Coal Age

Established 1911-McGraw-Hill Publishing Company, Inc.

DEVOTED TO THE OPERATING, TECHNICAL AND BUSINESS PROBLEMS OF THE COAL-MINING INDUSTRY
SYDNEY A. HALE, Editor
June 1938

Footnote to Cincinnati

Bituminous production last year was approximately $6,000,000$ tons greater than in 1936, but the quantity loaded mechanically by deep mines, according to preliminary estimates, topped 1936 totals by $16,500,000$ tons. Compared with 1935, the increase was 77 per cent. The tomnage of anthracite so loaded showed a slight decline under 1936, but an increase of 13.1 per cent over 1935 figures. These data and related statistics on mechanical cleaning, given in more detail elsewhere in this issue, offer small comfort to the producer who still insists that his particular operations are not susceptible to mechanization; they explain, too, why the drastic depression slump in current output had no appreciable effect on the attendance at the Cincinnati convention-exposition last month. Progressive management must keep abreast of the machine.

Sand and Grit

Loconготне track sand cost mounts high-not the cost of sand alone but the total, including increased maintenance cost of equipment and increased power use and haulage delays resulting from faulty operation. Regular operation orer grades that require continuous sanding is sure to be costly. Grades should be adjusted, size of locomotives increased, cars per trip reduced, tracks cleaned or water holes drained. It is bad enough to have a trip stalled but still worse to use power at the same time to overheat the motors, grind tires and throw grit into the bearings.

Sanding equipment on railroad locomo-
tives is for emergency use only. To a large extent the same should be true for mine locomotives. Dirty tracks in mines encourage the use of excess sand, and the latter aggravates the dirty condition. Under certain conditions the insulating effect of sand on the rails may result in severe electric shock. It is unfortunate that sand itself is relatively inexpensive. Magnify its cost twenty times, then the item may appear in its true significance. A locomotive haulage system which requires almost no sand moves coal at low cost.

Not Our Quarrel

For several years the bituminous-coal industry as a whole has enjoyed a large measure of freedom from industrial strife. Now that freedom is threatened on a wide front-not by disagreement between employers and employees but by the struggle for mastery between two rival labor groups. As part of that struggle, the American Federation of Labor has placed its benediction on the Progressive Miners' Union it once denounced as a dual movement and has publicly pledged that organization its support in a drive to supplant the United Mine Workers in the coal fields.

While possibly some operators might welcome a competitive curb on Mr. Lewis' power, the threatened quarrel is not of their making and the decision as to ultimate allegiance must rest with the mine workers themselves. Here a chastened National Labor Relations Board with its power to hold elections to determine workers' affiliation desires could serve as a real
agency of peace and order. Certainly no one who reads the record of injury, death and destruction that has attended the fight for control between these two rival minelabor groups in Illinois in recent years can relish the thought of an extension and intensification of such warfare.

Classicism in Mining

Safety in mining is safety in the modern mine. Unfortunately, too much training follows lines that developed during an earlier safety movement when mining was still in its infancy. With all the change from mannal and equine operation to electrical and mechanical, with all the new hazards and new preventives, there is need for an entirely new view of mining education. A drift from classicism to modernism is desirable. Job analysis is necessary not only for the man at the face but for mine officials. Are they sure they know the safest, most economical and effective way of performing things, or are they looking wise and leaving it to their employees to initiate safety methods?

False Confidence

Members of the Anthracite Coal Industry Commission appointed by Governor Earle voice a faith in the magic of State control which, it is feared, few outsiders familiar with the vicissitudes of hard coal in recent years will share. The final report of the commission recommends a State public service commission to regulate mine costs and prices and to establish district production quotas. Creation of non-profit cooperative marketing organizations of producers and the establishment of Stateowned mining corporations to alleviate the bootleg situation also are authorized in a bill proposed by the Earle commission.

Substantial increase in output and sales, declares the report, should be the first objective in the campaign "to revive and rehabilitate the industry and the anthracite communities." To achiere this, in the
opinion of the commission, calls for improved methods and lower production costs, drastic reductions in freight rates and other costs of distribution, and the development of effective marketing methods with particular reference to burning equipment. But nowhere is it suggested that wage rates and labor efficiency may play a part in presont production costs and the commission shrinks from immediate action on reducing the tax burdens of the industry until "new sources of tax revenues" can be found for the boroughs and townships which largely exist on coal-land levies.

Certainly the financial position of the industry so darkly sketched in the report gives no safe basis for major reductions int prices which are not tied directly to lowered costs. While it may be socially desirable to curb bootlegging by employingworkers now engaged in such illegal enterprises at State-owned mining corporations, such employment promises no increase in anthracite production or consumption. Neither will limitation of the number of retailers franchised to sell anthracite ease the competitive situation. Assuming the proposed producers' marketing agency has a complete monopoly on distribution, disfranchised dealers naturally will swing still more vigorously into the sale of competitive fuels.

Operators who favor federal instead of State regulation are accused of being "deroid of political and economic realism." Little Congressional support, says the report, could be expected for such a proposal; on the contrary, "it is obvious that delegations in Congress from other fuelproducing States would actually oppose legislation designed to improve the competitive status of Pennsylvania anthracite." If this be so, how can the commission hope that other States and consumers therein will take more kindly to an attempt by the Commonwealth of Pennsplvania to control one important source of their fuel supply? Has the anthracite tomnage tax of a few years ago and its reception in New England and Middle Atlantic States been so soon forgotten?

DUAL HAULAGE SYSTEM

 + Cuts Down Car-Changing Time At No. 1 Mine of Wasson Coal Co.MECHANICAL LOADING history has been marked by a constant search for a better transportation medium: i. e., a system that will enable a machine to spend the maximum part of the operating shift actually moving coal. Perhaps the most common method of achieving this result is increasing car size and thus, as changing time usually is little increased, reducing the loss resulting from the service locomotive having to pull the loaded car out of the place and return with an empty. But, in addition to other limiting factors, car size may be fixed by the size of the hoisting shaft, as at Wasson No. 1 mine, Wasson Coal Co., Harrisburg, Ill., where a dual transportation system already has shown tangible benefits and seems to promise even greater returns when more experience is gained.

The Wasson system, installed in the 4th Main West section in November, 1937, provides for the use of large cars behind loading machines while at the same time retaining the original mine-car equipment for the main-haulage and hoisting cycles. The use of two sizes of cars is made possible by the interposition of a dump hopper, feeder and trip-loading conveyor in the haulage circuit. Thus, the loading machines are serviced with the largest possible units commensurate with conditions, while the small cars, which can be accommodated on the cages, are loaded in trips without uncoupling, thus substantially reducing the total time required for car changing in a working slift.

Wasson No. 1 mine recovers the Illinois No. 5 seam, with an average thickness of 5 ft . in the big-car territory. This territory, as compared with other sections in the mine, is comparatively free from hills. Natural conditions over the operation as
a whole, however, offer a production problem varying from difficult to extremely difficult. Consequently, outpout per machine shift is reduced, as compared with what might be expected at more favorably situated mines.

In addition to the hills, the coal at Wasson No. 1 is overlaid by a drawslate, or "draw rock," varying from 1 to 24 in . or more in thickness. While good in spots, in most cases this draw rock makes a very treacherous top, in addition to complicating the problem of face preparation and loading. Close and careful timbering is required at all times, and the necessity for carrying props close to the face frequently hampers the loading machines in reacling the conl. Also, the rock usually comes flown with the cut, and thus, to maintain quality, a certain amount of picking is necessary while loading, in addition to other methods em-

By IVAN A. GIVEN
Issorinte bditor, Conl Ige

ployed to keep the rock out of the product after it is shot down.
With the conditions outlined above, Wasson, like many other companies adopting mechanization, was faced with the problem of removing the top material underground at somes sacrifice of loading capacity or installing additional preparation facilities, notably mechanical cleaning equipment, on the surface and attempting to absorb the higher reject cost and possible loss of salable material, in addition to possible repercussions in established markets, by a corresponding increase in loader tonnage. After a careful investigation of the problem, it was decided to attempt removal of the major part of the material underground ats in former hand-loading days. To date,

How a trip of cars looks over the dump hopper.

the management is satisfied that it has made the correct decision under present producing and market conditions.

To achieve the goal stated above, top cutting with Sullivan 7 AU and Jeffrey 29 U machines was adopted in 1936 to facilitate elimination of the draw rock. At the same time the machines also make possible a shear ent for increasing the yield of coarse coal. The top cut is made in the conl just under the draw rock. If the rock stays up, well and good. But if, as usually is the case, the rock falls after the cut is made, rock men remove it and throw it in the gob. Occasionally, however, the draw rock falls after the rock men have made their rounds or while the coal is being loaded. In this ease, as soon as enough coal has been moved so that the crew can get at it, the rock is picked out and thrown back. As it comes down as a rule in fairly large slabs, it usually can be pieked out casily.

The tirst loading machines were installed some vears ago in Wasson No. 1, and later were removed in accordance with an agreement with the miners. Restoration began in the autumn of 1935, and by June, 1936, the mine had been fully mechanized. Regular production equipment con-
sists of nine Joy 7 BL loaders, including one spare machine. These have been supplemented in recent months by various trial machines of the track-mounted type. Normally, eight macline shifts are worked for an output of around 1,500 tons. This is expected to inerease as more experience is gained in operating under the adverse conditions encountered in the mine.

While the use of the big cars and the supplementary dump-hopper and conveying equipment constitutes a departure from usual practice and thus partakes of the nature of an experiment, preliminary studies by the operating and enginecring departments of the Wasson Conl Co. showed sufficient expectation of tangible benefits to warrant an investment of $\$ 10,565.37$. This investment is made up of the following: sixteen 4 -ton Sanford-Day "1-2-3 Automatic" bottom-dumping mine cars, $\$ 5,701.46$; Barber-Greene dump hopper, feeder and trip-loading eonveyor, $\$ 3,013.75$; labor for digging pit and installing hopper. feeder and conveyor, $\$ 1,602.62$; and additional work on tracks and partings, $\$ 247.51$. The 6 -ton cable-reel locomotives serving the loading machines and moving the cars in trips of three or four between hopper

Fig. 1-Development plan, "big-car" section, Wasson No. 1 mine, showing haulage roads and dump-hopper location. Solid lines show the three-place key-room system originally em-

and working place already were on hand.

As set up at present, this equipment is expected to handle a total of about 100,000 tons of coal. The dump hopper is located near the month of 7 th and Sth North room entry. This entry, consisting of two 18 -ft.-wide headings on $36-\mathrm{ft}$. centers, ultimately is expected to extend about $2,500 \mathrm{ft}$. north to the boundary. Rooms are turned both ways from the entry, but those on the east are being worked at present only just sufficient to keep them abreast with those to the west. To the west, rooms are expected to have an ultimate depth of about $1,150 \mathrm{ft}$. In fact, the Wasson operating system has been changed to provide almost entirely for rooms around $1,000 \mathrm{ft}$. deep, as compared with the short rooms of around 300 ft . previously employed. A major objective is a reduction in entry driving.

Key-Room Plan Adopted

In the case of the short-room panels, usually 28 -ft. rooms on 48 ft. centers, the key-room system, in which two side rooms were picked up through each crosscut from a center room, was employed to reduce changing distance and consequently changing time. An extension of this system providing for picking up either three or four rooms on a side is proposed for the long rooms now being developed. In the case of the big-car territory (Fig. 1) four rooms are picked up on each side through crosscuts about 20 ft . wide at 60 ft. intervals. These crosscuts are turned at an angle of 60 deg . to reduce the sharpness of the curves off the switches and thus ease equipment travel. Under this system, the loading machine and cutting machine can work nine places and the supplementary crossents without coming out on the entry, and in fact can work all the key-room groups in a similar manner, inasmuch as a back switch (Fig. 1) is proposed to connect one ker-room group with another. The key rooms proper become auxiliary haulageways in which good track can be kept with less difficulty and expense than if several smaller ker-room groups were operated.

Rooms in the big-car territory are drisen 24 ft . wide on $4 \mathrm{~S}-\mathrm{ft}$. centers. Necks are turned at an angle of 60 deg. to facilitate equipment travel. Width of the neeks at the heading is about 18 ft ., and the necks are driven 70 ft . before the rooms are straightened up. Crosscuts between rooms, as indicated above, are cat on $60-\mathrm{ft}$. centers, but 80 ft . is muder

Looking down info the pit at the dump hopper and feeder, with the elevaling and trip loading conveyor at the left of the feeder.
consideration. If the big-car panel entries (7th and 8th North) are driven $2,500 \mathrm{ft}$. to the boundary, as contemplated, and the dump hopper remains at the present point, the average one-way haul from the hopper to the face of the key room when driven $1,150 \mathrm{ft}$. deep will be close to $2,500 \mathrm{ft}$. over the life of the territory. However, it is conceivable that the dump hopper may be moved to shorten this haul. Also, if $1,150 \mathrm{ft}$. should prove an impracticable depth, rooms may be driven back from the 19 th and 20 th North panel entry to be driven through to the west, as indicated in Fig. 1. Inspection of the figure will show that it is possible to bring coal to the hopper from several working sections.

Of the sixteen big cars purchased, twelve are in service at the present time. These twelve are divided into four trips of three each, and the operating schedule is based on having one trip at a loading machine while the other is being hauled to the hopper, dumped and returned to the working place. Three-car trips have been found large enough with the short haul now prevailing. As the haul grows longer, an extra car will be added to each trip.

Two loading machines are employed in the territory in question, although one at present is operating largely in an extra capacity in the rooms on the east of the panel entry. Incidentally, this territory, aside from grades, offers some of the worst top and other conditions in the mine, and consequently is emplosed as a demonstrating ground when it is desired to determine the operation
of loading equipment under adverse conditions. Two trips of hig cars are assigned to each loading machine, and cars used in connection with track-mounted equipment have been fitted with $12-\mathrm{in}$. side- and endhoards, with the exception of the end next to the loading machine. With the extension boards, the cars have a capacity of approximately 5 tons.

In handling trips, one locomotive is kept at the loader while the other operates between the working places and the dump hopper. This necessitates discomecting the road locomotive from the empty trip and coupling it to the loaded trip, as leaving the locomotive hooked to the empties would result in crossed cables. When
the transfer has been made, the service locomotive heads the trip in to the loader. As soon as the front car is filled, it is kicked into the nearest available track, which may be up the straight in an adjacent place or in on a crosscut track. This process is repeated until the entire trip is londed, whereupon the road locomotive couples onto it and takes it out, leaving the empty trip.
The Sanford-Day cars in use have an over-all height of 30 in . aver the rail. Inside length is 12 ft .; width, 6 ft . Track gage is 40 in . Without the sideboards, loading time, according to time-study results, ranges from 1.4 to 3.2 minutes, with oceasional even longer periods. Usually, however, the time is 2 to 2.5 minutes. Changing time ranges from 1.2 to 1.7 minutes, with some figures above and some below. Generally, however, changing time is 1.4 to 1.5 minutes. With the small car formerly used (capacity, 1.48 tons) loading time normally was 1 to 1.2 minutes, while changing time was slightly less (0.1 to 0.2 minute) than in the case of the big cars.
From the standpoint of possible effect on loading-machine performance one comparison may be cited. With the small cars, loading machines on the territory immediately before installation of the new equipment averaged 190 tons per shift of seven hours. With the big ears in service, a loader in the first half of February averaged 350 tons per shift. These figures, however, are not strictly comparable becanse of differences in loader types and variations in natural conditions.

Capacity of the dump hopper is nominally 12 tons. Steel construc-

Small car under the conveyor discharge.

tion is employed, although the hopper is supported on wooden uprights. locomotives and cats operate over the pit on $70-\mathrm{Hb}$. rails, in part carried on anxiliary sted staging. length of the hopper is 25 ft . at the top and 16 ft . at the bottom for maximum capacity in the limited space available. The back of the hopper is sloped toward the feeder opening to reduce pit exemation. The feeder, consisting of a 30 -in.-wide chain-and-bar-flight convever 17 ft . long, is mounted separately and discharges into a 24 -ino-wide chain-ambtlight elevating and trip-loading conrevor with puslibution control for starting amd stopping in loading mas.
Design inclination of the conveyor was 20 deg. This was necessary to get the repuired leight at the discharge muder the installation plan, which was based (Fig. 1) on plawing the hopper in one 1s-ft. heading with the trip-loading ennvegor ex-
tending through a crossent to a point wer the track on the parallel hearling 36 ft away, enter-to-center distanes. With this inclination, a chain-amb-flight convevor naturally was indicated. As finatly installed, however; the inclination was reduced to about 26 deg.

Capacity of the elevating eonveror is 150 tons per hour. and with coal in the hopper it will load a 1.48 -ton car in 20 seconds. Usually, however. the time ranges from 25 to 30 seconds. Record loading to the time this article was prepared was 427 small cars in seven hours. Expericnce with the present units has convinced the management that a belt conveyor on a small inclination trond he more satisfactory, although the present unit functions satisfactorily in the main. Reducing the inclination and using a belt, it is felt, probably could be best accomplished by driving a third heading for a haulageway parallel to the other two. A
wood dump hopper, it also is telt, would be equally satisfactory and could be built probably for less than half the cost of the steel hopper installed. Also, with the knowledge gained in the present installation, it is believed that the labor cost of digging the next pit will be substantially reduced.

Big-car trips at present are run across the dump hopper and then are reversed in direction to return to the wrorking section. A tripper to actuate the lateh-tripping mechanism on the doors is on hand but has not been installed as yet, as the locomotive operators, with the present short haul, hare ample time to trip the doors by hand. Small cars are handled in trips of around 30, the trip being pulled along under the conveyor discharge by a locomotice. Partings abore and below the convevor discharge, as shown in Fig. 1, facilitate exchanging empty trips for loads.

VERTICAL AUGERS

+ Improve Shooting of Certain Overburdens

At Two Sinclair Strip Mines

VERTICAL ALGERS for overburden drilling where conditions favor their use are a relatively recent addition to equimment for recovering coal by the stripping method. Ineluded in the limited list of operations as ret employing this exuipment are the Imntsrille-Sinclair and Delta coal mining companies. Huntsrille, Mo., and Carrier Mills. Ill., respectively. In addition, an auger prospecting outfit has been ased constantly br the Sinclair orsamization for more than two rears.
Development of the overburden anger br Sinclair was an outgrowth of an unusual set of stripping conditions at the Mark Twain mine, at Huntsrille, and dates back to 1933. Tmo seams of coal. separated by 11 to 16 it . of blue shale, are present on the Mark Twain propertr. The sverage interval betreen the two is 13 ft . The top, or Malkey sean, 14 in. thick. lies muder cower ranging from 15 to 泣 ft . in thickness and consisting of clay and surface soil.
6.2 in . of limestone, and 36 in . of black slate. Thickness of the underlying Berier seam is $4 t \mathrm{in}$.
Naturally, recovery of the Mulkey coal is a desirable objective. provided it can be done at a reasomable cost. as experience has shown it can be. Several recorery methods have been employed. but the best sritem so far involve stripping the overburden
down to the Mulker, loading this seam, drilling and shooting the blueshale interval, and then turning the $53: 20$ Marion shovel with 121 2 -cu.v. Man-Ten dipper around and remoring the remaining overburden dom to the Berier.

Before turning the shorel, the Mulker is loaded up to it, whereupon the stripper is merely rerolved

Fig. 1-Diagrammatic plan of mining two seams at Mark Twain, showing location of overburden holes

Fig. 2-Early type of vertical auger drill used at Delta

Fig. 3-Late-type tractor-mounfed auger drill used at Delta

180 deg. and starts cutting down to the Bevier on an incline. When it reaches the Bevier, the shovel works back along the pit to the previous ramp, easting the blue shale behind the spoil row made in cutting down to the Mulkey. The length of the cut made in the interval is dependent to a considerable extent upon market conditions. In the summer, for example, an entire pit may be stripped down to the Mulkey only, whercupon the shovel moves to another pit to continue its uncovering work. Then, when demand is good, the shovel may be returned to the pit to uncover the Bevier seam. As the interval is comparatively thin, the shovel is euabled to uncover a large tonnage of Bevier coal in a relatively short time. In times of good demand, however, the shovel frequently stays in the same pit, alternating in the overburden above the Mulkey and the interval between the Mulkey and Bevier. In this case, after a section of the interval is removed, the shovel is deadheaded back to and up the ramp to resume stripping over the Mulkey seam.

Hard, tough and sandy, and in places grading into sandstone, the interval must be drilled and shot. Because of the presence of the spoil row from the cut over the Mulkey, use of the sidewall drill customarily employed is impossible. Consequently, standard well drills had to be used at first, in spite of the fact that they were slow and costly. Cast-
ing about for some other means of putting down the holes, the management hit upon the idea of turning a sidewall drill up vertically and trying it out. It worked, and this led to the construction of the first regular vertical boring machine at a Sinclair property, using an old Ford chassis as a base.
The drill handled 16 -ft.-long augers 3 in. in diameter and with a spiral pitch of 4 in. Augers were driven at a speed of 338 r.p.m. by a $10-\mathrm{hp}$. Westinghouse gearmotor. At present, Central Mines Equipment Co. "Coal-Master" bits are employed. The Ford chassis eventually was discarded and the gearmotor was used in constructing a unit substantially similar to that illustrated in Fig. 2. This rig consists essentially of a fabricated stcel mast made of channels, which serve as guides in which shoes on the gearmotor operate to permit raising and lowering the unit, either in boring or pulling augers. The latter operation is performed by an electric hoist from which a steel line passes over a pulley on the top of the mast and down to a ring on the gearmoter base.
In boring, the auger is held in position by a collar just above ground level, with the upper end in a socket on the gearmotor shaft. At Mark Twain, only single 16 -ft.-long augers are employed, whereas at the Delta mine enough $12-\mathrm{ft}$. lengths are coupled together by the shank-andsocket method to permit boring the
required depth of lole. The necessary pressure to enable the bits to cut is supplied by the weight of the gearmotor and the augers, although one line from the hoist may be used for additional pressure, if desired. The revised Mark Twain unit was mounted on a chassis fitted with steel agricultural-type wheels and was fitted with a drawbar so that it can be moved around by a tractor, team or man power (short moves only).

Well drills for overburden were replaced with side-wall drills at all Sinclair operations some years ago. At Mark Twain, the side-wall type is used in drilling the overburden over the Mulkey seam. Normal pit width is 60 ft ., and horizontal holes of the same depth are put in on about 30 ft . centers. Auger diameter is 4 in , and the holes are drilled near tho top of the black-slate stratum over the coal, which both eases the drilling problem and offers a cushion for protecting the coal. Originally, 3 -in. augers were used at Mark Twain, but as overburden depth increased, it was found that the necessary breaking effect could not be obtained because the explosive charge was limited. Consequently, a 4 -in. auger was adopted. In fact, auger diameter has been increased at all Sinclair properties to eliminate springing in favor of column loading, which results in a 10 per cent saving in explosives requirements, in addition to a better distribution of the breaking force of the charge. Horizontal holes at

Fig. 4-Diagrammatic plan of stripping and drilling at Delta

Mark Twain are loaded with 150 to 300 lb . of 40 per cent "Quarry-Gel," depending on overburden thickness, giving a yield of about 9 cu.yd. per pomed of explosive.

Vertical holes in the blue shale at Mark Twain are drilled about 15 ft . apart, starting with a row along the rib line as show in Fig. 1 and staggering the holes in successive rows. Holes are shot with Equitable QD-55. Using the vertical auger and two men, as many as 100 holes have been drilled, loaded and shot in five hours. From Nor: 27 to Dec. 31, 1937, 244 holes averaging 15 ft . in depth were drilled and slot for a labor cost of $\$ 117.76$. Fxplosive per hole averaged 25.7 lb . and the rield was 6.2 curyd. of shale per pound of explosive.
lise of the vertical-overburden auger was started at the Delta mine, in southern Illinois, in the summer of 1936, primarily for drilling overburden over 40 ft . in. thickness. In material this thick, from 10 to 18 ft ., usually close to the former, of clay and surface soil is encountered, with the remainder consisting of hard gray shate. Vertical cracks in the shale otier a diflient shooting problem because of loss of gas pressure. The rason for the use of the vertical auger in burden orer 40 ft . thick is the oceurrence of hard spots high up in the bank, with the result that it is difticult to break the material to the surface with horizontal holes.

The first vertical unit used at Delta (Fig. 2) was mounted on wheels, is described above, and was huilt by the company at a cost of about sl,300. This mit, with another smaller drill of the same trpe, is now in service in coal at the Sentry Coal Mining Co. operation near Madisonville. Ky. In addition to certain objections from the standpoint of drilling performance, team or tractor pulling was found inconrenient at times in the case of this particular type when used in overburden. Consequently, the unit shown in Fig. 3 was dereloped.

In the latest-type Delta unit, built at a cost of about $\$ 1,600$, excluding the tractor and augers, self-propulsion was secured by mounting the mast, hoist and other anxiliaries on an old gasoline-driven Allis-Chalmers tractor. Plans are under way, however, for substituting a motor for the engine and thus completely electrifying the unit. Augers are operated at slightly over 300 r.p.m. by a $25-\mathrm{hp}$. General Electric gearmotor, while gearmotor and auger lengths are raised, when necessary, by a $7 \frac{1}{2}-\mathrm{hp}$. Sullivan hoist. Six-inch-diameter augers in 12 -ft. lengths are employed. Pitch of the spirals is 6 in . When vertical drilling was first adopted, a 31 -in. nuger was used. The 6 -in. auger was later adopted to obviate the necessity for springing the holes.

To facilitate handling the heary auger lengtlis, swinging racks were installed on each side of the mast, as shown in Fig. 3. Each rack holds two aldeer lengths and is fitted with two separate latches, one to secure each anger. When it is necessary to add another length to the drill column, the gearmotor is raised to the top of the mast, the rack is swung around under the gearmotor shaft, the gearmotor is dropped to engage the shank, a locking collar is dropped down to hold the shank in the gearmotor socket and then a latch at the top of the rack is opened to release the auger, which then is raised by the hoist and dropped onto the auger length in the hole. A cotterpin through the socket and shank holds the auger lengths together for pulling them out when the hole is completed. In pulling the augers the column is held in place while a length is being detached and placed in the rack by a fork cut out of steel plate resting on the ground at the top of the hole.

Usual cut width at Delta is 50 ft . Horizontal holes. where employed. generally are put in at intervals of ${ }^{2}-1$ to 30 ft ., although hole spacing varies cousiderably with the character and thickness of the overburden.

Horizontal-auger diameter is 4 in., compared with 6 in. for vertical augers. Spacing of the vertical holes also varies considerably, but usually is around 18 ft ., and holes in the several rows are staggered as indieated in Fig. 4, which gives in gencral the usual drilling plan for both horizontal and vertical holes.

Horizontal holes usually are loaded with QD-5 explosive, although experimentation with QD-55 was under way when this article was prepared. Vertical holes are loaded with black powder. In Jamuary, 1938, 99 horizontal holes and 117 vertical holes were drilled with 110 man-shifts at a labor cost of $\$ 658$, including loading and shooting. The 99 horizontal holes, loaded with $25,575 \mathrm{lb}$. of black powder, accounted for 113,196 cu.yd. The Delta vertical drill has put down as many as fourteen holes 40 to 50 ft . deep in fourteen hours, while the record for seven hours is nine holes.

The prospecting drill used by the Sinclair organization is built on a rubber-tired "Farmall" tractor with a power take-off fitted with a pulley at the rear, where the mast also was installed. Cost of the drill was $\$ 1,129.82$, including tractor but excluding augers. A differential out of an old Hudson car was installed at the top of the mast, with a pulley for a vertical belt drive from the take-off pulley. Boring is done with a $2 \frac{1}{2}-\mathrm{in}$. round shaft about 12 ft . long, keyseated from one end to the other, which fits loosely in the differential. A socket on the lower end

Fig. 5-Sinclair prospecting drill at Tiger mine, Hume-Sinclair Coal Mining Co., Hume, Mo.

is used for attaching the auger lengthis. Usual practice with this machine is to bore down to within a few feet of the coal and then finish out the hole with a standard churn drill. Using this system and the vertical augers, the cost of prospect
drilling has been cut about 25 per cent.

Operation of the prospect drill in Iowa, Illinois, Indiana, Kentucky, Missouri and Oklahoma has shown that it is possible to bore successfully anything but limestone. In drilling
overburden, however, the horizontal drill is preferred in the absence of special conditions because fewer holes are required for the same yardage. However, Sinclair experience shows that the vertical auger has a certain field in which it can excel.

\$200,000 IMPROVEMENT

+ At New River Co.'s Cranberry No. 2

Includes New Washer and Aerial Tram

COMPLETION of a $\$ 200,000$ outside-equipment improvement program was signalized the past winter when an aerial tram was placed in service at Cranberry No. 2 mine of the New River Co., Skelton, Raleigh County, West Virginia. This program began three years ago with a new 350 -ton-per-
hour preparation plant which included the first installation of a new type of automatic washer unit. In February, 1937, a pea-coal plant was added, and soon after that date the contract was let for the aerial tram to carry mine slate and plant reject to a valley which is higher in elevation and $2,200 \mathrm{ft}$. from the plant.

By J. H. EDWARDS
Associate Editor, Coal Age

Erection of the $185-\mathrm{ft}$. tail tower of the tram was accomplished by adding sections near the bottom and pushing the tower straight up.

Fig. I-On this flowsheet of Cranberry No. 2 plant, items indicated by eircled numerals refer to the numerical listing of Table 1

This new plant at Cranberry No. 2 , which is a slope operation with a one-mile rope haul to the outside, replaced a single-track mine-run wooden tipple which had served since the opening of the mine, in 1903. That the loading of only rum-of-mine sufficed until such recent times is explained by the fact that the New River Co. has ten other mines in the same seam (Sewell) and the prepared sizes were shipped from those other plants.

Originally at this Cranberry. No. 2 mine a wooden trestle elevated the dump approach track to tipple height. As time went on, this was replaced by a fill of mine rock and
the dumping of refuse around the tipple was continued until the adjoining available space had been taken. A large volume of this material had to be moved to make room for the new plant and rearranged railroad tracks and especially to bare the original ground for foundation exeavations.

The first job, consisting of minecar handling and dumping equipment and an all-steel four-track tipple with nut-conl washer and a separate slack bin on the upgrade side on the nut track, was furnished and installed by the Pittsburgh Coal Washer Co. Tho second job-a pea plant with storage bin for raw $\frac{5}{8} \times 1$ -

Table 1-Motor and Drive Details, Skelton Preparation Plant

Flowshect Number and Description		Speod, Feet or Stokes ner	Motor3			Drive	
		$\begin{aligned} & \text { Num- } \\ & \text { ber } \end{aligned}$	Horsepower	R. P. M.			
(1)	Lauded-trip puller, 72 ft c. c., 10 15/16-in. pitch chain		26	1	15	870	Reducer, 58.5 to 1
(2)	Empty trip retarder, 82 ft . c. c., 12l-in pitch chain.	33 to 100	1	10 to 3	$\left\|\begin{array}{r}1,745 \\ 1,45 \\ 877 \\ 872\end{array}\right\|$	Reducer, 22.2 to 1	
(3) (4)	Empty trip maker, 42 ft. c. c., $12 \mathrm{j}-\mathrm{in}$. pitch chain.	33	1	7.5	850	Reducer, 25 to 1	
	Apron ro.m. conveyor, 48-in., 21 ft c. c.....................	35	1	15	$\left\{\begin{array}{r}1,700 \\ 860\end{array}\right\}$	Reducer, 35 to 1	
(5)	Main shakers, counterbalanced, 7 ft . wide.	120	1	15	870	V-belt	
(7) (8) (9)	Lump-boom drag conveyor, 4 ft., 44 ft. c. c.	60	1	7.5	44	Type FD gear motor	
	Egg-hoom drag conveyor, 3 ft., 44t ft. c. c.	60	1	7.5	44	Type FD gear motor	
	Stove-hoom drag conveyor, 3 ft.,	0					
	Nut-boom belt conveyor, 340 ft in.,	60	1	7.5	44	Type FD gear motor	
	$48 \frac{1}{} \mathrm{ft}$. c. c., horizontal section 8t ft., hinged 40 ft.............		1	5	870	Reducer, 28 to 1	
(10)	Pea-boom spron conveyor, 24 in., 25 ft.		1	2	1,150	V-belt and gears	
(11)	Stove shakers, first section 6 ft .						
(12)	Rawecosl drag conveyor, 24 in.	440	1	10	8.0	T-belt	
(13)	$55 \mathrm{ft.c}$ c. c., 250 t.p.h.	110	1	20	1,160	Reducer, 14.2 to 1	
	Nut shakers, two sections each 11 ft . long set in tandem- Girst screen of each section, $6 \frac{1}{2} \mathrm{ft}$.						
	wide \cdot second, 6 ft. wide.	4.50	2	7.5	1,160	V-belt	
(15)	Washer feeder spron conveyor..		1	5	870	Reducer, 28 to 1	
$\left(\begin{array}{l}15) \\ 16)\end{array}\right.$	Washer plunger.....		1	5	870	Reducer, 9 to 1	
(17)	Wagher conveyors.....................		1	5	870	Reducer, 16 to 1	
$\begin{aligned} & (18) \\ & (19) \end{aligned}$	Sludge conveyor, single chain.		1	15	49	Type FD gear motor.	
	Sludge screw conveyor (second) (driven by No. 18).					Type gear motor.	
(20)	Slack drag conveyor, 30 in ., 92 ft .						
	c. c., 200 t.p.h	100	1	25	1,155	Reducer, 14.2 to 1	
(22)	14 ft . c. c., 30 t.p.h	200	1	3	1,160	V-belt	
	Pea-belt elevating conveyor, 16						
	in., 9 is ft. c. c., 30 t.p.b. ${ }^{\text {a }}$	175	1	5	1,160	v-belt	
(23)	Vibrsting screen, T3pe FB- 20 t.p.l. (d. cc. modulating current supplied by fractionhorsepower m.g. set)						
(24)	Rescreeninger m.g. set).						
	in., 18 ft. c. c. 8 t.p.b	50	1	2	1,150	V-belt	
(26)	Rescreenings bucket elovator, 37 ft . c. c., 8 t.p.h	232	1				
	Rescreemings conveyor at losding		1	12	1,154	V-belt	
	booms, 8 -in. single chain type,	90	1	5	44	Type FD gear trotor.	
$\begin{aligned} & (27) \\ & (28) \end{aligned}$	Reject drag conveyor, 10 -in. single chain, 57 ft.					Type FD gear motor.	
	single chasin, 57 ft. c. c.	60	1	5	870	Reducer, 28 to 1	
	ft . c. c., capacity 110 cu ft.						
(29)	per minute derisl tram disposal	30	$\frac{2}{1}$	15 100	1,750	Type FD gear motor	
	Four hoists for booms (lump, egg, put and atove)		4	-	1,150 850		
	Hoist for pea boom		1	5		Gears	
	Iayer loading hoist		1	10	1,600	Gears	
	Calciun-chloride pump		1	63	1,735	Direct	
	Oil pump....		1	71	1.735	Direct	
	Calcium-chloride mixer...		1	3	1,740		
	Calcium-chloride elevator		1	11	1,740	Reducer, 57 to 1	
	Totals................. .		37	393			

in. coal, electric vibrating screen, apron-type conveyors and loading boom, all on the stove track and also upgrade of the tipple-was built by the Jeffrcy Manufacturing Co. The third and last project included a refuse-disposal tram built by John A. Rocbling's Sons Co. and a 300ton slate bin and a feeder conveyor from it to the tram, built by Pittsburgh Coal Washer Co. Coal-treating equipment (both calcium chloride and oil) was erected by the coal company in a separate building.
Loads are pulled out of the mine and up to the tipple in 24 -car trips by a $400-\mathrm{lp}$. electric hoist. A loaded chain-type trip puller feeds the cars over a hump leading to the crossover dumps and track scalc. Slate cars are emptied in the first dump and the empty cars then pass over the scale and the coal dump to the kickback. Coal loads average 2.5 tons except that a few cars with new bodies average 2.8 tons. The coal is mined by hand loading exclusively and the size characteristic of the product is indicated by the following percentages: lump, 6; egg, 21 ; stove, 15 ; nut, 1.2 ; pea, 6 ; slack, 40.

Counterbalanced Shaker Used

The mine-run coal is fed from a 6 -ton dump hopper to a counterbalanced main shaker with lip-sereen plates having $1 \frac{3}{4} \times 2 \frac{1}{2}$-in. holes in the upper section and $5 \times 8-\mathrm{in}$. in the lower. The oversize passes directly onto a drag-type rescreening pick-ing-table loading boom. Egg coal, the size which has passed over the $1 \frac{3}{1} \times 2 \frac{1}{2}$-in. holes, flows directly onto a boom similar to that loading the lump. A third boom of the same type loads stove, which is made by another set of shaker screens situated below the main shakers, as indicated by the flowsheet, Fig. 1.
Minus $1 \frac{1}{8}-\mathrm{in}$. conl through the stove shakers feeds to a four-screen twosection two-motor-drive nut shaker and normally is separated into three sizes: $1 \frac{1}{8} \times \frac{3}{4}$-in., which goes to the washer; $\frac{5}{8} x \frac{1}{4}-\mathrm{in}$., which is conveyed to the pea plant, and a $\frac{1}{4} x 0-\mathrm{in}$. slack. All shaker screens are suspended by second-growth hickory and are reciprocated through wooden rods with flexible hickory connections. A crankshaft drives the main shaker and eccentrics the other two shaker units. Timken bearings are used on the shaft of the stove shakers and plain bearings on the other shakers.

Fifty tons per hour is normal capacity of "Llewellyn Automatic" self-contained plunger-type washer. The plunger, operating with a 5 -in. stroke at 40 r.p.m., aets also as a circulating pump; the clean-coal cou-

A $5,965-\mathrm{ft}$. rope haul delivers 28 -car trips to this point, where o loaded trip puller completes the haul into the tipple.
reyor, bar type, 18 in . wide, $15-\mathrm{ft}$. centers distance and operating at 80 f.p.m., includes a rescreen over which are sprays of cear make-up water. The unit is the single wash-box model with washing compartment 4 ft . wide and $6 \frac{1}{2} \mathrm{ft}$. long.

One 5-hp. motor drives the plunger and another the serew and drag conveyors. No middling product is made. Reject taken out by the washer consists principally of slate from the top of the seam and at times some heavy material from accidental cutting into the bottom. The coal seam has no regular parting. The New River Co. has installed another of these washers at the Cranberry No. 1 mine.

Slack-bin capacity is 90 tons and pea-bin capacity 70 tons. Capacity of the belt conveyors delivering to a spiral lowering chute at the top of the pea bin is 30 t.p.h. A Jeffrer'I'raylor screen with $\frac{1}{4}$-in. openings and acting as its own feeder receives the coal directly from the bottom of the pea bin at the rate of 50 tons per hour. The rescreened pea then passes to an apron-type loading boom and the undersize is elevated to the slack bin. No crusher is included in the plant.

Stove coal for employces and to supply the local domestic demand is loaded into the trucks from a 50 -ton bin under the main tipple. Pea coal for this local trade is loaded directly from the pea boom into trucks driven to a position alongside and parallel to the pea track. By reason of a convenient arrangement of hopper and chute the changing of loading from car to truck or vice versa is accomplished with but slight loss of time. The hinged chutes from boom to truck are supported from an A-frame at the end of the boom. A sliding hopper attached to the under side of the boom discharges into the
hinged chutes when they hive been lowered into the truck-loading position. This domestic-trade pea conl can be oil-treated the same as when the pea is loaded into the cars.

Close to the tipple a FairbanksMorse beam weighing seale and weighhouse has been provided to hand!e the trucking sales. The same make of seale, but fitted with Streeter-Amet recorder, is used for mine-car weighing in the tipple. Buildings and structures of the new plant are covered with corrugated galvanized steel; No. 20 gage on the roof and No. 22 gage on the sides.

Dumping space of the aerial tram is $38,000,000$ cu.ft., equal to twenty years of operation at the present rate of handling 120 cars of slate per seven-hour day (each car 70 eli.ft. and its load weighing 3 tons). Track cables, two $1 \frac{1}{2}$-in. lock-coil type, are $2,250 \mathrm{ft}$. long and the eapacity of the equipment is 61 tons
per hour when dumping two-thirds of the full travel. This tram is a single-bucket type operating at 800 r.p.m. and requiring 4.17 minutes per trip at the two-third point. Capacity of the bucket is $100 \mathrm{cu.ft}$. ind the load, figuring 85 lb . of refuse per cubic foot, is $4 \frac{1}{2}$ tons. Bucket construction consists of aluminum alloy sheets and a steel frame; the track wheels, six in number, have Timken bearings. Traction rope sheaves are filted with the same type anti-friction bearings.
The traction rope is a $\frac{5}{8}$-in. 6x19 Blue Center steel with independent steel center and the length is 4,800 ft. It is driven by a 60 -in. ellipticalface spool having manganese tread. The bucket is loaded from a batch hopper which at full loading overbalances a weight to operate a limit switch and stop the feeder conveyor (No. 28 on the plant flowsheet, Fig. 1). Use of the batch hopper saves the time that would be required if the bucket had to remain in the loading terminal while it was being filled from the conveyor. The plan also assures uniform loading and prerents spillage. One man, stationed at the loading terminal, operates the tram. The $100-\mathrm{hp}$. wound-rotor drive motor is equipped with a Thrustor brake, but in addition the spool shaft is equipped with a friction brake which the operator may use in case of emergency.

Three tail and intermediate towers support the track cables, and all are of the pivoted-base guyed type. The $185-\mathrm{ft}$. tail tower has its pivot 24 ft . from the ground in a $30-\mathrm{ft}$. rigid-base tower. Following erection of this rigid base the topmost section of the tower was assembled and

Cranberry No. 2 progress includes replacement of a single-track run-of-mine tipple with this 350 -t.p.h. preparation plant equipped with a washer and complete facilities for preparing junior sizes.

Beth 5-hp. motors of the self-contained washer are mounted on the operating fleor, where they are easy to inspect. Arrows point to thase two drives.
then facked nes to be conmerted to the section noxt below, sad so on. Thas all workers were stationed close te the ground. Ciuy ceables to hold the "srowing" tower in a rextical pensition were let cut trone four atuher peints.

Yermanent guys or stays for the towers are 19-wire galvanized bridere streand. Barck stexys, two in mumber. for the tail fower are $19 /$ titin. and esteb side guy is $15 / 16-\mathrm{in}$. The intermediate lower, in addation to supporting the track cablest serves also its at support tor ore end of a protection seree? wer the state highway, This sereer is 12 ft. wide at the butwm, has sopping sides 3 it. high at:d consists of $\frac{1}{2}-\mathrm{in}$, uettiug wer ?-in, uresh.
thotiting by tram experienece at its other mimen the wal eompany spectiIath that the buctete wheds should be suarded to prevent throwimg to one side of the fram, atd thus possibly
mising the sereen guard, any material that might accidentally spill over the top edge of the bucket. Field comentions of tramway towers were made with bolts fitted with locking nuts. Shipping weight of the tramway materials, excluding formdation materials, was appro imately $135,000 \mathrm{lb}$.

Wertiughouse Type cs ball-betring induction motors predominate ins the plant. The aguregate commected horsepower of all motors (37) driving the plant. surial tram and dust-les-tres: neat equipment is 393. Puwer it 40 volts to supply these motors is furnished by a bank of three 100-kva Geveral Electric trausil-vil transferwers mounted on a steel iewer close beside the hoist house. The primary supply of 2,300 vols comes trom lines of the Appalachian Electrie Power Co.
The preduminating drive conmeetion berwere motor and unit is a
l'oote Bros. gear reducer. Twelve of these are in use and the range of ratios is from 8 -to- 1 to $58 \frac{1}{2}$-to-1. The largest reducer, that on the aerial tram, was made by Westiughouse. Six conveyors of the plant, including three of the loading booms, are driven by that number of Westinghouse gearmotors. Four of the boom hoists are Pittsburgh Coal Washer make with Westinghouse motors and the other (on pea boom) is a Robbins \& Myers. The calcium-chloride elevator of the dustless-treatment

Sase of the tail tower, which was erected bottom section first, top section second, next to top section third, and so on.
plant is driven by a Louis Allis motor conaected to a Liuk-Belt reducer, the mixer is driven by a Fairbauks. Morse motor. and the two pumps by Cieneral Eilectric motors.

Coutrols of the $3 ?$ motors of the tipple and preparation plant proper are grouped in a room 6×16 It. with tight partition betwean it and the plaut. No fuses are iecluded in any

Fig. 2-Profile of the serial tram which

of the electrical circuits. The control for each motor consists of a Westinghouse line contactor and Deion breaker. Provision for disconnecting the incoming line consists of a 400 -amp. 3-pole Westinghouse unfused safety switeh.

Instead of complete sequence starting the motors are divided into several groups whose individual controls are connected in automatic sequence. Provision for emergency stopping of the whole plant consists of ten oil-immersed-contact 110-vo't pushbut-

Looking back at the new plant from the intermediate tower which supports both the track cables and the highway protection screen.
ton stations momited at appropriate points. Pushing any one of these buttons operates the low-voltage release of an oil switch in the 2,300 -volt primary feed to the transformers. This oil switch is mounted in the hoist house. All wiving in the plant is protected by rigid conduit.

Steel bodies of many of the mine cars, which have been in use seven

The "no-fuse" distribution and control group is on the walls of a $6 \times 16-\mathrm{ft}$. room.
to nine years, are corroded to the point of failure. Because the trucks, which have Timken-bearing 14-in. wheels, have been maintained necessarily in good condition, the car bodies as they get beyond repair are being replaced by new bodies of the same height (28 in .) but of $71-\mathrm{in}$. width instead of 66 in . Length of the car remains the same, 12 ft . over all, and the same three-board woodbottom construction is used. Twentrfive of these cars with new Watt bodies are now in use and their dumps average 2.8 tons, compared with 2.5 tons for the remaining 425 cars. Track gage is 40 in . and the coal thickness of the seam averages 40 in.

Thirty-five trips of 24 cars each in a seven-hour shift is the maximm hoisting capacity and, genera'ly speaking, 2,100 tons of coal is the mine eapacity. The hoisting slope enters at the onterop and follows the seam on a grade of 5 to 6 per cent
adverse to the louds. This rope hanlage is the unbalaned method with a single rope, except that a tailrope drum is engaged and operated in case of a show or ice condition which wou'd prevent free ruming of the empty trip ovel the $1,000-\mathrm{ft}$. outside track from tipple to mine portal. Total length of haul is 5,965 ft. and, becanse of the slight gradient, lowering of empty trips is done with the hoist-drum eluteh disengaged and by friction braking instead of by regenerative braking.

Room-and-pillar is the mining method and the undercutting is done with Goodman 12AA and Jeffrey 35 BB shortwalls. Gathering is done with cable-reel locomotives. While the new tipple and preparation plant. was under construction the mine was contimued in operation by lauling the output through the adjoining Cranberry No. 1 mine and there hoisting and preparing the coal on the night shift.

CINCINNATI CONVENTION

+ Shows Operators Alert to Advantages

Of Pressing Forward on Modernization

Abstract

APOSTLEA OF GLOOM found no welcome at the 15th Ammual Coal Convention and Exposition of the American Mining Congress at Cincimati, Ohio, May 2-6. Despite the sharp drop in business the first four months of the year, coal producers from all parts of the country registered their keen interest in studying improved methods and equipment by rolling up an attendance which was only six per cent under the record-smashing figures of 1937. Manufacturers also showed their confidence in the vitality of the industry and its reserve buying power by exhibiting more than $\$ 1,000,000$ worth of machinery and supplies.

men were laid off. So the change was not made and part of the tonnage was still loaded by hand to take care of workers too old to fit themselves into a reorganized industry.
Too often, stated A. D. Sisk. safety director, Big Sandy-Elkhorn Coal Operators' Association. training of workmen is not given its due consideration. Mea employed on an hourly rate need better supervision than men on a tomage basis, and the use of machinery needs more than good miners. As a result of Bureau of Mines and other training, casualties have been reduced so that now there is one fatality to about $1,250,000$ tons mined. Vocational schools are to be started for men from 18 to 30 years old; students will work part time and go to school part time.

Anthracite Board Praised

Though outlaw strikes have oceurred. the Anthracite Bourd of Conciliationoldest of such boards in the cualmining industry of the country-has been found the most satisfactory meuns of settling disputes, declared J. R. Sharp, director of public relations, Philadelphia \& Reading Coal \& Iron Co. Fourteen new contracts have been made subsidiary to the original agreement of 1902 . but the conciliation board still continues its useful function of interpretation. Much objection has been raised to its decisions, especially by labor. but United Mine Workers' officials steadily have supported it. Some 5,300 grievances have been adjudicated.
Each colliery, he explained, has its own rate sheets and a colliery may have 70 labor and 80 contract rates. About 65 per cent of the cases go to the umpire. Many claims filed by the mine workers arise irom the hope they may get a favorable decision and are not based ou the contract. With everything to gain and nothing to lose. many claims presented are without merit, and only one case in ten is decided in favor of the worker.

In the early days of stripping, three one-man shifts with a team might remore 3,000 cu.yd. of dirt in a month; today, said Ira Clemens, president, Commercial Fuel Co., that operation has been stepped up to about $1,000,000$ yd. with one stripping shovel and three men. Bucket size has increased since 1910, the year when mechanical stripping became commercially successful, to 32 cu.yd. and the job will not be complete until buckets of 50 cu.yd. capacity have been introduced. A shovel with a 40 -yd. bucket already has been designed, but not built.

Drainage Big Problem

Drainage, loe continued, is the most important problem of the stripper. Formerly he never knew how soon after a rainstorm he could operate his shovels; recently, when it rained 72 out of 75 days, not a single shovel was out of commission. Preparation is a sine qua non. He takes four samples from the coal stream for every railroad car and therely is enabled to analyze the product loaded in each unit. The kind of coal each customer needs-whether one with 6,10 or 15 per cent ash-is ascertained and the coal prepared accordingly. Each car sample is analyzed and that analysis, with a duplicate of the sample, is kept for six months. Conl is treated with oil or with an anti-clinkering compound if the customer so desires.

Auger-type drills are being intro duced. said T. G. Gerow, chief engineer, Truax-Traer Coal Co., but they still are in the experimental stage. The bigger shovels give smoother operation and cost less for maintenance than earlier equipment. Mr. Gerow believed no one would question that trucks running on the coal floor are the cheapest form of transportation, but the combination of truck haulage in the pit with a transfer bin loading into railroad cars operating to the tipple has advantages where the haul is enniderable.

Pumping Job Grows

With companies passing out of existence and mines being closed, the Northern anthracite field faces a situation which shortly will become desperate because of inadequate or undetermined barrier pillars, asserted H . H. Otto, mining engineer, and J. F. K. Brown, assistant general manager. Hudson Coal Co., in a paper read by the former. In 1920, Hudson pumped 8.4 tons of water per ton of coal mined; in 1936, the figure had risen to 26.5. Installed capacity had been increased 68,900 g.p.m. by Hudson at an expenditure of $\$ 1,075,015$ in the past decade.

In 1922 the company began a study of the adequacy or inadequacy of the pillars in neighboring mines. There are 15 square miles of workings being drained at Carbondale between Forest City and Carbondale. Between Carbondale and Jermyn are 10 square miles which can drain out at the latter
point, but all the rest of the area must be freed by pumping. If floorled, this would constitute an underground lake covering 126 square miles. Some-

What similar but less severe problems, remarked S. M. Cassidy, manager, Weirton Coal Co., confront the bituminous field south of Pittsburgh.

Making Mechanization Pay

MECHANIZATION without recasting operating methods is more likely to end in failure than in profit, asserted R. L. Ireland, Jr., president, Hanna Coal Co., at the opening session of the convention. Such "retooling" of the industry calls for careful planning. This theme was reiterated by D. D. Wilcox, general superintendent, Superior Coal Co. Practically every department must be altered and suitable accounting and repair-parts handling systems set up when mobile loaders are installed. Pitfalls also await the unwary in conveyor mining, added R. G. Pfahler, mining enginecr. Berwind-White Coal Mining Co. Success, it was emphasized by various speakers, comes to those who thoroughly analyze the problems to be conquered. Adequate electrical power must be provided to cope with higher power requirements per ton and the concentration of tomage per unit area, said Mr. Wilcox. Rail size probably

Roy L. Cox
Roy L. Cox, vice-president in charge of mining sales, Jeffrey Manufacturing Co., was elected chairman of the board of governors of the Manufacturers' Division of the American Mining Congress at a meeting of the board in Cincinnati May 3. He succeeds William E. Goodman, Goodman Manufacturing Co.
Frank E. Mueller, Roberts \& Schaefer Co., was advanced to the post of first viee-chairman of the board: Arthur S. Knoizen, Joy Manufacturing Co., moved into the second vice-chairmanship, and E. J. Burnell, Link-Belt Co., was elected third vice-chairman.
must be increased and layout changed at the working face and perhaps on the main line. A ventilation increase also is duc because coal must be broken more thoroughly, thus more explosive used and more fumes are to be swept away.
Drilling and shooting no longer can be left to the judgment of the miner. Shearing may be included among the changes necessary in the cutting. Competent men will be required to handle the timbering. First cost of additional cleaning equipment may exceed the cost of the loading machines. Distinctly different from that with hand loading is the gathering problem; hence changes must surely be made there.
Less coal tramsported per car londing must be considered. Mr. Wilcox said that one Illinois operator uses a 5 -ton car to haul from the loader to the entry, where the coal is tranaferred to the regular mine-car equipment (see p. 33). New safety problems are introduced and the increased tomange per man should not be allowed to overshadow the increased mechanical hazards to the individual. Management was not slighted and a difficulty to le overcome is lack of ability on the part of some foremen to adjust themselves to the new requirements.
A means of breaking down coal at the face at no greater cost than using powder was termed the greatest need of the industry in the West. declared George A. Schultz, vice-president, Liberty Fuel Co., in a paper read by J. H. Edwards, associate editor, Coal Agc. Because the thinner seams in the West generally are eleaner, of better quality and have better roof. several companies which have been mining in high coals are now opening thin seams. One company laid off 23 men at its preparation plant when it switched from an 8 -ft. dirty seam with frail top to conveyor mining in $\Omega 4$ - ft . clean seam with good top. Realization was increased and costs lowered. Another company having a fully meelsanized mine in $20-\mathrm{ft}$. coal is now opening a $5-\mathrm{ft}$. seam. A small mine in $3 \frac{1}{} \mathrm{ft}$. of coal realizes 08 c . per ton more on its product than a mine in coal five times as thick, because of a higher percentage of large size coal mined from the thin seam.
Added concentration with consequent saving is to be gained with conveyor mining as compared to using mobile loaders and track-mounted cutters. One working place per unit against seven or eight is the ratio. The ideal working plan of the future was specified

Traffic Cops

R. 1 lealash tha Wavident Nisma Cis: Inc. and nhticobl ehsiman of A. Wressa rimmoted hnins the swes himsantite sor the Mehniest
 Nor in Exporition an Chamsth

 extent foretit is nem envit is. antio of axhis
 estrentise swo purites swo to the Nlowing ehotmos

WC Si is - Neples vecwlon Mowhanse Opeoblea lumivith Mes. sen mawisk

 ancition
 steterinalis nutuite monise

 Geverestich Fewean of Ahentich

 Westreciey Mowits

A x. Shles interemitent Mi-
 sary blaticich
kleat Eavil gerowal reewhimest
 monish
7. \& Bera mesituat Slarisor
 Nink
 mats swievers.
(Sominientise ut Minitamuentl) sered

 sere

 sibs we selbic lieq ibe the thencte s.ween lowel wink as biver premery

 herime diodles boflect ith builis:

 whene sutimac is beventimestrom.

Retryenv in switis mines was smbini sax J, W. Wiwewer, obted :eining

 Merimum satery was sitwe trei placs.

 -f the stix equipmeat ant ilde reyaiteca
 Fwil and sime of twenvets.
then Nosiduration shwile se gevent to Q. mothes sma to bly pachitity so mis

The की sumbarwanct Invanctives

 wote selety is th fin ouminemitm

 Mante troins the trapoewwile tope of thatess maitur vou the sis perpethis of taye whentan the is क्mer

 the swecte to swiela abtheins snet mas
 Beakesucrisinc then van be setured 3 arectip

Yise ac k vity modoc has hecthered tho smonke act 2eloze Neet minos. acoments an I Bivorse Ble Alxe
 shet migy ke wores inmon more at ant
 2lesima

Bicsoe Reower Wibing

 whimstien powocisil at enis ther 3 年

 Burman shriere ivipmonte the selbocion I m pesme tic mions liss joper iss

 Be mairis in alageinc moe pors
Thadur megtic bot in seive one
 TVot mibe xminsiex Me ver misid
 a) rimionsume movition anowlit:

keir, superintemient. Ner Jellico Coal (i) Piwer supple prokably will hare to he remampev. How to dispose of slate or drawrict musi he considered and allat she beighs required to allow lianding the largni: lumpe withoat reot imerferent.
M. A. Slara minirs ancianer. Taĩoa imata: Cull Ca, Kicis Epricrs. Wrom in yaker rexil ir G. B Proce rion

 cuperina inve ibe Unian Fecise -ines

 वारण
 -

Sowesing Eamerar Hondiing

 Dectum antritis cars luve hern por-

The trive Exite paril bo suiz

 Now, zinerecy is se wer enot Fhycer-

 armon gractioc: at zimme the teme
 (m)

 sual hrovention Jikinn tram the

 the vins itrmedit vountim =28

 चWib sni
 mples ateir sugtorn Simine Nut

two 300 -it. room conveyors, two face conveyors, one cross-conveyor and one elevating conveyor. Two room shakers make up a slaker-conveyor unit. Systems include $50 \cdot \mathrm{ft}$. romms advanced 300 ft ., $60-\mathrm{ft}$. rooms advanced 250 ft ., and $3 \overline{5}-\mathrm{ft}$. rooms advanced 300 ft . with $35-\mathrm{ft}$. pillars mined on return.

Entries with one conveyor in the aircourse and one in the heading are developed 24 ft . per day, stated F . D. Welsh, Clearfield Bituminous Coal Corporation. Both flight and shaker conveyors are in use. A. F. Long, of the same company, deseribed the use of the McCarthy (Goodman) molile convevor. Built with three $6-\mathrm{ft}$. sections on a $6 \frac{1}{2}-\mathrm{ft}$. gage and used in $36-\mathrm{in}$. coal, the capacity is 5 tons. The car is selfpropelling between face and loading entry by means of power drums and ropes anchored at each destination. Shoveling distance is kept to a minimum because all loading is at the extreme back end. The conveyor bottom is moved up 3 ft . at a time to carry the load forward. One $50-\mathrm{hp}$. motor furnishes power for conveyor and tramming.

Unloads Directly Into Cars

Unloading directly into mine cars on the entry is accomplished by further moving the conveyor bottom of the unit. The complete loading, tramming and unloading cycle for the ear takes 25 to 30 minutes. Men like to work with this conveyor car because of lack of noise, simplicity of operation, nothing heavy to lift. and because all of the crew are together at the face instead of one man being stationed on the entry. Among the advantages are low power consumption. flexibility (conveyor will negotiate 90 -deg. curves of $25-\mathrm{ft}$. radius), low maintenance cost (steel ropes prineipal item) and the fact that its use allows operation with a mounted cutting machine.

One mine of the West Kentucky Coal Co., stated H. L. Richardson, Jr., is completely mechanized with shaker conveyors, operates two shifts, produces 1,600 tons per day from 54 -in. coal in which rooms are driven 30 to 33 ft . wide and 350 ft . deep. Room conveyors load directly into the mine car on the entry. Production is 02 to 75 tons per unit per shift. Sixfoot cutter bars have been used but 8 -ft. are now being adopted, and with them it is hoped to attain not less than 80 and perhaps 90 tons per shift and to produce lump of just as high a quality.

With hand loading for the same production, four to six pickers were employed. With shakers, sixtcen are required, with results "none too good." Sixty-five to 80 tons of material formerly retained in the mine is now removed on the picking tables. Wear of shaker-pan lines is a maintenance item which has exceeded the manufacturer's estimate.

Two of three Alabama thin-scam mines in which recovery methods were described by W. C. Chase, general superintendent, Alabama By-Products

Co.. use conveyors. Empire mine (Debardeleben Coal Corporation). which produces 1.200 to 1.400 tons from the 26 - to $2 S-i n$. 13lack Creek seam. hand loads into chain-flight face conveyors, two oi which, working advancing, lischarge into one chain-light room conveyor. Room conveyors discharge into $2 t$-ton cars on the entry. Cribs along the room converors support the roof and keep the converorway open. Rock hauled out of the mine arerages 200 tons per day.

Chain Flights in Alabama

Chain-flight conveyors on walls 450 ft . long advanced to within 15 it. oi new conveyor rooms (driven on $500-\mathrm{ft}$. centers) deliver 500 tons per shift at the New River mine (Brookside-Pratt Mining (0.). Two 225-ft. conveyors in line on a wall but delivering in opposite direstions load into ld-ton $29-\mathrm{in}$. mine cars on the opposite panel entries. Conl is $20-\mathrm{in}$. Black Creek scam.

Power-distribution problems in conveyor mining were outlined by I. II. Schnerr, division manager. Consolidntion Coal Co. An abstract of Mr. Schnerr's paper appears on page 50 .

At the tipple of the Baton Conl Co., Westmoreland County, Pemsylvania, only one picker was added for each 130 tons of mechanienlly louded coal and quantity of slack is ruming only 2 per cent over the 46 per cent average under hand loading, stated Charles 13 . Baton, viee-president, who outlined 18 months' experience with Joy 8 BU loaders working pillars-the only conl left in the mine. Mining is in the eastern horizon of the Pittsburgh seam, where the coal is $6 \frac{\mathrm{ft}}{} \mathrm{t}$. thick, contains the usual binder $2 \frac{\mathrm{ft} \text {. from }}{}$ the bottom and has a tender roof which requires extreme care in shooting. Fixisting track conditions prevent the adoption of mounted machines, therefore undercutting with shortwalls is continued. At first, loading-machine
operation eallsed slack to jump to 05 per cent. Improved methids them lowered it by 9 per eent.

Holes are drilled parallel to and at few inches from the top to produce an artificial parting. All holes are drilled to within $\&$ in. of the lack of the cut. Top holes. which are fired last, are spaced 5 it. apart, and buttom holes 10 ft . Sharp angers are a necessity for drilling straight holes. The shift foreman examines all holes lefore loading. Safoty stemming plugs are used; the air space in top holes is 12 in. and in bottom holes s in.

Experiment With Pick Hammers

Fxperimenting with pick hammers itr ennjunction with the loaders is now under way. As much refuse as possible is picked out at the face between shooting and loaling bemuse the machine would break up the material to some extent and mase times to mix with the smaller coal. It is impractical to remove all the binder at the face. Crosshars with roof jacks and posts are used close to the face and in some cases it is necessary to move the posts to make room for the lomer. Working only on remaining pillar coal makes it impossible at times to have more than two working places per londer.

At the Arkwright Coal Co., mining the lower 7 ft . of the Pittsburgh seam and leaving top conl to hold the roof, eight men on the tipple pick the plus-2-in. sizes, said Fi. D. Gull, superintendent. Jist year the company installed track-mounted londers; because it has no merhanical means of clenning on the outside, great care is required in face preparation. Rooms are driven 270 ft . deep and the pillar is taken on the retrent. Mounted machines with $9-\mathrm{ft}$. cutter hars do top cutting aml vertical shenring. Shooting then is done from the bottom to prevent breaking up lenses of impurities near the top.

Preparation Problems Up

DRYING is one of the weakest links in the whole cleaning process. declared K. R. Bixhy, gencral manager, Midland Electric Coal Corporation, in opening the session on preparation problems. Crushing: screening and blending and the more exacting standards in preparation of coal for metnllurgical purposes, as contrasted with ordinary commercial uses, also were emplasized at this seasion. Anthracite problems were disusserl from the standpoint of the practieal limits of slate removal.

Consumer reactions rank first and the selection of drying equipment second. said Mr. Bixby. Centrifugal drying is favored for s-in. and smaller coal, and heat drying for the larger
sizes. Degradation, he continued, limits contrifugal drying to the smaller sizes. In the heat systems, most of which use sereen plates to support the conl. reduction of surface temsion and rapid removal of the vapor are prime considerations.
J. B. Morrow, preparation manager, Pittshurgh Coal Co., remarked that dryiug is now a subject almost as important ns washing. T. W. Guy, consulting engineer, agreed that mecting the eonsumers refuirement in the first consideration. but cautjoned against the rconomise whste of tukiner ont an excess and leating lest of the natural product to sell.

Two installations of the "IRotro Iouvre" process are now working, one
at Willow Grove (Ohio) mine of Hama Conl Co., amb the other at the Currier Mills (III.) phant of the Delta Coal Co., said N. L. Davis, LinkLelt co. Feed to the hama unit is 32 t.p.h. of $\frac{1}{2} \times 1$ int of $1+4.2$ per cent moisture (wet basis) and the protuct contains 2.50 per cent moisture (dry basis). It Carrier Mills the feed is 70 t.p.h. of $3 \times 0-\mathrm{in}$. coal.

Experiente revaled that when the top size was stepperd up to 1 in . there was a tendeney for the dried cond to fire in cars and in storage. This tendency was due to the redued surface prer unit of volume for the latger pieses. resulting in rapil climination of all surface moisture and consequent early heating of the wal itself in the dryer. To guard against volatilization it was found uevessary to limit the heating of the ewal to 155 der. F. Mr. Morrow addex that successful heat drying depends mpon relocity, or "power in the air." as well as upon the heat application. Sulphur iu ceal is "not a minor detail" ii fan blades are eaten up in a few mouths.

It still is desirable to proluce maximunz lump in mining, even though erushing is uecessary to supply the demand for small coals or to obtain more thorough eleaning. asserted H. k. Hebley, chal preparation engineer. Conmervial 'lesting \& kingineering Co., in describing crushers and sereens now in use. Small coal without an excess of fines should be produced by careiul and proper erushing and not by heavy
shonting and rough hambling during mining. New crusher designs to produce stoker coals have come into use. These new designs include prramid teeth and pick points.

Always the buyer is right and, although already doing a good job of crushing and screening, the producer continues to iuprove his equipment and thus increases the cost to the consumer, said W. J. Borries, general mamager, Dawson Daylight Co. Combustion engineers could do a great service by establishing size standards which would limit size demands.
Suceess in building a fine-coal screen which will self-clean after receiving a slug of wet coal was reported by (r. R. Delamater, WV. S. Tyler Có. Dry-coal screenitag down to $2 s-m e s h$ is now practical but it was a battle to increase the life of the stainless-steel facing cluth from two seven-hour shits to the present several mouths.

Quantity of machiue cuttings going into the output at certain times during the day is the largest factor in variation in screen analysis. said 0.0. Malleis. District 8 producers board. Citing tests reported in the proweedings of the Fuel Eugineering Division. Appalachian Coals. Inc., be stressed that results of nut-slack screen analyses through the Southeru fields were very much alike; that is, the percentage variations were relatively small. Mr. Hebley pointed out that swings in material coming from the mine during the day often sccount for the condemuation of certain cars.
"I wish it would hurry and get quitting time. I'm due at a banquet at six-thirty."

Three combination Link-Belt SimonCarves wet and Stump dry plants placed in service in May, 1936, and one combination Rheolaveur and American dry plant placed in service in 1937 were described in rapid-fice detail by E. C. Carris, preparation manager, Ishand Creek Coal Co. He emphasized the necessity for presizing equipment that performs a sufficient number of separations and that has ample capacity to take care of present needs and future changes in washing or blending requirements. Three 125 ton steel bins, elevators, feeders, control gates and belt conveyors comprise the blending equipment of each plant.

Plant operators are furnished with charts showing proper settings of equipment to secure given results. Twelve men comprise the crew of each cleaning plant and because samples are taken every 10 minutes ior analrsis in a central laboratory, and plant operation is governed by charts, it has not been diticult to secure plant ioreman and operators of the right caliber.

Drying Stoker Coal

Drying of lfatin. stoker coal is doue by high-velocity hot air as the coal passes over inclosed shaker screens. Cost of drying is $1 \frac{1}{2}$ c. per ton of dried material. Feed to the screens contains $5 \frac{1}{2}$ to 6 per cent moisture. Dried at 500 deg . F., the resultant product carries $2=$ to 21 per cent moisture: at 700 deg.. 1.9 to 2.2 per cent: at 1.000 deg.. it is practically bone dry. With the same acmount of cold sir, the coal carries 4 to $4 \frac{1}{2}$ per cent moisture.

When cleaning coal for metallurgical purposes. deelared F. A. Jordan, mining eagineer, Foungstown Sheet \& Tube Co., the standards of operation of the plants previously described wouth produce results of "almost nothing." A 0.03 -per-cent increase in sulphur. froza 1.2T to 1.30. for example. iuvites "nasty questions" from a coke plant. Mr. Jordan said he would not think of drying plus \ddagger-in. coal by heat lecause it can be done much cheaper by mechanical meuns. The plant foreman should know "a lot" about cleaning :and should make more tests than anyone else. It is good luck to pick the one man in fitty with the right temperament for a good preparation foreman.

Answering H. L. Richardson. Jr.. West Kentucky Coal Co., Mr. Jordan said that in 1937 the cost of washing 1.400 .000 tons was 11.2c. per ton, including 3 c . for depreciation, taxes and so on. If allowance were made for discarding a mined product that possibly cost $\$ 2$ per ton, the cost in some instances might be l0e. per ton more. Thorough cleaning, therefore. might cost $1 \overline{5}$ to 30 e . per tou.

The higher staudards of anthracite cleaning were outlined by D. B. Baird. clsiei coal inspector. Philadelphia \& Keading Coal \& Iron Co. Impurities to be eliminated generally are classed as
either free slate (55 per cent or more ash) and lixed slate which contains admixtures, such as laminations and bone. Cleaning methods are now in use which will bring the free slate content approximately to zero with negligible bank loss.

John Griffen, Koppers-Rheolaveur Co., cautioned against the tendency to allow the ash content to be forced down to an uneconomic point. There may also be a loss to the producer by excessive crushing to accomplish this too-perfect cleaning job.

Don't Sell Safety Short

"WHEN you pull up safety, you also pull up efficiency," declared Eugene McAuliffe, president, Union Pacific Coal Co. The readiness to take a chance which makes mines unsafe may also be used to create safety. A man may take a chance that he will not be injured if he violates safety rules, but he also may enter into a competition where the opportunity to attempt to cheat death and injury is suriended for the chance to win a prize for having taken all due precautions against accident. His company plans to induce men to replace one kind of chance-taking for anotherand the plan works.

In establishing better safety records for the Bell \& Zoller Coal \& Mining Co., the first endeavor was to sell safety to the bosses at the mine, asserted John Lyons, safety engineer. The mines also were visited and investigated by the U. S. Bureau of Mines and suggestions made. Comparisons lave been made between the record of the company and those of other companies to encourage the competitive spirit and to learn where the methods adopted are defective.

At the mines of the United States Fuel Co., in Utah, stated W. W. Wetzel, general superintendent, bosses receive awards of from $\$ 5$ to $\$ 25$ a month for commendable safety records. In his opinion, safety bulletins may be so generously spread around as to attract in time no more attention than is given to the paper on the parlor wall. Such appeals can be overdone.

Biweekly Reports Made

Reports are made every two weeks by the Bird Coal Co., Johnstown, Pa.. showing the costs of compensation. hospitalization and medical aid, so that every official will realize the burden thus laid on costs of production, said J. J. Coffey, operating manager.

When trolley lines are so poorly installed that the motorman with his hand on the pole must guide the trolley in order to keep it on the wire, how can he be expected to keep his attention on the dangers ahead? When switch points will not close and are not clean, how can accidents be avoided? inquired D. W. Jones, superintendent, Princeton Mining Co. Safety cannot be expected if car couplings are made "on the "fly" and trip rumsers dart in front of speed-
ing trips over badly cleaned tracks to throw a switch. Clean the tracks and stop the trip whenever and wherever men must travel ahead to handle the switch levers.
With the large trips customary today, the steel car is essential for safety, as are also other railroad adjuncts to safety, such as automatic couplers and heavy rail and ties. Swags and hills should be lighted, for vertical curvature blocks the view ahead. On sharp pitches, derails are needed, lest ropes or couplings break. As for safety instruction, bank nights are to be recommended. They bring out the men.

Among the suggestions of William Lauder, assistant production manager, Pittsburgh Coal Co., were headings driven carefully to sights, adequacy of equipment, easy curvature, rail braces, heavy rails and ties, adequate headroom. For disobedience to safety rules, a suspension of a day or two, and for the second offense discharge is imposed. Since men will step to the tight side of the heading even when safe clearance is always provided on the same side of the track, Pittsburgh Coal Co.
leaves enough room so that a man flus. tered by an emergency can escape on the tight side by flattening himselif against the rib. True, that is the trolley side and he is risking electrocution, but the company believes that it is better to leave room so that, should men thus risk their lives, they nevertheless may save them by making the most of the conditions created by their folly.

In Ohio, the State Industrial Commission's reports are used to promote competition in safety. Mines are pitted against each other to see which can make the best record. As a result of this and other safety moves, the Wheeling Township Coal Mining Co.'s record, declared C. E. Young, personnel manager, shows that tons per accident have increased 91.6 per cent since 1929. Those companies which participate in the contest have four times as enviable a record as those which abstain. It is inspired-not compelled-safety, and inspired safety lasts.

An ineflicient mine cannot be safe. however much accident-prevention work may be done, declared F. E. Cash, district engineer, U. S. Bureau of Mines. Contests between sections of mines are better than contests between men at different mines. The more the contests are expanded, the less intensive the competition.
Two motion pictures have been made by the Koppers Coal Co. at Powellton. W. Va., and the development of a third is in progress. Parts of these pictures were shown by C. R. Stahl, division superintendent. Realistically they show the effects of not following safety rules at the face, on the haulage road and in haulage. These pictures are shown to the school children in the morning. to the women in the afternoon and to the men after working hours.

Keep the Wheels Turning

MAINTAIN to "keep out of trouble" instead of to "get out" of it was the advice of E. A. Rickard, chicf electrician, Koppers Coal Co., Weeksbury, Ky. Proper maintenance, W. E. Wolfe, clectrical and mechanical supervisor, Clinchfield Coal Corporation, pointed out, has a direct relation to the economical use of power. Aspects of power service and distribution at both mechanized and hand-loading operations also were scrutinized by otler speakers at the convention sessions. One such presentation was devoted to proper power distribution for conveyor-mining systems.
Electrical maintenance, said Mr. Rickard, is principally maintenance of insulation; therefore it is necessary to understand the properties of insulating materials. Commutator maintenance is reduced by keeping away oil, which attacks the mica binder, causes
aceumulation of dirt and final breakdown. Beveling edges of commutators after they have been undercut reduces chance of failure; when new brushes are installed their edges should be beveled. Bearings are an important maintenance item; whether they last a few months or many years depends principally upon lubrication and protection from dirt. For both gas and are welding of large and complicated shapes, charcoal preheating was mentioned as a useful auxiliary in the Koppers shop.
The character of maintenance, declared Mr. Wolfe, may determine whether a company stays in business or goes into receivership. Proper care of machinery calls for a systematic program of maintenance and inspection. Operation of equipment at high power factor saves money for both the mining and power companies.

A motor manfarturer was able to reduee the weight of a i idhp. Class A moter trom 2 2ta to 183 16. We ase of ghase insulation. stated Randall Hagher, Gwens-Hhinuis Glass (bo. who pretheted that subh insulation, still muder, developument, will be ontstanding in mining. Its permanome is due to resistatue to high temperathre, acido alkalis and moisture. Spare saring "ha is important and the heat comductivity of glass is clamed to he supurion to eretain other insulations.
New liver co practice for the last forment yeats has byen to use sumface suhstations and take diese curvent into the mine threserh boveholes satid C. C. Ballard, master mevhanic. The cmbsam, howewer, has usel $2.3\left(\begin{array}{c}\text { (}) \text { wolts }\end{array}\right.$ undegremed with no trouble for many bars to drive pump motors, Developmont of mon-intlammable transtormer liquids and portable substations was clasent as a bew factor to be centsidend when planning chanmes in moner distrilution.
One l, own mionerimil fevter sud at Bom, monombil trolley wire suspended by a Embluation clamp has inen the Niw River cin practioe for seversl vows and has proved highy sstistacfory and much chazer tian carrying the beeder en separate insulators Autemasto rewsing mexkers shoula \& ussi far isobeting suhstatioms from each other in sase of temble and should be uset letwew the mains and th woblur sotions. The alvent of the seven hoar day am? imsequent ncessity for phustige swall leaks has
made the use of sectionalizing breakers still more desirable.

The return is the "forgotten" section of the d.c. power circhit. There are three principal types of honds: (1) pin-driven, (2) are-weld copper and (3) mild steel areweld. The third. concluded Mr. Ballard, fimels much wider use than the copper arc-weld hemuse the latter requires more thorough cleaning of the rail and gives trouble in application if mosture is present.

For mechanical loading, copper is too costly for loug-line distribution sutticient to maintain proper voltage at the face, so the onle alternative is to keep the substation close to the working face, stated Andrew Hyslop. Ir., electrical mgineer. Snow Hill Coal Corporation. At Talleydale mine, $4.000-$ volt a.c. power is fed to inside rotary converter substations by wire-armored cable down the shait and rubbercovered cable through the mine. Substation rowns are protected by automatic steel firedmors and the concrete foundation includes a $6-\mathrm{in}$. raised rim or curb around the sides to contine insulating oil in case of transformer ditticulty.
Mr. Myslop thought $t / 0$ erolley wire preferable to b/0 ior mechanical-loading sections where the wire must be nowed oiten and is paralleted by fieter wire. Ease of coiling and hamding $4 / 0$ wire outweighs the disadvamtare of hower conductivity. Heavy main iluls where rapis wire wear is a inctor may justify the use of the
$" \rightarrow n$ ' who shall I say is calling, please?"

larger trolle wire. Where substation generaturs are operated in parallel, it is important to install automatic reclosing circuit breakers to isolate any one in case of trouble.
F. P. Brightman, General Flectric Co.. emphasized the adaptability of the portable substation for delivering ample power efliciently to the working face. The new non-inflammable transformer liquids add to the possibilities of keeping underground substations close to the face. He warned that lightning may travel into a mine via an underground high-voltage a.c. cable and damage rotating equipment unless that equipment is protected both by a lightning arrester and a capacitor.

Power for Conveyor Mining

The objectives of power distribution for conveyor mining, according to L . H. Schnerr. division manager, Consolidation Coal Co.. Somerset, Pa., should be (1) salety, which is covered by State regulations: (2) efficiency, which means few delars and low production cost, and (3) ease and convenience ni transier to a new location. A portable panel board with reversing conveyor control used at the losding head is not disconnected therefrom when moving but is laid complete with its rail and trolles leads on top of the head for transportation.

Mining machines are operated from a separate cable nipped to the trolles. Conforming with the law, cables are kept off the floor. and for this purpose special non-insulated metal loops kept permanently on the cable are attached to props by driving into the weod a pointed part which is turned 90 deg. to the hanging loop. Cable is positioned milway between floor and roof.

For mines where closed equipment is denanded there is a definite need for a pernisible multiple junction box for use at the face. The lack has caused som:e aperators to return to the use af individual cables extending to the thom necks Insulation iailures in drill cal:s at or near the point where the cables enters tie drill have not been solres. even by use of rubber-hose protecters

Lise of an orethad citcuit breaker on the bonding-head namel bard through whici: a!? mower for the canveror unit is entivere? was alvocuted by H. P. Musser. Test Virginia Engwaring Co. Two pans for miminlanz pomer boss thoust, rom cables were adrameni: T. use three vibles aneh 100 it , long with conmoturs puiting the power through all three callos in series paty Euring at thith of the miming: and :asing oubles of larger size twan the

Muphasing the necossity for redueing thouratic lose Mr. Masser puinted ont that a typient loss of zots ku. in a 300 it. No a y wachime behte mas te maltiplted 35: 1.25 to 2.23 to determime therel has in tich imeluds the transmission ti the whint of sible tewi Tote? has by rowne of tho saible resistsuce way be betwaen 3.3 ank: Fm

Speeding Up Haulage

HOW TO LMPROVE underground transportation was the theme which ran through several addresses at the Cincinnati convention. Road construction and maintenance, rail weight, nutomatic couplers and brakes, and the dangers of overloading minelocomotive motors all came up for special discussion. Transportation problems with mechanical loading was the subject of a detailed presentation at one of the sessions devoted to mechanization (sce page 46).

Derailments inevitably will occur, declared E. H. Jenks, mining engineer, Rochester \& Pittsburgh Coal Co., unless improved gradients for main track replace rolling floor-profiles. Where track is to be reasonably permanent and where traffic density is considerable, $80-1 \mathrm{lb}$. rail is fully justified for main lines. Tie sizes vary from 4×6 in. to $7 \times 9 \mathrm{in}$. and their lengths exceed track gage by 18 to 36 in . He regarded $6 \times 8 \mathrm{in}$. as the preferable cross-section. Depth of a tie should be at least $\frac{1}{2} \mathrm{in}$. greater than the length of the spikes to insure adequate spike adhesion. Spikes should be large enough to hold the rail and prevent spreading, but not so large that they split the tie.

All Ties Should Be Treated

All ties, said Mr. Jenks, should be treated. Those in temporary track can be used over and over if the spike holes are plugged with wood similarly treated. Sixteen ties per $30-\mathrm{ft}$. rail are preferable to more, because the lesser number can be tamped more readily, giving more rather than less rail support. Ties preferably should be sawn, not adzed, because what is desired is a tie with a face as wide as any part of its cross-section, thus learing maximum tamping space and giving maximum support. Type of ballast is less important than superstructure. After five or six years, because of droppings from ears and roof and the heaving of the softened bottom, all forms of ballast will have much the same characteristics. Support shoukd be provided by ballast under rails and under tie ends, but the material under the center of the tie should be relatively loose.

At his company's mines $80-1 \mathrm{lb}$. rail have been Thermit welded and, though derailments have thrown the track 2 ft . out of line, no joints have failerl. Thermit joints have now been adopted as standard on permanent track and are installed along a mile of track at one time. With ordinary track 90 per cent of the maintenance costs is for work on the joints, but with Thermit welds all the labor can be spent on ditching and tamping. With manifest advantage to the track. Maintenance
of track is more important than heavy rail and large ties.
Observation has shown, said F. B. Husband, general manager, Chesapeake \& Ohio Ry. coal mines, that curvatures in the mines run from $30-$ to $700-\mathrm{ft}$. radius, elevations from 1 to 4 in. and widening of gages on curves from $\frac{1}{18}$ to 1 in . Too often elevation and gage width is left to the judgment of the trackman. To Mr. Husband, 80-1b. rail seems excessively heary. In all cases of mine track 60 lb . is enough, but any track will be destroyed if inadequately diteled.
So long as cars were of small capacity, the surcharge for modern draft rigging was too great for any such improvement, but with the larger cars a recognition of its value is rapidly growing, declared Sheldon Smillie, speaking for his associate, P. F. Ioftus, consulting engineer, Pittsburgh, Pa. With semi-automatic and automatic couplings, large reductions in accidents from car comnections are effected. Spring couplers cushion the jerks from the locomotive and thus prevent loss of coal and degradation. They also largely prevent the wracking of cars. Less sand also is required. Cars should be of the same general design, front and back, so that they can be run into the
room with either end forward. Automatic draft rigging will cost $\$ 30$ to $\$ 75$ per car ummounted.

Hydraulic braking for mine cars has been found desirable by the Pardee \& Curtin Lumber Co. at its Bergoo No. 4 coal mine, according to E. P. Selby, mine superintendent, speaking for F. K. Day, general mine superintentent, and himself. At this time, 150 allwelded swivel-coupling mine cars 14 ft . long, $6 \frac{1}{2} \mathrm{ft}$. wide and 24 in . high, $3,900-1 \mathrm{~b}$. tare weight and 42 -in. track gage, are tlus equipped. The cars will carry of tons, but the average loading is 4 tons. The hydraulic pipes are protected by a $1+x i+x+$-in angle. Travel of pistons from the off to the on position is 6 in. Bendix brakes are used; they save 260 lb . in the weight of the car. In the nuthor's opinion mine locomotives also should be provided with hydraulic brakes.
With occasional heavy gradients, followed by others less severe, there is less likelihood of heating locomotive motors than when the inclinations are more even and where, accordingly, the management provides that the locomotive will be loaded up to its maximum eapacity at the ruling gradient. The motors are therefore overloaded for the entire length of the rumand may become overheated, urged Carl Lee, chief electrical engineer, Peabody Coal Co. In such eases, it may be safe by proper ventilation to double the burden on such motors. Headlights give much trouble. With arc lamps, the light may go out becanse of low voltage. Lowvoltage lamps that will operate at 32 volts are a satisfactory solution.

Spotlighting Mining Methods

DISCUSSION of mining methods at the Cincimati convention was concentrated on shaft sinking in Alabama and Colorado, improvements in cutting practice and equipment, and face preparation. Problems introduced into face preparation by the installation of me-chanical-loading equipment also were reviewed; this particular phase of the subject is treated on page 4.5. The program included only one major presentation on ventilation-the installation at the Caretta mine of the Carter Coal Co., described hy William Norris. Jr.. safety director of the company, and a discussion of this paper and propel-ler-type fans by A. Lee Barrett, Dittslurgh Coal Co.
With the higher loading rate grow ing out of a shorter workday and crushing coal to stoker sizes, declared C. F. Comelly, general manager, Kemmerer Gem Coal Co., it has become difflcult to keep down unnecessary coal breakage. Workers strive to save the time required to change jackposts, but when they are not reset, the face cannot he cut without gripping the ribs.

Too many cutters will grip the rib from 20 to 24 in ,, whereas a 12 -in. grip should not be exceeded.
In discussion. W. D. Ingle, Jr., general superintendent. Ingle Coal Co., said he refrained from using water on the cutter bar because of the disastrous effect on bits, cutter chains and electric cables. Standard $1 \times$ din. bits had been replaced with "Duples" bits, because of rock in the undercutting. Without due taper, the standard bit grinds the coal to picces and operates with increased frictional resistance, while with greater taper the bit is weakened and breaks. With the new bits, cuttings are 7 per cent larger and power consumption is down 30 per cent. Alloy steel is more expensive than ordinary steel, but bit weight is cut in four. Bits are discarded when dulled.
"Duplex" bits are retipped at the mines of the Nellis Coal Corporation, said C. W. Commor, general superintendent, and give better results than new. The No. 2 Gas seam at Nellis is very hard, and a set of ordinary bits was

"Oh! Hello, Hapgood. Quite a coincidence, isn't it?"
dulled in cutting a single place. Now. fourteen places are cut with one set of the improved bits. Four tons per "Duplex" bit. ssid Mr. Ingle, is the performance he has obtained. Experiments are being made, asserted Mr. Connor, with a 9 -point wave lacing. It may inerease power cost, but he feels sure that it will give coarser cuttings.
In some fields, deelared Paul Weir. consulting mining engineer, the rate for cutting with the old breast machine is no lower than when using the most modern of "universals," yet even in these cases the adrantages of mobility. decreased shooting and protection of roof made the use of the modern equipment desirable. Such universal machines are now provided with caterpillars, when desired, and a machine with preumstic tires also is offered.
More adrances have been made in cutting machinery in the last three Years than in the prior thirty, asserted HI. A. Christy, Wheeling Township Coal Mining Co. In the No. S seam of Ohio, where rooms and headings are driven s ft . wide, cutting and shearing machines save the roof from breakage and incresses the yield of 2 -in. lump from 18 to 40 per cent. The coal can be sheared on both sides of the entry. but if only one side is to be sheared it should be the one from which rooms are turued. as it requires the greater protection in shooting. The shots are placed on the opposite side.

Sixteen to 60 ft . is the usual range of collar depth required in shafts in Alabama: leading 0.45 cu.yd. of rock
per hour is expected of a mucker, and 14 ft . of hole per hour is expected of each driller: those were some of the general observations of Percy G. Cowin, Salmon \& Cowin. Inc., who spoke on shaft-sinking methods in that State. His company employs white hoistmen and drillers but colored muckers. Usually drill men work on the night shiit and muckers during the day. Paying a bonus, one-hali of it with the regular pay days and the balance upon completion of the job, has reduced labor turnover.
Pressure grouting from a prospect drillhole was used recently to cut off a 125-g.p.m. water flow before sinking a $14-\mathrm{ft}$. shaft 230 it . deep for the Gulf States Steel Co. Upon redrilling the hole after the first grouting, $25 \mathrm{~g} . \mathrm{p} . \mathrm{m}$. persisted, but this was cut to $\frac{1}{2}$ g.p.m. by a second grouting. The usual prac tice in shooting is a hole to every 4 sq.ft. of area in the smaller shaits and every 6 sq.ft. in the larger.
The company just finished sinking a $23 \times 12 \times 450-\mathrm{it}$, unliued shaft at a SlossSheffield mine, with a concrete curtain wall. Aiter the shaft was completed the wall was begun at the bottom and the work done by using steel forms 12 ft. high to which were attached work ing platiorms. Four hours was re quired to raise the forms and place the seals ready for the next pouring of concrete. Sillmon \& Cowin now use detachable drill bits: so they no longer take shop equipment into the field. All bit sharpening is done in the central shop in Birmingham.

Forty-fire days anil $\$ 4,009.25$ total lathor cost ($\$ 13.69$ per foot) for an Sx10x203-ft. air shaft and 55 days, $\$ 6,366.50$ labor cost ($\$ 20.49$ per foot) for a $10 \times 17 \times 304$-ft. main shaft were the records made at the recently opened New Continental mine, Boulder Valley Coal Co., north-central Colorado, said Fred Nesbit, vice president of the company, in a paper read by T. E. Jenkins, president, National Fuel Co. Before starting sinking, which was done by three-shift work using the company's own miners, a prospect hole, later used for a power cable, was drilled at a point midway between the proposed shaft locations. This hole indieated 10 ft . of surface material, 8 ft . of gravel containing water, 20 ft . of clays, 2 ft . of limestone, and the remainder all highly varied strata.

For the main slaft the 3 -in. planking used in the diflicult first 50 ft . proved too light, but it was too late to change to 4 -in. material. Blue clay was puddled in back of the timbers to form the water seals. Sinking the air shaft was done with a $40-\mathrm{hp}$. single-drum permanent hoist. At the main shaft the work was done with a $50-\mathrm{hp}$. temporary hoist later replaced by a 300 hh . Vulcan double-drum hoist. Shaft timbering is Oregon fir and the lagging is 2to 3 -in. plank. Mine development from the shaft bottom was done with two Goodman shaker conveyors. Equipment now working in the mine consists of nine Goodman and two Vulean shaker conveyors. Storage-battery locomotives are used for haulage.

Hand Loading in Thin Seams

In 1037, the Bradford mine of the Alabamar By-Products Co.. said W. C. Chase, general superintendent, produced 260,000 tons by hand-loading into mine cars in coal averaging less than 24 in . thick. The seam is the Black Creek, which rums from 1 to 30 in.; at this location the sections of workable thickness lie in lenses less than $1,000 \mathrm{ft}$. long.

A room-and-pillar system is used with rooms driven 25 to 30 ft . wide but not on centers, as are the entries. Room directions are varied to follow the line of thicker coal. More than 4 ft . of rock is taken on entries and height for the $28-\mathrm{in}$. cars is provided in roons by lifting bottom to within 7 ft . of the free, thus leaving a bench on which the mining machine works. Proxluction is 1,400 tons in a 7 -hour shift during which 1,000 tons of rock is hauled out for dumping on the surface.

Installation of a 13 -it. Aerodyne fan at Olga No. 2 mine of the Carter Coal Co., together with a new air shaft $20 \frac{1}{2}$ ft . in inside diameter and 75 ft . deep close to the workings, said Mr. Norris, increased air volume 218,000 c.f.m. with an additional power expenditure of only 70 hp . The primary object of this ventilation improvement was to increase volume above the existing 500 , 000 c.f.m. which was limiting production due to the very gaseous enditions.

The new fan, completed in September, 1937, works in parallel with a 14x6-ft. steam fan (both blowing) near the hoisting and man shafts, both of which are upcasts. Tests with the two units indicate that when fans operate in parallel their pressures should be "somewhere" near in balance. That was indicated by a short-time halfspeed test of the Aerolyne while the steam fan was operating at normal. In that case the new fan produced practically no flow.
A test on the Acrodyne with the steam fan stopped and its air shaft closed showed 453,000 c.f.m. delivered at a $5.1-\mathrm{in}$. water gage, 531 l 1 p . and a ventilation efliciency of 73.85 per cent. In that test air-velocity readings were taken at the bottom of the shaft by the traverse methods regularly enlployed at the mine and did not take into account some small leakage known
to exist. From a manuiacturer's test made later, the efliciency was calculated to lee 78 -plus per cent.
the new fan has a General Electric (604-hp. direct-connected - synchronousmotor drive and a $500-\mathrm{hp}$. motor drive through a countershaft and V-belt. Because power is purchased for the new fan, it is operated at the lowest speed which will produce the required amount of air and allow the steam fan to operate at full load. At this time the $500-\mathrm{hrp}$. motor is in use and the apeed is considerably lower than if driven by the $600-\mathrm{lp}$. motor. By a elange of V-belt pulleys a still lower speed could be obtained. At first the (wo fans together produced 720,000 c.f.m. and consumed 890 hp . Later, after certain air restrictions inside of the mine were removed, the volume jumped to 774,000 c.f.m. and the input to 980 hp . After that the Aerodyne
speed was reduced to cut purchasedpower cost.

Fifteen propeller fans of the Troller type (Coal Age, January, 1036, n. 15) are now in use by Pittsburgh Coal Co.. said Mr. Barrett. A peak efficiency of 89 -plus per cent has been attained, velocity pressure deducted. The fan has anl adjustable-pitch blade which provides a wide range of high efficiency. Improvenents in the Troller fans during the past two years include the substitution of metal for wooden blades, use of split bearings and pulley, and a general change of design which provides accessibility and allows removing and replacing any part in 3 to 4 hours. A Troller-type installation recently completed at a Frick mine and moving 119,000 c.f.m. against a $2 \frac{1}{2}$-in. water gage has an efficiency of 85 -plus per cent (traverse-test velocity pressurc deducted).

MECHANIZATION GROWTH + Keynote of Equipment Exhibits

At Cincinnati Exposition

EQUALING the 1937 show, the biggest in history, nearly 150 manufacturers and service organizations presented many new and improved products for coal mines and preparation plants to operating men attending the 15 th Annual Convention of Practical Coal Operating Men and National Exposition of Coal Mining Equipment, held at the Music Hall, Cincinnati, Ohio, May 2-6, under the auspices of the Manufacturers' Division of the American Mining Congress. Mechanization of both underground and surface activities again was the theme of the exposition, paralleled by greater emphasis on measures for increasing the operating life of equipment and promoting safe working conditions for mine employees.

MANUFACTURERS of equipment for cutting, drilling and loading coal again emphasized increased productivity in machines displayed at Cincinnati. Improvements in units already developed were stressed and a number of new machines were offered. Barber-Greene Co., Aurora, Ill., for example, showed a new portable belttype underground conveyor, available in different heights and sectionalized
in $6-\mathrm{ft}$. lengths for easy handling. Lightness and strength and the use of standard troughing and return idlers were pointed out.

Bowdil Co., Canton, Ohio, displayed, in addition to Bowdil machine and auger bits, cutter chains and cutter bars, a standard Bowdil chain arranged to take two bits side by side to replace chisel bits in tough, woody cutting. Another item was a replace-
able auger point of the "throw-away" type. This bit fits in a special head welded on the end of the anger and is said to save taking augers outside for resharpening, in addition to keeping them the same length.

Stripping and excarating equipment for coal-mine use was shown pictorially of Bucyrus-Erie Co., South Milwaukee, Wis. Underground conveyors were featured by Carnegie-Illinois Steel Corporation, Pittsburgh, Pa., a subsidiary of the United States Steel Corporation. Portable hand-held and mounted elec-tric coal drills in both open and approved types, rotary hand-held airdriven drills, one-piece "twisted-steel" augers; special auger cutting heads; a post head bringing the drill to within 3 in . of the top or bottom; and other drilling specialities were displayed by Chicago Pneumatic Tool Co., New York. which also offered a new CP- 32 rock drill in the $45-\mathrm{lb}$. class.

The "Duplex" bit-making machine for turning out an average of 500 to 600 bits per hour from bar stock was demonstrated by Cincinnati Mine Machinery Co., Cincinnati, which also offered regular- and thin-kerf cutter bars machined from solid heat-treated alloy steel. "Duplex" cutter chains, and

Drive section of La-Del RU-16 uphill and reversible shaker conveyor
rexular alloy-stmel cutter bars and rlains to mateh.

Landing oft the exhibit of (toulnoma Mig. Con., Chicago, was the Tyje 3tio track-lomding machine, whieh follows the lesign of the origimal 260 unit except that it is 12 in. lower. Higher speeds and dertain refimements were stated to wive a high loadinge eapacity, thus making it possible to censider comes as low as 4 it . high-tommage setums.

A Type 11 led reversible shaker-converoe drive having four spreds in the direction of cosel travel and there in reverse for transforting supples was another Gimbluan offering. The fourth wobl motion was devedred to have suttioient "kick" to drive cobl up at severe grade, us when the pan line is just stayting and comseypently is short. Along with the above drive wats a 'Type A13 automatic duckbill, said to elimimate the nevessity oi training an sperator to skilfully synchronize the operation of the hamile with the stroke of the drive inasmuch as it is only necerssidy to sot the handle in the desirey pasition: forward, reverse or leckerd. 'The duckbill also may be "perated by hame., ii desicted.

Gondmail stso showed the gJ. IEIS "Rombelt" featuring a provision for storing surplus belt in the olviving head. Usthally 1% it. of belting or E! ft. of chnseyor. With chis storage, if
was printed ont, and the sliding telescopie section at the tension end, the romvere quickly may be extomded the full length of the surplus belt. It is
 and is satid to be able to operate better over swales or sags.

The Type sï "MeCurthy" mobile comveyor was mother Goodman unit. It consists essentially of a sectional chain conveyor on wheels equipped also with an electric cable reel and two wirt-roper reels. 'The eomevor, as wide as the bottom of the car, moves the coal wut oi the loader's way as he shovels it into the inber and of the convevor. When the conveyor is loaded it is moved out by one of the wire ropes and the conveyor is started up to discharge the coal. The empty unit then is returned to the face by the second wire rope.

With a 512 shortwall standing by for comparison. Goodman also displayed a 'rype 612 shortwall teutter, described as a low-pricet unit for converor mining. Verg similar to the Sla, the new unit is equipped with a 20 -hp. motor and drum-type control. Body length is jif in.: height, 23.2 in. With a thin-kerf bitr and special underimme. height is reduced to 21 in. limereut depth is $6,6 t$ and $i \mathrm{ft}$.

Featurins the 95.5 Le dragline with 100-it. aluminum-alloy brom, special gantry and 2 -cut.yd. bucket, Harnisch-

Top left. Geodman 95AR18 "Roombelt"; lower left, 87A "McCarthy" mobile cenveyor; right. Type 360 track-mounted loading machine
feger Corporation, Milwaukee, Wis., offered Ω pictorial summary of P\&H excavators.

Undergroumd mechanization equipment displayed by the Jeffrey Mfg. Co., Columbus, Ohio, ineluded the $\mathrm{I}-400$ track-mounted loading machine, the 20-U track-mounted cutting machine, A. 3 post-mounted and A-T hand-held electric coal drills, and the 61-FiG face and 61-AM room conveyors. For use on the $-1-7$ drills. Jeffrey also showed a new safety clutel, which fits onto the shank shait. Of the friction type, the cluteh protects the operator from a whirling drill in case the auger sticks.

Joy Mig. Co., Franklin, Pa.. in addition the $11-13 \mathrm{U}$ loading machine, Joy shortwall eaterpillar truck, and a heary-duty portable face conveyor in lengths from 24 to 50 ft ., with power in proportion, for driving crosscuts, mining long faces and extending chain convepors. displayed a new Joy, Jr., loading machine. The latter was stated to have a 50 per cent greater speed, raising the rated londing capacity to ly tons per minute. At fully automatic control revised for easier operation, simplicity and lower maintenance was another feature of the new Joy, Jr.. which has a height of 26 in . and is adaptable to coal as low as 30 in .

Supplementing sections of other types of belt and chain conveyors. Lat-Del Convevor \& Mig. Co.. New Philadelphia, Ohio, offered a new uphill and reversible shaker converor (Model RU-16) designed to convey coal uphill anci at the sime time follow irregularities in the mine bottom without interference with normal operation. It eliminates elevators and the reversing feature permits also moving supplies to the face. Other advantages cited br the manufacturer are: low operating cost. low maintenance and extreme mechanicul simplicity.

A section of an underground belt conveyor was shown by Link-Belt Co., Chicago. Stripping and loading shovels and draglines were presented pictorially If Marion Steam Shovel Co.. Marion, Ohio.

Prox Invincible "TooLSteeL" cułfer chain and bit

Myers-Whaley Co., Knoxville, Tem., demonstrated a No. 3 size Whaley "Automat" track-mounted coal-loading machine with parallel-lift rear conveyor and permissible equipment.

Frank Prox Co., Inc., Terre IIaute, Ind., offered the new Prox "ToolSteeJ"" cutter bit and Invincible "ToolSteel"" cutter chan. The new bit, of the crescent type with two points, is made by a multiple-forging process which gives a circular back for maximum
strengtl and cutting power. The bit is made in "Senior" and "Junior" sizes for hard or moderate cutting. Other features cited by the company are: uniform cutting points, perfect clearance, and elimination of paddle or ball points and fins, uneven setting and setserew troubles. The Invincible "ToolSteeL" chain provides a special tool post fitting into a round socket and carties the Prox "lifetime" guarantec. In operation, this chatin has established a record of 30 places cut per shift with an average output of 1.000 tons and has cut over $\mathbf{5 0 0 , 0 0 0}$ tons, the manufacturer states.

Troughing-type portable underground belt-conveyor equipment was featured by Robins Conveving lelt Co., New lork. Truss-frame carriers for underground conveyors were shown by Stephens-Adamson Mig. Co.. Aurora, 1ll. Sullivan Machinery Co., Claremont, N. H., employed pictorial methods to present its line of cutting machines and auxiliary underground equipment. Timken detachable bits for rock drills were shown by Timken Roller Bearing Co., Canton, Ohio.

Speeding Coal Movement

TRANSPORTATION exhibits at the Cincinnati exposition ieatured not only new medin for moving conl but also improvements in equipment hitherto employed. Bronze and steel-welded joints for mine track were shown by Air Reduction Sales Co., New York. American Car \& Foundry Co., New York, featured a new low-type all-steel four-axle car with a new design of
welded end sills and journal boxes, a double-arting spring bumper and a new design of mechanieal brake, stated to be simple, thoroughly dependable in service and easy to maintain. With 14-in. heavy-duty plate-rib wheels, the car has a level-full capacity of $85 \mathrm{cu} . \mathrm{ft}$. and weighs $4,396 \mathrm{lb}$. Wheelbase and track gage are 48 im . Other dimensions are: length over bumpers, 14 ft . lif in.;

Bethlehem mine car with hydraulic brakes

Bethlehem portable turnout

Brownie RD car rełarder

Brownie HGD electric hoist
inside, 12 ft . $5 \frac{1}{2} \mathrm{in} .:$ inside wideh. 6 it. 7π in.; height, 20 in.

Other A.C.F. products included mining-machine wheels and chilledtread mine-car wheels made under the improved A.C.F. heat-treating process stated to give a tread and flange with a Brinell of 500 to 600 deg.. as well as lower coefficient of friction between the wheel and the rail, thus reducing resistauce to car movement. Adjustment of design and manuiacturing to eliminate soft spots on the tread or flange was emphasized by the company in its wheel presentation.

In addition to the Canton automatic signal system and electric switchthrower, American Mine Door Co., Canton, Ohio, featured the Canton mine-car transfer, consisting essentially of a small four-wheeled truck operating on a special cross-track section supplementing the regular working track. Locking dogs with levers are provided to lock a car on the truck, and thus permit it to be moved over to one side of the regular track. The object of the transfer is to keep an empty at the loading machine at all times and thus permit a neare approach to constant loader operation, in addition to other advantages. The transfer may be worked with either one or two tracks and with various car-changing systems.

Baker battery-powered rubber-tired tractors for pulling bottom-dumping trailers serving loading machines under the Fletcher mining system (Tanuary Coal Ige, p. 47) were dis-

Hlayed by Baker-Raulang Co., Cleveland, Ohio. The unit slown was designed for $42-$ to $48-\mathrm{in}$. seams, supplementing tractors now under development for seams as low as 30 in . and over 60 in.

A feature of the exhibit of the Bethlehem Steel Co., Inc., Bethlehem, Pa., was an all-welded rotary-dumptype copper-bearing-steel mine car with four-wheel hydraulic brakes, one of any type which can be fitted with such brake equipment. A 12 -in. movement of the handle applies all brakes effectively, it is asserted, and braking action on all wheels is equalized without a complicated system of levers or intricate linkages. All brake parts, including shoes, are placed alove the Hoor level to protect them from damage if derailed. Spring bumpers are installed on both ends, with spring draft on one. All wheels (forged steel) are equipped with roller bearings. Capacity is 4 tons with the following dimensions: over-all length, 13 ft. 8 in.; width, 6 ft. 3 in.; height, 24 in.; wheelbase, 42 in.; track gage, 36 in; whel diameter, it in.
Another new Bethlehem product was a portable turnout consisting of closure, stock and incline rails, switch points, switeln stand, steel ties and a frog. The turnout is laid on top of the regular track and, it is stated, can be moved when desired by sliding it along. The turnout is guided by permanent flanges welded to the ties and the inclined rails. No bolts are used except on the two gage rods and the splice bars. Bethlehem also offered new-type switch-tie sets in which bolt: are done away with in favor of heary riveted clamps, reducing the number of loose parts and resulting in a more substantial construction. To show switch position, Bethlehem demonstrated a reflector-type target stand which can be seen 200 ft . or more away with a cap lamp alone. The stand can be placed on cither side and stands 12 in . above the ties. Other Bethlehem products included steel ties. forged-steel mine-car wheels, switch stands, manganese-steel frogs and Koppers "Ar-moored" combination stecl-and-wood ties.
Supplementing a new TRF 5x16-in. rubber-covered and TRE 6x16-in. chilled-cast-iron track rollers carried in "sealed" ball bearings, Brown-Fayro Co., Jolinstown, Pa.. offered two new hoists and a car retarder. The "Brownic" - electric car retarder, in addition to handling trips of mine cars, also is suitable for railroad cars. It is provided with an electrically operated brake and rewind mechanism and is arranged for pushbutton control. Rated safe braking-duty rope pull is 12,000 lb . and the retarder is said to operate without shock because of the "soft" aetion of the Thrustor-controlled brake mechanism. The rope is rewound br a torque motor capable of withstanding stalling loads safely.
One of the tro hoists was the HGD portable electric unit designed particularly for use for handling equipment,
supplies, etc., in conveyor sections. Rated rope pull is 2,000 to $2,500 \mathrm{lb}$. at approximately 60 f.p.m. The hoist, which has a silent balanced drive and anti-friction bearings throughout, is provided with roof jacks. The second hoist was the HKL car-spotting unit for handling mine cars at loading terminal or dumping point. Of the low-seam type, this hoist has an overall height of 2.4 in . Rated rope pull is $6,000 \mathrm{lh}$. at $25 \mathrm{f} . \mathrm{p} . \mathrm{m}$. All working parts, inchuding the drum, are thoroughly guarded or inclosed.

A photographic display of the Weirton Coal Co. 10 -ton mine car (to be described in the forthcoming July Coal Agc) and the electric trains used by the Enos Coal Mining Co. for transporting strip conl (Coal Age, April, 1938, p. 50) was featured by Differential Steel Car Co., Findlay, Ohio.
"Cor-Ten" light-weight mine cars, steel ties, rails, forged mine-car wheels, track bolts, spikes, frogs and other track materials were exhibited by Carnegie-Illinois Steel Corporation. Pittslurgh, Pa., a subsidiary of the United States Steel Corporation. A featured product was the new U.S.S. No. 2 steel-tic elip developed for mechanical mining and having the following characteristics: heel designed so

Gemeo "Tru-Blu" tool car
that it will not bend under derailed equipment or tractor treads; large flat surface under the clip, which, with tight riveting, strengthens the rivet grip, the clip itself and the tic; large striking surface on the toe of the clip; gage lug designed for accurate gage maintenance; and use of a special steel for toughness and long life. Another U.S.S. subsidiary, the Tennessee Conl, Iron \& R. R. Co., offered rails and ties.

Car No. 207, delivered to No. 33 colliery, Pocalontas Corporation, in May, 1031, and termed the "pioneer stub-axle car," was shown by Enterprise Wheel \& Car Corporation, Bristol, Va.-Tenn. With the original chilled semi-steel wheels, the car was said to have traveled 12,030 miles in delivering 15,754 tons to the tipple. Maximum recorded load has been 14,100 lb ; average, $10,100 \mathrm{lb}$. Lubrication cost has been 5c. per month. Enterprise also exhibited sample "Wascot" splithook sheaves.

A redesigned 5 -hp. room hoist, featuring a new internally expanding friction was displayed by Flood City Brass \& Electric Co., Johnstown, Pa. The new design, it was stated, provides increased

Hockensmith "Oilspok" mine-car wheel
friction surface with a positive release. Gemeo "Tru-Blu" light-weight track tools were featured ly Gibraltar Equipment \& Mfg. Co., St. Louis, Mo., which also showed a new tracklayers' and drillers' tool car. Constructed of steel. the ear is equipped with roller-bearing wheels. A modernized 8 -ton eable-reel gathering locomotive was demonstrated by Goodman Mfg. Co., Chicago.
The "Oilspok" wheel, said to provide the first continuous circulating-fluid lubricating system for tapered roller hearings, was shown by Hockensmith Wheel \& Mine Car Co., Penn, l'a. The wheel is made with a series of tapered hollow spokes which act as reservoirs. Each spoke has three ports leading into the hub. Adrantages cited by the company include: longer wheel life, less power, less lubricant and lubricating labor, longer bearing life, longer axlebox life, climinating of the disadvantages of small-diameter wheels, and stronger wheels without extra weight. Irwin Foundry \& Mine Car Co., Irwin, Pa., stressed mine cars and wheels.

The Joy shuttle ear, a self-propelling rubber-tired haulage unit for use behind mechanical loaders, was featured by Joy Mfg. Co., Franklin, Pa. Power is supplied by a storage battery on the back of the car to two 2-lip. motors, one on each rear wheel, giving speeds of approximately $3 \frac{1}{2}$ m.p.h. loaded and $5 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. light. The bottom of the car contains a conveyor primarily used for unloading purposes but which also may be used to distribute the load for maximum capacity. Mcving a single lever operates the car in cither direction at any one of three speeds. Average unloading time is 20 seconds. The conveyor is driven by a 5 -hp. motor. While the car can be built in smaller sizes, the unit shown had the following specifications: maximum height, 3 ft . 8 in ; over-all width, 7 ft .; wheelbase, $7 \mathrm{ft}$.6 in .; turning radius, 13 ft .; overall length, 19 ft .5 in ; weight, 11,200 lb.; water-level capacity, 4 tons; heaped capacity, $4 \frac{1}{2}$ tons.
Materials and equipment for Thermitwelding rail joints were demonstrated by Metal \& Thermit Corporation, New York. A new electric safety-blocksignal system with Gill manually operated switches for turning on or off
"Stop" and "Go" lights was displayed hy Mosebacl Electric \& Supply Co., Pittsburgh, Pa. Lights are installed in series and when the switel is thrown, all lights in the series change. Switches may be pfaced at convenient points.
Naclod \& United States Signal Co., Inc., Louisville, Ky., demonstrated the following: B 6554 electric track switch operated from a moving locomotive; spring-switeh control to prevent switeh closing between trucks; the "Nussco" automatic block-signal system for main haulages; new time-control switeh for electric switch operation from a moving locomotive without the use of relnys; new controller to operate lights for showing main-line switch position; and the Davies "Safelectric" trolley-pole controller which drops the pole in case the wheel leaves the wire. The controller consists of a solenoid in the pole base which is energized when the wheel is on the wire and in turn compresses the pole spring. Conversely, the spring is released when the trolley is dewired, allowing the pole to drop. Advantages cited by the company are: elimination of pole breakage and consequent hazard to the motornan; elimination of short circuits, damage to overhead line and mine delays from pulling down frogs and wire; and adaptability to opera tion as a conventional trolley pole.

In addition to mine-car hitchings, National Malleable \& Steel Castings Co., Cleveland. Ohio, displayed "Naco" east-steel wheels, Willison automatic mine-car couplers and the National friction draft gear for use with the Willison coupler. Designed with shockabsorbing and cushioning characteris tics suitable for large-capacity mine cars, National draft gear is available for both rotary-dump and non-rotarydump cars.

Ohio Brass Co., Mansfield, Ohio, demonstrated the O-B automatic coupler for mine cars (Coal Age, November. 1937, p. 125).

The Buckliorn Coal Co. car, believed to be 100 per cent larger than any previous four-whecled underground mine car, was featured by Sanford-Das Tron Works, Inc., Knoxville, Tenn. which also displayed a rubber-tired semi-trailer with "1-2-3 automatic" doors, as compared with the previous doors, for use with the Fletcher battery-tractor-trailer system of gathering coal behind loaders; ${ }^{2}$ small $244-\mathrm{lb}$. lightweight tool-car truck with pressed-steel wheels and a capacity of 1 ton; operating models of "1-2-3 nutomatic" and other types of drop-bottom mine cars and semi-trailers for strip mines; and "S-D-Floater" ball-bearing and other anti-friction wheels.

Water-level capacity of the Buckhorn car is close to 10 tons. Capacity with sideboards is 14 tons. Equipment includes spring bumpers, spring drawbars, spring pedestals and 18 -in.diameter plate-type anti-friction-bearing wheels. Dimensions are: length, 21 ft . $3 \frac{1}{2}$ in. over bumpers; width inside, 7 ft.; height without sideboards, 52 in . Weight is approximately 5 tons and the car is designed for use with a No. 3 frog.

Joy shuttle Car

Room and car-pulling hoists were shown pictorially by Sullivan Machinery Co., Claremont, N. M. In addition to "Umeco" light-weight aluminum-alloy rail benders, punches and other track tools, Utility Mine Equipment Co., St. Louis, Mo., offered new light-weight steel rail benders equipped with Timken bearings. Rail sizes and bender weights are: 12 - to $30-\mathrm{lb}$. rail, 20 lb ; 30 - to $40-\mathrm{lb}$. rail, 26 lb ; $40-$ to $60-\mathrm{lb}$. rail, 43 lb . Utility also offered a new line of alloy-steel light-weight car stops, said to be easily applied without bolts by slipping them over the ball of the rail, as well as a now line of derailers with the same characteristics. Both stops and derailers are made in $25-$ to 60-1b.-rail sizes.
Watt Car \& Wheel Co., Barnesville, Ohio, showed a low-type through-axle mine car equipped with Watt-Dalton bumpers. Capacity is 7 T0.5 cu.ft. level full and weight is $3,430 \mathrm{ll}$. Dimensions

West Virginia "Quick" rail bender

are: height, 23 in ; inside width, 72 in.; length over bumpers, 144 in.; inside, 120 in. Weir-Kilby Corporation, Cincinnati, offered Weir "Titan" titanium- or manganese-steel frogs. switeh stands, including the Model 25 low-type parallel-throw stand with a new adjustable feature; guard-rail clamps, switch slide plates and braces and other track materials.
In addition to West Virginia steel ties, rails, froga, turnouts and switch stands, West Virginia Rail Co., Huntington, W. Va., offered the "Quick" rail bender, deseribed as a light-weight high-strength aluminum-alloy unit reducing bending time more than onehalf. Bending pressure is taken on a henv-duty ball bearing and all moving parts have machined fits. Bending effect is obtained by a thrust nut turning on a fast-pitch serew and a one-half-cirele movement of the bar produces a full bending stroke. The roke easting does mot hook over the rail and thus is less subject to breakage, while the hook bolt is a heattreated drop forging. The nut is double acting and returns the screw to the open position at the end of each stroke. Weight of the bender, provided with a convenient hand grip, is 28 lb . in the 16 - to $25-1 \mathrm{l}$. size. Another new West Virginia product was a rotaryclip brace for switch ties which does away with a bolted brace or any brace with loose parts. The clip has a camtightening surface and thus tightens as it is driven into place.
Koppers "Ar-moored" combination treated wood and steel ties for room and room-entry service were shown by Wood Preserving Corporation, Pittsburgh, Pa .

Bettering Coal Quality

PREPARATION equipment offered at the Cincinnati exposition ran the gamut from various types of mechanical cleaners through screens, drying units, tipple equipment and dustless treatment to trademarking the the product. Allis-Chalmers Mfg. Co., Milwaukee, Wis., showed, in addition to low-head and "Aero-Vibe" screens, a model preparation installation featuring positive control of feeder and conveyor operation and including a 4 -in. vertical bucket elevator, Utah-type
electromagnetic vibrating feeder, lowhead screen, Utah-type electric vibrating screen, crushing rolls and a Utahtype electromagnetic vibrating conveyor. Barber-Greene Co., Aurora, Ill., presented pictorially its line of coallandling, stocking and reclaiming equipment.
A miniature tower and aerial tramway for coal and refuse handling was displayed by American Steel \& Wire Co., Chicago, a subsidiary of the United States Steel Corporation. Brown-Fayro

Co,, Julnastown, Pa, witered a Model gh's high-pressure ail-spray buit copmhate of delivering in g.p.m. at 600 lb . ber squate inch. Caleium Choride Associntion, Detroit, Mich., explained dustand freezeproolhg with calcium chlorille. A chate-type tramp-irom magnet was displayed by Central Bhedrie lepuir Co., Fairmont, IV. Va, The "Waxoliziner" methed of rembering comal dustless (Coal It, May, 1!38, p. Bin) was demonstrated by Com Provess Co. Kamsas City, Mo, Models and pictures were used Ly Deister Comentrator Co., N't. Wayme, Ind., to show fatures of the banly "No- Blim" vilnating sereen anl "Concenco Duplex" roab-washing table. "Comeenco" spray nozales were another company proxhet.

Models of the dick surface and photographe of the New Deister "Plat-()" coal-washing table were displayed by Deister Madhine Co., Ft. Wayne, Ind.

Joffrey belt-training idlars
The mew table design, it is stated, results in an increase of 100 to 300 per cent in capacity, The company aso showed graphically the "Plat-0" heary-duty vibrating sereen featured by that sereening alygle and minimum hamblrom, high speed to eliminate blinding, extra strong construction and atsy, quick sereen-eloth changing. Threcoway dumping reinsedisposel larries were presented graphically by Ditherential Steel Car Co., Finday, Ohio.

Removery of fine sizes by the use of the Dore hydroseparator was shown by Dorr Co., luc., Sew York, in addition to Dorr thickener systems ior clarifica. tion of wash water and prevention of stream pollution. Dustprofing by the Dustlix protes was featured by Dustlix Systems. Ine., Milwauker, Wis.. which also offered a machine for antomatioally fieding gummed trademark lakels into coal 8 s it is loaded into the car. The maschine is designed. accorling to the company to distribute eymally through the coal a pre determined yuantity of individually printed trademarks bearing a design repretucerl on a special grate of papr sterk. The adhesive used is stated to be insoluble in water and is applied as the labels are fenl out of the machine. Machine dimensions are: height. 30 ith.: width, 381 ith.: length, 23 in.

Pidl hading-berun heists were preseated pietorially by Harniscispege Gorporation, Milwakee Wis. Hendrick Mig. Co., Carbondale, lian. Sthumad samples of its complete line of seren
plate with various periorations, including stainless - steel dewatering sereens; and testing sieves and other preparation products, in addition to "Mitco" interlocking grating, grilles and other steel products. Past-year research work in conl utilization, including briquetting, experimental coking, ete., was the theme of Illinois State Geological Survey, Urbana, Ill.

Jeffrey MIfg. Co., Columbus, Ohio, in addition to pietorial exhibits of the delfrey lamotype and diaphragm coalwashing jigs, Jeffrey self-contained washery, diversion chutes for loading booms and also actual conveying equipment of various types and the JeffreyTraylor electric vibrating "Conveyanscreen," featured mat reserecns and pieking tables and the Jefrey "Stokerkol" sizar. The rescreen unts consist of a continuous mat of cast blocks operated by a suitable drive. As the mat enrries the conl forward, either in rescreming or on a picking table, degradation falls through the openings in the links. Additional mat-screen applications are feeding box-car loaders and crushers, and rough screening or sulping, Mat wilths range from 36 (1) 60 in .

The Jeffrey "Stokerkol" sizer, according to the company, is designed for producing premium-size stoker coals. Uniform sizing is accomplished by a combination oi thin spear-point and pramid teeth, said to have a clean piercing action which splits, rather than mashes, the lumps. Included in the Jeflecy conreyor exhibit was a new seli-aligning idler for atomatically
training belts without damage. The unit consists of a standard anti-friction iller assembly pivoted on a supporting cross member. Guide rolls at each end swing the assembly when the belt touches them, thus returning the belt to position.
Diagrams and photographs were cmployed by Koppers-Rheolaveur Co., Pittsburgh, Pa., to present its conlpreparation equipment and services, including Rheolaveur coarse- and fine-coal washers, Menzies cone separators, Kop-pers-Llewellyn automatic coal washers, Koppers-Battelle Rheo launders, Carpenter centrifugal dryers and KoppersRheolaveur heat-drying screens similar to those installed at the Buckheart mine (Coal Age, March, 1938, p. 52).

A full-sized working unit of the rimk-Belt "Junior" Baum-type washery for moderate capacitics was featured by Link-Belt Co., Chicago, along with a new model vibrating screen, the LinkBelt Simon-Carves washer, belt-conveyor carriers, chain-conveyor items, a seene-in-action riew of the "RotoLourre" heat dryer and Link-Belt crushers, including the Type C chaindriven unit (Coal Age, May, 1938, p. 95). The "Junior" washer is a twocell unit with a capacity of 20 to 50 tons per hour for clearing sized conl from $\frac{3}{8}$ to 6 in . in size. Outstanding features cited by the company are: Baum principle of air pulsation; "Elec-tric-Fye Auto-Constant" refuse-discharge control; individual air and witer control for each cell; construction as a complete unit requiring minimum height, length and width of ac-

Link-Belt "Junior" Baum-type coal washer

Robins vibrating transfer chute distributing coal from vibrating screen to loading points

Stephens-Adamson simplified air-sand coal cleaner with wheel-type sand lift and launder separator
commodations; and oscillating air valves operated from a common shaft.

The new Link-Belt "V.V" vibrating screen was stated to provide positive variable vibration, giving positive screening action regardless of load. Features cited by Link-Belt include: controlled variable vibratory motion; ability to operate on an incline, although decks usually are set level; operation on wet or dry material; adaptability to any practical screening problem; availability in multiple decks; low headroom; either open or inclosed construction; easy, quick replacement of screen cloth; feed hopper for distributing material uniformly over the width of the screen surface; lower power consumption per ton of coal; overhead suspension or floor monnting; counterbalancing arrangement to minimize vibration in supporting structures; lower buildings and elevators; few-minutes adjustment of vibratory rate; and minimum upkeep.

The Bixby heat dryer, developed by K. R. Bixby, Midland Electric Coal Corporation, was explained at the booth of the Marion Steam Shovel Co., Marion, Ohio. Black Diamond "Steelstrut" quickly adjustable single- and double-roll crushers with automatic tramp-iron protection were offered by McLanahan \& Stone Corporation, Hollidaysburg, Pa.

Presenting pictorially McNally-Pittsburg preparation services, the McNallyNorton automatic coal washer, McNally. Norton vertical pick breakers, and other preparation equipment, McNally Pittsburg Mfg. Corporation, Chicngo, called attention to the MeNally-Pittsburg improved Vissac jig designed for use on narrow ranges of sized coal where characteristics require a different specific-gravity separation of large sizes and egg, nut, stoker, pea and slack grades. The jig is recommended by the company for applications calling for washing of certain sizes and the elimination of handpicking of the larger sizes; also for rewashing crushed middlings to increase plant capacity by making it unnecessary to return these middlings to the primary washer. With a capacity of 100 tons per hour, width is $4 \frac{1}{2} \mathrm{ft}$; length and height, 7 ft ; weight, 15,000 lb.; water consumption, 1,500 to 2,500
g.p.m. depending upon the size of coal. Another McNally-Pittsburg offering was the MeNally-Pittsburg Vissac heat dryer eduipped with an exhaust fan and pulsator to time the maximum suction for the period when the coal bed is thrown into the air by the action of the balanced tandem shaker equipped with wedge-wire sieves on which the coal travels while being dried. Gas travel is down through the coal bed. Low gas temperature is a feature cited for the dryer, which has a capacity, depending upon coal conditions and desired results, of $\tilde{0} 0$ to 100 tons per hour per unit. Over-all height is 15 ft .; width, $7 \pm \mathrm{ft} . ;$ length, 28 ft . Weight is $25,000 \mathrm{ll}$. Operation is completely automatic, it is stated.

The "Flocge]" process of washerywater clarification was demonstrated by A. M. Meincke \& Son, Inc., Chicago.

A working model of the Morrow-Prins "Multiflow" coal washer was shown by Morrow Mig. Co., Wellston, Ohio, which pointed to small space requirements; a novel arrangement of water currents flowing in different directions toward a common outlet; entirely automatic operation without electrical or mechanical controls; entirely open construc-
tion; ability to handle tramp iron; simple construction without rotating parts beneath the water surface; and efficiency with low cost. Capacity is 75 tons per hour per foot of width, according to the company, and recir-culation-water requirements are 10 to $20 \mathrm{~g} . \mathrm{p} . \mathrm{m}$. per ton of coal cleaned per hour. Operating power is stated to be $\frac{1}{3}$ to $\frac{1}{2}$ hp. per ton of cleaned coal per hour.

One unit from its line of Symons horizontal screens was demonstrated by Nordberg Mig. Co., Milwaukee, Wis. Productive Equipment Corporation, Chic.ggo, displayed the "Selectro" vibrating screen and drive unit for quickly adjusting screen stroke and inclination.

In addition to a pictorial summary of its other preparation equipment and services, Roberts \& Schaefer Co., Chicago, showed one of the "Streamlined Stump Air-Flow" cleaning units designed for the Mather Collieries plant. The widest such unit built (6 ft .), it has a capacity of 75 tons of minus 3 -in. coal per hour. Screen cloths for mine service were exhibited by John A. Roebling's Sons Co., Trenton, N. J.

Supplementing a 2×4-it. Style J "Vibrex" screen; screen cloths, includ-
"Ty-Rock" screen and drive mounting

ing the "Imprated Sther-tyraley" trpes; and trongling ant return ithers for belt converass, lnelading n rublur. mivered abrasion-reasthag mit Hahina Convering belt Co. New Yonk. fmathen a new 3xild-ft. "Grax" sereen for separatheg mine-rum into varlous sipes. The upper deek was fitted will a 4 -In. Hat-top sereen eloth, with a $2-1 \mathrm{~m}$. Whth on the lower. Along with this sereen, Hobing oflured a high-speed ultoet-weight-vimated transier chate for dishibuting the ratolis sizes to lomiling hothos and chutes. High eapacty and and low puwe consumption wew elatimed for the tranafer mit.

An unerating mondel of the new nirand ronl clemer was demonstinted by Stuphens-Adamson Mfor. Co., Antom, 111. in additlon to Redler monverora elotators and vomveror-elevators. S-A vibuting sorepha and $\mathrm{S}-\mathrm{A}$ impact-tupe rubber-wored follers for helt comverors. Stated to linte three to fomr times the enpacity of fommer nir-sand separators, the rew mit is said to reduce considerally the size of the structure necessary to house it. The saparator proper is of a new lammer type without dams, follers or any other nhsturtion. It may be buit with the refuse-cleaning compartment in series with or painliel to the primary cleaning section. and is supplemented by dean-coal and refuse-desanding sereens and a rewolving lift for returning the sard to the separator for rense. The where, it is stated, is ideal for lifting latge tonnages and is balaneed so as to require only the power neensary to landle the sand. Capacities are: 14 -fl.diameter whel and 6 -ft.-wide primary separator, alont 150 tons per hour: in-ft. wheel and $4-\mathrm{ft}$. separator, shout so tons per hour:
 were offered ly the Sun Oil Co., Mhilalepplita, P'a.
The 'tyme 400 eleetrie gereen with Thembonies prower wil and the new "Ty-Hock" high-apeed eirel-throw suren were ghow hy W, S. Tyler Cos. Clevehtal. Ohto. Combining eirclethrow metion with the mdrantages of a full-fonthg positive-dife cecontric alinit. The "Ty Ruck" serem is maried on lire-rubhe mountings. The shaft alsu is entrod un atms enprorted by the same-tye mountings, with the reault that epetation is extremely yutiet and so vibration is trammitted to the arreen frane and anromiling atriefures. Another fature dited by the company is perfect batace regaidess of sereming angle or load. linthermores. "the positive powerful action of the 're-hock' provides an active, forward morement of the material eren when operated at low angles. The 'Ty-Rock' is mapable of sereming reend tomager of the coarsest material while maintaining an aecurate, thorongh soparation."

The clanee samedotation process of eoal cleaning, inchuding a Chance washer for small-capacity mines, was explained in pretures hy United Bugineers \& Comstructors. Inc., Phila delphia, l'a. Coal research work carried on hy that rgency was atressed hy the U. S. Bureat of Mines. Viking Mig. Co., Jacksma. Mich., presenteda pictorial mhihit of Viking hot-ail-vapor dustless-treating equipment. Grate-har-type reserening loading hooms. conveyor rolls, chain convecors of various types, elevators, car hanls and other car- and coal-handling and preparation equipment were teatured by Whater Mig. Co.. Tifin. Olio.

Promoting Power Use

EIECOTRTCAT, equipment Hed produets exhibited at Cincmanti ranged all the wry from full-sizell portable d.e. sulstations to telephone and magnet wire, including motors and controls. line matering rind houds and storage batteries. A fenture of the coil and wire offerings was the use of Owels. Illinols "Fiberylas" insulation in the products displayed under various trade names by a mumber of manfuchares. Adrantages cited for this insulation are: high resistance to moisture anl heat, less space, mechanical strength. excellent electrical properties und high resistance to impact and abrusion.
Jouis Allis Co.. Dilnankee. Wis. displayed the following from its line of electric motors: d.e. splashpreof. a.e. sphashipooi, a.e. nou-ventilutm totully inchecel, r.c. dustproof, a.e. explesionproof and d.e. Burmu oi Mines "explo-sion-pron" units. Allis-Chalmers Mifg. Co.. Milwatuke, Wis., showed Types $A K$ and $A R Z$ inclosed induction moton: and ARX linestart motors. "Amerglas"
magnet wire. "ligerweld" wil honds Hind "Amerelnd" and "Ampreore" electrical wires and cables were among the exhihits of Ampriean Steel \& Wire Co.. Chicugo, os suhsidiary of the United Stutes Sted Corportion.

Ameondr Wire \& Cuble Co. New York, in nddition to the Ahmeonda borwhole suspension mit. trailing cables, mine and machine eables, tralley anil feeter wire and other electrical wires and cubles, offered the new "Vitrotex" (gluss textile) insulation and mannet wire: the new "Sunex SeentityFlex" cable jacket, stated to lizve hetter resistance to ahrasion. high temperatures and the effeets oi expnsure to the sum, in addition to heirsg impervious to monsture acids and alkalis: the nem "Old Gold" shotfiring eable with strengthened jacket colored to facilitute findine it after a shot: and the now "Duraseal" non-metillic-sheath telephone cuble, suitalle for use in trenches Had stuted to lave high resistance to moisture, alkalis. acid and crushing.

Ohio Brass low-capacity safety feeder

 switchBryant "Choke-Are" transfer swithes were shown by Bowdil Co.. Canton. Ohin. Large nickel-irom-alknli batteries for s- to 10 ton locomotives were feafured ly Thomas A. Elison, The., West Orange, N. T., which stressed adaptability to contimuons operation over a 24 -hour day because of rapid charging characteristics.

Blentric Railway Equipment Co., Cinchmati, displayed equipment neesssary for the complete installation of am appored trolley and feeder srstem. "Birico" rail bonds and welders were shown by klectric Railway Improvement Co., Cleveland, Ohio. Fide-Iromclat and Rxide-Fyeap cells and Mipor separators including a "Super Type FT,M" $1,0 \$ 0-$ amp.hr. battery for industrial trucks and switching locomotives, were shown by Electric Storage Battery Co., Philadelphia. Pa.. along with cells in a "monobloc" container giving a substantial increase in capacity in a given space. Splashprocil motors were demonstrated by Fairhanks, Morse \& Co, Chicago.
"No Fuse"-type permissible starters. hand and antomatic transfer switehes. room-hoist and convecyor controllers, rail bonds and trolleç-line materials were exhibited by Flood Cite Brass \& Electric Co., Johnstonn. Pa., which also displayed a new strle G section-insilator switch adaptable for right- or lefthamder operation. and an sutomatic sectionalizing switch with a roching memher opened or elosed by the traller wheel. Trolley poles and pole heads were other Flowd City overheadibine items.

In addition to Deltabeston-insulateil wire and callo, motor coils, Irranol Hou-inflammalile transiormers rud pel-let-type lightning arresters. General Flectric Co., Schenectudy. N. Y., showed a portable motor-generator set and switcligene equipment. The set was equiphed with squirrel-cage induction motne (315 hp., 1:200 т.p.m.. 2,20n volts, three phase, 00 cecles) driving a compound-wound d.e. gemerator (250 kw, 250 to 275 volts, 50 per cent overlond for two hours). Hazard Insulated Wire Wrark-Division of the Okonite Co.. Wilkes-Barte. Pa., offered borehole and shaft cables, inside-distribution cuhles. "Harmeorid" ruhther-jacketed portable calbes and shothiring eable and partable cords.
offering information on recent mech-
anized and non-meclanized mining applications, I-T-E Circuit Breaker Co., Philadelphia, Pa., displayed its improved Type KSC automatic-reclosing sectionalizing circuit breaker, the KSA switchboard breaker with relay control suitable for use in either a full or semi-automatic substation operating in parallel with others, various d.c. control relays and one of the latest thermal magnetically controlled K-type a.c. breakers for preparation plants. said to provide full protection in both starting and running. Trolley-line and overhead materials, trolley wheels. "Mesco" wobbler-type bronze slider: and "Mescoweld" rail bonds were exhibited by Mosebach Electric \& Supply Co., Pittsburgh, Pa.
Carbon brushes and electrodes were featured by National Carbon Co., Cleveland, Ohio. National "Mica-Glas" (mica and fiber-glass) coils were displayed by National Electric Coil Co.. Columbus, Ohio, along with other NEMA electric-coil insulations.
Showing overhead line materials. trolley and feeder equipment, rail londs, automatic circuit-breaker switches, KAD starters with thermostat for adjusting conveyor speed and for voltage variation, gas-proof junction boxes, insulators, fused trolley taps, pole heads with wheels and shoes, wire lubricators, etc., Ohio Brass Co., Mansfield, Ohio, also demonstrated a number of new devices. One was the M-6 section insulating switch designed especially for heavy-duty applications and furnished for $4 / 0,6 / 0$ and Section 9 wire. Another was a line-section swite ${ }_{1}$ of the quick-break type inclosed in a metal case to facilitate locking and protect the switch. With hanger insulation, this switch is available in sizes up to $1,000 \mathrm{amp}$.

For replacing open knife switches, Ohio Brass offered a new, inexpensive low-capacity feeder safety switch of the quick-make quick-break type in 300and $400-\mathrm{amp}$. sizes for 250 to 600 volts. Safety is provided by inclosing the switch in a fireproof case which permits operation under load. An automatic section insulator switch, with a rocking member opened and clos. : by the trolley wheel was another Ohio Brass feature, in addition to a Bulldog feeder clamp with mechanical clamping lug to eliminate soldering.

In the bonding line, Ohio Brass displayed the AW-20 end-weld rail bond. Provision for end welding prevents heating of the strands in application and permits the bond to be pried off and used over again as many as sevell or eight times. Another saving, it was stated, results from a shorter bond. An additional exhibit was a new portable track drill using a standard shop drill in a four-wheeled mounting for drilling holes for the stud-terminal type of bond in as little as 15 seconds. This was supplemented by a new wedge-type bond. Ease of application by driving a wedge into the hole was stressed, this operation forcing the copper perfectly tight against the steel. Installation and reclamation in one minute, and good installed efficiency, were noted.

Westinghouse ventilated explosion-tested locomotive controller

New MS and MB locomotive headlights also were featured by Ohio Brass, along with headlight focussing meehanisms of three types: outside, manual adjustment; inside, push-and-pull adjustment, permanent aiter case is closed; and prefocussing by means of a special globe. The headlight display was supplemented bs a new "Form L" resistance for all types of globes and trolley voltages.
"Everlast Super-Weld" rail bonds were displayed by Penn Machine Co., Johnstown, Pa., which pointell to a new modification permitting use with a setscrew for temporary work behind loading machines, ete., followed by welding on permanent track. Featuring its new plant for the manufacture of armatur: ard field coils, Pennsylvania Electric Coil Corporation, Pittsburgh, Pa., showed "Fiberglas" coil insulation, "Benolite" No. 129 synthetic heat-reactive varnish and Bakelite-impreg-
nated coils. Philco Battery Division. Phileo Radio \& Television Corporation. Philadelphia, Pa., displayed Floté-grid cells in the 21AM $560-\mathrm{amp}$.-hr. and 25AM 672 -amp.-hr. types, featuring monoblock construction for greater eapacity.

Steel-grid resistors were shown br Post-Glover Electric Co., Cincinnati. in addition to transfer switches, d.c. self-starters and K. \& I. solderless terminal plugs.

Fxhibiting a complete line of electrical wires and cables, Simplex Wire \& Cable Co., Chicago, stressed seleniumvulcanized "Tirex" for portable cables and cords and the "Anhydrex" line of deproteinized rubber insulation for telephoue, borehole, power and shaft cables. Low water absorption, it was stated. renders the use of lead unnecessary and thus reduces cost.

Electrical wires and cables, including "Fiberglas" magnet wire, was shown ly John A. Roebling's Sons Co., 'Trenton. N. J., along with coils of various types.

In addition to "Glasweve" insulation. Westinghouse Electric \& Mfg. Co., East Piltsburgh, Pa., offered an Ignitrontype portable substation with a 300 amp. rating similar to those installed by the Weirton Coal Co. (Coal Age, March, 1938, p. 65; see also the forthcoming July issue). Fully automatic in operation, the substation consists of a transformer and a.c. control truck. rectifier truck and a d.c. switching and control truck. High efficiency at all loads and high overload capacity were stressed by the company.
Westinghouse also featured the new explosion-tested locomotive controller furnished on Weirton Coal Co. gathering locomotives. This controller, in addition to other features for improved operation, is equipped with a ventilating system especially designed to prevent deterioration from the formation of nitrous oxide and ionizing of the air in the controller case.

Aids to Mine Operation

EXHIBITORS at the Cincinnati show offered a wide variety oi staple and special products for coal-mine applications, including power-transmission equipment, bearings, explosives, lubricants, wood preservatives, repair parts, compressors, steel and steel products, etc.

The Acme Model 100 "Lawbov" minecar compressor (Coal Age, April, 1938, p. 88) was demonstrated by Acme Compressor Co., Williamson, W. Va. A full line of hand-welding and cutting apparatus, supplies and gases was presented by Air Reduction Sales Co., New York. which ieatured the new, portable light-weight No. 10 Radia-graph-a semi-automatic flame cutting machine designed for straight lines, ares and complete circles. Airco also stressed its flame hardening process for gears, plate and rail surfaces, etc.

This hardening is accomplished by suitable heating with an oxyacetrlene flame followed by quenching.

The new "Vari-Pitch" speed changer. employing multi-groose "Vari-Pitch" sheaves for speed rariations, was demonstrated by Allis-Chalmers Mfg. Co., Milwaukee, Wis. A totally inclosed unit designed for use with a standard motor, the changer can be supplied with a handwheel for manual control or with auxiliary equipment for remote electrical or manual control. Ratings up to 33 hp . with ratios as high as $3 \frac{3}{3}: 1$ now are available.
"Lay-Set" and "Tru-Lay" wire ropes were shown by Hazard Wire Rope and American Cable divisions, American Chain \& Cable Co., Inc., Bridgeport. Conn., along with "Acco-Morrow" prezsure lubricators and fitting for transforming consentional bearings into

Cantrell portable mine-car compressor
pressure units. "American" permissible explosives, pellet powders and hlasting supplies were featured by the General and Burton divisions, Ameriman Cyanamid \& Chemical Corporation, New York.

New "Manasite" blasting and electric blasting caps were shown by Atlas Powder Co., Wilmington, Del. Pointing nut that while no detonator properly should be called "safe," the company contends that "Manasite" detonators substantially increase the safety margin in handling explosives. Full detorating power and the usual handling adrantages are retained with the new detonators, which are, however, said to be less sensitive to impact and friction.
All types of wire rope commonly used in mining were displayed by Bethlehen Steel Co.. Bethlehem, Pa. Bowdil Co., Canton. Ohio, offered miners' picks with detachable alloy-steel points. "Yellow-Strand" wire ropes, including "Flex-Set" preformed types for mining applications were displayed by Broderick \& Bascom Rope Co.. St. Louis, Mo.

Cardox Corporation, Chicago, exhibited low-pressure Cardox shells and demonstrated its equipment for delivering liquid carbon dioxide from distributing centers throughout the United States. Amother Cardox development was fire extinguishers for mining and industrind use. In addition to a new line of universal grinders and other shop tools, Chicago Pneumatic Tool Co., New York, showed a mine-car nut rumer equipped with an automatic

Allis-Chalmers "Vari-Pitch" speed
changer

clutch to predetermine mut tightness. The tool was stated to be capable of driving ${ }^{2}$-in. nuts at 500 r.p.m. Coal Mine Equipment Sales Co., Terre Haute, Ind., featured its new and used equipment services.

A full line of ratchet hoists was shown by the Coffing Hoist Co., Danville, Ill. Duff-Norton Mifg. Co., Pittsburgh, Pa., exhibited roof jacks with universal joints on both ends and special trip-prevention and collapsing features, automatic lowering jacks, balllearing journal jacks, pinion pullers, etc., including a new 5 -ton Nu. 516 jack with curved top. with or without quick release, and a new adjustable timber jack in one-man size and five standard heights.
Products and services featured by E: I. du Pont de Nemours \& Co., Inc., comprised permissible and pellet-type explosives, including "Lump Coal C" and "CC," blasting accessories, chemicals, powder bags, cliromated zinechloride wood preservatives and Neoprene "ehloroprene rubber," made from coal. limestone and salt. The Fairbanks dial scale with "Printomatic" weigher was demonstrated by Fairhanks, Morse \& Co., Chicago. Cable vulcanizers and new and replacement parts for pumps were shown by Flood City Brass \& Electric Co., Johnstown, Pa. Gemeo "Tru-Blu" keyseaters were offered ly Gibraltar Equipment \& Mfg. Co., St. Louis, Mo. Mining lubricants of all types were shown by Gulf Oil Corporation, Pittshurgh, Pa.
Grouting equipment and methods for stopping water inllow in sinking shafts and driving tumnels and headings were explained by Halliburton Oil Well Cementing Co., Pittsburgh, Pa. P\&HHansen are welders and "Smoothare" welding electrodes were shown by Harnischfeger Corporation, Milwaukee. Wis., including the new "Smoothare 110" electrode for building up car wheels, rail ends. etc., and in flamehardening procelure. This electrode is available in ty to $\frac{1}{2}-\mathrm{in}$. sizes for 30 - to $300-\mathrm{amp}$. currents. The weld metal is not machineable. Packing electrodes in airtight cans to prevent moisture difficulties also was stressed.

Haynes "Stellite" and "Haystellite" uses in prolonging cutter-bit life were featured by Haynes Stellite Co., New York, along with other "Haystellite" and "Hastelloy" products. Permissible explosives and blasting devices were displayed by the Hercules Powder Co.,

Wilmington, Del. Hullmurt "Quality" greases for mining equipment were shown ly Hulburt Oil \& Grease Co. Plitadelphia, Pa.
In addition to compressor units for truck mounting to suit coal-company requirements and machines for shops, tipples and other stationary services, Imperial Bronze Mfg. Co., Jellico, Tenn., demonstrated Cantrell selfpropelling and conveyor-mine air compressors. Described as completely selfcontained and equipped with combined tool trays and wheel guards, combined bumper and air receiver, spring mounting. 16-in. pressed-steel wheels, forcedfeed lubrication and a reel holding 300 ft . of cable, the self-propelled unit, in capreities of $105-120-150$ c.f.m., weighs, in one series, $3,300 \mathrm{lb}$., is $11 \frac{\mathrm{ft} \text {. long and } 20 \mathrm{in} \text {. high. In the }}{}$ other series, weight is $2,600 \mathrm{lb}$., length is $9 \frac{1}{2} \mathrm{ft}$. and height is 20 or 28 in . The conveyor compressor is similar to the portable unit except that it is mounted on a skid.
Replacement parts for mining equipment were displayed by Jeffrey Mfg. Co., Columbus, Ohio. Offering a complete line of jacks for coal-mine use, Joyce-Cridland Co., Columbus, Ohio, called attention to a new hydraulic unit in capacities of $1 \frac{1}{2}$ to 30 tons for use on mine trucks and coalcutting machines. Koppers products and services were detailed in pictures by the Koppers Co., Pittsburgh, Pa Hercules "Red Strand" wire ropes and mining cables were shown by A Leschen \& Sons Rope Co., St. Louis, Mo., along with "Le Pro" wire-rope protecting compound. Oxyacetylene welding and cutting equipment and gases and low- and medium-pressure "Carbic" acetylene generators were presented by Linde Air Products Co., New York.

Lincoln "Kleenseal" filler-type grease guns and gun fillers, hose fittings and other products for coal-mine lubrication were demonstrated by Lincoln Engineering Co.. St. Louis, Mo., which featured the "Flex-O-Matic" lubricating system, consisting of an electric "Iabrigum," a lubriennt line with lranches and a group of bearing in jectors. Injectors adjustable to deliver lubricant at a predetermined rate are a vailable, along with controls to time lubricating periods and other modifications to suit the system to plant conditions and power supply.

Link-Belt Co., Chicago, displayed the "P.I.V." variable-speed transmission, power chains and fittings, plain and anti-friction-bearing pillow blocks, lerringbone speed reducers, motorized reducers, "RC" flexible couplings, LinkBelt stokers and Penn controls. Monareh "Whyte Strand" internally lubricated wire ropes, including preformed types, and rope slings and fittings were shown ly Maewhyte Co., Kenosha, Wis. National Carbide Corporation, New York, featured National carbide, lamps, lanterns and "handy lights."

Mining-machine and locomotive replacement parts were exhibited by Pem Dachine Co., Johnstown, Pa., which called attention to its new bearing
bronze, known as "special alloy," for heavy-duty high-speed work, its continuous axle liners for all types of locomotives, its general line of forged heat-treated alloy-steel parts for mining machines and its complete line of mechanical replacement parts for locomotives.
The "Perfection" cone-stove sand dryer was shown by Princeton Foundry \& Machine Co., Princeton, W. Va. Mining lubricants of all types were featured by Pure Oil Co., Columbus, Ohio. "Blue Center" rope and wire products and wire fittings were shown by John A. Roebling's Sons Co., Trenton, N. J.
Shell Petroleum Corporation, St. Louis, Mo., called attention to its line of mining lubricants. Over 60 oils and greases for mining applications were offered by Socony-Vacuum Oil Co., Inc., New York. Mining lubricants and lubrication services were featured by Standard Oil Co. of Indiana, Chicago.
Dial-type mine-car and truck seales with selective designating-numbers keyboards were demonstrated by StrecterAmet Co., Chicago. Patch fastenings for conveyor belts and conveyor- and transmission-belt fastenings were shown by W. O. \& II. W. Talcott, Inc., Providence, R. I. "Seal-Tite" tamping bags and the vibrating "Dummy Maker," a machine for filling and packing tamping bags, were exhibited by Tamping Bag Co., Mt. Vernon, Ill. A complete line of "Simplex" mining jacks was shown by Templeton, Kenly \& Co., Chicago, including the improved, stronger and safer 85 series, the new 1017 jack designed especially for track cutters, loading machines and locomotives; a new car-straightening jack of the geared pushing and pulling type, and improved roof jacks for temporary propping. "Tycol" oils and greases were featured by Tide Water Associated Oil Co., New lưork.
A wide assortment of bearings for mine-car wheels, conveyors, pumps, loaders and other mining equipment, together with special dust collars, closures and typical wheels, was shown by Timken Roller Bearing Co., Canton, Ohio.
"Soft-ending" of locomotive gear teeth was stressed by Tool Steel Gear \& Pinion Co., Cincinnati, this development bringing the advantages of this process to gears as well as pinions. Soft-ending, the company pointed out, in which the inside end of the tootl is softened for a distance of $\frac{1}{2}$ to $\frac{3}{3} \mathrm{in}$., permits peening of the tooth in cases of misalignment and thus prevents the chipping encountered in case the tooth were hard throughout. At the same time, the remainder of the tooth is left "Tool-Steel" hard for maximum wear.
Tyson tapered "cageless" roller bearings were shown by Tyson Roller Bearing Corporation, Massillon, Ohio. Unian Carbide Co., New York, offered miners'lamp "Union" carbide and "Carbic" floodlights.
United States Steel Corporation subsidiaries, including American Steel \& Wire Co., Carnegie-Illinois Steel Cor-
poration, Columbia Steel Co., Cyclone Fence Co., Scully Steel Products Co. and Temessee Coal, Iron \& R. R. Cu., offered welding rods and electrodes, wire rope and fittings, nails, wire, etc.; steel mine timbers, structural plates and shapes; high-tensile corrosionresisting steels, steel sheets and piling, industrial fencing, Lorain collapsible mine posts and Santmeyer timber jacks. "Tule" mining lubricants were exhilited hy Universal Lubricating Co.,

Cleveland, Ohio. Western blasting caps and supplies were displayed by Western Cartridge Co., East Alton, Ill.
White's water-soluble aluminum paint was shown by H. Kirk White \& Co., Inc., Oconomowoc, Wis. Wilson Welder \& Metals Co., New York, exhibited its new $300-a \mathrm{mp}$. motor-driven are welder. Wood preservatives and methods and the Koppers "Ar-moored" combination wood and steel tie were shown by Wood Preserving Corporation, Pittsburgh, Pa.

Mine-Safety Equipment

SAFEFY and comfort were the themes of a number of exhibits at the Cincinnati exposition. "Tru-toLife" safety dramalogues, changed each week and using models, color and light to present safety messages, were remonstrated by Advertising Displays, Inc., Covington, Ky. Aerovent "Macheta" airfoil fans were shown by Aerovent Fan Co., Piqua, Ohio, which stressed high flexibility and mechanical efficiencies through the use of two, four or six blades and variations in blade pitch, as well as low power requirements and quiet operation.
"MineVent" rentilating tubing and brattice eloth were displayed by American Brattice Cloth Corporation, Warsaw, Ind., along with a new tubing coupling (Coal Age, March, 1038, p. 102), special "Box-L" sections for rounding corners and the new doubleseam construction and Type B suspension which prevents collapsing of the tubing when the air is cut off. Use of two seams, it was stated, provides positive support from two directions.
In addition to automatic doors and previously developed rock-dusting machines, American Mine Door Co., Canton, Ohio, offered the "Mighty" Midget" conreyor-section duster, stated to be adaptable also to dusting rooms after each cut is loaded, thus making it possible to keep dust closer to the faee than with standard machines. The "Mighty Midget" is designed so that it can be transported on a conveyor belt or mounted on a light push truck. Weight is 240 lb . without wheels in the a.c. type; d.c., 250 lb . Height is

'Mine Vent' Type B tubing suspension

$18 \frac{\mathrm{in} . ; \text { width, } 22 \mathrm{in} . ; \text { length, } 40 \mathrm{in} .}{\text {. }}$ Equipped with a 2 -hp. motor, the machine has a capacity of $1,200 \mathrm{lb}$. per hour with a $4-\mathrm{ft}$. Hose and 720 lb . with a 50 ft . hose.

Bemis Bro. Bag Co., St. Louis, Mo., displayed "Flexipipe" ventilating tubing and special detachable couplings, and in addition called attention to its new rope-seam suspension, said to streamline the tubing, keep it straight and also do nway with a suspension wirc. Other features are fewer suspension points, the use of special suspension clamps which will tear off without injuring the tubing, easier installation, greater strength and prevention of kinking.

The new "Brownie" Model BB tubing blower, deseribed as a convenient portable electric llower for auxiliary ventilation of working places in mechanized operations, was shown by Brown-Fayro Co., Johnstown, Pa. Equipped with a lifhp. motor, the blower will furnish 1,200 c.f.m. under normal working conditions. "Ventube" flexible ventilating duct was presented by E. I. du Pont de Nemours \& Co., Inc., Wilmington, Del.

Jeffrey Mfg. Co., Columbus, Ohio, exhibited an "8-72" Aerodyne fan with the following characteristics: 90,000 c.f.m., 6 -in.-water-gage static pressure, 1,375 r.p.m... 104 brake-horsepower, and 81 per cent static efficiency. An optional rotor assembly for installing adjustable-pitch blades also was displayed.

A ventilating-tubing blower with a capacity of 2,300 c.f.m., free delivery, was shown by Joy Mfg. Co., Franklin. Pa., which cited construction as a complete unit, including switch, motor and all auxiliaries.

A "La-Del-Troller" intermediate-pressure fan, one of a line of high, inter-mediate- and low-pressure units, was exhibited by La-Del Conveyor \& Mfg. Co., New Philadelphia, Ohio, which pointed to adjustable-pitch blades for retaining peak efficiencies throughout a wide operating range, reduced power consumption and flexible operation throughout mine life. Another new product was the "La-Del-Troller" portable mine blower weighing approximately 100 lb . and said to give 30 to

00 per cent more air at a given pressure per pound of blower weight. The motor is mounted centrally in the air stream, and the blower, which is less than 20 in. high, is equipped with tulular-steel skids.
New products shown by Mine Safety Appliances Co., Pittsburgh, Pa., included a light-weight one-loour breathing apparatus, the Dustfoe respirator and the MeDonald safety lat (May Coal Age, p. 95), safety hats in color, salt tablets in one-at-a-time dispensers; and a methane tester detecting down to 0.2 per cent. l'ocket size, the tester weighs 2 lb . without case. Operation merely requires working a small pump lundle and reading the methane percentage directly. A new Stromberg aecident-recording clock is designed to register on a time card any injuries suffered ly an employee and may be hooked up to operate an audible signal.

"Mighty Midget" conveyor-type dust distributor

"Brownis" BB tubing blower
Features of a new single-shot blasting unit shown be M-S-A are a wood case with a screw top in which is placed three No. 2 dry cells. To fire a shot, wires are placed against contacts at either end. Cells are replaceable and the unit is equipied with a sling for easy carrying. To cnable a man to put off a methane detector while doing other work, M-S-A also offered a new attachment. approved by the Burean of Mines, which permits attaching and detaching the detector from the lattery top underground. Another new product was a goggle attachment, consisting of a clip under the visor of a safety lat in which the goggles are slipped when not in use, thus keeping them clean and eliminating breakage. All-weather first-aid kits for section foremen have heen improved bs adding an all-rubber replaceable gasket. M-S.A also showed a stainless-
steel insulated-against-heat portable drinking fountain with 4 -gal. capacity. Pressure built up by a pump forces the water out through a trigger-controlled jet.
Other M-S-A products included: continuous methane recorders, portable methane indicators, Edison electric cap, hand and trip lamps, MeCaa permissible oxygen breathing apparatus, gas masks of all kinds, "Comio" respirators. "Comfo-Caps," "Skullgards," sufety shoes, goggles and other protective clothing and devices, safety harness for car trimmers and handlers. tirst-aid material and equipment, Wolf safety lamps, H-H inhalators, MI-S-A car stops, etc.
A complete line of protective equipment, including "Cool-Caps" and "CoolHats" in black and various natural colors, goggles, respirators and safety shoes; Wheat electric cap and hand lamps; Koehler safety lamps; heated first-aid cabinet and materials, stretcher boards, knee pads and other safety equipment and devices, was shown by Portable Lamp \& Equipment Co., Pittsburgh. Pa., in addition to three new haulage safety devices: an "improved" portable car stop attached to the rail with a steel wedge and ilipperl on and ofl as desired: a holding skid, one size of which fits all standard mine rails; and a rumning skid consisting of a shoe with an indefinite life and right and left half soles of special alloy metal, said to be inexpensive to replace.
Methods of determining ventilation data and mine fans and tubing blowers were featured by Robinson Ventilating Co., Zelienople, Pa., which stressed custom-built qualities.

- Joy tubing blower

La-Del-Troller portable mine blower

The U.C.C. methane-indicating detector was displayed by Union Carbide Co., New York. With a range of 0 to 7 per cent, the instrument is said to be accurate to within 0.1 per cent. Needle fluctuations permit ascertaining whether the methane percentage observed is above or below the explosive range. The detector can be set back to zero in gas.
"So-White" hand cleaner and "Miner's Special" liquid soap were exhibited by H. Kirk White \& Co., Inc., Oconomowoe, Wis.

Mine-Dewatering Equipment

PUMPS led the list of equipment and supplies for mine dewatering shown at Cincinnati. Allis-Chalmers Mfg. Co., Milraukee, Wis., demonstrated a multistage SSU pumping unit. Brown-Fayro Co.: Johnstown, Pa., displared a new 6 -in. rubber-lined multiport check valve designed particularly for use with centrifugal pumps handling mine water. The rubber lining, according to the company. protects internal surfaces and thus makes it possible to use a castiron body.

A new self-priming pump for mine gathering and also for automatic applications in sumps where the unit will not get air-bound was shown in action by the Deming Co., Salem, Ohio. Features, according to the company, are elimination of valves, springs, packing, ete., along with simplicits, low maintenance and adaptability to manufacture in special metals. The impeller is adjustable for clearance, power input. etc. Deming also called attention to its "Prima-Vac-Trap," which acts as an automatic priming device, racuum
chamber and dirt trap, and in addition showed deep-well turbine and centrifugal pumping units.
Pumping units displayed by Fairbanks. Morse \& Co., Chicago, included: Fig. 5720 12-in. horizontal angle-flow pump with $40-\mathrm{hp}$. F-M motor; Fig. 55544 -in. "Builtogether" pump with 40-1p. motor; and a Fig. $61555 \times 5-\mathrm{in}$. gathering pump with 5 -lp. motor.
The exhibit of the LaBour Co., Elkhart, Ind., was designed to show how the LaBour self-priming centrifugal pumps for mine service operate when priming and also their ability to handle air along with water.
National Tube Co., a subsidiary of the Cinited States Steel Corporation. showed "Duroline" copper-steel pipe. plain copper-steel pipe and scale-free pipe, also seamless boiler tubes.
A working model of a deep-well turbine pump featuring adaptability to automatic operation, with consequent reduction in attention, was displayed by the Sterling Pump Corporation, South Bend. Ind.
 eager for these batteries. Streetcar lines were among the first large users, installing batteryoperated cars on many routes.

Today, Exides are used by railroads,steamship companies, and aircraft. They not only start our cars, trucks and buses,
but their power is used to haul coal and ore underground, and to handle materials in industrial plants the country over. Exides operate emergency lighting systems in hospitals, schools, theatres, stores, and other buildings. Telephone companies, utility companies, radio stations and motion picture studios depend on these batteries for vital services.
The extent to which business and industry rely on Exide Batteries has made The Electric Storage Battery Co. the world's largest manufacturer of storage

batteries for every purpose. Such a position of leadership is earned and maintained only by unswerving allegiance to the highest manufacturing standards. That is the basis on which Exide Batteries will continue to go forward.

[^0]
OPERATING IDEAS

From

Production, Electrical and Mechanical Men

Removal of Rusted Nuts Eased By Using Proper Methods

At times when it becomes necessary to remove rusted muts from their bolts the task may be very diflicult, points out John E. Hyler, Peorin, Ill., because of the fact that wherever corrosion is present the threading is obstructed, in addition to a certain amount of swelling which oecurs when rusting takes place. Quite frequently it has been necessary to split a nut with a cold chisel to relense it or use a gas torch. Where the corrosion is not too great and it is felt that the nut is worth saving a good method is to apply penetrating oil to the threads and let it stand for 10 minutes or so,

Details of methods of loosening or removing rusted nuts
after which it often is possible to remove the nut.

Where the end of the bolt above the nut is badly incrusted, the threading often may be cleaned out by using a rotary wire brush. A means of getting ordinary thin oil down into the threading of a nut when no penetrating oil is available is shown in Figs. I and 2 . In this case, a small hole is drilled through the side of the nut and into the center of the bolt, where it joins up with a hole in the latter. Oil poured in Hole A will run out at Hole B in the mut until the nut is turned far enough so that the two parts of Hole B are not in register, after
which the oil goes into the threads, where it is held.

Where a portable electric drill is available, an alternative to using a cold chisel or a torch is shown in Figs. I and 2. In this case, a hole is drilled so as to cut the nut almost in two, ieaving the two parts joined loy only a thin wall next to the threads. Then a pin similar to that shown in Fig. 3 may be driven down into the hole to spread the nut sufficiently for its removal. The pin may be flattened on one side so that it will not damage the threads on the bolt.

-

Damaged Hitchings Removed By Carbon Arc

Installing a resistance and langing near br" a carbon-electrode holder and mask solved the problem of quickly removing damaged hitchings from mine cars in Zeigler No. 2 mine, Bell \& Zoller Coal \& Mining Co., Zeigler, Ill. In the accompanying illustration, A is the holder with carbon electrode and B is the resist-
ance to which the holder is permanently connected. To get ready to burn off a litehing it is necessary only to hang a nip on the 275 -rolt trolley wire. This carbon-are outfit is installed at the junction of a chute with the empty truck at the shaft bottom. Only a portion of the cars in the mine lack a pin-and-clevis hitching attachment and thus become possible candidates for this burner.

-

Trolley Added to Machine Facilitates Moving

To promote safety and save time and expense, the trolley pole shown in the necompanying illustrations has been developed by John Gill, foreman, Barnes Coal Co., Barnesboro, Pr., to eliminate the danger of shock or are when tramming cutting machines from room to room. As is well known, the method in general use at present is for the operator to hold the cable hook or trolley tap against the trolley wire while tramming. The connection naturally is poor, with resultant

With this carbon are a damaged hitching can be burned from
a car in a few seconds.

STANDARD DIL COMPANYS

NOVDPCIL ппй NONPMB:IL

has served here six years . . . Guaranteed for life!

The only oil GUARANTEED

 for the life of your turbineEven with the written guarantee that users of Nonpareil Turbine Oil get, many hardly believe their own service records. "Not one change of oil in 6 years ... consistently lower bearing temperatures... 40% less make-up oil." These are just some of the statements in a report on the operation of Nonpareil in five turbines at one of the largest mines in this country.

To users, accustomed to the operating problems with conventional turbine oils, Nonpareil's service seems almost miraculous. And it is, for Nonpareil is the only turbine oil that is guaranteed for the life of your turbine. It must stand up-and does, as proved by records of thousands of gallons of Nonpareil that have been in service 10 years or more and are still practically as good as new.

If you are interested in reducing both operating and lubricating costs call your Standard Lubrication Engineer. He'll show you the Nonpareil guarantee that will make these savings for you. Call him at your local Standard Oil (Indiana) office or write 910 S. Michigan Ave., Chicago, Ill.

Coorr. 1938, Standard Oll Co.

TANDARD OIL COMPANY (INDIANA)

arcing and burning of the wire or tap and danger to the operator.
The trolley illustrated weighs only 48 lb. and slips into a socket bolted on the frame of the machine truck, as shown.

Pole in place on the machine truck

When moving between rooms, the cable hook is slipped into a receptacle on the pole head, giving a connection somewhat similar to that on locomotives. The operator then can give the movement of the machine hits undivided attention. While the machine is working in the room the pole either may be latched down and left in place or slipped out of the socket and left on the heading-a matter of but a few moments in either case.
To eliminate any chance of damage as a

Details of trolley for facilitating tramming of cutting machines

Division

The line between making a thing go and having it stop often is almost invisible. Following out this thought, a little incident may mean a big trouble. Conversely, forestalling or arresting trouble may require only an isolated bit of knowledge, but the knowledge must be available. Experience-both one's own and that of other people-is the fountainhead of really worth-while knowledge. Look through these pages for the experience of others; perhaps it may give you an idea. Furthermore, if you are an electrical, mechanical, operating or safety man and have developed something of your own which has helped you in your work, this is the place for it. So send it in, along with a sketch or photograph if it will help to make it clearer. For each acceptable idea, Coal Age pays $\$ 5$ or more.
result of collision with a protruding object, a ball-and-socket joint with a sturdy spring is provided in the base. This permits the upper portion to spring back and cushion any shocks of this nature. The main spring is adjustable as to tension and is designed to give the correct wheel pressure with the light pole, harp and wheel used. Mr. Gill's trolley pole is being manufactured by the Flood City Brass \& Electric Co.

$\because-$

Scotch Handle Turning Labor Reduced by Two-Thirds

With less skill required and less chance of accident, 165 scotch handles can now be turned out in an hour, as compared to a former record of 50 in an hour. This recent improvement in a method at the central shops of the New River Co.. Nount Hope, W. Va., resulted from the construction of a special pencil-sharpener-type turning machine to supplant the wood lathe for that particular duty.
Referring to Fig. 1, the machine, which was built in the coal company's shop, consists of a hollow turning barrel rotating in ball bearings lubricated through pressure gun fittings in the top of the stationary case. Screwed to the outer end of the hol low rotating barrel is a hollow cutter head with renewable blade. Mounted है in. from the end of the cutter head is a combination guard and holder. By double V-belt the 3 -hp. 1,100-r.p.m. motor drives the turning barrel and its cutter head at $1,6 \overline{0}$ r.p.m., which speed, however, has been iound to be short by several hundred revolutions of the ideal for the work.

Sitting on top of the machine in Fig. ?
is a completed "scoteh," which is the loce term for the chock used in controlling an holding cars in the ten mines of the con pany. Sticking part way through the me chine is a piece of $1 \frac{1}{2}$-in. square hickor

Fig. I-Three-horsepower motor and machir for making handles.
stock which by one passage through tl machine is reduced to $1 \frac{1}{8}-\mathrm{in}$. round. Tl stock is forced through by hand but t guard with its rectangu!ar hole checks t tendency to turn.

After a supply of the round sticks h been made and cut to the required $15-i$ length a different cutter head is put on t

Fig. 2-A completed scotch on top and partly worked length of handle stock in machine.
machine and each handle is inserted to c the beveled and shouldered fit that driven into the inole of the scotch block. is the plan to build a still larger machis to supplant the lathe for making troll poles.

Expansion-Shell Recovery Aided by Special Tool

In recovering trolley material fro abandoned or worked-out sections of th Reid Coal Co. mine, New Bethlehem, Pa it has been a rather difficult problem the past to get out the expansion shel for the trolles hangers, writes Jam Thompson, mine foreman. When th shells take a firm grip in the hole

Details of shell-recovery tool
the roof, removing the clamp and bell generally results in the expansion bolt
turning out of the nut and thus leaving the shell firmly fixed in the roof.

Picking out the roof rock from around the shell to remove it, of course, is both slow and expensive, "so we took a piece of $\frac{1}{2}$-in. scrap iron and formed a hook on one end small enough to slip up through the hole and catch in one of the slots in the shell. The other end of the iron was curved to afford a place on which a pry could be exerted. Thus, by the use of almost any wireman's tools or trolley wrench we can easily dislodge and recover the expansion-shell part of our trolley supports. This small, inexpensive home-made tool is carried by our wireman in his tool kit and enables us to quickly recover the complete trolley support."

Hints From a Shopman's Notebook; Single-Heat Iron Bending

By Walter baum

Master Mechanic, Perry Coal Co. O'Fallon Ill.

THOUSANDS of bends have been made over a period of years by the singleheat method with the bender which I describe below. This bender was made of scrap from around the shop, including the old bearing plate used as the base. The bender consists primarily of the frame, clamping screw and block, lever, and brace and latch.
Details of the frame are given in Fig. 6, which also shows the drilling plan for the various holes. The clamping screw (Fig. 8) was made out of a 2 -in.-diameter bolt end. To hold the screw in the frame (see Fig. 2) the nut was cut out as shown in that and Fig. 8, using a hand torch. Next the clamping block and the split locking plates which hold it to the bottom of the screw were made as detailed in Fig. 9. The nut then was bolted in the frame, and a hole was cut in top of the frame to allow the screw to protrude up through it. The screw then was run in the nut and the clamping block was put in place to make the assembly shown in Fig. 2.

Fig. 1-Looking down on the bender with the pattern shown in Fig. 13 in place. The pinholes are used for positioning the irons for bending.

In constructing the lever (Fig. 10) 1 used two pieces of $1 \times 6 \times 8-\mathrm{in}$. steel, one piece of $11 / 4 \times 5 \times 6-\mathrm{in}$. and one piece of $11 / 4 \times 3 \times 18-\mathrm{in}$., the latter forming the handle part, over which a $2-\mathrm{in}$. pipe flattened at one end is slipped for extra leverage. These four pieces were clamped together and drilled with $25 / 32-\mathrm{in}$. holes, countersunk on both sides, and then were riveted together. The corners of the lever then were rounded off as indicated to clear the frame. The lug which is engaged by the lateh described below to hold the lever up for inserting and removing irons was then made and bolted to the side of the lever as indicated in Fig. 10.

Fig. 2-Showing clamping serew with handwheel and clamping block in place in the frame.

Upon completion of the lever, it was installed in the frame by means of a 1-in-diameter hinge pin, as shown in Figs. 2 and 3. Then the latch shown in Fig. 7 was made and bolted to the frame as indicated, completing the bender except for the construction of the patterns shown in Figs. 12 and 13. These patterns were made of $1 \times 31 / 2-\mathrm{in}$. mild steel bent to the same angles as the bends and drilled for

Fig. 3-Showing how Bends 3 and 4 (Fig. 14) are made. These follow Bends I and 2, which are made with the same pattern.

Fig. 4-Showing how Bends 5 and 6 (Fig. 14) are made. When these bends are made, the board coverings are removed from pits in the floor into which the ends of the irons extend to permit making the bends.

Fig. 5-Showing how the lever is held up by moving the lateh under the lug to parmit insertion and removal of the irons.
bolting them to the baseplate. As one end of the brace is bolted under the pattern in each ease, the spacer ($5 / 8 \times 31 / 2 \times 6$ in. in size) shown in Figs. 12 and 13 is necessary at the point where the other patternholding bolt is passed through the base. One pattern, as indicated, has two pinholes drilled in it for use in locating the car irons-previously marked off and drilled as described in the April Coal Age, p. B4so that each will be bent in exactly the same place. One hole only is necessary in the other pattern for the style of iron shown in Fig. 14.

When I made this bender it was for the purpose of bending $5 / 8 \times 3-\mathrm{in}$. iron at a right angle. In this case, the pattern for the bend rests against the end of the baseplate (Fig. 12), whereas in the case of the

Figs. 6 to 14 -Details of bender parts and order of making bends in the car iron sketched.
pattern for the add-angle bends an auxiliary brace is repuired for additional support. as shown in Fig. 13.

1 bend thimer irom than the in., for which the bender origimally was designed, by bringing the lever down on the iron. tien raising it and slipping in a piece of治-in. irun between lever and iron being formed and then coming down again with the lever. This sets the iron down at a very sharp angle. In addition to the irons whieh I have described, this bender also has luen used for bending irons for the square-box type of ear, door-hinge irons and for other bends where a number must be made before the irons are used. Where the irons must be drilled. this always is done first to permit use of the pin methool for lowating the bends. excerpt that in the ealse of short irons a piece of iron may be clamped on top of the pattern for use as a stop. Four bolts hold the bender to the base, and consequently it is ensy to take off and replace.

Spark From Circuit Breaker Causes Substation Fire

Successful prevention of fires, accidents and equipment breakdowas depends in no small measure on recognizing protential havards and interpreting and acting promptly upon operating irregularities or "elose calls." The following incident, which might have resulter in mine substation tire damage and loss of time, was witnessed by a Cond Aoe editor a few months ago.

On the way out of the mine it was ohserved that the lights along the heading near the mine portal went out several tines, indicating epening of a breaker. No sooner did the party reach daylight
than a man who had chanced by the outside substation gave an alarm of fire. A bunch of oily cotton waste was burning merrily. Canght as it was in its carly stages, the fire was put out quickly and without damage, although it would shortly have ignited the braid and rubber insulation of the large leads from the converter transformer to the control board. Left alone for a time it probably would have heated the transformer oil to the point of spreading the blaze.

The cotton waste had been placed on the concrete floor to absorb oil which was leaking at a very slow rate from the transformer iank and was showing up near the drain plug. Because the $275-$ volt d.c. automatic reclosing breaker had opened several times just prior to the discovery of the fire it is reasonable to assume that a spark from the breaker contact tlew back over the top of the switchboard, as indicated by the accompanying sketch, and landed on the oily waste. Because of the small quantity of waste and its being well exposed to the air it is improbable that spontaneous combustion was responsible.

Among the lessons indicated by the incident is one of prime lut not commonly recognized importance-an opentype circuit breaker may cause dangerous sparks to fly a considerable distance. Under favorable conditions wood shavings, paper, cloth, waste and even frayed insulation might become ignited. Complete inclosure, now a standard practice for automatic circuit breakers purchased for use inside of mines. would eliminate this fire hazard in substations and generating plants.

The evident lesson of not allowing contimuance ai even very small oil leaks can le supplemented by the practicabilits of concrete foor construction, including dans or drains around the trausformer

Cotton waste to absorb oil leakage
A spark from the circuit breaker landed in the bunch of oily waste.
to prevent the oil spreading all over the Hoor in case a serious leak should develop. Anticipating the thoughts of many readers, it is in order to mention that trams. formers filled with non-intlammable liquid are available. One more point is worthy of consideration: when emergency does require a delay in repairing an oil leak, and this applies also to lubricating oil in power plant or substation equipment, sand, instead of cotton waste, should be used to absorb the oil.

interchangeable Heads Used On Combination Hammer

Alwars a machinist, writes Charles 1 . Willey, Pemacook, N. II., "I loved to fool around during noon hour making a lot of my own small tools or working out ideas I had seen in the magazines. Among my improvisations is what I consider a very handy combination hammer, shown in the accompanying illustration. It originally was a regular machinist's-type ball-peen hammer, which I modified by annealing, removing the regular ball peen and then drilling out the top as indicated and fitting it with a taper pin. The illustration also shows several of the types of tips which I have made and used and others can be developed to suit other readers' needs or fancies. They work periectly and make the ordinary tool more useful. The taper pin holds the heads securely and they are easily interchangeable."

Details of hammer and several types of heads which may be used.

WORD FROM THE

Green Backs Progressives; To Drop Check-Off

By granting a charter to the Progressive Miners on April 28, William Green, president, American Federation of Labor, took a bold step in his combat with John L. Lewis, president, United Mine Workers, for labor leadership. This move was announced at Washington in the presence of Joe Ozanic, president of the Progressives, to whom the charter was awarded. Mr. Green said that organizers would be sent into the various conl fields to lure miners into the Ozanic organization. Contracts with the Progressives will not include the check-off.
In his announcement Mr. Green said: "The jurisdiction of the new international union will be, 'All workmen eligible for membership who are employed in and around coal mines, conl washers, coalprocessing plants and coke ovens on the American continent.' The officers of the new international union, until its first convention. will be Joe Ozanic, president, and C. F. Pearer, secretary-treasurer, with a vice-president to be selected later. The offices of the new international union will be in the Chicago district and charter No. 1 will be granted to the State of Illinois. Applications already have been received from Pennsylvania, West Virginia, Ohio, Indiana, Kentucky, Alabama, Kansas, Oklahoma, Arkansas, Colorado, and other conl-producing regions.
"An extensive campaign will be started at once to enroll mine workers. The new international union will also undertake immediately an educational campaign to acquaint them wherein their interests have been disregarded by the United Mine Workers, and how they will benefit bs affiliation with the new union. In this campaign the new organization will receive the aggressive and full support of the American Federation of Labor."

Insurgent Attacks Lewis Regime

Mr. Ozanic assailed the "autocratic rule" of Mr. Lewis and said the new union will be guided by four principles: Contracts with operators will not include the check-off of union dues; strikes will be called only with consent of the rank and file; rules will make it impossible for the union officers to gain control of the officers of subdivisions; and loans to outside organzations, like the Committee for Industrial Organization, will not be made without referendum to the rank and file.
The latest action of the A.F.L. was foreshadowed when, early in February. it revoked the U.AI.W. charter following the latter's amendment to its constitution eliminating reference to affiliation with the A.F.L. and substituting C.I.O.
When representatives of the Progressires, scheduled to address a mass meeting at Bluefield, W. Va., on May 8, failed to appear, the hall was taken over by the

U.M.W., who declared "we will not allow them to destroy our union." Progressive advocates were hooted when they attempted to speak. Thomas Cairns, president of the West Virginia Federation of Labor, termed the meeting "just a false start."

Keeping Step With Coal Demand

Bituminous	Production	
Week Ended	$\begin{gathered} 1938 \\ (1.000 \text { Tona }) \end{gathered}$	$\begin{gathered} 1937 * \\ (1,000 \text { Tons }) \end{gathered}$
March 5	6.420	11.105
March 12	6,500	11.298
March 19.	5.860	11.228
March 26	5.380	11,368
April 2.	4.570	7.182
April 9	5. 760	5.829
April 16.	5,520	6.300
April 23.	5. 186	6.047
April 30	5,155	6.915
Total to April 30.	107.232	160,099
Month of March.	26.745	51.315
Month of April.	22.195	26,041
Anthracite	Production	

[^1]
Combustion-Behavior Studies Continued by Battelle

Tests on samples of coals hurned at the Battelle Memorial Institute laboratory in the domestic-stoker investigation made for Bituminous Coal Research, Inc., indicate that conls with an agglutimating index of 10 or greater may be expected to give trouble in coke-tree formations. Many more tests, however, would be necessary to confirm this conclusion and many coals. the institute points out, probably would be found out of line with this conclusion; the Sewell seam sumple tested, for example, had an agglutinating index of 10.2 , but the coke trees formed by this coal in the laboratory experiments gave no difficulty. The agglutinating tests were made in the preparation department laboratory of Pittsburgh Coal Co.

Results of field surveys on the use of coal industrially and the preference as to size for firing in pulverized form have been submitted in report form to the technical advisory committee of Bituminous Coal Research, Inc. The survey covered 43 industrial plants burning over 5,000 ,000 tons per year; individual plant consumption ranged from over 500,000 to less than 4,000 tons annually. Field surveys on oil-treating installations were completed early in April with visits to mines in Kentucky, Pennsylvania and West Virginia. The oil-treating investigation is sponsored jointly by Bituminous Coal Research, Inc.; Standard Oil Co. (New Jersey), Sun Oil Co. and Viking Manufacturing Co. (Coal Age, May, 193í, p. 228; November, p. 90).

$\rightarrow-$

New Preparation Facilities

Lifliybrook Coal Co., Killarney, W. Va.: installation of a Menzies hydroseparator with a capacity of 100 tons per hour for cleaning $7 \times 2-\mathrm{in}$. coal; completed by the Roberts \& Schaefer Co.
Matier Colineries, Mather, Pa.: contract closed with Roberts \& Schaefer Co. for modernization of coal-preparation plant. including: crushing, picking and loading facilities with a capacity of 400 tons of mine-run per hour; reinforcedconcrete blending bin with a capacity of 1,500 tons; and a combination wet-anddry cleaning plant of modernistic rein-forced-concrete construction comprising Menzies hydroseparators for $3 \times{ }^{5} 5_{0}-\mathrm{in}$. coal and "Streamlined" Stump "Air-Flow" cleaners for ${ }^{5} \mathrm{~F} \times 0-\mathrm{in}$. coal. Total capacity of the wet and dry unit will be 300 tons per hour. The plant will be 100 -per-cent dustproof within and no dust will be discharged to the atmosphere.

Pltsglove Gas Coal Corporation, No. 5 mine. Pursglove, $\mathbb{W} . V_{\text {a }}$: contract closer with United Engineers \& Constructors, Inc., for Chance sand-flotation washing equipment for $6 x-\mathrm{in}$. coal, comprising one
$10-\mathrm{ft}$. Chance cone and all auxiliaries; capacity, 200 tons per hour. The cone is to be installed in a new plant by the Fairmont Machinery Co. with a capacity of 300 tons per hour, loading five sizes on four tracks and equipped with two sets of shaker sereens.
Susquehanva Coliaemies Co., Pemnsylvinin colliery, Mt. Carmel, Pa.: contract clused with Wilmot Engincering Co. for Hydrotator equipment for recovering and preparing No. 4 and No. 5 buckwheat, including Hydrotator classifier for sizing fine coal, standard Hydrotator for cleaning No. 4 and the necessary dewatering sereens, pumps, ete.; capacity, 40 to 50 tons of clean conl per hour.

Supheme Antibacite Coat, Mining Co., Ontario colliery, Peekville, Pa.: contract closed with Finch Mfg. Co. for 7 It-ft. Menzies cone separator for cleaning No. 4 buckwheat ($n^{3} x_{0} \mathbb{0}^{3} \mathrm{in}$.) ; feed capacity, 80 tons per hour.

Truax-Thafr Coal Co.. Fiatt, Ill: : contract closed with McNally-Pittsburg Mfg. Corporation for drying and sereening addition to present washery, including MeNally-Pittsburg Vissac dryers for thermally drying ${ }^{-1}-\mathrm{in}$. t -mm. conl at a rate of 150 tons per hour and vibrating screens for separating the dried product into

Uniten States Fuel Co.. Hiawatha, Utah: contract elosed with MeNally-Pittsburg Mrg. Corporation for preparation plant with a capacity of 300 tons per hour and making eight sizes and mixtures thereof, ineluding a McNally-Norton antomatic washer with a capacity of 250 tons per hour for cleaning the $5 \times 0-\mathrm{in}$. size. The laxis-in, size will be thermally dried in a McNally-Pittsburg Vissac dryer at a rate of 96 tons per hour and the minus x in -in . will be dewatered in two Carpenter centrifugal dryers. The plant is to be completed about Sept. 1.

New Equipment at Docena

New equipment estimated to cost about swo0.000 is to be installed in the Docena (Ala.) mine of the Tennessee Coal, Iron \& R. R. Co., early in June. This will include 600 new steel mine cars, a scale and rotary dump. The company announced that the mine would be closed ten days or more, beginuing May 30, while the installation was taking place.

Hanna Enters Stoker Field

After four years of extensive research into the construction of stokers for anthracite, General Stokers. Inc., an M. A. Hama Co. asowiate, amnomes that the "General" stoker line in all mudels is now in production and will be available to the public immetiately. Besides the laboratory work involved, all sizes and models have been tested for the last four rears in nearly a thousand homes, apartments ami small commercial establishments. Headed by F. E. Chloupek, the new company has established headquarters in the Broad Street Station Building. Philadelphia. Pa., and plans an intensive advertising and promotiou campaign emphasizing the hesting economy. simplicity of design and moterate cost of the new line.

First Annual Anthracite Conference Staged at Lehigh University

ANTHRACITTE as a mineral, as a fuel and as an industrial adjunct occupiect the attention of 500 or more persons at the First Annual Anthracite Couference of Lehigh University, Bethlehem, Pa., April 29 and 30, with Howard Eckfeldt, professor of mining engincering, in the chair. Basing his deductions on the report of D. C. Ashmeal for the U. S. Coal Commission in 1922, Dr. George H, Ashley, State geologist of Pennsylvania, coneluded that the Northern anthracite field would continue to produce coal for 50 years; the Eastern Middle field for 16; the Western Middle field for 150 ; the Southern field for 500 , and the entire region for 150 years, but transfers in production may readjust these figures.
In Dr. Ashley's opinion, the anthracite region, except possibly for a narrow neck passing through the northern counties of the State, probably was always separate from the bituminous; this judgment, not being deduced from characteristics of the two minerals but from geological evidences, which show the measures rapidly thinning round the field and the coarsest detritus (up to 6 in . diameter) drifting in from highlands that surround it.

When $8 \overline{5}, 000$ tons of water drop over Niagara Falls, it develops less power than the combustion of a single ton of anthracite, according to H. J. Rose, senior industrial fellow. Mellon Institute. Anthracite's supremacy as a fuel is due to (1) the large percentage of its hydrogen which is uncombined with oxygen, which gives it on combustion 400 to 1.000 more 13.t.u. per unit than coke and 500 more 13.t.u. per unit than average bituminous coal; (2) its density, which makes it take less space than other fuels for a given calorific value; (3) its freedom on stoking from cuking, caking or swelling and thus from forming objectionable "coke trees" (4) its strength; (5) its desirable ignition temperature freaing it from spontaneous combustion, but making it more ignitable than coke; (6) the little air required to keep it burning (0.63 cu.ft. per minute per square foot of grate area. as against 1.4 cu.ft. for coke) ; ($\overline{1}$) its smokeless combustion and the high temperature at which its ash usually fuses.

Table 1-Average Ash Content in Anthracite of Various Sizes

Size	1935	103
E.gr	9.2	13.7
Store	${ }^{9.3}$	13.7
Chestnut	${ }^{9.7}$	
	${ }^{11.3}$	15.6

Table II-Pennsylvania Anthracite Uses

A fiter medium	Carbon structural
Graphite	forms
manufacture	Acid-resisting vats
Foundry facing	Paint pigment
Ore reduction	Carbon brushes
Ore sintering	Carbon electrodes
Carbon refractories	Telephone granules
Carburizers	Activated carbon
Electric-furnace resistors	Paper-mill-digester blocks
Heat-transfer tubes	Explosives
Battery plates	Oil-retining desludg
Flashlight batterles	Black concrete road
Dlaphrasm plates	Gas manufacture

The quality of the product has improved, as will be seen in Table I, when the U. S. Bureau of Mines' analyses in 1935 from breakers producing about half the industry's total production are compared with those from 127 samples from dealers' yards in Massachusetts in 1923. Combustion efliciency of anthracite is about 70 per cent, declared Dr. Rose, in discussion, which is greater than that of bituminous coral.
The question: Has antlracite no other use than as a combustible for operating domestic and industrial steam furnaces? was answered by H. G. Turner, research engineer, Anthracite Equipment Corporation, by quoting Dr. C. L. Mantell, as in Table II.

Profit being far more important than tonnage, Dr. Turner urged that high prices may be obtained for coal if used for purposes less stereotyped than combustion. All coal sold for filtration has brought a profit. Anthrafilt for filtration is minus $3^{7} 1$-in. antliracite, cleaned to minimum ash, though the exact size depends on material to be filtered. Three sizes will meet all conditions. Sales, still totaling only 3,000 tons yearly, are growing. Anthrafilt can be found in the filters of 36 states, of Monterey, Mexico, of London, England, and of places in Canada, sales about doubling every year. The breadth of opportunity for Pennsylvania anthracite is exhibited by the fact that New Jersey sand for filtration has been shipped to China and Colombia.

Radiance an Advantage

Radiance is one of the advantages of anthracite, asserted R. D. Hall, engineering editor, Coal Agc. Oil and gas burn without radiance, and thus without lateral heat, producing only convective heat. This heat readily escapes up the stack unless a refractory or labyrinth of clean passes or pipes is provided. One camnot warm one's hands by holding them alongside the nlame of a bunsen burner. An anthracite fire bed quite frequently does not burn at all at the top; thus there is then "black-body radiauce" which travels to the water legs of the boiler and leaves no convective heat to escape to the stack. In an anthracite furmace, passes above the fuel bed are almost functionless.

In his address, Eric Sinkinson, associate professor of fuel technology, Inehigh University, declared that gas passed through 2 in. of anthracite burns flamelessly, emitting radiant heat. As soon as radiance appears. if the gas is cut off, radiance disappears. for the anthracite is not hot enough to continue combustion. Obriously. radiance comes from burning of the gas on the multitude of fine ash particles embedded in the surface of the anthracite. Ash, therefore, acts as a catalyst, and will ionize hydrogen as it leaves heated conl. If more gas is produced than the ash can cause to burn without fiame, the rest merely flames above the fire. Because of flameless combustion below the surface in the fuel bed, little space need be left above it.
Space for combustion above the coal
bed with an anthrachte iurnace is almost,
if not wholly, without value, as shown
by actual tests at the Anthracite Industries Laboratory, agreed A. J. Johnson, its director. Production of fly ash when the boiler is set so that the crown sheet is near the fuel bed, is actually less than with increased combustion space, for, in the latter case, the stream carries the ash with it, whereas, with a high setting, the ash strikes the crown sheet and its heavier material falls. For all these reasons, anthracite does not need the high boilers demanded by bituminous coal.
Burned with the theoretical supply of air per 10,000 B.t.u. (7.7 il .), temperature of combustion will be $5,270 \mathrm{deg}$. F., but with 00 per cent excess air, temperature will be 3,320 deg., still above the melting point of any ash. However, escape of heat by radiation to furnace walls will preclude any such temperature, except where the air is too near the theoretical supply or where water cooling surfaces are too remote. Such conditions rarely occur and usually only locally except when the fire is not banked, thus reducing air and its accompanying heatconvecting action. Even low-temperture-fusion-ash coals can be burned without clinker where, as in small furnaces, the jacketed surfaces are not too far from the heart of the fire. More air actually reduces clinkering, unless air increase opens cracks in the fire, diverting the air from the rest of the coal. Larger sizes, said Mr. Johnson, clinker more readily than nut.

Controls Keep Fires Alive

Controls, asserted Arnold Michelson, vice - president, Minneapolis-Honeywell Regulator Co., have been developed to keep stoker fires alive in mild weather. These controls cause the stoker to operate at certain definite adjustable time intervals, even when the thermostat does not require it. A recent model will not permit operation if the room thermostat has called for such operation within the cycle. Another guard against fire extinguishment is an untimed switch designed for mounting in the stack or within the boiler itself. On starting the stoker, should the fire fail to respond, the staker will be stopped automatically, thus preventing the filling of the firebox with unburned coal. Instruments also have been designed to check or stop the fire before stack temperatures become excessive. With modern controls, if the circuit is broken, the burner will stop.
In rating a stoker, the highest rate at which coal may be burned in the retort without excessive losses should be determined, declared P. A. Mulcey, assistant director, Anthracite Industries Laboratory. In domestic stokers with retorts between 11- and $24-\mathrm{in}$. diameter, a little less than 25 lb . per hour per square foot of projected retort area can be burned with satisfactory efficiency. But this requires a proportionately high fan capacity at relatively high static pressure as well as suitable means to adjust air flow. Hence, maximum burning rates 20 to 30 per cent lower than that stated are normally found in practice. However, true capacity for a stoker depends on size of fuel being burned. The distance from center to edge of retort should be such that, with the size of coal burned, each particle will be

Running the Show

Sessions of the First Annual Anthracite Conference at Lehigh University were presided over by the following:
W. H. Lesser, electrical and mechanical engineer, J. H. Pierce Management, Scranton, Pa.-technical session, morning, April 29.
Donald Markle, president, JeddoHighland Coal Co., Jeddo, Pa.afternoon, April 29, Part 1.
H. D. Kynor, general manager, Wyoming Valley Collieries Co., Scranton, Pa.-afternoon, April 29, Part II.
J. H. Pierce, president, J. H. Pierce Management, Scranton, Pa.-banquet, April 29.
J. B. Warriner, president, Lehigh Navigation Coal Co., Lansford, Pa.morning, April 30.
completely consumed before passing to the ashpit.
Reasonable quantities of slate and bone have been shown not to reduce anthracite combustion rate, which, however, depends vitally on rate of air flow. From tests made, it is clear that maximum combustion rate is obtainable only with a certain definite flow of air. Additional air reduces the combustion rate rather than increases it.

Tests run on a $13-\mathrm{in}$. underfeed stoker feeding buckwheat at a rate between 10.2 and 12.3 lb . per hour show that the average percentage of combustible in the refuse is independent of the ash content of the fuel and decreases to a minimum as air rate increases, after which it tends to rise again. Thus, for a given combustion rate and air-coal ratio, ashpit loss is directly proportional to percentage of ash in coal. Stoker stack losses rise with increasing rapidity as air flow increases. Ash content of fuel, however. exerts no appreciable influence. In answer to Mr. Lesser. Mr. Mulcer remarked that no effort should be made to reduce ashpit loss to a minimum, because such extreme of economy would result in more than countervailing stack losses.

Barley and rice anthracite can be hand-
ollices, schools, hospitals, institutions and industrial buildings on flat grates at intervals of 24 or even 48 hours in cold weather and with but one firing a week under light loads, said H. L. Littell, Anthracite Institute. A comparatively low combustion rate per square foot of grate is used. A typical cycle of operation is as follows: At noon, furnace ashes are removed, and a ton or more of coal is placed on the grates until within a few inches of the crown sheet, depending on type and size of furnace. During stoking, and for 15 to 20 minutes thereafter, the blower is run at low speed to maintain ignition and propagate flame, which interval is regulated by a time switeh.
The furnace is then left to its controls, and for the rest of the day a steady steam supply is maintained. At about 11 p.m. the clock turns a switch, throwing the pressurestat in series with the aquastat, which regulates the fire so as to maintain a given boiler temperature. Hence, for the rest of the night, the draft unit, controlled merely by the aquastat, maintains the boiler temperature at 190 to 200 deg. F . In the morning, at 0 o'clock, the clock once more reverses the switch, allowing the pressurestat to operate. By 12 noon, the original fuel charge largely is consumed, and the furnace is ready for cleaning and recharging. Frequently, the furnace is not cleaned at the end of the run, but the ashes are left until the end of the second or third daily cycle. Draft through the fuel bed must not be completely shut off, because temperature will rise and coal clinker. Answering Mr. Lesser. Mr. Littel declared that the blast protected the furnace against possibility of an explosion of carbon monoxide. The cost per room per year for heating was about $\$ 5.90$.

Commercial establishments, owners of better homes and perhaps, even in a degree, every home owner can afford complete winter air conditioning. stated B. H. Jennings, associate professor, mechanical engineering, Lehigh University. Operating eosts are low and investment outlay is not much higher than for any first-class heating system. Less than 30 per cent

Fig. I-Setting heights do not affect over-all efficiency or boiler output, but low setting decreases fly ash

humidity is undesirable, but humidity in non-humidifled homes in winter drops ats low as 5 to 15 per cent, stimulating evaporation and thereby cooling the body so that moro heat is needed for comfort. Summer air conditioning ean be obtained by installing a compression-type refrigeration unit in the duet, but for safety, chilled water (or brine), separately coolel by refrigeration, should be placed in the duct coils to cool the air, thins protecting the nir carrent against leakage of the refrigerant.
As the domestic stoker las a cup-shaped burning head, the larger the stoker, the less fuel in intimate contact with air. Hence, its size is limited, urged William Stein, chiof engineer, Industrial Stoker Division, Combustion Engineering Co., luc. Moreover, the larger boilers are not round and do not fit themselves to a circular burning head. New designs have been sought, therefore, for apart-ment-honse and commercial installations. The Skelly stoker for this service has at wide and deep depressed conter along its rectangular grate, which depression at one end of sts bottom is fed by a serew with conl, which is then distributed along the depression by a pusher hlock. When filled, the coal rises to the top of the depressed area, which is shaped with flaring sides much like a retort. The coul hurns, and the ash rolls over the lips of the retort on either side, down a slope and over the elge of a flat perforated grate, whence it falls into the ashpit.

Silt for Pulverizing

Within an area convenient to the ant thracite region, silt or culm is often whitaimale at prices muking the use of sweh fuel by pulverization more economical than other fuels intrinsically better, asserted Martin Frisch, chici engineer, Boiler and Pulverizer Division, Foster Wheeler Corporation. Anthracite (volatile, $2 \frac{1}{2}$ to S per cent; moisture, 10 to 17 per cent; ash, 10 to 20 per cent) has been pulverized and burned without predrying. Total power consumption is about 35 kw .hr. per ton and cost of pulverizing about 20 c . per ton, of which 2 or 3 c . is for maintenance. In discussion, Mr. Frisch stated that anthracite should be pulverized so that 85 per eent of the product would pass a 200 -mesh sereen. With pittsburgh and Pocahontas coals, it) to 75 per cent would suffice.
In the anthracite region, said II. M. Warren, chiei engineer, Glen Alden Coal Co., buckwheats Nos. 1 and 2 usually are stoked by hand; buckwheat No. 3 frequently is hand-stoked, but No. 4 rarely is so handled. The general practice with these two last-named fuels is to feed them with stokers and only infrequently are these fuels pulverized.

Removal of ash by gravity can be attained by putting an extremely shallow hopper below the grate, merely to direct the ash to a low large-diameter ash can. If the boiler setting does not allow this, a pit may be dug below the normal ashpit level, and the can may then be placed in the pit, which latter is so made that the can may bo slid on skids to a covered extension of the pit and lifted onto the furnace tloor, declared E. T. Selig. Jr.. industrial jellow. Mellon Institute, at Saturday: session. This pit sometimes is provited with an incline up which the

50 per cent or more of their product at wholesale. Selling agents are independent business enterprises operating on a commission basis, whose principal function is to sell the entire output for certain producers with whom they have contracts. Drop shippers neither handle product shipped, nor deliver it. They merely act as intermediaries; orders solicited from retailers and others are shipped directly from the proluction point to the drop shipper's customers.

Table III-Wholesale Anthracite Coal Trade 1935

Sales of matural and manufactured gas increased from $14,000,000 \mathrm{cu} . \mathrm{ft}$. in 1929 to $41,000,000$ in 1936, quoted A. C. Fieldner, chief, technological branch, U. S. Bureau of Mines, at Friday's banquet. On the other hand, domestic stoker sales increased from 7,000 in 1932 to 93,500 in 1937 with an increase in sales of 23 per cent in the latter year over the year before-a larger gain than for oil-burner sales, which though 90,000 in 1934 and 200,000 in 1936, in 1937 did not gain over 1036, which is encouraging to the coal industry. F. W. Earnest, Jr., president, Anthracite Industries, Inc., said that progress in anthracite appreciation and use could be derivable only from a steady effort pursued over years. Addresses also were made by J. H. Pierce and Dr. Allen Stockdale.

Obituary Notes

Milton Everett Robinson, Jr., 47. head of the M. E. Robinson Coal Co. and four times president of the National Retail Coal Merchants' Association, died suddenly April 18 while waiting for a treatment in a Chicago osteopath's office. He was a graduate of the University of Chicago.
Thomas Herst Wiekitays, 7o, president of the Lillybrook Coal Co.; treasurer of the Raleigh Smokeless Fuel Co., and for 40 years prominent in the business life of Beckler, IW. Va, died on May 5 from a heart ailment aggravated by a fall two weeks previous. With Prince E. Lilly, he organized the Princewick Mining Co. and nlso was part owner of the E. E. White Coal Co., both of which were taken over by the Koppers interests.
Rufus L. Lofron. 50. superintendent at No. 1 mine of the Diamond Coal Co.. Proridence, Kr.. died late in April at the Evansville hospital. In point of service he was the oldest employee of the company.
Richafd M. Muccklow, i7, a retited West Virginia coal operator, died April 19 in Charleston, W. Va. With three

HAZARDELECTRIC SHOVEL CABLE

Hazacord 3 conductor electric shovel cables are tough. Their general rugged strength and durable tear-and wear-proof jackets give them a toughness that stands up to any job. The jacket has a tensile strength of 2 tons per square inch and is resistant to all weather.

This is the result of painstaking research, the use of several chemical ingredients (which were comparatively unknown to cable makers a few years ago) and improved methods of processing.

For long satisfying service where the going is toughest, use Hazacord.

HAZARD INSULATED WIRE WORKS

brothers he organized the Paint Creck Colliery Co. in 1800 and was active in business until about ten years ago.

Left U.M.W. Voluntarily

Testimony of defense witnesses that they didn't desire membership with the United Mine Workers and that they had withdrawn union altiliation of their own accord was written into the record of the Regiomal Labor Relations Board hearing against the Harlan Central Coal Co., of Totz, Ky., on May 4. John Hickey, firmer deputy sheriff and mine guard, whose mame has figured conspicuonsly in the hearing, deuied he had threatened union members or organizers for the L. ML.N:

Red Arrow Work Progresses

Red Arow, the new 301)-ton-per-four plant of the Red Parrot Coal Co., near Prenter, W. Va., (Coal Age, May, p. 100\}, is preparing to mine 1,000 neres of jud-ft. No. $\overline{5}$ Bluck seam and later will serve an equal area of 4 -ft. Lewiston spam which lies 40 ft . lower. The rope-and-button conveyor (Jeffrey type) is $1,200 \mathrm{ft}$. long and the pitch is 33 deg. The tipple has three loading tracks, shaker sereens, pieking tables and two londing booms. A rotary dump at the headlouse, rope-andbutton conveyor and the tipple equipment were furnished by the Kanawla Mfg. Co. Structures, which are of wood, were built by the coal company foree.

The plan is that development production will be 600 tous per day and the ultimate 2,000 to 2.500 toms per day. Mine cars are all-steel sulid-boly type of 3 tons eapacity mowed from No. 4 section of the company's Red Parrot mine, which is situated two miles farther up the C. \& O. brancls. Cutting machines and locomotives also will come from Red Parrot. The mining will be carried on by hand londing, at least until conditions are proved as to practicability for conveyors or other type of mechanical mining. J. A. Kelly, of Huntington. is greneral manager of the company.

When Miners Benefit, U.M.W. Unopposed To Mechanization, Says A. D. Lewis

T0 THE MINERS must acerue their slate of the benefits of the substitution of mechanical for human labor, on which basis it has been the policy of the United Mine Workers, ever since its organization in 1890 . not to oppose the "installation and operation of labor-saring machinery in coal mines." said A. D. Lewis. assistant to the international president of the United Mine Workers, spenking Mar 3 at the international coal conierence, held at Geneva, Switzerland. "By that it is meant." said Mr. Lewis, "that labor-saving machinery should save labor-that is to say, reduce the arduousness, hazards and length of working day -and if and when these conditions are met. the operator may receive fair compensation for his investment.
"The introduction of coal-cutting machines (80 per cent of tomage today is machine-cut), improved mining technique, and the appearance of loading machines brought labor productivity up to 4.75 tons per man per day by 1928. Productivity per mat-day, which in 1890 , with a $10-$ hour workilay, was 2.56 tons, had risen, on an average for the whole coundry, to 4.28 tons. With 40 per cent of the national coal output mechanically loaded, instead of the present lit per cent, we can expect within a few years the displacement of 98,000 miners from this cause alone. even with the assumption that competing fuels will make no further encroachment and general economic conditions will not further deteriorate.

Rational managenent and mechanical loading increase man-hour productivity over hand loading from 20 to 300 per cent, depeming on equipment, mode of management and grology of the seam. Such an increase, with fixed daily rate of pay for the machine crews. results in a material reduction of cost oi labor per ton produced. Even allowing for overhead burden, supplies and maintenance, the financial benefits of mechanization are ample to allow workers' participation in

April construction view of new Boone County (W. Va.) mine

the form of increased wage rates and improved working conditions, such as slorter hours, safety appliances, liygiene at and in the mines and adequate recreational facilities, in addition to proper housing and living conditions.
"Ouly when the standard of living in all of its ramifications is improved will the labor-saving machine have justified itself. And not until this is accomplished can the operator claim any share in the benefits on his investment."
Outlining the position of the United States Government in regard to proposals for international regulations reducing hours of work in coal mines, Ralph J. Watkins, director of the Bureau of Business Research, University of Pittsburgh, summarized it thus: (1) for social and economic reasons is favorably disposed toward a reduction of hours of work; (2) has made it clear through repeated pronouncements and diverse legislative enactments that it intends, through all means within its power, to elevate the workers' standard of living; (3) adheres to the polics of peaceful collaboration in the solution of the world's great problems and recognizes that collaboration is especially important in the sphere of economics because of the basic character and bearing of economic questions; (4) in appointing representatives to take part in this meeting, accepted responsibility for deing all within its power to assure the success of this conference.

Cardox Maker Changes Name

The Safety Mining Co., Chicago, manufacturer of Cardox, has changed its firm name to the Cardox Corporation. The change became effective as of May 1.

Personal Notes

S. B. Barlex, formerly chief chemist, Pittsburgh Coal Co., with which he was associated for the last ten years, has taken a posiiton with the Standard Oil Co. of Pennsylvania, with headquarters in Johnston, Pa. He takes over the duties of the late E. H. Dickie as lubrication engineer in the central Pennsylvania territory.
T. A. Beckley has been appointed foreman at Elk Creek No. 1 mine of the Elk Creek Coal Co., Emmett, W. Va.
W. P. Beveringe has been appointed superintendent at Osage Nos. 1 and 2 mines of the Pioneer Coal Mining Co., Osage, W. Va.

Joseph Brown has been made foreman at Bertland Ňo. 1 mine of the Bertland Coal Co., Accorille, W. Va.
IV. C. Browr, assistant foreman at Wrlam No. 8 mine of the Tennessec Coal, Iron \& R.R. Co., Fairfield, Ala., was transferred to Hamilton mine, Pratt Citr, as night foreman, effective May 1.
Wilifis D. Bryson, who succeeded Lee Ott as general manager of the properties
of the West Virginia Coal \& Coke Corporation, has relinquished this post and returned to the Utah Fuel Co. as general superintendent, effective May 1.
H. J. Convoliry, vice-president and general manager, and W. E. Lewis have been elected to the board of directors of the Pittston Co., Scanton. Pa., succeeding Alva Bradley and John P. Murphy, of Cleveland, Ohio. Mr. Lewis is president of the Second National Bank of Wilkes-13arre, Pa. Directors reelected were: Miciazr. Gallagiere, D. S. Bametr, Jr.; Harvey D. Gibson, H. S. Marsifall, C. R. Nasif and L. L. White.
Uharles Dorrance, vice-president in clarge of operations, Consolidation Coal Co., with headquarters at Fairmont. W. Va., has been named to the board of directors.
Ernest Estep has been made superintendent at Omar No. 4 mine of the West Virginia Coal \& Coke Corporation, Omar, W. Va.

Joni Fallon has been appointed superintendent at Norton No. 2, Junior No. 4 and Bower No. 12 mines of the West Virginia Coal \& Coke Corporation, in central West Virginia.
W. R. Hands has been made foreman at No. 5 mine of the Pursglove Gas Coal Co., Pursglove, W. Va.
D. Harrington, chief, Health and Safety Branch, U. S. Bureau of Mines, has been elected chairman of the Mining Correlating Committec of the American Standards Association. Fle succeeds Dean E. A. Holbrook of the College of Engineer ing, University of Pittsburgh, who had held the position since the committec's organization in 1920.
P. D. Heary has been appointed coal inspector at the Merrill Coal Co. mine at Henlawson, W. Va.

Thomas J. Horman, sales manager of the West Kentucky Coal Co., Sturgis, Ky., has been made rice-president.

John Jones has been made superintendent of Mines Nos. 2 and 5 of the Mallory Coal Co., Landville, W. Va.

George Keitir has been made superintendent of Leckie Nos. 1, 2 and 3 mines of the Leckie Smokeless Coal Co., Anjean, W. Va.
D. C. Kexiedy, chairman of the Appalachian joint wage conierence and secretary of the Kanawha Coal Operators' Association for the last 35 vears, embarked on April 20 to attend the Technical Coal Conference, a section of the International Labor Conference, at Geneva, Switzerland. He appeared in the operators' interest at a discussion of working hours of miners throughout the world. A. D. Lewis, international representative of the United Mine Workers, is the employees' representative. The United States Gorermment is represented by Dr. Ralpir J. Wathins, professor of economics and director of the Bureau oi Business Research, University of Pittsburgh.
J. W. Kercheval has been named foreman at Louise mine of the Premier Block Coal Co., Osage, W. Va.
Joun E. Kyis. former district mine inspector, has been made superintendent of Stirrat No. 19 mine of the West Vir-

Joseph H. Nuelle
ginia Coal \& Coke Corporation, at Stirrat, W. Va., vice Thomas Steele, transferred.

Hooper Love, for many years manager of the St. Bernard Coal Co.. Nashville, Temn., has been made vice-president of the company.

Whllin F. Masterton, B. S., has been appointed underground manager at the Chaokochwang colliery of the Kailan Mining Administration, Chaokochwang, Kuyeh, Hopei Province, North China. The colliery is a well-equipped modern operation producing $6,000-7,000$ tons per day from seven seams at depths of from 900 to $1,800 \mathrm{ft}$. He was formerly at the same organization's plant at Tongshan, Hopei, North China.
D. L. MoEnroy has submitted his resignation as assistant dircetor of the Mining and Industrial Extension Depart ment of West Virginia University, effective July 31, to become head of the Mining Engineering Department of Virginia Polytechnic Institute. He has served in his present post for ten years.
H. B. Morgan, formerly assistant to J. T. Sydnor, has succeeded the latter as superintendent of the Red Parrot mine of the Red Parrot Coal Co., at Prenter, W. Va.

Joserii H. Netrie resigned on April 25 as president and general manager of the Lehigh Coal \& Navigation Co. effective May 15 , to become president of the Delaware \& Hudson Co. and its subsidiaries He was elected to the latter position on Hay 11, effective as of Mar 10. He succeeds Leonor F. Loree, who resigned on March 30.
Patl TV. Perkins, Chicago, has been appointed as a price examiner in the National Bituminous Coal Commission's bureau of industry relations to specialize in price and industry matters in and between Districts 10 and 11 (Illinois and Indiana).
Mattilias Picam was elected president of W. J. Rainey, Inc., Uniontown, Pa., at a meeting of the board of directors. Other officers named are: Vice-president,
E. W. Bratton; vice-president in charge of operations, Robrirt Wood; secretarytreasurer, Richard W. Reese.
J. W. Porter was reclected president of the Alabama By-Products Corporation, Birmingham, Ala., at its annual meeting. Other officers named are: H. J. Morrow, vice-president and treasurer; A. M. Shook, secretary; II. M. Cowilit, assistant secretary and assistant treasurer. Erskine Ramsay continues as chairman of the board, and Meryin II. Sterne, of the banking firm of Ward, Sterne \& Co., succeeds the late Albert Bush on the directorate.
Dr. Charles J. Potter, Fairmont, W. Va., assistant to the president, Continental Coal Co., has been named by the National Bituminous Coal Commission as price examiner and general assistant to the director of the Commission's bureau of industry relations. He will specialize in price and other industry matters in and between Districts 1, 2 and 3 (Pennsylvania and northern West Virginia). In 1933 he was a technologist for the Northern West Virginia subdivision of the N.R.A. bituminous coal code authority and was a member of District 3 producers' board under the first National Bituminous Coal Commission.

Virgil Proudfoot has been named foreman at Barbour mine of the George Annese Coal Co., Flemington, W. Va.
Ray Robson has been appointed foreman at Omar No. 4 mine of the West Virginia Coal \& Coke Corporation, Omar, W. Ya.

William E. Russeile, president, William E. Russell Coal Co., Denver, Colo.. has been elected president of the Rotary Club of that city.
George J. Schaller has been made superintendent at Wyoming mine of the Red Jacket Coal Corporation, Wyoming, W. Va.

Jack Shaw has been appointed foreman at Golden Arrow No. 2 mine of the Detroit Mining Co., Gordon, W. Va.
George Hunter Smitif, of Canon City, and Joun J. Roddy, of Trinidad, who received the highest averages in a State civil service examination, were permanently certified for deputy inspectorships in Colorado on April 24. The fact that their averages exceeded 85 makes them eligible for chief inspector. They were provisional appointees as deputies.
G. R. Sirndler, instructor in the Fairmont district Mining and Industrial Extension Department, West Virginia University, has been appointed to succeed D. L. McElroy as assistant director of the department.
H. Sprouse has been made foreman at Thacker Nos. I and 2 mines of the Puritan Coal Corporation, Mingo County, West Virginia.
Thomas Steele, hitherto superintendent of Stirrat No. 19 mine of the West Virginia Coal \& Coke Corporation, at Stirrat, W. Va., has been named superintendent of Omar No. 5 mine, succeeding Andrew Whitt, promoted.
IV. G. STEPP has been promoted from assistant foreman to general mine foreman at the Rossmore mine of the West

Virginda Chal a Cowe Corpuration．Ross matcs IIV，V．
 manamer of the progergiss of the West
 llitiam D．lirysult．Mr．Snitnor had
 Siwl Ch，Pranter．IV．Va．meil May 1. wheat he assumeri his bew dutios

 biw Mev

 S゙ッいが IIV．V．

 Siselle who reokigeed to lecreme presileat

 arociated sevecal somerinteedsent los the
 evgeterth

 frewsurte，M．S．Biven asoistant suttitarg

 Sseckativit．
 x Shis fian mos electol gavidet od the

 （Vat）\＆

 Frweservis．

Ulifirsis listitute Program SRt

sover，haistug stivchis and last
 sumooer meectigs of the Dlimiliss 3chaing
 Whe Soumot Cleliter 3ayit wilite wett

 The six．owkiturt of the issoumt ant

Nex Higpla at Nis－ach mi－e

 Jr－Mlisoi．Sate mine in pecter：Cisk

 mevt，Hiscults Pumber C．i：－Dast－Trvat－
 iseth a tholler Coul a Mraing Ce

Name Opan－Prica Administrator

Svevensen Jonlaz 4 Buctisco－manage－ mons ure

 3．I Stoat viegeesibent Laist Tilies
 Devisur क baiz aby？\＆B．Galelt of Thome Drile 2 CN Dnce

Py－muscile Pliches hamed

Mone apgernals of mentixios ofripornt intwe iscural to the in S
 3－ses．

 pert－tumin
anare yex Mat ayn 32en

 3iex zant in

Expansion Program Proceeds In St．Charles Field

The St．Charles field of Virginia is completing a $\Sigma 500,000$ expansion and im－ provement program．As part of the de－ velopment the Blue Diamond Coal Co．．at Benny Blue，purchased more than 200 acres．costing over $\$ 15.000$ ，built $3 \overline{5}$ new houses at a cost of $\mathcal{H}=0.000$ ，and bought 13 houses．costing is．000．irom the Kem－ merer Gem Coal Co．，whose property adjoins．The recent construction of a new headhouse and coal bins at the Bonny Blue mines cost 249000 ．Turning the course of the cresk，that once ran through the center ai Blue Diamond＇s building property，to the rear，and filling up the channel aiter it had been changed， Cust

A modern tipple ratid at 950 tons per hour ui raw ferd has been constructed at the Virginia Iron．Coal a Coke Co． Monarih mine．replacing the old one， whici berame inadequate to bandle the increased output of onl．The gew tipple， insther with contributory appurtensines skeh ss additional milruail track facilities．
 sissi including wit－treated domestic stoker wal．The cail haded inere hears the ＂rade nsmiz＂とીld Virginis＂sud comes inom the Black Mountsin So $\overline{\text { B }}$ sexm．
 wijes ban texp calde and are im the ＂akizs a：the Nanarcis mines imcicJe
 blitsie state dugy，acaitional burlage

 ：

\rightarrow

Indorses Marketing Agencies

 to amicution of the Exitez Butes
 it
 scolieveoce of the Aivisive fithed the devel－ oganent 3 a3，zeogress of sech aguncies in the Mitumiaves soul indestry，fivm wibich it was evecheled that ther a focmea rupor

 the ehamler out Eeßers？antiè tract laws

 the Sviers）（Sowermotat fisming Eith

 Sive scend ys the veitemal mo be infarious

 flume se gupe 5
opprortunity for enterprise in matural resources, and in other industries, to join in marketing agencies through which they can take proper measures for self-help and common protection in solution of some of their problems.

In a brief address, R. F. Howe, president of Appalachian Coals, Inc., gave a resume of the successful operation of the sales ageney plan in the soft-coal industry. At a meeting of the chamber's National Council, Andrew B. Crichton, president, Johnstown Coal \& Coke Co., spoke on present conditions in the natural-resource industries, with particular reference to coal. He urged conservation of coal as well as oil and, though deprecating government regulation, conceded that the coal industry must have some aid; if not through price fixing, then through control of production.

Explosion of Dust Kills 45 In Keen Mountain Mine

An explosion on the night of April 22 killed 45 men in the Keen Mountain mine of the Red Jacket Coal Corporation. 6! miles southeast of Grundy, Va. A preliminary report by the U. S. Burean of Mines said that Federal, State and mine ofticials agreed that the disaster "was caused by the firing of what is termed a 'bulldozing shot' for the purpose of breaking up an accumulation of roof rock which had fallen before the day shift left the mine. The blasting, which was done shortly after the night shift had gone into the mine. ignited coal dust in the immediate area. resulting in an explosion which killed every person in that part of the mine."

The firing of bulldozing shots (in which no hole is drilled, the explosive being simply laid on the material to be blasted). the report points out. "is recognized as being hazardous in the extreme in coal mines and violates the conditions under which the Bureau of Mines gives approval for the use of permissible explosives." Attention is called to a report issued hy the Bureau in 1936 which warned that bulldozing shots "shonld not be permitted under any circumstances in any coal mine. as they are extremely dangerous even where no explosive gas is present. Shots of this type should be prohibited, it was emphasized, partly because they are inefficient hut primarily because they ignite gas or dust so readily that even the use of rock dust or other incombustible material over the charge does not insure that degree of saiety to which men and mine are entitled. Certainly no shots of this type should ever be fired with the working shift in the mine."
Rock-dusting had been done to some extent. the report said. but not thoroughly.

The Keen Mountain mine. which was only recently opened (Conl Age. April. 1938, b. 37). has an almost level. quite dry coal bed which gives off little. if any. explosive gas, says the report. "A haulage road follows the contour of the mountain along the coal outcrop, and from this about twenty different openings lave been made from the suriace into the coal bed. This layout probably saved many othe"s from being killed beeause the underground workings off these numerous surface openings have not all been connected."
Dissatisfied with the report of State mine inspectors, Governor James H. Price
of Virginia named a special commission $t 0$ make a minute investigation into the cause of the explosion. Governor Price said the report submitted by Thomas B. Morton, newly appointed State Commis. sioner of Labor and Industry, was "lacking in essential details" to explain the disaster. The commission named includes: E. B. Norris, dean. engineering school, Virginia Polytechnic Institute; J. D. Ragers, vicepresident, Stonega Coke \& Coal Co.; John Saxton, president. District 28, United Mine Workers; W. H. Nickels, Virginia Industrial Commission; and Labor Commissioner Morton.

The Governor indicated not only that he wanted to fix responsibility for the disaster, if possible. but that he desired suggestions to prevent recurrence of such explosions. He also said he had written to members of the legislative commission named to investigate coal-mining conditions in the State and recommend safety laws to the 1940 General Assembly, suggesting that they sit in with the special group at the scene of the blast. He explained that this might help them in making their general survey of conditions later. Members of the legislative commission are: Delegates Scott Litton, II. M. Bandy and C. M. Hunter. and Senators I. R. Parker and C. F. Burks.

New Stokers Announced

New stoker models have been introduced by the Peerless Manufacturing Corporation, Louisville, Kr., and the Fcon-O-Col Stoker Division of the Cotta Transmission Corporation, Rockford, IIl. The new Peerless unit, in a complete line of sizes and models, embodies the following features: continuous feed-gear transmissions, with three rates oi coal feed; complete antomatic controls; hood soundproofed with plastic material to prevent rumbling and vibration noises; automatic air coutrol and specially adapted wind boxes to suil practically all iurnace and boiler installattions; sectional tuyeres to prevent smoke backing up in the hopper; completely sealed hoppers; and standard recognized makes of motors.

Two Econ-O-Col bin-feed models are announced for use in old or new homes with old or new type furnaces or boilers. The "Pull-thru" model, requiring two openings in the boiler. is recommended for new homes and comes with delivery tube either helow or above floor level. The "Transfer" model. which requires only one entrance to furnace or boiler. also may be had with delivery tube either below or ahove floor level. Delivery tubes, incidentally. may lue short or long.

Mechanization of Loading and Cleaning Registers Wide Gains in 1936-37

MFCHANIZATION of loading and cleaning made rapid strides in the coal industry in the United States in 1930 and 1937, according to a report prepared by the National Bituminous Coal Commission in cooperation with WPA. During this two-year period, mechanicalls loaded bituminous tonnage increased it per cent and mechanically loaded anthracite tonnage. 13.1 per cent. At the same time. the tonnage of bituminous coal mechanically cleaned showed a growth of about 44 per cent.
Total bituminous coal loaded mechanically is estimated at 83500.000 tons in 1037. an increase of ahout 24.7 per cent over the 1936 total of 66.361 .848 tons. which in turn was an increase of 42.1 per cent over the 1935 figure of 47.177 .224 tons. Mechanical-loading equipment

Table I-Comparative Chanqe in Tonnage of Bifuminous Coal Loaded by Principal Types of Machines, 1935-36

	Net Tons	$\begin{aligned} & 1936 \\ & \text { Net Tons } \end{aligned}$	Increzes or De crease Per Cent
Mobile loading			
Scraper loaders	$24,605,248$ $1,118,201$	1,272,455	+68.0 +13.8
Duckt:ilsaud other innf loading conveyors.	2,594,5\%. 4	3,240, 111	+24.9
Total loaded by mashines.	23,358,013	45.474.199	+60.2
Pit-car! !aders........	11,093,465	10.537.20	
Other hand-loaded conveyors......	7,690,745	10,949,943	$\div 42.4$
Grand total	47,171,224	65,961.54S	$\div 41.9$

handled 16.4 per cent of the total deep. mined output of the country in 1936.
Mechanically loaded output in the anthracite region, reflecting a decline in the total output of the industry- dropped to 10.490 .728 tons in 1937, a decline of 48 per cent from the 1936 total of $11.019,23$ 5 tons. which in turn was an increase of 18.8 per cent over the 1935 total of 9.279 .057 tons.

Conveyors and serapers were responsible for all but a small part of the anthracite innage handled mechanically in the several rears. while mobile loaders were the leaders in the bituminous industry. this latter equipment, together with serapers and seli-loading conseyors. accounting for about 60.000 .000 tons in 1937. as compared with about $23.000,000$ tons for pit-car loaders and hand-loaded converors. In 1936. self-loading equipment handled $45.4 \overline{4} 4.108$ tons, against $21.457 .6 \bar{n}$ tons for pit-car loaders and hand-loaded convevors. Corresponding figures for 193. were 28.388 .013 and 18.789211 tons.

Sales Indicate 1938 Rise

Sales of mobile loaders and conrerors in 1937 (Table III) indicate a still further substantial increase in loader and conseyor output in 1938 . Illinois, West Virginia. Indiana. Ohio. Pennsrlvania (bituminous) and Kentucky led in the number of mobile naders purchased in 1937, While Peansylvania (anthracite). West Virginia, Kentuckr. Pennerlvania (bituminous), Colorado. Alabama and Wroming led in the purchase of conveying equipment. Pit-car Inaders in use continued their drop in 1937.
"From what is known of new installa-
tions of mechanical-cleaning equipment in 1937, it is estimated that the total quantity of bituminous conl cleaned mechanically in that year was at least $65,000,000$ tons." This compares with $61,040,539$ tons in 1936 and $45,361.021$ tons in 1935. Quantity cleaned at the mines rose from $39,511,176$ tons in 1935 and $53,332,040$ tons in 1936 to an estimated total of $57,000,000$ tons in 1937. New 1937 capacity was seattered over the country. Of the total United States bituminous output, 14 per cent was mechanically cleaned in 1936, as compared with 12.2 per cent in 1935. Mines served by cleaning plants (not including those mines which ship to washeries operated by steel companies) accounted for 20.4 per cent of the total bituminous output in 1936. Average recovery of clean, merchantable coal in mechanical cleaning was 90.5 per cent. on the basis of arailable data.

Supreme Court to Rule on TVA
The United States Supreme Court consented on May 16 to review the test challenge of eighteen Southern utility companies to constitutionality of the Tennessec Valley Authority Act and TVA operations. The court agreed to hear argument for a review of a decision of a three-judge Federal Court of Appeals at. Chattanooga, Temn., on Jan. 21 which held that the companies were not immune from TVA competition "even if their busines: be curtailed or destroyed" (Coal Agc, March, p. 79). Oral argument on the suit. aeceptable to all parties as a general test of the legality of TVA, will not be held hefore the court convenes next October.
The complainants, most of them subsidiaries of the Commonwealth \& Southern Corporation and the Electric Bond \& Share Co., told the high court that: "The
present and threatened acts of TVA threatened irreparable injury, if not destruction of the properties and business of each of them."
Senator James J. Davis (R., Pennsylvania) has been designated by Vice-President Ginrner as the fifth member of the TVA investigating committee, and Mr. Davis has aceepted the assignment.

Correction

In an item on a method of suspending the vacuum tubes for five Syntron screen controllers to prevent transmission of vibration to the tubes, which appeared in the May Coal Age, p. 94, the make of screcus erroneously was reported as Traylir. Actually, the screens are Tyler units -upplied by W. S. Tyler Co., Cleveland, Ohio.

Table II-Preliminary Estimate of Mechanical Loading in 1937 Compared With 1935 and 1936

State	$1935{ }^{11}$	1936	1937
Alsbams.	1,303,653	1.741.452	2,100,000
Arkansess.	$\begin{array}{r}292,084 \\ 197 \\ \hline\end{array}$	522,411	550.000 ${ }^{\text {\% }}$
tilinols.	20,513,082	26.114,57\%	28,344,362
Indisns	5,767,696	7.143,267	7,426,306,
Iowa.			
Keatuoky	533.250	65S.6.	1,300,000
Mispouri.			
Yonta	1,291.373	1.464,121	1,431,000
New Mesjo Norih Dak			
Ohio.	1,488,303	2.038 .515	$3,204,1027$
Oklahoms	,	…....'	
Pennsytrania	6,489,485	9,033,855	11.951.639
Teanesaec	233.519	290,220	450,000
Utsh	\$95,118	1.358.543	1.835.000 ${ }^{\text {2 }}$
Virginia.	651.807	779,232	1.500,000?
Washingtos.	+ 429.617	8608.488	${ }_{15}$ S3S,000 ${ }^{19}$
Went Virginis	$2,059,322$ $4,530,032$	8,706,785 $\mathbf{5 , 1 8 9 , 2 6 3}$	$\begin{array}{r}15.490,863 \\ 5.300 .000 \\ \hline 11\end{array}$
Undistribut	515,524	\%54.824	760,689
Total bituminous	47,177.224	66.961. S48	\$3.500.000
Pennsylvania snthracite.	9,279.057	11,019,235 ${ }^{\text {2 }}$	10.490.72 ${ }^{\text {:2 }}$
Grand total.	56,456,2S1	7\%.081,083	93, 390.72S

${ }^{3}$ Bureau of Mines, Minerals Yearbook 1937, pp. S32. 857. ${ }^{2}$ Estimated on the basis of ssles of new equipment in 1937. Thomas Allen, State Inspector of Coal Mines, Colorado. James MeSherry, Director, Department of Minea and Minerals, Illinois- Jonas Waibe, managing director, Goal Trade Associstion of Indians. "Included in "Tndistributed." Data for $193{ }^{\circ}$ sre based larzely on telegraphio reports irom operstors. 7 .I. W. Hranilovich, Disision of Labor Statistics. Department of Iadustrial Relations, Ohio s.M. J. Hartneady, Secretary of Nines, Pennsvlysnis. Telegraphic reports from mine operators. 16.5 . Rhinehart. Ghef, Department of Nines, West Virginis. ${ }^{n}$ Hush IcLeod, State Mine Inspector, Wyoming. ${ }^{2} \mathrm{~J}$. J. Walsh, Deputy Secretary of Mines for Anthracite. Peansylvania.

Table IV-Bituminous Coal Cleaned by Classes of Equipment in Actual Operation, 1935-36
(Coal cleaned and plants operated by consumers st central washeries in Colorado and Pennsylvania ineluded)

Type of Equipment	Number of Types in $6=$		Net Tons of Clean Coal			Per Cent Cleaned by Esch Type	
	1935	1936	1935	1936		1935	1936
Wet methods: Jirs.	135	154	15,735.039	23,432.625	45.9	34.7	
Concentriting tables ${ }^{1}$.	,	S	1,117.759	1,543,162	64.9	2.5	3.0
Jisy in combination with concentrating tobles ${ }^{1}$.	15	18	1,53,123	3,612, S0\%	68.6	3.4	4.3
Lsunders and naprardcurreat elsasifiers.	33	97	13,451,235	23,615,9\%9	22.6	40.7	37.0
Total wet Preumatic meth	$\begin{gathered} 255 \\ 65 \end{gathered}$	$\begin{array}{r} 275 \\ 65 \end{array}$	$\begin{gathered} 30, \$ 58.488 \\ 8,504,333 \end{gathered}$	$\begin{aligned} & 50,504,591 \\ & 10,535,91 \end{aligned}$	37.0 23.9	$\begin{aligned} & 51.3 \\ & 15.1 \end{aligned}$	83.7
Grand total	3201	340:	43.351.021	61,040,539	3.6	100.0	100.0

${ }^{1}$ A more representative firure for the use of wet tables is indicated by combining the totals for coucentrating tables wih the cotal for jigs in earabingtion with concentrsting tables.

${ }^{3}$ Number of plants using both wet and pneurnstic types - 3 Ii 1935 ; 30 in 1936.

Table III-Comparison of Mobile Loaders, Scrapers and Conveyors in Use in 1936 With Sales Reported in 1937, by Regions

${ }^{1}$ Includes hand-losded conveyors and conveyors equipped with duckbills or other self-loading heads, Includes Golorado, Montana, Neur Mexico, North Daknta, Utah, and Wyomink. ${ }^{3}$ Includes Arkansas, Montana, Utah, and Wvoming. Ancludes Arkansas, New Mexico, Oklahoma, and Wyoming ${ }^{3}$ Wyoming "Includes Arkansas, Colorado, Iowa, Montana, Utah, Washington and Wyoming. 'Includes Arkanss, Colorado, Iowa, Utah, and Wyoming.
${ }^{3}$ Pennsylvaniz Department of Mines.

Table V-Bituminous Coal Mechanically Cleaned by Wet and Pneumatic Methods, by States, 1935-36
(Coal cleaned at central washeries operated by consumers in Colondo and Pennsylvania included

State	Clean Coal in Net Tons		Increase or Decrease	Per Cent of State Output Mechanically Cleaned	
	1935	1936	Per Cent	1935	1936
Alsbsma.	6,841,269	9.922.714	+45.0	80.4	80.9
Colorsdo	492,874	713,678	+44.8	8.3	10.5
Indisms.	3,154,128	5,628,884	$+78.5$	7.1	11.2
Kentucky	1,233,555	2.195 .067 514,647	+71.2 +48.4	8.2	12.1
Missouri and Kansas.	1,169,351	1.771,850	+51.5	18.5	25.6
Chio and Michigan. .	1,151,546	1,331,545	+15.6	5.3	5.5
Pennsylvanis.	17,844,642	21,584.404	+21.0	19.5	19.8
Tennessee	-341,117	257,99:	-24.4	8.3	5.1
Virginis.	359,548	473,992	$+21.7$	+. 0	4.1
Washington..	614,711	1,203,753	+95.8 +9	39.4	65.9
West Virginis	$11.613,813$ 112,839	$15,290,671$ 148,297	+31.7 +31.4	11.7	13.0
Total.	45,361,021	61,040,539	X34.6	12.2	14.0

${ }^{2}$ For 1935 and 1936 includes Arkansas, Maryland, Montona, and New Mexico

Anthracite Mine Explosion Kills 8, Injures II

Light men were killed and eleven seriously injured in an explosion on April 27 in the St. Clair colliery of the St. Clair Coal Co., St. Clair, Schuylkill County, Pennsylvania. An hour after 600 men started work the blast occurred about 500 ft. underground. It is reported that the coal pitched heavily (70 deg.) and that a breast leading up from a lower level to the East Buck Mountain gangway at Breast 65, where the first explosion occurred, had been stopped, many years carlier, 85 ft . below the gangway, because the coal seam had pinched. As the pillar was large, it was assumed that it could not slide down the pitch. Probably, this unapproachable breast contained methane, which the sliding of the pillar released.
The inspectors' committee reported on May 1 that on the morning of the day of the accident, the workmen in the gangway began to prepare timber for their lireasts, when one man felt the bottom of the road sinking under him and jumped to safety. Under the assistant foreman's instructions, the men began to leave the working through Chute 66 and the return airway.
One man with an open light ignited methane and was killed. Later, a second pillar ran away, liberating a large volume of methane, which exploded about 15 minutes after the first blast. This methane was ignited, the inspectors believe, by a flame arising from the first explosion. All the men involved but one had electric lamps, but the mine was not operated under elosed-light regulations. On inspecting the mine, the inspectors found no fire, methane or afterdamp. Though an overcast was damaged, 3,400 cu.ft. of air per minute was still passing through the return airway.

$\therefore-$

Industrial Notes

Sullivan Maditinery Co. has made J. F. Joy special consulting engineer on all problems relating to coal mining and the development of machinery used in coal mining; he has been general mathager of the company's coal-mining machinery division. Charles H. Tipping, previously district manager in the St. Louis (Mo.) office, becomes general manager of the coal-mining machinery division, of which William R. Jarvis is sales manager, and R. A. Lehner, chief engineer.

Fuel Enalnefring Co. of New York has removed its offices and fuel-testing laboratories to 215 Fourth Ave., New York City.

Black \& Decker Mpg. Co. has opened a factory service branch at 935 North Illinois St., Indianapolis, Ind. H. F. Linder is service representative and M. D. Mooers, sales department, will have his headquarters at this branch.
Westinghouse Flectric \& Mrg. Co. has placed Vice-President Ralph Kelly in charge of sales with headquarters in Pittsburgh. Vice-President R. B. Mildon has been transferred from Philadelphia to assume management of the East Pittsburgh division. Vice-President N. G. Symonds, long associated with sales operations, will

"Here's the new

 coal washing table which attracted such wide-spread attention at theCoal Show."

EMIL DEISTER, SR.
President Deister Machine Co.

THE NEW DEISTER PLAT-O

 COAL WASHING TABLE...Cleans much larger tonnages, effecting a marked saving in the space now required for this work.

New contour of the deck surface; new system of riffling; more effective differential action of the Plat-O Headmotion enable this table to handle much larger tonnages per unit of occupied floor space.

COAL WASHING TABLE

To twenty-six years of constant experimentation and engineering development goes the credit for such an amazing improvement in operating efficiency. The Deister Machine Company, specialists in the field since 1912, invites your inquiries with the firm conviction that under your own particular operating conditions an installation of one or more units will prove an extremely profitable investment.

If

You were unable to attend the show, write for complete details today.

[^2]bake eary of spectite customer wetivities.

 apperintol grymetia! mathany if putchases

 75: (2)

 int hout end Si.

 si W Wat

 जrben

 worviseres: hwinowin Beveroment

 pancurece, is. 16
 shincer lite wisives of is Prisuce wome

 (7)

 permetation.

When Fhoeds 4it Souboment

 Fioskh emt, greest wnide varision, las waith as

Validity of Guffey Act Again Attacked; Tetlow Made Permanent Chairman

WAsillditive th Com May $1 /=$

 6, cates A, ans.s: EWanty.

 foers vit are mot zembers of the ratic - 1 vin of the mossum The phaintif acouted thest lis prodact is mos Ditumimotio wisi mat siet. zberefiote, is is pot wh tre: sin the peerisioms of the act. The

 Sothis pheinstift as luraitha was Phe Folliciolng

 Suatm Temas: is afy matidery sha wo.

 shiste avanminese ut Dittumitoves aval per-

 bever, sith inf wimativen se evestitational

 the vimivel wect wa vercerowetitg it 7e ins

 teakige tho xuthmisime of werts ath

 Buthe (raniz Con ued otion Dumism Final a

The Commission isurd a ruling on May 11 that the underlying coal in the folloring counties of Teras is lignite within the meaning of Eere $1:$ (b) oi the Cionl Control Act and thereione is exrmpter inom the provisions of the act: Andersum, Ataseosa, Rastrop, Brazos, inarieson, Camp, Cass, Cherokee, Frantlin, Frostone. Frio, Gonasles, Gresg. Harsisom, Henderson, Houstom. Karpes. LaSalle Yesi, Leva, MeMullen, Madisaa, Marico Muntannery, Morris Saconguches, Pamola Rami Ruberisun, Rusk, Sarine, Suelbr
 Winai. Zanata, Angeliza. Bier. Berat. Nowide Caidmell Delta, Dellitio Dacal.
 Hopisine Hant, Jim Hoge. Tim Wels.

 San Angustine, Starr, Travis, Trinity-

Tens Can? Closs=en

 beumber with chem No Es at the Gime Mnsiom hacring 3ictivaras 云
 being ikite to the Cammissime sumpl

 Tracison Cell: be bisive to the wowtrit were: the

Built to do an UNUSUAL JOB...for WASSON COAL CO.

-and they're " \mathbf{S}-ID 1-2-3 Automaties"

S-D 1-2-3 large capacity cars in the WASSON Mine about to be unloadad automatically.

This photo shows some of the cars with side boards to increase capacity where roofs are of sufficient height to use them.

Conventional type cars were impractical for servicing loaders. So Wasson Coal Co., Harrisburg, Illinois, turned to Sanford-Day for large, Automatic drop-bottom cars, to increase loader production. The car shown above was the answer and has almost 3 times the capacity of the conventional cars formerly used back of the loaders. These new cars are S-D 1-2-3 Automatics . . . a Sanford-Day exclusive design with the largest capacity available, for any given over-all dimensions, in automatics.
With this new and unusual Wasson system, these cars never see daylight. They are loaded with loading machines, and automatically unloaded into small transfer hoppers.

The coal is then transferred from hopper to their conventional wood cars for transportation to the dump.
This car does not DLMP the coal . . . it doesn't DROP it . . . this unusual design LAYS the coal down gently, in 1-2.3 order - one door at a time. No other car in existence handles coal as gently - with so little breakage as the "S-D 1-2-3 Automatic."

Sanford-Day's engineers can assist you in solving your coal transportation problems. They do it often for others, and usually at great savings in production cost. Write us at once.

Ridhards, Hhedelu, IV. Vin.; Genge IV. lined, Chimgo; J. N. Terrio, Wanhiugtem, 1. C., unl brank M. Eviston, Lamas City : 10.

Sonm of the producers' propesals incorpmated maximum discounts on a centeprer-ton basis and others on a percentage bask for specifled types of coab. Mayy of them sughested a maximum diserunt of loe. per ton on railroad havomative futy. A discount rame from
 degemtheg ufan location of the distriet. sixat oif rosl and marketing areas, was preselteve by the rarions producers benthe keveriug most of the bituminons-coal-prextucing areas.
W. W. Haylleh. extentive secretary. Amerima Wholesale Cosal dsweiation, sug fisted to the Commisaion rules and regubations propested ly his organisation to gowern disemmes and allowaters together with sughestions as to defthitious of these batious ugents. He also propered a disrathe ath allowatice rate of 10 pele cent ai the prite per uet tom as being satis. Perfory athl suitable to his asswemtion.

Cost Data Introduced

Represeltatives of the legal stall of the Consumers Comasel were preant at every session and crowsexamined the witheses we the testimury they prevented. On the that day of the hetaring. Dr. Ralph Mskey
 Statistibat division, interderet the follow ung thres exhibits into evilente: (I) the whighted arerage selliug cost pere tou fur Q3.016, sel toxs of wal hambled by is distributura it 1036 . (2) relationship be tween enters' stlaries aud net income to sales maryite and sotal experditures of the is distributors athe (3) the fropertion of the swerage distount per ton that weut for stlaries.

The Coul Comanssion, which was represcuted by kobert W. Kuex, general counseh, aud members of the legel stat! cilled Fr. G. Tryu, chiei, and Dr. W. H. boung statistied expert. Bureau of hesuctich and Stathitics, to the stand as witnesses

District producers beands begau submitting cost hesure during the latter part of April in ireparation for the public hearhags whick the Cemmissien will hold grioe to the ratablishmeut of bituminous wal prices Cost determination tigures liave seeu receivel from distriets Nosis 1 . 3. 4. $2,5,10,12,13,14,15,10,1 \% .19$,
 upert diata the Commission's statistical burtitis asd compiled iporm individual reports sellected frour all producers in ekt district.

The comanissiou is malyying the bourds cust determinations and is discussion the date and arrasgeurats for a public hearivg to cotain information upor which final anst tigures cast be basel fur each tuarket. ing sred set up by the set. It will call Ser suitimam price propustls bazeri upon theme firul areze wat pigures.

John Carson, Cuasumers Counsel, has whomitere to the Commissiou is request for informatiou on the approximate dates for pubtite bearinss to be hetid prior to rvestibilshateut of atuimun prices Mr. Carsen gurposes arrangimg for a series of somsumer cenferemes prior to of au the stane time that berithes are being aelu. It the neti stises and there is sulfeient deшanui, a sories of consumer sonfereaces
atso muy be arranged in purely consuming mrens, such as New Eugland, where consiterable tomage is used.

A standard phan ior the elassification of coals, intended to speed price establishment, ulso has been proposed by the Counsel. In submitting his plan, Mr. Crisen declared that consideration should be given to "producing districts, seans amb those characteristics that are definitely determinable," but no standard plan should "include any intangibles which would involve the question of persomal juagment. It is suggested that as base plan the alopted which would indiate unly thase factors that are considered to be the predominant ones in asch distriet. The bames oi each of these factors should he broken down into all langes that would constitute the maximum ahlowable ranges for all districts. Then for each distriet any additional factor that was predominaut in that distriet should be added to the base factors. In any distriet where the maximum range ullowed in the lase phan was believed to be too great it could be lessened."

This plan is suggested as a first step (1) prevent lose of valuable time in es-

Coming Meetings

- Indisua Cual Minimg Institute: summer weetiug. June t. Hotel McCurdy, Evansville, Ind.
- Mine Inspectors Institute of America: s9th anuual convention, St. Nicholas Flotel, Spriugtield. Ill., June 6, 7 and S.
- American Retail Cual Assuciation: annual coavention sud coal exposition. June 6-12. Hotel Shermsn, Chicago.
- Bir Saldy-Elkhora Coal Operators As siciatiou: anual merting. June 7 . Ashlaud, Ky.
- Illinvis Miniug Instizute: twentieth anuushl boat trip sull summer meeting. Juut 10-12. sbiarl Str. "Culdeu Eagle" leaving Sc. Louis Juue 10 sud returning June 12.
- Stoker Minuincturers Association: an ausl meeting. Juae 10° and 15. Homestead Hocel. Eot Springs, V'a.
- Mixing Suciety of Nuva Ecotia: annual merting. June 21 sird 92, Sydaey, S. S., Cruadi.
- Kocky Mountaia Coul Mining Institute: Both snaual weeting June 93-95. Shirley. Sistoy Eutel. Denver, Colo.
- Arrericaus Society fur Testing Materisls: thnual meeting. Jupe zi to July 1, Atlan tic City, S. J.
- Greenbrier Emukuless Cual Operntors Asuciation: sumual meeting July 12, Vionem Eutel, Fuinelle, W. Va.
- Evucluerar Myoming Coal Operators Association: annual meeting July le. じheyenae, Wyu.
- Powhontas Slectrical and Mechauicul Inscitute: anuuis metting ALy. ISvo. Biucteld. W. Vas
tublishing valid prices, but it is pointed out that the Consumers' Counsel is committed to the standards prepared by the Committee on Coal and Coke, Amerlean Society for Testing Materials. This sounder method, Mr. Carson added, can be taken later, as can other steps to improve the administrative machinery.

Percy Tetlow, acting chairman of the Commission since the resignation of Charles F. Hosiord, Jr., was unminously elected permanent chairman on May 11 , his term expiring in December, 1938. Mr. Tetlow began work in an Ohio coal mine in 1887 at the age of twelve, became president of the Ohio district union, U.A.W., 1900-10; member of Ohio Coal Commission, 1909, drafting new mining laws for the State; special representative, international union, U.M.W., 1911-15; appointed statistician, U.M.W., 1912; served as member of Fourth Constitutional Convention of Ohio, 1912; elected to Ohio House of Representatives, 1913; Director of Industrial Relations in Ohio, with supervision over State Mining Department. 1921-2; attended International Mining Congress, Paris, 1926 , and visited mining countries of Europe, making special studies of economic conditions and mining methods dealing with safety, conservation and marketing; appointed to National Bituminous Coal Commission in 1935 and reappointed in 1937. He also iought in the Spanish-American War, and served as captain in a machine-gun bat talion in the World War.

Jessup Made Scranton Trustee

Albert B. Jessup, formerly an executive with the Jeddo Highland Coal Co., was named trustee of the Scranton Coal Co., Scranton, Pa., in an order signed on Δ pril 1t by Federal Judge Albert L. Watson. The appointment to supervise reorganizstion proceedings of the company was made on the recommendatiou of counsel for the Reeonstruction Finance Corporation, at creditor.

Enlarges Stoker Display

Marking a iurther step in the growth of its authracite stoker division, Linkbelt Co. opened a new and enlarged stoker display room un May at Broad St. and Lycoming Ave., Philadelphis. On display wre the company's 193 S model hard-coal unit. as well as three others, one of which is an industrial size stoker.

May Lift Anthracite Bar

kepresentiug 300 established fuel dealers iu Outario, the Canadian Retail Coal Asswiation, Inc., has recommended to the Cauadian Guverament that Pennsylvasuis suthracite be "permitted to move scruss out borders without restriction," it was aunounced on May 14. A petition frwe the directors of the association. which has been received by the Department of Nistional Revenue, it Ottaws, is expected to have some bearing on a revisiou of the trade syrreements between the

United States, Canada and the United Kingdom.
This action by Canadian coal retailers is in harmony with representations filed in Washington by anthracite producers with the Committee for Reciprocity Information last January (Coal Age, February, p. 104), it was pointed out by Louis C. Madeira, 3d, executive director of the Anthracite Institute.

Mine-Rescue Training Gains in Big Sandy-Elkhorn Area

Plans are being developed to build a modern station at Pikeville, Ky., provided with a special room for training in minerescue and first-aid work and to house the rescue truck and equipment provided by the Big Sandy-Elkhorn Coal Operators' Association and already in use. Courses are now in operation and others contemplated for the purpose of making the district second to none in the Southern Appalachian area in the matter of minerescue and first-aid preparedness. Rescue service is to be available 24 hours per day.
rraining in such work was begun in the district in 1936 under the direction of A. D. Sisk, safety director, Big Sandylikhorn Coal Operators' Association, and encouraging progress has been made. Since the installation of complete equipment during the last summer, mine-rescue teams have been organized at many of the mines, and training is being given as fast as it is possible to complete a course at one operation and move to another.

Third Heating Showroom Opened

 Simplicity marks the attractive new anthracite exhiblt opened on May 6 at 2204 Walnut St., Whiladelphia. This-the thirdpermanent showroom opened by Anthracite Industrles, Inc., shows how the home owner may sit in his llying room and obtain com. plete heat comfort, humidiflcation, and alr conditioning with Penngylranla hard coal Without ever going into his cellar to put coal in the furnace or remove the ashes.

Left to right: G. C. Sutherland, safety director, Inland Steel Co.i Lawrence Runyon, district mine inspector, State of Kentucky: A. D. Sisk, safety director, Big Sandy-Elkhorn Coal Operators' Association, and mine-rescue team of Inland Steel Co. mine at Wheelwriaht. Ky.

To Coordinate Fuel Research

The American Society of Heating and Ventilating Engineers has appointed a new technical advisory committee for coordination of research on solid fuels and developinent of standardized test methods and performance specifications for heating equipment. Lt. Col. W. A. Danielson, formerly chairman of the research committee, has accepted the chairmanship of the committee, marking re-entrance of the society into this type of research.
Other members of the advisory commit.
tee are: H. N. Eavenson, president, Clover Splint Coal Co.; A. J. Johnson, director. Anthracite Industries Laboratory; P. Nicholls, U. S. Bureau of Mines, Pittsburgh, Pa.; H. J. Rose, Mellon Institute for Industrial Research; J. E. Schoen. Marquette University; L. E. Seeley, professor of mechanical engineering, Yale University; E. T. Selig, Mellon Institute: R. A. Sherman, Battelle Memorial Institute; R. T. Smith. consulting engineer, Pittsburgh; and C. Tasker, Ontario Research Foundation.
(Tum to prage 92)

SURPRISING CAPACITY and PERFORMANCE

 to a surprising and profitable degree.

Considering initial investment, coal cleaning efficiency, operating and maintenance costs, the Concenco Duplex Coal Washing Table cannot be equalled by other equipment or process.

The Neio Type C Leahy NO-Blind Vibrating Screen is unsurpassed for fine screening. The Leahy vibration principle keeps the entire screen surface working at top efficiency, insuring increased capacity, with maintenance costs negligible. It pays large dividends on your investment. Inrestigate its advantages and economy in the preparation of stoker coal-for dedusting-dewatering-desanding.

Concenco Spray Noz=les are different-produce sheet flow discharge for the most efficient results. Assemble by simply drilling a hole in spray pipeno tapping, therefore no threads to wear out-are leak-proof-align perfectlyby design are practically non-clogging.

> THE ORIGINAL DEISTER CONCENTRATOR COMPANY Incorporated 1906

WEBSTER Life-Long Belt Conveyor

- The durability and low-cost operation of all WEBSTER Conveyors depend on the perfected performance of their carrying units. For instance: the troughing idler pictured to the right. It embodies the newest dovalopments in anti-friction design.... tapered roller bearings, simple but thorough lubrication system, and equalized weight distribution. Furnished either with chilled face cast iron rollers or heavy tubular steel rollers. Note the clamps that keep rollers in the brackets.

WEBSTER is on the Job

. . . and HAS been for more than 60 years!

- Exclusive features of the coal preparation and reduction equipment shown on this page are due to WEBSTER'S three-score years of specilization in this field! During that time our engineers have concentrated on developing machinery of advanced design, efficient performance and economical operation. How well these men have succeeded is being demonstrated in the tipples and preparation plants of coal mining compunies all over the country!
Yes ... WEBSTER products are on the job! And so are WEBSTER men! Call one in to talk over your problems. He will survey your plant, make recommendations, and estimate costs without obligation. Just drop us a line-TODAY!

THE WEBSTER MANUFACTURING CO. Estoblished 1876 TIFFIN, OHIO

Sioneh Offices: New York City, Chicago. Philadelphia, Pittsburgh, Cineinnati, suffalo, Detroit, Cleveland, Sloomington, III.

1 WESSTER Coal Crusherm model built to Fill the most rigid requirements in coal reducfiom operation. Hesvily constructed for durability ... designed for uniform sizing . . . and geared for greater strength at less power consumption.
2 Tipples builf by WESSTER are proving their value with outstonding performance and enjurance for leading coal mining companies in oll pats of the United States. Each installstion is designed especially to fill the particular loyout and needs of the property.
3 This is a WESSTER Car Refarder. Its money seving opeafion has repaid this company's investment several times. And it is just as emincient today as it was during its first months of operation

BE SURE YOUR CONVEYOR BELTS ARE MIITFRROVFD?

To REALIZE the full advantages of continuous conveyor belt haulage from working faces to tipple it is essential that belts be specially coustructed to withstand the severities of mine service.

The truly sensational service of Goodyear Conveyor Belts throughout the coal industry records rumaing up as high as THIRTY MILLION TONS carried on a single belt-is evidence of their mine-proved construction.

Goodyear belts wear longer, carry more tons at lower cost be-
cause of their exclusive mildewinhibiting friction-their covers of tire-tread toughness-their rubber-riveted carcass consiruction. And because every installation is individually specified by the G.T.M.-Goodyear Technical Man.

The G.T.M. will be glad to give you the benefit of his experience in helping many leading mines cut production costs. To bring him to your office, write Goodyear, Akron, Ohio, or Los Angeles, California-or the nearest Goodyear Mechanical Rubber Goods Distributor.

Harlan rescue team simulates bringing out injured man after mine disaster
（Confinued from page 89）
（ixuperation rather than competition with existing fuel－resereh lomies now fumetioning at various govermment bu－ reaus，collewes，trade asstriations and ay manufaturers is to be the keghote of the program of the new group．Chaimam Daniekon said he foresaw in the commit－ tex＂＂un excellent oportunity to assist in the developuent of datas which should form the hosis of a more seientific ap－ proweh to heating processers．＂

-2

Safety Work Makes Strides In Harlan Field

Marking in tragic gashion the comple－ ：ine of a devade of effort toward improse ment in mine－rescue and safery work in Pe Harlan cosl tiekd of Kentucky the black Mountain fire in March，in which two men lost their lives，eaused the saiets lemarturnt of the Hurlan County Coal Devrators Assceistion to take note of i：ngress in its work．Under the direction of James ह．Brysun，the department has ビxperdex Elog，000 for developmeut sud equipront to wixt any emergency．

Mechanical Stoker Sales Register Upturn

Sules ef raentanical stukors

 Marh iast totalen シーNS units．ac． conding to statisties furmisled tha U．S Kuzaur of the Census by 112 wambincturess（Class 1．H：Cuss 2． 3 ：Ciass 3．2S：Clizs 4．23： Flass 5．1：）．This＂wmblate wit？
 Sules By ciasiss in March last were： restentin？（wader 61 lh of coal per hour），3，383（bitumimous，2，993：
 bowse tud swaii cunwereht leating jobs（61 to 106 lh par ？postr），23：－ aparturerthouse and geated．swait eivamerein？hatinu fobs f 10 ：：0 300

 53：Mesenmesure industia！stema
 bov：r） 5 （．

Selfeontained oxygen breathing appa ratus on hand is suthicient to keep 100 men supplied for 200 hours of immediate rescue work．Other equipment includes detectors for carbon monoside methane，and hydro－ gen sulphide．Since the department was inatugurated it is estimated that instruc－ tion has been given in safety work to is．（000 men．incluling superintendents， mine furemen，cut bosses，machine men and eazl lowders．The engaging of na－ tionally prominent authorities to lecture at the safety clasies has kept the men aker to the canses oi fire，explosion and slate fall．serving to minimize these haz－ arls and almost eliminate such tragedies． Since 1930 the operators＇association has sumsored an annual sufety and rescue ex－ hibition for the Harlan Mining Institute．

Exide Has Golden Jubilee

Observation of the golden anniversary of its founding begins this montl by the Electric Storage Battery Co．，manufac． turer of Exide batteries．Founcled in 1888 in a tiny one－story structure near Gloues． ter，N．J．，the company now has a plant comprising more than 30 acres of floor space at C＇rescentwille，on the northeastern edge of Philadelphia．la．：has branelies in 19 strategically located cities；and num－ bers more than 30,000 dealers among those handling its products and service．

Coal－Mine Fatality Rate Shows a Decline

Accidents at coal mines of the United States caused the deaths of 52 bituminous and IT anthracite miners in March last， according to reports furnished the U ．S． Bureau of Mines by State mine inspectors． With a production totaling $26,800.000$ tons， the death rate among bituminous miners was 1.94 per million tons，compared with 2.70 in the corresponding month of last year．

The anthracite fatality rate in March last was 4.26 ，based on an output of $3.995,000$ tons，as against 3.91 in March il year ago．

For the two industries combined，the death rate in March last was 2．24，com－ pared with 2.80 in March， 1937.

Fatalities during March last，br causes and States，as well as comparable rates for the first three months of 1937 and 1038．by causes，are given in the accom－ panying tables．

COAI－MINE FATALITIES IN MARCH，193S，BY GAUSEE AND STATES

FATHIITIES AND DELTH RATES AT UNITED STATES GOAL MHNES BY CALSES＊ Januar－－March，193\％and 1938

Cutise	Bit				$\begin{aligned} & \text { Number } \\ & \text { hilled } \\ & \text { 1937 193S } \end{aligned}$									
	Noun	ber	Killied	per			hracite Filled per Million Tons 19371938		Number Killed		Killed per Million Tons			
	1834	1935	$193{ }^{\circ}$	1935			193：	1938						
Fshit sf root and coal．．	100	117	1.25 2	1.380	28	43			2． 260	3.493	197	160	1.336	1.650
Hautige．．．．．．．．．．．．．．	\％	40	． 467	． 172	9	9	．827	．731	－2	49	488	． 505		
Coszedust explexions：		5	． 015	． 0.59		1		OS1	－		014	． 062		
Mx	\therefore	15	． 200	． 17	\％			Os	27	15	183	． 155		
Fxpleries	s	1	． 039	． 012	2	3	161	24	10	4	． 068	． 041		
Finetricity．	13	\＄	． 096	094	1	．	081		14	S	． 095	．082		
Maibinery．	s	7	． 039	083					S	7	． 054	． 072		
今ts？	10	－	．07t	． 024	i		．081		11	2	． 075	． 021		
Miarligrena＜．．．．．．	s	3	． 059	． 035	S	3	．ifis	244	16	6	． 109	． 062		
Etripping of epers－sut．．	S	1	． 059	． 012	3	S	－4：3	． 650	11	9	． 075	． 093		
Suriace	$\xrightarrow{2}$	S	．163	094	3		－4ご	． 081	25	9	． 170	． 093		
Tetal	ละ	20	2.503	2.44	55	as	1.440	5.524	303	25	2.667	2.836		

[^0]: THE ELECTRIC STORAGE BATTERY COMPANY, Philadelphia
 The World's Largest Manufacturers of Storage Batteries for Every Purpose Exide Batteries of Canada, Limited, Toronto

[^1]: *Iacludes beehive cvens, coal-gas retorts and cement mills.

[^2]: DEISTER MACHINE COMPANY
 1938 E. WAYNE STEET
 (INCORPORATED 1912)
 Coble Address "Delster"
 FORT WAYNS, INDIANA
 EMIL DEISTER, SR., Pres. - I. F. DEISTER, Y.Pres. - EMIL DEISTER. JR., Secy. Treos.
 Manufacturers of PLAT-O Cal Woshing Tables, PLAT-O Ore Coneentrating Tables, Heovy Duty PLAT-O VIbrating Sereens, Deister Compound Funnel Classifiers.

