
ZESZYTY NAUKOWE 
POLITECHNIKI ŚLĄSKIEJ

B o gd an  SM Ó Ł K A

NONLINEAR TECHNIOUES OF NOISE REDUCTION 
ll\l DIGITAL COLOR IMAGES
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Dealing with im pulsive noise rem ains one  

of the great challenges of m odern engi­

neering. It is hard to m odel, predict, and  

filter and yet it pervades the world, [1 4 6 ] .

Preface

WITH breathtaking pace, computers are becoming more powerful and at the same time less 
expensive. Thus, the hardware needed for digital image processing is readily available. 

In this way, image processing is becoming a common tool to analyze multidimensional scientific 
data in all areas of natural science. For more and more scientists, processing of monochrome 
and especially multichannel images is the key to study complex scientific problems, they could 
not have dreamed to tackle only a few years ago.

Multichannel signal processing is of paramount importance in application areas such as 
biomedicine, computer and machine vision, robotics, entertainment and multimedia applica­
tions, industrial inspection, remote sensing and many others. In all these areas the users and 
system developers work with multidimensional data sets.

It is well known that humans and computer vision systems use color information to sense 
the environment and that the correct perception of color can help in different tasks of image 
understanding and pattern recognition. Unfortunately, noise and other impairments associated 
with the measurement or the transmission apparatus can significantly degrade the value of the 
color information carried by the digital images. This usually declines their perceptual fidelity 
and also decreases the performance of the task for which the image was created.

It comes therefore as no surprise that the most common signal processing task is the noise 
filtering. Noise filtering is an essential part of any image processing based system, whether the 
final information is used for human perception or for an automatic inspection and analysis.

The amount of research published in the last ten years indicates a growing interest in the area 
of color image processing and analysis. Furthermore, the surge of emerging applications such 
as web-based processing of color images and videos, image retrieval systems indexing large 
multimedia databases, enhancement of medical and biological images, digital archiving, cul­
tural heritage preservation projects and the proliferation of smart devices such as video-enabled 
wireless phones, wearable computers and personal digital assistant tools, suggests that the de­
mand for new, more powerful and cost effective multichannel filtering solutions will continue.
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The correction of the signal distorsions is a digital process, by which disturbances intro­
duced by the sensor system are rectified, with the goal being to obtain the image or generally 
the signal, which corresponds as closely as possible to the output of an ideal imaging system. 
Thus, correcting signal artifacts, in practice means adjusting the characteristics of the imaging 
system to meet specific demands of the human observer or the computer vision system.

Digital image processing is based on the conversion of a continuous image field into equiva­
lent digital form. The synthesis of images from the signals arising from various sensor systems 
is accomplished by a digital process directed to transforming the signal into a form allowing 
visual or machine perception. The requirements for an ideal conversion system are usually ex­
pressed in terms of certain technical properties such as the resolution of the imaging systems, 
photometric accuracy, quantization levels, intensity of intrinsic noise and many others.

Improvement of the quality of images has always been one of the central tasks of digital 
image processing. In modem terms, improvements in sensitivity, resolution and noise reduction 
have equated higher quality with greater informational throughput. Image noise is an unwanted 
feature, which is either contained in the relevant light signal or is added by the imaging pro­
cess and it compromises a precise evaluation of the light signal distribution, which should be 
measured.

The analysis of the image noise in digital image acquisition systems often focuses on ran­
dom noise sources, such as those associated with quantum signal detection (shot noise) and 
signal independent fluctuations (dark current, readout noise). Other important source of image 
noise is the inhomogeneity of the responsiveness of the sensor elements and signal disturbances 
that introduce repeatable patterns into image data.

During image formation, acquisition, storage and transmission many additional types of dis­
torsions limit the quality of digital images. Transmission errors, periodic or random motion of 
the camera system during exposure, electronic instability of the image signal, electromagnetic 
interferences from natural or man-made sources, sensor malfunctions, optic imperfections, elec­
tronics interference or aging of the storage material all disturb the image quality.

In the last years, the area of vector valued (multichannel, multispectral, multicomponent) 
signal processing has dramatically increased. The leading edge of development and interest 
is in the domain of remote sensing, but the classical color imaging still remains the preferred 
research domain.

Typically, a color image is represented in each pixel by a three component vector. The vector 
components quantify in general the amounts of pure red, green and blue that compose the local 
color. These vector valued signals cannot be reduced to a stack of separately processed scalar 
components, due to the inherent correlation between the channels.

9

In the literature, several noise reduction techniques have been proposed. They can be divided 
into linear and nonlinear techniques.

Linear processing techniques have been widely used in digital signal processing applica­
tions, since their mathematical simplicity and the availability of a unifying linear system theory 
make them relatively easy to analyze and implement. Unfortunately, most of the linear tech­
niques tend to blur structural elements such as lines, edges and fine image details and therefore 
many multichannel image processing tasks cannot be efficiently accomplished by linear tech­
niques.

Image signals are nonlinear in nature, due to the presence of structural information and are 
perceived through the human visual system, which has strong nonlinear characteristics. Non­
linear methods are able to preserve important multichannel structural elements and eliminate 
degradations occurring during signal formation or transmission through nonlinear channels and 
they proved to be efficient in the suppression of impulsive, Gaussian and mixed type of noise.

The most popular nonlinear filters are based on order statistics. However their common 
drawback is that they ignore the temporal or spatial information of the signal samples. There­
fore many different techniques alleviating this problem have been proposed to date.

The algorithms developed by the author of this monograph are oriented towards the im­
provement of the efficiency of the standard filtering approaches and are especially focused on 
the impulsive noise removal. The special emphasis is placed on the suppression of impulsive 
and mixed noise, as the nonlinear techniques are especially well suited to this particular task.

T
HE purpose of this book is to present the state of the art in nonlinear color image noise 

removal techniques and also to organize and integrate the authors’s original contributions 
to the dynamic development of this field, scattered in numerous refereed scientific publications. 
The book itself can be characterized as a monograph of author’s own solutions put on the back­
ground of the state of the art.

The content of this monograph is structured into seven Chapters. The first part of this book 
is devoted to the overview of the problems of noise reduction in color images. Its purpose is 
to give some insight into the fundamentals of color image processing and basic color image 
filtering designs. This Chapter also covers the various color image noise sources, their models 
and measures of the quality of image restoration.

The second Chapter is devoted to the adaptive schemes of noise reduction in gray scale 
images, as many techniques primarily developed for monochrome images can be reformulated 
to work in the multichannel domain. In this Chapter special emphasis is put on the weighted
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median filters and their optimization, as this filter family, extended to the vectorial case is con­
sidered in Chapter 3 and 7.

Chapter 3 presents an overview of the noise reduction filters used in color imaging. This 
Chapter provides the state of the art in color image filtering and serves as a basis for the next 
Chapters in which author’s original contributions are presented. In this Chapter the modification 
of the central weighted median filter and the rank conditioned vector median filter are also 
briefly outlined.

The next Chapter covers the anisotropic diffusion technique in the scalar and multichannel 
case. The evaluation of the efficiency of this nonlinear technique shows that the approach, in 
which the central pixel of the filtering window is excluded from the processing, yields much 
better results and increases the robustness of the anisotropic diffusion method and its various 
modifications. This observation is utilized in the design of novel efficient techniques of impul­
sive noise removal presented in Chapter 5 and 6.

Chapter 5 is devoted to the digital paths approach to color image filtering, originally devel­
oped by the author for the gray scale imaging using the concept of random and self-avoiding 
walks. This novel technique, based on the exploration of the local neighborhood through digital 
paths and on the utilization of the fuzzy concepts, can be seen as a powerful generalization of 
the anisotropic diffusion approach introduced in Chapter 4. The performed simulations indi­
cate that the new filter class excels significantly over the currently used nonlinear multichannel 
techniques especially in the case of mixed noise.

In the next Chapter the problem of nonparametric impulsive noise reduction in multichan­
nel images is addressed. A new family of filters for noise attenuation elaborated by the author, 
based on nonparametric probability density estimation of sample data, is introduced and its 
relationship to commonly used filtering techniques is investigated. Extensive simulation exper­
iments indicate that the presented family of filters outperform the standard techniques used to 
eliminate impulsive noise in color images.

The last Chapter deals with the adaptive optimization of the weighted vector median filters 
described in Chapters 2, 3 and also introduces the new technique based on the so called sigma- 
filtering, which can be seen as an extension of the rank conditioned vector median introduced 
in Chapter 3. This novel adaptive filtering technique is based on robust order statistic concepts 
and simplified statistical measures of vectors’ dispersion. Simulation studies indicate that the 
presented filters are computationally attractive, yield good performance and are able to preserve 
fine details, while efficiently suppressing impulsive noise.

* * *

Noise Reduction in Color Images

1

Visual information processing is increasingly becoming widespread as multimedia 
becomes common in everyday life. With the expanding use of color images in multimedia 
applications and the proliferation of color capturing and display units, the interest in color 
imaging is rapidly growing.

Very often the quality of color images is decreased by different types of noise distor­
tions. Noise can appear during the process of image acquisition, transmission and storage. 
Therefore its removal or reduction is one of the most important image processing tasks.

This chapter presents the fundamentals of color image processing, describes the vari­
ous noise sources and its models, introduces the image quality measures and also describes 
briefly some basic filtering designs.

1.1 Introduction

THE perception of color is of paramount importance to humans since they routinely use 
color features to sense the environment, recognize objects and convey information. That 

is why, it is necessary to use color information in computer vision, because in many practi­
cal applications the location of scene objects can be obtained only when color information is 
considered, [66,117,157,229,246,250,267,419].

In many cases it is indispensable to remove the corrupted pixels to facilitate subsequent im­
age processing operations such as edge detection, image segmentation and pattern recognition. 
To convey the desired information correctly, the noisy signal should be processed by a filtering
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algorithm, that removes the noise component, but retains the image structure. Therefore, the 
goal of image filtering is the removal of unprofitable information that may corrupt any of the 
following image processing steps.

The computer vision systems can consist of a variety of mechanical, optical, electronic 
or chemical components, but all of them perform three basic operations: image acquisition, 
signal processing and image formation. However, these processes do not occur without serious 
problems. A number of undesired disturbances of the color image information result from the 
interference between the original signal and noise process. Noise affects the image quality 
level, decreasing not only its visual perception but also the performance of the task for which 
the image was acquired. Therefore filtering, the process of signal transformation into a more 
suitable form for a given task, is needed.

The noise removal process can be divided into reconstruction and enhancement filtering. 
In general, reconstruction filters utilize some knowledge about the type of image degradation, 
whereas image enhancement techniques attempt to improve (mostly subjectively measured) the 
quality of an image for human or machine interpretation. Both noise filtering and enhancement 
of the colors and structural information of the image are usually viewed as pre-processing stages 
in the image processing chain.

1.2 Fundamentals of Color Image Processing

The presence or absence of light is what causes the sensation of color. Light is a physical 
phenomenon, but color perception depends on the interaction of light with human visual system 
and is therefore a psycho-physiological experience, [117,118, 234, 267, 367]. Since human 
high-intensity color vision is based on three types of photo-receptor cone cells, three numerical 
components are necessary and sufficient to define a color, if appropriate spectral weighting 
functions are used. The human cones respond to the short (Blue), medium (Green) and long 
(Red) wavelengths. Therefore, a color can be specified by a three-component vector, (Figs. 1.1,
1.6). The set of all colors forms a multidimensional space called color space or color model, 
[52,86,222,267,419].

Human perception of color is based on its lightness, hue and saturation, [66,118,248,267, 
367,419]. Lightness is the perceptual response to luminance and distinguishes the gray levels. 
Hue is a color attribute associated with the dominant wavelength in a mixture of light waves and 
represents the dominant color as perceived by a human observer.

Saturation refers to the relative purity or the amount of white light mixed with a hue. Hue 
and saturation together describe the chrominance and the human perception of color is basically 
determined by luminance and chrominance, [118,235,271].
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Fig. 1.1. RGB color space

To utilize color as a visual cue in multimedia, im­
age processing, computer graphics and computer vi­
sion applications, an appropriate method for represent­
ing color signals is needed. The color image acqui­
sition process consists in obtaining three monochro­
matic images representing the Red (R), Green (G) and 

Blue Blue (B) components of the observed scene, [6 6 ]  and
B the (R,G,B) triplet leads to an unambiguous formation

of a color image, (Fig. 1.6).
Electronic devices digitize and represent color im­

ages using the three basic RGB color primaries. RGB 
based color models employ additive primaries and rep­

resent colors (defined as vectors in the RGB space, Fig. 1.1) as their combinations. Although 
the RGB sensor basis is distinct from the human experience of colors, it is widely used in the 
color image acquisition and processing.

Mathematically, a Ki x multichannel image (Fig. 1.6) is a mapping 7Ll —► Zm repre­
senting a two-dimensional matrix of three-component samples (pixels), xt = (xllt xa , . . . ,  xim) 
G 1}, where I is the image domain dimension and m  denotes the number of channels, (in the 
case of standard color images, parameters I and m  are equal to 2 and 3, respectively). Compo­
nents Xik, for k =  1,2, . . .  ,m  and i =  1 , 2 ,Q, Q = K\ ■ K-2, represent the color channel 
values quantified into the integer domain ranging from 0 to (2s  — 1) levels, with B bits per 
color channel. The process of displaying an image creates a graphical representation (Fig. 1.6) 
of the image matrix, in which the pixel values are assigned particular colors. When is large, 
it indicates high amount of the fc-th color primary in the vector x,. Green color channel {xt2} is 
the most similar to gray scale representation x of the color image x, because xa has the largest 
coefficient in the transformation to gray scales, [117].

Using the introduced nomenclature, each color pixel xt =  (x^, x&, x^) is considered as a 3- 
dimensional vector in the RGB cube. The magnitude MXj: Z2 —> R+ of vectors, defined as the 
square root of the sum of squares of its components, constitutes a measure of their brightness. 
The direction Dx<: Z2 —> §2 of color pixel vectors, where §2 is a unit ball in the R3 space, 
describes their chromaticity.

The magnitude MXj and direction Dx. = (Dxn, Dxa, . 
for i =  1,2, . . .  ,Q, are defined as, [386]

M X, =  llXi|| =  V ( x i l ) 2 +  ( X i i ) 2 +  ,

j~~\   %ik _ Z'ik
m Z '

, Dx.3) corresponding to the sample x,,

A, = IIA J = 1,

( 1.1)

for k =  1,2,3. (1.2)



The color chromaticity CXj : Z2 —> T may be defined as the point on Maxwell triangle T, which 
constitutes a parametrization of the chromaticity space. In this way, each chrominance line is 
entirely determined by its intersection point with the Maxwell plane, [117] where T is a triangle 
in IR3, which intersects the RGB color primaries in the RGB cube comers, (see Figs. 1.1, 1.6). 
Thus, the color chromaticity of the vector x*, for i = 1 , 2 ,Q, can be defined as the point 
Cx, =  (Cxn,c xi2, c x J  with coordinates given by

CXik — — —— , CXil + CXi2 + CXi3 =  1 , for k = 1,2,3. (1-3)
a-ii -t- Xi2 -t- Xis
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1.3 Color Image Noise and its Models

Because the acquisition or transmission of digital images through sensors or communication 
channels is often inferred by different kinds of noise, [20,34,224,232,246,429] one of the aims 
of the pre-processing techniques is its efficient removal, [111,226,231].

Noise attenuation is of great importance in various applications, like the enhancement of 
biological images (for example cDNA microarrays, [90,95,348]), digital restoration of images 
of fine arts, [39,169,321,323,325,327] old color movies enhancement, [153,388] quality im­
provement of images acquired by different sensors, and many others, (Fig. 1.7).

In many practical applications, images are corrupted by noise originating from different 
sources. This mixed noise can be caused by faulty image sensors and errors due to image 
capture, transmission or storage and is usually modelled by additive Gaussian noise with super­
imposed impulsive noise, [20,174,246].

Noise in an image affects its perceptual quality, diminishing not only its visual fidelity, but 
also decreasing the performance of the task for which it was acquired, [412]. Noise introduces 
random distortions into sensor readings, making them different from the ideal values and thus 
introducing errors and undesirable errors in subsequent stages of the image processing based 
system.

Noise in the image sequence may result not only from sensor malfunctions, but also from 
electronic interference or flaws in the data transmission procedure. Faulty sensors, optic imper­
fections, electronics interferences, data transmission errors or aging of the storage material may 
introduce noise components to digital images, (Figs. 1.2, 1.7). Considering the signal-to-noise 
ratio over practical communication media, there can be also degradation in quality due to the 
low power of the received signal. Image quality degradation can also be caused by applied pro­
cessing techniques, such as aperture correction, that amplifies both high frequency signals and 
noise or demosaicing procedures performed in CCD sensors.

The appearance of noise and its influence on the image quality, (Fig. 1.7) is related to its 
statistical characteristics. Noise signals can be either periodic in nature or random. They can 
be described in terms of the commonly used Gaussian noise model or they can be characterized 
by abrupt local changes in the image data, which occur in the form of short time duration, high 
energy spikes attaining large amplitudes and modelled by long-tailed distributions, [59,141, 
382,383,430].

1.3.1 Frequently Occurring Noise Classes

As described earlier, the most common noise sources are sensors and transmission channel 
faults, (Fig. 1.2). Both sources introduce different kinds of noise, which cause different visual 
effects.

Sensor Noise

Image sensors can be divided into two categories, namely photochemical and photoelectronic 
sensors, [136]. In photochemical sensors e.g. positive and negative photographic films, the 
appearance of noise can be attributed mainly to the silver grain in the active film surface. This 
so-called film grain noise, is modelled as a Poisson or Gaussian process. In addition to the film 
grain noise, photographic noise is due to dust that collects on the optics and on the films during 
the developing process.

Photoelectronic sensors have an advantage over film in that they can be used to drive an 
image digitizer directly. Two basic noise models are usually associated with image acquisition 

sensors:
• thermal noise usually modelled as additive, white, zero-mean Gaussian noise [246],

• photoelectronic noise [231], which is produced by the random fluctuation of the number of 
photons on the light sensitive surface of the sensor.

The noise characteristics are strongly dependent on the type of sensors used. The typical 
noise generated by the most commonly used CCD cameras include, [55,77]:

• Shot Noise associated with the random arrival of photons at the detector,
• Reset Noise caused by the conversion from the charge domain to the voltage domain by means 
of a sense capacitor and source-follower amplifier,
• Output Amplifier Noise consisting of white noise, (thermal noise also called Johnson noise) 

and flicker noise (also called 1 / f  noise),
• Clocking Noise caused by the number of clocks required to transfer the signal through a CCD 
and process its output,

1.3 C o lo r  Im a g e  N o ise  and  its  M o d e ls  15
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Fig. 1.2. Frequently occurring noise corrupting color images

• Dark Current Noise resulting from the imperfections or impurities in the depleted bulk silicon 
or at the silicon - silicon dioxide interface,

• Surface Dark Current caused by the generation centers at the sensor’s surface, (these centers 
are surface states formed at the silicon - silicon dioxide interface),
• Bulk Dark Current attributed primarily to defects in the silicon, which generates dark cur­
rent non-uniformity (each pixel generates a slightly different amount of dark current) and dark 
current shot noise (equal to the square root of the dark signal),
• Photo Response Non-Uniformity caused by the variation in light sensitivity of sensor’s ele­
ments, which results in a faint checkerboard pattern in a flat-field image.

Taking into consideration that the general notion of noise describes the amount of random 
fluctuation in a given quantity, sensor noise should be considered as a 3-channel perturbation 
vector in the RGB color space affecting the spread of the actual RGB vectors, [375]. Such noisy 
samples can be characterized by a high angular distance to the neighboring samples. This can 
represent a strong artifact, to which the human visual system is very sensitive, [284].

Transmission Noise

The noise encountered in color images cannot always be described by the commonly assumed 
Gaussian model. Such noise is generated during the transmission and is frequently introduced 
through bit errors, [20,49] i.e. random changes of bit values (from 1 to 0 or from 0 to 1) in an 
image digital representation.

Is it clear that the degree of such corruption depends on the frequency of the occurrence, 
as well as the bit level, that is affected by noise. It is unlikely that most of the noise in a color 
image will result in pure gray scale pixels. This would require the RGB color channels to be 
corrupted in such a way that the distorted pixels have the same color components, i.e. with full 
correlation among the color components. More likely is that the noisy vector will be composed
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of independent channel values updated for each corrupted pixel or the noisy vectors of the RGB 
images will be only slightly correlated, [200,246].

1.3.2 Noise M odels

The noise modelling and evaluation of the efficiency of noise attenuation methods using the 
widely used test images allows the objective comparison of the noisy, restored and original 
images, [99].

Applying the nomenclature used in [19], in which x, e Zl, x, =  (m , xi2, . . . ,  Xim) repre­
sents the observation (noisy) sample and o; e Z1, o* =  (o,i, oi2, ■ ■ ■, oim) is the desired (noise 
free) sample, the noise corruption is modelled as

xi =  oi + vi , (1.4)

where v< = (vn, vl2). . . ,  vim) is the vector describing the noise process, (e.g. thermal noise 
mixed with bit errors) and i =  1 ,2 ,..., Q characterizes the spatial position of the samples 
on the image domain. Note, that vt can be described as a signal-dependent noise or as noise 
independent on the image signal.

Very often noise encountered in digital image processing applications has to be character­
ized in terms of random impulses. Thus, image filters should be able to suppress impulsive or 
generally heavy-tailed noise.

Impulsive Noise Models

In many practical situations, images are corrupted by noise caused either by faulty image sensors 
or due to transmission errors resulting from man-made phenomena such as ignition transients 
in the vicinity of the receivers or even natural phenomena such as lightning in the atmosphere.

The impulsive noise is often generated by bit errors, especially during the scanning or trans­
mission over noisy information channels. In the case of gray scale images, the model of such a 
corruption can be defined as, [20]

» jJ  =  /  > w i t h  P r o b a b i l i t y  1 - p ,  5 )

1 [  1  — fcf, w i t h  p r o b a b i l i t y  p ,

where p is the bit change probability, fc- and *k{, for j  = 1 ,2 ,..., B are binary values {0,1} of 
5-bit original o* sample and noisy sample xt given by

0i =  k\2B~l +  fc22B- 2 + ... + k f~ l& +  k f , (1.6)

Xi = , kl2B- 1 +  *k?2B~2 + .. .  +  * k f-l21 + **f. (1.7)
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In order to follow the corruption in the intensity domain, the above model can be simplified into 
the random valued impulsive noise given by, [20,231]

J Oi, with probability 1  — p,
Xi =  < (1-8)

I Vi, with probability p, 

where x, is the noisy image sample, ot denotes the original image sample, i describes the sample 
location, Vi is the random value from the range [0,255] and p is the impulse probability.

In the case of color images, there exist some multichannel extensions of (1.8), [189,232,
246]. In the first salt & papper noise model (NM1), the noisy signal is achieved as follows,
[313,315]

{{vjj, Oi2, Oi3}, with probability p,
{°inVi2,Oi3}, with probability p, (1.9)

{0. i ,0i2,Wi3}, with probability p, 
where x, represents the pixel in the corrupted image, oi — {0^ , 0^ , ol3} represents the original 
sample and vil, vl2, vi3 are random, uncorrelated variables taking the value 0 or 255, with equal 
probability.

In the second model (NM2), [232,246,384,402,407] which reflects better the signal corrup­
tion and allows to simulate the correlation among noisy image channels, the sample distortion 

is given by
Oi, with probability 1  — p,

{Vi, oi2, oi3 }, with probability px p,
Oj3}, with probability p2 P-. (1-10)

{otl,oi2,Vi}, with probability p3 p,
{vi, Vi, Vi}, with probability P4 p,

where p is the sample corruption probability and pi,pi,p3 are corruption probabilities of each 
color channel, so that YliPk = l -1 The impulses can have either large positive or negative 
values and we assume that when an impulse is introduced, forcing the pixel value outside the 
[0,255] range, clipping is applied to push the corrupted noise value into the integer range spec­
ified by the 8-bit arithmetic. Similar corruption model can be applied using the HSV image 

representation, [155,402]

{Hi, Si, Vi}, with probability ( 1 — p ) ,
Si, Vi}, with probability pip,

{Hi,vi2, Vi}, with probability p2p, (1-11)
{Hi, Si, 1^3}, with probability p3 p ,
{vh,vi2,vi3}, with probability p4p,

NM3 : X;

‘In this work, NM2 will generally denote the case with p* =  0.25, k = 1 , . . . ,  4, and i>, =  0 or 255.

where p denotes the degree of impulsive noise distortion, J2 iPk =  1 - In this noise model, vlq, 
q = 1 ,2 ,3  is a random variable in a small range, very close to the upper or lower bound of the 
pixel’s HSV components.

Very often the noise model NM2, (1.10) is being simplified setting p4 =  1, [183,189]

I Vi, with probability p,
NM4: Xi =  \ F 3 (1.12)

I Oi, with probability 1  — p,

but in this model v4 =  (vii,va ,vi3) is now a noisy vector of random, uniformly distributed, 
uncorrelated integer values, (channel intensities) in the range [0,255].

Mixed Noise

In many practical situations, an image is often corrupted by both additive Gaussian noise due 
to sensors (thermal-noise), and impulsive transmission noise introduced by environmental in­
terference or faulty communication channels. Therefore, an image can be corrupted by mixed 
noise according to the following model, [385]

{0  + vg, with probability ( 1  — p) ,
v 3 K 1 (1.13)

v/, otherwise,

where o is the noise-free color signal with the additive noise vG modelled as zero mean, Gaus­
sian noise and v/ is the transmission noise modelled as multichannel impulsive noise, [246].

Measurement of the Color Image Quality

It is clear that subjective and objective evaluation of the image quality can be applied in pro­
cessing and non-processing context as well. In the filtering and enhancement applications, 
subjective evaluation of image quality can be summarized into three main points, (Tab. 1.1):

• Is the noise removed ?

This is the basic requirement of the filter design. The human visual system is very sensi­
tive to the presence of image distortions and noise introduced into the image inhibits the
correct understanding of the image information.

• Is the structural content (edges, textures and fine details) of the image preserved ?

One of the most important criteria in the subjective evaluation of filter performance is 
the edge preservation. Image edges, which may be defined as discontinuities or abrupt 
changes in color attributes, are important features, since they provide an indication of the 
shape of the objects in the image. Maintaining the sharpness of the edges is as important
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as the removal of the image noise. The same holds true for fine image details. An image 
devoid of details looks plain and unpleasant. Therefore, it is important for the filter to 
distinguish the fine structures from the noise, so that they can be preserved during the 
filtering process.

• Are there some color artifacts in the image caused by faulty processing ?

This requirement follows the classification of any imperfection such as blocking artifacts 
or new color pixels, that were not present in the original (noise-free) image. The human 
visual system is very sensitive to changes in color. Therefore, it is important to keep 
the chromaticity (hue and saturation) unchanged while removing noise. The natural ap­
pearance of the color features of the scene must be preserved, while artificial contrast, 
color drifts and other abberations that make the filtered image look unpleasant should be 
avoided.

From this point of view it is evident that the noise removal tasks in color images may 
be understood as a process of achieving the best balance between the above-mentioned cri­
teria. According to the image processing fundamentals, which describe the filtering as a multi­
criteria task, it is necessary to use at least two objective measures that correspond to the signal- 
detail preservation and also express the noise attenuation capability. Moreover, certain objec­
tive criteria for the measurement of the preservation of color information should be used as 
well, [24,118,195,283].

The Root Mean Squared Error (RMSE), Signal to Noise Ratio (SNR), Peak Signal to Noise 
Ratio (PSNR), Normalized Mean Squared Error (NMSE) and the Normalized Color Difference 
(NCD) are used in this work for the analysis of the efficiency of the described filters, [72,131, 
135,145,246,288,401]. The objective quality measures are defined by the following formulas

M AE =

Q 771

E  E  I xik
i= l k = 1

Oik\

Qm
M SE  =

Q 771

E  E  (xik
i = 1 k =  1

O ik )2
Q
E  E  ixik -  Oik)

Qm
N M S E  = i= l k = l

Q m

E  E  (oik)2
i = 1 k= 1

S N R  =  10 log10
E  E  (oikY
i= l k= 1

Q Q
E  E  fak -  oik)
i =  1 k =  1

P S N R  =  20 logjo (^ ^ = = = )

(1.14)

(1.15)

where Q is the number of image pixels, and x lk, olk denote the fc-th component of the noisy 
image pixel and its estimation at a pixel position i , respectively.

Since RGB is not a perceptually uniform space, [8,73] in the sense that differences be­
tween colors in this color space do not correspond to color differences perceived by humans, the

1.3 C o lo r Im a g e  N o ise  and  its  M o d e ls 21

Score Overall evaluation of the distortion Noise removal evaluation
1 very disruptive poor
2 disruptive fair
3 destructive, but not disruptive good
4 perceivable, but not destructive very good
5 imperceivable excellent

Tab. 1.1. Subjective image evaluation guidelines

restoration errors are analyzed using the perceptually uniform color spaces such as CIE LAB, 
CIE LUV and color difference criteria such as AE\, AE2 and Normalized Color Difference 
criteria (NCD) are commonly used, [175,203,246,283]

ASi =  ^  £ l  y j -  L*xf  +  (a'0t -  a * f  + f a  -  b*xf  , (1.16)

A E 2 =  ^  E l  у / (l o, -  Lk )2 +  К  -  к ) 2 + К  -  к ) 2, (M7)

NCD ! =  QAEl  ' NCD2 = Q A E 2  (1.18)
E \ / ( ^ ) 2 + K i)2 + (&o,)2 ZyJ(L'0i)2 + ( < y  + (v'0i)2
i = i  v »=1

where L* represents lightness values and (a*, b*), (u*, v*) chrominance values corresponding to 
original Oj and noisy (filtered) x, samples expressed in CIE LAB and CIE LUV color spaces. 2 

It is worth noticing that the threshold value of AEx criteria established in [203,283] at 
around 2.3 characterizes the limit of human sensitivity to color distortion. In terms of the differ­
ence between two colors, the human visual system is not capable to recognize a color difference 
smaller than this threshold value and therefore the designed filters should decrease the color 
difference between original and filtered samples just to this value or below.

In general, the criteria such as AEi, AE2 and respective NCD values, express well the 
measure of color difference or chromaticity preservation, however they do not measure the 
noise attenuation capability and signal-detail preservation of the noise filtering schemes. For 
that reason, it is necessary to combine AEb AE2 based criteria with measures such as MSE, 
SNR, PSNR etc. computed in the RGB or other color spaces. It can be easily observed that one 
filter can produce low values of MSE, whereas its color chromaticity preservation capability 
(expressed through NCD) can be significantly worse, and vice versa.

Although quantitative measures, such as AE\, AE2 and NCD are close approximations of 
the perceptual error, they cannot exactly characterize the quite complex attributes of human 
perception. Therefore, an alternative subjective approach shown in Tab. 1.1 is commonly used 
for the estimation of the perceptual image quality, [246].

2In this work the N C D  defined on the CIE LUV color space will be used.
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1.4 Color Image Filtering Designs

The filtering of image noise is an important part of any image processing system, whether the 
final image is utilized for manual interpretation or for automatic analysis and therefore a plethora 
of filtering techniques have been proposed in the literature, [230,231,234], (Fig. 1.4).

It is clear that there are some significant 
aspects, which influence the design and se­
lection of the appropriate filtering technique. 
A good filter for processing of color images 
should be designed mainly with respect to the 
trichromatic nature of color image, its non­
linear characteristics and statistics of noise 
corruption. According to the trichromatic na­
ture of color, the color image processing tech­
niques can be divided into two main classes:

Input
a)

Output

F ilte r -oG  
~° B

b)

Fig. 1.3. M arginal (a) and vector processing (b)

• Marginal (componentwise) methods, [257,430]
This framework operates on each color channel separately, (Fig. 1.3a). Since each processing 
step is usually accompanied with a certain inaccuracy, making the output values different from 
the desired ones, ignoring the correlation which exists between the RGB channels, the projection 
of separately processed color channels into the color image output usually results in perceivable 
color artifacts. Componentwise processing is appropriate in the case of highly decorrelated 
color spaces (e.g. YCbCr used in the digital television, YUV in the Pal/Secam television 
format, YIQ in the NTSC television format or opponent color spaces, [66,200,311].

• Vector methods, [243,246]
In the vector processing of color images, the input samples are processed as a set of vectors. 
Since natural images are characterized by high correlation between their RGB components, this 
is an important feature that predetermines the success of vector processing.

An example of the distorsion caused by componentwise processing is shown in Fig. 1.5, 
where impulsive noise has been added to a signal component and then the channels were sepa­
rately filtered by a median of length 5. The filtering removes the impulses on flat signal areas 
but causes the edge shift to the left, if there is an impulse in front of it. As a result of the edge 
shift, the output color sample will not be one of the inputs, [19,220].
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Besides the preservation of image colors, the filtering operators are required to preserve 
salient image features, such as edges and texture and of course to remove noise. The most 
common approach to the problem of noise reduction is the utilization of some kind of smoothing 
operation, which filters out random fluctuations due to noise. The rationale of this approach is 
the need to determine suitable values of image pixels, which are statistically close to the original, 
uncorrupted color image signal, [231].

The smoothing approach is based on a spe­
cial type of sliding (moving, running) win­
dow W  = {xfc € Z*, k = 1 ,2 ,..., N}, which 
usually affects one image sample (mostly the 
sample xx placed in the center of the window) 
at a time, changing its value by some function 
of a local neighborhood {x2, x2, . . . ,  x^} de­
termined by W. Thus, the value of the esti­
mated sample depends on the values of image 
samples in its neighborhood and the window 
operator slides over the image to process in­
dividually all the image pixels.

It should be emphasized that the window 
size N  influences considerably the performan­

ce of the filters. If a window size is large, the filtering techniques operate on a large supporting 
area and in general they efficiently attenuate image noise. On the other hand, their detail preser­
vation capability is low, which results in image blurring. It has been widely observed [139,231], 
that for small image corruption a 3 x 3 square filter window provides the best accuracy of the 
local information estimation to achieve the trade-off between the noise smoothing and the image 
detail preservation.

Following the robust estimation and order statistic theory, [78,233] the most popular mul­
tichannel filtering class operating on a window, sliding over the image domain, is based on 
sample ordering. Performing the scalar ordering operation on a gray scale image, the atypical 
image samples, are moved to the borders of the ordered set. Thus, the center of the ordered 
sequence known as a median, [36,231] represents the sample, which has the largest probability 
to be noise-free. The direct application of the median filter (marginal filter, [257,430]) to the 
RGB color channels leads however to strong color artifacts, (Fig. 1.5).

If the noise corrupting the image is of impulsive nature, [20,246] e.g. bit errors and outliers, 
filtering approaches based on the order statistic theory are often employed, [20,208,231,233].

Fig. 1.4. Family o f  nonlinear filters
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Fig. 1.5. Illustration o f  the difference between the marginal median and the vector median filtering

These nonlinear filters operate by ordering the multivariate samples inside a processing window 
and their popularity lies in the ability to match the underlying statistical model and also in their 
computational simplicity.

In the vector case, outliers are associated with the maximum extremes of the aggregated 
distances to other input samples in the sliding window. For this reason, the output of the vector 
filters based on ranking, is defined according to a specific ordering technique, [35,123,232,385] 
as the lowest ranked vector in a predefined sliding window. Since the lowest ranked vector is 
the sample of the input set, vector filters do not generate new color samples (color artifacts) and 
such behavior is desirable due to the correlation that exists between the RGB channels. The 
ordering scheme has been adopted by the most popular vector filters such as Vector Median 
Filter, [19] and Vector Directional Filters, [397].

Numerous filtering techniques have been proposed to date for color image processing. Non­
linear filters applied to color images are required to preserve edges and details and to remove 
impulsive and Gaussian noise. Edge information is very important for human perception. There­
fore, its preservation and possibly enhancement are very important subjective features of the 
performance of nonlinear image filters.
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*„  =  60 * „ = 1 2 4  * „ = 1 2 3
image column spatial position / =  (£, -  1)A', +  k2 

image sample x, = (60,164,123)

color vector
x i =  (Xy! ,X j2 , X j3 )  g

= (60,164,123)

||x, I = ,/(200)J+(182)2+(52)J = 275.3688 |»J = >/(64)2 + (164)J+(123)2 =183.5647

Fig. 1.6. Color image processing fundam entals
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a)

b)

c)

d)

Fig. 1.7. Exam ples o f  noise appearing in: a) scanned images o f  fine  arts, b) digital photographs, c) digi­
tal images corrupted by transmission errors, (some o f  the image rows are distorted), d) DNA microarray  
images, (two-channel images consisting o f  R ed and Green components only). Each o f  the examples 
consists o f  an image and a zoom ed p a rt to better visualize the noise distorsions

Adaptive Noise Reduction Filtering

2

In this Chapter, various adaptive image filtering techniques, primarily developed for 
the noise reduction in gray scale images are examined. The presented concepts can be 
often extended to the multichannel case and directly applied as componentwise filtering 
techniques, capable of removing noise in color images. As will be shown in the third 
Chapter, very often the scalar techniques can be reformulated using the vector approach, 
to exploit the inherent correlation among image channels.

The second part of this Chapter is focused on the order statistics based filters and 
presents the optimization of the weighted median filters, which will be used in the last 
Chapter of this book.

2.1 Weighted Averaging Framework

NOISE suppression in digital images has been a topic of considerable interest in the past 
decades, due to its importance in numerous applications in various fields of computer 

vision. The most frequently used noise reducing transformations are the linear filters, which 
are based on the convolution of the image with a filter kernel of fixed coefficient. This kind of 
filtering replaces the central pixel X\ from the pixel set [ x i , x 2) . . . ,  x N},  (Fig. 2.1) belonging to 
the filter mask W  containing N  image pixels, with the weighted mean of the samples inside IV, 
[118,207,369]. The filter output y is given by the convolution of the filtering kernel determined 
by the weight coefficients {ipi,ip2, ■ ■ ■, iPn} with the pixels in W

J  N  N

S = ^ 2 lpk . (2.1)
k= 1 k=l
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a)

X 2 X 3 X 4

X 5 X i X 6

X 7 X 8 X 9

b)

8 8

Fig. 2.1. The filtering mask o f  size  3 x 3 ,  with the p ixel x \  in the center (a) and the directions between 
the central p ixel and its neighbors (b)

Linear filters are relatively simple and fast, but their major drawback is that they cause blur­
ring of the edges and suppress tiny details. This effect can be diminished incorporating a certain 
kind of nonlinearity and adaptiveness into the weight coefficients, performing the averaging in 
a selected neighborhood determined by the shape of the filter mask. The term adaptive means 
that the weights change according to the image structure, which is to be smoothed. In this 
way the adaptive smoothing can be seen as a nonlinear process capable of noise removal, while 
preserving important image features, [12 0 ].

Different kinds of edge and structure preserving adaptive filter kernels have been proposed 
in the rich literature on this subject, [43,70,109,118,150,250,421,427]. One of the simplest 
nonlinear schemes works with a filter kernel weights expressed as 1

tpk =  1 -  1 ^ 1  — Xk\, for k — 1,2, . . . ,  N . (2.2)

This filter takes with greater weighting coefficients those pixels of the neighborhood, whose 
intensity are close to the intensity of the central pixel x\

- N  N

y =  - £ ( l - | a : i - x fc|) x k ,  S  =  N  -  £  \x i -  X k \ • (2.3)
fc=l k= 2

This improves dramatically the detail preserving capability of the Averaging Filtering (AF) 
scheme (2.1). Other similar designs, [164,206,275,409,410] do not take the central pixel into 
consideration, which leads to a much more robust filter performance.

The gradient inverse weighted operator employs a similar structure and forms a weighted 
mean of the pixels belonging to the filter window. Weighting coefficients depend on the differ­
ence of the gray scale values between the central pixel and its neighbors in W, [171,409,410]

V = s ' £  m a x { 7 ) | i i - * * ! } ’ S = =  (2 ‘4)^  max{7 ,|x 1 -  ’

where 7  is a parameter, which influences the degree of contribution of the central pixel to the 
weighted sum.

'We assume here that the pixel values are normalized to the range [0,1].
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Local statistic filters constitute a class of linear minimum mean squared error estimators, 
based on the non-stationarity of the signal and the noise model, [161,164-166]. These filters 
make use of the local mean and the variance of the input set W  and define the filter output as

y = x + a (x  1 — x) = ax\ + (1 — a ) x , (2.5)

where x is the arithmetic mean of the image pixels belonging to the filter window W  and a can 
be defined as the normalized correlation between two images: Xi = o + Vi, x2 = 0 + v2,

c -  (*■ -  (*.>) f e  -  f a »  r i  (2 6)
((III -  (xi)|2) ) 2 ((|x2 -  (x2)|2) ) 2 

estimated through, [173,231,374]

01 = CT2 +0.2 > 1/2 =  jv ^  ^Xk ~ ^  ’ <‘2'7^
n 1 k =  1 k = 1

a2 = max {0, is2 -  a^} , a =  max jo, 1  -  ^ | |  , (2.8)

where <■> denotes the expected value, u is the local variance calculated from the samples in the 
filter window and a2 is the estimate of the variance of the noise process. If u »  an, then a ^ l  
and practically no changes are introduced. When v < an, then a = 0 and the central pixel 
is replaced with the local mean. In this way, the filter smooths with the local mean, when the 
noise is not very intensive and leaves the pixel value unchanged when a strong signal activity is 
detected. The major drawback of this filter is that it fails to remove impulses and leaves noise 
in the vicinity of high gradient image features. Equation (2.5) can be rewritten as, [374]

1  — ol 1  — Oi ~b N o .y = ax i +  (1 -  a)x -  ——  (^ 1 • Xi + x2 + ... + x N) , ipx =    , (2.9)
Jy 1 — a

and in this way the local statistic filter (2.5) is reduced to the central weighted average, with an
adaptive weighting coefficient ipi-

In [268,269] a powerful adaptive smoothing technique related closely to the anisotropic
diffusion, which will be discussed in Chapter 4, was proposed. In this approach, the central
pixel X\ is replaced by a weighted sum of all pixel contained in the filtering mask W

1 ^  ^  z' 2 'j
y = n'52'PkXk, with 5 = ^  = exp j ~ l ! f ’ (2-10)

fc=i k=1 k P )
where gk is the magnitude of the gradient calculated in the local neighborhood of the pixel xk.

In [170] an adaptive smoothing technique based on the estimation of the directional gradi­
ents was proposed, (Fig. 2.2)
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where

= f(gk), gk = \xk -  aril, * > 2, f(x) =
1 -  2 (x /a )2 if Ixl < a / 2 ,
2 (x/2 — l)2 if a/2 <|x| <a, (2.12)

0 if |x| > a.

Another efficient adaptive scheme, [290,300,301, 
317,318,392] has been proposed as

1  V ' \  Pk\ f \xk ~  * l |2 1

Fig. 2.2. Shape o f  the functions used in 
[170], (2.12)

fc=2
(2.13)

where pk denotes the topological distance between the 
central pixel x\ and other pixels in W  and /3i, /?2 are 
filter parameters. The i m p o r t a n t  f e a t u r e  of 
this algorithm is that it e x c l u d e s  the central pixel 
Xi from the averaging.

Good results of noise reduction can usually be ob­
tained by performing the a-filtering, [25,166,172,421]. 
This procedure computes a weighted mean over the fil­

ter window, but only those pixels whose values lie within 7  • a of the central pixel intensity are 
taken into the average. In this way, this filter attempts to estimate a new pixel value with only 
those neighbors, whose values do not deviate too much from the value of X\

1y = - r i ' Y \ ^ k xk, for k : \xk — i i |  < 7 <r, (2.14)
k=l

where S  is the normalizing factor, {ipi,ip2, ■ ■ •, V'/v} are weighting coefficients, 7  is a design 
parameter, (typically 7  = 2) and a is the standard deviation of pixels belonging to the local 
window W  or the value of the standard deviation estimated from the whole image.

Similar idea lies behind the filtering scheme defined as, [250]

y = x, if \x\ — x\ > S , 
Xi, otherwise.

(2.15)

If the difference between the central pixel and the local mean exceeds a specific threshold (de­
sign parameter) S, this filter determines as the output, the mean value of the pixels in W, other­
wise the central sample remains unchanged.

Maximum homogeneity neighbor filters, [163] divide the filter masks into a set of regions, in 
which the variance of the pixel intensities is calculated. The aim of these filters is to find clusters
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of pixels, which are similar to the central pixel of the filtering mask. Their output is defined as 
the mean value of the pixels belonging to the sub-window, in which the variance reaches the 
minimum, [27].

The filter introduced in [163,260,393] divides 
the 5 x 5 filtering mask into four sub-windows as 
depicted in Fig. 2.3a). In each of the subwin­
dows, the mean and the variance is calculated and 
the output of the filter is the mean value of the 
pixels from that square, which has the smallest 
variance. To improve the efficiency of these fil­
ters, another window placed in the middle of the 
filtering can be added [393] and the partition of 
the filtering window into nine sub-windows can 
be performed, [213,214], Fig. 2.3b), c). Simi­
lar filtering structure has been proposed in [368], 
(Fig. 2.3d). This approach is in some way s i m ­
i l a r  to the technique which will be described 
in Chapter 5, in which the filters based on digital 
paths are introduced. Instead of looking for sub­
windows with similar pixels, this novel technique 
investigates digital paths linking the central pixel 
with pixels belonging to the filter window of size 
determined by the practitioner, [313,322].

The k-nearest neighbor filter proposed in [81] 
replaces the gray level of the central pixel X\ by 
the average of its r  neighbors whose intensities 
are closest to that of xi, [25], (r =  6 and a win­
dow of size 3 x 3  was recommended in [206]).

The image noise can be also reduced by ap­
plying a filter, which substitutes the gray scale 
value of the central pixel, by a gray tone from the 
neighborhood, which is closest to the average of 
all points in the filter window W, (nearest neigh­
bor filter).
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Fig. 2.3. Different sub-window structures used 
in the filtering fram ew orks proposed in [163, 
213] a), [213,214] b, c) and [368], d)
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2.2 Order Statistic Based Filters

It is evident that many image processing tasks cannot be efficiently accomplished by linear tech­
niques. Image signals are nonlinear in nature due to the presence of structural information and 
are perceived by the human visual system, which has strong nonlinear characteristics. Unfortu­
nately, most of the linear and also nonlinear techniques based on the sample averaging, tend to 
blur structural elements such as lines, edges, comers and fine texture details.

Nonlinear methods can preserve important structural elements and eliminate degradations 
occurring during signal formation or transmission through nonlinear channels. Therefore, non­
linear filters based on the robust order statistics theory are probably the most extensively studied 
class of image processing filters. Nonlinearity of the order statistic based filters lies in the sam­
ple ordering, which transforms the input set {xi,x2, ..., ijv} into the ordered sequence denoted 
as i(i) < X(2) < ■ • ■ < X(n)»where X(k) 6 {^l, %2, ■ ■ -, %n}i for k =  1 ,. . . ,  N, denotes the fc-th 
order statistic.

The ordering operation moves the atypical samples, often noise, to the borders of the ordered 
set and provides the middle positioned samples of the ordered sequence as robust estimates. 
Based on this property, the Median Filter (MF) is defined as 2, [12,108,231,279]

y = MED{x i ,x 2, ...,xn } =X(Jl), p = (N + l) /2 , (2.16)

where X(M) is the middle order statistic or middle positioned sample of the ordered set W = 
{x(i),x(2) , .. .  ,X(jv)}» i(fc) < £y), for k < j. Choosing any order statistic x^)  of W, for 
k — 1 ,2 ,..., iV, constitutes the output of the Rank Order Filter (ROF), [13,20,233]. It is 
evident that the MF is a special case of the ROF, for k =  p.

The MF filter is the most commonly used selection filters. It has the ability of attenuating 
strong impulse noise, while preserving sharp edges. Its major drawback however, is that it 
wipes out the structures, which are of the size of the filter window and this effect causes that the 
texture of a filtered image is strongly distorted. Another drawback of the standard median is that 
it inevitably alters the details of the image not distorted by the noise process, since the standard 
median cannot distinguish between the corrupted and original pixels, and whether a pixel is 
corrupted or not, it is replaced by the local median within a filtering window. As a result, after 
the application of the median filter, the image noise is removed, but details are lost and artifacts 
like streaks and blotches are produced. Additionally, the median filtered image is prone to edge 
jittering, when the noise ratio is high. Therefore a trade-off between the suppression of noise and

2We assume a filtering mask with odd number of samples N .
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the preservation of fine image details and edges has to be achieved. This can be accomplished 
in different ways, their goals is however always to diminish the filtering effect in image regions 
not affected by the noise process, [34].

The MF is a maximum likelihood estimate (MLE) of location for the Laplacian distribution, 
[122,231]. It has been proven, that statistical properties and the robust smoothing capability of 
the median filter makes it very suitable for impulsive noise filtering. To adapt the order statistic 
based filters to other noise distributions, the so called L filters have been introduced, (Fig. 2.4).

The L filters are estimators achieving the 
compromise between the nonlinear operation 
given by the sample ordering and linear opera­
tion given by the weighting of the sample data. 
The L filter output is achieved as a weighted 
sum of the ordered data. Thus, the correspond­
ing mean squared error will always be less than 

Fig. 2.4. L-filter structure or equaj t0 that achieved with the sample mean

or the sample median. The output of the L filters is defined as y = Ylk=i V'fc X(k), where 
■ ■ ■ ,ipN are nonzero weighting coefficients, which can be optimized by minimizing

E [ ]C r= i № X(k) ~ ° * )2] =  - (2-17>

where E[ ■ ] denotes the statistical expectation, o signifies the desired signal, t/> = { ^ i,... ,ipN} 
is the weight vector and R  is the correlation matrix of ordered noise components {v(ij, . . . ,  V(n) }.

A great advantage of the L filter class is that for a known noise distribution, it is possible to 
choose the filter weights in such a way, that it becomes the optimal filter in the mean squared 
error sense. In [375] adaptive L-filter structures exploiting temporal information have been 
introduced. In this approach the filter takes the form

1 — a
N ( x ( l )  +  X(2) +  . . . +  W  • Z(m) +  ■ ■ • +  X(N)) =  +  (1  -  a )x , (2.18)

where only the median sample x^) is assigned a weight Vv
L filters represent an important generalization of MF, ROF, and a-trimmed mean filters. The 

Q-trimmed mean filter has been introduced as the compromise between the median filters and 
linear filters, since the AF suppresses additive Gaussian noise better than the MF and the MF 
has better impulsive noise characteristics. The output of the Q-trimmed mean filter is given by

V =
1

N — 2a

N —a + 1

xw - (2.19)
k = a
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In order to improve its signal-detail preserving characteristics and provide estimates closer to 
the MF output, two modifications of a-trimmed mean filters have been introduced

N  I N

y w ^ ip k X l k )  , (2.20)
k= 1  /  k= 1

where weight coefficients ^ i , ■ ■ •, V'iv are chosen as

f i, it I* .- * „ ! < { „  o[ 1 1, it (221)
[ 0, otherwise, [ 0, otherwise,

where is the local median and x\ is the central sample of W. In the first approach, the 
amount of trimming depends on the parameter <51; (data deviating strongly from the local me­
dian are trimmed out). Since such data are usually outliers, this modification provides good 
noise attenuation properties. The second modification in (2.21) allows to trim out the samples 
deviating strongly from the central pixel. Such filter preserves well the edges and image details, 
however in some applications its noise attenuation capability can be inefficient, [308].

Wilcoxon filters are the most important filter family in the large class of R estimators. Since 
the output of Wilcoxon filter is defined as

y =  M ED  {[i(/b) +  X(j)\/2, for 1 < k < j  < TV} , (2.22)

these filters are effective in the removal of additive Gaussian noise. However, they do not 
preserve well edges because this filter structure is based on the averaging operation. A further 
disadvantage of the Wilcoxon filter is its high computational complexity. It can be decreased by 
introducing a parameter 5 which leads to its simplified structure

y = MED{[x(k) +X(j)\/2, , for 1 ^  k < j  < N\ (j - k ) < 6} . (2.23)

By varying the range parameter 6 from 1 to the window size N, the modified Wilcoxon filter 
can perform a wide range of smoothing operations from median to the standard Wilcoxon filter.

One of the main disadvantages of the L filters and the above mentioned order statistic based 
filter classes is that the ordering destroys the information about the local neighborhood struc­
ture. Therefore, their performance can be inefficient for larger window sizes. Also, the lower 
performance is particularly evident in the case of non-stationary signals. Therefore, a modifi­
cation of L filters, which takes into account the information about the neighborhood has been 
developed, (LI filters). Later, this idea has been extended to the nonlinear filters operating on 
permutation lattices, [14,30-33,125].

Combining the rank-temporal relations with the linear nature of the weighted averaging, 
makes that LI filters are capable of removing additive Gaussian, impulsive and mixed noise in
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digital images. However, these filters similarly as L filters, averaging based filters, Wilcoxon 
filters, a-trimmed mean filters, etc., produce new samples, which can increase local distortion 
of digital images. Therefore, selection filtering classes represent a better choice, especially 
for images corrupted by impulsive noise. These filters select the output as one of the samples 
belonging to W  and their efficiency depends on the applied selection mechanism.

Weighted median (WM) filters constitute a class of the most natural selection filters. These 
filters have been developed as an extension of the median filter and are characterized by sig­
nificantly improved detail preserving characteristics, [54,264]. In the WM filtering, based on 
non-negative integer weights, the filter output is given by

y = MED{ip1 Oxi, ip2<>x2, ■■■,‘iPnOxn}, (2.24)
w t i m e s

where 0  is a duplication (replication) operator defined as w ^ x k =  xk)xk, ... ,xk .
The WM filters can be designed using non-negative real weights. In such a case, the WM 

output y e W  minimizes the expression L(y) =  Ixk — 2/1 • If ~4>k > 0, for k
1 V, and the function L(y) is piecewise linear and convex, then y is the sample from the
input set. In the case of positive real weights, the computation of WM filter output requires the 
ordering of the input samples and a successive summing up of the upper weights corresponding 
to ordered samples, until the sum exceeds half of the total sum of the weights. The WM filter 
output is the sample corresponding to the last added weight, [424].

To adapt the weight coefficients to varying signal and noise statistics, the WM adaptation 
algorithms, which originate from stack filter framework, [20,21,65,105,162,171,249] have 
been developed, [422-424]. The aim of the optimal WM filtering is to find a WM filter with the 
window size N, for which the error criteria such as mean absolute error MAE or mean squared 
error MSE between the filter output y and the desired output o is minimized.

Recently, the WM scheme has been extended, [15,97] by assigning negative integer weights 
to the input samples. In this way, the WM filters can be also used as a sharpening filter class.

To avoid problems connected with searching for optimal parameters, a simple and powerful 
class of the Lower-Upper-Middle (LUM) smoothers has been introduced. The LUM smoothers 
are a subset of the LUM filters, [124] which can be designed to simultaneously perform smooth­
ing and sharpening operations, [126,179,181]. The output of the LUM smoother is given by

y =  MED  {z(fc), x i , a;(w_*+i)} , (2.25)

where k = {1 ,2 ,..., /lz} denotes the smoothing parameter, x x is the central sample of the input 
set, £(*) is the lower and x^^k+i) is the upper order statistic such that x^) < i(N-fc+i). (Fig. 
2.5a). Other similar design assigns the median value to the central pixel if its rank in the ordered 
sequence is lower than k or higher than N  -  k + 1, (Fig. 2.5b).
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a) b)

Fig. 2.5. Illustration o f  the construction o f  the LU M  filte r  defined by (2.25) (a) and the rank conditioned  
filter, which assigns the median value p. to the sam ples with ranks lower than k  or higher than N  — k +  1 
(b), (adaptedfrom  [125])

The LUM smoother can be equivalently expressed as the Central Weighted Median (CWM) 
filter, [124,151,179] defined by

yk = MED{ipi 0 x 1 ,2 2 , •••, ay} =  M ED < {xi ,x2, ...,xN} U < xi , x i , . .  . , x 1 (2.26)

where ip i  is the weight associated with the central sample X \ .  The relationship between ip i  in 
(2.26) and k in (2.25) is given by: V'l =  N  — 2k + 2.

It has been proven that definition (2.25) is more advantageous and useful than (2.26), espe­
cially in terms of the computational complexity, [124] and the filter analysis, [178]. On the other 
hand, the CWM definition (2.26) is widely used due to the popularity of the weighted median 
framework, [67,68].

Using the more comprehensible form (2.25), the comparison of the lower xk and the upper 
2(jv—fc+i) order statistic with the central sample x x from the filter window, forms the LUM 
smoothing operation. If Xi lies in a range formed by these order statistics, it is not modified. 
However, if Xi lies outside this range, it is replaced with a sample that lies closer to the median 
X(p). Varying the filter parameter k, the amount of smoothing performed by the LUM smoother 
can range from no smoothing, equivalent to the identity operation (k =  1) to the maximum 
amount of smoothing provided by the median filter, (k = p). The first case preserves the central 
sample Xu whereas the last one often results in image blurring. Therefore, the intermediate 
values of k can provide a better trade-off between the smoothing and detail preserving LUM 
characteristics.

2 .2  O rder S ta tis tic  B a se d  F ilters 37

To employ an adaptive selection of k or tpi in dependence on the local image statistics of the 
samples in W, a variety of selection mechanisms have been proposed to date, [68,179,185,215]. 
However, their common drawback lies in their low design flexibility. Therefore, the switching 
median filters, [67,96,411,429] based on the compromise between the identity operation and 
the robust MF, represent an interesting alternative, (Fig. 2.6).

The switching median filters can be viewed as an adaptive two-level LUM smoothers pro­
viding the maximum and the minimum amount of smoothing and the employed switching rule 
is often defined by

if <; > 5 then X\ is impulse,
else X\ is noise — free,

(2.27)

Fig. 2.6. Switching filtering concept

where 5 is a threshold value and ? denotes a simple relationship, (usually absolute difference) 
between the central sample X\ and the samples inside W . If ? > 5, then Xi is considered as noisy 
and is being estimated by an appropriate filter. Otherwise, X\ is declared to be noise-free and 
is being retained. This scheme confines the filter influence only to noisy samples and therefore 
significantly reduces the estimation error of the output image, [68,151,223].

Another important filtering class based on 
the order statistics is given by the permuta­
tion filters, [30,32] and their extensions such 
as Rank-Conditioned Rank-Selection (RCRS) 
filters, [125,171] and extended permutation 
filters, [31]. These filters utilize the whole 
potential of the permutation group theory and 
the information about the rank and spatial (temporal) position of the samples inside W. How­
ever, due to extreme computational complexity, their practical use is significantly limited, al­
though a variety of methods for reduction of permutation group complexity have been intro­
duced, [32].

The majority of median filter modifications are implemented uniformly across the image, 
thus they modify also pixels that are undisturbed by noise. As a result, they still tend to remove 
details from the image or leave impulsive noise samples. To avoid excessive blurring of images 
during filtering process, the Signal Dependent Rank-Ordered Mean (SD-ROM) filter has been 
proposed, [3,4,209,210]. In the SD-ROM approach, the filtering operation is conditioned on the 
differences between the input pixels and remaining rank-ordered pixels in the sliding window.

In this design, a vector containing neighbors xk of X\ from window W  of size 3 x 3 is 
constructed. Assuming the ordering of neighbors of X \ .  x@) < X(3) X(9), a rank-
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ordered mean mT =  (i(5) + i(6))/2 and rank ordered differences [52, ?3 , ?4, ?s] are defined as

f  if  *1 <  rrv, f . _ 2 ........5 (2.2, )
 ̂ X\ jfc) if X\ > mr ,

The rank-ordered differences provide the information about the likelihood of corruption for 
the current pixel. The purpose of the impulse noise detector is to determine whether the current 
pixel is corrupted or noise-free. If a signal sample is detected as corrupted, it is replaced with 
an estimation of the true value, based on the order statistics of the remaining pixels in the 
processing window W, otherwise it is kept unchanged.

The SD-ROM filter output is defined as

\  mr, i fqk >Sk, for A: =  2 ,...5 , 
y = < (2.29)

[ H,  otherwise,

where S2, S3, <54,65 are threshold values, (S2 < S3 < S4 < S5). In other words, if the algorithms 
detects Xi as a noisy sample, and any of the four thresholds is exceeded, the central pixel is 
replaced by the rank-ordered mean mT, otherwise, it is kept unchanged. It is worth noticing that 
this filtering procedure e x c l u d e s  t h e  c e n t r a l  p i x e l  from the operation window.

2.3 Optimization of the Weighted Median Filters

Weighted median filters constitute an important nonlinear filtering class, [20,233]. Their robust 
smoothing capabilities in noisy environments and flexible design, [226] in conjunction with an 
optimization framework, [422,423] make this filtering class extremely attractive. Moreover, the 
WM filters are computationally efficient because their implementation may take advantage of 
binary operations, [21,22,416] and analysis, [182,426].

Let W[i) =  {x i(i),i2(*)i • - ■ be an input set of gray scale image samples deter­
mined by a filter window W(i) of length N,  where i =  1 ,.. . ,  Q denotes the position of the 
filtering window centered in x{i). Let each input sample xk(i) from W (i) be associated with a 
real valued weight tpk, for k — 1,2, . . .  ,N.  The weighted median of the input set W(i) is the 
sample y(i) 6 W(i) minimizing the expression Ylk=i ’’Pk |y(*) — xk(i)\.

If each weight ipk is equal to 1, then the WM filter is equivalent to the MF, [231,233]. In 
order to choose an appropriate weight vector, so that the WM filter would be able to remove 
impulses and simultaneously preserve all desired image features, various optimization algo­
rithms, [420,423] that originate from the stack filter design, [75,422] have been developed. The 
adaptive algorithms described here are based on linear and sigmoidal approximations of the sign 
function.
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Given an input set W{i) and a weight vector ip = {ipi,ip2, ■ ■ ■, V’n}, the WM output is 
denoted as y(i) =  y(\j),W(i)). The estimation of the desired signal o(i) is accompanied with 
the estimation error e(i) =  o(i) — y(i). The cost function defined under the Mean Absolute 
Error (MAE) or Mean Squared Error (MSE) is defined as

JmaeW J )  = E{\o(i )-y{ip,W(i))\} = E {[o(i) -  y{ip,W(i))]2} . (2.30)

With the constraint of non-negative weights, the optimization problem can be expressed as

minimize Jmae{iP, i) or JmseW", *) subject to ipk > 0, for k = 1 ,2 ,..., N. (2.31)

Both cost functions are non-convex and under the assumption that the optimal weights are at 
one of the local minima, the conditions for optimality can be derived as

^  = W t E <1”»  -  «*• = £  {« <<*> -  »»> ^ }  ■ 0-32)

where S  denotes the sign function

f 1 if X > 0,
<${*}=< 0 if x =  0, (2.33)

[ -1  if x < 0,

and then

= 2E { ( « »  -  ■ « -34) 
Assuming the MAE criterion, the necessary condition for the filter optimality is, [189]

S { o ( i ) - y ( i ) } ^  = 0, A > 0  A: =  1 ,2 ,. . . ,7V. (2.35)

With respect to this analysis, adaptive WM algorithms based on linear, [422] and sigmoidal 
approximation, [423] of the sign function S  have been developed. Using the least mean squared 
(LMS) method and the constraint of non-negative weighting coefficients, the adaptation step 
related to Jmse is given by

ipk(i +1) =
dipk

r f 0, if x < 0, 
where {x} =  < (2.36)

I x, otherwise,

is a projection function, which sets the negative values to zero. Replacing the statistical expec­
tation in (2.32) with the instantaneous estimates, results in the following adaptation formula

M i  + 1) =  {&(*) +  2e dy^ S{o{i) -  y(i)} J  . (2.37)



40 A d a p tiv e  N o ise  R ed u c tio n  F ilter in g

Combining the principle of minimal LMS errors with the simultaneous principle of orthog­
onality, the adaptation formula (2.37) is redefined as

i>k{i +  1) =  {V’fcW + 2e[o(i) -  y(i)][xk(i) -  o(i)]}+ . (2.38)

Let us consider the sliding filtering window centered in position i, moving over an image do­
main. During the processing, the weight coefficients are adjusted by adding the contribution 
of the samples multiplied by a certain regulation factor e. If the adaptive WM algorithm based 
on the sigmoidal approximation of the sign function is considered, an adjustment of the filter 
weights can be expressed as, [423]

ipk(i +  1) =  [V'fcW + 2e[o(i) -  y(i)]<S{a;fc(z) -  y(i)}j , (2.39)

where o(i) is the desired sample, y(i) is the WM output in the i-th iteration, e is the iteration
constant and <S{-} is the sign function approximated by the sigmoidal function (2.40)

<5{x} = -r ^ — Z ~  1, (2-40)1 + e x

Let us assume for a moment that {-}+ is an identity function, whose argument remains 
unchanged. If Xk(i) 3> y(i) and e is positive, then the adaptation formula (2.39) is given by

+ 1) =  ipk{i) + 2e[o(t) -  y{i)], (2.41)

i.e. the importance of the sample occupying the A;-th position in a supporting window W(i) 
increases if o(i) is greater than the actual WM output y(i) and decreases if o(i) is less than 
y{i). In general, the initial weight vector ip (1) can be set to arbitrary positive values, but most 
advantageous is to start the weight adaptation with equal weights corresponding to the median. 
Regarding the optimal value of e, it has been shown in [423] that the algorithm converges to 
sub-optimal solution for sufficiently small positive value of e »  10-5.

In the case of adaptive WM filtering with the linear approximation, [422] the weight coeffi­
cients are updated as

ipkii +  1) =  {V’kW + 2e |X(jv)(j) -  i(i)(*)+
“ \ +

(2.42)- 2 | o { i )  -  X k { i ) | -  £  V’j ( t ) [* (№ )(* ) -  3 (1 )  (* ) -  2 |a r fc( * ) — a s> (0 l]
i =i

where k ,j  = 1,2,.. .  ,7V, 2(at)(*) ar>d £(i)(i) represent the maximum and minimum of the input 
set {xi(i), 2 2 (i), •.. ,x n (i)} respectively and e is the positive adaptation step-size, [422].

3

Overview of Noise Reduction Filters for 
Color Imaging

Several nonlinear techniques for color image processing have been proposed over the 
years. Among them are linear processing methods, whose mathematical simplicity and the 
existence of a unifying theory make their design and implementation easy and attractive. 
However, many filtering problems cannot be efficiently solved with linear techniques, as 
they cannot cope with nonlinearities of the image formation and fail to preserve edges and 
image details. To this end, nonlinear image processing techniques intended for color image 
filtering are presented. Nonlinear techniques are able to suppress mixed noise, preserve 
salient image features and eliminate degradations occurring during image acquisition and 
transmission through noisy channels.

3.1 Order Statistic in Color Image Filtering

O
NE of the most popular families of nonlinear filters for noise removal are order statistic fil­
ters, [155,231,233,246,396,403]. These filters utilize algebraic ordering of a windowed 

set of data to compute the output signal using the theory of robust statistics.
The early approaches to color image processing usually comprise direct extensions of the 

scalar filters to color images, (Fig. 1.3). Ordering of scalar data, such as samples of gray scale 
images, is well defined and it was extensively studied, [231]. However, the concept of input 
ordering, initially applied to scalar quantities is not easily extendable to multichannel data, 
since there is no universal way to define ordering in vector spaces and therefore a number of



different ways to order multivariate data has been proposed. These techniques are generally 
classified into, [35,156,243]:

• marginal ordering (M-ordering), where the multivariate samples are ordered in each dimen­
sion independently,
• reduced or aggregated ordering (R-ordering), where each multivariate observation is reduced 
to a scalar value according to a chosen distance metric,
• partial ordering (P-ordering), where the input data are partitioned into smaller groups which 
are then ordered,
• conditional ordering (C-ordering), where multivariate samples are ordered conditional on one 
of its marginal sets of observations.

Let the mapping 1} —> Zm represents a multichannel image, where I is an image dimension 
and m denotes the number of color channels. Let W  =  {x^ 6 Z(; /c =  1 ,2 ,..., TV} represents a 
filter window of a finite length N, where xi, x2, . . . ,  x N is a set of noisy samples and the central 
sample Xj determines the position of the filter window. Note that xkq, for q = 1 ,2 ,..., m is the 
g-th element of the input sample x k =  (xki,xk2, ■ • •, xkm).

In the case of color image filtering, the most popular filtering approaches are based on vector 
ordering scheme defined through the ordering of aggregated distance functions or dissimilarity 
measures. Such an ordering should:

• be useful from a robust estimation perspective, allowing the extension of the operations of 
scalar order statistic filters to the multivariate domain,
• preserve the notion of varying levels of extremes that is present in the scalar ordering,
• take into consideration the type of the multivariate data being used.

Therefore, since the RGB color space is used throughout this work, the ordering scheme 
should give equal importance to the three primary color channels and should consider all the 
information contained in each of the three channels.

Based on these three principles, the ordering scheme that will be utilized here, is a variation 
of the reduced ordering scheme, [246,258,385] that assigns a dissimilarity measure to the set 
of samples in W. In this way the aggregated measure of a distance of sample x*, for k =
1 ,2 ,..., TV, to all other samples in the filtering window W

Rk = J 2 N ,P(xfc>xi) .  (3-i)

is used for ranking purposes. Note that p(-) denotes the chosen distance or dissimilarity func­
tion. The scalar quantities R i , R 2, - . . ,  R-n  are then ranked in the order of their value and the 
associated vectors are correspondingly ordered as follows, [145,232,246,385,405]

T?(l) <  2) <  • • • <  R(r) <  • ■ ■ <  R(N) => X (!) -< X (2) X T  -< . . .  -< X(W ). (3.2)
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Note that 7? )̂ e {Ri, R i , . . . ,  Rn } and X(fc) e { x ^ x i,. .. .xjv}, for k =  1 ,2 , . . . ,TV. The 
proposed ordering scheme focuses on the relationships between the multivariate samples, since 
it computes dissimilarity or distance between all pairs of data points belonging to W. The 
output of the ranking procedure depends on the type of data used for the determination of the 
aggregated distance i? in (3.1) and on the function p(xk, Xj) selected to evaluate the dissimilarity 
or distance between the vectors x* and Xj.

According to the used dissimilarity measure, it is possible to differentiate the techniques 
operating on the vector distance domain, [19,29,87-89,182,379,407], angular domain, [189, 
192,236,239,395,397] or their combinations, [106,138,183,194,195,246].

3.2 Family of Vector Median Filters

Let us assume that each input multichannel sample x* is associated with the distance measure

N

Rk = ||xfc -x ,- ||7 , for/c =  1,2,. ..,TV, (3.3)
j=i

where ||x* — Xj||7 quantifies the distance among two m-channel samples x k = (xkl, . . . ,  xkm) 
and Xj = (xji, . . . ,  Xjm) using the Minkowski metric

llxfc-xjll7 =
\9=1

where xkq is the <?-th element of x k and 7  characterizes the used norm. Note that the Minkowski 
metric includes the city-block distance (7  =  1), Euclidean distance (7  =  2) and the chess-board 
distance (7  =  00) as special cases.

The sample X(i) e W  associated with the minimal aggregated distance R(i) € {R i , . . . , Rn } 
constitutes the output of the Vector Median Filter (VMF), which minimizes the distance to other 
samples inside the sliding filtering window W, [19].

Nonlinear ranked type multichannel filters generally define the vector X(!) as the output 
of the filtering operation. This selection is due to the fact that vectors that diverge greatly 
from the data population usually appear in higher indexed locations in the ordered sequence
(3.2), [123,191,232,405].

The definition of the vector median is a direct extension of the ordinary scalar median defi­
nition with the appropriate norm utilized to order vectors according to their relative magnitude 
differences, [19,40,79,85,289,391,430]. The output of the VMF is the pixel x^) € W  for

‘'391 (3.4)
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a) b)

Fig. 3.1. Construction of the cumulative distance: R\ = p( 1,2) + p( 1,3) + p(l, 4) + p(l, 5), (a) and 
similarly the distance R3 associated with X3  equals R3 = p(3,1) + p(3,2) + p(3,4) + p(3,5), (b)

which the following condition is satisfied

N  N

'52p{xm ,xj ) < ' £ i p{xk,x j ), k = l , . . . , N .  (3.5)
3=1 3=1

In this way the VMF consists of computing and comparing the values of Rk in (3.3) and the 
output is the vector x k for which Rk minimizes the function R in (3.3). In other words, if for 
some k the value Rk =  X^Li p(xfc, Xj), is smaller than Ri — p(xl txj), and minimizes 
the function R, then the original pixel Xi in the filter window W  is being replaced by x k which 
satisfies the condition (3.5), which means that k =  arg min R . The construction of the VMF 
is illustrated in Fig. 3.1, where the Euclidean distance is used, however different norms can be 
applied for noise suppression using the VMF concept, [37,38,64,391].

Extended Vector Median Filter

The VMF concept may be combined with the linear filtering for the case where the median 
is inadequate for filtering out noise, such as in the case of additive Gaussian noise. The filter 
based on this idea, so called Extended Vector Median Filter (EVMF) has been proposed in 
[18,19,121,220]. If the output of the Arithmetic Mean Filter, (AMF) is denoted as xamf then

{
N  N

xamf, i f  Ŵ-amf — x j | |  <  5Z  IIx v m f  — X j| | ,

5= 1 3=1 (3.6)
x V m f , otherwise.

3 .2  F a m ily  o f  V ec tor M ed ia n  F ilters 45

The output of the extended VMF is the same as that of VMF or AMF, whichever gives a smaller 
value of the sum of distances. In smooth areas the EVMF outputs the average value of the 
samples in W, whereas at strong signal transitions its output is the VMF.

a-trimmed Vector Median Filter

It has been observed through experimentation, that the VMF discards well impulses and pre­
serves to some extent image edges, [19]. However, its performance in the suppression of addi­
tive Gaussian noise, which is frequently encountered in image processing, is inferior to that of 
the linear AMF. If a color image is corrupted by both additive Gaussian and impulsive noise, an 
effective filtering scheme should make an appropriate compromise between the AMF and VMF. 
The so called a -trimmed Vector Median Filter (aVMF) exemplifies this trade-off. In this filter, 
the a samples closest to the vector median output are selected as inputs to an averaging type 
of filter. The output of the a -trimmed VMF, which is a modification of the a-trimmed mean 
(2.19), can be defined as, [243,407]

1 “
X-aVMF =  — ^ 2  x(fc) , (3.7)

a k=\
with ordering defined in (3.3). The trimming operation guarantees good performance in the 
presence of impulsive noise, whereas the averaging operation causes that the filter performs 
well in the presence of short-tailed noise.

The class of filters based on order statistics is very rich. In addition to the filters discussed 
above, it includes other filters such as the max/min vector filters or the L-vector estimators. 
The L-vector filter family is an important generalization of the Vector Median Filter, [217] and 
is closely related to the large class of robust scalar estimators called L-estimators discussed in 
Chapter 2. These robust filters are modelled by means of weighting coefficients, which can be 
chosen optimally according to the input noise intensity and its statistical characteristics, [218].

Crossing Level Median-Mean Filter

On the basis of the vector ordering and L-estimator concepts, an efficient technique called Cross­
ing Level Median-Mean Filter (CLMMF) combining the idea of the VMF and AMF can be 
proposed. Let tpk be a weight associated with the fc-th element of the ordered set of vectors 
X(i),X(2) ,.. .  ,X(at), then the filter output is declared as y = ^2k=1 ipk x(fc) . One of the efficient 
weight selection scheme is

f 1 ----- , , for k =  1 ,
ipk =  < / iV(Ar+7) (3.8)

where 7  is a parameter, (for 7  —» 00 we obtain VMF, and for 7  = 0 the filter reduces to AMF).



Weighted Vector Median Filter

In [7,151,198,407,415] the VMF concept has been generalized and the so-called Weighted 
Vector Median Filter (WVMF) has been proposed. Using the weighted vector median approach, 
the filter output is the vector X(i) belonging to W, for which the following condition holds

N  N

X ^ ^ ( x (i)>xj) < k = l , . . . , N .  (3.9)
3=1 3=1

If ipi > 1 and =  1 for /с =  2 ,. . . ,  TV, (■)/; =  {ipi, 1 ,1 ..., 1}), then the simplified Central 
Weighted VMF (CWVMF) is obtained, [34,68,151,199,373]. In this way searching for the 
vector x k satisfying (3.9) is equivalent to finding the smallest value of accumulated distances 
Rk, and in this way the vector x k assigned to

N

Rk = '^2rpjP(xk,x.j), k = l , . . . , N ,  (3.10)
j=i

with
N  N  N  N

R l  =  Y . ] ^ M X i >X j )  = ^ V ’1P ( x 1 , x j ) ,  R k > l = Y ^ ^ 3 P ( X k , X j )  =  1 p 1 p ( x k , X 1 ) + ' ^ T p ( X k , X j ) ,

3=1 3= 2  3=1 3= 2

(3.11)
can be found.
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Fig. 3.2. Illustration of the CWVMF construction, in which the distance to the central pixel Xi is multi­
plied by the weighting factor ipi

If Ri is larger than Rk>i, then the central pixel xx is being replaced by one of its neighbors 
x k. The condition for the central pixel replacement is then Ri > Rk>i, which yields

The difference between the VMF and CWVMF is that the distance between the central pixel 
xi and its neighbors is multiplied by the weighting coefficient ipi, which privileges the central 
pixel xi, as shown in Fig. 3.2.

Modified Central Weighted Vector Median Filter

An efficient modification of the CWVMF called Modified CWVMF (MCWVMF) was proposed 
in [292,342,344]. The construction of this filter is to some extent similar to the WVMF proposed 
in [7,151,180,193,407,415].
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METHOD REF. NMSE
[io-3]

RMSE SNR
[dB]

PS NR 
[dB]

NCD
[10~4]

AMF [231] 79.317 12.627 21.006 26.105 82.745
VMF [19] 18.766 6.142 27.266 32.365 40.467
CWVMF [407] 12.105 4.933 29.170 34.269 19.019
BVDF [395] 24.587 7.030 26.093 31.192 41.151
GVDF [395] 19.474 6.257 27.105 32.204 41.773
DDF [138] 18.872 6.159 27.242 32.340 40.237
HDF [106] 18.610 6.116 27.303 32.401 41.275
AHDF [106] 18.310 6.067 27.373 32.472 41.166
FVDF [240] 22.251 6.688 26.527 31.625 44.686
ANNF [237] 26.800 7.340 25.719 30.817 48.009
MCWVMF [292] 8.950 4.034 30.918 36.017 10.753

Tab. 3.1. Comparison of the efficiency of the MCWVMF with the VMF, CWVMF and other techniques, 
using the LENA standard image contaminated by 4% impulsive noise, (NM2, p = 0.04), [292,344]

Let the aggregated distance R*k associated with the pixel x k be defined in a slightly different 
way as in (3.10)

N  N

Rk =  ] C ^ p(XfclXj) = ^ k j 2 p(xk' x^  = ^ k Rk, k = l , . . . , N .  (3.13)
3=1 3=1

withV»* =  W , 1,1 •••,!}. Vi € [0,1].
Then we obtain

N

R{ =  Ф1 Ru  and Rk>1 =  Rk , with Rk = У^р(хь х.,), (3.14)
3=1

and then the condition for the replacement of Xj is simply

il>*k R i>  Rk, k = 2 , . . . ,N .  (3.15)

For =  0 no changes are introduced to the image, and for ?/>* =  1 the standard VMF
is obtained. If ipi E (0,1), then the modified CWVMF (MCWVMF) has the ability of noise
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removal, while preserving fine image details, (lines, edges, comers, texture) and it outperforms 
the standard central weighted vector median scheme as shown in Tab. 3.1 and in Figs. 3.3, 
3.4, [292,342].

It is easy to notice that the new filter is faster than the CWVMF, as the only weighting 
is applied to the sum of distances R\. As a result, the new filter needs only one additional 
multiplication compared with the VMF. The CWVMF needs 7 additional multiplications to 
perform the weighting of the distances between Xi and all its neighbors. As a result the new 
filtering scheme is faster than CWVMF and is also more efficient.

For the efficiency comparisons, the color test image LENA has been contaminated by impul­
sive noise ranging from 1% to 10%, (NM2). The comparison with standard filtering techniques 
(Tab. 3.1, Figs. 3.3, 3.4) shows that the new filter outperforms significantly the VMF and also 
the standard Central Weighted Vector Median Filter.

Thresholded Vector Median Filter

The VMF gives acceptable results for impulsive noise removal, but it has a severe shortcoming. 
Namely it changes more image pixels than it is necessary, and thus causes excessive over­
smoothing. One of the possibilities to reduce this effect is to introduce a threshold value which 
reduces the amount of changes introduced to the filtered image. This concept, similar to (2.15) 
and (2.21) is used in the Thresholded Vector Median Filter (TVMF) which is defined as, [210]

f x (i), if Hxvmf-xjH >6,
*TVMF =  < (J.lo)

[ Xi, otherwise,

where xtvmf is the output of the TVMF filter, X(i) is the output of the VMF, xx denotes the 
original image pixel, ||-|| denotes the vector norm and 6 is a threshold parameter.

Rank Conditioned Vector Median Filter

Another modification of the vector median filter, so called Rank Conditioned Vector Median
Filter (RCVMF), which aims to alleviate the excessive smoothing of the VMF is based on the
ordering of the accumulated distances, which implies an ordering of the vector samples

7̂ 1, Rly ■ • • j Rti - ■ ■ i Rn __  ̂ R(2)’ ' ' ' > R(T)’ ' ' ' > R(N) ^  \1)
Xi, X2 , .. .  jX,-, .. .  , Xjv X(l), X(2)> jX(T), .. .  , X(jv)

In order to decrease the number of samples replaced by the VMF, which are not distorted by the 
corruption process, the following switching scheme can be applied

y (  Xl, if y (  X!, if Rx e  (3i8)

\  (̂1)> if ^  % ), \  ^  ^ )
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PSNR

a)

PSNR

b)

Fig. 3.3. Dependence o f  the PSNR on the j/'i value fo r  the CW VM F defined by (3.9) and (3.12) (a) and ipi 
in the modified scheme defined by (3.13) and (3.15) (b) fo r  the LENA color image corrupted by impulsive 
noise, (NM2, p  =  1%  — 10% ). The difference between the modified central weighted scheme and the 
classical approach is presented in Fig. 3.4
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PSNR

a)

PSNR

^ 1 , ^ 1
b)

Fig. 3.4. Efficiency o f  the m odified central weighted vector median filter  (M CW VM F) in comparison  
with the CWVMF, VM F and D D F  fo r  the LENA image contam inated by impulsive noise (p — 1%  — 10% , 
NM2), (a) and below the p lo t o f  PSNR versus weighting coefficients ip\ and tp* fo r  the noise intensity  
p  =  4% , (NM2), (b)
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a)

b)

Fig. 3.5. Dependence o f  RM SE (a) and M AE (b) on the r  param eter fo r  the Rank Conditioned Vector 
Median Filter (RCVMF), (LENA, NM2, p  =  1%  -  10%), (VM F is obtained fo r  r  =  I)
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Fig. 3.6. Illustration of the efficiency of the MCWVMF in comparison with the VMF: a) part of the test 
image FRUITS, b) test image corrupted by impulsive noise, (p = 0.02, NM2), c) MCWVMF output, d) 
VMF output, e) andf) depict the difference between the original image (a) and (c), (d) respectively
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where r  is a filter design parameter. For r  =  1 this filter is identical with VMF, whereas for 
t  = N  no filtering is performed. Setting an appropriate value of the r  parameter, a compromise 
between the VMF and identity operation can be obtained. However, as can be derived from 
Fig. 3.5 the optimal r  value depends on the intensity of noise corruption. For small impulsive 
noise intensity, r = 3 is a good choice, guaranteing a good trade-off between the cancellation 
of impulses (Fig. 3.5a) and image detail preservation, (Fig. 3.5b). However, as the scheme is 
not adaptive to noise intensity, its performance is not satisfactory and therefore in Chapter 7 an 
adaptive modification of this algorithm will be presented.

3.3 Vector Directional Filters

3.3.1 Basic Vector Directional Filter

Within the framework of the ranked type nonlinear filters, the orientation difference between 
vectors can also be used to remove samples with atypical directions. The Basic Vector Direc­
tional Filter (BVDF) is a ranked order filter, similar to the VMF, which uses the angle between 
two vectors as the distance measure.

In the directional processing of color images, [216,239,244,395,397] each input vector x* 
is associated with the aggregated angular measure

N  ,  v

Ak =  J ^ a ( x k,x j), k = l ,2 , . . . ,N ,  a(xk,xj) =  cos"1 ^  , (3.19)

where a(xk, x}) represents the angle between two m-dimensional vectors x^ and Xj.
The sample X(i) associated with the minimal angular distance A(i), i.e. the sample mini­

mizing the sum of angles with other vectors, represents the output of the BVDF, [395], (Fig.
3.7). A drawback of the BVDF is that since it uses only information about vector directions 
(chromaticity information), it cannot remove achromatic noisy pixels.

3.3.2 Generalized Vector Directional Filter

To overcome the deficiencies of the BVDF, the Generalized Vector Directional Filter (GVDF) 
was introduced, [395,397].

The GVDF generalizes BVDF in the sense that its output is a superset of the BVDF output. 
The first vector in the ordered sequence using the angular distance constitutes the output of the 
BVDF, whereas the first r  vectors constitute the output of the GVDF

BVDF{x  i,...,x jv}  =  x(i ) , GVDF{x u . . . , x N} =  {x(1), ... ,x (t)}, 1 < r  < N .  (3.20)



54 O v e rv ie w  o f  N o is e  R e d u c tio n  F ilters fo r  C o lo r  Im a g in g

The output of the GVDF is subsequently passed through an additional filter in order to 
produce a single vector output. In this step the designer may only consider the magnitudes of 
the vectors X(i),X (2) , . . .  ,X (T) since they have approximately the same direction in the vector 
space. As a result, the GVDF separates the processing of color vectors into directional and 
then into magnitude processing as the vector’s direction signifies its chromaticity, while its 
magnitude is a measure of its brightness. The resulting cascade of filters is usually complex and 
the implementations may be slow since they operate in two steps.

3.3.3 Directional Distance Filter

To improve the eficiency of the directional filters, another method called Directional - Distance 
Filter (DDF) was proposed, [137,138]. The DDF is a combination of VMF and BVDF and is 
derived by simultaneous minimization of their defining functions. Specifically, in the case of 
the DDF, the distance inside the processing window is defined as

(.N \  K /  N  \  1~ K

^  ' o> (x/-, Xj ) J ^ E p ( x *>x ; ) J  . (3-2i)

where a (x*, x; ) is the directional (angular) distance defined in (3.19) and the distance p {xk, xf) 
can be calculated using the L7 norm. The parameter k regulates the influence of the angle 
and distance components. As for any other ranked-order filter, an ordering of the Dk values 
D(i) < D(2 ) < .. .  <  Z?(jV), implies the same ordering of the corresponding vectors x k: 
X(i) -< X(2) X ( n )  , thus DDF defines the X(i) vector as its output. For « =  0 we obtain
the VMF and for k = 1 the BVDF. The DDF is defined for k =  0.5 and its usefulness stems 
from the fact that it combines both the criteria used in BVDF and VMF, [397].

3.3.4 Hybrid Directional Filter

Another efficient rank-ordered operation called Hybrid Directional Filter (HDF) was proposed 
in [106]. This filter operates on the direction and the magnitude of vectors independently and 
then combines them to produce a final output. This hybrid filter, which can be viewed as a 
nonlinear combination of the VMF and BVDF, produces an output according to the rule

{XyMF, if XVMF = X-BVDF,

t e s t )  xbvdf ’ °therwise > (3-22)

where xbvdf is the output of the BVDF filter, xvmf is the output of the VMF and || • || 
denotes the vector norm.
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Maxwell
Triangle

chromaticity difference 
on Maxwell 

triangle
(VMF output)

(BVDF output) R
1

Fig. 3.7. The principle of the directional processing of color images: a) chromaticity difference between 
two vectors Xj and xj , b) angular minimization property of the BVDF scheme

More complex hybrid filter, which involves the utilization of the Arithmetic Mean Filter 
(AMF), has also been proposed. The structure of this so-called Adaptive Hybrid Directional 
Filter (AHDF) is defined as

x v m f , i f  x v m f  =  x b v d f ,

x j, if Y, ||x fc — x j|| <  J2 ||xfc — x j ||,  (3.23)X A H D F k=1 fc=l
otherwise,

where
.  (  I I X v M f l l  \  ,  (  | |x ,4M f | |  A
i  — I n n x b v d f  , X 2 -   r- 1 X b v d f , (3.24)

\||xbv£>f||/ \ Ŵ -b v d f WJ

and x a m f  denotes the output of the arithmetic mean filter operating inside the same processing
window. Both hybrid filters are computationally demanding, since they require the evaluation
of the VMF and BVDF outputs, [143,144].

3.4 Fuzzy Adaptive Filters

The performance of different nonlinear filters based on order statistics depends heavily on the 
problem under consideration, as the type of noise which is present in an image affects the filter’s 
performance. To overcome difficulties associated with the uncertainty associated with the data, 
adaptive designs based on local statistic have been introduced, [44,94,236,239,240,242].



Such filters, utilize data-dependent coefficients to adapt to local image characteristics. The 
weights of the adaptive filters are determined by fuzzy transformations based on features from 
the local data. The general form of the fuzzy adaptive filters is given as a nonlinear transforma­
tion of a weighted average of the input vectors inside the processing window W

y =  = / f e ^ f c x/t / ^ 2 i > k ] ,  (3.25)
\ k = 1 /  \ jfc = l /  k =  1 /

where /(•) is a nonlinear function that operates on the weighted average of the input set. The 
relationship between the pixel under consideration and each sample in the filter window should 
be reflected in the design of the filters weights. In the adaptive design, the weights provide 
the degree to which an input vector contributes to the output of the filter. They are determined 
adaptively using fuzzy transformations of a distance criterion at each image sample position, 
[101,102,144,406].

In this framework the weights are determined by fuzzy transformations based on features 
from the local filtering window. The fuzzy module extracts information without any a-priori 
knowledge about noise characteristics. The weighting coefficients are transformations of the 
distance between the vector under consideration and all other vector samples inside W. This 
transformation can be considered to be a membership function with respect to a specific win­
dow component. The adaptive algorithm evaluates a membership function based on a given 
vector signal and then uses the membership values to calculate the filter output. Adaptive fuzzy 
algorithms utilize features extracted from local data, here in the form of a sum of distances, 
as inputs to the fuzzy weights. In this way, the distance functions are not used to order input 
vectors. Instead, they provide selected features in a reduced space; features used as inputs for 
the fuzzy membership function.

Several candidate functions, such as triangular, trapezoidal, piecewise linear and Gaussian- 
like functions can be used as a membership function. If the distance criterion described by (3.19) 
is used as a distance measure, a sigmoidal membership function can be selected, [240,246]

fpk = 7i [1 +exp(A/t)]-72, (3.26)

where Ak is the cumulative distance from (3.19), while 7 X and 72 are parameters to be deter­
mined. The 72 value is used to adjust the weighting effect of the membership function and 71 

is a scale threshold. If the Minkowski L1  metric is used as the distance function, the fuzzy 
membership function with exponential form
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ipk = exp (—-Rfc V72) , (3.27)
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gives also good results, where Rk from (3.3) is a cumulative distance associated with the fc-th 
vector in the processing window W  using generalized Minkowski norm and 71, 72 are design 
parameters.

Within the general Fuzzy Adaptive Filter framework, numerous filters may be constructed 
by changing the form of the nonlinear function /(•), as well as the way the fuzzy weights are 
determined. The choice of these two parameters influences the filter characteristics.

3.4.1 Fuzzy W eighted Average Filter

The first class of filters derived from the general nonlinear fuzzy algorithm is the so called Fuzzy 
Weighted Average Filters (FWAF). In this case, the output of the filter is a. fuzzy weighted output 
of the input set and the form of the filter is given as

1 N  N

У = s  = '^2'lPk- (3.28)
fc= 1 k= i

This filter provides a vector-valued signal which is not included in the original set of inputs. The 
weighted average form of the filter provides a compromise between a nonlinear order statistic 
filter and an adaptive filter with data dependent coefficients. Depending on the form of the 
distance criterion and the corresponding fuzzy transformation, different fuzzy filters can be 
designed. If the distance selected criterion is the sum of vector angles, the Fuzzy Vector Direc­
tional Filter (FVDF) is obtained, [240]. If the L7 norm is used as the distance criterion, a fuzzy 
generalization of the Vector Median Filter is constructed.

3.4.2 M aximum Fuzzy Vector Directional Filters

Another possible choice of the nonlinear function /(•) is the maximum selector. In this case, 
the output of the nonlinear function is the input vector that corresponds to the maximum fuzzy 
weight. Using the maximum selector concept, the output of the filter is a part of the original 
input set. The form of this filter is y =  x^ with к =  argmaxipj, j  = 1 , . . . , N .  In other 
words, as an output the input vector associated with the maximum fuzzy weight is selected. It 
must be emphasized that through the fuzzy membership function, the maximum fuzzy weight 
corresponds to the minimum distance. If the vector angle criterion is used to calculate distances, 
the fuzzy filter delivers the same output as the BVDF, [240,246]. If the Ly is adopted as a 
distance criterion, the filter provides the same output as the VMF. In this way, utilizing an 
appropriate distance function, different filters can be obtained. Thus, filters such as VMF or 
BVDF can be seen as special cases of this specific class of fuzzy filters.



3.4.3 Fuzzy Ordered Vector Directional Filters

It is not necessary for the designer to use all the inputs inside the operational window to produce 
the final output of the nonlinear filter. If desired, only a subset of the vector-valued input signals 
can be used. The input vectors are then ordered according to their respective fuzzy membership 
strengths. The form of the Fuzzy Ordered Vector Directional Filter (FOVDF) is given as
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1 T T
cz,-rw --v«;> ~ ^V»(fc), (3.29)

fc=i t=l

where ip(k)  represents the fc-th ordered fuzzy membership function, and ip(T) < ip(T- i )  < • • • ,  < 
-0 (1). with being the fuzzy coefficient with the largest membership strength.

The above form of the algorithm constitutes a fuzzy generalization of the a-trimmed filters, 
(3.7), [231]. Through the fuzzy transformation, the weights to be sorted are scalar values. In this 
way, the nonlinear ordering process does not introduce any significant computational burden. 
Depending on the distance criterion and the fuzzy membership function chosen by the designer, 
a number of different a-trimmed filters can be obtained.

The fuzzy transformations (3.26) and (3.27) are not the only way in which the adaptive 
weights can be constructed. In addition to fuzzy membership functions, other design concepts 
can be utilized for the task. One of such designs is the nearest neighbor rule, [237] in which the 
value of the weight ipk in (3.25) is determined according to the following formula

(3.30)
V ( N )  ~  V ( l )

where D ^)  is the maximum distance in the filtering window, measured using an appropriate 
distance criterion, and is the minimum distance, which is associated with the center-most 
vector inside the window W. As in the case of the fuzzy membership function, the value of the 
weight in (3.30) expresses the degree to which the vector x* is close to the center-most vector, 
and far away from the worst value, the outer rank.

In [237,238] an adaptive vector processing filter named Adaptive Nearest Neighbor Filter 
(ANNF) was devised utilizing the general framework of (3.25). The weights in ANNF are 
calculated using the formula of (3.30), with the angular distance as a measure of dissimilarity 
between the color vectors.

It is evident that the outcome of such an adaptive vector processing filter depends on the 
choice of the distance criterion selected as a measure of dissimilarity among vectors. As before, 
the L7 norm or the angular distance between the vectors can be used to remove samples with 
atypical directions. However, both these distance metrics utilize only a part of the information 
carried by the image vectors. As in the case of DDF, it is anticipated that an adaptive vector
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processing filter, based on the ordering criterion, which utilizes both vector features, namely 
magnitude and direction, will provide a robust solution whenever the noise characteristics are 
unknown, [74].

In [11,238] a novel distance measure was introduced

Jk =  X ]!1 -V ’frfc.Xj)]» ^(Xfc.Xj) = (  ■■ XfcM i|Xj || )  f 1 ~  ̂ | | ^  In)  » (3-31)j r i  V IM  I N I ;  V max (||xfc||, 11 xj 11) y

which takes into consideration both the direction and the magnitude of the vector inputs. The 
first part of the measure ip is equivalent to the angular distance, (vector angle criterion) and 
the second part is related to the normalized difference in magnitude. Thus, if the two vectors 
under consideration have the same length, the second part of tp(xk, Xj) equals one and only the 
directional information is used in (3.31). On the other hand, if the vectors under consideration 
have the same direction in the vector space, the first part of ip(xk,xj), (directional information) 
equals one and the similarity measure is based only on the magnitude of the difference part.

Utilizing this similarity measure, an adaptive vector processing filter based on the general 
framework of (3.25) and the weighting formula of (3.31) was proposed in [238]. The so-called 
Adaptive Nearest Neighbor Multichannel Filter (ANNMF) belongs to the adaptive vector pro­
cessing filter family defined through (3.25). However, ANNMF combines the weighting for­
mula of (3.30) with the new distance measure of (3.31) to evaluate its weights.

3.5 Nonparametric Adaptive Multichannel Filters

Based on the samples from the filtering window, an adaptive multivariate kernel density estima­
tor 1 can be devised to approximate the samples probability density function >1' (x)

where m  denotes the dimensionality of the measurement space and is the data dependent 
smoothing parameter, which regulates the shape of the kernel /C, [245,246].

The variable kernel density estimator exhibits local smoothing, which depends both on the 
point at which the density is evaluated and on the information about samples in W. The choice 
of the kernel function is not nearly as important as the smoothing factor h. Very often the 
multivariate extension of the exponential kernel or the Gaussian kernel is selected.

'Detailed description of the nonparametric estimation is given in Chapter 6.
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The non-parametric estimator can be defined as

y  =  E ° »  P —  {l|x‘ ~ °‘ ll/'“ } = f >  . <3-33>
3= 1

where xpk are weighting coefficients and Xi is the central sample or its estimate obtained through 
an appropriate noise filtering technique.

To obtain the required estimate, we must assume that in the absence of noise, discrete sample 
vectors o/t are available. This is not a very severe restriction, since in some cases such samples 
may be obtained by a calibration procedure in a controlled environment, perhaps at a very high 
signal-to-noise ratio conditions. In many image processing applications however, that is not 
the case. Therefore, alternative suboptimal solutions are needed. In a first approach, we can 
substitute the vectors ofc in (3.33) with their noisy measurements.

The resulting Adaptive Nonparametric Multichannel Filter (ANMF) is solely based on the 
available noisy vectors. Thus, the form of the ANMF is

. (3.34)
fc=1 E ^ m ^ { | | x i - X j l l / h j }

3=1

A different form of the adaptive nonparametric estimator can be obtained if a reference 
vector is used instead of the actual noisy measurement. The ideal reference vector is of course 
the actual value of the multidimensional signal in the specific location under consideration.
However, since the Oi vector is not available, a robust estimate, usually evaluated in a small
subset of the input vector set, is utilized instead. Usually the vector median x* is the preferable 
choice, since it smooths out impulsive noise and preserves to some extent the edges. The median 
based Adaptive Nonparametric Multichannel Filter has then the following form

N

r !  =  & Æ i ! ï C * L .  ,3.35,

k=1 E ^ m^{llx î - XJ / M
3= i

This filter can be viewed as a double-window, two-stage estimator. First the original image 
is filtered by a multichannel vector median filter in order to reject possible outliers and then an 
adaptive nonlinear filter with data dependent coefficients is utilized to provide the final filtered 
output.

Application of Anisotropic Diffusion to 
Image Enhancement

Recently, growing attention has been given to the nonlinear processing of vector val­
ued noisy image signals through the anisotropic diffusion technique. Anisotropic diffusion 
is a relatively new method derived from the scale space theory, which allows to reduce 
the image noise without blurring the frontiers between image regions of different color or 
brightness. In this Chapter some basic concepts of anisotropic diffusion are presented, its 
efficiency is evaluated and it is shown how this technique can be modified, so that it can 
better cope with the removal of impulsive noise in multichannel images.

This Chapter also presents an implementation of the anisotropic diffusion based on 
the forward and backward diffusion concept, which allows to reduce the Gaussian noise, 
enhance edges and better preserve important image structures.

4

4.1 Anisotropic Diffusion Framework

V
E R Y  powerful filtering technique, called anisotropic diffusion (AD), has been introduced 
by Perona and Malik, (PM), [227,228] in order to selectively enhance image contrast 

and reduce noise, using a modified heat diffusion equation and the concepts of scale space, 
[263,273,376,418,418]. The main concept of anisotropic diffusion is based on the modification 
of the isotropic diffusion equation, so that the smoothing across image edges can be inhibited. 
This modification is done by introducing a conductivity function that encourages intra-region 
over inter-region smoothing.
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x(i+lj-l,l)

Since the introduction of the PM method, a variety of techniques have been elaborated 
including multi-scale approaches [142,277], extensions to vector valued imaging [112,272], 
multigrid methods [5], mathematical morphology inspired techniques and many others, [45, 
98, 112, 147,201,221,270,282,394,425] and applied to the processing of 2D and also 3D 
images, [83,133,160,387].

Diffusion is a transport process that tends to level out 
concentration gradients and in this way it leads to the 
equalization of the spatial concentration differences. The 
elementary law of diffusion states that the flux density f is 
directed against the gradient of concentration a; in a given 
medium: £ =  — c Vx, where c is the diffusion coefficient. 
If we use the continuity equation

dx dx
+ VC = 0, we obtain — = V (cVa:). (4.1)

Fig 4 1  Visualization o f  the ^  x (£> Vi t) denotes a real-valued function representing 
anisotropic diffusion scheme, (i,j) the gray scale image, the equation of linear and isotropic 
denotes the discrete image coordinates diffusion is

V,t) 
dt

d2x{Ç,ri,t) + d2x(£,Tj,t)
(4.2)d f 2 dr f

where f , r] are the continuous coordinates, t denotes time and c  is the c o n s t a n t  conductivity 
(diffusivity) coefficient.

Perona and Malik suggested that the conductivity coefficient c should be d e p e n d e n t  
on the image structure and therefore they proposed the following partial derivative equation, 
(PDE)

dx(£,r] ,t)
dt = V [c(£,77)Vx(£,77,i)] , (4.3)

which can be expressed as a minimization of the energy £ on the image domain fi, [62,211]

£ ( * ) = /  r* ( |V z |)d n , (4.4)
Jti

where T# ([ Vrc|) is a regularization function that penalizes high gradients, while preserving 
edges: (|Vx|) = c (|Va;|) |Vxj , which leads to

% ( |V x |) V ^d x
э ^ = d , , |Vx| =  div (c (I Vx|) Va;) =  div 3>(x), (4.5)

where $(a:) =  c (|Vx|) V x  is the flux function.1 

'For the sake o f simplicity we w ill use <P(x) =  — £ ( x ) .
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The conductivity coefficient c(f,7?) is a monotonically decreasing function of the image 
gradient magnitude and usually contains a free parameter /3, which determines the amount of 
smoothing introduced by the nonlinear diffusion process. Different functions of c(£ ,r))  have 
been suggested in the rich literature, [5,9,46,63,262,274]. The most popular are those intro­
duced in [228], (Figs. 4.2, 4.11),

-l
Ci =  exp |v* fé ,q )r

2/32 Cl — 1 + I Vs(£,??)r 
ß2

(4.6)

The conductivity function c(f, rj) is space-varying and it is chosen to be large in a relatively 
homogeneous regions to encourage smoothing, and small in regions with high gradients to 
preserve image edges, (see Fig. 4.3).

In one-dimensional case, the gradient and divergence expressions in (4.3) reduce to deriva­
tives, [112,159,172,253]

dt w  '  dt

Substituting discrete approximations of the derivatives, we obtain

(4.7)

- I {c(f, t ) ^  [* (Y + f) - . X (Y -  t ) ]  } «  (4.8)

(A tf
c ( (x(Ç+AÇ,t)-x(Ç, t )) -c  [a; (f ,£ )-x (f-A f,£ )]

The conductivity values c(f + ~f,t)  and c(f — can be determined as functions of the
discrete gradient approximations

t) I

Introducing the notation

CR A p C{ ( +  2 A f2 /  Af2 V 2
VÄ x(Ç, t) =  x(f -I- Af, t) -  z(f, t), VL x{£, t) = x{£ -  A f, t) -  x(f, t ) , we get

d
Qlx ^ ^ )  =  Vlx(£, t) + cR VRx(t,t) =  + $fl|A?=1,

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)
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x(Ç,t + At) «  x  (£, t) +  At §iX (f, t) =  x(f, t) + At  ($L + $ Ä) a«=i -

The 1-D discrete formulation can be extended to the 2-D case

I 1« '”' 0 " I ôçX(Ç,r),t) d_
+  dr] c(£,V,t) T^x(£,T),t)

(4.14)

(4.15)

'  (AO2 

1
' ( A t f

(4.16)

+ (x (f + A f, T j , t ) - x  (£, ?7, £)) +
. ~ c ( t - ( x (f,r ] , t ) - x { £ -  AÇ,r),t))

c ( Ç , V +  <) (x  (£, V +  Ar?, 0  -  x  (£, ??, t)) +

- c ( t , V ~ ¥ ’t) (x(Ç,ri ,t)-x(Ç,T)-Ari, t ))

= cN(Ç,ri,t)VNx(Ç,Ti,t) + cs (Ç,Ti,t)Vsx(Ç,r),t) + cw(Ç,T},t)Vw x(Ç,ri,t)+

+ c E (Ç,V,t)  VEx{Ç,ri,t) = $ N + 3>s + + $ e \AI:=1Ati=1 , (4.17)

CN =  c(Ç,T] +  A/2, t)/Ari2 , cs =  c(ç,r) -  A/2, t)/Ari2 , (4.18)

cB = c(£ +  A/2,77,i) /A f2, cw = c (Ç - A /2 , r , , t ) / A e ,  (4.19)

VNx(Ç,r),t) = x(Ç,r) + Ar),t)-x(Ç,Ti,t), Vs x(t,ri,t) =  x(^,ri — AT],t) —x(Ç,Tj,t), (4.20) 

VEx(Ç,r],t) = x(Ç+A£,T},t)-x(Ç,ri,t), Vw x(Ç,r)tt)=x{Ç-AÇ,T],t)-x((;,r],t),  (4.21) 

and finally

x  (C i r?! i  +  A t )  R i a : ( f , 77, t )  -I -  A t A£=1,Aij=1 • (4.22)

The filtering process consists of updating each pixel in the image by an amount equal to the 
flow contributed by its nearest neighbors. The parameter At  should be equal or less than 1 /2 for 
the 2-neighborhood (4.14) and less than 1/8 for the 8-neighborhood case (4.22) to ensure the 
stability of the iterative process. The 2D anisotropic diffusion for the 8-neighborhood is illus­
trated in Fig. 4.1, where the intensity of the central pixel is modified by the flow contributions 
from its eight neighboring points.

The discrete, iterative version of (4.3) can be written as

N N

Xj+1 = x\ + A ^ 2  =  x\ +  A ^ 2  4  [xlk -  x\] , for stability A < A0 1

k=2 k=2 N r, (4.23)

where t denotes discrete time, (iteration number), c[ , k =  2 ,. . . ,  N  are the diffusion coeffi­
cients in N  — 1 directions, (Fig. 2.1b), x[ denotes the central pixel of the filtering window, x[ 
are its neighbors and A0 is the largest value of A (At in (4.14) and (4.22)), which guarantees the 
stability of the diffusion process.
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It is quite easy to notice, [28] that this equation is s i m i l a r  to the adaptive smoothing 
scheme proposed in [268,269] and [255,256]. Equation (2.10) formulated in an iterative way

N  / N

4 +1 -  £
k=1 / k=l

ipkxi  > (4-24)

can be written as

E  V'fcxi -  x[ E  ^k E  Mx[ -x \ )  n 
x\+1 = x\ + —    — —  = x\ + k=1  ...............= x\ + ‘‘Pk ( 4  -  x \ ) , (4.25)

E  ^k E  ^k k=2
k= 1 k=1

where ipl are the normalized weighting coefficients. In this way, e v e r y  adaptive smoothing 
scheme based on the averaging with weighting coefficients can be seen as a special realization 
of the general nonlinear diffusion scheme.

The equation of anisotropic diffusion (4.23) can be rewritten as
N

x ‘+1 =  x\ i - a£ 4
k=2

+ a £ 4 4 ,  A<Ao = —— . (4.26)
k= 2

If we set [1 — A Y,k=2 4] = 0, then we can switch off to some extent the influence of the central 
pixel x\ in the iteration process. This requires however, that in each iteration step the A has 
to be a variable, dependent on the image structure, equal to A4 = [Efcl:2 ck] • The effect of
diminishing the influence of the central pixel can be however achieved in a more natural way. 
Introducing the normalized conductivity coefficients Cj. = 4 /  E H 2 w'th E£L2C/t = 1, 
the Eq. (4.26) takes the form

N  N

x\+1 = x \ ( l - X )  + X ^ C l x i ,  A* = a £ 4 ,  a* e [0,1], (4.27)
k=2 k—2

which has the nice property, that for A* =  0 no filtering is performed: x*+1 =  x\ and for A* =  1, 
the central pixel is n o t  t a k e n  into the weighted average and the anisotropic smoothing 
scheme reduces to a weighted average of the neighbors of the central pixel x x

1v
x\+i = Y , c kxk- <4-28)

k=2

In this way the central pixel is being replaced by a weighted average of its neighbors and 
the weights correspond to the similarity measures of the central pixel and its neighbors. This 
scheme is very similar to the iterative approach proposed in [409,410], where a gradient-inverse 
weighted noise smoothing algorithm was presented

x‘i+1 = ciz‘ + £  cfc 4 .  cfc =  max{7 ’l^  S = max{7 , \xk -  Xi|)} , (4.29)
k=2 fc=1
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a) b)

Fig. 4.2. Conductivity functions  Ci, c2  (4.6) (a) and respective p lots o f  the flu x  functions (b)

a)

d)

b)

e)

c)

f)

Fig. 4.3. Illustration o f  the PM  scheme: a) part o f  LENA image, b) image contam inated by Gaussian 
noise o f  a  =  30, c) image restored with P M  technique. Below  respective 3-D visualizations, (d) - (f)

where 7  influences the contribution of the central pixel in the averaging, (small 7  value leads 
to (4.28)). Scheme (4.28) is also quite similar to the approach proposed in [166] and to the 
algorithm presented in [290]

x i+1 = ^ Y l CkXk'  c* =  exp j —̂ | j e x p  j }» k = 2 , . . . , N ,  (4.30)

which corresponds to the case of A* = 1 in (4.27). The robustness of this scheme is achieved by 
r e j e c t i n g  the central pixel value of the filter mask, when calculating the filter output. This 
technique is especially efficient when the image is corrupted by heavy impulsive noise process, 
as will be shown in Chapter 5.

Setting A* =  1 in (4.27) produces similar effect as taking the largest possible value of A in 
(4.26), A0 = l / ( N — 1) which ensures the stability of the anisotropic diffusion process, [262].

The good performance of the anisotropic diffusion scheme with A* =  1 is confirmed by Fig. 
4.5, which depicts the dependence of the efficiency of the PM approach using the C\ conductivity 
function on the /? and A parameters for the gray scale LENA image distorted by Gaussian noise 
of different intensity. In this Figure, it is clearly visible that the best filter performance in terms 
of PSNR is achieved for A close to A0 =  1/8, (3x3 filter mask), especially in the case of images 
distorted by Gaussian noise process of high o. Such a setting of A enables the diminishing of 
the influence of the central pixel X\, which ensures the suppression of the outliers injected by 
the noise process.

One of the drawbacks of the anisotropic dif­
fusion approach is that the optimal values of the 
parameters (3 and A are unknown. Although (5 
can be calculated using some a priori knowledge 
or can be estimated using some heuristic rules,
[57,168] the algorithm is relatively slow and re­
quires many iterations to achieve the desired so­
lution and also some stopping criterion is needed 
to finish the iteration process, before the image 
converges to the trivial solution, (average value 
of the image pixels), (Fig. 4.4), [276,413,425].
Another disadvantage of the Perona-Malik ap­
proach is that this algorithm is not able to cope 
with impulsive noise and as a result the noisy im­
age goes through the diffusion process without 
perceptible improvement, (see Fig. 4.14b).

In order to improve the efficiency of the orig­
inal PM scheme a regularized version was pro­
posed, in which the conductance coefficient is a function of the gradient convolved with the 
Gaussian linear filter, [60,61]

= div[c(f,7?,t)Vx(f,7?,t)], (4.31)

where c(f, 77, t) =  / ( | V Ga*x(Ç, r], £)|), Ga denotes the Gaussian kernel with standard deviation 
a, * denotes the convolution and /  is a decreasing function. The advantage of this formulation 
is that it is mathematically well posed in contrary to the PM scheme. However, the drawback of 
this approach is that the image discontinuities tend to be blurred and the whole scheme leads to 
a higher computational complexity of the anisotropic diffusion process, (see Fig. 4.14c).
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Fig. 4.4. Visualization o f  the the development 
o f  the anisotropic diffusion process. Parts o f  the 
test image PARROTS have been processed using 
the standard PM  multichannel anisotropic dif­
fusion  scheme. The development o f  a selected  
image row and column through time (iterations) 
is presented, (a). It can be observed that weak  
edges are fu sed  and only strong edges can be 
preserved. The fina l result obtained after 300 it­
erations is shown above, (b)
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In [219] the so called biased anisotropic diffusion has been proposed. This scheme differs 
from the PM approach (4.23) in an additional term expressing the deviation between the initial 
image x° and the filtered image x

d x
—  = V (c(x) V ï ) + q [ x ° -  x]
d t

where a ia a parameter. The discrete, iterative scheme is then given by

N
-t+l _— + A £ 4 ( 4 - 4 )

k=2 

N

+ a (x° -  I*)

=  4  1  -  A £  4  -  A £  4 4  + Xax°i.
fc=2

(4.32)

(4.33)

(4.34)
k=1

Setting [1 — A J2 k=2 4  — Aq] = 0 we are able to diminish the influence of the central pixel and 
obtain the time dependent variable A* = + ^ k =2 4 )  • Thus the iterative scheme, robust
to impulsive noise is given by

Ci+1==A* ( E 4 4  +  - î )  ■ (4.35)

The major advantage of this approach is that due to the bias term (x\—x\), the biased anisotropic 
diffusion scheme converges to a steady solution, which preserves image edges, [112]. In the 
case of very noisy images contaminated with mixed noise, the initial image x° can be replaced 
by its appropriate estimate (mean, median), which allows to significantly improve the filtering 
performance. Figure 4.6 depicts the dependence of PSNR on the iteration number for a = 0 
equivalent to (4.28) and a = 0.2 in (4.35) for the LENA image contaminated by mixed noise 
NM5, (p = 0.04, NM2, a = 30).

a ) b)

Fig. 4.6. Dependence o f  PSNR on the iteration num ber fo r  a) a  =  0, (4.28) and b) a  =  0 .2 , (4.35), 
(L E N A  image contaminated by m ixed noise, p  =  0 .04 , NM2, o  =  30, C\, /3 =  20)
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4.2 Efficiency of the Anisotropic Diffusion Schemes

The properties of the image processing techniques, based on the anisotropic diffusion are deter­
mined by the conductivity function in the PDE equation, which defines the nonlinear diffusion 
process. Changing the shape of the conductivity function, we can tune the anisotropic diffusion 
filter to the image noise intensity and its statistical properties, in order to achieve optimal results 
of the image smoothing, [46,47]. In this Section the behavior of the classical functions intro­
duced by Perona and Malik together with the Tukey’s biweight and Huber’s estimator, [204] 
used in [46] is analyzed and the different filtering schemes are compared with the standard 
approaches used for the reduction of Gaussian noise in digital images.

One of the attempts to alleviate the problems connected with the inability of the classical 
anisotropic diffusion approach to suppress strong noise is the introduction of the so called robust 
conductivity functions. In [46] robust statistic norms were chosen to design the anisotropic 
diffusion process. However, these conductivity functions do not help increase the efficiency 
of the filtering in case of strong Gaussian or impulsive noise. This is caused by the strong 
influence of the central pixel in the filtering window on the development of the anisotropic 
diffusion scheme.

c(g) S(g) *'($)

Cl, [228] exP ( - 5^ ) ß2 ( 1 “ exp ( - ^ ) ) [l -  £ ]  exp

c2, [228] 0 + w y [1 _ £ ]  (1+fâ )
c5> [119] tanh /(gß) log cosh ) ß~2 (cosh (*))
ce, [63] r ’ (i +  ( » ) ’) '* (1+(«)T_1 ß(ß2 + g2T*

Cr, [110] 2ß2 (ß2 + g2) 2
№ ’ M  i ) T 2ß2 (g3 -ß*)(ß* + g> )-2

Tab. 4.1. Conductivity functions c(g), the appropriate energy 8(g) and derivative of the flux $(<7)

The function that impedes the smoothing across the edges in the anisotropic diffusion scheme, 
is the diffusion coefficient. The conduction function c(g) is space varying, (depending on the 
gradient magnitude g at a determined position) and is chosen to be large in homogeneous regions 
to encourage image smoothing and small at edges to preserve them, (Figs. 4.2,4.3).
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Perona and Malik originally suggested two choices of c (g)

c1 (g)=exp{-(g / /3 )2 / 2 j ,  c2(g) = (l + (g/P)2) 1 (4.36)

C4 (5 ) =
M < ß,
otherwise.

(4.37)

a Cl c2 C3 c4
10 28.34 28.59 28.51 28.08
20 25.14 25.49 25.35 25.05
30 23.01 23.19 23.04 22.96

The constant P can be made adaptive, using the gradient estimator described in [57], where a 
histogram of the absolute values of the gradients in the image is computed and (3 is usually set 
to obtain 90% of its integral.

Apart from the PM functions, different types of conductivity functions have been proposed 
over the years in the literature, [9,46,63,262], (Tab. 4.1). In [46] robust statistic norms were 
chosen to define the conduction functions. The authors proposed there the so called Tukey’s 
biweight function - 03(g) and the Huber's min/max function - 04(g)

« ( . ) = ■ (  ,
0, otherwise,

In order to compare the efficiency of the stan­
dard anisotropic diffusion filtering schemes based 
on different conductivity functions, the LENA stan­
dard gray scale image was contaminated with zero- 
mean, additive Gaussian noise of a =  10, 20 and 
30 respectively. For each combination of A and /3 
the diffusion process was iterated until the maxi­
mum PSNR value was achieved. From all the com­
binations of the filters’ parameters the optimal val­
ues of A and /3 in terms of PSNR for each conduc­
tivity function was found and this value was treated as an indicator of the filter’s performance, 
(Tab. 4.2), [340,345].

Figure 4.5 shows the filters’ efficiency in dependence on the A and p values for C\ and c2 

conductivity functions. It is easy to notice that the optimal values of the PSNR are obtained for 
A «  0.1 for a wide range of the j3 parameter, which c o n f i r m s  the observation from the 
previous Section, that the A parameter should be close to A0, (A* close to 1).

The efficiency of the four filtering schemes shown in Tab. 4.2 was compared with some 
of the standard filtering techniques listed in Tab. 4.3, [340, 345]. The simulations revealed 
that for the images distorted by Gaussian noise of a = 10, 20 and 30, the c2 function yielded 
slightly better results than c\. The experiments have also shown, that the robust conductivity 
functions C3 and C4 were not superior to the functions Ci and c2 originally proposed by Perona 
and Malik, which indicates that the shape of the conductivity function is not as important as 
could be expected.

Tab. 4.2. Optimal efficiency of the anisotropic 
diffusion filters in terms of PSNR. For the 
evaluation purposes the gray scale LENA im­
age distorted by zero-mean additive Gaussian 
noise of (o = 10, 20, 30) using conductivity 
functions Ci, c2, C3 and C4 was used



The efficiency of the anisotropic diffusion decreases with the intensity of the Gaussian noise 
and for a =  30 this filtering scheme is significantly worse than the simple «-trimmed mean, 
which by the way performs better than the 3 x 3 median. This inability of the anisotropic diffu­
sion filters to suppress strong Gaussian noise can be derived from the fact, that strong impulses 
introduced by the noise process are perceived by the filters as edges and are not eliminated, 
which leads to a poor overall filter performance. This however can be alleviated by d i m i n ­
i s h i n g  the importance of the central pixel, as has been shown in the previous Section.
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FILTER l 2 3 4 5 6 7 8 9
a = 10 27.37 27.53 26.18 22.32 25.06 23.07 25.66 23.30 28.59OCNIIb 26.31 26.22 25.35 22.94 23.73 22.82 24.09 22.09 25.49
CT = 30 25.03 24.73 24.27 21.93 22.21 22.48 22.38 22.45 23.19

Tab. 4.3. PSNR results obtained with some o f  the standard filters using the same distorted LENA images 
as evaluated in Tab. 4.2: (1) a -trim m ed mean with 2 excluded pixels, (2) a-trim m ed mean with 4 
excluded pixels, (3) moving average (3x3), (4) moving average (5x5), (5) median filter  (3x3, 2 iterations), 
(6) median filte r  (5x5, 2 iterations), (7) median filter  (3x3), (8) median filte r  (5x5), (9) A D  with c2

The extensive simulations revealed, that the robust conductivity functions do not improve 
the filter performance, which indicates that the shape of the conductivity function is not crucial 
to the filter efficiency and more effective scheme is needed in case of highly corrupted images. 
Such a solution will be presented and evaluated in Chapter 5.

4.3 Anisotropic Diffusion Applied to Color Images

The extension of the anisotropic diffusion framework to the multichannel case is not a very 
difficult task. Let x(f, 77, £) = [xr(f, rj, t),xg(£,r),t),xb(£,r), £)] denotes a color image pixel 
at position (f, rf), where xr(f, r], t), xg(£,rj,t), Xb(£,r],t) are the red, green and blue channels 
respectively. The PDE Eq. (4.3) can be written for the multichannel case as

Zr (f,J?) I" dxrtt.r/)- 
dt

g t -  V [Crsfcfo ??, *)Vx(f, T), t)] , x(f, T]) - Zg(t,V)
dx(Ç,ri) 

'  d t

dxa(Ç,T))
dt , (4.38)

Xb(Ç,V) dxb((,ri)
dt

where r j ,  t )  = /( ||G  ||) is the conductivity function, th e  s a m e  for each image chan­
nel, dependent on the magnitude of the local gradient ||G||, which couples the three color image 
channels, [112,170,277,386,414]
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" dxrU.rht) '
dt

dxç(Ç,ri,t)
dt

dxk(Ç,V,t)
dt

V [crsfcféj Vi *) Vav(f > ??> £)] 

V[cv9& (f,M )V a :9(f,T /,*)]

V[Crgb(Ç,ri,t)Vxb(Ç,ri,t)}

dxr(Ç,ri) dxa(t,T))
9f ’ ’

dxr(£,ri ) dXq̂ .T])
dr] ’  dr} ’

d x b ( ( , v )  
d( 

dxt((,n) 
a Tj

. (4.39)

Estimating the local multichannel image gradient is one of the most important tasks, when 
designing an anisotropic diffusion scheme. Many of the approaches devised for color images 
are based on the vector gradient norm, [58,100,254,428]. Local variations of the color image 
||dx||2 are expressed as

||dx||2 =
V

T
gll ! gl2

dr] g21 , g22 drj

9 h 

922
) + 9xb(i,r))\  

*  )
_ ^dxT(̂ ,y)  ̂ ^dxg(Ç,ri)

_  ^dxrd.r))^ 2 ^dxbfê,T))

(4.40)

(4.41)

№  -  (**£*>) ( ^ )  +

The eigenvalues of the matrix [gk,j] > k ,  j  =  1,2

A+ —gn + ff22 + \]  (gll — 9Tl)2 + 4g22 \  — gll +  522 -  V (gll ~ 922)2 + 4ffi2 ^  42^

are the extremum of ||dx||2 and the orthogonal eigenvectors determine the corresponding vari­
ation directions. Based on the eigenvalues, different gradient norms leading to various PDE 
schemes can be developed, [48,272,282,398,400].

Figure 4.4 shows the development of the multichannel anisotropic diffusion process. As 
can be observed, this technique efficiently suppresses texture and low intensity Gaussian noise, 
but preserves strong edges. However, the process has to be stopped, as the image after many 
iterations is being heavily blurred and converges to the homogeneous image of the same color.

The anisotropic diffusion scheme has been generalized using the concepts of digital paths 
and fuzzy adaptive filters, [200,295,306,313] 2. Instead of using a fixed window, this method 
exploits connections between image pixels using the concept offuzzy connectedness. According 
to the proposed methodology, image pixels are grouped together, forming paths that reveal the 
underlying structural dynamics of the color image.

2The generalization of anisotropic diffusion will be described in detail in Chapter 5.
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4.4 Forward and Backward Anisotropic Diffusion

The conductance coefficients in the PM process are chosen to be a decreasing function of the 
signal gradient. This operation selectively smoothes regions that do not contain high gradi­
ents. In the Forward-and-Backward diffusion (FB), a different approach is taken. Its goal is 
to emphasize the extrema, if they indeed represent singularities and do not come as a result of 
noise. As we want to emphasize large gradients, we would like to move ’’mass” from the lower 
part of a ’’slope” upwards. This process can be viewed as moving back in time along the scale 
space, or reversing the diffusion process, [247]. Mathematically, we can change the sign of the 
conductance coefficient to negative

A

=  V [-c (f ,77,f) V x (f ,77,t)], c(f,77, t ) > 0 . (4.43)

However, we cannot simply use an inverse linear diffusion process, because it is highly unstable. 
Three major problems associated with the linear backward diffusion process are: explosive 
instability, noise amplification and oscillations.

One way to avoid instability explosion is to diminish the value of the inverse diffusion coef­
ficient at high gradients. In this way, when the singularity exceeds a certain gradient threshold, it 
does not continue to affect the process any longer. The diffusion process can be also terminated 
after a limited number of iterations. In order not to amplify noise, the inverse diffusion force 
at low gradients should be eliminated and the oscillations should be suppressed at the moment 
they are introduced.

The result of this analysis is that two forces of diffusion working simultaneously on the 
signal are needed - one backward force needed for edge sharpening and the other forward one, 
used for stabilizing oscillations and reducing noise. These two forces can actually be combined 
into one coupled forward-and-backward diffusion force with a conductance coefficient possess­
ing both positive and negative values. In [113-115] a rather ad hoc conductivity function that 
controls the FB diffusion process has been proposed, (Fig. 4.7a)

cfb(s) =
1  -  (sA /)71 . 0 < g < kf,

** [((g -  kb) /w)2™ -  l] , kb — w < g < kb + w, (4.44)
0 , otherwise ,

where g is an edge indicator, (gradient magnitude or the value of the gradient convolved with 
the Gaussian smoothing operator), kf, kb, w ,ii > 7 2  are design parameters and a* =  kf/(2kb), 
(kf < kb) controls the ratio between the forward and backward diffusion.
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Later another form of the diffusivity function was proposed, [116], (Fig. 4.7b)

Cfb{9) = 1 +  (g/kf r  ~ 1 + ( ( g - k b)/w)2̂  • (4'45)

In this work a more natural approach based on the widely used unsharp masking technique 
is proposed, [291,307,338-340,352]. Let us define the unsharp masking operation, [132,167]

y = x*  1 4- <5 (x* I  — x * Q) = x * [7(1 + 5) — SQ] , (4.46)

where /  is the identity operator, Q is the Gaussian operator, * denotes the componentwise con­
volution of the multichannel signals and 5 is a parameter which influences the sharpening effect.

Fig. 4.7. Plots o f  the forw ard  and backward conductivity and flu x  functions proposed in [113-115] (a) 
and in [116] (b)

The unsharp masking defined by (4.46) is equivalent to the anisotropic diffusion with a 
conductivity function defined as

C{5,g,P) = l + <5 —<5exp| — , (4.47)

which satisfies C(g =  0) =  1. However for 5 > 0, C > 1 which causes that the anisotropic 
diffusion based on the direct extension of the unsharp masking method would lead to a highly 
unstable scheme, which would very quickly collapse when used in an iterative way. Therefore 
a more stable solution is needed, which can be provided by the scheme defined by

y = x * Q\ +  5(x * Q\ — x * Q2), (4.48)

where Q\ and <?2 are two Gaussian operators. The aim of Q\ is to suppress the image noise and 
£2 is needed to perform the unsharp masking operation. Equation 4.48 can be rewritten as

y =  x * [<?i + 5(Qi -  g2)] = x * [(1 + 5)Gi -  <%)] • (4.49)
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The anisotropic diffusion scheme based on (4.49) is then parameterized by 6 and Pi, p2

C(S,g,P) =  (1 +  <S)exp { —g2/  (2 /? i)} — exp {—g2/  (2 /? f)} , (4.50)

where Pi < Defined in this way conductivity coefficient has the required properties: C(g = 
0) =  1, C(g > 0) < 1 and lim9_ 00C(5 ) =  0. Setting the 6 parameter to 1 we obtain two 
conduction coefficients directly based on the PM approach, [291,307,338]

clFB =^ exp^  - -  | I f -exp<;  —-  ( I } , c 2f b  = ------—- y ------- — (4.51)

1 + U J  1 + U J
Various modifications of the original diffusion scheme were attempted in order to overcome 

the stability problems and different conductivity functions were proposed, (Tab. 4.1), [159]. 
Yet, most schemes, even when regularized to avoid the problems caused by their ill-posed for­
mulations, still converge to a trivial solution, (the average value of the image gray values for 
monochrome case) and therefore the implementation of an appropriate stopping mechanism in 
practical image processing is needed. In case of images contaminated by mixed noise, an effi­
cient way of enforcing the convergence of the iterative process to a stable state, is the usage of 
the nonlinear cooling procedure, dependent on the image gradient values.

In this study the standard, but time-dependent PM conductivity functions are used, [339, 
349,350]

W {i)2
Ci {g, t) =

1

1 + {m)
(4.52)

to obtain new forward and backward conductivity functions, derived from the unsharp masking 
technique

CiFB = 2 exp
2 / ? i ( i ) s

exp
2/32(£)2J 5 C2 FD

1 + ( a w ) 1 + (wi)
(4.53)

where g =  ||Vx(f, rj, t)|| is the vector norm, Pj(n + 1) =  Pj{n) ■ a, a G (0,1], Pj( 1) is the 
starting parameter, j  = 1,2, Pi(n) < /32(n), where n is the iteration number.

This scheme depends only on two (in case of forward or backward diffusion) or three (in 
case of FB diffusion) parameters: initial values of the two starting Pj parameters and the cooling 
rate a. Setting a  to 1 means, that there is no cooling in the system. As a decreases, the cooling 
is faster, less noise is being filtered but edges are better preserved.

Figure 4.8 illustrates the dependence of the PM diffusion coefficients Ci(g,t) and c2(g,t) 
on the iteration step n. The plots of the forward and backward diffusion coefficients C\fb(9 , t) 
and c2fb  (5 , t) are presented in Fig. 4.9. In the FB diffusion process, smoothing is performed
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when the conductivity function is positive and sharpening takes place for negative conduction 
coefficient values. If the cooling coefficient a  is lower than 1, then the gradient threshold p(t) 
decreases with time, allowing lower and lower gradients to take part in the smoothing process. 
As the iteration step advances, only smoother regions are being filtered, whereas large gradients 
can get enhanced due to local backward diffusion. The scheme converges to a steady state for 
0 —* 0, which means that no diffusion at all is taking place.

The experiments revealed that better results of noise suppression using the FB scheme were 
achieved using the conductivity function c2 from the original PM approach. The efficiency 
of the proposed technique is presented in Fig. 4.15, where two color images are enhanced 
using the purely backward and FB anisotropic techniques. The ability of the new algorithm 
to filter out noise and sharpen the color images is shown in Fig. 4.16, where the color test 
images were contaminated with Gaussian noise (a = 30) and restored with the FB anisotropic 
diffusion scheme. The comparison of the proposed FB scheme with the classical PM approach 
is provided in Figs. 6.27 and 4.18. The results confirm good performance of the new method, 
which could be used for the enhancement of noisy images in various applications, which are 
based on color, shape and spatial image features.

The forward and backward anisotropic diffusion can be also obtained in a quite different 
way. In the novel scheme, the conductivity function is defined as the derivative of the classical 
PM flux function 4>, (see Fig. 4.13b). In this way the conductivity function takes negative values 
for g > 0  and approaches 0 for large values of the image gradient magnitude g. The important 
feature of the FB scheme is that the parameter P is now time-dependent and is decreasing with 
time (iteration), (Fig. 4.13). This causes that the maximum and minimum of the flux function 
are approaching zero in successive iterations, which g u a r a n t e e s  that the diffusion process 
converges quickly to a non-trivial solution.

Fig. 4.11 shows the plots of the conductivity functions used in the PM approach C\,  c2, [228] 
and c5 [119], Ce [63] defined in Tab. 4.1. It can be seen that the c5 and c6 conductivities 
lead to convex energy functions, which is a condition for the regularization of the diffusion 
process, [82,159]. As can be observed in Fig. 4.11 the PM conductivity functions Cj and c2 
yield non-convex energy functions, which is the source of the stability problems of the PM 
approach, [82,276,413]. Figure 4.12 depicts the conductivity functions, the fluxes and energies 
for the FB scheme defined by (4.53). Note that the shapes of the functions defined by (4.53) 
are quite similar to those shown in Fig. 4.13, which confirms the similarity of the two proposed 
approaches. As can be seen the energy functions in Figs. 4.12 and 4.13 are like in the PM 
scheme non-convex, (see Fig. 4.11) and the shapes of the conductivity functions are determined 
by the term [1 — g2/P2], (Tab. 4.1).
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Fig. 4.8. D ependence o f  the conductivity functions on the iteration step and the image gradient g fo r  the 
’coo led ’ c i and c2 conductivity functions, (forward diffusion, =  40 , a  =  0 .8 )

Fig. 4.9. Dependence o f  the fo rw ard  and backward conductivity functions on the iteration num ber n  
and the image gradient g  f o r  the C \ f b  and c 2 f b  conductivity functions defined by (4.51) and (4.53) fo r  
/ 3 i ( l )  =  40, I32( l )  =  8 0  and a  =  0 .5 . Note, that because o f  low a  already in the second iteration, the 
conductivity functions attain negative values

a) b) c)
Fig. 4.10. Comparison o f  the standard PM  anisotropic diffusion scheme with the proposed fo rw ard  and  
backward diffusion (FB), a) parts o f  the test image PARROTS, b) output o f  the PM  technique after 50  
iterations, c) result o f  the filtering using the proposed FB design after 6  iterations
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b) C)

Fig. 4.11. Plots o f  the conductivity functions used in the P -M  approach c i, c2, [228] and  C5  [119], 
ce [63] defined in Tab. 4.1 fo r  the (3 param eter decreasing from  60 to I  (a), beside the appropriate p lo ts  

o f  the flu x  functions  fI> (b) and the energy functions £  (c)



Fig. 4.12. Plots of the conductivity functions C \ f b  a n d  c 2 f b  defined in (4.53) for the (3 parameter decreasing from 60 to 1 with step-size 3 (a) and beside 
the appropriate plots of the flux $ (b) and energy functions £ (c)

a) b) c)

Fig. 4.13. Plots of the conductivity functions obtained through the derivative of the flux (i>' in Tab. 4.1) defined by PM conductivity functions c\ and c2 
(a), beside the plots of the appropriate flux (b) and energy functions (c), (the /3 parameter is decreasing from 60 to 1 with step-size 3)
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Fig. 4.14. Illustrations of the the development of the anisotropic diffusion process. The central part of 
the images shows the result obtained after 300 iterations. Left and right parts show the evolution of 
the column 25 and 325 of the 350 x 350 color LENA image distorted by mixed impulsive and Gaussian 
noise, a )  isotropic diffusion process (4.2), b )  PM anisotropic diffusion with C j, (4.6), c) regularized AD 
of Catte, [60,61], d )  new filter DPAF introduced in Chapter 5
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Fig. 4.15. Illustration of the proposed combined forward and backward anisotropic diffusion scheme. At 
the top: color test images, below images enhanced with the pure backward diffusion and at the bottom 
images enhanced with the FB diffusion scheme
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Fig. 4.16. Effectiveness of the coupled FB diffusion scheme. Left column: color test images, in the 
center: images contaminated with additive Gaussian noise (a  =  30), to the right: images enhanced with 
the proposed FB anisotropic diffusion scheme
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Fig. 4.17. Illustration of the efficiency of the FB anisotropic diffusion scheme, a) color test images, b) 
images enhanced with the FB scheme. Figs. c) and d) depict the results obtained with the PM approach, 
using the conductivity functions C\ and C2 , respectively after 50 iterations
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e) f)
Fig. 4.18. Illustration of the efficiency of the new filtering scheme: a) and c) test images and beside 
images enhanced with the proposed method (b), (d). Below the evolution of the test image c) using the 
standard PM scheme with the c2 conductivity function after 20 and 50 iterations (e), (f)

5

Digital Paths Approach to Color Image 
Filtering

In this Chapter a novel method of noise reduction in color images is presented. The 
class of filters presented here, utilizes fuzzy membership functions defined over vectorial 
inputs connected by digital paths. Instead of using a fixed window, the new method ex­
ploits connections between image pixels using the concept of digital paths. According to 
the described technique, image pixels are grouped together, forming paths that reveal the 
underlying structural dynamics of the image.

The efficiency of the new filters is evaluated under a variety of performance criteria 
and compared with the standard filters. It is shown that, compared to existing techniques, 
the filters presented here are better able to suppress impulsive, Gaussian and mixed noise. 
Furthermore, the computational analysis provided in this Chapter shows, that some mem­
bers of the new filter family are computationally less demanding than the standard, widely 
used vector median filter.

5.1 Connection Cost over Digital Paths

D
e p e n d i n g  on the design principles and the computational constraints, the new filter 
framework allows the digital paths exploring the image to be considered on the entire 

image domain, [298,299,302,319] or to be restricted to a predefined search area, [295,302,306, 
313-316]. The new approach focuses on the latter case.



To facilitate comparisons with existing ranked type operations and to illustrate the com­
putational efficiency of the proposed framework, the path searching area is allowed to match 
the window W  used by the ranked type filters. However, instead of the indiscriminately use 
of the window pixels, an approach advocated by the majority of existing multichannel filters, 
the proposed here framework enables the formation of a number of digital path models, which 
in turn are used to determine the coefficients of a weighted average type of filtering opera­
tion, [313,326,380].

The new filter class based on digital paths and connection cost, can be seen as a powerful 
generalization of the multichannel anisotropic diffusion presented in Chapter 4 and an extension 
of th e fuzzy adaptive filters described in Section 3.4. The filters discussed there are shown in this 
Section to be a s p e c i a l  case of the new filtering scheme, when a digital path is degenerated 
to a single step.

The path connection costs evaluated over all possible digital paths, are used here to derive 
fuzzy membership functions that quantify the similarity between vectorial inputs. The proposed 
filtering structure is then using the function outputs to appropriately weight input contributions 
in order to determine the filtering result. The proposed filtering schemes parallelize the famil­
iar structure of the adaptive multichannel filters and they can successfully eliminate Gaussian, 
impulsive as well as mixed-type noise. However, thanks to the introduction of the digital paths 
in its supporting element, the new filters not only preserve edges and fine image details, but can 
also act as an image sharpening operators.

In order to perform operations based on the distances, we first need to precisely define the 
notion of the topological distance. The concept of a topological distance between image points 
is of extreme importance in many applications based on the distance transformation, which is 
one of the fundamental operations of mathematical morphology, [50,51,154,172,251,285].

Let V  be any nonempty set. We can measure distances between points in V, defining a real 
valued function on the Cartesian product 'Dx'Dof'D. Let the function p : V  x V  —*■ R be called 
a distance if it satisfies: p(u,v) >  0 , with p(u,v) = 0  when u =  v and p{u,v) =  p(v,u), for 
all u, v e V  x V. A distance is called a metric if additionally it satisfies the triangle inequality: 
p(u,w) < p{u,v) +  p(v,w), for all u ,v ,w  e  V x D , [149,259].

In digital image processing three basic distance functions are usually applied. If u =  (uj, w2) 
and v = (vi,v2) denote two image points (u,v 6  Z2), then we define the city-block distance: 
p4(u,v) =  \ui — Vi\ + \u2 — v2\, chessboard distance: ps(u, v) =  maxd-Ui — vi|, \u2 — v2\) and 
Euclidean distance: p e ( u , v )  = [(«i —  V \ ) 2  + (u2 —  tj2)2]5. Using the city-block and chess­
board distances we are able to define the two basic types of neighborhoods: 4-neighborhood 
N i{ u )  =  {v : Pi{u, v )  =  1} and 8-neighborhoodM s(u)  =  {v : p&(u,v) =  1}.
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Let i 6  {4,8}, then two points u,v  € Z2  are said to be in A/"t-neighborhood relation, 
(denoted as <->) or to be A^-adjacent if v € AfL(u) or equivalently u S Afu(v). This A/”t-adjacency 
relation defines a graph structure on the image domain, called A^-adjacency graph. On the 
graph, a finite ML--path can be defined as a sequence of points (qo,qi, ■ ■ ■ ,qv) such that for 
A: e {1 ,2 ,..., 77} the point qk- 1 is A/̂  adjacent to qk. A path is called simple if k ±  j  implies 
that qk 7  ̂qj. This is a very important property of a path, as it means that a path does not intersect 
itself or in other words it is self-avoiding, [71,202,320,322,370].

a) b)

Fig. 5.1. Illustration of the concept of digital paths and connection cost. The pixels a, b, c, d are 
connected with the central pixel along paths, whose connection costs are minimal

Using the distances between neighboring points, which are called prime distances, [371] we 
are able to define a distance between any two image points by following all admissible paths 
linking those points and then taking the minimum of the total length over all possible routes, 
which is the sum of the prime distances between the nodes of the paths. In this way, the distance 
between two image points is the length of the path for which the sum of the prime distances 
between the path nodes is minimal. For the city-block distance, the admissible paths consist 
of horizontal and vertical moves only, whereas for the chessboard distance also the diagonal 
moves are allowed. The prime distances for the two kinds of neighborhood are assumed in this 

work to be equal to 1 .
Let us now introduce the definition of a geodesic distance, [252,266] assuming that R2 is the 

Euclidean space, W is a planar subset of R2  and u, v are points belonging to set W. A path from 
u to v is a continuous mapping Q: [a, 6 ] —> W, such that Q(a) =  u and Q(b) = v. The point u 
is considered as the starting point, while v is the ending point on the path Q, [51,84,152,261].

An increasing polygonal line Q on path Q is any polygonal line such that Q =  {Q{qk)Yl=a, 
a = q0 < ,.. . ,<  qn = b. The length C of the polygonal line Q is considered to be the total sum 
of its constitutive line segments £(Q) =  where p(u,v) is the distance
between the points u and v, when a specific metric is adopted. A path Q from u to v is called



rectifiable, if and only if £(Q), where Q is an increasing polygonal line, is bounded. Its upper 
bound is called the length of the path Q.

The geodesic distance pw(u, v) between points u and v is the lower bound of the length of 
all paths leading from u to v which are totally included in W. If such paths do not exist, then 
the value of the geodesic distance is set to oo. In general pw(w, v) > p{u, v), however if the set 
W is convex, meaning that there are no points on the line between u and v that are not members 
of W, the geodesic distance verifies pw(u, v) =  p(u, v).

The notion of a path can be extended to a lattice, which is a set of discrete points on the 
plane, in our case the spatial locations of the image pixels. Let a digital lattice H =  (x, Af) be 
defined by x, which is the set of all points on the image domain fi and a neighborhood relation 
N  (<-+) between the lattice points, [278].

A digital path Q = {<7i}fc= 0  defined on the lattice PL is a sequence of neighboring points 
(Qk-i,Qk) € A/-• The length £(Q) of the digital path Q{g/t}JL0  is simply Yll=i PH(Qk-i,qk), 
where pn  denotes the distance between two neighboring points of the lattice H and the geodesic 
distance between q0 and qv is the minimal length of £(Q).

Constraining the paths to be totally included in a predefined set W  yields the digital geodesic 
distance pw . In this work A^-neighborhood system (i =  4 or i =  8 ) is considered, with a topo­
logical distance of 1 assigned to any neighboring points, and the set W  will be the supporting 
window of appropriate size. All paths considered in this Chapter are included in the filtering 
window W, (Fig. 5.2).
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Fig. 5.2. Digital paths of a) length 2 and b) length 3, connecting two neighboring points within a 
predefined window W of size 3x3,  when the 8-neighborhood system is applied

Let us now adopt the following notation, which will help us define the distance functions 
defined over geodesic paths. The starting point of a path will be denoted as q0 = (iUo, jvo)■ Its 
neighbors will be denoted as q\ =  (iUl, j vi), which means that the neighbors are the second 
points of all digital paths originating at qo. Then the third point of a digital path starting at go

will be <j2  =  (iU2,jV2) and so on, till the path reaches in 77 steps the ending point qv =  {iUr,,jvri)- 
In this way the sequences iui, . . . ,  iUrt and j vi, . . . ,  j Vri uniquely define the digital path starting 
at uio, vjo and ending at ulri,vjri. The set of all possible digital paths contained in W  joining two 
points u, v e W  will be denoted as ^ w (u, v).

Two pixels u and v will be called connected (denoted as u ■<=> v), if there exists a digital path 
QW (u, v) contained in the set W  starting from u and ending at v. If two pixels at positions q0 and 
qv are connected by a digital pathQ'^’’' {qo, 9 i, • • •, Qr,} of length 77 then let AW'rl{qo, q \,... ,qv} 
be a measure of the connection cost defined over the digital path linking the starting point go 
and ending point qv, ( /  is a nonnegative scalar function of vector variables)

{go, • ■ • i ĝ } =  /  {x <jo> • ■ • 1 x <?r,} =  /  ,u3 1 1 ■ • • > x u^,vjri |  • (5-1)

The connection cost AW''1 over a digital path can be seen as a measure of dissimilarity between 
color image pixels at points g0, gi , . . qv forming a specific path linking g0  and qv, [76,251,390]. 
If a path joining two distinct points u, v, such that xu =  x v consists of pixels of the same channel 
values, then the connection cost should be zero, otherwise Aw'v > 0.

Let us now define a generalized connection cost function, based on the Distance Transform 
on the Curved Space (DTOCS), [251,390] introduced for the gray scale images. For two given 
points qk and qk-i, k = 1 , 2 , . . .  , 77, which are in a neighborhood relation, let the generalized 
distance between the two points be called connection cost defined on a hybrid spatial-color 
space discussed in [148,366]

h w'l{qk- x,qk} =  ||x9fc -  x9jt 1 1| + |  • pW(Uk,lifc-i), (5.2)

where |  establishes a proper weighting in the hybrid spatial-color space. The connection cost 
of a whole digital path g0, gi , ..., qv will be then

AVV’’' {go, 91, • • •, g»,} = £  (llx« ~ x^-i II + £ ‘ pw{qk’ • (5-3^
Jt=l

As we will work with small filtering window, we will focus on the color space only, by set­
ting |  =  0. Similarly to the gray scale case, we will call the minimal connection cost Tlv’’7(u, v) 
of a path of length 77 linking two points u,v  6  W, the 77-geodesic between the point u and v: 
Tw'7] (u,v) =  min {A (7 ) , 7  G 'tfw'v}.

In this way the 77-geodesic is defined as the path of length 77, which gives the minimal connec­
tion cost between two points linked by a digital path. If we take the minimum of the connection 
costs generated by all possible paths joining two points u and v € W, then we obtain the gener­
alized multichannel geodesic distance between these points: Tw (u, v) =  min,, { ru/,r? (u, u)} =
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min {A (7r ) , 7r € QH'r? (u, v ) , 77 e N}. Tw {u, v) defines the multidimensional distance trans­
form, which is a g e n e r a l i z a t i o n  of the DTOCS introduced in [390] for the gray scale 
images, [313].

In general, two distinct pixel’s locations on the image lattice can be connected by many 
paths, (see Fig. 5.2). Moreover the number of possible geodesic paths of certain length t] con­
necting two distinct points depends on their locations, length of the path and the neighborhood 
system used, [50,51,172] .
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5.2 General Filter Framework

In this work, general fuzzy filtering structure proposed in [236,240,242,313,377,379] will be 
used. The general form of the fuzzy adaptive filters presented here is defined as a weighted 
average of input vectors inside the processing window W

N  N  N

y  =  =  ( 5 - 4 )

k= 1 k=1 k= 1

The relationship between the pixel under consideration Xi and each pixel in the window should 
be reflected in the decision on how to define the filter weights. In our case, the weights will be 
determined using the similarity functions calculated over digital paths included in the processing 
window W.

On the basis of the connection cost function concept, it is possible to define different classes 
of similarity functions. The choice of a specific form of the similarity function yields different 
filters of specific properties, which can be applied for a wide range of low level vision tasks.

Let us now define a similarity function ip, analogous to a membership function used in fuzzy 
systems, between two pixels connected by all possible digital paths leading from u to v

ipw«(u,v) = j r f {  A™» ( « , « ) } ,  (5 .5 )
k = 1

where uj is the number of all paths connecting u and v, A^ ’’1 (u, v) is a dissimilarity value along 
a specific path k from the set of all u  possible paths leading from u to v and /(•) is a smooth 
function of A™'v. By definition ipw'rt (u, v) returns a value evaluated over all routes linking the 
starting point u with the endpoint v.

The smooth function /  : (0 oo) —+ R should satisfy the following conditions: /  is a de­
creasing in (0; oo), /  is convex in (0; oo), / (0)  =  1, f  (x) —► 0, when x  -* oo. Several 
functions satisfying the above conditions have been proposed in the literature, [170,245,246,
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304,313,324,378]. However, the shape of the function is not of great importance and for the 
impulsive noise removal good results are obtained using the exponential form of the function 
/(•)’ [41]. Therefore we assume

UJ
ipw'v (u , v) = "^2 exP ’ ^ k ’7' (u>u)] >

*:=i

where j3 is the filter design parameter. For 77 =  1 and a square (3 x 3) window W  the similarity 
function ip is defined according to (5.3) as ipWtl (u, v) = exp {— P\\xu — x„||}, and then if xu = 
xv, Aw'l (u,v) =  0, ipw'l (u,v) =  1, and for ||xu -  x„|| —> 0 0 , ipw'1 —> 0, [240,313,328,404]. 

A normalized form of the similarity function is defined as

, , ,  \ ipw'v(u,v)
* M  = E W « , » ) ’

W<F>U

where v -*=> u denotes all points v connected by digital paths with u which are contained in W.
Assuming that the pixel xu is the pixel under consideration, with xv representing the pixel 

included in the supporting element W, which is connected to x„ via a digital path, the proposed 
filter output yu is given as

1pw'r,(u, v)
ipw«{u, w)

(5.8)

The filter output is the weighted average of all points xv connected by digital paths with 
the pixel xu. As the pixel x„ is the ending point of a path leading from u, therefore this filter 
structure is called D?A-Last (DPAL) as v is the last point on the path, (Fig. 5.3b).

5.2.1 Digital Paths Approach Filter Class

Another possible filtering scheme takes into account the similarity between the starting point q0 
and point <71 crossed by a digital path connecting pixel q0 and its neighbor <71 with all points q̂ , 

which can be reached in 77 steps from q0. The aim of taking into account the points q2, . . ., qv 
when calculating the filter output is to explore not only the direct neighborhood of q0 but also to 
use the information on the local image structure. This can be done by acquiring the information 
on the local image features investigating the connection costs of digital paths originating at q0, 
passing <71 and then visiting successive points, till the path reaches length 77. In this case, the 
similarity function takes the form

* w "  ( u ,  1;)  =  ip w '” (<7o, q i )  =  £ / { A W 'V { 90,9 1 ,  <&, <&, • • ■ , « ; } )  , (5 -9 )

{«2.93 1'r,}
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where {q0, qi, q2, . . . ,  g*} denotes all paths originating at u = q0 crossing v = q\ end ending at 
q*, which are totally included in W  and /(•) is a smooth function of AWiTl.

By analogy to the previous Section, the exponential function will be used, and then the 
similarity function takes the form

ipw','(u,v)=ipw'T,(q0,q1) = e x p [ - ^ - A Wi’7 {g b ,9 i , « 5 , - . . , g 5 } ]  , (5.10)

{9 5 .93 <}

where 0  is the smoothing parameter.
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Fig. 5.3. In the DPAF and DPAL filters, the weights are assigned to the pixels surrounding the central 
pixel xi and are determined in different ways. In the DPAF approach (a), the weights in (5.13) are 
calculated exploring all digital paths starting from the central pixel and crossing its nearest neighbors, 
then a weighted average of the nearest neighbors of the central pixel is calculated, (5.14). In the DPAL 
approach, the weights are obtained by exploring all digital paths leading from the central pixel to the 
pixels contained in W (b) and then a weighted average of all pixels from W is calculated, (5.18)

A normalized form of the similarity function can be defined as

E  exp [ -0  • Aw'i {g0, 9 i ,< ? 2  • • •, 9^}]
\ v {«*•«...«;} ,ei1sip (x,y) = ip [qo,qi) = ---- ^ ---------

E  exp

where {9 0 , 9 1 , 9 2 - • • • > 9 iJ} denotes a path joining u = q0 and qv, crossing v = qlt whereas 
{9 0 , 9 *, 9 2 , ■ ■ ■, 9 ^} do not necessarily cross v = q\ when joining q0 and qn.

Assuming that the pixel x u at the position u =  go is the pixel under consideration, with x„ 
representing the pixel at v =  gi, the filter output yu is given as

yu =  yqo = w) • V'* («, v) ■ xv =  Tp* (9 0 ,9i) • X,. , (5.12)
v 4 $ u  v<->u Q*<->qo

[-/?• A^{go,9Î,92 --,9^}] ’
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and combining this with (5.11) gives
E  exp [ -0  ■ Aw^  {9 0 , ql, q*2, . . . ,  9 *}]

YU =  y?° =  1 E  ”} exp [-0 ■ A ^  { 90, 9I> q* ...,q;}]
{«r.95 9j}

(5.13)
Using the notation from Chapter 4, we can formulate (5.13) as

N

y  =  ( 5 - 1 4 )

k—2
where ip*k, the normalized weighting coefficients, play the role of the generalized conductivity 
coefficients from Section 4.1 and x k are the neighbors of xi, which is the central pixel in the 
filter mask W.

The general form of the anisotropic diffusion scheme based on the concept of digital paths 
can be written as

N  N

y =  ( l —A*)xi+ A * $ > ; x * ,  or x T  =  ( l - A ’)*i +  A *X >S*i- (5-15)
k= 2  k= 2

Using the relation A* =  A Ylk= 1 ck-> (4-27) and taking paths consisting of one step only, the 
classical form of the anisotropic diffusion scheme defined by (4.23) can be obtained.

Figures 5.4 and 5.5 show the dependence of PSNR on the A* and 0 values for the color LENA 
image contaminated by Gaussian, impulsive and mixed noise for the classical multichannel PM 
anisotropic diffusion scheme (Section 4.3) and the proposed DPAF, (DPA-First) filter defined 
by (5.14). Especially interesting is the behavior of the plots as a function of A*. As can be seen, 
for images contaminated by a noise process of high intensity, the maximum of PSNR is obtained 
for A* very close to 1, which means that it is favorable to omit the central pixel while calculating 
the weighted average in (5.14). This was already noticed in [290,300], (2.13), where the central 
pixel was not taken into the averaging process, which is equivalent to setting A* = 1. That is 
why we set A* =  1 in (5.14) to define the new DPAF filter, (5.13), (5.14). The superiority of 
this approach over the classical scheme is clearly seen in Fig. 5.4 and 5.5, where especially for 
highly corrupted images, the difference in terms of PSNR is quite significant, (see also Tab. 5.4 
and 5.5).

In a similar way the DPAL filter can be defined as

E  exp [ -0  ■ Aw’i  {g0 ,9 i.95, •••>?«}] •x?*

^  (9o, 9*) ' X q' ■
QÎ*-*qo
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PSNR PSNR

PM AD, or =  10 DPAF, a =10

PSNR PSNR

PM AD, a = 20 DPAF, a = 20

Fig. 5.4. Dependence o f the efficiency o f the PM AD (left) and DPAF (right) on the A* and /3 parameters 
fo r the color image LENA contaminated with Gaussian noise o f a  =  10, a  = 20 and a  =  30

PM AD, a = 30 DPAF, a = 30
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PSNR PSNR

C) d)
PSNR PSNR

e) f)

Fig. 5.5. Dependence of the efficiency o f the PMAD filter and the DPAF on the A* parameter for the 
color image LENA contaminated with: a) impulsive noise, (p =  0 .12, NM2), b) mixed noise, (a = 30, 
p =  0 .12, NM2). Below the results obtained with the PMAD filter: c), d) and with the DPAF: e), f), 
(rj = 2). As expected the maximum o f PSNR is achieved for  A* close to I



98 Digital Paths Approach to Color Image Filtering

which can be written as
N

y  = Y l ^ Xk- (5-17)
k= 2

Analogously to (5.15), we can introduce the general and iterative form of DPAL defined by 
(5.16)

N  N

y =  (1 -  A*)Xl +  A* Xfc, x ‘+1 =  ( l - A V i  +  A * j > ; x i ,  (5.18)
k= 2  k=2

where ipl are the normalized weighting coefficients from (5.16).
The concept of the DPAF and DPAL filters is presented in Fig. 

5.3. The weights assigned to the pixels surrounding the central pixel 
Xi are determined in different ways. In the DPAF approach, the 
weights in (5.13) are calculated exploring all digital paths starting 
from the central pixel and crossing its neighbors, (Fig. 5.3a) and then 
a weighted average of the nearest neighbors of the central pixel is 
calculated, (5.14).

In the DPAL approach, the weights are obtained by exploring all 
digital paths leading from the central pixel to any of the pixel in the 
filtering window, (Fig. 5.3b) and then a weighted average of all pixels 
contained in that window is calculated, (5.18).

Although, both the schemes work on supporting windows of the 
same size, determined by the number of steps r] and the kind of the neighborhood relation, the 
DPAL has more powerful smoothing properties, as it involves all the pixels from the filtering 
window W  into the averaging process, whereas the DPAF determines the weighted output using 
only its nearest neighbors. The efficiency of the new class of filters DPAF and DPAL will be 
evaluated and compared with some of the standard filtering techniques in Section 5.3.

5.2.2 Fast Filter Design

The computational complexity of the DPA filters depends on the path length 77 and the number of 
paths, which can be constructed in the supporting window W  of size (k x k). It is easy to notice 
that for large k, which may be required in certain applications, the computational complexity 
of the filters makes them inapplicable. To decrease the computational burden, another filter 
structure is introduced. In the Fast Digital Paths Approach (FDPA), the size of the window W  
is set to (3 x 3) independently of the digital path length r\. It is possible to construct both the 
fast DPAF and fast DPAL filters, however their properties are quite similar and therefore only 
the filtering approach based on DPAL, (denoted as FDPA) will be investigated.

1 2 CO 2 1

2 2 4 2 2

3 4 • 4

E

2 2 4 2 2

1 2 3 2 1

Fig. 5.6. The array de­
picts the number of pos­
sible paths of length 77 = 
2  connecting the cen­
ter point with the points 
of window W, when 8- 
neighborhood system is
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Using the FDPA formulation, a number of interesting properties of the proposed filtering 
structure can be observed. For example, let us assume that the parameter (3 used in (5.6), is very 
small (/? —> 0). Then the weights in (5.8) reduce to ip* (u, v) = uj (u, v) /n, where ui (u, v) is 
the number of digital paths of length 77 connecting points u and v, and n denotes the number of 
all possible digital paths starting from u, which are totally included in W .

The convolution mask obtained through the DPAL framework, when /3 —> 0 is depicted 
in Fig. 5.6. The examination of the convolution masks reveals their similarity to the masks 
obtained through Gaussian kernels, [23]. Therefore, the DPAL and also DPAF can be viewed 
as a non-linear generalization of the Gaussian kernel based schemes, which are widely used in 
many image processing tasks. It is worth noticing, that if we allow the path to return to the 
starting point, the approximated form of the Gaussian kernel can be obtained.

5.2.3 Iterative Behavior of the Filter Class

The parameter (3 in (5.6), (5.10) regulates the smoothness of the similarity function. Since the 
filtering structure of (5.4) is a regression estimator, which enables a smooth interpolation among 
the observed, noise-corrupted image pixels, the parameter /? provides the required balance be­
tween smoothing and the detail preservation. Therefore, it is not surprising that the best results 
are obtained when the smoothing operators defined in (5.8) and (5.12) are applied in an iterative 
way.

Starting with low values of /? enables the smoothing of the image noise components. At each 
iteration step, the parameter (3 can be increased, following a procedure, mathematically similar 
to that used in simulated annealing optimization algorithm. In particular, /3 can be increased 
exponentially p(n) =  p(n — 1 ) ■ a , where n is the iteration number and a  is a design parameter. 
The increasing of /3 causes that after a few iterations no further changes are introduced to the 
image, as for high /3 the filter output is that pixel, which lies on the geodesic digital path in the 
color space. The influence of a  on the performance of the DPAL and FDPA filters is shown in 
Fig. 5.8. The value of a is not critical for the efficiency of the new filter class, and a from the 
interval [1 , 2 ] guarantees fast filter convergence and good filtering results. 1

5.2.4 Computational Complexity

Apart from the numerical behavior of any proposed algorithm, its computational complexity is 
a realistic measure of its practicality and usefulness, since it determines the required computing

'Note that the increasing of the 0  parameter is equivalent to the ’cooling’ procedure applied in Section 4.4 for 
the construction of the FB diffusion scheme.
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power and processing time. A general framework to evaluate the computational requirements 
of image filtering algorithms based on a fixed processing window is given in [38,243].

The requirement of this approach is that the filter window W  is symmetric (k x k ) and 
contains k2 vector samples of dimension m. In most image processing applications a value of 
k = 3 is considered.

The computational complexity of a specific filter 
is given in terms of the total execution time needed 
for a complete filtering cycle. The total execution 
time T is calculated as T  =  E  we ■ q , where o is the

Tab. 5.1. Number of possible simple digital number of particular operations required for a com-
paths n in dependence on path length ri , . . , . .plete cycle, and we is the relative operation weight.

In the analysis of the filters the following operations are used: a d  (additions), m u  (multi­
plications), d j  (divisions), s q  (square roots), co (comparisons), a r  (arc cosines) and e x  (ex­
ponents). Mostly wAD is assumed to be 1, while other we values depend on the computing 
platform. The determination of the weights of different operations is beyond the scope of this 
work.

Since the structure of the new filters is not based on a fixed window, the methodology pre­
sented in [37,38,243] cannot be directly applied to evaluate the new filters’ complexity. The 
complexity of the proposed filters depends mostly on the number of possible digital paths, which 
in turn depends on the path’s type and its length. For a given path of length 77, the number of 
simple paths n can be easily evaluated. Table 5.1 depicts the number of possible paths corre­
sponding to the DPA and FDPA filters, [295,313,378,379].

FILTER AD MU DI SQ EX CO AR TOTAL
d p a 2 947 228 56 1 1 2 56 — — 1399
D P A 3 8827 1478 368 1104 368 — — 12145
f d p a 2 403 1 0 0 24 48 24 — — 599
F D P A 3 1139 230 56 168 56 — — 1649
FDPA,* 169 2 2 24 9 24 — — 248
FD PA * 721 24 56 9 56 — — 8 6 6

VMF3 x3 186 63 — 2 1 — 8 — 278
V M F 5x5 855 330 — 1 1 0 — 24 — 1319
B V D F 3x 3 375 2 1 0 2 1 2 1 — 8 2 1 656
B V D F 5x5 1970 1 1 0 0 1 1 0 1 1 0 — 24 1 1 0 3424
d d f 3 x 3 540 282 2 1 42 — 8 2 1 914
D D F 5 x5 2785 1455 1 1 0 2 2 0 — 24 1 1 0 4704

Tab. 5.2. Number of elementary operations needed for a complete processing cycle

V 1 2 3 4
DPA 8 56 368 2336

FDPA 8 24 56 69

The complexity of the DPA and FDPA filters can be determined as follows:
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1 .
Filtering o fl pixel requires the computation of all weights ipw,ri (see point 2), m ■ (n—1) 
additions and m ■ n multiplications.

2.
Computation of all weights ipW'v requires the computation of all similarity functions 
p̂w,v (see point 3), n divisions and (n — 1) additions.

3.
Computation of all similarity functions ipw''1 requires fi computations of the distance 
A_Y'v (see point 4), (n — 1) additions, n multiplications and a computations of an 
exponent.
4.
Computation of one distance along path j  requires r) computations of the Eu­
clidean distance, (if the L2  metric is used) and (7 7 — 1 ) additions.

5.
Computation of one particular Euclidean distance requires m multiplications, 2m ad­
ditions and 1 square root.

Thus the total number of operations needed to implement the filters is

T =  (2 r??7 ifi +  sip + run -  m  — 2) - a d  + (n +  mn + 2r]) ■ mu+ si- d i + nr] ■ s q  + si- e x  . (5.19)

It should be emphasized at this point that the computational complexity analysis of the new filter 
is based on a straightforward application of the described algorithms, without any consideration 
of a particular implementation. However, it is possible to significantly reduce the computational 
complexity of the proposed filters.

The analysis of the FDPA filtering algorithm reveals that the L2  distance should be evaluated 
77 times for each path of length 77. If the total number of paths in the supporting window is n, the 
number of L2  norm evaluations is (n ■ 77). However, most of these calculations are unnecessary, 
since values already computed for other paths can be used. For example in a (3 x 3) window, 
there are only 20 possible distances to be calculated. These values can be computed and stored 
in order to be used to determine the path related weights for a neighboring pixel. Furthermore, 
other techniques used to improve the performance of the VMF, [38,176] can be applied in the 
DPA or FDPA filter design.

Table 5.2 summarizes the total number of operation for different filters, with DPA,, de­
noting the basic DPA filter of length 7/, FDPA,, denoting straightforward application of FDPA 
algorithms and FDPA* signifying the optimized version of FDPA. As can be seen, the fast 
implementation of the proposed filter is computationally more attractive than the VMF and it 
significantly outperforms the filters based on angular distances.
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5.3 Efficiency of the Filter Class

In this Section the performance of the new filter class is evaluated, comparing the results with 
some of the noise reduction techniques listed in Tab. 5.3 using artificial and natural color images 
corrupted by Gaussian and mixed Gaussian and impulsive noise.

The use of nonlinear filters in color image processing is motivated primarily by their good 
performance near edges and other sharp signal transitions. Edges are basic images features, 
which carry valuable information, useful in image analysis and object classification. There­
fore, any nonlinear noise reduction operator is required to preserve edges and smooth out noise 
without altering sharp signal transitions.

To quantitatively evaluate the behavior of the proposed algorithms, two synthetic images 
were prepared. To examine the performance of the new filters in case of an artificial step-edge, 
a three-channel image called SQUARE of size (60 x 60) containing a square of size (30 x 30) 
was generated, (Fig. 5.7a). Further, for the evaluation of the filter performance in case of a 
ramp-edge, a synthetic test image called PYRAMID was constructed. The three-channel image 
of size (90 x 90) contains a top-cut pyramid, which is used to simulate a ramp-edge, (Fig. 5.7c). 
The test image SQUARE was corrupted by multivariate impulsive noise following the model 
NM2 given by (1.10) with the degree of contamination p = 0.1, (Fig. 5.7b). The test image 
PYRAMID was corrupted by mixed impulsive noise with p =  0.1 and a =  20, (Fig. 5.7d).

The standard Digital Paths Approach (DPAF, DPAL) and the Fast Digital Paths Approach 
(FDPA) algorithms were compared in terms of objective quality criteria with the VMF, AMF 
and PMAD and other filtering techniques listed in Tab. 5.3.

In the DPAF, DPAL and FDPA filters, the paths of length r? =  2 with design parameters 
set at /3 =  20 and a = 1.2 were used. The AMF and VMF operated on a filtering window of 
size (3 x 3). Anisotropic diffusion filter used in the experiments denoted as PMAD is a vector 
implementation of the PM anisotropic diffusion, (Section 4.1) which utilizes the conductivity 
function Ci defined by (4.6), [112,228]. For the PMAD filter the parameters, which gave the 
best results in terms of PSNR were used.

It should be pointed out that the parameters used for the FDPA, DPAF and DPAL were not 
optimal and in majority of cases better results can be obtained for images corrupted by a specific 
noise process. However, in practical situations the optimal values of the design filter parameters 
are generally unknown and therefore the fixed experimental parameter values were used.

In case of images corrupted with Gaussian noise, the AMF as expected gave better results 
than the VMF, but it blurred heavily the image edges. The classical PM anisotropic diffusion

gives good results for images corrupted with Gaussian noise of low intensity, but it requires 
many iterations till its performance can be comparable with the new filter class in terms of 
objective quality criteria. In case of images distorted by strong Gaussian noise, the PMAD 
approach is n o t a b l e  to suppress the spikes, which leads to a poor overall performance of 
this filter, (see Figs. 5.9, 5.10).

The experimentations with images corrupted by mixed Gaussian and impulsive noise re­
vealed as expected, that the AMF filter introduces extensive smoothing into the image and 
impulses are still visible as blurred blotches, [80]. The anisotropic diffusion, with parameters 
used in the experiments does not blur the image edges, but it leaves impulses almost unchanged, 
(of course when we increase the threshold parameter p in (4.6) we can smooth the noise out, 
but then the PMAD will also destroy the image edges).

The VMF efficiently reduces the noise component, but tends to blur the edges and produces 
color blotches in flat image regions, (see Figs. 5.9, 5.10 and 5.150, 5.18d). The results obtained 
using the DPAF, DPAL and FDPA filters confirm their g o o d  p r o p e r t i e s  in case of 
images corrupted by both impulsive and Gaussian noise.

The new filtering structure gives satisfying results both in flat regions and also at image 
edges, (see Figs. 5.9, 5.10 and also 5.15). The results obtained with anisotropic diffusion and 
with filters proposed in this work are quite similar in case of images corrupted by low intensity 
Gaussian noise. Both schemes provide efficient smoothing in homogeneous image regions and 
achieve excellent edge preservation. However, the new filters achieve its goal much faster and 
work efficiently, even when the intensity of the Gaussian noise is high, (Fig. 5.12).

For images corrupted with mixed Gaussian and impulsive noise, neither the VMF nor AMF 
provide acceptable results. While anisotropic diffusion filter smoothes out only the Gaussian 
noise component and AMF introduces blurring, the DPAF, DPAL and FDPA filters performance 
is excellent. The new filters remove outliers introduced by impulsive noise, leaving the edges 
of the objects almost unchanged.

The noise attenuation properties of different filters were examined using the color test image 
LENA, which has been contaminated by Gaussian and mixed Gaussian and impulsive noise in 
order to compare the new filters with the filtering techniques listed in Tab. 5.3. The test images 
were contaminated by additive Gaussian noise of a =  30 and also by mixed noise (p = 0.12, 
NM2, a =  30). As the results for LENA and PEPPERS are consistent, only the results obtained 
with LENA image are reported.

The SNR, PSNR, NMSE and NCD image quality measures defined in Chapter 1 were used 
for the comparisons. The results obtained using the new filtering techniques are compared with 
the filtering algorithms from Tab. 5.3 in Tabs. 5.4, 5.5. For the denoising of both contaminated
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LENA images with the new filtering techniques, predefined parameter values were used: path 
length 77 =  2, p = 10, q =  1.25. For all evaluated filters 10 iterations were performed and the 
best result in terms of PSNR are presented in Tabs. 5.4, 5.5.

Figure 5.8 depicts the efficiency of the proposed algorithms, (DPAL and FDPA) in terms of 
the NCD quality measure, as a function of the design parameters a  and /3. It can be easily no­
ticed that both algorithms yield comparable results with a flat minimum of NCD, which ensures 
their robustness to optimal parameter settings. The parameter a  ensures quick convergence of 
the proposed filters to a stable state and as can be seen in Fig. 5.8, good results can be obtained 
for any a  in the range [1 , 2 ].

Tables 5.4 and 5.5 indicate that the new filters yield especially good results in the case of 
images corrupted by the Gaussian and mixed Gaussian and impulsive noise. In addition to 
the excellent noise attenuation properties, the new filters restore the noisy images so that they 
have well preserved, and even enhanced edges and comers, which make them useful for various 
computer vision applications, (see Figs. 5.13, 5.14, 5.15, 5.18, 5.19).

The best results for the Gaussian and mixed noise attenuation, for the majority of existing 
filters were obtained after many iterations, while for filters based on the digital paths concept 
the best results were achieved in the second or third iteration, (see Fig. 5.12).

The comparison of the new filters efficiency with some of the standard filters is presented in 
Fig. 5.11, where for different filters, the PSNR and NCD dependence on the amount of mixed 
impulsive and Gaussian noise is shown. As the intensity of the noise increases, the quantitative 
results obtained using the new filters become significantly better than those obtained by the 
standard filters, (AMF, VMF, DDF).

The simulations revealed that in the case of both Gaussian and mixed Gaussian and impul­
sive noise, very good results were obtained using the GDF technique, presented in [398,399], 
which is based on the gradient norm described in Section 4.3. The visual comparison between 
the FDPA and the GDF introduced in [398,399] is shown in Fig. 5.17.

The high efficiency of the proposed filter class is also confirmed by Figs. 5.18, 5.19, Fig. 
5.16 (removal of raster structure), Fig. 5.13 (restoration of artworks, [313,337]) and Fig. 5.14 
(microarray image denoising, [190,303,348,378], Fig. 1.7).

In conclusion, from the results listed in the Tables and shown in the Figures, it can be 
observed that the new filters, especially the FDPA filter, provide consistently good results. The 
DPAF, DPAL and FDPA filters can be seen as universal filters able to attenuate different types 
of noise, while preserving image edges and comers. Simulation results show that the new class 
of filters yield favorable noise reduction results for various kinds of color images in comparison 
with the standard adaptive noise removal algorithms, [295,306,313-315,333,348,377,377,404].
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Fig. 5.8. Efficiency of the a) DPAL and b) 
FDPA filters in terms of NCD and their de- 

Fig 5.7. Test image SQUARE (a), corrupted by impulsive pendence on a and 0, (rj = 2) for color
noise, (green channel) (b), test image PYRAMID (c), cor- LENA corrupted by mixed noise (p = 0.12,
rupted by mixed noise, (green channel) (d) NM2, a = 30), (n = 3)
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Fig. 5.9. Three-dimensional representation o f the results o f noise attenuation in the green channel o f the 
SQUARE test image corrupted by impulsive noise, using the standard and novel techniques: a) AMF, b) 
VMF, c) PM-AD, d) FDPA, e) DPAL and e) DPAF, (five iterations, T] = 2)
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Fig. 5.10. Three-dimensional representation o f the results of noise attenuation in the the green channel 
of the PYRAMID test image corrupted by mixed Gaussian and impulsive noise using the standard and 
new techniques: a) AMF, b) VMF, c) PM-AD, d) FDPA, e) DPAL and f )  DPAF, (five iterations, t] =  2)
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NCD [1 O'4]

I ■ I 1 I 1 T
10 11 12 13 14

Noise intensity Noise intensity

a) b)

Noise intensity 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 13 14
Gaussian a 5 1 0 15 2 0 25 30 35 40 45 50 55 60 65 70
Impulsive [%] 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 13 14

Fig. 5.11. Comparison o f the efficiency o f the standard filters with the new filter class in terms o f a) 
PSNR and b) NCDfor different amounts o f noise, (mixed Gaussian and impulsive noise, p  =  0 .01  -  0.12, 
NM2), c). EPM, (Escaping Particle Model) denotes a path model, in which with every step the Euclidean 
distance between the current point and the origin is increasing

Fig. 5.12. Plots o f the PSNR in subsequent iterations for various filters applied to color LENA image 
contaminated with Gaussian noise o f a  =  30  (a) and mixed noise, (o =  30, p  =  0 .12 , NM2) (b)
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FILTER METHOD REF.
AMF Arithmetic Mean Filter [231,246]
VMF Vector Median Filter [19]
BVDF Basic Vector Directional Filter [395,397]
GVDF Generalized Vector Directional Filter [397]
DDF Directional-Distance Filter [138]
HDF Hybrid Directional Filter [106]
AHDF Adaptive Hybrid Directional Filter [106]
FVDF Fuzzy Vector Directional Filter [240]
ANNF Adaptive Nearest Neighbor Filter [237,238]
ANPEF Adaptive Nonparametric (Exponential) Filter [242,246]
ANPGF Adaptive Nonparametric (Gaussian) Filter [242,246]
ANPDF Adaptive Nonparametric (Directional) Filter [242,246]
VBAMMF Vector Bayesian Adaptive Median/Mean Filter [242,246]
PMAD Perona-Malik Anisotropic Diffusion Filter with Ci [227,228]
GDF Geometric Diffusion [398,399]

Tab. 5.3. Filters taken for comparison with the proposed noise reduction techniques

FILTER NMSE
[10-3]

SNR
[dB]

PSNR
[dB]

NCD
[1 0 -4]

N O NE 420.55 13.762 18.860 250 .090

AM F 66.452 21.775 26.873 95.347
VM F 87.314 20 .589 25.688 117.170

B V D F 279.54 15.536 20.634 117.400
G VDF 76.713 21.151 26 .250 84.876
D D F 100.50 19.979 25.077 108.960
HDF 66 .584 21 .766 26.865 92 .769

A H DF 60.166 22 .206 27.305 91.369
FV D F 57.466 22 .406 27.504 77.111
A N N F 63.341 21.983 27.082 82.587

ANPEF 60.396 22 .190 27.288 76.896
A NPG F 60.443 22 .187 27.285 7 6 .890
A N PD F 58.389 22.337 27.435 78.486
PM AD 4 1.434 23 .826 28.925 69.482

G DF 34.530 24.618 29.753 72 .100
DPAF 42.873 23.678 28.813 82 .814
DPAL 43.005 23.665 28.800 77.932
FDPA 44.913 23 .476 28.611 84.918

FILTER NMSE

[ io - 3]

SNR
[dB]

PSNR
[dB]

NCD
[ io - 4]

N O N E 905.93 10.429 15.528 305.55
AM F 97.444 20.112 25.211 95.80
V M F 96 .464 20.156 25.255 121.79

B V D F 336.46 14.731 19.829 123.93
G V D F 91.118 20.404 25.503 89.277
D D F 110.62 19.561 24 .660 113.39
HDF 74.487 21.279 26.378 97 .596

A H D F 68.563 21.639 26.738 96.327
FV D F 108.76 19.635 24 .734 111.22
A N N F 75 .652 21.212 26 .310 86.836

A NPEF 90.509 20.433 25 .532 97.621
A N PG F 90.523 20.432 25.531 97.603
A N PD F 74.203 21.296 26 .394 85.026
PM AD 339.55 14.691 19.790 113.65

G DF 59.371 22 .264 27.363 77 .510
DPAF 50.804 22.941 28 .040 76 .076
DPAL 49.999 23 .010 28 .109 72.851
FDPA 53.573 22.711 27 .809 78 .666

Tab. 5.4. Comparison o f the efficiency o f the new 
algorithms with various techniques from Tab. 5.3, 
using the LENA standard color image corrupted by 
Gaussian noise o f cr =  30, [295]

Tab. 5.5. Comparison o f the new algorithms with 
the techniques from Tab. 5.3 using the LENA color 
image corrupted by mixed Gaussian and impulsive 
noise (cr =  30 ,p  =  0 .12, NM2), [295]
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a) b)
Fig. 5.13. Illustrative example of the application of the DPAF filter for the noise removal in artworks, 
[313,337]: a) color image and below its zoomed part, b) the result of the DPAF filtering

Fig.
(see

a) b)
5.14. Illustrative example of the efficiency of D PAL filter for noise removal in cDNA microarrays, 
Fig. 1.7 d): a) red channel image and below its zoomed part, b) the result of the DPAL filtering
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Fig. 5.15. Color test images LENA a) and PEPPERS b) with depicted regions of interest c). The chosen 
image regions were contaminated by mixed impulsive (p = 0.12, NM2) and Gaussian noise of a = 30 
(NM5), d) and then restored with the DPAF method (e) and with the VMF (f)



112 Digital Paths Approach to Color Image Filtering

Fig. 5.16. Comparison o f the efficiency o f the VMF with the DPAF: a) test image (part o f a scanned 
map), b) VMF, (3  x  3  mask), c) DPAF, ((3 =  20 , a  = 1 .25 , r/ =  2, 3 iterations)

Fig. 5.17. Comparison o f the GDF, [398,399] with the DPAF: a) test image HOUSE contaminated with 
impulsive noise (p =  0 .1 , NM2), b) GDF, [398, 399], c) DPAF, d) test image LENA contaminated with 
mixed impulsive (p = 0 .1 , NM2) and Gaussian noise o f a  =  30, e) GDF,f) DPAF, [313]
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Fig. 5.18. Comparison of FDPA with VMF: a) test images, b) images corrupted with mixed noise, 
(a =  30, p  =  0 .05, NM1), c) VMF, d) FDPA, (/3 =  10, a  =  1 .25 , v = 2 ,n  = 5), [306]



114 Digital Paths Approach to Color Image Filtering

Fig. 5.19. Comparison of FDPA with VMF: a) test images, b) images corrupted with mixed noise, 
(a = 60, p = 0.15, NM1), c) VMF, d) FDPA, ((3 = 10, a = 1.25,77 = 2,n = 5), [306]

6

Nonparametric Impulsive Noise Removal

In this Chapter the problem of nonparametric impulsive noise removal in multichan­
nel images is addressed. A new class of filters, developed by the author of this monograph, 
based on the nonparametric probability density estimation of the sample data is presented 
and its relationship to the commonly used filtering techniques is investigated.

The computational complexity of the new filter class is shown to be significantly lower 
than that of the Vector Median Filter. Extensive simulation experiments indicate that the 
presented filters outperform the VMF, as well as other techniques currently used to elimi­
nate impulsive noise in color images.

6.1 Nonparametric Estimation

Ap p l y i n g  statistical pattern recognition techniques requires the estimation of the probabil­
ity density function of the data samples. When designing a pattern recognition system, 

nonparametric classification is often used, because nonparametric techniques do not assume 
a particular form of the density function, since the underlying density of real data rarely fits 
common statistical models.

Density estimation describes the process of modelling the probability density function of 
a given sequence of sample values drawn from an unknown density distribution. The simplest 
form of the density estimation is the histogram: the sample space is first divided into a grid, then 
the density in the center of the grid cells is approximated by the number of samples that fall into 
one bin. The main disadvantage of the histogram is its strong dependence on the chosen width 
of the bins, the origin of the grid and in higher dimensions the sparse histogram occupancy.
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Nonparametric density estimation avoids this disadvantage by placing a kernel function on 
every sample value in the sample space and then summing the values at each sample point. This 
results in a smooth density estimates that are not affected by an arbitrarily chosen partition of 
the sample space, [56,91,92,107,225,265,280,286,381,389].

The nonparametric approach to estimating densities can be introduced by assuming that the 
color space occupied by the multichannel image pixels is divided into m-dimensional hyper­
cubes. If hfj is the length of an edge of a hypercube, then its volume is given by = h™. If 
we are interested in estimating the number of pixels falling into the hypercube of volume Vjv, 
then we can define the function

I  1, if \xkj\ < ±, j  = 1, . . .  ,771,
0 (xfc) =  < (6 .1 )

I 0 , otherwise,

which defines a unit hypercube centered in the origin, [92].
The function <p (||x — xfc || /Hn ) is equal to unity if the pixel x k falls within the hypercube 

Vn centered in x and is zero otherwise. The number of pixels in the hypercube with the length 
of edges equal to hjv is then

and the estimate of probability that a sample x is within the hypercube is pn = Fn / (NVn ), 
which gives

This estimate can be generalized by using a smooth kernel function /C(-) in place of </>(■) in (6.1) 
and the width parameter hn which satisfy

/C(x) =  1C(— x), /C(x) > 0, [  IC(x)dx= 1 , and lim =  0, lim h^ = oo. (6.4)
J  N —*00 N —*00

The multivariate kernel density estimator in the 771-dimensional case, can be defined as

Pn(x) = - j - £  j r \ - ^  ( |Xl7 Xfcl1, J . . . ,  , (6.5)N ^ ^  h\ • • • hm \ hi /12 hm J

with 1C denoting a multidimensional kernel function K. : Rm —> R, h\ , . . . ,  hm signifying the 
bandwidths for each dimension and N  being the number of samples in the filtering window W . 

A common approach to build multidimensional kernel functions is to use a product kernel

m  1 N  m  , ,  _  , \

£ ( x i . - . . , x m )  =  th e n  p n ( x )  =  —  5 3 I I  (  h Xkl )  • (6 -6 )
j = 1  1 k= 1 3=1 '  n i  J
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The shape of the approximated probability density function depends h e a v i l y  on the 
bandwidth chosen for the density estimation. Small values of h lead to spiky density estimates 
showing spurious features. On the other hand, too large values of h produce over-smoothed 
estimates that hide structural features of the estimated probability density.

Very often a special case of the generalized Gaussian function is taken to obtain the non­
parametric estimate of the density probability, [6,104,242]

2
1+7

£ (s |x ,/t . 7 ) =  7 ^exp [ - y  f  *1 ) ) ,  (6.7)

, (r(1.5(l +  7 ) ) ) 0 , 5  \  j / r ( 1 . 5 ( l + 7) ) \ ^
71 =  , .Axns ) h > 72 -(l +  7 )r( 0 .5 ( l + 7 ))°V  ’ ' \r(0 .5 (l +  7 ))

roo
T(2 ) =  /

Jo
(6 .8)

if 7  =  0 then we obtain the Gaussian, if 7  =  1 then the double exponential distribution is 
obtained. For 7  —► —1 the distribution tends to be rectangular and for 7  6  (—1,1) intermediate 
symmetrical distributions are obtained. In the multivariate case, for 7  =  0 we obtain

r (X > = ( w b ;eXP( - f c 2 ^ !!!) '  (6'9)
and the density estimate of the unknown probability density function at x is determined as a 
sum of kernel functions placed at each sample x^ belonging to the window W

l | 2 '

N ( h v w  I  ^
The smoothing parameter h depends on the local density estimate of the sample data and its 

form is of great importance for the nonparametric estimator, [26,134,140,351,363]. It can be 
made adaptive and then

N

11 )■ (6 . 1 0 )

N h(*k) V Ĥ k)
The resulting variable smoothing parameter depends on the local density estimate of the pix­
els in the filter window, [101-103,287,364,372]. An efficient method to make the estimator 
adaptive was proposed in [241]

N TTt - ■■ ^
/i(xfc) = N  r 5 3  ||Xj- -  x*||, (6.12)

3 = 1

where r  is a design parameter.
In [56] the results of Parzen were extended to the multivariate data and assuming the Gaus­

sian kernel, the formulas for the h parameter, which gives the optimal estimation with respect



to the mean squared error were provided. For the color image samples (m  = 3), the optimal h* 
is obtained using the formula, [103,287,365]

h* =  0.53WV* , (6.13)

where b2 is the estimation of the Gaussian noise variance.
Choosing the Gaussian kernel function for K, and assuming the lack of correlation between 

the channels, the rule of thumb for the optimal bandwidth is according to [128]
 i _   i _

h* =  (4/(m  + 2)) m + 4  o N  m + 4  , (6.14)

where a denotes the approximation of the standard deviation of the samples. In one dimensional 
case (6.14) reduces to the well known, rule of thumb of Scott, [69,280,286,408]

h* =  1.06iV~SCT. (6.15)

A version which is more robust against outliers in the sample set can be constructed if the 
interquartile range is used as a measure of dispersion, instead of the variance, [127,286]

h* =  0.79gN~i , (6.16)

where g is the inter-quartile range. Another robust estimate of the optimal bandwidth is

h* = 0.91lN~z , TZ = min (a, g/1.34). (6.17)

Generally the simplified rule of choosing the optimal bandwidth h can be written as
i

h\ = C v N  "»+4, (6.18)

where C is an appropriate weighting coefficient.

From the maximum likelihood principle and assuming the independence of the data samples, 
we can write the likelihood of drawing the complete dataset as the product of the densities

t\h) = n  / > ) = n ^ E  exp ( J |X j^ Xfcl11 • (6.i9)
3= 1  3= 1
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N  %  ( h V ^ r  '  V 2 h2

As this likelihood function attains a global maximum at h =  0, in [93] a modified approach has 
been proposed

C \h )  = (6.20)

This function has one maximum for h, which can be found by setting the derivative of the 
logarithm of C ( h ) to zero

l | X j - X t ||2

a log £* (ft) ft3 v -  '  m
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dh
3 = i

exp ( - b » ill!)

Ê ô p ^ ^ S 111)
=  0 . (6.21)

A crude but fast way to obtain an approximate solution to (6.21) is assuming that the density 
estimate of (6 .6 ) on a certain location x in the feature space is determined by the nearest sample 
only, [158,365]. In this way

0 1 og£*(A) 1  A  \\itj - x f c | | 2  _  to
N  2 ^  hs N ’dh

(6.22)

which leads to
N

\ i=i
where Xj represents the nearest neighbor of the sample xr  In this work, a more general version

(6.24)h*2 = C
1

mN E i
j=i

with C being a tuning coefficient, will be used.

6.2 Similarity Based Filter Class

Let us assume a filtering window W  containing N  monochrome image pixels {xl t .. . , x N} 
and let us define the similarity function ip : [0 , oo) —> K which is non-ascending and con­
vex in [0; oo) and satisfies ip(0) =  1, ip{oo) =  0. The similarity between two pixels of the 
same intensity should be 1 and the similarity between pixels with minimal and maximal gray 
scale values should be close to 0. A monotonically decreasing function ip(xk, Xj) of the form 
ip(xk,xj) =  ip(\xk — X j \ )  can easily satisfy the three required conditions.

Let us additionally define the cumulated sum ^  of similarities between a given pixel and all 
other pixels belonging to the filtering window W. For the central pixel we introduce 4' 1 and for 
the neighbors of X\ we define as

N  N

^ 1  = ^Tip(xi ,xj), 'S>k = E  k = 2 , . . . , N , (6.25)
3=2 j=2,j^k
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Fig. 6.1. Similarity functions used as kernels of the nonparametric estimation, (6.26 - 6.28)

which means that for xk we do not take into account the similarity between xk and X \ ,  which is 
the m a i n  i d e a of the proposed algorithm.

The omission of the similarity value tp(xk, Xi) when calculating ty/t, p r i v i l e g e s  the 
central pixel X i ,  as ^  contains (TV — 1) similarities ip(xi,xk) and 'I'/t, for k  >  1 has only 
(TV — 2) similarity values, as the central pixel x\ is excluded from the calculation of the sum 
V ,  [294,304,305,309,356].

a) b) c)
Fig. 6.2. Dependence of the cumulative similarity values $  on the pixels’ gray scale value fora window 
containing a set of samples with intensities {15,24,33,41,45,55,72,90,95} using the Gaussian (a), 
Epanechnikov (b) and the Triangle kernel (c)

In the construction of the new filter, the reference pixel Xi in the window W  is replaced 
by one of its neighbors if 'I'i < '1^, k =  2 , . . . ,  N. If this is the case, then X\ is replaced 
by that xk* for which k* =  arg max 'I'*. In other words, X\ is detected as being corrupted if 
'I/ 1  < k = 2 , . . . , N  and is replaced by its neighbors xk, which maximizes the sum of 
similarities 'I' between all the pixels of W  excluding the central pixel, [312].

The basic assumption is that a new pixel must be taken from the samples belonging to W, 
(introducing new pixels, which do not occur in the filtering window is prohibited, like in the 

lWe assume that ip{xj, xk) = 0 for j  = k.

VMF). For this purpose, the function ip must be convex, which means that in order to find a 
maximum of the sum of similarity functions 'I', it is sufficient to determine the values of in

points x i , x 2, ■ ■ ■ ,xn only, [293,309,354].
The presented approach, can be applied in a straightforward way to the multichannel images, 

[53,101,309,372]. Now we can use the similarity function defined as ip{xk,xj} =  ip(\\xk — 

Xj ||), where || • || denotes the specific vector norm and in exactly the same way we can maximize 
the total similarity function 'I' for the vectorial case.

Several convex functions were examined, [293,296,310,329,357] in order to compare 
the presented approach with the standard filters used in color image processing listed in Tab. 
6.1. Good results (Tab. 6.2, Fig. 6.3), were obtained when applying the following similar­
ity functions, which can be treated as kernels of nonparametric density estimation, (Figs. 6.1, 

6.23), [280,286]

tp^x) = exp | , ip2(x) =  1  + x/ h , h 6  (0 ;oo), (6.26)

^  =  (t +  g)*» =  1 ~ l  arCtan ( ! )  ’ ^  =  1 +  exp { f  } ’ h  e  (0i (6'27)

ip8{x) =  exp j -  ( 0  | , h  6 (0; oo).
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xpl(x) =
1 -  f , if X  <  h ,

0 , if x  >  h ,

(6.28)

It is interesting to note, that remarkably good results were achieved for the simplest, linear
similarity function ip7(x), (Figs. 6.1, 6.2c), 6.3, Tab. 6.2), which allows to construct a f a s t
impulsive noise removal algorithms, [305,310,330,334,336,358].

In the multichannel case, we have
N  N

=  E ^ 7 W Xi’xj})> E  M p { x k,Xj}), (6.29)
j= 2 j=2,ĵ k

where p { x j , x k } = ||x_,- — x*|| and || • || is the L2 vector norm, as it yields best results, (Tab. 
6.3). Applying the linear similarity function ip7 we obtain

. J 1 -/o(x,-,xfc)//i, for p ( x j , x k) < h, 
ip(xj ,xk) = i  (6.30)

0 , otherwise.

Then we have from (6.29) and (6.30) assuming that p ( x j , x k) < h, for j, k  =  1, . . . ,  N
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Fig. 6.3. Dependence of the efficiency of the nonparametric filter, based on the linear kernel tpj (6.28)
on the h parameter in terms od PSNR and NCD (a - d) for the LENA and PEPPERS color test images
corrupted by impulsive noise, (NM4). Below the comparison of the filter efficiency using different kernels, 
(6.26 - 6.28)
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Notation Filter Ref.
AMF Arithmetic Mean Filter [246]
VMF Vector Median Filter [19]
BVDF Basic Vector Directional Filter [395]
GVDF Generalized Vector Directional Filter [138]
DDF Directional-Distance Filter [137]
HDF Hybrid Directional Filter [106]

AHDF Adaptive Hybrid Directional Filter [106]
FVDF Fuzzy Vector Directional Filter [240]
ANNF Adaptive Nearest Neighbor Filter [237]

Tab. 6.1. Filters taken for the comparisons with the proposed adaptive noise removal technique

METHOD NMSE [10~4] RMSE PSNR
AMF 82.863 12.903 25.917
VMF 23.304 6.842 31.427
BVDF 29,074 7.643 30.466
DDF 24.003 6.944 31,288
HDF 22.845 6.775 31.513

AHDF 22,603 6,739 31.559
FVDF 26.755 7.331 30.827
ANNF 31.271 7.926 30.149

NMSE [IO"4] RMSE PSNR
ipi(x) 4.959 3.157 38.145
lp2(x) 5.398 3.294 37.776
1p3(x) 9.574 4.387 35.288
1p4(x) 5.064 3.190 38.054
Ip5{x) 4.777 3.099 38.307
1p6(x) 11.024 4.707 34.675
1p7(x) 4.693 3.072 38.384
Tps{x) 5.056 3.163 38.137

Tab. 6.2. Comparison of the new algorithm, based on different kernel functions with the standard tech­
niques, using LENA color image contaminated by 5% impulsive noise, (p = 0.05, NM1)

LENA
NORM

NMSE
1 0 " 4

RMSE PSNR
[dB]

h PEPPERS

NORM
NMSE

1 0 ~ 4

RMSE PSNR
[dB]

h

Li 5.042 3.183 38.074 6.58 Li 9.236 3.888 36.337 10.14
l 2 4.659 3.060 38.417 6.35 l 2 8.426 3.713 36.736 9.37
Lqq 5.304 3.265 37.854 6.50 Lqq 9.960 4.038 36.008 9.24

Tab. 6.3. Best results obtained with the new algorithm with ipi kernel for the LENA and PEPPERS 
images using different Minkowski norms, (NM1, p = 0.04)

In this way the difference between 'I'i and (k > 1) is

N

h j = 2

N - 2
h  • ,  J = 2

(6.32)

1  N

= 1 -  j* \P (Xl> Xj) _  P (X*> Xi)l :
j= 2

N
'I'i — ’ï'fc > 0 if h >  ’£ [ p ( x 1,xj ) - p { x k,xj )], k = 2 , . . . , N .

j = 2

(6.33)

(6.34)

If this condition is satisfied, then the central pixel Xi is considered as not disturbed by 
the noise process, otherwise the pixel x k for which the cumulative similarity value ^  attains



maximum, replaces the central noisy pixel. In this way, the filter changes the central pixel 
o n l y  when it is detected to be noisy and preserves the original undistorted image structures, 
[336,355].

The construction of the new filter is presented in Fig. 6.5 for the gray scale case and in Fig. 
6.4 for the two-dimensional data. In the example provided by Fig. 6.5, (see also Fig. 6.2), the 
supporting window W  contains 9 pixels of intensities {15,24,33,41,45, 55,72,90,95}, (their 
special arrangement in W is not relevant). Each of the graphs from a) to i) shows the dependence 
of 'I'i and /i on the gray scale value, ('I' /1 < ’I'i), where 'I'/x denotes the cumulative similarity 
value with rejected central pixel x\, on the sample’s intensity. Graph a) shows the plot of and 
'I'/i for Xi =  15, plot b) for x\ =  24 and so on till plot plot i), which shows the graphs of 'I' j and 
ty/i for = 95. The central pixel will be replaced in cases: (a), (b), (f) - (i), as in those cases 
there exists a pixel xk for which < tyk. The continuous plots show that the extremum of the 
similarity function ^ / x is always obtained at points xk € W, which is an important feature of 
this algorithm. Because the function 'I'/i is convex, the maximum can be found by calculating 
the similarity values in N  points only, which makes the algorithm computationally attractive.

It is easy to observe that the construction of the new filter is similar to the standard VMF, 
[294,310,329,332,358]. Instead of the function Rk in (3.3), a modified cumulative distance 
function can be used
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N- h + J 2  p(xk, x j ) , for k =  1 ,
Rk = 1

j —2
N
XXxfc.x,-), for k = 2 , . . . , N ,
3=2

and in the same way as in the VMF, the central vector Xi in W  is being replaced by x*. such that 
k* = argmin Rk. It is easy to notice that the above construction is equivalent to the condition 
expressed in (6.34). Now, instead of maximizing the cumulative similarity '1'̂ , the modified 
cumulative distance Rk is minimized. In this way, the condition for retaining the original image 
pixel is: Ri < Rk, k = 2 , . . . ,  N,  which leads to the rule of retaining X!

(6.36)

(6.37)

The main characteristic of the new filter construction is the rejection of the central pixel xi, 
when calculating Rk, k > 1, [294, 330,334,335]. This scheme, based on the leave-one-out 
technique, is the most important feature of this algorithm. As the central pixel is suspected to

N

-h + '22p(xl ,xJ) < J 2 p ( x k,xj) ,  k = 2, . . .  , N ,
j = 2 j =2

R i < R k if / > > E W x i , X j ) - / 3 ( x t ,x, )],  k = 2,.. .  , N .
i= 2

Fig. 6.4. Impulsive noise removal technique in the 2D case. Fig. a) depicts the arrangement of pixels 
in W and Fig. b) their nonparametric probability density estimation. Figs. c) and d) present the density 
plots for the cases when the central pixels xa and xb are removed from W. It can be seen that in the first 
case c) the pixel x i  =  x A will be retained and in the second case d) the pixel x \  =  xb will be replaced 
by x a - The pixel x a  will be preserved, as in Fig. c) the plot attains its maximum at x q , but this maximum 
is less than the maximum for x a  in Fig. b). Regarding sample x b , its rejection causes that the maximum 
is attained at xa and this pixel will replace the central pixel xb

As it can be easily observed, the parameter h in (6.34) and (6.35) strongly influences the 
intensity of the filtering process. The fraction of pixels replaced by the new filter is a decreasing 
function of h. The value of h has to be set by the designer, which can be seen as a drawback 
of the presented technique, as some knowledge on the image structure and impulsive noise 

intensity is required.
As already noticed, the VMF has the disadvantage of replacing too many uncorrupted image 

pixels. This is improved in the new filter design by setting appropriate h values, which forces 
the filter to preserve uncorrupted pixels, but still enables to remove corrupted ones. The subject 
of automatic setting of h value is addressed in the next Section.

2Note that similar techniques, based on the rejection of the central pixel, were described in Section 2.1.

be noisy, it is not taken into consideration, when calculating the distances associated with the 
neighbors of Xj. In this way the filter replaces the central pixel only when it is detected to be 
corrupted, while retaining the original undisturbed image structures. 2

6.2 Similarity Based Filter Class 1/3
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6.3 Adaptive Filter Design

6.3.1 Filtering with Local Bandwidth Selection

To enhance the performance of the filter class proposed in the previous Section, the parameter 
h in (6.26 - 6.28) and (6.34), (6.37) can be determined in an adaptive way, depending on the 
image structure, properties and intensity of the noise process, by establishing local bandwidths 
for the samples in the filtering window W.

Figure 6 .6 a) shows the dependence of the noise attenuation capability of the proposed filter 
class on the bandwidth type h* and h2 defined by (6.18) and (6.24). Clearly the filter based 
on the h2 outperforms the technique based on the h\ bandwidth for the whole range of used 
contamination intensities, (p = 0.01 - 0.1, NM2).

Figure 6 .6 b) presents the dependence of the PSNR restoration quality measure on the kind 
of the Minkowski norm. Surprisingly, the L ^  norm yields significantly better results than the 
L\ or L2 norms. This is due to the construction of the h2 bandwidth, which depends on the 
nearest neighbor in the sliding filter window. This behavior is advantageous, as the calculation 
of the ^  norm is much faster than the evaluation of distances determined by L1; L2 norms.

Unfortunately, the efficiency of the filters based on the adaptive h\ and h2 bandwidths are 
dependent, (especially for very small noise contamination) on the coefficient C in (6.18) and
(6.24). Figure 6 .6 c) shows the dependence of PSNR for the filter based on h*2 as a function of 
C in (6.24). For low noise intensity, the parameter C should be significantly larger than for 
the case of images corrupted by heavy noise process. However, setting C to 4 is an acceptable 
trade-off, as can be seen in Figure 6 .6 d), which depicts the efficiency of the proposed filter in 
comparison with VMF, AMF and BVDF. It can be observed, that although the C — 4 is not 
an optimal setting for the whole range of tested noise intensities, nevertheless the described 
adaptive filter yields much better results than the traditional techniques. This is also testified 
by Fig. 6.7, which compares the filtering results obtained by the filter based on adaptive h2 
bandwidth, (C = 4) with the performance of the reference VMF filter.

Another drawback of the presented filter class is the high computational complexity of the 
algorithms, caused by the need of adaptive calculation of the bandwidth for the changing set 
of pixels in the moving filtering window. Although the calculation of the Loo is very fast, 
however the calculation of (N — 1) distances for each pixel position is time consuming and can 
pose problems, especially in real time applications. Therefore a filter structure based on global 
bandwidth, determined once for the whole image, is presented in the next Section.
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6.3.2 Technique Based on Global Kernel Bandwidth

The experiments performed on color images LENA and PEPPERS indicate that the PSNR 
reaches its maximum for that value of the bandwidth parameter h, that leads to a number of pixel 
replacements equal to the number of noisy pixels in the noise-corrupted image, [294,297,310]. 
Figure 6 .8 , which shows the performance of the adaptive filter and depicts the fraction of re­
placed pixels as a function of h, validates this observation. Such filter behavior suggests that 
superior filtering results can be obtained by globally adapting the bandwidth h of the nonpara­
metric scheme to the image structure and noise statistics. In this way the Adaptive Nonparamet­
ric Filter (ANPF) works as follows:

1. Estimation of the fraction of corrupted pixels,

2. Finding optimal, g l o b a l  value of h,

3. Final filtering using the obtained optimal, global value of h.

Fig. 6.8. Dependence of the filtering results on the h bandwidth using the Gaussian kernel, for the LENA 
and PEPPERS image with 11.5% of corrupted pixels, (NM1, p = 0.04), below the dependence of the 
fraction of pixels replaced by the filter on the h value for the noisy LENA and PEPPERS images
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In most applications the noise intensity is unknown and we need to find a robust estimator 
of the fraction of corrupted pixels. In this work a pixel is considered to be undamaged by the 
noise process, if among its eight neighbors, there e x i s t  at  l e a s t  r  p i x e l s  which, are 
close to it.

Two pixels are declared to be close if the L2  distance between them, in the RGB color 
space, is less than a predefined constant d. As has been experimentally evaluated, this estimator 
works correctly, even for images with quite different structures. Table 6.4 shows the result of 
the estimation of the noise intensity p, using the described estimator for two test color images 
LENA and PEPPERS, with r  =  1,2,3 and different fractions of the corrupted pixels p, (NM1).

The value of the distance parameter d used in the construction of the estimator is not critical, 
as values of d in the range [40,60] give acceptable results. Figure 6.9 shows the dependence of 
the PSNR for color test images LENA and PEPPERS, contaminated by impulsive noise (NM1) 
on the r  and d parameters. As can be seen good results are obtained for r  =  2 and d € [40,60], 
(N = 9). This is also confirmed by Fig. 6.10, which presents the filtering efficiency dependence 
on the parameter d for r  =  2, (3 x 3 filter mask).

One can also use such estimators as: 
o a pixel is considered to be undamaged, if among eight of its neighbors, there exist at least 
one, (r =  1 ) which is close to it,

o a pixel is considered to be undamaged by the noise process, if among eight of its neighbors, 
there exist at least three, (r =  3) which are close to it.

These models also produce acceptable results, (see Tab. 6.4 b), but for obvious reasons 
the scheme with r  = 1 has the tendency to underestimate, while the model with r  = 3 tends 
to overestimate the impulsive noise fraction. It is also easy to observe that the value of r  =  2 
enables the preservation of lines and comers, and therefore this parameter was used for the noise 
intensity estimation purposes.

As regards point 2, the constant h. has to be set for that value, for which the percentage of 
pixels changed by the new filter is equal to the estimated noise fraction p. In order to design a 
fast filter implementation, the method of bisection can be used. This method allows to find the 
root of an equation f (x)  =  0 in [a, 6 ] providing that f(x)  is continuous and /(a) -f{b) < 0. In 
the case considered here

f { h ) = i { h ) - P, (6.38)

where 7 (h) is the fraction of pixels changed by the filter, dependent on h.
Although the algorithm may be of infinite length and may not converge to the optimal value 

of h, it always provides a good approximation of the optimal h. To initiate the process, a starting 
interval [a,b] and a predefined number of iterations should be provided by the designer.
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realp
t = 2

estimated p 
(LENA)

estimated p 
(PEPPERS)

0 . 0 1 0.0113 0 . 0 1 2 2

0 . 0 2 0.0206 0.0216
0.05 0.0500 0.0510
0 . 1 0 0.0980 0.0986
0 . 2 0 0.1942 0.1964
0.40 0.3972 0.3973
0.70 0.7501 0.7504

realp
LENA

estimated p 
r  =  1

estimated p
r = 3

0 . 0 1 0.0099 0.0158
0 . 0 2 0.0192 0.0253
0.05 0.0476 0.0547
0 . 1 0 0.0933 0.0103
0 . 2 0 0.1821 0.2016
0.40 0.3541 0.4301
0.70 0.5981 0.8472

a) b)
Tab. 6.4. Comparison of the real and estimated fractions of the noisy pixels for d = 50; a) r = 2, (LENA 
and PEPPERS, NM4) b) T = I and r  = 3, (LENA, NM4), [310]

For a wide range of the fractions of noisy pixels (from p = 0.01 to more than 0.5, NM1) and 
various standard color images used for the evaluation purposes / ( 0 ) /( 4 ) < 0  holds, so a long 
enough interval is: a = 0, b = 4, (see Fig. 6 .8 ), [309].

In order to avoid the increase of the computational complexity caused by the estimator, the 
following solution is recommended. For finding the optimal value of h, using the method of 
bisection, not the whole image should be used, but only a small part of it, (we assume that 
the noise process is stationary). For example, if an image is composed of 500 x 500 pixels, 
taking randomly placed 25 x 25 square gives 625 pixels, which is enough for the purpose of the 
estimation and determination of the optimal h value. On the other hand, it is only 0.25% of the 
image pixels, so due to estimation and finding of the h value, (eight iterations) filtering time is 
extended only by about 2 %, [310].

For the evaluation of the efficiency of the proposed filter, a number of simulations with 
different noise models presented in Section 1.3.2 were carried out. The results obtained with 
the ANPF were compared with a set of standard noise reduction methods listed in Tab. 6.1. The 
Root of the Mean Squared Error (RMSE), Signal to Noise Ratio (SNR), Peak Signal to Noise 
Ratio (PSNR), Normalized Mean Squared Error (NMSE) and Normalized Color Difference 
(NCD) were used for the comparisons, [242,246].

The simulation results shown in Tab. 6.5, obtained using the noise model NM1, show that 
the new filter framework excels significantly over the standard techniques, widely used in many 
multichannel image denoising applications. The ANPF efficiency was also compared with dif­
ferent filtering techniques using the NM2 noise model, (Fig. 6.11) and its superiority over 
traditional techniques was again confirmed. The satisfying results presented in Tab. 6.5, Fig. 
6.11 are also verified by Fig. 6.12, where the described filter has been compared with VMF, 
BVDF and DDF using noise model NM4 and the PSNR as the quality measure indicator.
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PEPPERS NMSE
[io-4]

RMSE PSNR
[dB]

AMF 108.650 13.338 25.629
VMF 27.570 6.719 31.585
BVDF 47.944 8.860 29.182
DDF 28.179 6.793 31.490
HDF 26.819 6.627 31.705

AHDF 26.430 6.579 31.768
FVDF 33.337 7.388 30.760
ANNF 45.115 8.595 29.446
ANPF 8.426 3.713 36.736

LENA NMSE
[IO“4]

RMSE PSNR
[dB]

AMF 79.317 12.627 26.105
VMF 18.766 6.142 32.365
BVDF 24.587 7.030 31.192
DDF 18.872 6.159 32.340
HDF 18.610 6.116 32.401

AHDF 18.310 6.067 32.472
FVDF 22.251 6 . 6 8 8 31.625
ANNF 26.800 7.340 30.817
ANPF 4.659 3.060 38.417

Tab. 6.5. Comparison of the efficiency of the ANPF with the standard techniques, (Tab. 6.1) using the 
LENA and PEPPERS standard color images, (NM1, p = 0.04)

Another good property of the new adaptive filter is that the new filter can be applied in an 
iterative way and that after the second or third iteration no further filtering is performed, (the 
PSNR is not decreasing, as it is in the case of VMF), which indicates that the new filter reaches 
very quickly its root, (see Fig. 6.13).

The good performance of the proposed adaptive filtering design is also confirmed by sub­
jective, visual comparison with the VMF presented in Figs. 6.14 - 6.20, using different noise 
corruption schemes, [297,354,355,357]. It can be easily observed, that the new filter has a good 
ability to distinguish between the corrupted and undisturbed pixel images, which is especially 
visible when evaluating the filters’ estimation errors in Figs. 6.14e, f) and 6.15e, f). As shown 
in Fig. 6.14 the new adaptive filter can be also successfully applied to gray scale images.

The adaptive nonparametric algorithm presented in this Section is based on the the concept 
of the similarity between pixels, nonparametric estimation and the leave-one-out scheme, but 
can also be seen as a modification and improvement of the commonly used Vector Median 
Filter. The computational complexity of the new filter is significantly lower than that of the 
VMF, especially when the 4-neighborhood system is applied. The presented comparison shows 
that the new filter o u t p e r f o r m s  the VMF, as well as other standard procedures used in 
color image processing in terms of objective and subjective quality measures.

The proposed algorithm is s i m p l e  and f a s t  and can be easily implemented. The 
proposed robust method of the estimation of noise intensity, enables the tuning of the filter 
design parameter h, to the image structure and noise statistics. Thus, this filtering technique can 
be applied in many applications, in which fast and reliable removal of impulses is required with 
minimal image quality degradation.
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Fig. 6.9. PSNR dependence on the number of close neighbors r  and the distance parameter d. For the 
evaluations LENA and PEPPERS images contaminated with noise NM4 were used. Good results are 
obtained forr  = 2, (N = 9J and d e [40,60]
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4 0 %  4  0 %

e) 0

Fig. 6.10. PSNR dependence for the number of close neighbors r  = 2 on the distance parameter dfor 
the color test images (LENA, PEPPERS, MONARCH, FRUITS, GOLDH1LL, GIRL, a -f), contaminated 
with impulsive noise NM4
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IM P U L S IV E  N O IS E  1%

a)

b)

c)

P S N R  [dB ] IM P U L S IV E  N O IS E  3%

P S N R  [dB ] IM P U L S IV E  N O IS E  5%

Fig. 6 .//. Comparison of the efficiency of the adaptive nonparametric noise removal filter ANPF with 
the standard techniques: AMF, Symmetric Gradient Filter (SGF , (2.11), [170]), Marginal Median Filter 
(MMF), VMF with norm L% VMF in Lab and Luv spaces, Adaptive Nonparametric Filter (ANPF), 
marginal Rank Conditioned Median Filter (RCMFm, r  = 3, (Fig. 2.5 b)), Rank Conditioned Vector 
Median Filter (RCVMF, r  = 3, (3.18)), BVDF, GVDF, D DF and H D F with norm L2, (NM2)
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Fig. 6.12. Efficiency of the ANPF in terms of PSNR in comparison with the standard noise reduction 
filters. Test color image LENA was contaminated by noise process NM4 with p ranging from 0.01 to 0.2
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Iterations
PSNR

Iterations
PSNR

Iterations

Fig. 6.13. Dependence of the noise reduction efficiency of the ANPF on the number of iterations, (LENA 
color image contaminated with NM4)
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Fig. 6.14. Comparison of the efficiency of the VMF and ANPF: a) gray test image, b) image contaminated 
by 2% impulse noise (NM1), c) image filtered with ANPF, d) VMF output and below e),f) the absolute 
difference between the original and filtered image for both the ANPF, (left) and the VMF, (right)
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F/g. 6.75. Comparison of the efficiency of the ANPF and VMF, (blue channel): a) test color image, b) 
noisy image, (p = 0.02, NM1), c) image filtered with ANPF, d) VMF output and below e),f) the absolute 
difference between the original and filtered image for both ANPF, (left) and VMF, (right)
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Fig. 6.16. Comparison of the efficiency of ANPF with the VMF: a) parts of the LENA, BARBARA and 
GOLDH1LL images, b) images contaminated by 2% impulsive noise (NM1), c) images restored using the 
ANPF, d) the result of the filtering with the VMF
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Fig. 6.17. Efficiency o f the ANPF, a) test image PORTRAIT [402], b) image degraded by p =  0 .04  
impulse noise (NM3, with px = p2 = p3 = 0 .2 , p4 = 0.4), c) ANPF output, d) VMF output

Fig. 6.18. Comparison o f the efficiency o f the ANPF with the VMF, a) test image CAFE [402], b) image 
degraded by p = 0 .0 3  impulse noise (NM2), c) image filtered using the ANPF, d) VMF output
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Fig. 6.19. Comparison o f the efficiency o f the VMF and the ANPF, (red channel), a) test image ROSE 
[402], b) image contaminated by 6% impulsive noise (NM3, p =  0 .06 , with p4  = 1), c) image filtered 
using the proposed adaptive technique, d) output of the VMF
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6.3.3 Fast Nonparametric Filter Design

The proposed here fast filter design is a modification of the filtering framework presented in 
the previous Section and is based on the idea of the comparison of the image pixels contained 
in a filter window W  with their adjacent pixels, (direct neighbors). The filter output is the 
pixel in W, which is most similar to its direct neighborhood contained in W. Therefore, the 
estimated probability density function serves as a measure of similarity in the chosen color 
space, [331,350,353,356,357,359]. If a pixel is similar to its neighborhood, the probability 
density estimation for that pixel results in a relatively large value. Noisy pixels on the other 
hand are almost always outliers from the cluster formed by adjacent pixels and therefore the 
probability density estimation for those pixels results in relatively small values, [343].

X 2 X 3 x4

X 5 [xT] X 6

X 7 X 8 X 9

X 2 X 3

| x 5 | X l

X 7 x 8

| x 2 | X 3

X 5 X i

15 24 95

33 72 90

41 45 55

15 24

33 72

41 45

15 24

33 72

a) b) c) d) e) f)
Fig. 6.21. Illustration of the adjacency relation: a) the central pixel xi has 8 neighbors in IV, b) the 
pixel X5  has then 5 adjacent neighbors and x2  has only three adjacent neighbors contained in W, c). 
Beside an example of the filtering window with gray scale intensities related to Fig. 6.22 is shown (d -f)

Given a set of noisy image samples xi, x2, . . . ,  x N from the filter window W, let ~  denotes 
the adjacency relation between two pixels contained in W. Assuming the 8 -neighborhood sys­
tem, the central pixel has 8  adjacent neighbors, the pixels in the comers of W  have 3 adjacent 
neighbors and the remaining pixels have 5 adjacent neighbors determined by the ~  relation, 
(Fig. 6.21). The sum of similarity values for the sample x k is then determined as

IN, -Xfc|| (6.39)

The filter output is defined as that x k for which ’l'(xfc) is maximal, (see Fig. 6.22). The total 
similarity value ^(x^) is not normalized to bandwidth and number of sample values. The reason 
is that the values of 'l'(xfc) for different x k are only used for comparison among each other 
and omission of the normalization results in a significant performance gain, as it privileges the 
central sample, which has the largest number of neighbors, (Figs. 6.21a, d).

The bandwidth in (6.39) can be determined according to (6.18) and hence depends on the 
standard deviation b. Since b is computed using only pixels from the filter window, the band­
width is very sensitive to noise and may vary over a big range of values. As an option an experi­
mentally chosen fixed value can be used as bandwidth to avoid this effect, (Fig. 6.24), [358,362].
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p 0.05 0.05 0.05 0 . 1 0 0 . 1 0 0 . 1 0

FILTER MAE MSE NCD MAE MSE NCD
Noisy 2.54 393.3 0.0415 5.10 790.2 0.0838
VMF 3.27 31.2 0.0387 3.42 34.2 0.0400
BVDF 3.81 39.8 0.0400 3.95 44.2 0.0412
DDF 3.39 32.8 0.0389 3.51 35.4 0.0400
HDF 3.42 31.2 0.0399 3.55 33.9 0.0412

Q, Z/2 , A 0.79 11.5 0.0093 0.98 2 0 . 2 0.0125
G , h  = 55 0.42 1 1 . 8 0.0051 0.79 2 0 . 8 0 . 0 1 0 0

G, L u  a 0.82 14.8 0 . 0 1 0 1 1.16 24.9 0.0149
£ ,  L 2, a 1.17 15.3 0.0138 1.23 21.7 0.0151
£, a 0.43 1 0 . 6 0.0055 0.84 34.2 0.0128
T , L2, a 0.45 14.0 0.0063 0.96 50.8 0.0159

Tab. 6.6. Filtering results achieved using the test image LENA contaminated by impulsive noise (NM2) 
using different kernels with adaptive ( A )  and globally determined bandwidth h  and different norms, (Q 
denotes the Gaussian kernel, £ the kernel o f Epanechnikov, £  the Laplacian kernel and T  the linear, 
Triangle kernel, see Fig. 6.23)

For the evaluation purposes, the color test image LENA was corrupted with 1 to 10 per­
cent impulsive noise, (NM2). The filter quality was measured using the Mean Absolute Error 
(MAE), Mean Squared Error (MSE) and the Normalized Color Difference (NCD).

Tab. 6 . 6  and Fig. 6.25 show the results of a quantitative comparison between the described 
fast filter scheme and the VMF as well as the BVDF, HDF and DDF, (Tab. 6 .1). For experiments 
with fixed bandwidth an experimental value of h = 55 was chosen (Gaussian kernel), which 
brought subjectively good results, (see Fig. 6.24). As can be seen from Tab. 6 .6 , the noise 
reduction capability depends to some extent on the choice of the filter kernel, (see Fig. 6.23) 
and again good results were obtained for the Triangle kernel. Apart from the sometimes up to 
a few times lower MAE and NCD values, compared with the vector median filter, the new fast 
filter shows enormous improvements in detail preservation, (Figs. 6.26, 6.27).

The always very low values of MAE and NCD show that the new filter is clearly superior 

to VMF, BVDF and DDF in terms of detail preservation for all applied filter settings. Another 
advantage of the proposed filtering class is its v e r y  l ow computational complexity when 
compared to the VMF. For the VMF, the calculation of 36 distances between pixels are needed, 
whereas the new filter structure with fixed bandwidth requires only 2 0  different distances, which 
makes the new filter class interesting for real-time applications The remarkably good results for 
the probability density estimation with fixed bandwidth can be used for very fast filtering, as in 
this case there is no need to determine adaptively the variance of samples in W.
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Fig. 6.25. Results obtained with the proposed fast filtering technique in terms of MAE, NCD and PSNR. 
The plots show the filter performance in comparison with the VMF, (LENA, p = 0 — 0.1, NM2)
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Fig. 6.26. Illustration of the detail preserving efficiency of the fast filtering design in comparison with 
the VMF: a) parts of the LENA image, b) test images corrupted by impulsive noise (p = 0.05, NM2), c) 
fast filter output using the Gaussian kernel and global bandwidth h = 55, d) VMF output



Fig. 6.27. Illustration of the fast filter efficiency: a) test aerial images (green channel), b) images cor­
rupted by 10% impulsive noise (NMI), c)fast filter output, d) VMF output, [346]

Nonparametric Impulsive Noise Removal

Adaptive Vector Median Based Techniques

7

In this Chapter a class of Weighted Vector Directional Filters (WVDF) and Sigma 
Vector Median Filters (SVMF), which are based on the selection of the output sample 
from the multichannel input set, are presented. The WVDF output minimizes the sum of 
weighted angular distances to other input samples from the filtering window. Dependent 
on the weighting coefficients, the class of the WVDFs can be designed to perform a number 
of smoothing operations with different properties, that can be applied for specific filtering 
scenarios. The optimized WVDFs are able to remove image noise, while maintaining image 
details preservation capabilities and sufficient robustness for a variety of signal and noise 
statistics.

The multichannel SVMF is a novel adaptive filtering technique based on the robust 
order statistic concepts and simplified statistical measures of vectors’ dispersion. The sim­
ulation results indicate that the presented algorithms are computationally attractive, yield 
good performance and are able to preserve salient image features, while efficiently sup­
pressing impulsive noise.

7.1 Weighted Vector Directional Filters

BASED on the magnitude of vectors, filtering techniques process the color image according 
to its brightness, whereas operating on the directionality of vectors, image filters take into 

account the chromatic properties of the input samples, [196,200,246]. Therefore, the filtering
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techniques operating on the directional domain of color images are able to preserve their chro- 
maticity. Since the human visual system is sensitive to changes in color and edge information 
(indication of the shape and boundary of objects in the image), color chromaticity preservation 
along with the noise attenuation is a fundamental property required in many applications such 
as television image denoising, virtual restoration of artworks, satellite image processing, old 
movie restoration, surveillance applications and many others, [1,8,39,49,157,200].

Recently introduced Weighted Vector Directional Filters (WVDF), [15,16,68,97,187,189] 
employ non-negative real weight coefficients {^ 1 ,^ 2 , • • ■, V'at} associated with the input vectors 
{xi ,x2, .. .  , x N}. These filters pass to the output the vector y e  IV, which minimizes the 
aggregated weighted angular distance to other samples belonging to W.

This angular minimization approach is useful for the directional data such as color image 
data. In [218] it has been proven that in the case of color images, filtering schemes based on 
the directional processing may achieve better performance in terms of the color chromaticity 
preservation than approaches operating on the vectors’ magnitude.

Let us consider the aggregated weighted distance Ak associated with the input vector x k

N

A k = J 2 ^ j a ( x k , x j ), k = l , 2, . . . , N ,  (7.1)
3 = 1

where a(xk,xj)  denotes the angle between vectors x k =  {xkuxk2,xk3) andXj =  (xjU xj2, xj3). 
The ordered sequence of Ai, A2, . . . ,  A^  is given as < A(2) < ... < ^(w) and the ordering 
of ,4(fc) implies the same ordering of the input set xi , x2, . . . ,  x N, which results in the ordered set 
x (i), X(2), . . . ,  x (Ar), where x (k) is associated with A(k). In this way, the WVDF output is defined 
as the lowest order statistic X(ij, which is equivalent to the sample minimizing the cumulated 
angular distance. From this algorithm structure, it is evident that the WVDF output is restricted 
to the dynamic range of the input samples and thus, it can never introduce new samples.

Let us assume that x (1) is the minimum vector and X(N) is the maximum vector of the input 
set W. The WVDF output y(ip, W ) is a function of the weight vector ip =  {ipi,ip2, . . . ,  ipN} 
and it can be expressed as the sample y minimizing

N

y(^ , W) = arg Y 2 $3 a(y, *j ) . (7.2)
3 = 1

Then, the following is valid:

• the WVDF filter has N  independent parameters, since its output y d e p e n d s  on the 
weight vector if),
• the WVDF output corresponds to one of the local minima of A(y),
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• the WVDF output y(ip, W) is always one of the samples of W  and therefore it cannot intro­
duce any new outliers and color artifacts.

Each setting of the weight coefficients represents a unique filter, which can be used for 
specific purposes. Using an optimization scheme, (Fig. 7.1) the weight coefficients can follow 
the statistics and structural context of the desired signal and can be adapted in a required manner.

The purpose of image filtering is to estimate the desired signal o as precisely as possible. 
To measure the similarity between the original image o and the filtered image y, a number of 
different objective measures, based on the difference in the statistical distributions of the pixel 
values, can be utilized, [37,38,64]. One of the most popular criteria is the Minkowski norm 
given by

e ; =  O; ■yill —  I ^  '  \° ik  Uik\
fc = l

1 / 7

(7.3)

noise
process

v  corrupted filter

where 7  denotes the norm parameter and Oik and ylk are the fc-th elements of the original im­
age pixel ot and the filter output y{, (i =  1,2, . . . ,  Q), respectively. The error criterion (7.3) 
expresses the loss in performance or error of the filtering operation.

As in most image processing problems, a 
cost function, which depends on the mostly 
unavailable original image and the filter out­
put, will be used to penalize errors during the 
filtering procedure. It is natural to assume 
that if one penalizes filtering errors through 
the cost function, then the optimal solution is 

the function of the inputs, that minimizes the j j  p^terjng prot>lem, in which a filter is based 
expected average loss E{ || o — y |j7}, where on the minimization of the cost function 
E{-} signifies the statistical expectation.

With the constraint of non-negative weights, keeping the aggregated measure A* in (7.1) 
positive, the optimization problem with inequality constraints can be expressed as, [ 17,188,189]

minimize J(i/>, W) with subject to ^  > 0, for k = 1,2, (7-4)

Thus, the setting of the WVDF weight coefficients depends on the cost function J(ip,W), 
which can be defined in many ways. It has been observed in [24], that J\ and J2 criteria are 
useful in environments corrupted by impulsive noise and describe well the detail preservation 
and noise attenuation capabilities of the optimized filters. Therefore, in this work the J\ and J2 
cost functions are used

J1№,W) = E {  H o - y l l J ,  J2(il>,W) = E {  | | o - y | | 2}.  (7.5)



7.1.1 Angular Sigmoidal Optimization

Let {xj, x2, . . . ,  Xjv} be the input set of the m-channel samples and let o be the desired (original 
or noise-free) image. Let us assume that each input sample x* 6  W  is associated with the non­
negative real weight ipk, for k = 1,2, , N.  Then, we can modify the sigmoidal optimization 
presented in Section 2.3, so that it can work within the multichannel framework, [186,189]

M i  + 1) =  { M i )  + 2 eT [o(t) -  y(i)] S (T [x*(i) -  y(i)])}+ , (7.6)

where y(i) is the the output of the sigmoidally optimized WVDF (SWVDF) scheme related to 
the actual weight coefficients ipi(i), ip^i), . . . ,  ips(i) at sample position i, (i = 1, . . . ,  Q) and 
e denotes the iteration constant, (adaptation step-size), [424]. The notation x k(i) describes the 
input sample with the fc-th position in the filter window W  centered in x(i) =  xi, T(-) denotes 
the transformation

T(u — v) =  <S • a(u, v ), where S ( u , v ) = |  ^  llu ll ^  llv ll>
I “ I 'f IMI < ||v||,

S(-) signifies the sigmoidal function, {-}+ is a projection operation which sets the negative
values to zero and a(u, v) is the angle between vectors u, v

E(x) = -------   1  {y}+ =  I  'f X < n  8 )
1 +  exp (~x)  ’ 1 X, otherwise.

7.1.2 Linear Optimization

Let us now consider the generalized linear approximation of the sign function H(-) in (7.8). 
The extension of the algorithm based on the linear approximation of the sign function from the 
scalar to the vector case, requires the determination of the maximum and the minimum of the 
vector valued input set W  and also the substitution of the absolute difference between two scalar 
samples with the angle between two multichannel vectors.

Let the uppermost ranked sample x n̂) represents the maximum sample of the vector valued 
input set W  and let the lowest ranked vector X(i) minimizing the sum of weighted angles to 
other input samples represents the minimum input sample. Thus, the update of the weight coef­
ficients in the adaptive WVDF scheme, based on the linear approximation of the sign function 
(LWVDF) can be expressed as, [177,189]: ipk(i + 1) =  {ipk(i) + 2e [ r (x w  -  x (1))+

-2o(o(*),Xfc(i))] -  Y ^ =1 № ( x w  -  x (1)) -  2a(x*.(i), Xj(z))]}+, (7.9)

where k, j  = 1 , 2 , . . . ,  N, and e is the positive adaptation step-size.

156 Adaptive Vector Median Based Techniques 7.1 Weighted Vector Directional Filters 157

The restrictions of both adaptation algorithms (7.6) and (7.9) follow the WM optimization 
framework. The adaptation step-size e should be set to a certain small value and the achieved 
weight coefficients cannot be negative. For that reason, the negative weights are projected to 
zero. The starting weight vector ip ( l)  in the iterative scheme of weights finding may be set to 
arbitrary positive values, however all weights in the starting vector should have an equivalent 
importance. Moreover, the proposed optimization schemes require a learning signal like in the 
WM optimization.

In order to adapt the WVDF weight coefficients to the signal and noise statistics, LENA 
color images contaminated with 2%, 5%, 10%, 15% and 20% impulsive noise were used as the 
training sets, (NM4). All filtering results were obtained with a 3 x 3 square window, (N = 9) 
and the proposed SWVDF and LWVDF optimization started with the same initial weighting 
vector -0(1) =  [1,1,.. . ,  1,1], which corresponds to the BVDF operation.

The achieved optimization results are shown in Figs. 7.2, 7.3 (image restoration quality 
measures) in dependence on the value of the iteration constant e, which ranged from 1 0 ~ 5  to 
103. In the case of the SWVDF filter, the most appropriate e was found, (Fig. 7.2) to be around
0.1. For smaller e the SWVDF provides worse detail preserving characteristics and after some 
critical point, which depends on the statistical properties of the training sequence, it converges 
to an operation close to that one performed by the BVDF. 1 The obtained results indicate that 
the performance of the WVDF based on linear approximation of the sign function, (LWVDF) 
decreases with increasing value of e. The most appropriate value of e related to the LWVDF, 
(Fig. 7.3) is found to be around 0.01.

Numerical results and comparisons are presented in Tab. 7.1. In this Table the compo­
nentwise MMF filter [430], standard VMF [19], BVDF [397] and DDF [138], Fuzzy Vector 
Directional Filter (FVDF) [240,245], GVDF [395,397] and two Hybrid Vector Filters (HDF 
and AHDF) [106] were compared in terms of performance with the optimized, (LWVDF and 
SWVDF) and non-optimized filters, (WVDFi, WVDF2) with weights:

2 1 2

1 3 1

2 1 2 ( W V D F i ) ,

1 2 1

4 5 4

1 2 1 ( W V D F 2) .

The obtained results confirm that the proposed WVDF framework can be designed to pro­
vide an excellent trade-off between noise attenuation and signal-detail preserving character­
istics and the proposed technique outperforms the standard filtering schemes in terms of the 
commonly used objective measures.

'Note that for e =  0 the iterations do not change the initial values o f ip, and for tpk =  1, k =  1 , . . . ,  N  the 
BVDF structure is retained.
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Fig. 7.2. Efficiency of the WVDF sigmoidal optimization, (SWVDF) expressed through normalized qual­
ity measures dependent on the iteration step-size t. The training set was delivered by the image LENA 
with: a) no corruption, b) 2% impulsive noise, c) 5% impulsive noise, d) 10% impulsive noise, e) 15% 
impulsive noise, f) 20% impulsive noise, (NM4). Note that e = 0 characterizes the BVDF output

7.1 Weighted Vector Directional Filters

Fig. 7.3. Efficiency of the WVDF linear optimization, (LWVDF) expressed through the normalized ob­
jective quality measures dependent on the iteration step-size e. The training set was obtained through 
the image LENA with: a) no corruption, b) 2% impulsive noise, c) 5% impulsive noise, d) 10% impulsive 
noise, e) 15% impulsive noise, f) 20% impulsive noise, (NM4)
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p  =  0 . 0 5 L E N A P E P P E R S

F I L T E R M A E M SE N C D M A E M SE N C D
M M F 3 . 3 9 4 4 9 . 7 0 . 0 4 4 2 0 3 . 2 4 8 4 3 . 1 0 . 0 4 8 4 1

VMF 3.430 50.8 0.04031 3.169 43.9 0.04520
B V D F 3 . 8 1 8 5 8 . 6 0 . 0 4 0 7 3 3 . 7 4 0 6 0 . 7 0 . 0 4 3 7 8

D D F 3 . 5 0 9 5 2 . 3 0 . 0 4 0 2 3 3 . 1 8 2 4 4 . 6 0 . 0 4 3 0 9

F V D F 4 . 3 0 1 5 4 . 3 0 . 0 4 8 3 4 4 . 0 6 8 5 1 . 4 0 . 0 5 5 2 2

G V D F 3 . 6 9 7 5 9 . 2 0 . 0 4 3 0 1 3 . 6 0 5 6 2 . 5 0 . 0 4 8 5 5

H D F 3 . 5 8 7 5 1 . 8 0 . 0 4 1 0 1 3 . 2 8 2 4 2 . 9 0 . 0 4 4 1 3

A H D F 3 . 5 7 3 5 0 . 4 0 . 0 4 0 9 5 3 . 2 7 4 4 1 . 9 0 . 0 4 4 1 3

W V D F j 3 . 0 5 4 4 7 . 7 0 . 0 3 2 6 7 2 . 9 7 4 5 2 . 2 0 . 0 3 4 4 9

w v d f 2 2 . 6 4 3 4 1 . 5 0 . 0 2 8 2 6 2 . 1 9 7 3 8 . 1 0 . 0 2 7 5 1

L W V D F 2 . 3 9 9 3 3 . 4 0 . 0 2 5 6 9 2 . 2 9 6 3 7 . 6 0 . 0 2 6 7 7

S W V D F 1 . 7 8 3 2 4 . 2 0 . 0 1 8 8 5 1 . 8 7 6 3 3 . 9 0 . 0 2 2 7 4

p  =  0 . 1 L E N A P E P P E R S

F I L T E R M A E M SE N C D M A E M SE N CD
M M F 3 . 7 0 3 5 6 . 8 0 . 0 4 8 9 3 3 . 5 7 9 5 3 . 9 0 . 0 5 4 6 3

VMF 3.687 56.5 0.04285 3.503 55.0 0.04935
B V D F 4 . 0 9 9 6 7 . 6 0 . 0 4 3 2 1 4 . 1 5 1 8 2 . 7 0 . 0 4 8 4 4

D D F 3 . 7 3 3 5 7 . 3 0 . 0 4 2 4 0 3 . 5 1 2 5 6 . 6 0 . 0 4 7 4 9

F V D F 4 . 5 4 0 5 9 . 5 0 . 0 5 0 2 9 4 . 3 7 0 6 1 . 6 0 . 0 5 9 4 6

G V D F 3 . 9 2 5 6 6 . 8 0 . 0 4 4 8 1 3 . 8 6 2 7 2 . 7 0 . 0 5 0 9 1

H D F 3 . 8 5 7 5 6 . 9 0 . 0 4 3 4 4 3 . 6 2 6 5 3 . 6 0 . 0 4 8 5 5

A H D F 3 . 8 4 0 5 5 . 5 0 . 0 4 3 3 9 3 . 6 1 4 5 2 . 4 0 . 0 4 8 5 3

W V D F j 3 . 3 4 7 5 8 . 2 0 . 0 3 5 3 7 3 . 3 9 9 7 7 . 1 0 . 0 3 9 3 2

w v d f 2 2 . 9 8 9 5 6 . 3 0 . 0 3 1 3 8 2 . 6 5 9 6 5 . 9 0 . 0 3 2 4 9

L W V D F 2 . 6 6 1 4 2 . 5 0 . 0 2 8 1 0 2 . 6 4 2 5 5 . 2 0 . 0 3 1 0 3

S W V D F 2 . 1 1 4 3 9 . 8 0 . 0 2 1 9 2 2 . 3 3 0 6 7 . 3 0 . 0 2 7 4 5

II O to L E N A P E P P E R S

F I L T E R M A E M SE N C D M A E M SE N C D
M M F 4 . 5 2 1 8 7 . 9 0 . 0 6 1 9 8 4 . 4 8 7 9 1 . 4 0 . 0 7 2 6 6

VMF 4.335 80.3 0.04924 4.232 85.7 0.06008
B V D F 4 . 8 5 9 1 0 7 . 8 0 . 0 4 9 8 7 5 . 1 1 1 1 5 2 . 9 0 . 0 6 0 2 4

D D F 4 . 3 2 1 7 8 . 8 0 . 0 4 8 3 4 4 . 2 5 4 9 0 . 4 0 . 0 5 7 9 6

F V D F 5 . 2 5 8 8 0 . 4 0 . 0 5 7 2 2 5 . 2 2 6 9 8 . 3 0 . 0 7 3 9 4

G V D F 4 . 3 4 5 8 3 . 4 0 . 0 4 9 2 8 4 . 3 9 5 1 0 6 . 5 0 . 0 5 7 7 1

H D F 4 . 5 4 8 8 0 . 4 0 . 0 5 0 0 3 4 . 4 1 1 8 6 . 4 0 . 0 5 9 9 8

A H D F 4 . 5 4 7 7 9 . 5 0 . 0 4 9 9 9 4 . 4 0 9 8 4 . 5 0 . 0 5 9 9 6

W V D F i 4 . 2 1 2 1 0 6 . 8 0 . 0 4 3 0 6 4 . 5 7 1 1 6 7 . 2 0 . 0 5 3 1 7

w v d f 2 4 . 1 1 3 1 3 1 . 6 0 . 0 4 1 4 1 4 . 2 7 5 2 0 6 . 5 0 . 0 5 0 3 3

L W V D F 3 . 4 6 6 9 2 . 3 0 . 0 3 5 3 3 3 . 8 2 4 1 4 8 . 6 0 . 0 4 4 6 7

S W V D F 3 . 3 4 5 1 3 6 . 1 0 . 0 3 3 3 3 4 . 0 6 4 2 3 4 . 1 0 . 0 4 6 4 8

Tab. 7.1. Comparison of the LWVDF and SWVDF filters with standard techniques using LENA and 
PEPPERS images corrupted with impulsive noise ofp = 0.05, p = 0.1 and p = 0.2, (NM4), [ 189]
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To achieve the robust weighting coefficients used for the evaluation presented in Tab. 7.1, 
the test image LENA corrupted by 10% impulsive noise, (NM4) was used as the training set. The 
reason is that this image and the considered noise corruption represent a compromise between 
the image features complexity and the degree of noise corruption.

Figure 7.4 shows that the SWVDF filtering techniques s i g n i f i c a n t l y  o u t p e r ­
f o r m  the standard multichannel filters including the widely used VMF and BVDF. Moreover, 
the developed multichannel optimization is fast, saves memory space and is easy to implement. 
After the sigmoidal optimization, the proposed SWVDFs are sufficiently robust and useful for 
practical image processing applications. Future research will focus on the automatic setting of 
the adaptation parameter e and the design of a versatile self-adaptive optimization, eliminating 
the need for a learning signal.
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7.2 Generalized Selection Weighted Filters

An important task in the nonlinear image filtering is the development of a unified theory, which 
would generalize a variety of existing nonlinear filters and would provide a versatile optimiza­
tion framework. In this sense, a generalized WVDF technique for color image filtering, based 
on the vectors’ directionality and a novel, angular multichannel optimization algorithms of the 
WVDF weights are presented in this Section.

It is evident that due to the image non-stationarity, nonlinear techniques are best suitable for 
image processing, [208,360]. Because of their efficiency, the nonlinear filter families, (Fig. 1.4) 
are attracting much attention and are widely used in different image processing tasks. A major 
theoretical and practical drawback of the nonlinear techniques is however the lack of a unifying 
theory. This causes difficulties with the theoretical background related to nonlinear filters and 
their generalization. This Section contributes to the progressive generalization of multichannel 
filtering classes. The main emphasis is placed on the development of a unified framework for 
the description and analysis of color image filters.

Let W  =  {xi , . . . ,  xjv} be as usual a set of multichannel vector valued samples spanned 
by a filter window of length N  and let X] be the central sample corresponding to the window 
reference position. Let us assume that ip =  [V'i, • • •, 4>n ] and ip =  [ipi,. . . , ipN\ represent the 
sets of positive weights, where the weights ipk and tpk, for k =  1 , . . . ,  N,  are associated with 
the input sample x*.

Applying a minimization procedure, similar to the one used for VMF or BVDF, the gener­
alized Selection Weighted Vector Filters (SWVF) output is the sample X(j) € W  minimizing:
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Filter SWVF Parameters Reference
WVMF
WVDF
VMF
BVDF
DDF

k — 0

K = 1

Ipk =  1 , <pk =  1 , K = 0  

ipk =  1- <Pk = 1. « =  1 
ipk =  1, Vk =  1, « =  0.5

[407]
[189]
[19]
[397]
[138]

Tab. 7.2. Special cases o f the proposed SWVF framework

N  \  /  N  \  *

5^ 0fcP(x(i),xfc) ) £ > fca(xCi),x * )  . t7-10)
k=l /  U = i

where k is the power parameter ranging from 0 to 1. The weight coefficient ipk signifies the im­
portance of the input sample x k, based on the aggregated Euclidean distances and tpk measures 
the contribution of x k, according to the aggregated angular distances. A design parameter k is 
used to tune the overall filter characteristics in terms of its efficiency. The aggregated Euclidean 
distance relates to the brightness of the vectors under consideration, whereas the aggregated 
angular distance relates to the chromaticity of input samples.

Assuming, that

(
N  \  1_K  /  N  \ K

j > l l * > - * l l 7J  ^ ^ < p ja (x k,x j) j  , k =  1,2, . ..,7V, (7.11)

is the combined aggregated measure associated with xfc, then the ordered sequence of Du ■ ■ -, 
Dn implies the same ordering of the input set x i , ..., x N, which results in the ordered set X(i),
..., X(w), where X(fc) is associated with D(k)- In this way, the SWVF output is defined as the 
lowest order statistic x^j, which is equivalent to the sample minimizing the expression (7.10).

A class of SWVF filters, [184,313,341] includes, (Tab. 7.2) a number of previously intro­
duced multichannel filters as their subclasses. These filters can be obtained by an appropriate 
configuration of the design parameter k and the weight coefficients ipi, ■ ■ ■ ,ipN and <pi, . . . ,  <pjf. 
Thus, the SWVF includes the WVMF, (for k =  0) and WVDF, (for k = 1) as basic subclasses. 
Another simplification, (ipk =  1, ipk = 1, for k = 1,2, . . . ,  iV) leads to special cases such as 
VMF (k =  0), BVDF (k =  1) and DDF (/c = 0.5).

In this way the SWVF filters constitute a wide class of multichannel filters. Each setting of 
the filter parameters represents a unique filter, which can be used for specific purposes. Using an 
appropriate optimization scheme, (Fig. 7.1) the weight coefficients can follow the statistic and 
the structural content of the desired signal and can be adapted in a required manner. To simplify 
the SWVF optimization and to provide better illustration of the weights adaptation, let us as­
sume the equivalence between the weight vectors tp and (p so that ipk = <pk, for k = 1,2,..., N.
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Thus, we will make use of the weight coefficients ipi,ip2, ■■■, ipN only. These coefficients can be 
adaptively determined, using the generalized multichannel sigmoidal optimization approach of 
the standard WM filters, [189,423].

The development of nonlinear multichannel filters, [246] requires the determination of the 
distance between multichannel samples and the sample ordering based on the aggregated dis­
tances. This operation requires additionally the polarity of the distance measure between two 
multichannel samples.

Let us consider the generalized difference between two vectors u and v, (7.7)

T(u — v) =  <S(u, v) [p(u, v)]1-K [a(u, v)]K , (7.12)

where <S(-) e {—1,1} is a polarity function given by (7.7). Note that the polarity function 
introduced here, preserves the sign of the difference between the scalar image samples u and v, 
since for scalar case, i.e. m  =  1  and k = 0, the magnitude of u  and v is equivalent to u and v, 
respectively.

Given an input set W  =  {xi, x2, . . . ,  x«} and a weight vector ip = [ipi,ip2, . . . ,  tPn], we 
denote the SWVF output as y =  y (ip, W). The loss in performance (error in the filtering 
operation) can be defined as

e =  | T ( o - y ) | .  (7.13)

One of the natural ways of choosing the weight coefficients ipi,ip2, ■ ■ ■> ipN is to require that 
their choice should minimize the average cost or loss function. Therefore, the cost function of 
the SWVF filtering is defined as

Jswvf№ , W )  = E {  | T ( o - y ) | } .  (7.14)

With the constraint of non-negative weights, keeping the aggregated measure (7.11) positive, 
the optimization problem can be expressed as

minimize J s w v f ( i P )  , with subject to ipk > 0 , for k =  1 , 2 , . . . ,  N  . (7.15)

During the optimization procedure, the sliding filtering window is moved over the image do­
main and the weight coefficients ipk, for k = 1 , 2 , . . . ,  TV are adjusted by adding the contribution 
of the samples multiplied by a certain regulation factor e

M i  + 1) =  { M i )  +  2 cT [o(i) -  y(i)] E (T [x*(i) -  y(i)])}+ , (7.16)

where y(i) is the the output of the sigmoidally optimized SWVF filter related to the actual 
weight vector ip at image position i and E(-) denotes the sigmoidal function.

This iterative algorithm determines the weight coefficients with respect to the filter weights 
obtained at the previously processed image sample. If T [o(i) — y (*)] is zero, then the filter holds 
the detail preserving properties and all weights coefficients remain unchanged. If T[xj.(i)— y («)] 
is zero, the input sample x* possesses the same noise attenuation and detail preserving capability 
as y(i) and the corresponding weight ipk remains also unchanged. In the rest of cases, T[o(i) — 
y(i)] and T[xfc(i) — y(i)] influence the weight update in terms of the trade-off between the noise 
smoothing and the signal-detail preservation. Note that the initial weight vector ip can be set to 
arbitrary positive values, but the best choice is to start the weight adaptation with equal weights, 
e.g. ipk =  1, for k =  1 , 2 , . . . ,  N,  corresponding to the robust smoothing functions such as 

VMF, BVDF and DDF.
It is clear that the availability of original (training) signal oi; i = I , .. .  ,Q in (7.16) is 

essential in the development of the new filter class. However, noise-free (training) samples may 
not be available in practical image processing applications. In such cases, the proposed scheme 
can be optimized using training sets available from other natural images. Upon completion of 
the training, the filters can be applied to real images, corrupted by an unknown noise process.

Another possibility is to replace the desired signal o(i) with the input central sample x(i)

ipk(i + 1) =  (tpk(i) + 2 eT[x(i) -  y(i)]E (T [x*(i) -  y(i)])}+ . (7.17)

This approach is useful, when the underlying noise probability is low and strong detail preserv­
ing characteristics of the SWVF filters are required. A different form of the SWVF scheme can 
be obtained if a robust and easily achieved estimate y*, e.g. marginal median filter (MMF) or 
sample average (AMF) is used instead of x(i), [189]

M i  +  1) =  { M i )  +  2 eT [y*(t) -  y(z)] E  (T  [y*k (i )  -  y(i)])}+ , (7.18)

where y* =  (j/*, y j,..., y*N) is the MF of the input set W, y* = MED{xy, x2j , ..., x^j}.
Fig. 7.5 shows the adaptation capability of the proposed SWVF scheme (7.16) started with 

the initial weighting vector ip =  [1,1,. . . ,  1,1]. These results are obtained using for training 
the test image LENA corrupted by 5% and 10% impulsive noise, (NM4). Objective criteria 
like MAE, MSE and NCD are expressed in dependence on the regularization factor e, which 
ranged from 10- 1 2  to 103  and the design parameter k. The obtained results indicate that the 
SWVF adaptation, as expected, depends strongly on e. For very small values of e, the SWVF 
provides worse detail preserving characteristics and performs the smoothing operation similar to 
the DDF. For evaluation purposes the e value equal to 0.1 was taken and the obtained weighting 
coefficients are shown in Tab. 7.3. It can be observed that the k value has small influence on 
the weights and that the weighting coefficients are approaching 1 for increasing noise intensity, 
which means that the schemes converge to BDF, VMF or DDF depending on k settings.
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The performance of the proposed methods, namely SWVFi defined by (7.16) and trained 
using the LENA image contaminated by noise process NM4, with p = 0.1, (see Fig. 7.6) and 
self-adaptive SWVF2  given by (7.18), is compared in Tab. 7.4, using the weights presented 
in Tab. 7.3, with the standard filtering methods such as MMF, VMF, BVDF, DDF, HDF and 
AHDF, (Tab. 7.4).

It can be observed that the standard filtering techniques such as VMF and MMF suppress 
well impulses present in the image, however their excessive smoothing capability results in edge 
blurring. Since the DDF combines the properties of both VMF and BVDF, it can achieve better 
results than the BVDF and VMF.

The comparison of the results presented in Tab.7.4 shows that the SWVF framework can be 
designed to outperform the standard filtering schemes in terms of the quality criteria and signifi­
cantly improves the performance of the multichannel filters based on the directional processing. 
As can be derived from Tab. 7.4, the SWVFi scheme given by (7.16) provides significantly 
better results, which justifies the usage of standard images artificially corrupted with impulsive 
noise for training purposes. It can be observed, (Fig. 7.6) that there is only a slight dependence 
of the quality criteria values on the contamination intensity of the LENA image used for the 
training purposes, which is a great advantage of the proposed scheme.

The SWVF2  defined by (7.18), although self-adaptive, also outperforms the generic tech­
niques, like VMF, BDV and DDF, which shows that even without the training, the proposed 
scheme yields better results than the traditional methods. The only drawback is the increased 
computational load associated with the iterative search for the optimal weighting coefficients.

0.11 0.35 0.12

|«  =  o | 0.15 1.00 0.18

0.08 0.38 0.12

0.16 0.46 0.15

k =  A 0.23 1.00 0.26

0.10 0.50 0.20

0.11 0.48 0.25

\k =  1 | 0.22 1.00 0.23

0.23 0.45 0.12

0 .10 0 .40 0.19

0.18 1.00 0.17

0.18 0 .39 0 .14

0 .12 0.52 0 .14

0.21 1.00 0.25

0.15 0.49 0.18

0.19 0.46 0.27

0.24 1.00 0 .29

0.18 0 .56 0 .16

0.17 0.47 0.17

0.23 1.00 0.20

0 .20 0.47 0.15

0.22 0.58 0.16

0.29 1.00 0.21

0 .20 0.56 0.17

0.25 0 .60 0.31

0.35 1.00 0.30

0.31 0.57 0.26

0.18 0.48 0.30

0.28 1.00 0.25

0.27 0.48 0.20

0.24 0.61 0.33

0.37 1.00 0.31

0.25 0.63 0.26

0.37 0 .74 0 .56

0.47 1.00 0.46

0.42 0 .70 0 .44

p  =  0 .0 5  p =  0 .1  p  =  0 .1 5  p = 0 .2

Tab. 7.3. SWVF weights obtained using (7.16) in dependence on noise contamination p, (NM4) and k
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Fig. 7.5. SWVF weight adaptation expressed through the objective image quality measures in dependence 
on the regularization factor e and parameter k. The training set was obtained through the LENA image 
with: (a, c, e) 5% impulsive noise (p =  0 .05, NM4) and (b, d ,f)  10% impulsive noise (p =  0.10, Nk14)
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PEPPERS PA R R O TS L E N AL E N A

PEPPERS PA R R O TSL E N A LE N A

PEPPERS PARRO TS
LE N A LE N A

Fig. 7.6. Robustness o f the SWVFi scheme in terms o f MAE, MSE and NCD for test images PEPPERS 
and PARROTS. The adaptive scheme (7.16) was performed using the LENA image as a training set. The 
images were contaminated impulsive noise, (NM4, p ranging from 0 to 0.2). Note the slight dependence 
o f the quality criteria on the contamination intensity o f the training image
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p =  0 . 0 5 P E P P E R S P A R R O T S

Filter/Criterion MAE MSE NCD MAE MSE NCD
M M F 3 . 2 4 8 4 3 . 1 0 . 0 4 8 4 2 . 7 1 8 6 3 . 1 0 . 0 1 7 0

V M F 3 . 1 6 9 4 3 . 9 0 . 0 4 5 2 2 . 6 6 9 6 4 . 2 0 . 0 1 3 2

B V D F 3 . 7 4 0 6 0 . 7 0 . 0 4 3 8 3 . 4 6 0 1 0 9 . 0 0 . 0 1 1 6

D D F 3 . 1 8 2 4 4 . 6 0 . 0 4 3 1 2 . 6 4 5 6 5 . 3 0 . 0 1 1 7

H D F 3 . 2 8 2 4 2 . 9 0 . 0 4 4 1 2 . 7 8 6 6 5 . 7 0 . 0 1 2 2

A H D F 3 . 2 7 4 4 1 . 9 0 . 0 4 4 1 2 . 7 7 1 6 3 . 5 0 . 0 1 2 1

S W V F x ,  ( k  =  0 ) 0 . 9 9 5 1 9 . 9 0 . 0 1 3 8 0 . 9 0 3 2 7 . 1 0 . 0 0 4 2

S W V F i ,  ( k  =  0 . 5 ) 0 . 9 6 2 1 8 . 1 0 . 1 4 2 0 . 7 4 5 1 8 . 5 0 . 0 0 3 3

S W V F i ,  (k  =  1 ) 1 . 5 9 5 3 1 . 0 0 . 0 1 9 3 1 . 3 7 3 4 3 . 2 0 . 0 0 4 6

S W V F 2 , ( k  =  0 ) 1 . 4 5 4 2 1 . 2 0 . 0 2 0 4 1 . 2 5 6 3 0 . 9 0 . 0 0 5 6

S W V F 2 , ( k  =  0 . 5 ) 1 . 7 8 3 2 4 . 0 0 . 0 2 5 5 1 . 3 9 9 3 6 . 0 0 . 0 0 5 8

S W V F 2 ,  (k  =  1 ) 2 . 5 2 2 3 9 . 3 0 . 0 2 9 5 2 . 1 9 9 7 0 . 0 0 . 0 0 7 0

p =  0 . 1 P E P P E R S P A R R O T S

M M F 3 . 5 7 9 5 3 . 9 0 . 0 5 4 6 2 . 9 6 0 7 0 . 0 0 . 0 1 9 8

V M F 3 . 5 0 3 5 5 . 0 0 . 0 4 9 4 2 . 8 9 0 6 9 . 6 0 . 0 1 4 2

B V D F 4 . 1 5 1 8 2 . 7 0 . 0 4 8 4 3 . 6 3 0 1 1 3 . 5 0 . 0 1 2 7

D D F 3 . 5 1 2 5 6 . 6 0 . 0 4 7 5 2 . 8 3 9 6 9 . 7 0 . 0 1 2 8

H D F 3 . 6 2 6 5 3 . 6 0 . 0 4 8 5 3 . 0 0 2 6 9 . 9 0 . 0 1 3 2

A H D F 3 . 6 1 4 5 2 . 4 0 . 0 4 8 5 2 . 9 9 9 6 8 . 6 0 . 0 1 3 1

S W V F i ,  ( «  =  0 ) 1 . 4 6 0 5 0 . 7 0 . 0 2 0 3 1 . 2 6 7 4 7 . 2 0 . 0 0 6 7

S W V F i ,  (k  =  0 . 5 ) 1 . 3 8 1 4 3 . 1 0 . 0 1 9 6 1 . 0 2 1 2 9 . 8 0 . 0 0 4 9

S W V F i ,  ( k  =  1 ) 2 . 0 6 8 6 5 . 5 0 . 0 2 4 4 1 . 6 1 1 5 3 . 6 0 . 0 0 5 8

S W V F 2 , (k  =  0 ) 1 . 7 5 4 3 3 . 3 0 . 2 5 0 1 . 5 0 1 4 1 . 6 0 . 0 0 6 9

S W V F 2 , ( k  =  0 . 5 ) 2 . 0 6 8 3 5 . 1 0 . 0 2 9 5 1 . 6 2 4 4 3 . 4 0 . 0 0 7 0

S W V F 2 , (k  =  1 ) 2 . 8 7 9 5 8 . 5 0 . 0 3 3 8 2 . 3 8 5 7 5 . 2 0 . 0 0 8 1

p =  0 . 1 5 P E P P E R S P A R R O T S

M M F 3 . 9 9 6 7 0 . 3 0 . 0 6 2 0 3 . 2 7 5 8 0 . 9 0 . 0 2 3 6

V M F 3 . 8 5 8 6 8 . 7 0 . 0 5 4 0 3 . 1 7 8 8 0 . 0 0 . 0 1 5 8

B V D F 4 . 5 9 8 1 1 3 . 2 0 . 0 5 3 2 3 . 8 8 3 1 2 5 . 2 0 . 0 1 4 4

D D F 3 . 8 4 4 7 0 . 8 0 . 0 5 1 8 3 . 0 7 0 7 6 . 7 0 . 0 1 4 3

H D F 3 . 9 9 2 6 8 . 0 0 . 0 5 3 0 2 . 7 8 6 6 5 . 7 0 . 0 1 2 2

A H D F 3 . 9 9 4 6 7 . 2 0 . 0 5 3 0 2 . 7 7 1 6 3 . 5 0 . 0 1 2 1

S W V F i ,  (k  =  0 ) 2 . 2 2 1 1 1 4 . 1 0 . 0 2 9 9 1 . 9 4 2 1 0 4 . 1 0 . 0 1 2 9

S W V F i ,  ( k  =  0 . 5 ) 2 . 0 8 8 8 8 . 4 0 . 0 2 7 5 1 . 5 3 9 6 7 . 2 0 . 0 0 8 6

S W V F i ,  ( «  =  1 ) 2 . 6 6 7 1 1 3 . 0 0 . 0 3 1 1 2 . 0 6 5 8 8 . 9 0 . 0 0 8 7

S W V F 2 , (k  =  0 ) 2 . 1 8 9 5 6 . 1 0 . 0 3 0 9 1 . 8 5 7 6 0 . 9 0 . 0 0 9 5

S W V F 2 , ( k  =  0 . 5 ) 2 . 4 4 8 5 5 . 1 0 . 0 3 4 6 1 . 8 8 1 5 3 . 3 0 . 0 0 8 6

S W V F 2 , (k  =  1 ) 3 . 3 4 6 9 3 . 3 0 . 0 3 9 0 2 . 6 4 3 8 9 . 5 0 . 0 0 9 9

Tab. 7.4. Comparison o f the efficiency o f the SWVF techniques: SWFi (7.16) and SWF2 (7.18), with 
the standard filters using color test images PEPPERS and PARROTS contaminated by impulsive noise of 
intensity p  =  0 .05 , p  =  0 .1  and p =  0 .15, (NM4)
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7.3 Sigma Vector Median Filters

It is commonly known that the standard techniques capable of low-pass filtering and operating 
on a fixed supporting window blur and eliminate salient image features. To keep the noise-free 
samples unchanged during the filtering operation, noise reduction techniques have to be con­
structed, to increase the degree of freedom in the filter design, by introducing tuning parameters 
into its structure, such as in the case of multichannel weighted filtering schemes, [177,189,407].

Another way, is to incorporate the structural information to the filter design realized by 
adaptively changing the direction of the filter operating sub-window, [129,130] or to deal with 
the image samples of similar intensities, which form digital paths on the image domain, [72, 
295,379]. In the case of impulsive noise environments, the most popular and computationally 
efficient approaches are related to the switching-based filtering, [1,2,29]. In such a scheme, 
the switching rule changes between the nonlinear mode, which smoothes out noisy samples and 
the identity operation, which leaves the uncorrupted samples unchanged.

Sigma Vector Median Filter (SVMF) takes advan­
tages of the switching-based filtering and can be seen 
as an adaptive extension of the Rank Conditioned Vec­
tor Median Filter (RCVMF) presented in Section 3.2,
(3.18). In addition to this concept, the introduced adjust­
ing parameter, that allows to detect the noisy samples, 
extends the degree of freedom of the novel multichan­
nel filter, [360]. This filtering approach is useful for de­
tection and removal of impulsive noise in a wide range 
of applications, in which the preservation of the desired 
structures and color information is of importance.

The switching based filtering is related mostly to the 
gray scale imaging, [42,68,96,166,429]. The extension 
of these algorithms to color images may be problematic 
especially in terms of flexibility to accommodate the al­

gorithms for a variety of window shapes, [68,429] computational complexity, [429] or the num­
ber of switching levels, [96].

The proposed SVMF method is based on the robust order statistic theory and on the ap­
proximation of the multivariate dispersion computed using the input multichannel samples. Its 
unique and distinguishing element is the statistical operator servicing as the control of switching

R

Fig. 7.7. The concept of the sigma filter­
ing in the 2-dimensional case, in which 
the radius of the circles is related to the 
variance of the samples multiplied by 
the adjusting parameter 0

between the robust VMF and the identity operation. The input central sample is considered to 
be noisy if it lies outside the range, (Fig. 7.7) formed by the approximated multivariate disper­
sion of the input multichannel samples. To increase the degree of freedom in such a design, the 
proposed method utilizes approximation of the multivariate dispersion multiplied by a certain 
regulation parameter 9. Note that a similar concept was applied to gray scale images, [135,166] 
and the filter output was defined as a weighted mean of the input samples lying within the 
standard deviation of the central pixel value, (2.14).

The measure of the multivariate samples’ dispersion is very often defined using the variance- 
covariance matrix £  of the samples x =  {xi, x2, . . . ,  x^} defined as £  = E[(x — x) (x — x)T], 
where E  is the expected value operator and x denotes the arithmetic mean of the vector samples. 
The dispersion matrix £  is square, symmetric and usually of full rank.

In many applications it is very useful to use a scalar value capturing the multivariate data 
dispersion. One of the ways of introducing such a scalar measure is the so called generalized 
variance |£ | defined as the determinant of the £  matrix, which can be calculated as the product 
of the eigenvalues of £ , [417]. The idea is to measure the volume occupied by the multivari­
ate variables in the color space. The multivariate dispersion can also be given as a sum of the 
eigenvalues of the variance-covariance matrix, (total variance), [281]. The former plays an im­
portant role in the maximum likelihood estimation and model selection and the latter is used as 
a measure of variation in principal components analysis, [10,205,212,289]. These dispersion 
measures well describe the samples’ variability, but their drawback is that they are computa­
tionally very expensive and thus inappropriate for image processing. That is why, simple but 
effective dispersion measures based on the samples mean and vector median, are used in this 
work: multivariate variance measured from the samples mean and variance measured from the 
samples median, [289].

To avoid the computational difficulties connected with the calculation of variance-covariance 
matrices of multichannel samples, the proposed method utilizes the approximation of the vari­
ance of the vector data, [197,360]. Let v be the approximation of the multivariate variance of 
the vectors contained in a supporting window W  of size N, given by

(7.19)
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N  — I ’

where is the distance measure minimizing the generalized distance, (3.21)

N  \  K /  N  \  1~ K

^ a(xk, x j ) j  \ J 2 p ( x k,Xj)J , (7.20)

i.e. the measure associated with the VMF for k =  0, (3.3) and with the BVDF for k =  1, (3.19).
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Let us now assume that k =  0, then
N

-D(i) =  i?(i) =  ||x(1) (7.21)
j= 1

where X(j) is the output of the VMF. The local variance approximation

(7-22)

represents the mean distance between the vector median X(i) and all other samples contained 
in W. The division of the smallest aggregated distance by (TV — 1), (number of distances 
from X(i) to all samples from W), ensures that the dispersion measure is non-dependent on the 
filtering window size. Then, the output of the Sigma Vector Median Filter, (SVMF) is defined 
as, [360,361]

_  j  x (1), for > 6 , 
y  S V M F i —  S ( ' -23 )

[ xj, otherwise,
where y s v M F i  is the proposed SVMF output, R\ is the cumulated distance from the central 
pixel Xi to all other pixels contained in W  and £i is the threshold value given by

6  =  -R(i) +  0\v =  — f t  -  \ 1 ’ (7-24)

where v is the approximated variance (7.19) and 9\ is the tuning parameter used to adjust the 
smoothing properties of the proposed SVMFi method.

The switching scheme (7.23) can be rewritten as

[ x(1)l for R ! > ^ ^ R {1),
y  S V M F i  —  < ( '-2D)

[ Xi, otherwise.

If the distance measure Ri of the central sample Xi is greater or equal to the threshold £i, then 
the central sample is most probably noisy and is being replaced with the lowest ranked vector 
X(!), (Fig. 7.7). If the accumulated distance R\ of the central sample Xi is less than the threshold 
£i, then the central sample is declared to be similar to other input samples, which indicates that 
it is most probably noise-free and no filtering operation is performed.

In order to follow both concepts sketched in Fig. 7.7, it is possible to modify the decision 
stage and to replace the lowest ranked vector with the sample mean, which leads to a much 
faster algorithm, as instead of the calculation of 36 distances needed for VMF, only 9 distances 
between the samples and their mean are required . Then, the approximation of the variance is 
given by

is the aggregated distance between the multichannel input samples Xi, x2, . . . ,  xw and the sam­
ple mean x. In such case, the output of the modified vector sigma filter (SVMF2) is defined 

as

ysvM„ =  ( X<1"  =  (7.27)
 ̂ xi, otherwise, JV

where £ 2  is the threshold value and 62 is the adjusting parameter like in the SVMFi scheme.
It is clear that the proposed method will perform the identity operation for any value of 9\,

if the lowest ranked vector X(i) is identical with the central sample Xi. If X(i) /  Xi then the
SVMFi output is a root, if

0i > e\ = (7.28)

which means that an additional increasing of 9 does not influence the filter properties.
It is worth noticing that the filtering scheme is scale and bias invariant. Let us consider the

input set Wi =  {1Xj, j  = 1, . . . ,  N}  and the modified input set =  {2 Xj, j  = 1, . . . ,  JV } 
achieved by adding the vector constant k to the input set W\ multiplied by scalar constant k,
i.e. 2Xj =  k • xXj +  k. It can be easily shown that the addition of a vector constant has no
influence on the filter properties, since vector distances R\Vl, R ^ 1 , R^j1 are the same as 
R}x2, R}^2, . . . ,  R^'1. The multiplication of the input set by a constant, has also no influence on 
the switching condition, since

R ^1 =  kR™1 , R ^  = kRjfi , (7.29)

and then the conditions

> V - +> a i > *  N N - +i dlRw ’ (730)

are equivalent to (7.23). Thus, the decision stage of the proposed method is scale and bias 

non-dependent.
The proposed Sigma Vector Median Filters are computationally efficient, since they perform 

practically the same set of operations as their non-adaptive special case VMF, [19,37]. The 
comparison of the construction of the SVMFi and the VMF techniques shows that both schemes 
need to compute the aggregated distances and search for their minimum. The switching rule 
requires division, multiplication and addition, however in the case of noise-free samples, no 
additional processing is necessary. If an outlier is detected, the reminder of operations is the 
same as in the case of standard VMF. In the case of the SVMF2  scheme, the computational 
efficiency is more advantageous, since in the case of noisy samples this filter does not have 
to perform the time consuming ordering operations performed both in the SVMFi and VMF 
schemes.
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Using (7.19) and (7.20) and taking k = 0.5 and k = 1 the Sigma Directional Distance Filter 
(SDDF) and Sigma Basic Vector Directional Filter (SB VDF) are obtained. The efficiency of the 
schemes, based on the data dispersion measured from the sample minimizing the accumulated 
sum of appropriate distances or from the samples centroid is presented in Tabs. 7.5, 7.6 and 
in Fig. 7.8. As can be observed the parameter k in (7.20) has small influence on the filters’ 
efficiency and therefore k =  0  or k =  1  should be used for erasing impulsive pixels.

The dispersion measure based on (7.19) is as expected more robust to the impulsive noise 
corruption than the measure of data variation measured from the centroid of samples, (7.26). 
However, although the filters based on (7.26) are inferior to the filters using (7.19), the SVMF2  

schemes are extremely fast and are much better suitable for the impulsive noise reduction than 
the traditional filters like VMF, BVDF, DDF, HDF, (see Tab. 7.6).

The comparison of the results obtained with both proposed methods, shows that the sub- 
optimal value of 62 used in the SVMF2  scheme is larger than that 9\ of the SVMFi approach. 
This observation is also confirmed by Fig. 7.9, which depicts the results achieved using the test 
image LENA corrupted by impulsive noise with the intensity ranging from p =  0.01 to p = 0.20, 
(NM4).

As can be easily observed, the optimal parameters 9\ and 02  are decreasing with the amount 
of corrupted pixels, (Figs. 7.5, 7.8, 7.9) as more and more pixels have to be replaced with the 
VMF, DDF or BVDF according to the type of dispersion model. This indicates that some kind 
of more advanced adaptive design is needed to automatically adjust the 9 parameter to the noise 
corruption process.

The efficiency assessment of the described filter class provided using the objective quality 
measures, (Tabs. 7.5, 7.6) and also evaluated visually, (Figs. 7.10, 7.11) c o n f i r m  the good 
performance of the presented filtering techniques and their usefulness for the impulsive noise 
removal in color images.

Noise (p) 0.05 0 . 1 0 0.15
Criterion MAE RMSE NCD MAE RMSE NCD MAE RMSE NCD
Noisy 3.18 2 2 . 2 2 0.04158 6.32 31.28 0.08256 9.58 38.53 0.12408
VMF 3.29 5.63 0.03881 3.44 5.87 0.04011 3.59 6.17 0.04145
BVDF 3.82 6.35 0.04006 3.95 6.64 0.04115 4.09 6.99 0.04236
DDF 3.41 5.77 0.03906 3.53 5.99 0.04012 3.70 6.26 0.04136
HDF 3.45 5.64 0.04007 3.58 5.87 0.04125 3.74 6.18 0.04259
svmf, e = i 1 . 2 2 3.94 0.01374 1.16 4.14 0.01357 1.23 4.74 0.01539
SVMF, 0 = 4 0.41 4.06 0.00611 0.90 7.34 0.01477 1.67 11.32 0.02869
SVMF, 9 = 8 0.62 7.67 0.01031 1.77 14.05 0.02886 3.48 2 0 . 6 8 0.05604

Tab. 7.5. SVMFfiltering results, (LENA, p = 0.05, p = 0.1 p = 0.15, NM2)
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p = 0.05 LENA PEPPERS PARROTS
FILTER MAE MSE NCD MAE MSE NCD MAE MSE NCD

VMF 3.430 50.8 0.0403 3.169 43.9 0.0452 2.669 64.2 0.013
BVDF 3.818 58.6 0.0407 3.740 60.7 0.0438 3.460 109.0 0.0116
DDF 3.509 52.3 0.0402 3.182 44.6 0.0431 2.645 65.3 0.0117

FVDF 4.301 54.3 0.0483 4.068 51.4 0.0552 3.802 94.5 0.0147
GVDF 3.587 55.3 0.0420 3.433 57.9 0.0453 3.036 93.6 0.0126
HDF 3.857 56.9 0.0434 3.282 42.9 0.0441 2.786 65.7 0 . 0 1 2 2

SVMFj 0.777 18.3 0.0082 0.729 16.5 0.0090 0.699 27.8 0.0027
SVMF2 0.980 21.4 0.0103 0.878 18.2 0.0107 0.840 31.1 0.0031
SBVDFi 0.805 19.1 0.0089 0.789 22.7 0.0113 0.694 34.3 0.0026
SBVDF2 1.054 27.6 0.0115 0.987 34.4 0.0129 0.875 44.8 0.0032
SDDFi 0.731 16.4 0.0080 0.649 14.6 0.0096 0.545 2 1 . 2 0.0024
SDDF2 0.948 19.9 0.0105 0.816 17.9 0 . 0 1 1 1 0.678 25.9 0.0027

II o L E N A P E P P E R S P A R R O T S

F I L T E R MAE MSE NCD MAE MSE NCD MAE MSE NCD
V M F 3 . 6 8 7 5 6 . 5 0 . 0 4 2 8 3 . 5 0 3 5 5 . 0 0 . 0 4 9 4 2 . 8 9 0 6 9 . 6 0 . 0 1 4 2

B V D F 4 . 0 9 9 6 7 . 6 0 . 0 4 3 2 4 . 1 5 1 8 2 . 7 0 . 0 4 8 4 3 . 6 3 0 1 1 3 . 5 0 . 0 1 2 7

D D F 3 . 7 3 3 5 7 . 3 0 . 0 4 2 4 3 . 5 1 2 5 6 . 6 0 . 0 4 7 5 2 . 8 3 9 6 9 . 7 0 . 0 1 2 8

F V D F 4 . 5 4 0 5 9 . 5 0 . 0 5 0 3 4 . 3 7 0 6 1 . 6 0 . 0 5 9 2 3 . 9 8 4 9 8 . 1 0 . 0 1 5 5

G V D F 3 . 9 2 5 6 6 . 8 0 . 0 4 4 8 3 . 7 8 5 7 3 . 4 0 . 0 4 9 2 3 . 1 8 8 9 6 . 2 0 . 0 1 3 7

H D F 3 . 8 5 7 5 6 . 9 0 . 0 4 3 4 3 . 6 2 6 5 3 . 6 0 . 0 4 8 6 3 . 0 0 2 6 9 . 9 0 . 0 1 3 2

S V M F i 0 . 9 5 9 2 5 . 9 0 . 0 1 0 5 0 . 9 4 1 21A 0 . 0 1 1 7 0 . 8 6 2 3 5 . 4 0 . 0 0 4 1

s v m f 2 1 . 1 2 3 2 8 . 3 0 . 0 1 2 1 1 . 0 6 3 2 9 . 0 0 . 0 1 3 3 1 . 0 1 6 4 0 . 6 0 . 0 0 4 7

S B V D F i 1 . 0 4 8 3 3 . 1 0 . 0 1 0 5 1 . 1 5 5 5 6 . 7 0 . 0 1 3 5 0 . 9 4 1 4 7 . 4 0 . 0 0 3 5

s b v d f 2 1 . 3 1 1 4 8 . 6 0 . 0 1 3 1 1 . 5 3 3 9 9 . 1 0 . 0 1 7 4 1 . 1 2 9 6 7 . 1 0 . 0 0 4 5

S D D F i 0 . 9 1 3 2 3 . 3 0 . 0 0 9 8 0 . 8 9 5 3 0 . 2 0 . 0 1 1 7 0 . 7 0 3 2 5 . 9 0 . 0 0 3 0

S D D F 2 1 . 0 9 4 2 8 . 3 0 . 0 1 1 8 1 . 1 0 3 4 4 . 0 0 . 0 1 4 2 0 . 8 4 3 3 3 . 5 0 . 0 0 3 7

p = 0 . 2 LENA PEPPERS PARROTS
FILTER MAE MSE NCD MAE MSE NCD MAE MSE NCD

VMF 4.335 80.3 0.0492 4.232 85.7 0.0601 3.448 91.9 0.0174
BVDF 4.859 107.8 0.0499 5.111 152.9 0.0602 4.183 140.0 0.0165
DDF 4.321 78.8 0.0483 4.254 90.4 0.0579 3.386 91.2 0.0161
FVDF 5.258 80.4 0.0572 5.226 98.3 0.0739 4.016 118.1 0.0175
GVDF 4.345 83.4 0.0493 4.562 122.4 0.0586 3.450 100.9 0.0174
HDF 4.548 80.4 0.0500 4.411 86.4 0.0599 3.594 92.7 0.0169

SVMFi 1.816 77.6 0 . 0 2 1 2 1.898 97.3 0.0251 1.618 90.0 0.0116
SVMF2 1.928 75.4 0 . 0 2 2 1 1.995 94.2 0.0266 1.803 96.3 0.0128
SBVDFi 2.232 122.9 0.0203 2.676 199.8 0.0275 1.907 126.3 0.0092
SBVDF2 2.708 171.0 0.0245 3.638 332.1 0.0385 2.568 196.1 0.0128
SDDFi 1.803 77.5 0.0192 1.953 109.9 0.0239 1.417 74.9 0.0087
SDDF2 2.034 91.3 0 . 0 2 1 2 2.389 151.6 0.0289 1.672 91.6 0 . 0 1 0 1

Tab. 7.6. Comparison of the sigma filters using the LENA, PEPPERS and PARROTS color images cor­
rupted by impulsive noise of intensity p = 0.05, p = 0.1 andp = 0.2, (NM4)
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0

c) d) k

Fig. 7.8. Dependence of the objective quality measures of the SDDF on the tuning parameters 9, k 
and impulsive noise intensity p, (NM4) for the LENA image: (a) MAE, (b) MSE. Below the details of 
achieved results in dependence on impulsive noise probability p, (NM4) according to : (c) MAE, (d) 
MSE are shown. At the bottom the dependence of the optimal 9 value on the noise intensity for various 
filter classes is depicted in terms of MAE: (e) and MSE: (f)

7.3 Sigma Vector Median Filters 177

Fig. 7.9. Performance ofSVMFi and SVMF2 techniques in dependence on adjusting parameters 9\, 62 
and impulsive noise intensity p, (NM4) using the test image LENA: (a, c, e) SVMFX and (b, d,f) SVMF2
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d) e) f)
Fig. 7.10. Detail preservation of the proposed filters class in comparison with standard techniques: (a) 
part of original test image LENA, (b) image corrupted by impulsive noise, (p = 0.04, NM2), (c) VMF 
output, (d) DDF output, (e) BVDF output, (f) the output of the SVMFfor 9 = 6, [360,361]

Fig. 7.11. Filtering errors expressed as the difference between the original and filtered image: (a) test 
image LENA, (b) image corrupted with impulse noise, (p = 0.04, NM2), (c) VMF filtering error, (d) DDF 
filtering error, (e) BVDF filtering error, (f) filtering error of the SVMF with 9 = 6, [360,361]

Summary

Nonlinear image processing methods continue to grow in popularity and the advances in com­
puting performance have accelerated the process of moving from theoretical explorations to 
practical implementations. The nonstationarity of images, the significance of visual cues such 
as edges and the nonlinearity of human visual system, all contribute to the importance of non­
linear methods in imaging applications.

The presented work can be characterized as a monograph of the author’s original contri­
butions to the dynamic and expanding field of multichannel image processing put on the back­
ground of the state of the art of the noise removal in digital images. This monograph is an 
integration of techniques proposed by the author in various scientific publications scattered in 
a variety of journal papers and referred conference proceedings, and is oriented towards a wide 
spectrum of contemporary applications.

This monograph details the author’s most important contributions to the rapidly growing 
field of nonlinear noise reduction in multichannel images'.

In the third Chapter the modified weighted median filter framework has been presented. 
This new technique simplifies the structure of the weighted medians and improves significantly 
the properties of the central weighted vector median filter by enhancing its detail preserving 
abilities. Future research will focus on the development of a robust modified weighted VMF 
and on the development of fast methods of the optimization of its parameters, to achieve the 
optimal filtering efficiency for a given image and noise scenario.

In the next Chapter, the robust anisotropic diffusion filtering scheme, which ignores the 
central pixel of the filtering window, when building the weighted average of the input samples 
is introduced. This improvement allows to use the anisotropic technique for the suppression 
of strong Gaussian and heavy tailed noise, as the influence of the central, corrupted pixel is 
diminished by an appropriate setting of the conductivity coefficients. It is worth noticing, that 
the proposed structure is a generalization of the previous nonlinear adaptive techniques, whose 
robustness is based on the rejection of the central pixel of the filtering window.

In the same Chapter, an iterative forward and backward anisotropic diffusion technique, 
based on the unsharp masking concept has been described. This method enables to construct 
new families of filters, able to remove strong Gaussian noise and to enhance the image edges. 
This new approach to the problem of noise reduction and image enhancement is very flexible, 
as the designer can model the conductivity coefficients taking the derivatives of the classical
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flux functions with appropriate setting of the parameters. The efficiency of the newly developed 
filter class can be increased by neglecting the influence of the central pixel, which should enable 
the enhancement of images contaminated by impulsive noise.

The next Chapter has been devoted to the development of a powerful class of filters based on 
the digital paths concepts and fuzzy similarity measures among pixels in neighborhood relation. 
This novel technique, which utilizes the connection between image pixels, is an extension of 
the adaptive noise reduction filtering and anisotropic diffusion techniques, presented in Chapter 
2 and 3 respectively, and is shown to have advantages over the traditional methods. Extensive 
simulations revealed that the proposed filtering framework significantly excels over the standard 
methods and can be applied for the removal of both Gaussian and impulsive noise.

The family of detail-preserving impulsive noise removal techniques described in Chapter 
6 , which make use of the concepts of similarity between the neighboring pixels, elements of 
the nonlinear regression and nonparametric probability density estimation theory, is shown to 
possess excellent noise reduction and detail preserving capabilities. The presented filter class is 
also computationally efficient, especially when using a simplified filtering structure with a global 
bandwidth parameter. The excellent efficiency, coupled with the low computational burden, 
makes this filtering class interesting for a wide range of real time applications.

Another powerful method of impulsive noise removal has been presented in the next Chapter. 
This method, utilizing the switching filtering concept, is based on the simplified measure of the 
samples’ dispersion and is able to efficiently detect noisy samples, while preserving salient 
image features. Future work will be focused on the adaptation procedure, which would enable 
the automatic setting of the switching threshold parameter.

The advantages brought by the modification of the weighted vector median described in 
Chapter 3, can be fully exploited by the iterative optimization procedure presented in the last 
Chapter. The optimization method is based on the classical optimization of the weighted me­
dians and its extension to the multivariate case is accomplished through the introduction of the 
polarity function, which assigns a polarity to the distance between two image samples. This 
optimization method is shown to be quite efficient as the optimized weighted vector directional 
distance filters yield much better results as their static counterparts.

The author of this monograph hopes that the presented state of the art and the original con­
tributions to the expanding and challenging field of color image enhancement will be useful 
in various applications, in which the noise removal with the preservation of salient image fea­
tures is of vital importance. For a deeper investigation of the presented methods an extensive 
bibliography has been prepared.

* * *
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Abstract

NONLINEAR TECHNIQUES OF NOISE 
REDUCTION IN DIGITAL COLOR IMAGES

This monograph details the author’s most important contributions to the rapidly growing 
field of nonlinear noise reduction in color images. Its content is structured into seven Chapters.

The first Chapter describes the fundamentals of color image processing and also presents 
the sources of image noise, describes their models and defines measures of the quality of image 
restoration.

The second Chapter is focused on the nonlinear adaptive schemes of noise reduction applied 
in gray scale imaging, which are very often extendable into the multichannel case.

Chapter 3 provides the state of the art in color image filtering and serves as a basis for the 
remaining Chapters, in which author’s original contributions are presented.

In the next Chapter, the robust anisotropic diffusion filtering scheme, which ignores the 
central pixel of the filtering window, when building the weighted average of the input samples 
is introduced. This improvement allows to use the anisotropic technique for the suppression 
of strong Gaussian and heavy tailed noise, as the influence of the central, corrupted pixel is 
diminished by an appropriate setting of the conductivity coefficients. In this Chapter the iterative 
forward and backward diffusion technique is also presented.

Chapter 5 is devoted to the development of a powerful class of filters, based on the digital 
paths concepts and fuzzy similarity measures among pixels in neighborhood relation. This 
novel technique, which utilizes the connection between image pixels, instead of window based 
structures, is an extension of the adaptive noise reduction filtering and anisotropic diffusion 
techniques and is shown to have advantages over traditional methods. The extensive simulations 
reveal that the proposed filtering framework significantly excels over the standard methods and 
can be applied for the removal of both Gaussian and impulsive noise.

In the next Chapter the problem of nonparametric impulsive noise reduction in multichannel 
images is addressed. A new family of filters for noise attenuation elaborated by the author, 
based on the nonparametric probability density estimation of the sample data, is introduced and 
its relationship to commonly used filtering techniques is investigated.

The last Chapter deals with the adaptive optimization of the weighted vector median filters 
and also introduces the new technique based on the so called sigma-filtering. This novel adap­
tive technique is based on robust order statistic concepts and simplified statistical measures of 
vectors’ dispersion.



Streszczenie

NIELINIOW E TECH NIK I REDUKCJI SZUM U  
W BARW NYCH OBRAZACH CYFROW YCH

R e d u k c ja  s z u m ó w  je s t  je d n y m  z  n a jw a ż n ie js z y c h  e ta p ó w  p rz e tw a rz a n ia  w s tę p n e g o  o b ra z ó w  

c y fro w y c h . E fe k ty w n a  f i l t ra c ja  s y g n a łu  w iz y jn e g o  w a ru n k u je  b o w ie m  sukces d a ls z y c h  e ta p ó w  

je g o  p rz e tw a rz a n ia . P ro b le m  re d u k c ji s z u m ó w  je s t  s z c z e g ó ln ie  tru d n y  w  p rz y p a d k u  o b ra z ó w  

b a rw n y c h , a lb o w ie m  n ie  z o s ta ła  j a k  d o tą d  s tw o rz o n a  sp ó jn a  te o r ia  u m o ż liw ia ją c a  b e zp o ś re d n ią  

im p le m e n ta c ję  d o b rz e  p o z n a n y c h  f i l t r ó w  e l im in a c j i  s z u m ó w  w  o b ra za c h  z  p o z io m a m i szarośc i 

d o  p o p ra w y  ja k o ś c i o b ra z ó w  w ie lo k a n a ło w y c h .

W  c ią g u  o s ta tn ic h  la t  z a p ro p o n o w a n o  l ic z n e  a lg o ry tm y  re d u k c ji s z u m ó w  w  o b ra za c h  b a r ­

w n y c h . N a jp ro s ts z ą  k la s ą  są f i l t r y  l in io w e , k tó re  m o g ą  e fe k ty w n ie  u s u w a ć  a d d y ty w n e  s z u m y  

g a u s s o w s k ie , je d n a k ż e  n ie  są o n e  z d o ln e  d o  a d a p ta c ji d o  n ie lin io w o ś c i w y s tę p u ją c y c h  w  o b ra ­

z ie , co  p ro w a d z i d o  ro z m y w a n ia  k ra w ę d z i o b ie k tó w  o ra z  in n y c h , w a ż n y c h  z  p u n k tu  w id z e n ia  

p e rc e p c ji c z ło w ie k a  o ra z  d a ls z y c h  e ta p ó w  p rz e tw a rz a n ia , s tru k tu r o b ra zu .

A b y  p o p ra w ić  e fe k ty w n o ś ć  f i l t r a c ji  s z u m ó w , n a  p rz e s trz e n i o s ta tn ic h  la t z a p ro p o n o w a n o  

ró ż n o ro d n e  te c h n ik i n ie lin io w e , z  k tó ry c h  n a jp o p u la rn ie js z ą  g ru p ę  s ta n o w ią  f i l t r y  b a z u ją c e  n a  

s ta ty s ty k a c h  p o rz ą d k o w y c h . F i l t r y  ra n g o w e , m in im a liz u ją c e  s k u m u lo w a n ą  fu n k c ję  d y s ta n s o w ą , 

są s k u te c zn e  w  u s u w a n iu  s z u m ó w  im p u ls o w y c h , je d n a k ż e  ic h  w a d ą  je s t  z b y t  d u ż a  in w a z y jn o ś ć , 

m a n ife s tu ją c a  s ię  w  z a s tę p o w a n iu  n ie  ty lk o  p ik s e li o b ra z u , k tó re  u le g ły  k o n ta m in a c ji, a le  ta k ż e  

p ik s e li o ry g in a ln y c h , co  p ro w a d z i d o  d e s tru k c ji d ro b n y c h  s tru k tu r  o b ra zu  o  w ie lk o ś c i p o ró w n y ­

w a ln e j z  w y m ia ra m i o k n a  filt ra c y jn e g o . D o d a tk o w ą  w a d ą  ty c h  f i l t r ó w  je s t  ic h  n ie s k u te c z n o ś ć  

w  re d u k c ji s z u m u  g a u s s o w s k ie g o .

N in ie js z a  m o n o g ra fia  s ta n o w i p o d s u m o w a n ie  w y s iłk u  b a d a w c z e g o  a u to ra  w  d z ie d z in ie  f i l ­

tra c ji s z u m ó w  w y s tę p u ją c y c h  w  b a rw n y c h  o b ra za c h  c y fro w y c h . W  p ra c y  p rz e d s ta w io n o  ró ż n o ­

ro d n e  k la s y  f i l t r ó w  z a p ro je k to w a n y c h  d o  e l im in a c j i  z a k łó c e ń  im p u ls o w y c h , s z u m ó w  g au sso w s­

k ic h  o ra z  n a jb a rd z ie j d e g ra d u ją c y c h  o b ra z  s z u m ó w  m ie s z a n y c h . P rz e d s ta w io n e  w  m o n o g ra fii  

a lg o ry tm y  c e c h u ją  s ię b a rd z o  d o b rą  e fe k ty w n o ś c ią , p rz e w y ż s z a ją c ą  z n a c z n ie  a lg o ry tm y  stan­

d a rd o w e , o ra z  n is k ą  z ło ż o n o ś c ią  o b lic z e n io w ą , u m o ż liw ia ją c ą  ic h  za s to s o w a n ie  w  re a liz a c ja c h  

p ra k ty c z n y c h , s z c z e g ó ln ie  w  s y s te m ac h  w iz y jn y c h  czasu  rz e c z y w is te g o .
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R o z d z ia ł p ie rw s z y  m o n o g ra fii s ta n o w i w p ro w a d z e n ie  d o  p ro b le m a ty k i p rz e tw a rz a n ia  b a r­

w n y c h  o b ra z ó w  c y fro w y c h . W  r o z d z ia le  ty m  p rze d s ta w io n o  p o d s ta w o w e  k o n c e p c je  tw o rz e n ia  

w ie lo k a n a ło w e g o  o b ra zu  c y fro w e g o  i  je g o  f i l t r a c ji ,  k o n c e n tru ją c  s ię n a  p ro b le m ie  z a k łó c e ń  

o b ra zu  p o w s ta ją c y c h  w  p ro c es ie  je g o  a k w iz y c j i ,  p rz e tw a rz a n ia , tra n s m is ji o ra z  p rz e c h o w y w a ­

n ia  n a  n o ś n ik a c h  d a n y c h . W  r o z d z ia le  ty m  w p ro w a d z o n o  m o d e le  s z u m ó w  s y m u lu ją c y c h  rz e c z y ­

w is te  z a k łó c e n ia  o ra z  p rze d s ta w io n o  m e to d y  o c e n y  ja k o ś c i o b ra z ó w  c y fro w y c h  u m o ż liw ia ją c e  

e w a lu a c ję  e fe k ty w n o ś c i ró żn o ro d n y c h  m e to d  re d u k c ji a r te fa k tó w  w y w o ła n y c h  p rz e z  z ja w is k a  

szu m u .

W  ro z d z ia le  d ru g im  p rz e d s ta w io n o  p rz e g lą d  a d a p ta c y jn y c h  te c h n ik  re d u k c ji s z u m ó w  gaus­

s o w s k ic h , im p u ls o w y c h  o ra z  m ie s z a n y c h  w  o b ra za c h  z  p o z io m a m i szaro ś c i. W  ro z d z ia le  ty m  

o m ó w io n o  a lg o ry tm y  o p a rte  n a  k o n c e p c ji n ie lin io w e j ś re d n ie j w a ż o n e j o ra z  d o k o n a n o  p rze g lą d u  

m e to d  b a z u ją c y c h  n a  s ta ty s ty k a c h  p o rz ą d k o w y c h . S z c z e g ó ln ą  u w a g ę  p o ś w ię c o n o  w a ż o n e j m e ­

d ia n ie  o ra z  ite ra c y jn y m  a lg o ry tm o m  w y z n a c z a n ia  o p ty m a ln y c h  w s p ó łc z y n n ik ó w  w a g o w y c h  ze  

w z g lę d u  n a  z a s to s o w a n ie  ty c h  m e to d  d o  o p ty m a liz a c ji f i l t ró w  w e k to ro w y c h  p rze d s ta w io n y c h  

w  r o z d z ia le  s ió d m y m .

R o z d z ia ł trz e c i p o ś w ię c o n y  je s t  o m ó w ie n iu  m e to d  re d u k c ji s z u m ó w  w y s tę p u ją c y c h  w  b a r­

w n y c h  o b ra za c h  c y fro w y c h . S z c z e g ó ło w o  o p is a n o  f i l t r y  o p a rte  n a  s ta tys ty ka ch  p o rz ą d k o w y c h ,  

tra n s fo rm a c ja c h  w y k o rz y s tu ją c y c h  k o n c e p c je  te o r ii z b io ró w  ro z m y ty c h , a  ta k ż e  m e to d y  w y k o ­

rzy s tu ją c e  e s ty m a c ję  n ie p a ra m e try c z n ą . S z c z e g ó ln ą  u w a g ę  p o ś w ię c o n o  w a ż o n e j m e d ia n ie  w e k ­

to ro w e j o ra z  z a p ro p o n o w a n e j p rz e z  a u to ra  je j  m o d y f ik a c j i, p ro w a d z ą c e j d o  p rzy ś p ie s z e n ia  a l­

g o ry tm u  o ra z  p o p ra w y  e fe k ty w n o ś c i p ro cesu  f ilt ra c ji.

R o z d z ia ł c z w a rty , n a w ią z u ją c y  d o  ro z d z ia łu  d ru g ie g o , p o ś w ię c o n y  je s t  d y fu z j i  a n iz o tro ­

p o w e j, s ta n o w ią c e j s k u te c zn ą  m e to d ę  re d u k c ji s z u m ó w  g a u ss o w s k ic h . W  ro z d z ia le  ty m  p rz e d ­

s ta w io n e  zo s ta ły  w y n ik i  p ra c  a u to ra  n a d  m o d y fik a c ją  a lg o ry tm u  d y fu z j i  a n iz o tro p o w e j, p o p rz e z  

m in im a liz a c ję  w p ły w u  c e n tra ln e g o  p ik s e la  m a s k i f ilt ra c y jn e j, u m o ż liw ia ją c ą  ta k że  re d u k c ję  

s z u m ó w  im p u ls o w y c h . W  r o z d z ia le  ty m  o p is an o  p o n a d to  o p ra c o w a n ą  p rz e z  a u to ra  m e to d ę  ite -  

ra c y jn ą , o p a rtą  n a  tec h n ic e  n ie o s tre g o  m a s k o w a n ia , w y k o rz y s tu ją c ą  ta k  z w a n ą  d y fu z ję  o d w ro tn ą  

d o  p o p ra w y  ja k o ś c i o b ra z ó w , k tó re  u le g ły  k o n ta m in a c ji s z u m e m  g a u ss o w s k im .

K o n c e p c ja  m in im a liz a c j i  w p ły w u  c e n tra ln e g o  p ik s e la  w  m a sc e  f ilt ra c y jn e j z o s ta ła  ro z w in ię ta  

w  ro z d z ia le  p ią ty m , w  k tó ry m  p rz e d s ta w io n o  w y n ik i  p ra c  a u to ra  n a d  n o w ą  k la s ą  f i l t ró w  o p a r­

ty c h  n a  ś c ie żk a c h  c y fro w y c h  i e le m e n ta c h  te o r ii z b io ró w  ro z m y ty c h . A lg o r y tm y  re d u k c ji 

s z u m ó w , w y k o rz y s tu ją c e  id e ę  e k s p lo ra c ji o to c z e n ia  c e n tra ln e g o  p ik s e la  m a s k i filtra c y jn e j p rze z  

ś c ie ż k i c y fro w e  w y z n a c z a ją c e  p o p rz e z  fu n k c ję  ko sztu  o p ty m a ln e  p o łą c z e n ia  p ik s e li o b ra zu , ce ­

c h u ją  s ię  ś w ie tn ą  e fe k ty w n o ś c ią  re d u k c ji s z u m ó w  im p u ls o w y c h , g a u ss o w s k ic h  i m ieszan y ch .
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O p ra c o w a n e  p rz e z  a u to ra  m e to d y  s ta n o w ią  u o g ó ln ie n ie  i ro z w in ię c ie  d y fu z j i  a n iz o tro p o w e j 

p rz e d s ta w io n e j w  ro z d z ia le  c z w a r ty m  i s ta n o w ią  je g o  n a jb a rd z ie j z n a c z ą c y  w k ła d  w  ro z w ó j 

n ie lin io w y c h  m e to d  re d u k c ji s z u m ó w  w  b a rw n y c h  o b ra za c h  c y fro w y c h .

R o z d z ia ł szósty  p o ś w ię c o n y  je s t  za s to s o w a n iu  e s ty m a c ji n ie p a ra m e try c z n e j d o  f i l t r a c ji  szu ­

m ó w  im p u ls o w y c h . W  ro z d z ia le  ty m  p rz e d s ta w io n o  o g ó ln ą  k o n c e p c ję  f i l t r ó w  o p a rty c h  n a  es- 

ty m a c ie  n ie p a ra m e try c z n e j, w s k a z u ją c  n a  ic h  p o d o b ie ń s tw o  d o  m e d ia n y  w e k to ro w e j, w  p r z y ­

p a d k u  g d y  fu n k c ja  ją d r a  m a  p o s tać  fu n k c ji  l in io w e j.  W  ro z d z ia le  ty m  w p ro w a d z o n o  ta k ż e  

ro d z in ę  f i l t r ó w  c e c h u ją c ą  się d u ż ą  s k u te c zn o ś c ią  w  re d u k c ji s z u m ó w  im p u ls o w y c h  o ra z  z d o l­

n o ś c ią  d o  z a c h o w y w a n ia  k ra w ę d z i o b ra z u  i  je g o  te k s tu ry . W ła s n o ś c i te  o s ią g a n e  są p rz e z  z a im ­

p le m e n to w a n e  m e c h a n iz m y  a d a p ta c y jn e , d o s to s o w u ją c e  p a ra m e try  f i l t r ó w  d o  s tru k tu r m o r fo lo ­

g ic z n y c h  o b ra z u  o ra z  p o z io m u  je g o  z a k łó c e ń . N a  u w a g ę  z a s łu g u je  m a ła  z ło żo n o ś ć  o b lic z e n io w a  

p rz e d s ta w io n y c h  k la s  f i l t ró w , p o z w a la ją c a  n a  ic h  z a s to s o w a n ie  d o  p rz e tw a rz a n ia  o b ra z ó w  w  

c z a s ie  rz e c z y w is ty m .

W  ro z d z ia le  s ió d m y m  p rz e d s ta w io n o  n o w e  m e to d y  o p ty m a liz a c ji  w a ż o n e j m e d ia n y  w e k ­

to ro w e j z a  p o m o c ą  o p ty m a liz a c ji  l in io w e j o ra z  s ig m o id a ln e j, o m ó w io n e j w  ro d z ia le  d ru g im .  

P rz e d s ta w io n e  m e to d y  o p ty m a liz a c ji ,  o p e ru ją c e  z a ró w n o  n a  c h ro m in a n c ji , j a k  i n a  lu m in a n c ji  

o b ra z u , p ro w a d z ą  d o  w y z n a c z a n ia  o p ty m a ln y c h  z  p u n k tu  w id z e n ia  z a d a n e j fu n k c ji  k o s z tu  w s p ó ł­

c z y n n ik ó w  w e k to ra  w a g . W  ro z d z ia le  ty m  w p ro w a d z o n o  ta k ż e  a d a p ta c y jn ą  m e to d ę  e l im in a c j i  

s z u m ó w  im p u ls o w y c h  o p a rtą  n a  e s ty m a c ji d y s p e rs ji e le m e n tó w  o b ra zu  z a w a rty c h  w  o k n ie  f i l ­

tra c y jn y m . T a  n o w a  k la s a  f ilt ró w , b a z u ją c a  n a  k o n c e p c ji f i lt ru  ty p u  s ig m a , c h a ra k te ry z u je  się  

d u ż ą  e fe k ty w n o ś c ią  re d u k c ji s z u m ó w  im p u ls o w y c h  o ra z  n is k ą  z ło ż o n o ś c ią  o b lic z e n io w ą .

★ ★ 
★

Symbols

•  a  -  angle

•  A  - accum ulated angles

•  a  - param eter

•  B - num ber o f  bits o f  an im age channel

•  /3 -  param eter

•  c -  conductiv ity coefficient

•  c -  regu larized conductivity coefficient

•  C - param eter

•  C -  FB  conductivity

•  C x -  chrom aticity o f  x

•  8 -  param eter

•  A  E - co lor difference

•  D  -  vector direction

•  V  -  nonem pty set

•  d - distance param eter

•  e - estim ation error

•  £  - energy

•  e -  adaptation step-size

•  E  - statistical expectation

•  r? - d ig ita l path length

•  /  -  decreasing function

•  7  -  param eter

•  I \ r  -  regu larization function

T  - G am m a function

r w'v -  m in im a l connection cost

r N - num ber o f  pixels in  a hypercube

G  - gradient

g - gradient m agnitude

h - kernel bandw idth

hpj - length o f  a hypercube edge

H  -  d ig ita l lattice

l - neighborhood param eter

(i , j ) - discrete im age plane coordinates

i - p ix e l’s position on the im age dom ain

k - pow er param eter

K U K 2 - im age dom ain dimensions

L - M in ko w s k i norm

C* - likelihood

£  -  d ig ita l path length

I - im age dim ension

\  - param eter

A  - connection cost measure 

m - num ber o f  im age channels 

H - median rank  

M x - m agnitude o f  vector x  

n -  iteration num ber



•  N  -  num ber o f  pixels in  W

•  N  -  natural num bers

•  AT - neighborhood rela tion

•  v - local variance

•  o  -  o rig inal, uncorrupted im age

•  f i  -  im age dom ain

•  n -  num ber o f  d ig ita l paths in  W

• p - p robab ility  o f  noise corruption

•  p ^ ( x )  -  p robab ility  o f  event x

•  tj> - w in d o w  function  defin ing  a hypercube

•  $  -  flux m agnitude

•  ip -  w e igh ting  coeffic ient, s im ila rity

•  $  -  cum ulated sim ilarities

•  'bw  - d ig ita l paths contained in  W

•  p - distance

•  R  - corre lation m atrix

•  R  - rea l num bers

•  Q - num ber o f  im age pixels

•  Q -  continuous path

•  Q  -  d ig ita l path

•  q -  po in t on a path

•  S - n o rm a liz ing  constant

•  S  -  sign function

•  S  - sigm oidal ap proxim ation  o f  S

•  § 2 - un it b a ll in  R G B

•  a - standard deviation

•  t  -  tim e

•  T  - total processing tim e

•  t  - design param eter

•  T 2 - M a x w e ll triangle

•  T  -  angular sign transform ation

•  q - in ter-quartile  range

•  ? -  relation betw een pixels

•  v  -  noise process

• V s - hypercube vo lum e

•  W  - filte ring  w indow

•  W -  p lanar subset o f  R 2

•  W  - set o f  ordered samples fro m  W

•  (£> v ) ' continuous dom ain coordinates

•  |  - w eigh ting  param eter

•  S  - sigm oidal function

•  x  -  noisy gray scale im age

•  x  -  noisy m ultichannel im age

•  Xfc -  k01 sam ple in  W

•  X (£) - kth sample in  ordered set

•  x i  -  central p ix e l in  W

•  Xfc -  nearest neighbor o f  x&

•  y  -  filte r output

•  C, - flux function

•  Z  -  in teger num bers

•  *  convolution

•  x  Cartesian product

•  ~  neighborhood relation in W

• -< vector ordering

•  <-> neighborhood relation

•  •*=> connectivity relation on a d ig ita l path

•  || ■ || vector norm

•  <  • >  expected value

•  x  m ean o f  x

Acronyms

•  A D  - A nisotropic D iffu s io n

•  A H D F  - A daptive H y b rid  D irectional 
F ilte r

•  A M F  - A rithm etic  M ean  F ilte r

•  A N N F  - A daptive Nearest N eig hbor F ilte r

•  A N M F  - A daptive N onparam etric  
M u ltich anne l F ilte r

•  A N N M F  - A daptive N earest N eig hbor 
M u ltich anne l F ilte r

•  A N P D F  - A daptive Nonparam etric  
D irectional F ilte r

•  A N P E F  - A daptive Nonparam etric  
E xponential F ilte r

•  A N P G F  - A daptive N onparam etric  
Gaussian F ilte r

•  A N P F  - A daptive N onparam etric F ilte r

•  B V D F  - Basic Vector D irec tiona l F ilte r

•  C L M M F  - Crossing Level M e d ia n  M ean  
F ilte r

•  C IE  -  C om m ission Internationale de 
L ’Eclairage

•  C C D  - Charge-Coupled D ev ice

•  C W M  - C entral W eighted M ed ian

•  C W V M F  - C entra l W eighted V M F

•  D D F  - D irec tional D istance F ilte r

•  D P A  - D ig ita l Paths Approach

•  D P A L  - D P A -Last Technique

•  D P A F  - DVA-First Technique

•  D T O C S  - D istance Transform  on C urved  
Space

•  E V M F  - Extended Vector M e d ia n  F ilte r

•  F O V D F  - F u zzy  O rdered Vector 
D irec tional F ilte r

•  FB  - Forw ard &  B ackw ard D iffusion

•  Г О Р А  - Fast D ig ita l Paths Approach

•  F V D F  - Fuzzy Vector D irectional F ilte r

•  F W A F  - F u zzy  W eighted Average Filters

•  G D F  - G eom etric D iffusion F ilte r
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•  G V D F  - G eneralized  Vector D irec tio n a l 
F ilte r

•  H D F  - H y b rid  D irec tio n a l F ilte r

•  H S V  - H u e , Saturation, Value co lo r space

•  L U M  - L o w e r-U p p e r-M id d le

•  L M S  - Least M e a n  Squared

•  L W V D F  - L in e arly  O p tim ize d  W V D F

•  M C W V M F  - M o d ifie d  C W V M F

•  M E D  - M e d ia n

•  M F  - M e d ia n  F ilte r

•  M L E  - M a x im u m  L ik e lih o o d  Estim ate

•  M M F  - M a rg in a l M e d ia n  F ilte r

•  N M S E  - N o rm a lize d  M e a n  Squared E rro r

•  N C D  - N o rm a lize d  C o lo r D iffe ren ce

•  P D E  - P artia l D eriv a tiv e  E quation

•  P D F  - P robab ility  D ensity  Function

•  P M  - Perona &  M a lik

•  P M A D  - P e ro n a -M a lik  A n isotrop ic  
D iffu s io n

•  P S N R  - Peak S ignal to N o ise R atio

•  R C M F m  - R ank C onditioned M e d ia n  
F ilte r  (m arg inal)

•  R C R S  - R ank-C o nd ition ed  
R ank-Selection

•  R C V M F  - R ank  C onditioned Vector  
M e d ia n  F ilte r

•  R G B  - R ed, G reen , B lue co lor space

•  R M S E  - R oot M e a n  Squared E rro r

•  R O F  - R an k  O rder F ilte r

•  S G F  - S ym m etric  G rad ient F ilte r

•  S N R  - S ignal to N oise R atio

•  S B V D F  - S igm a Basic Vector D irec tional 
F ilte r

•  S D D F  - S igm a D irec tiona l D istance F ilte r

•  S D -R O M  - S ignal-D ependent R ank  
O rdered M ean

•  S V M F  - S igm a Vector M e d ia n  F ilte r

•  S W V F  - Selection W eighted  Vector F ilte r

.  S W V D F  - S igm oida lly  O p tim ized  W V D F

•  T V M F  - Thresholded Vector M e d ia n  
F ilte r

•  V B A M M F  -  Vector B ayesian A daptive  
M e d ia n -M e a n  F ilte r

•  V M F  - Vector M e d ia n  F ilte r

•  W M  - W eighted  M ed ian

•  W V M F  - W eighted Vector M e d ia n  F ilte r

•  W V D F  - W eighted Vector D irec tional 
Filters

Index

A daptive
fu zzy  algorithm s, 56  
hybrid  directional filter, 55 
nearest neighbor m ultichannel filter, 59  
nonparam etric filter, 130 
nonparam etric m ultichannel filter, 60  
sm oothing, 28  

A ggregated w eighted distance, 154  
A n g u la r measure, 53  
Anisotropic

backw ard d iffusion, 74  
biased d iffusion, 69  
diffusion, 61 , 64  
forw ard d iffus ion , 74  
regu larized d iffusion, 67

C C D , 15 
C entra l

w eighted average, 29  
w eighted m edian, 36  
w eighted vector m edian filter, 4 6  

C olor, 12
chrom aticity, 14 
difference, 21 
im age quality, 19 
n orm alized  difference, 21 
space, 12 
space R G B , 13 

C om putationa l com plexity , 100  
C onductivity

function, 61 , 63  
robust functions, 70

C ost
connection, 91 
function, 3 9 ,1 5 5 , 164

D ig ita l
lattice, 9 0

path, 89 , 90  
paths approach-first, 95 
paths approach-/^.?/, 95  
paths based filte r class, 93

D ispersion, 171
D istance functions, 88

Energy function, 62

Fast D ig ita l Paths Approach, 98
F ilte r

Q -trim m ed, 58  
a -tr im m e d  m ean, 33  
Q -trim m ed vector m edian, 45  
<7, 30
fc-nearest neighbor, 31 
av erag in g , 28
crossing level m edian-m ean, 45
directional distance, 5 4
fu zzy  adaptive, 55
fu zzy  adaptive fram ew ork, 57
fu zzy  ordered, 58
fu zzy  w eighted average, 57
gradient inverse w eighted, 28
hybrid  directional, 54
K uw ahara, 31
L , 33
linear, 27
local statistic, 29
L U M , 35
mask, 27
m axim um  fu zzy  vector directional, 57
m axim um  hom ogeneity, 30
order statistic, 32 , 41
rank order, 32
S D -R O M , 37
selection, 35
sw itching, 37
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w eighted vector d irectiona l, 153 
W ilc o xo n , 34  
w indow , 23  

F lu x  function, 6 2  
F u zzy  transform ations, 56

G eneralized
co nductivity  coefficients, 95  
distance am ong vectors, 5 4  
vector d irectiona l filte r, 53  

G eodesic distance, 89  
G radient, 2 9 , 6 2 , 63 , 7 0 -7 3 ,  104

H istog ram , 115 
H u e , 12

Im age
subjective evaluation guidelines, 21  
filte ring , 12 
filte ring  designs, 22  
qua lity  measures, 2 0

K erne l function, 116

Lightness, 12

M a x w e ll triang le , 14  
M e d ia n

filter, 22 , 2 3 , 32  
optim ized  w eighted, 38  
w eighted, 35  

M u ltiv a ria te  variance, 171

N earest ne ighbor ru le , 58  
N eighborhood re la tion , 89  
N oise

im pulsive, 15 
in tensity estim ator, 131 
m ixed , 14, 19 
m odels, 17 
sources, 1 4 ,1 5  
suppression, 27  
transm ission, 16 

N onparam etric
adaptive m ultichannel filters, 59  
estim ation, 59  

N o rm

gradient, 73
M in k o w s k i, 4 3 , 127, 155 

N o rm a lize d  correlation, 29

O p tim iza tion
angular sigm oidal, 156  
linear, 156  
prob lem , 155  

O rdering
in  vector spaces, 41  
reduced, 4 2

Perceptually  u n ifo rm  co lor spaces, 21 
Photoelectronic sensors, 15 
Polarity  function, 164  
Probab ility  density estim ation, 115

Robust estim ate o f  kernel bandw idth , 118

Sam ple ordering, 32  
Saturation, 12
Selection w eighted vector filters, 163  
Sigm a

basic vector d irectiona l filter, 174  
directional distance filter, 174  
vector m edian filters, 170  

S im ila rity
based filte r class, 119  
function, 119  

S w itch ing
filte ring , 170  
filte ring  scheme, 172

Topo log ical distance, 88

Vector
m od ified  central w eigh ted m edian, 4 7  
basic d irectional filter, 53  
directional filters, 24 , 53  
extended m edian filte r, 4 4  
m edian, 2 4  
m edian filter, 43  
ordering, 4 2
rank conditioned m edian filter, 48  
thresholded m edian filter, 48  
w eigh ted m edian filter, 46
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