserving capability
as y(i) and the corresponding weight ipk remains also unchanged. In the rest of cases, T[o(i) —
y(i)] and T[xfc(i) —y(i)] influence the weight update in terms of the trade-off between the noise
smoothing and the signal-detail preservation. Note that the initial weight vector ip can be set to
arbitrary positive values, but the best choice is to start the weight adaptation with equal weights,

eg. ipk = 1 fork = 1,.,..., N, corresponding to the robust smoothing functions such as
VMF, BVDF and DDF.
It is clear that the availability of original (training) signal oi; i = 1,...,Q in (7.16) is

essential in the development of the new filter class. However, noise-free (training) samples may
not be available in practical image processing applications. In such cases, the proposed scheme
can be optimized using training sets available from other natural images. Upon completion of
the training, the filters can be applied to real images, corrupted by an unknown noise process.
Another possibility is to replace the desired signal o(i) with the input central sample x(i)

ipk(i + 1) = (tpk(i) + 2 eT[x(i) - y(HIE (T p*(i) - y()D}+ - (7.17)

This approach is useful, when the underlying noise probability is low and strong detail preserv-
ing characteristics of the SWVF filters are required. A different form of the SWVF scheme can
be obtained if a robust and easily achieved estimate y*, e.g. marginal median filter (MMF) or
sample average (AMF) is used instead of x(i), [189]

Mi+ D)= {Mi) +:eT[y*®) - y(@]e (T [yx@) - YD}, (7.18)

where y* = (j/*,y],..., YN) is the MF of the input set W, y* = MED{xy, xJ, ..., x"j}.

Fig. 7.5 shows the adaptation capability of the proposed SWVF scheme (7.16) started with
the initial weighting vector ip = [1,1,..., 1,1]. These results are obtained using for training
the test image LENA corrupted by 5% and 10% impulsive noise, (NM4). Objective criteria
like MAE, MSE and NCD are expressed in dependence on the regularization factor e, which
ranged from 10... to 10: and the design parameter k. The obtained results indicate that the
SWVF adaptation, as expected, depends strongly on e. For very small values of e, the SWVF
provides worse detail preserving characteristics and performs the smoothing operation similar to
the DDF. For evaluation purposes the e value equal to 0.1 was taken and the obtained weighting
coefficients are shown in Tab. 7.3. It can be observed that the k value has small influence on
the weights and that the weighting coefficients are approaching . for increasing noise intensity,
which means that the schemes converge to BDF, VMF or DDF depending on k settings.
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The performance of the proposed methods, namely SWVFi defined by (7.16) and trained
using the LENA image contaminated by noise process NM4, with p = 0.1, (see Fig. 7.6) and
self-adaptive SWVF. given by (7.18), is compared in Tab. 7.4, using the weights presented
in Tab. 7.3, with the standard filtering methods such as MMF, VMF, BVDF, DDF, HDF and
AHDF, (Tab. 7.4).

It can be observed that the standard filtering techniques such as VMF and MMF suppress
well impulses present in the image, however their excessive smoothing capability results in edge
blurring. Since the DDF combines the properties of both VMF and BVDF, it can achieve better
results than the BVDF and VMF.

The comparison of the results presented in Tab.7.4 shows that the SWVF framework can be
designed to outperform the standard filtering schemes in terms of the quality criteria and signifi-
cantly improves the performance of the multichannel filters based on the directional processing.
As can be derived from Tab. 7.4, the SWVFi scheme given by (7.16) provides significantly
better results, which justifies the usage of standard images artificially corrupted with impulsive
noise for training purposes. It can be observed, (Fig. 7.6) that there is only a slight dependence
of the quality criteria values on the contamination intensity of the LENA image used for the
training purposes, which is a great advantage of the proposed scheme.

The SWVF. defined by (7.18), although self-adaptive, also outperforms the generic tech-
niques, like VMF, BDV and DDF, which shows that even without the training, the proposed
scheme vyields better results than the traditional methods. The only drawback is the increased
computational load associated with the iterative search for the optimal weighting coefficients.

0.11 0.35 0.12 0.10 0.40 0.19 0.17 0.47 0.17 0.18 0.48 0.30
|« = 0| 0.15 1.00 0.18 0.18 1.00 0.17 0.23 1.00 0.20 0.28 1.00 0.25
0.08 0.38 0.12 0.18 0.39 0.14 0.20 0.47 0.15 0.27 0.48 0.20
0.16 0.46 0.15 0.12 0.52 0.14 0.22 0.58 0.16 0.24 0.61 0.33
k= A 023 1.00 0.26 0.21 1.00 0.25 0.29 1.00 0.21 0.37 1.00 0.31
0.10 0.50 0.20 0.15 0.49 0.18 0.20 0.56 0.17 0.25 0.63 0.26
0.11 0.48 0.25 0.19 0.46 0.27 0.25 0.60 0.31 0.37 0.74 0.56
\k = 1] 0.22 1.00 0.23 0.24 1.00 0.29 0.35 1.00 0.30 0.47 1.00 0.46
0.23 0.45 0.12 0.18 0.56 0.16 0.31 0.57 0.26 0.42 0.70 0.44
p = 0.05 p=o0.1 p=0.15 p=o0.2

Tab. 7.3. SWVF weights obtained using (7.16) in dependence on noise contamination p, (NM4) and k
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NCD

~0s

0.03

logio(e) €) logio(s)

Fig. 7.5. SWVF weight adaptation expressed through the objective image quality measures in dependence
on the regularizationfactor e and parameter k. The training set was obtained through the LENA image
with: (a, ¢, e) 5% impulsive noise (p = 0.05, NM4) and (b, d,f) 10% impulsive noise (p = 0.10, Nk14)
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p= 0.05 PEPPERS PARROTS
Filter/Criterion ~ MAE MSE NCD MAE MSE NCD
M M F 3.248 43.1 0.0484 2.718 63.1 0.0170
VMEF 3.169 43.9 0.0452 2.669 64.2 0.0132
BVDEF 3.740 60.7 0.0438 3.460 109.0 0.0116
DDF 3.182 44.6 0.0431 2.645 65.3 0.0117
HDF 3.282 42.9 0.0441 2.786 65.7 0.0122
AHDF 3.274 41.9 0.0441 2.771 63.5 0.0121
SWVFx, (k = 0) 0.995 19.9 0.0138 0.903 27.1 0.0042
SW VFi, (k = 0.5) 0.962 18.1 0.142 0.745 18.5 0.0033
SWVFi,(k: 1) 1.595 31.0 0.0193 1.373 43.2 0.0046
SW VF2, (k =0) 1.454 21.2 0.0204 1.256 30.9 0.0056
PEPPERS SWVF2, (k = 0.5) 1.783 24.0 0.0255 1.399 36.0 0.0058
LENA PARROTS LENA swvFz (k= 1) 2.522 39.3 0.0295 2.199 70.0 0.0070
p: 0.1 PEPPERS PARROTS
M M F 3.579 53.9 0.0546 2.960 70.0 0.0198
VM F 3.503 55.0 0.0494 2.890 69.6 0.0142
BV DF 4.151 82.7 0.0484 3.630 113.5 0.0127
DDF 3.512 56.6 0.0475 2.839 69.7 0.0128
HDF 3.626 53.6 0.0485 3.002 69.9 0.0132
AHDF 3.614 52.4 0.0485 2.999 68.6 0.0131
SW VFi, (« = 0) 1.460 50.7 0.0203 1.267 47.2 0.0067
SW V Fi, (k: 0.5) 1.381 43.1 0.0196 1.021 29.8 0.0049
SW VFi, (k = 1) 2.068 65.5 0.0244 1.611 53.6 0.0058
SWVFZ,(k: 0) 1.754 33.3 0.250 1.501 41.6 0.0069
PEPPERS LENA PARROTS LENA SWVF2,(k = 0.5) 2.068 35.1 0.0295  1.624 43.4  0.0070
SWVFZ,(k: 1) 2.879 58.5 0.0338 2.385 75.2 0.0081
p=o.15 PEPPERS PARROTS
M M F 3.996 70.3 0.0620 3.275 80.9 0.0236
VMF 3.858 68.7 0.0540 3.178 80.0 0.0158
BVDF 4.598 113.2 0.0532 3.883 125.2 0.0144
DDF 3.844 70.8 0.0518 3.070 76.7 0.0143
HDF 3.992 68.0 0.0530 2.786 65.7 0.0122
AHDF 3.994 67.2 0.0530 2771 63.5 0.0121
SWVFi,(k= 0) 2.221 114.1 0.0299 1.942 104.1 0.0129
SW VFi, (k=0.5) 2.088 88.4 0.0275 1.539 67.2 0.0086
PEPPERS PARROTS SW V Fi, (« = 1) 2.667 113.0 0.0311 2.065 88.9 0.0087
LENA LENA SWVFZ,(k: 0) 2.189 56.1 0.0309 1.857 60.9 0.0095
SWVF2, (k = 0.5) 2.448 55.1 0.0346 1.881 53.3 0.0086
Fig. 7.6. Robustness of the SWVFi scheme in terms of MAE, MSE and NCDfor test images PEPPERS swvFz (k=1 3346  93.3 0.0390 2.643  89.5 0.0009

and PARROTS. The adaptive scheme (7.16) was performed using the LENA image as a training set. The
images were contaminated impulsive noise, (NM4, p rangingfrom 0 to 0.2). Note the slight dependence
ofthe quality criteria on the contamination intensity of the training image

Tab. 7.4. Comparison of the efficiency of the SWVF techniques: SWFi (7.16) and SWF2 (7.18), with
the standardfilters using color test images PEPPERS and PARROTS contaminated by impulsive noise of
intensityp = 0.05, p = 0.1 andp = 0.15, (NM4)
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7.3 Sigma Vector Median Filters

It is commonly known that the standard techniques capable of low-pass filtering and operating
on a fixed supporting window blur and eliminate salient image features. To keep the noise-free
samples unchanged during the filtering operation, noise reduction techniques have to be con-
structed, to increase the degree of freedom in the filter design, by introducing tuning parameters
into its structure, such as in the case of multichannel weighted filtering schemes, [177,189,407].

Another way, is to incorporate the structural information to the filter design realized by
adaptively changing the direction of the filter operating sub-window, [129,130] or to deal with
the image samples of similar intensities, which form digital paths on the image domain, [72,
295,379]. In the case of impulsive noise environments, the most popular and computationally
efficient approaches are related to the switching-based filtering, [1,2,29]. In such a scheme,
the switching rule changes between the nonlinear mode, which smoothes out noisy samples and
the identity operation, which leaves the uncorrupted samples unchanged.

Sigma Vector Median Filter (SVMF) takes advan-
tages of the switching-based filtering and can be seen
as an adaptive extension of the Rank Conditioned Vec-
tor Median Filter (RCVMF) presented in Section 3.2,
(3.18). In addition to this concept, the introduced adjust-
ing parameter, that allows to detect the noisy samples,
extends the degree of freedom of the novel multichan-
nel filter, [360]. This filtering approach is useful for de-
tection and removal of impulsive noise in a wide range
of applications, in which the preservation of the desired
Fig. 7.7. The concept ofthe sigmafilter- structures and color information is of importance.
ing in the 2-dimensional case, in which The switching based filtering is related mostly to the
:geri;?]dégso?ftw: :ﬁﬁ;ﬂﬂﬂﬁi;&tgﬁ gray scale imaging, [42,68,96,166,429]. The extension
the adjusting parameter 0 of these algorithms to color images may be problematic

especially in terms of flexibility to accommodate the al-
gorithms for a variety of window shapes, [68,429] computational complexity, [429] or the num-
ber of switching levels, [96].

The proposed SVMF method is based on the robust order statistic theory and on the ap-
proximation of the multivariate dispersion computed using the input multichannel samples. Its
unique and distinguishing element is the statistical operator servicing as the control of switching
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between the robust VMF and the identity operation. The input central sample is considered to
be noisy if it lies outside the range, (Fig. 7.7) formed by the approximated multivariate disper-
sion of the input multichannel samples. To increase the degree of freedom in such a design, the
proposed method utilizes approximation of the multivariate dispersion multiplied by a certain
regulation parameter 9. Note that a similar concept was applied to gray scale images, [135,166]
and the filter output was defined as a weighted mean of the input samples lying within the
standard deviation of the central pixel value, (2.14).

The measure of the multivariate samples’ dispersion is very often defined using the variance-
covariance matrix £ ofthe samplesx = {xi,x2,..., x"} definedas£ = E[(x —x) (X —x)T],
where E is the expected value operator and x denotes the arithmetic mean of the vector samples.
The dispersion matrix £ is square, symmetric and usually of full rank.

In many applications it is very useful to use a scalar value capturing the multivariate data
dispersion. One of the ways of introducing such a scalar measure is the so called generalized
variance |£| defined as the determinant of the £ matrix, which can be calculated as the product
of the eigenvalues of £, [417]. The idea is to measure the volume occupied by the multivari-
ate variables in the color space. The multivariate dispersion can also be given as a sum of the
eigenvalues of the variance-covariance matrix, (total variance), [281]. The former plays an im-
portant role in the maximum likelihood estimation and model selection and the latter is used as
a measure of variation in principal components analysis, [10,205,212,289]. These dispersion
measures well describe the samples’ variability, but their drawback is that they are computa-
tionally very expensive and thus inappropriate for image processing. That is why, simple but
effective dispersion measures based on the samples mean and vector median, are used in this
work: multivariate variance measured from the samples mean and variance measured from the
samples median, [289].

To avoid the computational difficulties connected with the calculation of variance-covariance
matrices of multichannel samples, the proposed method utilizes the approximation of the vari-
ance of the vector data, [197,360]. Let v be the approximation of the multivariate variance of
the vectors contained in a supporting window W of size N, given by

(7.19)
N—I"
where is the distance measure minimizing the generalized distance, (3.21)
N \ K /N \1~-K
A a(xkxj)j \J2p(xk,Xj)Jd , (7.20)

i.e. the measure associated with the VMF for k = 0, (3.3) and with the BVDF for k = 1, (3.19).
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Let us now assume that k = 0, then

D) = i70) = [Ix() (7.29)

=
where X(j) is the output of the VMF. The local variance approximation

(722)

represents the mean distance between the vector median X(i) and all other samples contained
in W. The division of the smallest aggregated distance by (TV—1), (number of distances
from X(i) to all samples from W), ensures that the dispersion measure is non-dependent on the
filtering window size. Then, the output of the Sigma Vector Median Filter, (SVMF) is defined
as, [360,361]

j x@, for >,

y SVMFi — T (*-23)

Xj,  otherwise,
where ysvm i is the proposed SVMF output, R\ is the cumulated distance from the central
pixel Xi to all other pixels contained in W and £i is the threshold value given by

e = Ri)+O0Wv=—ft-\ . (7-24)

where v is the approximated variance (7.19) and 9\ is the tuning parameter used to adjust the
smoothing properties of the proposed SVMFi method.
The switching scheme (7.23) can be rewritten as
[ x@I forR !> ~"~R {),

y SVMFi — <

. . '-2D
[ Xi, otherwise. (-20)

If the distance measure Ri of the central sample Xi is greater or equal to the threshold £i, then
the central sample is most probably noisy and is being replaced with the lowest ranked vector
X(), (Fig. 7.7). If the accumulated distance R\ of the central sample Xi is less than the threshold
£i, then the central sample is declared to be similar to other input samples, which indicates that
it is most probably noise-free and no filtering operation is performed.

In order to follow both concepts sketched in Fig. 7.7, it is possible to modify the decision
stage and to replace the lowest ranked vector with the sample mean, which leads to a much
faster algorithm, as instead of the calculation of 36 distances needed for VMF, only 9 distances

between the samples and their mean are required . Then, the approximation of the variance is
given by
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is the aggregated distance between the multichannel input samples Xi,x2, ..., xwand the sam-
ple mean x. In such case, the output of the modified vector sigma filter (SVMF2) is defined

as

svM,, = N . = 7.27
ysv (" )%L otherwise, N (7.27)

where :. is the threshold value and 62is the adjusting parameter like in the SVMFi scheme.

It is clear that the proposed method will perform the identity operation for any value of 9\,
if the lowest ranked vector X(i) is identical with the central sample Xi. If X(i) / Xi then the
SVMFi output is a root, if

0i >e\ = (7.28)

which means that an additional increasing of 9 does not influence the filter properties.

It is worth noticing that the filtering scheme is scale and bias invariant. Let usconsider the
input set Wi = {iXj,j = 1,..., N} and the modified input set = {X,j =1,..., V}
achieved by adding the vector constant k to the input set WAmultiplied by scalarconstant k,
i.e. 29 =k «xq§ + k. It can be easilyshown that the addition of avector constant has no
influence on the filter properties, since vector distances R\M,R*1  ,R”jlare the same as
Rx2 R}'2,..., R*1 The multiplication of the input set by a constant, has also no influence on
the switching condition, since

RA=kR™1, R =KkRjfi, (7.29)

and then the conditions

>V -+  ai> * NN - +#dIRw ’ (730)
are equivalent to (7.23). Thus, the decision stage of the proposed method is scale and bias
non-dependent.

The proposed Sigma Vector Median Filters are computationally efficient, since they perform
practically the same set of operations as their non-adaptive special case VMF, [19,37]. The
comparison of the construction of the SVMFi and the VMF techniques shows that both schemes
need to compute the aggregated distances and search for their minimum. The switching rule
requires division, multiplication and addition, however in the case of noise-free samples, no
additional processing is necessary. If an outlier is detected, the reminder of operations is the
same as in the case of standard VMF. In the case of the SVMF. scheme, the computational
efficiency is more advantageous, since in the case of noisy samples this filter does not have
to perform the time consuming ordering operations performed both in the SVMFi and VMF
schemes.
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Using (7.19) and (7.20) and taking k = 0.5 and k = 1the Sigma Directional Distance Filter
(SDDF) and Sigma Basic Vector Directional Filter (SBVDF) are obtained. The efficiency of the
schemes, based on the data dispersion measured from the sample minimizing the accumulated
sum of appropriate distances or from the samples centroid is presented in Tabs. 7.5, 7.6 and
in Fig. 7.8. As can be observed the parameter k in (7.20) has small influence on the filters’
efficiency and therefore k = o or k = 1 should be used for erasing impulsive pixels.

The dispersion measure based on (7.19) is as expected more robust to the impulsive noise
corruption than the measure of data variation measured from the centroid of samples, (7.26).
However, although the filters based on (7.26) are inferior to the filters using (7.19), the SVMF:
schemes are extremely fast and are much better suitable for the impulsive noise reduction than
the traditional filters like VMF, BVDF, DDF, HDF, (see Tab. 7.6).

The comparison of the results obtained with both proposed methods, shows that the sub-
optimal value of 62 used in the SVMF. scheme is larger than that 9\ of the SVMFi approach.
This observation is also confirmed by Fig. 7.9, which depicts the results achieved using the test
image LENA corrupted by impulsive noise with the intensity ranging fromp = 0.01top = 0.20,
(NM4).

As can be easily observed, the optimal parameters 9\ and 0. are decreasing with the amount
of corrupted pixels, (Figs. 7.5, 7.8, 7.9) as more and more pixels have to be replaced with the
VMF, DDF or BVDF according to the type of dispersion model. This indicates that some kind
of more advanced adaptive design is needed to automatically adjust the 9 parameter to the noise
corruption process.

The efficiency assessment of the described filter class provided using the objective quality
measures, (Tabs. 7.5, 7.6) and also evaluated visually, (Figs. 7.10, 7.11) confirm the good

performance of the presented filtering techniques and their usefulness for the impulsive noise
removal in color images.

Noise (p) 0.05 0.10 0.15

Criterion MAE RMSE NCD MAE RMSE NCD MAE RMSE NCD
Noisy 318 :... 004158 632 3128 0.08256 953 3853 0.12408
VMF 329 563 00381 344 587 004011 35 617 0.04145
BVDF 382 635 004006 395 664 004115 409 699 0.04236
DDF 341 577 003906 353 599 004012 370 626 0.04136
HDF 345 564 004007 358 587 004125 374 618 0.04259
svmf, €=1i .. 394 001374 116 414 001357 123 474 0.01539

SVMF,0=4 041 406 000611 090 734 001477 167 1132 002869
SVMF,9=8 062 767 001031 17/ 1405 002886 348 .05: 0.05604

Tab. 7.5. SVMFfiltering results, (LENA, p = 0.05, p = 0.1 p = 0.15, NM2)
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p=0.05 LENA PEPPERS PARROTS
FILTER MAE MSE NCD MAE MSE NCD MAE MSE NCD
VMF 3430 508 0.0403 3169 439 00452 2669 642 0013
BVDF 3818 586 0.0407 3740 60.7 0.0438 3.460 109.0 0.0116
DDF 3509 523 0.0402 3182 446 00431 2645 653 0.0117
FVDF 4301 543 0.0483 4.068 514 0.0552 3.802 945 0.0147
GVDF 3587 553 0.0420 3433 579 00453 3036 936 0.0126
HDF 3857 569 0.0434 3282 429 00441 2786 657 o012
SVMFj 0777 183 0.0082 0729 165 0.0090 0.699 27.8 0.0027
SVMF. 0980 214 0.0103 0878 182 0.0107 0840 311 0.0031
SBVDFi 0805 191 0.0089 0.789 227 00113 0.694 343 0.0026
SBVDF. 1054 27.6 00115 0987 344 00129 0875 448 0.0032
SDDFi 0731 164 0.0080 0649 146 0009 0545 ... 0.0024
SDDF. 0948 199 0.0105 0816 179 ..::: 0678 259 0.0027

=0 LENA PEPPERS PARROTS
riLter . MAE MSE NCD MAE MSE NCD MAE MSE NCD
VMF 3.687 56.5 0.0428 3.503 55.0 0.0494 2.890 69.6 0.0142
BVDF 4.099 67.6 0.0432 4.151 82.7 0.0484 3.630 113.5 0.0127
DDF 3.733 57.3 0.0424 3.512 56.6 0.0475 2.839 69.7 0.0128
FVDF 4.540 59.5 0.0503 4.370 61.6 0.0592 3.984 98.1 0.0155
GVDF 3.925 66.8 0.0448 3.785 73.4 0.0492 3.188 96.2 0.0137
HDF 3.857 56.9 0.0434 3.626 53.6 0.0486 3.002 69.9 0.0132
SVMFi 0.959 25.9 0.0105 0.941 21A 0.0117 0.862 35.4 0.0041
svm f2 1.123 28.3 0.0121 1.063 29.0 0.0133 1.016 40.6 0.0047
SBVDFi 1.048 33.1 0.0105 1.155 56.7 0.0135 0.941 47.4 0.0035
sbvdf2 1.311 48.6 0.0131 1.533 99.1 0.0174 1.129 67.1 0.0045
SDDFi 0.913 23.3 0.0098 0.895 30.2 0.0117 0.703 25.9 0.0030
SDDF2 1.094 28.3 0.0118 1.103 44.0 0.0142 0.843 33.5 0.0037

P=o. LENA PEPPERS PARROTS

FILTER MAE MSE NCD MAE MSE NCD MAE MSE NCD
VMF 4335 80.3 0.0492 4232 857 00601 3448 919 0.0174
BVDF 4859 107.8 0.0499 5111 1529 0.0602 4.183 1400 0.0165

DDF 4321 788 0.0483 4254 904 00579 338 912 0.0161
FVDF 5258 804 0.0572 5226 983 0.0739 4.016 1181 0.0175
GVDF 4345 834 0.0493 4562 1224 0.0586 3450 1009 0.0174

HDF 4548 804 0.0500 4411 864 0.0599 3594 927 0.0169

SVMFi 1816 776 o.02:. 1898 973 00251 1618 900 0.0116

SVMF. 1928 754 ..0... 1995 942 00266 1803 963 0.0128

SBVDFi 2232 1229 0.0203 2676 1998 00275 1907 1263 0.0092

SBVDF. 2708 1710 0.0245 3.638 3321 00385 2568 19.1 0.0128

SDDFi 1803 775 0.0192 1953 1099 0.0239 1417 749 0.0087
SDDF. 2.034 913 o.2.:>. 2389 1516 0.0289 1672 916 o.010s

Tab. 7.6. Comparison of the sigmafilters using the LENA, PEPPERS and PARROTS color images cor-
rupted by impulsive noise of intensity p = 0.05, p = 0.1 andp = 0.2, (N\VK)
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c) d) Kk

Fig. 7.8. Dependence of the objective quality measures of the SDDF on the tuning parameters 9, k

and impulsive noise intensity p, (NV4) for the LENA image: (a) MAE, (b) MSE. Below the details of . . . . o

achieved results in dependence on impulsive noise probability p, (NM4) according to : (¢) MAE, (d) Fig. 7.9. Performance ofSVMFi and SVMF2 techniques in deper?dence on adjusting parameters 9\, 62
MSE are shown. At the bottom the dependence of the optimal 9 value on the noise intensityfor various and impulsive noise intensity p, (NM4) using the test image LENA: (&, ¢, &) SVMFXand (b, d,f) SVMF2
filter classes is depicted in terms of MAE: (e) and MSE: (f)
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d) €) f)
Fig. 7.10. Detail preservation of the proposedfilters class in comparison with standard techniques: (a)
part of original test image LENA, (b) image corrupted by impulsive noise, (p = 0.04, NMR), (¢) VMF
output, (d) DDF output, (€) BVDF output, (f) the output of the SVMFfor 9 = 6 [360,361]

Fig. 7.11. Filtering errors expressed as the difference between the original andfiltered image: (a) test
image LENA, (b) image corrupted with impulse noise, (p = 0.04, NM2), (c) VMfiltering error, (d) DDF
filtering error, (€) BVDFfiltering error, (f)filtering error of the SVMF with 9 = 6, [360,361]

Summary

Nonlinear image processing methods continue to grow in popularity and the advances in com-
puting performance have accelerated the process of moving from theoretical explorations to
practical implementations. The nonstationarity of images, the significance of visual cues such
as edges and the nonlinearity of human visual system, all contribute to the importance of non-
linear methods in imaging applications.

The presented work can be characterized as a monograph of the author’s original contri-
butions to the dynamic and expanding field of multichannel image processing put on the back-
ground of the state of the art of the noise removal in digital images. This monograph is an
integration of techniques proposed by the author in various scientific publications scattered in
a variety of journal papers and referred conference proceedings, and is oriented towards a wide
spectrum of contemporary applications.

This monograph details the author’s most important contributions to the rapidly growing
field of nonlinear noise reduction in multichannel images'.

In the third Chapter the modified weighted median filter framework has been presented.
This new technique simplifies the structure of the weighted medians and improves significantly
the properties of the central weighted vector median filter by enhancing its detail preserving
abilities. Future research will focus on the development of a robust modified weighted VMF
and on the development of fast methods of the optimization of its parameters, to achieve the
optimal filtering efficiency for a given image and noise scenario.

In the next Chapter, the robust anisotropic diffusion filtering scheme, which ignores the
central pixel of the filtering window, when building the weighted average of the input samples
is introduced. This improvement allows to use the anisotropic technique for the suppression
of strong Gaussian and heavy tailed noise, as the influence of the central, corrupted pixel is
diminished by an appropriate setting of the conductivity coefficients. It is worth noticing, that
the proposed structure is a generalization of the previous nonlinear adaptive techniques, whose
robustness is based on the rejection of the central pixel of the filtering window.

In the same Chapter, an iterative forward and backward anisotropic diffusion technique,
based on the unsharp masking concept has been described. This method enables to construct
new families of filters, able to remove strong Gaussian noise and to enhance the image edges.
This new approach to the problem of noise reduction and image enhancement is very flexible,
as the designer can model the conductivity coefficients taking the derivatives of the classical
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flux functions with appropriate setting of the parameters. The efficiency of the newly developed
filter class can be increased by neglecting the influence of the central pixel, which should enable
the enhancement of images contaminated by impulsive noise.

The next Chapter has been devoted to the development of apowerful class of filters based on
the digital paths concepts andfuzzy similarity measures among pixels in neighborhood relation.
This novel technique, which utilizes the connection between image pixels, is an extension of
the adaptive noise reductionfiltering and anisotropic diffusion techniques, presented in Chapter
2 and 3 respectively, and is shown to have advantages over the traditional methods. Extensive
simulations revealed that the proposed filtering framework significantly excels over the standard
methods and can be applied for the removal of both Gaussian and impulsive noise.

The family of detail-preserving impulsive noise removal techniques described in Chapter
s , which make use of the concepts of similarity between the neighboring pixels, elements of
the nonlinear regression and nonparametric probability density estimation theory, is shown to
possess excellent noise reduction and detail preserving capabilities. The presented filter class is
also computationally efficient, especially when using a simplified filtering structure with a global
bandwidth parameter. The excellent efficiency, coupled with the low computational burden,
makes this filtering class interesting for a wide range of real time applications.

Another powerful method of impulsive noise removal has been presented in the next Chapter.
This method, utilizing the switchingfiltering concept, is based on the simplified measure of the
samples’ dispersion and is able to efficiently detect noisy samples, while preserving salient
image features. Future work will be focused on the adaptation procedure, which would enable
the automatic setting of the switching threshold parameter.

The advantages brought by the modification of the weighted vector median described in
Chapter 3, can be fully exploited by the iterative optimization procedure presented in the last
Chapter. The optimization method is based on the classical optimization of the weighted me-
dians and its extension to the multivariate case is accomplished through the introduction of the
polarity function, which assigns a polarity to the distance between two image samples. This
optimization method is shown to be quite efficient as the optimized weighted vector directional
distancefilters yield much better results as their static counterparts.

The author of this monograph hopes that the presented state of the art and the original con-
tributions to the expanding and challenging field of color image enhancement will be useful
in various applications, in which the noise removal with the preservation of salient image fea-
tures is of vital importance. For a deeper investigation of the presented methods an extensive
bibliography has been prepared.
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Abstract

NONLINEAR TECHNIQUES OF NOISE
REDUCTION IN DIGITAL COLOR IMAGES

This monograph details the author’s most important contributions to the rapidly growing
field of nonlinear noise reduction in color images. Its content is structured into seven Chapters.

The first Chapter describes the fundamentals of color image processing and also presents
the sources of image noise, describes their models and defines measures of the quality of image
restoration.

The second Chapter is focused on the nonlinear adaptive schemes of noise reduction applied
in gray scale imaging, which are very often extendable into the multichannel case.

Chapter 3 provides the state of the art in color image filtering and serves as a basis for the
remaining Chapters, in which author’s original contributions are presented.

In the next Chapter, the robust anisotropic diffusion filtering scheme, which ignores the
central pixel of the filtering window, when building the weighted average of the input samples
is introduced. This improvement allows to use the anisotropic technique for the suppression
of strong Gaussian and heavy tailed noise, as the influence of the central, corrupted pixel is
diminished by an appropriate setting of the conductivity coefficients. In this Chapter the iterative
forward and backward diffusion technique is also presented.

Chapter 5 is devoted to the development of a powerful class of filters, based on the digital
paths concepts and fuzzy similarity measures among pixels in neighborhood relation. This
novel technique, which utilizes the connection between image pixels, instead of window based
structures, is an extension of the adaptive noise reduction filtering and anisotropic diffusion
techniques and is shown to have advantages over traditional methods. The extensive simulations
reveal that the proposed filtering framework significantly excels over the standard methods and
can be applied for the removal of both Gaussian and impulsive noise.

In the next Chapter the problem of nonparametric impulsive noise reduction in multichannel
images is addressed. A new family of filters for noise attenuation elaborated by the author,
based on the nonparametric probability density estimation of the sample data, is introduced and
its relationship to commonly used filtering techniques is investigated.

The last Chapter deals with the adaptive optimization of the weighted vector median filters
and also introduces the new technique based on the so called sigma-filtering. This novel adap-
tive technique is based on robust order statistic concepts and simplified statistical measures of
vectors’ dispersion.



Streszczenie

NIELINIOWE TECHNIKI REDUKCJI SZUMU
W BARWNYCH OBRAZACH CYFROWYCH

Redukcja szuméw jest jednym z najwazniejszych etap6w przetwarzania wstepnego obrazéw
cyfrowych. Efektywna filtracja sygnatu wizyjnego warunkuje bowiem sukces dalszych etapéw
jego przetwarzania. Problem redukcji szumoéw jest szczegdlnie trudny w przypadku obrazéw
barwnych, albowiem nie zostatajak dotad stworzona spdjna teoria umozliwiajaca bezposrednia
implementacje dobrze poznanych filtréw eliminacji szuméw w obrazach z poziomami szarosci
do poprawy jakos$ci obrazéow wielokanatowych.

W ciggu ostatnich lat zaproponowano liczne algorytmy redukcji szuméw w obrazach bar-
wnych. Najprostszg klasg sg filtry liniowe, kt6re moga efektywnie usuwaé¢ addytywne szumy
gaussowskie, jednakze nie sg one zdolne do adaptacji do nieliniowo$ci wystepujacych w obra-
zie, co prowadzi do rozmywania krawedzi obiektéw oraz innych, waznych z punktu widzenia
percepcji cztowieka oraz dalszych etap6w przetwarzania, struktur obrazu.

Aby poprawi¢ efektywno$¢ filtracji szuméw, na przestrzeni ostatnich lat zaproponowano
roznorodne techniki nieliniowe, z ktérych najpopularniejszg grupe stanowia filtry bazujgce na
statystykach porzadkowych. Filtry rangowe, minimalizujagce skumulowang funkcje dystansowa,
sg skuteczne w usuwaniu szumoéw impulsowych, jednakze ich wadgjest zbytduza inwazyjnos¢,
manifestujgca sie w zastepowaniu nie tylko pikseli obrazu, ktére ulegty kontaminacji, ale takze
pikseli oryginalnych, co prowadzi do destrukcji drobnych struktur obrazu o wielko$ci poréwny-
walnej z wymiarami okna filtracyjnego. Dodatkowg wadga tych filtrow jest ich nieskuteczno$¢
w redukcji szumu gaussowskiego.

Niniejsza monografia stanowi podsumowanie wysitku badawczego autora w dziedzinie fil-
tracji szumow wystepujacych w barwnych obrazach cyfrowych. W pracy przedstawiono rézno-
rodne klasy filtréw zaprojektowanych do eliminacji zaktécen impulsowych, szuméw gaussows-
kich oraz najbardziej degradujagcych obraz szumoéw mieszanych. Przedstawione w monografii
algorytmy cechuja sie bardzo dobrg efektywnos$cia, przewyzszajagca znacznie algorytmy stan-
dardowe, oraz niskg ztozono$cig obliczeniowg, umozliwiajgcg ich zastosowanie w realizacjach

praktycznych, szczeg6lnie w systemach wizyjnych czasu rzeczywistego.
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Rozdziat pierwszy monografii stanowi wprowadzenie do problematyki przetwarzania bar-
wnych obrazéw cyfrowych. W rozdziale tym przedstawiono podstawowe koncepcje tworzenia
wielokanatowego obrazu cyfrowego i jego filtracji, koncentrujagc sie na problemie zakitocen
obrazu powstajacych w procesie jego akwizycji, przetwarzania, transmisji oraz przechowywa-
niananos$nikach danych. W rozdziale tym wprowadzono modele szuméw symulujgcych rzeczy-
wiste zaktdcenia oraz przedstawiono metody oceny jako$ci obrazéw cyfrowych umozliwiajagce
ewaluacje efektywnos$ci r6znorodnych metod redukcji artefaktow wywotanych przez zjawiska
szumu.

W rozdziale drugim przedstawiono przeglad adaptacyjnych technik redukcji szuméw gaus-
sowskich, impulsowych oraz mieszanych w obrazach z poziomami szaroéci. W rozdziale tym
omoéwiono algorytmy oparte na koncepcji nieliniowej $redniej wazonej oraz dokonano przegladu
metod bazujacych na statystykach porzagdkowych. Szczegdlng uwage poSwigcono wazonej me-
dianie oraz iteracyjnym algorytmom wyznaczania optymalnych wspdtczynnikéw wagowych ze
wzgledu na zastosowanie tych metod do optymalizacji filtrow wektorowych przedstawionych
w rozdziale si6dmym.

Rozdziat trzeci posSwiecony jest omo6wieniu metod redukcji szuméw wystepujacych w bar-
wnych obrazach cyfrowych. Szczegétowo opisano filtry oparte na statystykach porzadkowych,
transformacjach wykorzystujacych koncepcje teorii zbiordw rozmytych, a takze metody wyko-
rzystujace estymacje nieparametryczng. Szczeg6lng uwage poswiecono wazonej medianie wek-
torowej oraz zaproponowanej przez autorajej modyfikacji, prowadzacej do przy$pieszenia al-
gorytmu oraz poprawy efektywno$ci procesu filtracji.

Rozdziat czwarty, nawigzujacy do rozdziatu drugiego, poswiecony jest dyfuzji anizotro-
powej, stanowigcej skuteczng metode redukcji szuméw gaussowskich. W rozdziale tym przed-
stawione zostaty wyniki prac autora nad modyfikacjg algorytmu dyfuzji anizotropowej, poprzez
minimalizacje wptywu centralnego piksela maski filtracyjnej, umozliwiajgca takze redukcje
szumow impulsowych. W rozdziale tym opisano ponadto opracowang przez autora metode ite-
racyjna, opartg na technice nieostrego maskowania, wykorzystujacg tak zwang dyfuzje odwrotng
do poprawy jakoéci obrazéw, ktére ulegty kontaminacji szumem gaussowskim.

Koncepcjaminimalizacji wptywu centralnego piksela w masce filtracyjnej zostata rozwinieta
w rozdziale pigtym, w ktérym przedstawiono wyniki prac autora nad nowga klasg filtréw opar-
tych na $ciezkach cyfrowych i elementach teorii zbioréw rozmytych. Algorytmy redukcji
szumow, wykorzystujgce idee eksploracji otoczenia centralnego piksela maski filtracyjnej przez
§ciezki cyfrowe wyznaczajace poprzez funkcje kosztu optymalne potgczenia pikseli obrazu, ce-

chuja sie Swietng efektywnos$cia redukcji szumoéw impulsowych, gaussowskich i mieszanych.
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Opracowane przez autora metody stanowig uogdlnienie i rozwiniecie dyfuzji anizotropowej
przedstawionej w rozdziale czwartym i stanowig jego najbardziej znaczacy wktad w rozwdj
nieliniowych metod redukcji szuméw w barwnych obrazach cyfrowych.

Rozdziat szésty poSwiecony jest zastosowaniu estymacji nieparametrycznej do filtracji szu-
mow impulsowych. W rozdziale tym przedstawiono ogélng koncepcje filtrow opartych na es-
tymacie nieparametrycznej, wskazujgc na ich podobienstwo do mediany wektorowej, w przy-
padku gdy funkcja jadra ma posta¢ funkcji liniowej. W rozdziale tym wprowadzono takze
rodzine filtrow cechujacg sie duzg skutecznos$cig w redukcji szuméw impulsowych oraz zdol-
nos$cig do zachowywania krawedzi obrazu ijego tekstury. Wiasnos$ci te osiggane sg przez zaim-
plementowane mechanizmy adaptacyjne, dostosowujgce parametry filtr6w do struktur morfolo-
gicznych obrazu oraz poziomu jego zaktécenn. Na uwage zastuguje mata ztozono$¢ obliczeniowa
przedstawionych klas filtrow, pozwalajagca na ich zastosowanie do przetwarzania obrazéw w
czasie rzeczywistym.

W rozdziale si6dmym przedstawiono nowe metody optymalizacji wazonej mediany wek-
torowej za pomocg optymalizacji liniowej oraz sigmoidalnej, omowionej w rodziale drugim.

Przedstawione metody optymalizacji, operujace zaréwno na chrominancji, jak i na luminancji

obrazu, prowadza do wyznaczania optymalnych z punktu widzenia zadanej funkcji kosztu wspét-

czynnikéw wektora wag. W rozdziale tym wprowadzono takze adaptacyjng metode eliminacji
szumow impulsowych opartg na estymacji dyspersji elementéw obrazu zawartych w oknie fil-
tracyjnym. Ta nowa klasa filtréw, bazujgca na koncepcji filtru typu sigma, charakteryzuje sie

duzg efektywnos$cig redukcji szumoéw impulsowych oraz niskg ztozonos$cig obliczeniowga.

Symbols

a - angle

A - accumulated angles

a - parameter

B - number of bits of an image channel
/3 - parameter

¢ - conductivity coefficient
¢ - regularized conductivity coefficient
C - parameter

C- FB conductivity

C x - chromaticity of x

8 - parameter

A E - color difference

D - vectordirection

V - nonempty set

d - distance parameter

e - estimation error

£ - energy

e - adaptation step-size

E - statistical expectation
r? - digital path length

| - decreasing function

7 - parameter

I\r - regularization function

T - Gamma function

r w'v - minimal connection cost

rN- number of pixels in a hypercube
G - gradient

g - gradient magnitude

h - kernel bandwidth

hpj - length of a hypercube edge

H - digital lattice

1-neighborhood parameter

(i,j) - discrete image plane coordinates
i - pixel’s position on the image domain
k - power parameter

KUK2-image domain dimensions
L - Minkowski norm

C* - likelihood

£ - digital path length

| -image dimension

\ - parameter

A - connection cost measure

m - number of image channels

H- median rank

M x - magnitude of vector x

N - iteration number



N - number of pixels in W
N - natural numbers
AT - neighborhood relation

V -local variance

o

- original, uncorrupted image

fi - image domain

n - number of digital paths in W

p - probability of noise corruption
p~(x) - probability of event x

>- window function defining a hypercube
$ - flux magnitude

ip - weighting coefficient, similarity
$ - cumulated similarities

'bw - digital paths contained in W
p - distance

R - correlation matrix

R - real numbers

Q -number of image pixels

Q - continuous path

Q - digital path

g - point on a path

S - normalizing constant

S - sign function

S - sigmoidal approximation of S
§2 - unitball in RGB

a - standard deviation

t-time

T - total processing time

t - design parameter

T2-Maxwell triangle

T - angular sign transformation
q-inter-quartile range

? - relation between pixels

V - noise process

Vs - hypercube volume

W - filtering window

W - planar subset of R 2

W - setofordered samples from W
(E>Vv) " continuous domain coordinates
| - weighting parameter

S - sigmoidal function

X - noisy gray scale image

X - noisy multichannel image

Xfc - kQL sample in W

X(£) - kth sample in ordered set

xi - central pixel in W

Xfc - nearest neighbor of x&

y - filter output

C- flux function

Z - integer numbers

* convolution

x Cartesian product

~ neighborhood relation in W

-< vector ordering

<> neighborhood relation

#=> connectivity relation on a digital path
|| m|| vector norm

< «> expected value

X mean of X

Acronyms

+ AD - Anisotropic Diffusion

* AHDF - Adaptive Hybrid Directional
Filter

* AMF - Arithmetic Mean Filter

*+ ANNF - Adaptive Nearest Neighbor Filter

* ANMF - Adaptive Nonparametric
Multichannel Filter

« ANNMF - Adaptive Nearest Neighbor
Multichannel Filter

« ANPDF - Adaptive Nonparametric
Directional Filter

* ANPEF - Adaptive Nonparametric
Exponential Filter

* ANPGF - Adaptive Nonparametric
Gaussian Filter

*« ANPF - Adaptive Nonparametric Filter

« BVDF - Basic Vector Directional Filter

* CLMMF - Crossing Level Median Mean

Filter
CIE - Commission Internationale de
L’Eclairage

+ CCD - Charge-Coupled Device

+ CWM - Central Weighted Median

+ CWVMF - Central Weighted VM F

*+ DDF - Directional Distance Filter

+ DPA - Digital Paths Approach

+ DPAL - DPA-Last Technique

+ DPAF - DVA-First Technique

+ DTOCS - Distance Transform on Curved
Space

EVMF - Extended Vector Median Filter

*+ FOVDF - Fuzzy Ordered Vector

Directional Filter

* FB - Forward & Backward Diffusion

+ TOPA - FastDigital Paths Approach

* FVDF - Fuzzy Vector Directional Filter

FWAF - Fuzzy Weighted Average Filters

GDF - Geometric Diffusion Filter
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GVDF - Generalized Vector Directional
Filter

HDF - Hybrid Directional Filter

HSV - Hue, Saturation, Value color space

LUM - Lower-Upper-Middle

LMS - Least Mean Squared

LWVDF - Linearly Optimized WVDF

MCWVMF - Modified CWVMF

MED - Median

MF - Median Filter

MLE - Maximum Likelihood Estimate

MMF - Marginal Median Filter

NMSE - Normalized Mean Squared Error

NCD - Normalized Color Difference

PDE - Partial Derivative Equation

PDF - Probability Density Function

PM - Perona & Malik

PMAD - Perona-Malik Anisotropic
Diffusion

PSNR - Peak Signal to Noise Ratio

RCMFm - Rank Conditioned Median
Filter (marginal)

RCRS - Rank-Conditioned
Rank-Selection

RCVMF - Rank Conditioned Vector
Median Filter

RGB - Red, Green, Blue color space

RMSE - Root Mean Squared Error

ROF - Rank Order Filter

SGF - Symmetric Gradient Filter

SNR - Signal to Noise Ratio

SBVDF - Sigma Basic Vector Directional
Filter

SDDF - Sigma Directional Distance Filter

SD-ROM - Signal-Dependent Rank
Ordered Mean

SVMF - Sigma Vector Median Filter

SWVF - Selection Weighted Vector Filter

SWVDF - Sigmoidally Optimized WVDF

TVMF - Thresholded Vector Median
Filter

VBAMMEF - Vector Bayesian Adaptive
Median-Mean Filter

VMF - Vector Median Filter

WM - Weighted Median

WVMF - Weighted Vector Median Filter

WVDF - Weighted Vector Directional
Filters

Index

Adaptive
fuzzy algorithms, 56
hybrid directional filter, 55

nearest neighbor multichannel filter, 59

nonparametric filter, 130
nonparametric multichannel filter, 60
smoothing, 28
Aggregated weighted distance, 154
Angular measure, 53
Anisotropic
backward diffusion, 74
biased diffusion, 69
diffusion, 61, 64
forward diffusion, 74
regularized diffusion, 67

CCD, 15
Central
weighted average, 29
weighted median, 36
weighted vector median filter, 46
Color, 12
chromaticity, 14
difference, 21
image quality, 19
normalized difference, 21
space, 12
space RGB, 13
Computational complexity, 100
Conductivity
function, 61, 63
robust functions, 70
Cost
connection, 91
function, 39,155, 164

Digital
lattice, 90

path, 89, 90
paths approach-first, 95
paths approach-/~.?/, 95
paths based filter class, 93
Dispersion, 171
Distance functions, 88

Energy function, 62

Fast Digital Paths Approach, 98

Filter
Q-trimmed, 58
a-trimmed mean, 33
Q-trimmed vector median, 45
<7, 30
fc-nearest neighbor, 31
averaging, 28
crossing level median-mean, 45
directional distance, 54
fuzzy adaptive, 55
fuzzy adaptive framework, 57
fuzzy ordered, 58
fuzzy weighted average, 57
gradient inverse weighted, 28
hybrid directional, 54
Kuwahara, 31
L, 33
linear, 27
local statistic, 29
LUM, 35
mask, 27
maximum fuzzy vector directional, 57
maximum homogeneity, 30
order statistic, 32, 41
rank order, 32
SD-ROM, 37
selection, 35
switching, 37
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weighted vector directional, 153 gradient, 73
Wilcoxon, 34 Minkowski, 43, 127, 155
window, 23 Normalized correlation, 29

Flux function, 62

Fuzzy transformations, 56 Optimization

angular sigmoidal, 156

Generalized linear, 156
conductivity coefficients, 95 problem, 155
distance among vectors, 54 Ordering
vector directional filter, 53 in vector spaces, 41

Geodesic distance, 89 reduced, 42

Gradient, 29, 62, 63, 70-73, 104
Perceptually uniform color spaces, 21

Histogram, 115 Photoelectronic sensors, 15
Hue, 12 Polarity function, 164
Probability density estimation, 115
Image
subjective evaluation guidelines, 21 Robust estimate of kernel bandwidth, 118
filtering, 12
filtering designs, 22 Sample ordering, 32
quality measures, 20 Saturation, 12
Selection weighted vector filters, 163
Kernel function, 116 Sigma

basic vector directional filter, 174

Lightness, 12 . ) )
directional distance filter, 174

Maxwell triangle, 14 vector median filters, 170
Median Similarity
filter, 22, 23, 32 based filter class, 119
optimized weighted, 38 function, 119
weighted, 35 Switching
Multivariate variance, 171 filtering, 170

filtering scheme, 172
Nearest neighbor rule, 58

Neighborhood relation, 89 Topological distance, 88
Noise
impulsive, 15 Vector

intensity estimator, 131 modified central weighted median, 47

mixed, 14, 19
models, 17

basic directional filter, 53
directional filters, 24, 53
extended median filter, 44

sources, 14,15

. median, 24
suppression, 27

transmission, 16 median filter, 43

Nonparametric ordering, 42
rank conditioned median filter, 48
thresholded median filter, 48

weighted median filter, 46

adaptive multichannel filters, 59
estimation, 59
Norm
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