Coal Age

Established I911—McGraw-Hill Publishing Company, Inc.

August 1938

Mr. Allen Excepts

"Why is nearly all our training lavished on first-aid men who, after all, 'only pick up the pieces' which others, for lack of training, have scattered?" Thomas Allen, Colorado State coal-mine inspector, whose pungent and picturesque comments have enlivened more than one institute meeting, answers this question, posed in an editorial plea for more and better job analysis and job training, with mild rebuke. This method of statement, he told the Rocky Mountain Coal Mining Institute, "is a severe blow at first-aid training." Certainly it was not so intended, and Coal Age's long and consistent support of such instruction should be convincing on that point. Since Mr. Allen's own forceful Denver address, abstracted elsewhere in this issue, was itself a strong plea for the job training advocated in the editorial he criticizes, it seems hardly necessary for the editors to grow vehement in its defense.

Steel Points the Way

Althougli the President surprised most people by vetoing the stream-pollution measure passed in the closing days of Congress, the subject is by no means a closed issue. The veto, it should be emphasized, was framed on jurisdictional objections and was not a condemnation of the desirability of stream-pollution control. Industry must still face the task of finding a sane and economic solution to a complex problem.

Obviously the answer must be found through scientific research. The American

Iron and Steel Institute already has taken the first step in that direction by establishing a fellowship at Mellon Institute of Industrial Research to investigate the problem as it relates to stream pollution by waste liquors from metal-pickling. plants. Objectives of the investigation include not only treatment which will satisfy health authorities but recovery and utilization of valuable chemical byproducts now wasted in the liquor discharge.

The coal industry may well follow the path steel has set out to blaze. While the problems in the two industries may and do difter in details, fundamentally the objectives are the same. The scientific approach opens the way both to the determination of what can be done economically and to a valid defense against extravagant demands by well-intentioned reformers whose zeal outstrips their knowledge.

United Front

Mark Twain once remarked that everybody talked about the weather but nobody seemed to do anything about it. Until recently, a similar observation also might have been made without too violent distortion of the truth in speaking of the bituminous coal industry. Within the past few weeks, however, the National Coal Association has taken vigorous steps to change that situation.

A modest effort to regain tonnages lost to oil in New England (Coal Age, May, p. 98) has blossomed into a full-fledged, two-way campaign to check the inroads of natural gas, oil and hydro-electric power in all parts of the country. Reciprocity
and the buying power of a prosperons mining industry are emphasized in the appeals to large consumers. Broadsides stressing the relation of procluction to employment and seeking the cooperation of labor in promoting legislative protection against unfair competition are addressed to the men at the mines.

Last year, the association estimates, consumption of fuel and gas oil, natural gas and hydro-electric power represented the equivalent of approximately $200,000,000$ tons of bituminous coal. How much of this competitive business coal can or should hope to win is, of course, debatable. But an increasing rate of loss to rivals$52,000,000$ tons more in 1937 than in 1930is not speculative. And nobody is going to hand coal this tomage on a silver platter; it must be fought for with all the resources the industry can enlist.

Because it has been popular with a certain school of erities to picture the coal industry as decadent, it is possible that this same group will diagnose the present campaign as the death rattle. Nothing could be further from the truth. Frank recognition of competitive problems and a determined attack upon them constitute the hest indications one could ask that coal will continue to hold its place as the major source of heat and power in the United States through generations yet unborn.

Accident Reports

No accidfant has only a single cause. In the code advocated by the National Safety Council and approved by the American Standards Association, dangerous conditions are listed under unguarded or poorly guarded equipment, defective equipment or material, hazardous arrangement or unsafe process, improper illumination. improper ventilation and unsafe dress or lack of protective equipment.

Perhaps in preparing a questionnaire to determine whether conditions surrounding an accident were dangerous, a coal-mine executive would change the order and wording of these too often overlooked items, but, thougli rearranged and even re-
vised, they camnot safely be ignored. Reports are made sometimes as if the malice of the machinery or of the mine roof caused the injury, and not a train of causes, any one of which would have effectually disarmed and outwitted all the others. Engincering is the cure for all these dangerons conditions.

Unsafe acts of individuals listed in the code are: (1) Lack of skill or matwareness of safe methods; (2) improper attitude, such as recklessness, nervousness, distraction or willful disregard of instructions; and (3) bodily defects, such as poor eyesight or hearing. Job training will correct the first; supervision, discipline and betterhome conditions will correct improper attitudes; and proper placement of men will evade the hazards of bodily defects.

Flame Safety Lamps

Though more modern flame safety lamps are safe if rightly used, many accidents are chargeable to those who carry them. Frequently lamps go out for lack of oil or of clean oil, from gumming or tightness of the wick and cotton, in falling or stumbling, or from the concussion of shots; then, if the oil is not volatile enough to create an explosive atmosphere around the wick, the re-igniter cannot relight them. In many such cases, a man using such a lamp will open it if not locked and, if hè can, will induce the lamp tender not to lock it. Such an unlocked lamp was believed by the State mine inspector to have been one of the causes of the Mulga explosion.

A big step forward has been made by the U. S. Bureau of Mines in defining the kind of oil needed for flame safety lamps and still more in specifically recommending certain makes of oil for that purpose. One company at least-the Allegheny-Pittsburgh Coal Co.-long ago made tests of its own to determine what oil its lamps required, but henceforth such companies will hare the researches of the Bureau to guide them. Operators and their agents should not only enforce the laws but also should eliminate the inconvenience and loss of time that incite their men to law evasion.

GETTING MAXIMUM RECOVERY + From Thick Pitching Anthracite Beds

At Navigation's Lansford Colliery

|N THE LAST few years, the Lehigh Navigation Coal Co. has made many changes in its mining methods. One of the most interesting has, been the carefully planned development and extraction method in the $48-\mathrm{ft}$. Mammoth bed on the Fifth Level of No. 6 mine, Lansford Colliery. In earlicr years it was sometimes found desirable to drive gangways and subchutes in the Skidmore bed to tap, through rock chutes, coal in the Mammoth bed, which, after repeated minings, still remained in that seam and otherwise could not be obtained.
This system of gangways and subchutes, instead of being used only for ultimate coal extraction, now is being provided prior to the removal of any coal, and the subelutes under the big bed are now usually being driven in a hard sandy slate lying between the Skidmore and the Mammoth instead of, as heretofore, in the Skidmore bed. Choosing this measure in place of the Skidmore for the loeation of the subchutes shortens the rock chutes, or "taps," to the Mammoth and reduces maintenance costs. By "subehutes" must be understood steep passageways driven in a plane under the pitching coal bed and paralleling the plane of that bed without at any point intersecting or tapping it.

Slants or Sub-chutes in Rock

A gangway or chute may be drixen in the plane of the bed or in a parallel plane in either rock or coal and yet may deviate considerably from a line drawn straight up the pitch. In this ovent, the place driven is known as a "slant" because it is inclined to a line on the full pitch. To prevent the coal from sliding or rolling too speedily, none of the
subchutes is driven straight up the pitch; hence they may also be termed "slants." They are so related and distributed that, through tap chutes driven through the rock, they afford access into every part of the bed being worked.

By the means adopted, most of the development is in rock, not coal, and the coal-chute mining in the seam itself, which, in the more usual parlance, would be termed "first mining," removes only about 5 per cent of the coal, and even that driving is

- To increase the productive life of future levels, the Lehigh Navigation Coal Co. proposes to increase the distance between them, thus saving the development expense of perhaps one lift. On the fifth level at No. 6 mine, the lift is 385 ft . From the first it was realized that breasts for this disfance could not be maintained: also that chutes driven in the coal bed would involve too much timbering and maintenance cost.
- Since operations in the coal of this level have been started, several methods of mining its long lift have been tested, the coal in each instance being mined entirely on retreat. The size of the block of coal to be mined was the first consideration to be setHed. This company's long experience with the mining of blocks of coal of various sizes indicates that the most economical results in its thick beds can be obtained by mining a black 40 ft . wide and 96 ft . up the pitch. - Subdivision of this block of coal for mining is second only in importance, for this largely determines the completeness with which the coal can be extracted. Recovery records at this colliery show that when the block is improperly divided, losses in recovery occur with no reduction of total cost. Part of the article is devoted to the development in the rock for an attack on these several blocks, and the remainder to the mining of the coal itself.

By R. DAWSON HALL
Engineering Editor, Coal Age

left until just prior to the time when the coal is to be completely removed. Thus, a plan of campaign is laid providing that all parts of the coal section under attack will be extracted promptly as soon as the section is entered, instead of being less completely removed, as heretofore, with difficulty and hazard, in several tess well-planned forays made from different points of approach.

Safety thereby is increased, timbering and retimbering of chutes, so necessary in coal, but nearly dispensable in rock, are much reduced, and removal of coal progresses downward and in retreat from the old workings above the operating area, so that all crushes, free runs of coal, falls of rock and other misadventures are so rare and so confined to the area near the working face that they do not disturb production.

Almost Straight Breakline

Moreover, by confining operation to the coal above one sublevel at any time, an approach is made to a definite breakline which, though not nearly so closely approximated as in the bituminous regions, is much more nearly straight and continuous than in most anthracite operations. Irregularity is pernitted only when inherent difficulties make departures from straight-line methods almost inescapable. Output from every working place is so assured that the tonnage is almost definitely predictable, which is not usually the case with heavily pitching coal, especially where it is outstandingly thick and, therefore, treacherous.

The term "first" mining is used

Fig. I-Cross-section of Skidmore gangway.
here in its usual comotation, but in thick beds like the Mammoth in the Lehigh Navigation mines the expression "a single mining" usually covers the entire work done from each single approach to the coal bed. This may include not only the driving of a breast but the recovery of coal, if possible, above the breast, and even recovery of the pillar as far as the breast has been driven. These recorcries were made in any case with such completeness as was possible and before approach was rendered unsafe or no longer open. Three or more approaches of this character often were made to the same section of the same seam and termed "first," "second" and "third mining," and each of these resulted in a composite extraction of coal in breast, pillar and top.

Skidmore Open for Later Work

The Skidmore bed, a 30 - to $50-\mathrm{in}$. bed below the Mammoth, is of merchantable quality. It is somewbat too thin for profitable operation at present local mining rates, but, should it be mined later, the gangways within it and the subchutes of the Mammoth above it then would be available for its operation.

Skidmore Gangways-Although the subchutes are not excavated in the Skidmore but in a rock nearer the Mammoth and though this is a leading merit of the new system, for obvious reasons it was thought well not to remove the main gangways from the Skidmore, which, being 32
ft . below the Mammoth as measured at right angles to the plane of the beds, is so remote from the big bed that the collapses and movements of the latter will be cushioned and will searcely affect the main roadways. These are 8 ft . high and measure 12 ft. along a horizontal center line. As the coal dips about 42 deg., the gangway is often 9 ft . wide at the top and 15 ft . wide at the bottom. The rock immediately under the Skidmore resemblrs slate, merging, as decper rock is reached, into a rather friable conglomerate, such as is so often found in the antliracite region. In driving the gangways, both kinds of material-slate and conglomerateare entered; that is, in proceeding west, conglomerate will be found near the floor on the north side of the gangways, for the basins and the gangways run east and west, and Lansford mine is on the north side of the basin or in what is known as the "south dip."

The sloping roof of the gangway is the under side of the sandy slate already mentioned, but this, in the unmined portions of the measure, is underlaid by 12 to 18 in . of slate known as "false top" because, of course, it is the immediate cover of the Skidmore. In mining, it always comes down, which, for gangway and subchute work, is an element in its favor but one that would be highly detrimental if the Skidmore coal were being mined commercialls.

In the acute angle of the gangway on the south side bounded by the gangray bottom and the sandy slate
roof, a ditch 30 in . wide and 12 in . deep is excavated, for there is an abundance of water to be removed. Across the diteh, at about $10-\mathrm{ft}$. centers, plank or lagging are placed, bridging the waterway and supporting both the 2 -in. compressed-air pipes for rumning drills and the $1 \frac{1}{\frac{1}{2}}$ in. water pipes for wetting down muck piles after shooting and for supplying drills with dust-allaying water.

On the same side of the gangway in its forward section are the 12- or 14 -in. galvanized-steel pipes by which that section, which is never allowed to be over 500 ft . long, is ventilated. When it has been advanced that distance, the blower also is moved up. The steel ventilating pipes are carried forward to within 200 ft . of the face, which is as far as can be done without risking their destruction when shooting. The rest of the distance is ventilated by removable fabric pipe.

Leyner drills are used for all rock driving, and the work is prosecuted in two shifts, one a drilling-andshooting shift and the other devoted to mucking; the two periods are separated by a 10 -hour interval in which the dust made by shooting is allowed to settle. All muck piles are thoroughly drenched before loading. These provisions have been found greatly to improve the health of the men.

Gradients Easy Yet Helpful

Gangway gradients here and elsewhere in Lehigh Navigation mines -except where, for some reason, an irreducible minimum is sought, as in the main drainageway of the Panther Valley mines-are 0.58 per cent, and in this particular section the gangways are laid out at $385-\mathrm{ft}$. centers as measured on the pitch. Haulage facilities are provided on these gangways, but all the coal which comes to them arrives through a series of slant subchutes on which the coal travels by gravity. Wherever these chutes can be diverted from the full pitch by 35 deg., to give an inclination of $32 \frac{1}{2}$ deg. to the horizontal, this is done, thus assuring that the coal will flow without undue degradation yet without stalling so long as the chutes driven in rock are lined in the bottom by plank or when those in coal are bottomed with sheet iron. However, the broken rock sometimes wedges and lodges in the chutes, but, on this inclination, the coal never has to be "bucked"-that is, pushed manually down the chutes.

Coal will run well on a 30 -deg.
pitch, but rock moves best on one of 35 deg. In development the first 50 ft . from the face is not planked, and the rock does not run so well on that section. When plank is not used, the rock will "bake" to the bottom if allowed to remain there during an idle spell. The plank also serves to smooth off over irregularities in subchute driving. The pitch could be inereased to suit rock, but, if it were, it would be excessive for coal and result in degradation. Furthermore, despite careful engineering, the subchutes sometimes get below the required elevation and have to be given a steeper gradient to provide for tapping the coal at the point desired.

Advantages of Chain-Chute Meth-od-This method has been termed the checkerboard system because the chutes arrange themselves almost in squares. It has no relation, of course, to the system of the same name in bituminous mines. Another name is sublevel mining.

A main idea of the method is to divide the distance between gangwavs into five parts by the establishment of four equidistant sublevels at 77 -ft. centers, or more recently into four parts by three such levels, 96 ft. apart, and to provide that men can pass up to the work from the main gangway in all-rock chutes to the particular sublevel that is being worked without entering the conl seam at any point on the way. Thus, they are protected in traveling, and in working they have a near-by place driven in the solid rock to which they can retreat in safety should coal, roof or sides begin to tumble in or break away.

Rock Chutes Enhance Safety

Safety is further advanced, moreover, because the men reach their sublevel without negotiating the long, excessively steep or vertical pitches up which so many men, working in pitching anthracite breusts, must climb to reach their coal faces. As both the Skidmore and Mammoth are gassy, it is greatly helpful to safety to have the development in gasless rock instead of in either of those gassy seams.

In this particular instance, the lift, or distance between levels, has been made 385 ft ., which would be a considerable distance, even with thin and level coal. It is especially difficult to operate in a pitching seam where, because of the thickness of the coal, a single breast would, if mined clean, produce 40,000 tons and last seven or eight years. The number of complete retimberings in that
length of time due to excessive pressure can be imagined!

In practice, it has been found difficult, because of runs of coal and falls of roof, to drive breasts more than 125 ft ., and the usual distance between levels is 200 ft . vertically or 275 ft . as measured along the pitch. It was obvious therefore that the lift should be divided in some way, and this checkerboard method does this and makes it possible to mine the larger lift with an even greater degree of completeness than under the old methods with the shorter lift. Thus, with this system, levels may be established at longer intervals.
As will be explained later, by having four separate mining units to each tap and four or five taps in the 385 ft . between levels (provided a real sublevel is driven in the Mammoth below the other sublevels) it also is possible to replace the one breast by four to five "mining blocks" or sixteen to twenty separate mining "quarter blocks" respectively with accompanying safety and efficiency. Since the blocks, each having four quarter blocks, are reached by approaches in solid rock not subjected to rums or falls of coal or rock, ventilation is positive. Moreover, as the work of coal getting begins near the old goaf, it soon breaks through into it, after which time a current of air from the surface or from adjacent workings streams from the goaf, which is by no means tightly filled and reinforees the ventilation in the new workings, and this is further
increased as soon as a length of goaf is exposed by the falling of undermined coal. This influx of air occurs when and where the coal is being broken down and therefore is generating methane. Thus it affords increased ventilation just when most desired.

In the description which follows it will be assumed that the sublevels are 77 ft . apart and that accordingly there are four sublevels instead of three, as is now being planned tentatively.

Drive Chutes in Solid Rock

Rock-chute Development - From the main gangway at $120-\mathrm{ft}$. centers, 6×8-ft. chutes are driven from the Skidmore bed on its full pitch of 42 deg. for a distance of 40 ft . as measured on the slope $a b$ in Fig. 3, which shows the plan of "rock-chute development" as viewed when laid down on the pitch of the beds. Each chute then branches at b into two slant chutes, c and d, like the arms in the letter Y or in a sling-shot, one lying 35 deg. to the right of a line straight up the pitch and the other 35 deg. to the left of that line. Thus they rise at an angle at $32 \frac{1}{2}$ deg. to the horizontal until they reach sufficient elevation to start the taps for the fourth sublevel, whence by $32-\mathrm{ft}$. rock taps they are driven to the Mammoth bed at e and e^{\prime} respectively.

Special attention should be drawn to the left-hand, or western, prong.

Fig. 2-Rock-chute development as seen in profile (Section A-A, Fig. 3)

August, 1938 - COAL AGE

At the foot of the rock tap at e^{\prime} a second slant chute, parallel to the beel and only 10 ft . under it, is started in rock. This is one of the main slants and is cextended to a point above the first, or top, sublevel at f and travels at an inclination of 35 deg. from a line straight up the pitch or up an inclination of $32 \frac{1}{2}$ deg. to the horizontal, maintaining in this way the 10 ft . of rock cover between it and the Mammoth bed.

Sublevels Merely Level Lines

None of the "sublevels" are really "levels" at all in the sense of that term as generally accepted by mining engineers. They are merely level or near-level lines establishing the lower edge of the portion of the coal bed to be removed in a given stage of mining. Thus, the first sublevel marks the lower edge of the first area of coal to be extracted in the fifth level.
From the left prong (the main slant) slant chutes $g h, i j, k l, m m, o p$ and $q r$ at an angle of 70 deg., as will be noted in Fig. 3, are driven at appropriate points to other points whence slant taps can be and are constructed to the bottom of the Mammoth coal bed; two go to each sublevel, except the fourth, which has its needs partly supplied by the right prong, de, at the foot of the main slant of and by a separate rre from the Skidmore gangway, s, with two slant taps, t and u, leading to
that level. Other shorter slants, $v w, x y$ and $z u^{\prime}$, break of from the long prongs $i j, m n, q r$ respectively to the right of the main slant, $c f$, one for each prong, and terminate in slant taps w, y and a^{\prime} respectively, driven up to the bottom of the Mammoth coal bed. Slant taps b^{\prime}, c^{\prime} and d^{\prime} also are provided from the main subchute, of, to the Mammoth bed wherever the main slant crosses a sublevel.

Each main slant ultimately receives coal from each of the four sublerels, but all these are not being worked at the same time; in fact, the custom is to use only two adjacent tapholes concurrently and to work, of course, only the area of the bed adjacent to them. The coal is removed, where possible, in order from cast to west, and thus far, one level only has been worked at a time. A line of props is carried in all chates partly for the support of the roof, but mainly as the basis for division between chuteway and manway, for the rock usually is so strong that it does not need timbering.
Slants are started by mine superintendent and engineer no sooner than will permit them to be completed at the precise time when they will be in demand for ventilation or access to the coal. In this way, the work of development is spread, does not fill mine roads with rock ears to the detriment of production, involve too carly an expenditure on expensive development, cause upkeep cost for timber chutes and sup-

Fig. 3-Rock-chute development. Plan on pitch of bed.

ports, if the latter should be needed, or permit the rock to deteriorate by lengthy weathering or prolonged stress.

Some important changes are being tested, and if they prove satisfactory will be adopted. With these the main subchutes will be driven straight up the pitch for a portion of their distance at each sublevel and the entire subchute system will be driven in the Skidmore instead of in the rock underlying the Mammoth.

Coal-chute Development and Coal Extraction-All this prior work, except such as is in the Skidmore bed, is by design in permanent and dependable rock; that in the far less dependable coal now has to follow. The purpose of the maderlying development is to approach by a separate taphole a single small and manageable "block" of Mammoth coal which thereafter can be mined by a conibination of short chutes, breasts and caving. The preferable size of these breasts is still in process of determination. Of the three dimensions, one-the thickness of the seam-of course, is uncontrollable. The other two-width along the strike of the bed and height, or lift, along the pitch of the bed-cannot be changed other than by a change in the spacing of the rock taps and these distances have been varied so as to discover the preferable arrangement. At present the disposition is to question whether an increase in these dimensions might be advisable. They probably lic between 30 and 40 ft . on the strike and between 75 and 95 ft . up the pitch, but will be assumed here to be 30 and 77 ft . respectively.

How Coal Block Is Extracted

In brief, the scheme is to travel on the floor of the seam from the rock tap on a $32 \frac{1}{2}-\mathrm{deg}$. inclination to the center of the block, to drive a "cut-back" chute at the same inclination to the middle of the seam, thus arriving at the first quarter block, which is a section of coal 24 ft . thick, 30 ft . wide (which is the full block width) and $38 \frac{1}{2} \mathrm{ft}$. long (which is the half distance between sublevels). Here comes a parting of ways. First, the cut-back chute is widened like a breast and extended to the top rock of the seam and, second, a wide chute is driven straight up the pitch in the middle of the seam and extended until the coal thus undermined can be made to fall. This coal is then loaded out, thus extracting the first of the four quarter blocks, or sections. Similarly, the section in the lower half of the

serm and under the first section is extracted, and later the other two ymarter-block sections lying down the piteh from the first two, the seetion in the upper part of the seam heing removed tirst.

Io express the forgoing in more explicit detail: Haring reached the coal lad through the tap of the boek to be mined, a jax-it. timbered chute is driven sutheiently off the full piteh (about in deg.) to give an inclinatim of $32 t$ deer to the horizontal; see $t^{\prime \prime} g^{\prime}$ in Sketelh IV of Fig. 4. This coal chate, which parallels the main subchutes in the noek below, is extended from the tap f to the middistane between sublevels, about 46 it. For its ention lengeth this slant lies on the thoor of the Mammoth bed. To sid tempurarily in its rentilation. this shute I $^{\prime} \mathrm{g}^{\prime}$ is met (see Sketch 11 I of Fis. t) by s similar, but shortor and smaller, chute, $h \%$ driven from the aljucent tup on the west.

Driving Cut-Backs of Top Lift

Is the beyl slopes at ± 2 deg. to :la horimatsl, \& chute driven st right angles to one straight up the pised and dineted to the noof of the sease would not be rertical but inClined at 90 te deg., or ts deg. to the borizontal. One could tracel, however, at any imelimation to the horienhta and yet pass from the buttow, to the sop of the coasl bed by chowsing a suitable direction of trivel. In this case a "cut-back" chute g'n', is driven wot at sum indination to the horizontal of ts des. but at the stamkat slope of ize des. to the horizortal. This chit-back coute marallels the tap chutes ariven in the pock between sabchutes and eoal.

This "eut-kuck" is fimberne only unti! is maches the minute of the bet at á. Here, sis a fuai provision for verthation, Sxezt. slants n^{2} are drive: from the tow of the cut-back Ghte to Enferse dieer marmwer slan:ts Eroun the are-bet chnte of the workims tevit tiee ueivitoring tap.
 dutes ien the severt bichts are let:ere ax
 maget be restrube as at fapping point for the a,arrer blect ar zettoe, the eut-bate ehute is fureel? Ento a berast 7 A. Gigit ane 3t fo wide, thus cou-
 ter blech. Y: is zo haser tiobereen, as

 After it is iompletet to mo at tae too

 yo the pituh, in ft bigh and ol to wise the full white of the blect

How fir it can be driven depends on the strength of the overhanging coal and which may be resting on it as a result of operations at higher levels. Sometimes the distance will be 25 ft ., sometimes 32 ft . The chute $n^{\prime} \mathbf{o}^{\prime}$ may or nay not be timbered, according to the condition of its coal roof. Its impose is to cause the ultimate dislodgment by blasting or gravity of the coal above it and also of the coal thead of it. Both these places, n'o and n ' n ', are known as "tumbles."
In some cases the coal may fall without the aid of blasting. The men engaged at this tumbling work have had so much experience that they can forecast the likelihond of a fall with accuracy. After the coal has falien, miners enter the place, break up the large coal by drilling and blasting, after which it trarels by gravity down the several slants to the Skidmore gangwar. In thi way, the coal is not broken by excessively sleedy travel nor, as in must mines. by being held in full kattery breasts under excessive weight, where it is subject not only to presure beyond its strencth but also to abrasion in movement under that pressure.

This quarter block is known as "the first tumble." for not only places driven to cause the "trmble" are known as "tumbles" but the coal also which falls as a result of their drivins. The next enal removed is that in the thickness of the seam under this unarter bloke. To this eud. the timbered chute on the flow of the seam $I^{\prime} g^{\prime}$ is extended, heisbtenend and widened to 30 ft . with or mithout timber. depending on rwofenal conditions It thus wecupies the full midth of the bock. As the chute to the previously mined turuble is ouly the narmw timbered slant. g'u'. slready mentimere, it lonsens the enal far less than the tumble $n^{\prime} \mathrm{m}^{\prime}$, which was a breast 30 ft . wiue, so this extension or "tumble" from g ", which is made 10 ft. hich, mas be driven 35 ft . before its cosi root mill shom a dispesitive to fall.

Taking Third Quarter Block

After this coal bias fallen, been boken by fiellins and shootias and basted vit, a timberen slant, is' (ser Skete TIII. Fig 4), is diven towser the rean af the coah, out it is timberci anty to r^{\prime} and be eyd $r^{\prime} q^{\prime}$ Is wideme? to 30 et. to dislocge two thin! हanter bloch of caz? with the ane of a tumble r's. brivel uo the ven. With tive tini quarter blexa Erithen shot sno buhipd, the chute

ing "finis" on the work to be done through the tap f^{\prime}.

For ventilation, each third main slant is connected with the Skidmore main gangway on the fourth level; thus three main slants are fed by the same split. All the operations in the Mammoth bed have left, and will leave, this and other Skidmore gangways unaffected. As this fourth-level Skidmore gangway is not being extended, or indeed used except for delivery of timber to the first and upper sublevel workings of the present fifth level and for drainage, it is possible to allow the air to travel from west to enst direct to the return airway of the main slope of the mine.

Ventilation Ascensional

When once the air has been taken up to the Skidmore fourth-level main gangway-that is, to the top of the live workings-it is not necessary with this layout, as is so generally the practice, to bring it back down to a return airway of the fifth-level main gangway and then carry it back again up the return of the main slope. If it should be necessary for the air in the upper gangway to be used as an intake for live workings further along, the fourth-level return airway would be used both for the fourth and fifth levels. Hence, in this instance, not only is the long S-turn in the ventilation avoided but the pasage of the air is wholly ascensional, which is the most desirable way of directing it. Methane resists being carried downward, and unless the air can scour completely every nook, cranny and side passage in its downward travel, the methane will inevitably collect and tend to make trouble; hence descensional rentilation is never entirely effective.

A separate split of air is provided for every twelre men. Air passes through the rock subehutes to a connection with a coal chute and then tracerses the coal slants, returning through the last rock tap on the split to the return chute. All blind ends, which are held to a minimum length, are ventilated by line brattices construeted of sirtight plank to within 20 ft . of the face, followed by 15 ft . of brattice cloth.

All taps are numbered for identification; the first shows the number of the main slant to which the coal from that tap is directed; the second digit. the nuaber of the sublevel on which the tap is loeated. and the thind the onier in which the tap was driven. Thus Tap $i=3$ feeds to the thind main slant, or chute, and is loeated on the serond sublerel and is thini in onler of drivius.

NEW CLEANING PROCESS

+ Materially Improves Nut Coal Quality

At Knox American No. 2 Mine

By IVAN A. GIVEN
Associate Editor, Coal Age

USING a new type of washer, the Knox Consolidated Coal Corporation materially improves the combustion characteristics of the $2 \frac{1}{2} \times 1 \frac{1}{4}-\mathrm{in}$. nut produced at its American No. 2 mine, Bicknell, Ind., and at the same time also facilitates crushing this product at times when it is desired to make a commercialstoker coal. The improvement, both from the combustion and crushing standpoints, arises primarily from the elimination of sulphur balls and other sulphur-bearing refuse, although, of course, excess ash also is removed, leaving a highly uniform product. In crushing, Knox also takes advantage of later developments in the design of segments to secure the maximum yield of coarse coal and reduce fines under $\frac{1}{8}$ in. to less than 5 per cent.

Another feature of the American No. 2 plant are the provisions incorporated to recover and clean by dry methods coal contained in material thrown off the picking tables. By the use of this auxiliary dry-cleaning installation the hand-picking process is improved and at the same time a substantial volume of material for which a ready market is available is reclaimed, treated to improve its quality, and sold.

Fifth-Vein Coal Mined

American No. 2, a shaft operation, recovers the Indiana Fifth Vein, averaging 7 ft . in thickness and overlaid with a strong slate roof. Fireclay underlies the seam as a rule, although in some places a "rash" appears in the bottom, reaching a maximum thickness of 12 in . Occasionally natural conditions force cutting in this rash and sometimes the machines get down into it by mistake, in which case it finds its way into the screen-
ings, although such inclusion is relatively infrequent.

The seam is without regular partings and in addition to the rash the impurities encountered are pyritic shale bands up to $\frac{1}{2} \mathrm{in}$. in thickness, sulphur balls and sulphur-bearing boulders, granular sulphur, a "dirty band" up to 3 in . in thickness which occurs about 18 in . below the top in some parts of the mine and other shale and slate partings, non-continuous and usually thin. The coal is loaded mechanically and consequently is subject to some variation in impurity content. Still, however, an acceptable screenings product of a good free-burning character is produced, and as yet mechanical cleaning has not been found necessary to more it.

Domestic Trade Secondary

No. 2 mine, as well as American No. 1, produces primarily steam and industrial fuel, with domestic basiness as a secondary factor. Consequently, the maximum size produced is a large egg. At No. 2, therefore, mine run is run over a grizzly and the large lumps are broken down with sledges before they pass onto the main shaking screens. These screens separate the feed into $6 \times 3-3 \times 2 \frac{1}{2}-$, $2 \frac{1}{2} \times 1 \frac{1}{4}$ - and minus $1 \frac{1}{4}-\mathrm{in}$. sizes. The latter may be loaded as $1 \mathbf{1}-\mathrm{in}$. screenings or may be passed over an auxiliary flexible-arm shaking screen designed to make either a $1 \frac{1}{4} \times \frac{3}{3}$ - or $1 \frac{1}{2} \times \frac{1}{8}-$ in. domestic-stoker coal, with minus ${ }_{3}^{3}$ - or ${ }^{3}$-in. screenings or carbon as a resultant. On its way to the car, the domestic-stoker coal is passed orer a Central Electric Repair Co. chutetype magnet to remove tramp iron.

The $6 \times 3-$ and $3 \times 2 \frac{1}{2}-\mathrm{in}$. sizes pass from the main shakers onto 60 -in.-
wide apron-type picking table-loading booms for cleaning. Material removed on the picking-table sections, depending upon its character, either is sent direct to the refuse bin or is re-treated as described below. The $2 \frac{1}{2} \times 1$-in. size does not lend itself to band picking, even though this was attempted at one time. And so, even though the impurity content of this size is relatively low- 5 to 6 per cent sink at a specific gravity of $1.50-$ washing was decided upon because of the nature of the impurities, as well as to assure a greater degree of uniformity.

Objectives of Cleaning

The principal drawback to the raw $2 \frac{1}{2} \times 1 \frac{1}{3}$-in. coal was the fact that pieces of pyritic material in the fuel bed tended to form nuclei and clinker. And once a clinker formed it tended to spread, with consequent adverse effect on the fuel bed. Installation of the washer stopped complaints from this source. The second factor was the effect of the sulphur-bearing material on crushing results when reducing the $23 \times 1 \frac{1}{2}-\mathrm{in}$. size to make a com-mercial-stoker product with a norninal size of $1 \frac{1}{4} x^{\frac{2}{3}}$ in. Being hard, the sulphur lamps usually were not redaced in passing through the crusher. By retaining their original size they would cause the crusher to open up, resulting in an excessire production of oversized coal. Attempts to screen out this oversized material and recirculate it resulted in building up a large circulating load, thus magnifying the difficalties originally encountered.

To clean this $2 \frac{1}{2} x x^{2}-i n$. coal the Knox management selected a MormowPrins "Jrulti-Flow" washer. One
factor in the choice of this equipment was its relatively small size in relation to its rated capacity. To date, one such unit with a capracity of 10 S tons per hour has been installed (operation started in August, 1937) with the idea that crentually a seeond washer would be purchased to permit cleaning the $3 \times 2 \frac{1}{2}-\mathrm{in}$. fraction in addition to the $2 \frac{1}{2} \times 1 \frac{1}{4}$. However, while the present machine operates primarily on $2 \frac{3}{3} \times 7 \frac{1}{4}$, the entire $3 \times 1 \frac{1}{4}$-in. fraction has been put through it. although the lead was somewhat excessive. Taking in all the $23 x^{\frac{1}{2}}$ and half of the 3×23, however, the unit has done a satisfactory job.

How System Operates

While later designs difter somewhat in detail, the washing unit at Ameriean No. 2 consists of a long. Harrow stationary trough passing through the top of a water tank in which is mounted an auxiliary "basket" given a jigging motion by an add-justable-throw eceentric. Speed of the eceentric shaft also may be regulated
by means of a Reeves variable-speed drive. The basket curves upward from the feed to the discharge end.

Raw coal is carried down the lamder by a stream of water supplied by a pump, and in this operation the feed stratifies, placing the lighter material on top and the heavier material, including the refuse, on the bottom. The first opening in the launder, located about one-third of the way down the tank, is provided with a baffle plate to arrest the movement of the lower layers. This opening permits the hearier material (both coal and refuse) to pass through, while the lighter-gravity pure coal earies over and down the frough to a second opening, where it meets the discharging water currents flowing through the basket beneath, and is carried out as clean coal.

Material through the launder openings, whiel, in addition to refuse and the heavier coal fraction, includes framp iron, falls into a stream of water entering from the back of the washer. Most of the remaining coal is removed by this eurrent and car-

This new-type washing unit cleans $21 / 2 \times 11 / 4-\mathrm{in}$. nut at American No. 2 mine.

ricd up to the washer discharge. Refuse and some high-gravity or entrained coal falls through this stream and forms the refuse bed supported by the bottom of the basket. A third, or lower, stream of water also entering from the back of the washer, is used for the purpose of regulating the refuse discharge.

Once the refuse lands on the basket bottom, it is mored back against the inflowing lower current at the back of the washer by the jigging and conveying action of the basket. Perforations in the bottom of the basket, along with the conreying and jigging motion, provide a stratifying movement of this refuse bed to free any remaining coal which is mosed upward into the water currents flowing toward the washer outlet.
Adjustment of the speed and throw of the eccentric, as well as the pitch of the shout hanger arms on which the basket is suspended, permits regulation of this final jigging and convering action for the maximum separation of coal and refuse. No separate controls or refuse-trapping equipment is used. The refuse falls into a well from which it is remored by a chain-and-flight conveyor. The same pump that supplies the trough also provides the two water streams in the washing tank proper.

Housed in Separate Structure

Washer, dewatering screen and auxiliary equipment are housed in a separate small structure built into the original tipple. Coal to be washed is taken off the back chute from the lower shaker sereen which discharged onto the original picking table-loading boom. This coal falls through a gate into a chain-and-flight convevor which takes it back in the opposite direction from the original and elevates it to the head of the washer trough. Clean coal discharged from the washer flows onto a $5 \times 20-\mathrm{ft}$. dewatcring screen fitted with screen jackets having $\frac{1}{3} \times \frac{1}{2}-\mathrm{in}$. diagonal slots. Dewatered coal falls off the end of the sereen directly onto the end of the above-noted picking table-loading boom. Tasher refuse is discharged onto the top strand of the feed conveyor, which takes it back to a cross conveyor in turn leading to the main refuse conveyor.

Water and fines through the dewatering screen is recirculated for one shift, with, of course, the addition of the necessary fresh water for make-mp, and then is zun to waste. Fresh water for make-up is pumped up from behind seals in the mine. Two 14,000-gal. cylindrical oil-storage tanks set on a slant are used as cir-
culating-water sumps. One tank is used for one day and the other the next, and the tank in use is drained after each shift and filled with fresh water to start the next shift. Setting the tanks on a slant facilitates drawing off the slurry and flushing them out. Wash water is circulated by a Weinman centrifugal pump with a capacity of 3,000 g.p.m., although it is believed that the operating rate is not over 2,000 g.p.m. This pump is driven by a $25-\mathrm{hp}$. motor. Other motors in the plant are: feed conveyor, $7 \frac{1}{2} \mathrm{hp}$.; washer, 10 hp .; dewatering screen, $7 \frac{1}{2} \mathrm{hp}$.

As noted above, sink in the $2 \frac{1}{2} \times 1 \frac{1}{4}-$ in. size at 1.50 specific gravity ranges from 5 to 6 per cent. As shown by the sink-and-float analyses for $2 \frac{1}{2} \times 1 \frac{1}{9}-$ in. coal given in Table I, the most of this sink is concentrated in the 1.60 and higher gravity range, while most of the coal floats at 1.45. Sink-andfloat analyses of the washed $2 \frac{1}{2} \times 1 \frac{1}{4}-\mathrm{in}$. coal (Table II) show monthly sink averages in the period FebruaryMay, 1938, inclusive, ranging from 1.36 to 1.79 per cent at 1.50. Monthly float averages in the refuse during the same period ranged from 5.9 to 9.4 per cent.

Preparation officials at Knox keep close tab on the heavier sink in the coal and the lighter float in the refuse as an indication of the efficiency of the process. In April, for example, the sink at 1.60 in the washed coal averaged 0.59 per cent, while the float in the refuse at 1.40 averaged 3 per cent.

Knox Crushing Practice

In crushing the $2 \frac{1}{2} x 1_{1}^{1}-\mathrm{in}$. size to make commercial-stoker coal, increase in the yield of coarse material and reduction in the extreme fines, along with a minimum of oversize, as noted above, was accomplished by reequipping the Series "N" Jeffrey crusher (30×30 in., single roll) originally placed in service in 1929. This reequipping was done in 1937 and consisted of adding new manganese-steel segments with short pyramidal teeth, restricting the maw and installing an extended shoe to bring the unit in line with the latest Jeffrey design for stoker-coal sizing. A test made June 6,1938 , showed the following results: plus $1 \frac{1}{4}$ in., 1.4 per cent; $1 \frac{1}{4} \times 1,28.6$
 7.3 per cent; $\frac{3}{8} x^{3}, 4.6$ per cent; minus $\frac{1}{8}, 5.8$ per cent. This indicates that both the major aims-a high percentage of medium-size coal and a lnw percentage of minus $\frac{1}{8}-\mathrm{in}$. and oversize material-has been attained to a satisfactory degree. Other tests have shown the minus $\frac{1}{8}$-in. fraction

Coal recovered from pickings is cleaned in this three-cell dry unit.
as low as 3.9 per cent, and the plus $1 \frac{1}{3}-\mathrm{in}$. as high as 4.3 per cent.

Hand picking at American No. 2 is arranged to separate the pure refuse, which goes directly to the rock bin, from material containing recoverable coal. The latter is conveyed to a $7 \times 14-\mathrm{ft}$. Bradford breaker with $1 \frac{1}{2}-$ in. perforations. Matcrial through the perforations drops into a 40 -ton liopper, from which a 9 -in. Redler elevator clevates it to the top of an air-sand cleaning plant in a separate structure. Material out of the end of the breaker (refuse) goes to the bank.

Table 1-Sink and Float Analysis of Raw $21 / 2 \times 11 / 4-\mathrm{in}$. Coal From American

No. 2 Mine
Specific Gravity

Specific Gravity		
Sink at	Float at	Per Cent
	1.4.5	93.6
1.4. 5	1.5)	1.3
1.00	1.60	1.7
$1 . \%$	3.4
		100.0

Table II-Sink in Washed $21 / 2 \times 1 / 4-1 n$. Coal and Float in the Refuse, Separating at a Gravity of 1.50.

Arg. Sink Arg. Float

	Arg. Sink Arg. Floa No. of in Coal, in Refuse samples* per cent percent		
February. 1038	$\underline{21}$	1.69	0.2
March.	16	1.52	9.4
Aprii	8	1301	$7.1{ }_{9}$
May	7	1.15	69

- One sample, as a rule. of both coal and refuse is taken each shift for sink-and-float analysis.
\dagger In this month, sink in the cleaned coal at 1 co averaged 0.50 per cent: Hoat in the refuse at 1.40 averaged 3.00 per cent.

And while the breaker product normally is re-treated, provision is made for loading it without any further preparation for certain customers sho desire it that way.

Air-Sand Plant Recovery

Rated capacity of the air-sand plant is 15 tons per hour. At the present time, the plant treats about 135 tons of material per shift of 7 hours, recovering about 80 tons of coal, which is shipped separately to a certain class of users. The Redler unit discharges the coal into a 3 -ton surge bin, from which it is fed out onto a $4 \times 10-\mathrm{ft}$. mechanically vibrated screen (450 r.p.m., ${ }^{3}-\mathrm{in}$. throw) supported by board hangers at the feed end. The screen is equipped with a Ty-rod cloth with a clear opening of $1 / 10 \mathrm{in}$. between the wires. Material through the cloth, which naturally is high in ash and sulphur, goes to the refuse.

Coal over the screen is fed into a 4 ft . air-sand separator, which is followed by clean coal and refuse desanding screens and a sand-return elevator. The plant also is equipped with a dust-collecting system made up of hoods, ducts, an exhaust fan and a cyclone separator. Arrangements also have been provided for cleaning pickings from American No. 1 mine, but as a rule part of these are burned in the power plant at that operation and the remainder are shipped in the natural state. As at No. 2, pickings are prepared at No. 1 in a Bradford breaker.

CONVEYOR-MINING EFFICIENCY

 + Increased by Hand Room Driving
And Tracks for Supply Deliveries

PROGRESS toward improved mine layout, more workable methods, better equipment arrangement and higher production efficiency has marked the two and onehalf years of experience with conveyors in No. 5 section of the Red Parrot mine of the Red Parrot Coal Co., at Prenter, Boone County, W. Va. From a cautious start with one conveyor unit purchased in November, 1935, the complement of equipment was inereased to two units in July, 1936, and to three units in April, 1937. Of the 701,000 tons shipped from Red Parrot last year, 131,551 tons (18.8 per cent) was conveyor-mined. In January of this year the average production per manshift, excluding gathering-locomotive crews and supply men, was 15 tons. The working plan now being followed is the fourth in the line of improvement by study and trials.

The seam, which is the No. 5 block but locally is termed the Red Parrot, lies practically level, outcrops high above the valley and has comparatively light cover. The seam contains a stratum of 30 to 48 in . of clean coal below which is 4 to 6 in. of laminated material, and under that 8 in . of bottom coal. The primary roof over the seam is 30 to 40 ft . of strong sandstone. As a rule, 4 in. of bonc lies between the coal and the sandstone top. In some sections of the mine the bone is missing and in others a drawslate occurs, sometimes with the bone. Thus it is evident that details of the work must be varied to suit the different conditions encountered.

As a rule, the conveyor mining has been confined to the 30 - to $48-\mathrm{in}$. stratum of clean coal; in some of this work, however, the undercutting has been done in the bottom coal and the lamination above it thrown back

By J. H. EDWARDS
Associate Editor, Coal Age
into the gob. In certain areas that were mined in the early days of the conveyors, the clean-coal stratum ran as low as 30 in . and the top and bottom materials thrown ever the conveyor into the gob practically filled the area to the roof. In other sections mined later, the waste material handled has been negligible. The January, 1938, average of 15 tons per man-shift was made under the favorable condition.

Equipment of the first unit consisted of the following: two Jeffrey 61 AM $10-\mathrm{hp} .300-\mathrm{ft}$. chain-flight room conveyors with 6 -ft. pans, two Jeffrey 61 HG 5 -hp. chain-flight face conveyors with 6 - ft . pans, two eteffrey $1 \frac{1}{2}$-hp. blowers, two Little Giant electric coal drills and one BrownFayro $50-\mathrm{hp}$. trip hoist. The second and third units are duplicates of the
first. All motors are 275 -volt d.c.; those on the conveyors and blowers were made by Westinghouse and those on the hoist by CrockerWheeler.
The mine cars into which the room conveyors discharge average 3.2 tons and are the same cars as are used in hand-loading sections. These are solid-body, all-steel cars 26 in . high. Undercutters are Goodman 12AA shortwalls with 7 -ft. bars, which have been the standard equipment of the mine for some years. Cincinnati chains and bits are used and have materially improved cutting performance.

Driving a $40-\mathrm{ft}$. room 300 ft . deep,

Conveyor mining is carried on in the No. 5 section, the headhouse of which appears at the upper left. In the foreground is the No. 4 section headhouse, which feeds to the same tipple.

bringing back a $40-\mathrm{ft}$. pillar open ended and having but one room conveyor discharging into a car at the loading point was the initial layout. Material was delivered to the face by reversing the conveyor and this material delivery and all conveyor and pan moving were done by the regular conveyor unit crew. This supply and moving practice gave way to an entirely different system in the fourth and present layout. Trials with the initial system indicated possibilitics of worth-while cost reduction but showed that obtaining efficient crews would be no easy matter.
The second step was to increase man-shift production by arranging for the conveyors from two rooms to discharge into one car. Two adjacent rooms on the same side-that is, turning off the haulage heading-were conveyor-mined simultancously. A short chain-flight conveyor on the haulage heading and paralled to the track carried coal from the inby room to the common loading point at the adjacent outby room. The rooms were driven 40 ft . wide with a 10 -ft. pillar between and no return mining was done.
In the third plan driving $40-\mathrm{ft}$. rooms and bringing back $40-\mathrm{ft}$. pillars was resumed and the common loading point for two conveyors was continued. However, this step was accompanied by the important change of driving the two rooms on opposite sides of the entry-that is, one from the haulage heading and one from the aircourse heading. This requires that the entry chain pillar have a
crossent straight across from opposite room necks so that the room conveyor from the room off the aircourse can extend over to the haulage entry. The two-room conveyors thus discharge into one car from opposite sides. This car-loading plan has been continued in the fourth and latest layout.

In this most recent and most successful working method hand loading into cars has been reverted to in driving $14-\mathrm{ft}$. rooms 300 ft . deep on
$125-\mathrm{ft}$. centers and also in driving butt-offs, or crossents, at the back end of each room preparatory to installing the conveyors and mining back two $48-\mathrm{ft}$. faces, one on each side, in a T -square arrangement of the room and face conveyors. The track is left in the room and serves for bringing supplies in mine cars to the conveyor face and also for moving pans and other equipment in and out.

Conveyor sections are worked two shifts. As a complement to the sup-ply-track arrangement a special twoman supply crew working on the third shift brings into the mine and delivers to the face all timber and supplies and disassembles and moves the finished room-conveyor pans to their new position in the next room. Thus the pans are handled but once and the conveyor-mining crew is concerned with moving only to the extent of skidding the face conveyor ahead after loading each cut and the final transferring of drives to the next room. Use of tracks, cars and locomotives and doing the work on the off-shift reduces materially the man-hours required for this supply and equipment handling. This twoman supply crew services all three of the conveyor units and in addition performs other duties. Confining the conveyors and their crews to the primary job of mining and loading coal further raises the general efficiency.
Longer faces are now being tried and when the accompanying photographs were made one face of the tee was 80 ft . long and the other was 40 ft . There has appeared no

The section below the main is nearing completion by conveyor recovery of pillars after hand-driving of narrow rooms.

Showing arrangement of controls on steel panel.
reason why, so far as roof coutrol is coucerued, two $100-\mathrm{ft}$. faces cannot be brought back, thus mining a space 200×300 ft. at each setup. That arraugement likely would require larger than $5-\mathrm{h}$. motors on the face conveyors and the heavier drive units would constitute an appreciable disadvantage in moving. On the 48 -ft. faces the whole length of the ent is shot down and the conveyor restarted without, usually, any difficulty. On the $\mathrm{SO}-$ to $100-\mathrm{ft}$. faces it is necessary to operate the face conveyor between shots, thus requiring slightly more time.

The order of work at the face is as follows: cutting, raking out the cuttings, drilling and loading shotholes, moving face conveyors 6 ft . ahead and, finally, firing the shots. Holes are spaced S ft . apart and only $1 \frac{1}{1}$ sticks of permissible are required per hole. One row of woud props spaced 5 to 6 ft . apart is set per cut and not often are any props
required between the conveyor and the face. No props are recovered. Wood cribs have been used in a few instances where roof action indicated the need. Since the start of the work one face conveyor has been lost in a fall. Its value was recovered through special insurance against all types of accidents except fire, which the company carries on all its mining equipment.

Ten- to 20-ft. pillars are left between conveyor-mined rooms. The top over a whole room area, $100 \times 300 \mathrm{ft}$. and up to $200 \times 300 \mathrm{ft}$., stays in place long enough to mine the area by twoshift work and move out the equipment. At times four to five adjacent rooms have been mined before an extensive roof break occurs. No shooting of props has been necessary to produce a cave.

Driving double-heading entries by a chain-flight conveyor unit, using one conveyor in each heading and a third convevor erossing from the
aircourse to the haulage heading, has proved speedy and economical. The entry is advanced 30 ft . per day (one shift) by a crew of eight to twelve men. During April this narrow-work conveyor crew put in a total of 97 man-shifts and loaded 385 cars (1,232 tons), an average of 12.7 tons per man-shift. Locomotive men employed in hauling cars are not included in the crew-production calculation.

The headings are driven 16 ft . wide and the coal taken during this April work averaged 36 in . in thickness. Blowers and tubing are used for ventilation. Heading conveyors are extended to 300 ft . and then a crosscut is driven and the crossconveyor and heading-conveyor drive units are moved to a new set-up. In this narrow work the crew does its own "panning up." No refuse was loaded into cars but instead the extraneous material was gobbed along one rib.

Prepared sizes abore 2 in . constitute 60 to 65 per cent of the production from conveyor mining. The comparative figure for hand loading into cars is 58 to 60 per cent. The increase means a higher realization because a large part of the mine output goes to the domestic trade.
As in most other mines where part of the production is hand loaded, it was not easy to obtain efficient workers for conveyor crews. Older and experienced miners prefer to work under the old independent systeru. Generally speaking, the convevor crews have been built up from the younger inexperienced men. Willingness to work steadily is the primary requirement.
Losses in mines that have both hand loading and mechanized sections may amount to a considerable figure through the placing of handloader checks on conveyor-loaded ears. To remove this temptation

and to eliminate doubt among mine officials a handful of slacked lime is scattered over the top of each conveyor-mined car as it leaves the loading station. Thus, a whitish cast plainly proclaims a conveyormined car.

Electrical controls and connections for a two-room set-up, as designed by W. H. Cooke, electrical engineer, are assembled on a steel panel with screw-jack-type posts welded to each end. Short connection cables are permanently attached to the control panel and are coiled up and moved as a unit with the assembly. Standard equipment on a control panel consists of a General Electric line circuit breaker, a Trumbull 60amp. safety switch to control the hoist, two Jeffrey reversing starters for the room conveyors and a ventilated box containing the two resistors for the room conveyors.

Special Cables Used

Miller rubber-sheathed connectors are used for all cable connections. A five-conductor type made especially for the duty is used between the control board and the room conveyors. This number of conductors is necessary for reversing-type control. Originally, portable reels were used for the No. 2 room cables feeding the cutting machines and coal drills. The difficulties of handling such a reel when wound with 300 ft . of cable and the greater heating of such a cable when coiled on a reel caused abandonment in favor of two 150 -ft. lengths of cable equipped with Miller connectors. These lengths are handled by dragging and coiling into a car for moving. Use of 150 ft . of No. 2 cable instead of 300 ft . for working the inhy half of the retreat has an appreciable effect in better voltage and reduced power loss for that portion of the mining.

An electric grinder with its supporting bracket welded to a steel roof jack and mounted near the control board serves for sharpening coal augers and for miscellaneous grinding.

A power test last January by the West Virginia Engineering Co. made on a shift cut one hour short due to a transportation difficulty showed a 44 -kw. 15 -minute maximum demand peak for the equipment in a tworoom set-up, consisting of one trip hoist, two room conveyors, four face conveyors, four mining machines, two blowers and four coal drills.

During this six hours of work, the seventeen-man crew mined and loaded 68 cars (221 tons) and the power consumption was 174 kw -hr., equal
0.79 kw .-hr. per ton. Other test findings were: Actual time power was used, 5.16 hours; average kilowatts of total shift, 35 ; load factor, total shift, 81 per cent; average power consumption for coal cutting, 0.165 kw .-hr. per ton. Average thickness of the coal in the territory where this wide-work test was made was 39 in . Cutting machines (Goodman 12 AA shortwalls) involved in this test were fitted with Cincinnati "Duplex" chains and C-11 "Duplex" bits. This type of chain is now used exclusively in both the hand-loading and conveyor-mining sections of the mine.

That an unusually favorable condition must have prevailed when the test was made is indicated by the
fact that a previous test showed 0.81 kw.-hr. per ton consumed by conveyors alone when the room length was 257 ft . Haulage equipment used in this No. 5 section of Rel Parrot mine consists of two 10 -ton Westinghouse and one 8 -ton Atlas mainline locomotives, and two 8 -ton Jeffrey and four General Electric 6-ton cable-reel gathering units.

Paul Sabok is foreman in No. 5 section. J. T.' Sydnor was superintendent until his recent acceptance of the position of general manager for the West Virginia Coal \& Coke Corporation. He was succeeded at Red Parrot by H. B. Morgan. J A. Kelly, Huntington, W. Va., is gencral manager of the Red Parrot Coal Co.

Two room conveyors discharging from opposite sides into one car is the present system. Electrical controls, wiring and short connection leads are permanently assembled on a steel panel complete with roof jacks. The electric grinder at the right is on a separate jack.

Narrow rooms are driven by hand, after which conveyors are installed and
two wide pillars brought back open ended.

WHAT ARE WE DOING

 + To Meet Demands of Modern Mining

 + To Meet Demands of Modern Mining}

For Better Trained Personnel?*

By THOMAS ALLEN
Colorado State Coal Mine Inspector

LIKE OTHER major industries, coul mining within the past two dexades has revolutionized its practiess and methods. In the early days, very little thought was given to the presibility that training and chusating miners and otticials might raduee aecidents throughout the industry. Mining was not the rempliested exenpation it is todsy. A bey might enter a mine at the age of ten years: he worked under the dhes suphervision of some older person for a perimi of years Gradually. if nothing else was setoouplished, be bevame seclimated to life in the mine and as he grew physienlly, at 18 and pasibly up to 27 he was a skilled and instinetively, throngh these years of spprenticeship, a neal miner.
Today hoys uasy no: be tateen into the mintes until they are at least 10: the averate sige is about is years and in many instances they ste elecer fo th ar 27 yeurs betime they even set a siakt top. He is taken into the mater umer no system of spprentice ship of trainiug suad the wity tacter faker into skeoum is that be is phwitally strum emougt is pertorm sav namma! labor. He reprisents a tasan trum every view point. Should he be fatally imjured, the cunipewathen deramit is very keavy it he has * wite sun childrea.

> Vocationa! Instruction Needed
> Ever xtramement wolla be make wàerwy these yuars pen could be traineu by reectiocal instruction before they eater the eifere, wed that trsiming ecztimurd Ete a periok of Feass after surie entrance. Fractically all graik sedi bigh sethools in farming

[^0]areas have instruction in agriculture -why not some instruction in coal mining to prepare these roungsters who must be our future labor supply? Vocational lectures could be given on branches of coal mining; moring pietures showing aciual underground conditions exhibited; visits made to different coal mines; firstaid work taught.
Voestional selhools or parts of sehools set apart for voeational training of proposed miners and employed miners can be established. For those aetually employed in mines, timbering. trackwork, electrieity, mechanics, construction of machinery used in mines, ete., could be taught. The prosram enuld be enlarged to include su experimental mine (centrally luested) for demonstrations and training.

FirstAid Training Essential

Every mine emploree should be trainel in tint sia. The excellent trainiag given by the T. S. Bureau of Mines in tirst-sid work could be Easterially inereasel by adopting its tave recent system of training instructurs. These instructors in turn traim the mune ecuployes. And every miner and mine ofticial should hear the Bareaus extelleat conse in at-duent-prevention woth Veeational trainits, tombined with the progrums of the U. S. Burest of Mines cond be exrried ou steadily as rery litile wst to mine operates who uncioubietly woula be repaid many times over for their eforts in lower apestitige costs saci femez sceidents when using trained men in their cuine
Tre commor prattice tocky in sppointirg mining ofecials is a hap hassant sepertion of men emplored in the ruices. In many extes tiey are picked simply becanse terey happen
to be good workers; the term "good worker" means a man who will attempt to do more physical work than others in an average group. No thought is given to the fact that a man in charge of a mine needs special training, and no attempt is made to give anyone with ambition any real assistance in gaining the training neeessary for such advancement.

No Guide for Ambitious

There is no guide for the ambitious miner unless he is fortunate enough to contact someone who will give him some idea of what to study and where to procure the literature, etc., necesary to study. Cousequently many men of very high natural intelligence present themselves for ex:umination as mine officials when they are totally unprepared. The results of this situation are illustrated by the following quotations, showing the atterupts of practical mining neen to answer technieal questions submitted to them:

1. Name the chieí dangerous gases net with in coall mines and deseribe them:

Ansuer: Highdrogen and loudrogen: kighdroget is found in kigh places, loudrogen is found in low places.
ㄹ. I breathe slowly into the inlet of a safety larap; the light goes out; whr:

Bercuse your breath is bud.
3. What steps would you take if you found a district full of explosire gas?

Darned lony ones to get out of there.
4. What is air:
fir is the stuff bircs and aeroplenes fly around in: sometimes some of this stwef gets into the working feces in a mine.
i. What is a barometer?

A thing for measuring volheelbarpous.
6. What is the law regarding visiting working places?

No visiling allowed.
7. What is electricity?

Electricity is something you get from motors and sometimes from the air.
8. What is a dynamo?

A machine to make dynamite.
9. What is the meaning of KVA or KW or EMF?

Radio stations.
10 How would you change from a.c. to d.c. current?

Hire a good electrician.
11. What is an armature?

A "guy" that sings on Jfajor Bowes' program.
This may sound like comedy; but it is more of a tragedy that the leading mining companies should not help to develop men eager to become more valuable in the profession. In every instance, these apparently absurd answers show that the man being questioned was thinking.

Why No Answers?

The following questions were sent to mine foremen in Colorado; every mine foreman should know answers to such questions if he has prepared for his job, but not a single answer was received:

1. What is a No. 2 frog?
2. How long is a switch on a 3 -ft. track gage, using a No. 2 or No. 3 frog?
3. How would you roughly figure the strength of ony rope or cable by just knowing its diameter?
4. What size of sheave or wheel would you put in, knowing the size of the rope?
5. How would you figure the pull on the rope, knowing the weight of the trip and the inclination of the haulage road?
6. What is meant by one degree pitch and one per cent pitch?
7. How much track would a ton of $30-\mathrm{lb}$. rails lay; a ton of $20-\mathrm{lb}$. rails; a ton of 45 lb . rails?
8. How big is an arerage mine tie and how would you want to lay the tracks on a $1,000-\mathrm{ft}$. straight entry?
9. Can you give the approximate cost per ton for the labor on your coal production for today?
10. What is the average crushing strength of a mine post or prop?

Where men are selected without any known previous training they must learn the duties of their position and many scientific facts after they become officials. Companies employing such untrained men as foremen no doubt pay very heavily for mistakes made by them.

Present methods of examinations
for mine foremen and other official; have been carried on for a long time. Standard questions are asked repeatedly. Books of guestions and answers are available. Any candidate with some natural intelligence can be trained to answer the guestions given in a short period of time. In many cases men studying for these examinations simp y learn a certain form of answer to these questions, withont understanding what half of the answers mean.

Most examining boards take into consideration the practical experience of a candidate. Written and oral quizzes readily reveal the history of the student and his ability in a practical way. But the written questions
with instruction in the hands of specialists in every branch of the industry.
Proof of having taken such courses could be offered to any board of examiners. Proper credits could be included for the comp!etion of certain studies in grading the student in examination for any certificate of competency.
Coal-mining problems involve every known practical science-but they are distinct and far removed from metal-mining problems. Yet, there is no special effort made for the proper training of coal-mining engincers. The time is here now when engineers should be trained especially for our coal mines.

"Yes, sir, if I was President. I'd simply do th' best I knew how."
on calculations and technical problems do not reveal any training the candidates may hare had. In most cases the candidate has had no actual instruction on the duties of a foreman and the problems he must face in such a position.

Some States have well-developed plans of rocational training; in the Rocky Mountain region, howerer, vocational training has received scant encouragement. This condition should and can be remedied if coal-mining men would cooperate with State boards. It is possible to set up a well-defined course of instruction, built into a program over a period of years. Lectures and studies of all phases of a foreman's or supervisor's work, as well as the technical aspects, can be woven into such a program,

Modernized coal mines with their complications demand more than simple and practical experience for those who would really direct the methods of working and preparation of coal. The practical man with a little rocational training will be necessary for a semi-official position as face foreman or mine foreman. These men should be simply supersisors to see that the work is carried out as per adopted plans; planning itself needs the services of trained engineers.

The das should be gone when entries and haulagewars are driven haphazardy and surveyed after the work is completed. The heary losses due to operating on badly aligned and badly graded havlage roads are the result of letting the work be done without any real previous planning or
selentific antrol in develognent. Another loss fiom what appears io be a small part of a mining program is eatused hy driving irregular moms. This imegulanty leaves pillars of varying sizos and thickness. The loss in extraction of itremlar pillass is much move than operators will admit; momber, these integular pillass repmasent one of our extreme hazards in cord minas.

Hope in Newer Methods

Nower methods of mining and supertesion will eliminate many of onr dangemms, ineffecent man मastethl enditions. Hanlageways mill be diven on proper Aligmment simul grades: exervations for the parpose of major exeavaioms wit be carried on in a resuln fonti. This means that we must have in out mines men trained in use surveying instrments madergonma.

Such ronditions wombl offor an equening boik :o soung mon taking chat-mining-engimening courses find to young man of ambition anable io
 chume becture at lack of finames. Nighteshon coursm in the mathenutio nerastipy the mine smeveying and the use of instammens conld be Tendity whacer brong vapotional tratime honds, and from this aftort of midy suent men weil enougli
trained to do all the necessary mine survering in individual mines.
With well-devised plans projected for the operation, and such plans froperdy directed and supervised, it is a bet to say that our accident rate and production costs can be reduced materially. lut it we continue our grandiather facties of mining neither sceidents nor production costs will be reduced.

That rocational training for mine employees is a method of redueing accidents is cridenced br the following quetations from a bulletin issued by the Maryland Burean of Mines (April, 193s) covering the 11-vear period ended Dee. 31, 1935: "The pereentage of antrained employees injured as compared to the total number injured each year, 89 per cont: perentage of stuments injured As compared in the total number of injured each vear, 11 per cent; moportion of injuries in trained members as compared to simuries to nontrained employees per year, one to night."

As an argament for continuors training for miners ance officials hr vocational schools or other similar insilutions, a Fritish item quoted in part in an editorial in Conl - 4 ac Mat, 1935) mat be given. This statenent in an shbreciated form Inllows: "A Sentish divisional inapector axaminer a group of shot-
"! was neat evan as child."

firers and asked each individually to demonstrate exactls how he would proceed to fire a shot in a coal face. Not one of the men examined made a score of 65 per cent of the total calculation marks and one man fell below 32 per cent; yet this same inspecter says all these men tested were intelligent and capable men."

This same editorial criticizes our more or leas extensire programs of training first-aid men as not being all the training necessary for miners. "Job analrsis and job training," it says, "are as essential as first-aid training and more fundamental." Coal Age is a little drastic when it states that irained "first-aid men, after all, only "pick up the piecewhich others for lack of training. have scattered."

Coal Age on the Pan

The methed of statement br Coal Agc is a severe blow at first-aid training, when it is known and freels acknowledged that first-aid training, in addition to preparation of those trained to "pick on the pieces," also creates a safety conscionspess in the minds of these trained men, and this safetr conscionsmess is known to be A facter in the redaction of aceidents in coal mines. Howerer, Coal Age is te te commended for bringing out the fact that ather training than first sid alone is necesary among coalmine emplorees.
There has yet to be made a statement br anyone that training of eoal miners in ant shape or form has an ill effect on sach men, and that such training does not decrease accidents. and that such training does not make for better conditions in every war. shape or form. Mhy, then, shonild this important part of the scheme in oal mining he nerglected, and in many pases shmoned, and in many cases deliberately retajded by many who should kuow better?

There is mo answex in this question. hut the fact remains that in all other indmatres thase not kecping up with modern progress have been lest in the sirngele ior continued existence, and this same condition will prerail in the coa!-mining industre. It would seem Tha: educutine and training oft enal miners is an essential requirement to keep pace with the ranid-fire ellanges fur improvement heing made in coaltuining operation, and ithat those ensraged in the indostry mould see the nefessity for solidified action, whereby altranage can be taken of the oprorfunities offered be the frograms of institutions preparea the include rocafiowal iraining in their educationa, wark.

KANSAS FIELDS

+ Use Largest of Shovels

To Strip Thinnest of Seams

MAJOR SEAMS only 18 to 36 in. thick have not prevented operators in the Pittsburg (Kan.) field from working themand sometimes an upper and even thinner seam-by stripping despite the hard overburden. Such operations require shovels which during the development of the stripping art usually have been larger and heavier than any others employed in this work. Ratio of cover to thickness of seam mined has ranged from 18 to 20. Because continuous progress is a real watchword in modern stripping, recent years have witnessed many changes in equipment and operating practices. ${ }^{1}$

At the No. 17 operation of the Pittsburg \& Midway Coal Mining Co., the 22 -in. Mineral (Lightning Creek) bed is stripped by a Bucyrus $750-\mathrm{B}$ shovel with a 62 -ft. dipper stick, 87 ft . boom and 24 -cu.yd. bucket. The Huntsinger seam, which is 12 to 18 in. thick, sometimes occurs about 12 ft . above the Mineral bed. As the Huntsinger covers a sizable area, it has seemed undesirable to dump it to waste when the thicker seam is being stripped, provided recorery of the Huntsinger does not interfere too much with the schedule of operations.
When the overburden is shot from a point above the lower seam by explosives confined in horizontally drilled holes, the upper seam is lifted so gently that it retains its continuity and can be stripped without difficulty. Moreover, the lower part of the "high wall" below the Funtsinger seam is still so strong even after shooting that it will bear the meight of the heavy shovel. Holes are drilled a few feet above the lower seam by a

[^1]Sullivan horizontal Stripborer with molefoot auger tipped with Borod. The shovel works itself to the top of the seam wherever the Huntsinger bed occurs in workable thickness by traveling up a gradual incline which it digs in the high wall to the full width of the pit.

On reaching the desired level on top of the Huntsinger seam, the shovel strips the orerburden from that seam, dumping the material in the usual manner into the pit below, which has been divested by the coalloading unit of its lower seam. After the Huntsinger seam has been removed, the shovel then uncovers the lower, or Mineral, seam, placing the spoil on top of that remored from the upper bed. Before this lower coal is
removed, its overburden is drilled for the next lift; this drilling ends the cycle of operation. The Mineral coal is then ready for removal.

Coal in the upper bed, it is believed, is protected by its hard cover of black slate from the disruptive action of the explosives, which merely crevice and lift the coal so that it settles back almost as if it had not been shot. A little rock, for a depth perhaps of a foot and 6 to 8 in . wide, may dribble down from the face of the high wall where the shot is placed; the bank, however, stands sheer and, to the uncritical eye, would appear unaffected by the blasting. Holes are drilled about 30 ft . apart and are made 65 ft . long, sometimes of 4 -in., but usually of 6 -in. diameter.

Reclaiming Worked-Out Strip Pits

Abstract

At Frontenac, Kan., a completed and abandoned stripping has been converted into a park, and after only about three years since stripping was completed a thrifty tree and grass growth has developed. It seems as if the rotted shale proves more fertile soil than the clay which it displaces and contains minerals more favorable than alumina for plant growth, for alumina does not enter in any quantity into plant life. Clay appears to be the prevailing top soil in this country.

Every stripping on completion leaves one long trenchlike open pit which, if dammed, is filled by rains and surface flows, and in this region forms a pool of pellucid water. As these strippings are all below surface level, these pits are never drained. The water covering the pyrite in the coal floor and in the spoil banks and walls of the pits prevents oxidation and maintains the natural alkalinity of the materials. Such a lake is found in the Frontenac park, with water 18 to 20 ft . deep. It is not deeper because the coal was at that shallower depth. In those days it was not thought feasible or possible to mine a thin seam under what is now regarded as reasonable cover. In this lake the fish are multiplying. At another abandoned stripping fish are found, though it is said that the pool, formed since complefion of the stripping, has not been stocked.

No springing or chmmering of the holes is nexessmes．（Bdatin dyamite． 250 to 400 th．to the hole，is nsed as applosive．

The hambess of the rowk showe the fower soal hed depmeds on the per－ sembuge of lime if contains．When not too hamed，it is drilled is in，athowe the math：at this lewd the explesives oper－ ate without injury to the bed．Sumte－ times，howorer，so mbeh mprock is prosent that only be drilling about is if，above the moal can rock muim－ prexuatm with lime be fonnd in when to place the holes．

In fhis ease，the mproek is so hand that it is not broken by the shot， eammet be bulseyd hy thi shovel；it is lievesary，thertome，to take fack－
hammers and drill it with 2－in．verti－ wal holes 8 ft．apart as soon as it has heon stripped halt way across the pit at the point where the shovel is strip－ ping．black powder（size F）is used for shooting these holes．The shovel then litts the rock thes loosened while holes are being drilled and fired on the other side of the pit．

It this operation，horizontal holes have replated rentieal so that spring－ ing or chambering of holes in prepa－ ration for hasting may be aroided． As a result also the force of the shot is upward，not outward，and extends wor the full lenyth of the hole．Elim－ inatine springing also eliminates the risk that the walls of the holes still hot from chambering will ignite the

thentental ghtil wilt inct pent beckind in eeal suam．
final charge in the hole prematurely． No water is needed in drilling；hence， a dry hole is provided for the charge， and the expense of piping，the mess from wet drilling and the difficulties from freezing in cold weather all are eliminated．

While these holes could be drilled after the lower coal seam has been removed，the aim is to make this un－ necessary because the coal affords much more resistance than clay wher－ ever jack posts are needed to force in the drill．Nine or ten holes can be drilled daily when the drill rests on the coal，but when the drilling ma－ chine rests on the clay floor only two－ thirds as many holes can be drilled in the same time．
lit width averages 75 ft ．The coal is lifted by powder shots dug by a 5－cu．vd．－5－13 horizontal－thrust loader， emptied into a 10 －ton aluminum skip which is lifted by a caterpillar－ mounted S0－B＂bank machine，＂or hoisting derrick，to such a height the coal can be dropped into trips of cars along the high wall of the pit．Depth of overburden rarely exceeds 40 ft ．， although in some places where condi－ tions are favorable 46 ft ．is exea－ vated．

Partial Undermining No Bar

On the surface is a soft，vellors elay，about 4 ft ．thick，underlaid by $t \mathrm{ft}$ ．of blue shale．Except for the small，somewhat ertatic Huntsinger seam with its few inches of clay and limey material，the rest of the cover over the Mineral bed is a freely weathering blue shale．Shaft－mine operations in the Weir－Pittsburg sesm have partially madermined the entire scis now being stripped，but as the enal was nowhere over 36 in． thich－it may hare been les－and as prokably not more than 50 per cent of the seam was extracted，the under－ souad？wowings have not caved in or An sixy way interiened with shovel －2pation．＂

Amoher thinseam operation is that of the Pioserer Cosl Co．at Crome－ burw．Kin．Here tu Minersi seam is buty Is in．then，but the Hunt－ singe：is everymene 12 in thick sm^{3}
 at the Pitsonez \＆Midway．Tine

 sheat of s R－0＂M？Mstom when
 sbovel sists tar owrounien finu tie

[^2]trucks by a $1 \frac{1}{4}$-cu.yd. Bucyrus-Erie shovel loader, the larger shovel follows along and dumps its spoil behind and over the back of the first spoil dump. The Mineral-seam coal is loaded into trucks by a 2-cu.yd. Marion 37 shovel which has been converted into a horizontal-thrust loader. These thrust-loaders do not make a lifting cut but push their way into the coal in the direction of the bedding and thus split the coal with less resistance along natural breakage planes.
Haulage equipment at Pioneer consists of two White trucks each pulling 14-cu.yd. trailers; three White trucks, each hauling 8 tons "on their backs," and three hydraulic-dump 6 ton Mack trucks. The average roundhaul is $4 \frac{1}{2}$ miles. No coal berm is left for the trucks, which run on the clay of the coal seam and leave the pit by traveling up roadways on an inclination carefully graded so as not to exceed 6 per cent at any point. Burnt shale and some concrete have been used in the construction of these roads.

At the No. 22 mine of the Clemens Coal Co., the Weir-Pittsburg seam
is 36 in. thick and lies under about 46 ft . of cover. The stripping shovel is $a 23$-cu.yd. Marion 5560 with 96 ft . boom and $56-\mathrm{ft}$. dipper stick. At the No. 23 mine of the same company, working the Mineral seam, a 15 -cu.yd. Marion 350 shovel with $90-\mathrm{ft}$. boom and $50-\mathrm{ft}$. dipper stick, and a 14 -cu.yd. Marion $\overline{5} 323$ unit with $92-\mathrm{ft}$. boom and $54-\mathrm{ft}$. dipper stick are used. The seam is 18 in . thick and the cover from 42 to 43 ft . At both Clemens pits United Iron Works horizontal drills with Borodfaced molefoot bits drill the overburden above the caprock, which is about 3 ft . thick over the Mineral and may run to 5 ft . over the Weir-Pittsburg seam.

Because the Weir-Pittsburg coal is soft and requires careful handling, drills must be placed higher above this seam than above the Mineral bed. The shots rarely break the caprock and jackhammer holes have to be made in them. The coal is lifted by a Bucyrus 75 shovel with $4 \frac{1}{2}$-cu.yd. bucket at Mine 22 and by two Bucyrus 50 shovels with $3 \frac{1}{2}$-cu.yd. buckets at Mine 23. Coal is loaded on a train of six 17 -ton cars at each mine
by an aluminum skip and is hauled to the preparation plant by a 21 -ton steam locomotive.

The Commercial Fuel Co. has further modernized its equipment at its Cherokee mine by installing a 32cu.yd. Marion 5560 shovel with 110 ft. boom and $68-\mathrm{ft}$. dipper stick so that the 22 -in. Weir-Pittsburg seam can be exposed by the removal of 30 to 50 ft . of overburden. Coal is loaded with a 3 -cu.yd. shovel into a 4-cu.yd. aluminum skip which is lifted to the surface by a Marion derrick. Two bucketloads are placed into the skip before it is hoisted, the skip being filled greatly in excess of capacity.
Here, too, hard caprock is encountered. United Iron Wrorks horizontal drills with Borod-tipped molefoot augers drill $4-\mathrm{in}$. holes 2 to 6 ft . above the coal; then jackhammers are used to drill the caprock with $2 \frac{1}{4}$-in. holes at 8-ft. centers. Even when drillholes are 2 ft above the coal, however, the rock is not broken to a degree that it can be shoveled. Dynamite is used in the jackhammer holes and FF black porrler in shooting the coal.

HOW MANY CARS PER TRIP?

+ Tonnage Locomotive Can Handle Safely

Determined by Motor Heating*

HOW MANY cars should be hauled per trip? The usual answer is, as many as possible without excessive wheel slippage. Generally, this number is determined by the simple process of adding cars until the locomotive is no longer able to start the trip and keep it going. In some cases this method of "analysis" is entirely correct, as it results in no harmful overloads on the electrical equipment or

[^3]mechanical parts. In others, it is good economy to haul all the carz a locomotive can start and keep going, even though the resalting overloads are destructive of mechanical and electrical parts. There are still other conditions in which the size of the trip should be limited to improve production and reduce repair bills.

The maximum number of ears a locomotive can start, accelerate and haul is limited by the wheel slippage and therefore is a function of the locomotive weight. It is not at all uncommon to obtain a drawbar pull

By D. E. RENSHAW
Yining Section
Industry Engineering Department Trestinghouse Electric \& 3/fo. Co. East Pittsburgh, Pa.

as great as 33 per cent of the locomotire weight, and on this baتis the maximum loads that a locamotive ean hanl are shown in Fig. 1. It will be noted that the ratio of the irailing load weight to lreomotive meight may be as greai as 14:1 on a level track, decreasing to $2 \frac{1}{2}: 1$ on an 8 -per-bent grade. At a very jlom rate of acceleration and with good sand-

Fis. 1-Ratio of tox of trationg hoss to Nons of hromitive wrigh, stromise so:
 fion of as mite ger hev: ser sesord.
 Anccoment

 the whend tren thm wemian the motus, whit in rinas sach orexlawis sumy with resmat in trabtit.

 Dmal pectooll strus.

Lientations an lang tiauts

 size of sure will ha liman to tha

 the maxim th the metrement. Ind Anmisity, fils is amnes the whe whin

 Th these is on hail smate in tho fire

 navessury th fint with gotar the vers: motumat: to grevemi simase of tir: जिया

Pre mannia, fasume n jaminge tive

startend on the i-per-cent grade is four to tive times the lecomotive Weight and the motors draw abont af prer cem over current for this Shorf secrion of the rmu. On the l-procent grade, this trailing losd will ryuir supnecisbly less than the rated curnent of the motors and firr the foral rum the lasd on the motors will te withim uorual limits.

In contrast, let us consider the trek of ham on which a "mistake" mosi frequemdy is made Asomme a 10-10: bownotive, mats medghing

 cars are sudied \%o the frip an ammewer abhimes s proportionste incresse in Lond. HFomber, if ame meter in-
 pres, we mombl swe ithat esch sded
 than any buckedray mar.

Thes what thas effoci is esn be

car looks six times as large as the first and the complete trip is not just twenty times as large as one car but about 29 times. This conception is based on the heating effect of the current required to hanl the added cars.

Effect of Overheating

While the smperes taken by a given locomotive are almost directly proporioual to the total weight of the trip, the motor heating is roughIr proportional to the square of the wejght. In addition to an increase in current, a larger trip increases the time for the rin beesuse locomofive motors are series mound snd lose speed as the losd increases Thas the heating effect of a trip of ten ars is shom br the carre (Fig. 3) io be sbout If and for twente tars to be slightis more than 5 .

Now let us cousider how many cars

Fig. 2-Domparion af heeting effect of first and last cor of a 20-car trip-

This inowavive stuala bayl sot the ciner of incriacing the sise of the

 spreds pommit, the lanomontive can

 ong combitums, in sumbesinit wrom
 bours woint reali in noumal safe
 Siv.

 The mentore mill be ren to Thed mexi-

 कhis Esif. ent wack done finve the
 mater inabiazion in the che of
 MA k
a rest after two trips, and if they don't get it probably will quit before the end of the shift.

How many cars, then, should make up a trip for maximum production within the safe capacity of the motors? With good conditions of track and voltage, the locomotive probably can handle twenty cars per trip. Is this the proper trip size? Table I indicates the answer. If we reduce the number of cars to seven we can haul only fourteen trips, or 343 tons, in seven hours because there is not time for more trips. If we haul eight cars per trip, there is time for fourteen trips but not quite enough motor capacity. Without overheating the motors, we can haul thirteen trips, or 364 tons, in seven hours. With ten cars per trip we can safely handle eleven trips for a net tonnage of 385 .

This is the maximum tonnage that can be delivered by the particular locomotive on the specified profile because as we increase the number of cars per trip we must allow more idle time for motor cooling and the net result is less tonnage. For example, with twenty cars per trip the motors are operating at lower efficiency and the cumulative heating effect of the large number of cars is such that we are inviting motor trouble if we repeat trips at a shorter interval than 2 hours and 20 minutes. Further, it is not good practice to permit such large trips because the motorman will think that if he can do it once he can do it repeatedly:

Voltage Drop Greater

There is an additional effect which has not been considered in the table but is important in some mines. The current for a 20 -car trip is roughly double the current for a 10 -car trip. Therefore, the voltage drop in the trolley and ground will be greater for the larger trip. Where the feeder system is inadequate, the voltage drop for the large trip may so reduce the speed as to make the comparison even more unfavorable to the heary trips.

What can be done if it is necessary to haul 500 or 600 tons in a shift? The most obvious answer is to increase the number or size of trips or to increase both size and number until the tonnage is obtained. This may necessitate rewinding motors every six or twelve months, and repair bills may be high, but this may be more economical than put-

Fig. 3-Each added car increases the locomotive current approximately 20 amp . but increases the heating of the locomotive motors in proportion to the area shown for that car. The total heating effect of a trip with any number of cars up to twenty is shown by the curve.
ting on an additional locomotive or purchasing a larger machine. In general, it is better to increase the number of trips as much as possible and thus keep the size of trip to a minimum, as this will heat the motors less than a smaller number of larger trips.

Needless Motor Abuse

This suggests on abuse to which mine-haulage motors frequently and uselessly are subjected. Te have all seen motormen wait at the tipple for a few more empties or at the parting for a few more loads. This loses time, which finally drops the haulage system behind schedule toward the end of the shift. Then, to make up for lost time, the last two or three trips are loaded up with everthing the locomotive will start. These few big trips may have more effect on motor temperature than hours of normal load and should be avoided. It is better to make an extra trip with as many ears as are ready than to waste time and make osersized trips.

In some cases it will be possible to rewind motors for higher speed and greater capacity. This is a rather expensive procedure, however, and is possible only in special cases. But it may provide an adequate solution where conditions are favorable. The most effective and economical method of increasing locomotive capacity is by forced ventilation. For a fers hundred dollars blower equipment can be installed on practically any
locomotive to increase the tonnage capacity 50 to 100 per cent. For example, forced rentilation on the locomotive considered here would permit safely twelve trips of fourteen cars each in seven hours for a net tonnage of 588 . This is an increase of 53 per cent over the maximum tonnage from a non-ventilated locomotive.

Summing Up the Case

To summarize:

1. It is generally bad practice to operate a locomotise up to the slipping point of the wheels.
2. On short hauls, not frequently repeated, or on long hauls with a short section much steeper than the average, the locomotive may work up to the slipping point without harmful overload on the motors.
3. On long, frequently repeated hauls with fairly constant grade conditions the loads should be adjusted to the motor capacity.
4. Where it is necessary to deliver a greater tonnage than the equipment can haul without orerloads, it is best to make as many trips as time permits, each trip being as small as possible for the required tonnage.
5. Motor may be abused even when delivering a normal daily tonnage if the total is concentrated in a few large instead of several smaller trips.
6. Relief from overload conditions usually can be obtained by installing blowers to cool the motors.

Notes...from

ACROSS THESEA

cAMBER arches are rolled-steel Ibeams of suitable cross-section, 6×4t. $5 \times 4 d$ or 5×3-in., bent to a circular are of 18- to $27-\mathrm{ft}$. diameter, which curvature usuatly is expressed by reference to the length of the beam and its rise or spring in the center. Thus, at $10-\mathrm{ft}$. camber arch rising 1 ft . 3 in . above the springing line may be specilied, and its imer curvature will then he that of a circle of 21 ft .3 in . radius. The most suitable rise for at camber areh must be determined by experiment, delares 15. 11. Frazer, in the report of the Scotlam? Division to the British Mines Department for 1930.
Canber urehes should be erected just outby the point to which the roof has been brushed, and should rest directly on either side on carefully cut abutments. No spaces should be left for wood shims, cap pieces or stringers between the ends of cambers and their seats or between the tops of girders and the roof they support. With eambers 10 ft . long, five or seven struts should be placed inhy and outby each beam, between it and its neighbors. Cambers should never be set on props of any kind, yielding or rigid.
Such cambers, dechares Mr. Frazer, not only support the roof but prevent the ribs, at least near the ends of the camber, from moving inward: thes they support not only roof but the sides. As they rest on noteles or gronves eut in the roof rock at the sides of the rondway, posts are not used to support them: hence. horizontal clearance is not reduced. Ther maintain the width of the roadwar more effectually amd for a longer period than either straight girders or arches. However, where the sides of the passageway are weak, the lower part may move in. while the upper part restrained by the pressure of the end of the camber. remains in place, and it may be necessary to shear the lower part of the sides later to restore the original width. If the brushing is high, the lower part of the side of the road may burst into the roadway, especially if the arch is well cambered. for in such a case the vertical component of the thrust on the alntments is so great and so near the roadside as to cause the extrusion.
A single shot in the center of the raadway will prepare the roof for the reception of a cambered heam, whereas. to shoot the roof for a semicircular arch, side shots are needed. Unlike semicircular arches, they have no bo'ts or fishplates that may be lost or mislaid. The abutments must be cut and not blasted out. and the work must be done so that no packine material will have to be used to make the ends of the camber fit the rockThough cambers are best suited for a roadway which is still within the zone where the rmof is subsiding ther should be replaced hy semicircular arches where the roof has ceased to subside and permanent support is desired.

Excessive tlour creep in return airways is controlled (Fig. 1) by inverted $4 \times 2+x$ 2 -in. girders, l2 ft. long. bent with a 12-in. camber, at the Haworth mine of Barler, Walker \& Co., Bawtry, Nottinghamshire, England. These abut at each end against $1 \geq-f t$. wood stringers, each of which, in turn, is held in place by three props which are abutted against cap pieces resting against continuous slanting frotings cut on the underside of the solid mine roof. The floor of the coal seam is a soft clay. More than $3,000 \mathrm{ft}$. of roadway is supported effectively in this manner, according to J. R. Felton, divisional inspector of the North Midland Division, in his 1936 report.
Here the Barnsley seam, which is being worked. has a good roof, but at the Kirkly mine, of the Butterley Co., Kirkby; in the same county, where the Top

Hard seam is mined, the roof, instead of being hard, has 18 in . of soft material known as "clod." Here it has been necessary at longwall faces to forepole the roof (Fig. 2) and this has been done by making $2 x 6-i n$. rectangular slots, $\overline{2} \frac{1}{2}$ ft . deep, in the coal at 3 - ft . centers close to or touching the roof, and placing corrugated steel crossbars in the holes, which are supported at one end on a post in front of the face and which rest at the other end on the bottom of the 6 - to $9-\mathrm{in}$. length of slot which extends beyond the coal that is to be undercut. To sink these slots a $2.1-\mathrm{in}$. center hole is made by an ordinary drill and this is followed by a special slotter that enlarges the hole to the required size.

APORTABLE apparatus that without human intervention not only makes a continuous and permanent record of the methane percentage in the air of a main roadway but can be arranged also to operate an audible or visible warning or even cut off the electrical supply and so to act either at the place or at a distance even of miles was described at the meeting of the Midland Institute of Mining Engineers, at Sheffield, England.

When and if this can be done reliably, it will be possible to control comditions in the mine with less reliance on exam-

Fig. 1-Holding down a heavy clay floor at Haworth mine

Cross Section of Bar in Slot Hole

Fig. 2-Forepoling methods at Kirkby mine
iners and shotfirers. With such equipment, major explosions can be made much less frequent, though minor disasters of that type will continue to be dependent on the vigilance of underground personnel. Continuous and permanent recorders of methane percentage have been

On the

 ENGINEER'S BOOK SHELFGeology and Mincral Resources of the Western Part of the Arkansas Coal Field, by T'. A. Ifcndricks and Bryan Parks, U. S. Geological Survey. Bulletin Sif-E; is pp.; one pocket map; paper. Price, 25 c .
This bulletin covers about 1,100 square miles in Scott, Sebastian, Crawford, Franklin and Iogan counties in the Arkansas Valley. It excludes Johnson County just to the north, a small coal area in Pope County a short distance to the east, and the Ouachita lignite field in the south central area. The exposed rocks and coal beds are wholly of Pennsylvania age and in the Pottsville and Allegheny formations, judging by the classification given in Bulletin S74-B. They total about $10,000 \mathrm{ft}$. in thickness.
Written mention of this coal showing appeared in 1818, but up until 1870 the coal merely was stripped and used for blacksmithing. Then the old Spadra mine was opened. The beds from oldest to youngest are the Lower Hartshorne, Charleston and Paris, which have produced 88.4, 3.9 and 7.7 per cent of coal respectively. A thin bed is found below the Lower Hartshorne.

Analyses are given for Franklin, Johnson, Pope and Sebastian counties, some of which do not figure in the body of the report. Ash in the Lower Hartshorne varies from 2.4 to 11.7 per cent, and in the Paris, from 8.1 to 10.4 per cent. Sulphur in the former ranges from 0.6 to 3.9 per cent and in the latter from 2.0 to 3.1 per cent. All the coal is low-volatile bituminous, with volatile matter percentages from 10.3 to 17.9, and with the lowest values in Johnson and Pope counties to the east.

The Importance of Adequate Voltage for Distribution Systems in Coal JIines, by E. J. Gleim. U. S. Bureau of Mines. R. I. S347; 12 pp.; mimeograph.

As shunt motors are used in conveyor drives, a rise or fall in voltage will cause corresponding speed changes and thus seriously affect conveyor efficiency, according to the author. Relays, contactors and other devices function improperly when voltage is variable and inadequate. Push-button-controlled starters employ magnetic contactors which close at a certain poten-
made available in this country since May, 1920, and the transmission of such indications should not be dillicult, though it might be expensive.

10. Pausm Hhall

Abstract

Requests for U. S. Burcau of Mines publications should be sent to Superintendent of Ilocuments, Government lrintin! ODicc, Washington, D. C., accompanica by cash or money order; companica stamps and personal checks not acstamps and personal checks not nc- ecptcd. Where no price is appended in the notice of a publication of the U. S. fhe notice of a pholication of the U. S. hureau of Wincs, application should we othcr books and pamphlets revicused in ohis department should be addressed to this department showla be adiressed to the individud publishers, as shown, tohore name and address in cach casc are in the revicie notice.

tial. With low voltage the accelerating contactors will not function, and the starting resistor, remaining in the circuit longer than intended, may burn out. If the voltage of a machine is below the designed figure, the amperage must be increased with a still greater increase in the heating of the motors and a decreased efficiency. A certain motor delivering less than full load because of decreased voltage was subjected, because of the latter, to a heating effect twice that which it would have experienced had the voltage been normal.
Electric locomotive and machine runners, annoyed by low voltage and desiring to accelerate their machines quickly, will throw the handles of their controliers too rapidly to the running position, and then, if fuses and circuit breakers fail to protect, brushes, armatures and field coils will leat, making repair costs high.
When a motor, because of low voltage, does not develop the torque needed to start the load, the motorman will leave the controller too long in the "on" position, causing heating, roasting insulation, developing short circuits and grounds, and burning holes in housings of controllers, rheostats and other electrical parts. In a gassy atmosphere, gas ignition probably would result. Where the circuit is grounded, persons in contact with the metal parts would be subject to shock. Manufacturers and the Bureau have asserted that voltage often is so inadequate as to render the use of permissible equipment hazardous. The report shows the findings of studies made in eight mines and describes remedies for low voltage.

Design of Welded Piping. Linde Air Products Co., New York. 197 pp., $6 x 9$ in.; paper.
"Welded joints properly made are satisfactory for any pressure and service for which the pipe itself is suitable," declares this handy booklet on welded-pipe design. Welding requires: (1) sufficient controlled heat, (2) elimination of oxide, (3) a metal-to-metal union to be established by metal deposited in molten form.
In fusion welding the pipe metal is melted with metal of a rod of suitable composition. Any oxide that may be on the pipe metal fuses at a lower tempera-
ture than steel and thus melts off and rises to the top of the welding puddle, so that it can do harm. In fusion welding of aluminum or brass, the oxides will not melt till above the melting point of those metals, so a flux is needed to unite with the oxide, thus enabling the compound formed to melt.
Bronze welding is used principally for cast-iron, copper and brass pipe. Only the welding rod and the oxides are melted; not the pipe itself. The molten bronze "wets" the heated surface of the metal and makes a strong joint.
How to design welds for steel and wrought-iron piping; how to weld castiron, galvanized, iron, stainless-steel and non-ferrous piping; and how to make piping layouts constitute, with drawings and specifications and piping tables, the subjects covered by this handy compilation derived from intimate experience.

The Pneumonokonioses (Silicosis) Literature and Laves, Book III, by G. G. Davis, E. M. Salmonsen and J. S.. Earlywine. Chicago Mfedical Press, Chicago. 1033 pp., 6x91 in.; cloth. Price $\$ 8.50$.
International abstracts, extracts and reviews of publications regarding the preumonokonioses and their associated diseases and subjects are covered in this book at some length-701 in all. The laws of the several States and of Canada, Alberta, British Columbia, Manitoba, New Brunswick, Nova Scotia, Ontario, Prince Edward Island, Quebec, Saskatchewan, Eng. land and Germany follow. It covers many diseases other than silicosis, as tar melanosis, corneal scar, carcinoma, and diseases of silica dust in various parts of the human body.

\rightarrow

Grindability of Alabama Coals, by E. S. Hertzog and J. R. Cudworth, U. S. Bureau of Mines. R. I. 3382, 8 pp.; mimeograph.
Most difficult of all to grind of the samples tested in the Southern Experiment Station, the results of which are recorded in this report, was a $11 / 2 x 0-\mathrm{in}$. washed coal from the Black Creek bed in Marion County, which contained 37.6 per cent of volatile matter and 3.4 per cent of ash ; it had a grindability index of 31.3. Easiest to grind was a $31 / 2 \times 0-\mathrm{in}$. washed Mary Lee coal with 26.2 per cent of volatile matter and 14.9 per cent of ash and a grindability index of 67.4 . The first coal had to be revolved 1,598 times to be brought to the same fineness as the second coal after the latter had been revolved onls 741.4 times. After grinding, 80 per cent of both would pass a 200 -mesh screen.

$\rightarrow-$

Control of Dust From Blasting by a Spray of Water Mist, by C. E. Brown and H. II. Schrenk, U. S. Bureau of Mines. R. I. $3388,1.3 \mathrm{pp}$.; paper; mimeograph.

Water-mist sprays reduce dust suspensions after blasting by 90 per cent and those during mucking are decreased materially. They also remove some of the explosive fumes. smoke, odors and colors. Muck when sprinkled emits odor hut not when a water-mist spray has been used.

NOW, for the first time. Lehigh makes cwecilable a tough, husky safety boot designed for every wet-floor job, with the fomous LEHICH STEEL TOE BON BUILT IN! Thick, gum-cord soles are double-vulcomized to uppers for super-strength. Entire boots are mode of special-compound rubber to give moximum service under any and all wet-floor conditions. The amorplate steel twe box is the same used in our leather safety footwen, and constraction throughout is far superior to anything we heve ever offered. We sincerely believe that these are the finest satety boots on the market today. We'll be lixpuy to submit smmples on represt.

FINE CONSTAUCTION FEAT
$1-$ Rubber toe cap
$2-A$
2-Anmorplote cap
3-Heary drill steel toe bu 1-Gearime lacth wert toe bor 5- Filapge bollst ster fisole in ploce bolds steel sole 300 leother herween :opper stocit

WRITE TOIAS bet she mew Lentish folder "Sioy Foot Eryazies"

Pormativ zrom-Whito Fic Sibost puch isoc, witito mory.

 coanifortaisting. Sito toitrvelifity,

OPERATING IDEAS

From

Production, Electrical and Mechanical Men

Safe Handling of Pipe Aided by Links

To facilitate carrying heary pipe from 3 in. in diameter up and to reduce the possibility of injury in handling it, Anthont Shacikoski, superintendent, Cochran Coal Co., Salina, Pa., has had the safety links shown in the accompanying sketch constructed. These links are

Showing use of links and bars in carrying a length of heary pipe

How the links and bars are used with a 78 -in. hemp rope in screwing on a length of pipe
made of $\frac{1}{2}$-in. or larger round iron, depending upon the size of the material to be handled, and are comstructed in one plece with a half twist at the top through which a carrying bar is passed. Special bars with offects are used, these offsets permitting changes in position to pass timbers and also preventing the links from sliding around on the bar while the pipe is being transported.

Four men, saIs Mr. Shacikoski, easily can carry 2 length of pipe with these links and bars without danger of the pipe rolling out and pinching someone. Again, the pipe is not very high off the floor and if it should be dropped it does
not have far to fall. When pipe smaller than 3 in. is being handled. several lengths can be carried at a time in the links. The links also may be used to carry other heary material, such as timbers, etc., with safety.

But aside from the carrying aspect. one of the biggest adrantages of the links, Mr. Shacikoski points out, is in laying the pipe. This arises from the fact that four men easily can hold the pipe in position while two others start it in the collar and screw it up, using a s-in. hemp rope to start the pipe. The
hemp rope is wound around the pipe about iour times. Then it is tightened sufficiently to make it grip the pipe and is pulled from one end, thus rapidly screwing the pipe into the collar. When the rope is palled as far as it will go, it is slacked off and pulled back to position for another screwing operation. When the pipe is screwed down tight, the chain tongs are applied to finish the job. The same system, in reverse, also may be used in reclaiming pipe, and in either laying or reclaiming long lines of pipe is said to double the speed.

Underground Ambulance at Knox Mine Fitted With Springs and Rubber Tires

SAFETY WORK at the mines of the Knox Consolidated Coal Corporation. Bicknell, Ind., has been accompanied br stress on prompt and competent firstaid treatment for injured employees. Consequently, first-aid stations have been constructed at convenient points in the mines where a supply of bandages, splints. antiseptics, compresses. blankets and stretchers are housed. Walls. cabinet and table are painted white and the stations are kept clean and well lighted. Most of the Knox Consolidated mine employees have been given first-aid training with assistance from the τ. S. Bureau of Mines, and certificates of competency have been awarded those completing the prescribed course of instruction.
While these steps were distinct adrances over the unsystematic practices of the past. there still remained the problem of transporting men who might be seriouslr injured out of the mine. Heretofore, this could be accomplished only by placing the injured man in a mine car and. a.5 carefully as possible, to avoid jolting and jostling, hauling him to the shaft bottom. This crude means of conveyance was $2 t$ best unsatisfactory and often caused the injured much pain and discomiort. if not increasing the seriousness of the injury. No. 1 mine of the Knox Consolidated Coal Corporation is 24 years old and the active workings are about $2 \pm$ milm from the shaft. Ninety per cent of the em-
plorees are concentrated at this point. and consequentiv it was decided to build an ambulance car and station it near this section so that it would be immediately arailable when required. This car is shown in the accompanying illustrations. and details as to its construction and use were supplied be Peb G. Conrad, superintendent. Nos. 1 add 2 mines, and Harley Tr. Fielder, shop ioreman, No. .2.
The ambulance was constructed in part of nsed automobile chas-is parts, such ${ }^{35}$ wheels. axles. tires, springs. ecc. The irame (Fig. 1) was made of $2 x+5$ with mortised joints and a lumber floring. Sides were constructed of shiplap joined by corrugated fasteners and miered with light sheet iron. Parts ni the leaves wete taken out of the old auto springs on which the body is carried for maximum flexibility. Rabber pads are placed on the sills neer the axles to cushion the shock in case the body should come down on the arle. The drawbar bracket was made of $\frac{3}{7}$-in. plaze and the drawbars themselves, one on each end. are stiff hitching with snugly fitting pins to eliminate jerking. In operating position, drawbars extend 1 ft . beyond the ends of the car. Hooks are provided to hold them under the end when they are not in uze. Stretcher legs rest on short lengths of rubber hose held in rectangular boses by pins. These boxes also are provided with pins on the bottom which fit into boles

Fig. I-Details of some of the major parts of the Knox Consolidated ambulance.
in the car floor and thus are casily removed.
Old Ford wheels with standard 30×3 in. easings are used on the ambulance. The axles were cut off and spindles were welded on to make the gage nominally 42 in . Disks of sheet iron $\frac{1}{4} \mathrm{in}$. thick and 33 in . in diameter were bolted to the whecls with eight bolts to form a llange and thus permit the car to operate on the mine track. Four of the bolts hold the rim and the other four the flange. The valve-stem hole was cut to the outside of the rim to make it easy to install and remove the tire. Half-inch-diameter pipe in $\frac{7}{8}$-in. lengths was slipped over each bolt to properly space the flange from the wheel. The disks were turned to : bevel of 1 in . to provide a smooth curved flange and thus prevent derailments. Fenders over the wheels were cut from steel barrels and form seats for as many as four men to ride with the injured person. Compartments between the fenders accommodate blankets and other supplies necessary in case of serious injury.

Fia. 2-Side view of the ambulance.

The ambulance may be pulled by a locomotive or a mule or pushed by a man, as its light weight and ba!1-bearing wheels make it easy to move. The car is stationed in a room near the active workings. This room, cut in a pillar, is 11 ft . wide and 12 ft . deep. Ribs are sheared smooth and whitewashed and a concrete floor was built so that one man can push the ambulance out of the roon and onto the track ready to be taken to the injured person.
"The labor and material cost of the ambulance," comments Mr. Conrad, "was less than $\$ 00$, and we consider this cost indeed small in view of the good which it is possible to acconiplish with it. We are, of course, hopeful that the ambulance seldom will be required. Fortunately, we had only one ambulance injury in 1937 before we built our special equipment, but that was enough to conrince us of the desirability of a more practical and humane conveyance. Passing the well-lighted white-painted rooms which house the ambulance and first-aid equiprent, the men are silently reminded of

Here's one place you'll notice the difference

AMORE RAPID, steady flow of coal from the face to the tipple is one of the advantages you get by using Exide-

Exide
 IRONCLAD BATTERIES

With Exide MIPOR Separators "MIPOR." Reg. U. S. Pat. Of. Ironclad Batteries for underground haulage. The service is speeded up-not just for a few hours, or half a day-but all day long. Heavy loads and steep grades make little difference. The sustained voltage and high power ability of these batteries mean unusual performance.

This extra performance costs nothing, for Exide-Ironclads are as economical as they are rugged and powerful. They are long-life batteries, trouble-free, and easy to maintain. Over their long span of life, they consistently improve haulage service and cut costs.

Exide-Ironclads offer special advantages in mechanized operations. That is one of the reasons why they are the most widely used batteries in underground haulage service today. Write for free booklet, "The Storage Battery Locomotive for Underground Haulage."

THE ELECTRIC STORAGE BATTERY CO., Philadelphia The World's Largest Manufacturers of Storage Batteries for Every Purpose Exide Batteries of Canada, Limited, Toronto
insulators of the pothead. A. F. Grifith electrical engineer of the coal company, supplied the photorraph and data relating to this installation.

This cable, which is a size No. $1 / 0$ insulated for $\overline{5}, 000$ volts, combucts 4,000 -volt three-phase 60 -eyele power through a 248 it. barehole to a $300-\mathrm{kw}$. Ignitron portable substation. The pothead rests directly on the end of a 4 -in. pipe which is the casing of the borehole and extends 12 ft . above the gromad to position the teminals and exposed wiring above reach. The hole was drilled if in. in diameter and the 4 -in. pipe grouted therein. Both the eable and the pothead were supplied by the Anaconda Wire \& Cable Co., of New York.

Hume-Sinclair Electrifies Strip-Pit Tractor

Following out its principle of electrifying, as iar as possible, all pit equipment, the Hume-Sinclair Coal Mining Co., Hume. Mo.. has instanled an electric motor and cable reel on its pit tractor. This tractor, a Model K Allis-Chamers unit equipped with a Lallamte-Choate bulldozer. was motified by removing the original engine and clatch and installing in its place a $30-\mathrm{hp}$. General Flectric motor operated by a controller similar to a street-car controller. A cahbe reel also was added for bringing current to the motor.
Under this arrangement, power is consumed only when the machine is in operation. Gears never are changed in operating the thactor. as it is kept in the origimal second gear. With changes in speed either forward or backward being made by the controller on the motor.

Two views of the electrified Hume-Sinclair tractor.

Wood Lathe Improved By Drilling Center

Turning wood rollers and other round shapes in a wook lathe in the mine shop is attended by the difficulty of oiling the tail center to prevent heating. In the Mount Hope (IV. Va.) shop of the New River Co. this was solved by drilling oil holes in the tail center to provide semiautomatic oiling.

Use of a drilled tail center and an oil can prevents heating.

The illustration shows the turning of a rope-haulage roller in a lathe. The oil can gradually drips lubricant into a vertical hole in which the spont is inserted. Another hole drilled lengthwise and communicating with the vertical hole carries the oil to the wood or to a centered tail plate if one is used. If any indication of too little oil or of heating appears, then the oil-c:an bottom is pressed occasionally to force an extra flow.

$\rightarrow-$

Double-Acting Door Permits Reversing Air Current

The problem of reversing air circulation to keep the shaft free of ice was one which contronted John Simpson, Pana, Ill., now inspector for the Bituminous Casmalty Corporation, when he was manager of one of the mines of the Puma Coal Co. several years ago. "The shafts here," points out Mr. Simpson, "are ios ft. deep. The mines are rery ohl and, as they have no escape shafts. one mining company is dependent entirely on the shaft of the other company for an escapeway. The mines are non-gaseous and are worked with open lights.
"To ventilate the mine, therefore, each shaft has an air compartment to one side of the hoisting compartment $3 \frac{1}{2} \mathrm{ft}$. wide and 9 ft . loug. The aircourse at the mine in question then being three miles long, a booster fan had been installed in said aircourse about a mile from the bottom. The air compartment of the

Main haulage

With the booster in the crosscut, three doors permit reversing the direction of the air current. Solid lines show doors in one positioni dotted lines the other.
shaft then was being used as the upeast with the big fan exhausting.
"Under this condition, the hoisting compartment became the downcast and in the winter ice in this compartment had to be cut three to four nights a week in severe weather. This was rather expensive, as the ice had to be cut. loaded and then hauled inside and moloaded. Also, it was a rather cold job. especially in the shaft. As the booster fan was necessary to ventilate the mine properly, it became my job to figure ont a way to climinate this ice cutting by making the air current from the booster reversible in conjunction with operating the large fan either blowing or exhansting, thereby permitting me to reverse the fan in cold weather to make the air compartment the downeast and preheat the air with steam from the fanengine exhaust. This steam went into the aircourse and did not bother the bottom workmen. At the same time the main compartment became the upeast and thus gave me warm air currents in both upcast and downeast to eliminate entirely ice cutting.
"To accomplish this result. I pulled the booster out of the aircourse and set it in a crosscut, as shown in the accompanying sketch, with the discharge flush with the intersection of the crosscut and aircourse ribs and the fan itself properly centered in the crosscut. The next step was to swing Door A ($6 \times 6 \mathrm{it}$.) on hinges attached to an Sx10 post centered so that the door would swing perfectly to either side of the fan discharge. The door swings inside a double frame and is tight all around either way it is set. Text, the part of the aircourse between the door post and the rib was sealed with a triangular erib (B) of timber filled solid with dirt, with a wall one brick thick on one side, as indicated in the sketch, to make an airtight seal. The next step was to put up the two side doors, C and D, each 3×6 ft. These must open toward the fan

STANDAIDD DIL COMPANY'S

CALIMET COMPOLN

gives $1 / 3$ longer wire rope life

on stripping shovel

- Hoist cables on an electric shovel in a central state strip mine cost approximately $\$ 650$ per set. When a Standard Lubrication Engineer made a lubrication survey of the shovel, he recommended Calumet Compound for all cable lubrication and for all open gears and gear cases of Caterpillar walkers. On the hoist cable alone, Calumer Compound has saved over $\$ 200$ per set by increasing cable life one-third.

Main swing bearing failures and excessive swing gear wear were also eliminated by the Standard Engineer's recommendations. This mine, one of the largest in the Middle West, depends entirely upon Standard Oil products for lubrication of this shovel.

Make sure that your shovel lubricating costs are in line or that you are not paying high maintenance bills because of incorrect lubrication. Every mine operator in the Standard Oil territory can get this free lubrication survey service. Call the Lubrication Engineer in the nearest Standard Oil (Indiana) office or write 910 S. Michigan Ave., Chicago, Ill.

Cobr. 1938, Standard Oll Co.
discharge and are hinged so that they open automatically when the fan stopsa simple matter.
"When the main haulage is on the intake, Door D must be blocked open. If the fan stops for any reason, such as the power going off, Door C opens and the air goes around the fan through the two fan intakes and Doors C and D. The fan motor is equipped with an automatic starter, and when the fan goes into operation Door C is shut immediately by the air pressure, as it is set to open when the pressure is released and to close when the fan starts and the pressure comes on again. When the main haulage becomes the return and the aircourse the intake, Door A is swung over to the opposite side of the frame. Door C is blocked open, and Door D is left free to open and close in accordance with whether the fan is running or stopped. The fan itself rums in the same direction at all times, reversal of the air current being accomplished by means of the three doors.
"Door A is hung with the door lugs perpendicularly above each other so that the door will be as close to the post as possible and yet work frecly. The space between the door and the post is closed by mailing a leavy piece of canvas across it. Doors C and D are hung to open automatically by putting the top lug in each case 13 in. farther from the edge of the door post than the bottom, thus allowing the top hinge strap to protrude from the door edge 1^{3} in. more than the bottom strap so that the door will stand level when closed by the air pressure but always will open when the pressure is released.
"The fan is a double-inlet Sirocco unit which has given twelve years of satisfactory service. It is belted to a motor and motor and fan are set level and solid to prevent vibration. The door system has been entirely satisfactory in eliminating ice trouble in the slaft."

$\rightarrow-$

Track-Switch Signal Device Has Improved Design

Jamps or other signals to indicate trackswitch aligmment are so advantageous from the standpoints of safety, time saring and, in some cases, loconotive power demand that their lack in many mines briugs up the question: Why? Outstanding among the reasons is the difficulty in arranging a contact device sufficiently rugred and safe for the duty yet not orer-costly considering the apparent simplicity of the problem. In use at Stanaford (W.Va.) mine of the Koppers Coal Co. is a mine-made contacting arrangement which appears to get away from several objections to the numerous other mine-made types which have been used over the country.

Referring to the drawing and to the photograph, an offset extension from the bridle bar slides in a slot cut through a post which is sct against the rib. The extension carries an insulated contact button which is comnected to the rail by a ground wire. For the respective track-

Red light burning-the switch is lined for the lead-off

Costs little but considered indispensable
switch positions the insulated button contacts controller fingers mounted on oppo site sides of the post.

The bridle-bar extension thus carries no current and consequently has no tendency to produce shock by reason of a contact between the switch throw and ground. Furthermore, the contacts are well away from the track and are not underfoot. The offset at the bridle end of the extension puts the latter down below
"tripping" level and the offset at the other end positions the contacts up away from the dirt and moisture of the mine bottom.

Lamps are mounted on comluit fittings and the wiring is protected where likely to be hit. The green light burns when the switch is lined for the main and the red light when thrown for the lead-off. This track switch is not the first one that William Jayne, general mine foreman, has designed. Even before going to Stanaforl some six years ago he equipped switches at the Nellis (WV.Va.) mine with mine-made contacts. The Stanaford type eliminates certain objections he found with his earlier designs.

Fan Blinker Signal Made With Electro-Magnet

"The requirement of the Pennsylvania Mining Law for a fan signal scems to be satisfied by a 'blinker light,'" states I. C. Wilhelm, electrical engineer, Imperial Coal Corporation, Johnstown, Pa., in reporting on the use of an electro-magnet to get the blinking effect. "Contacts mechanically operated eventually mean trouble and moving mechanical parts are to be eliminated wherever possible. Our scheme involves neither.
"As the accompanying sketch shows, a split ring-half iron or steel, half any non-ferrous metal-is clamped at any convenient point on the fan shaft. Mounterl stationary with the pole face close to the ring is an electro-magnet-we used the pole piece and coil from a contactor. This coil is connected to an a.c. source in series with a lamp of suitable wattage. The clanging impedance of the coil caused by the magnetic half of the rotating ring passing close to the pole results in a brightening and dimming of the lamp, which may be located anywhere. The sizes of the coil and the lamp for any particular voltage and frequency are easily determined by experiment and the junk box contains practically all the necessary materials.
"This, of course, is not suitable for high shaft speeds-say above 900 r.p.m.-but this limit is dependent somewhat upon the size of the lamp and the rate of flament cooling," concludes Mr. Wilhelm.

WORD FROM THE

To Transport Coal Via Barge From Buckheart Mine

Plans for barge shipments have been completed and construction started in extending tracks from the United Electric Coal Co.'s Buckheart operation, at Canton, Ill., to the Illinois River at a point ahout three miles north of Liverpool, where a modern dock will be constructed for loading coal into barges. The rail line, which will be constructed by the company's enginecring organization, will be about $7 \frac{1}{2}$ miles long, of standard gage and operated by steam locomotives and regular bottom-dump coal cars.

The project was undertaken as the result of a mutual agreement between United Electric and the Marquette Cement Mig. Co., which will use coal from the Buckleart operation for its cement plant at La Salle, Ill. The latter company has for many years operated its own barges on the Illinois and Mississippi rivers and, because of the advantageous location of Buckheart and the economy of transposting its own fuel, developed with United Electric the schepne to deliver the coal to the river.
The river dock near Liverpool is being designed and installed by the Koppers Co., the mechanism consisting of a large hopper with automatic feeder delivering to a $36-\mathrm{in}$. belt conveyor having a capacity of 400 tons per hour. : The conveyor will extend about 300 ft . to the edge of the dock at the river channel, where adjustable mechanism, operated by pushbutton control, will lower or raise the belt for feeding to barges. Automatic barge-moving machinery will be installed for spotting barges alongside the dock. These facilities for the coal company will cost about $\$ 300,000$.
The cement company will construct an unloading dock contiguous to its plant and also will provide additional barges especially for transporting this coal. This will involve an expenditure of about $\$ 350$,000 . The entire project is expected to be completed early in the coming autumn.

Sentinels of Safety Awards

"D" mine of the Union Pacific Coal Co., Superior, Wyo., was awarded the "Sentinels of Safety" trophy, donated by the Eixplosives Engineer magazine as the leader among bituminous-coal mines in safe operation during 1937. The mine worked 215 days, or 301,051 man-hours, without an accident causing loss of time to employees. The winner among anthracite operations was Jeddo No. 7 mine of the Jeddo-Highland Coal Co., at Harleigh, Pa., which was in operation 241 days, or 210,599 man-hours, with 15 lost-time accidents causing 300 days of disability to the men. The accident severity rate was $1.42 \overline{5}$ days lost per thousand man-hours of exposure to hazards.
Certificates of honorable mention were awarded to the following mines:

Jituminous-Bradford mine, Alabama By-Products Corporation, Dixiana, Ala; New Block mine, New Block Coal Co., Centerville, Iowa; Rockhill No. 8 mine, Rockliill Coal \& Iron Co., Robertsdale, Pa.; Howard colliery, Norfolk \& Western Railway Co. (fuel department), Chattaroy. W. Va.

Anthracite-Salem Hill colliery, Haddock Mining Co., Pottsville, Pa.; Olyphant colliery, Hudson Coal Co., Dickson, Pa.; Fhervale mine, Jeddo-Highland Coal Co., Fbervale, Pa.; Midvalley colliery, Hazle Brook Coal Co., Wilburton, Pa.

Keeping Step With Coal Demand

Bituminous Production		
Week Ended	$\begin{gathered} 1938 \\ \text { (1.000 Tons) } \end{gathered}$	$\begin{gathered} 1937 * \\ (1,000 \text { Tons }) \end{gathered}$
June 4	4,853	6,596
June 11	5,125	7.058
Juлe 18.	5.205	7,115
June $2 \overline{5}$.	5,160	7. 208
July 2	5.360	7,300
July 9	4.730	6,494
Total to July 9	153.084	224.559
Month of June.	22,850	31,776
Anfhracite Production		
June 4.	1,128	976
June 11.	870	1,086
June 18.	706	973
June 25.	925	909
July 2	951	999
July 9		679
Total to July 9.	24.424	28.935
Month of June.	4.338	4,635

* Outputs of these two columns are for the weeks corresponding to those in 1938, although these weeks do not necessarily end on the same dates.

Bituminous Coal Sfocks

New Coal Sampling Methods Considered by A.S.T.M.

A new method of sampling coals classed according to ash content, to. be applicable to ordinary commereial sampling and designed to have an accuracy such that in D5 cases out of 100 the asli content of the sainple will be within ± 10 per cent of the true ash content of the samples, was submitted by the Committee on Coal and Coke at the 41 st ammal meeting of the American Society for Testing Materials at Atlantic City, N. J., June 27 -July 1. A modification of the method is given also for conditions requiring greater accuracy. In the proposed method, coals are divisted for sampling into four groups, depending on ash content, and each group is subdivided according to size of coal. The minimum size of increments as given is based on the quantity of coal necessary to represent the true size consist of the coal sampled.

A tentative revision was approved for publication in the standard methods of laboratory sampling and analysis providing for a change in the method for determining fusibility of ash to give essential furnace requirements and mention of specific furnaces which the committee has approved. A special section of the committee is being formed to investigate plastic properties of coals as affecting their combustion characteristics. In connection with testing expanding properties of coal during carbonization in coke ovens, arrangements are being made to distribute samples of coal of various ranks to different laboratories for making expansion tests by different methods. Such preliminary cooperative testing is believed necessary in the selection or development of a standard test procedure.

The Sectional Committee on Classification of Coals which functions under A.S.T.MI. sponsorship in accordance with the procedure of the American Standards Association las developed proposed definitions for varictics of bituminous and sub-bituminous coals which were accepted for publication as tentative.

Anthracite Output Declines

Anthracite production mechanically loaded in 1937, according to complete returns from the U.S. Bureau of Mines, was as follows, in net tons: Eastern Middle Field, 701,498; Western Middle, 1,573,089; Southern 61,068; Northern, 8,318,068; Sullivan County, 30,014, or a total of $10,683,837$ tons, compared with $10,827,946$ in 1936.

Tonnage hand loaded was: Eastern Middle, 3,857,560; Western Middle, 6,468,512; Southern, 3,930,648; Northern, 17,289,212; Sullivan County, 56,582 , or a total of $31,882,514$ tons, as against 33,898,560 tons the year before. Output by strip pits was: Fastern Middle, $1,438,372$ tons; Western Middle, 2,381,000; Southern, $1,243,667$; Northern, 632,979 , or a
total of 5,696,018 tons, compared with $6,203,267$ tons in the preceding year.

Tomage from culm banks last year totaled $2,722,599$, as against $3,193,972$ in 1936. Coal reclaimed from river dredging last year totaled 760,474 tons, compared with 546,684 in the preceding year.

Total production from all sources, $51,-$ $74 \overline{5}, 442$ tons, with a value of $\$ 197,598,849$, compared with $54,579,535$ tons in 1936, valued at $\$ 227,003,538$. The average value of all braker shipments last year was $\$ 4.03$ a ton; washery shipments, $\$ 2.42$; dredge shipments, $\$ 0.97$; all shipments, $\$ 3.95$.

Briquets and Packaged Fuel

l'roduction of fuel loriquets in 1937, aceording to the U. S. Bureau of Mines, amounted to 995,930 tons, valued at $\$ 6$,393.223, as against 1,124.973 tons, valued at $\$ 7,143,133$ in the preceding year.
there was an increase both in tomage and value, however, in the production of packaged fuel last year, with output totaling 146.037 tons, valued at $\$ 1,287,320$, as against 66,427 tons, valued at $\$ 505,331$ in 1930.

C. F. \& I. Buys Moffat Output

The entire output of the Moffat Coal Co., operating at Oak Creek, Colo., totaling about 200,000 tons ammally, has been contracted for by the Colorado Fuel \& Iron Corporation.

Gas Regulation Under Way

Orders affecting the natural-gas industry were issued by the Federal Power Commission on July 7 as it began alministration of the Natural Gas Act, approved on June 21. Under this law, which authorizes regulation of transportation and sale of natural gas in interstate commerce, the Power Commission's orders initiate an investigation of natural-gas companies and direct that reports be filed, promulgate and preseribe rules of practice, and instruct the compranies to file schedules of rates and charges and contracts and agreements for sale and transportation of gas, as well as to indicate their sources of supply.

Virginia Bans Dobie Shooting

Coal-mine operators of Virginia have been directed by the State Labor Department to enforce rules against dobie shooting rigidly and to resort to rock-dusting when necessary. The request was based on recommendations by the special commission that investigated the Keen Mountain mine explosion on April 22, in which 45 miners were killed (Coal Age, June p. 83). The commission found that dobie shooting, or surface dynamiting, caused the disaster and adrised that the practice, banned by general law, be prohibited specifically by the General Assembly: On the advice of Governor James H. Price, State Labor Commissioner Thomas B. Morton dispatched individual letters to operators in which he requested their voluntary compliance.

Battle to Retrieve Lost Markets Started By National Coal Association

ACAMPAIGN to recover lost coal markets was launched on July 5 by the National Coal Association with the issuance to all operators of a bulletin setting forth some facts for all who are concerned about the bituminous coal industry. In amouncing the step, Feath S. Clark, president of the association, stated that "the time has come to translate talk into action; it is now or never." Among the moves fulvocated by him toward equalizing the competitive battle with other fuels are an excise tax high enough to keep imported fuel oil out of the American market; putting a stop to the "dumping" of natural gas on the industrial market at give-away prices; regulation of rates charged by gas pipe lines; and applying the brakes to Federal subsidy of hydro-electric power.

The only way to get action along these lines, Mr. Clark points out, however, is to get busy right away: first, to acquaint every person in the industry-executives, salesmen, oflice employees, mine workers, storekecpers, etc.-and every person within reach who is dependent upon coal for his job, or his business, or part of his business-that meaning railroad employees among others-with the facts and remedies; second, to enlist their concerted action toward obtaining pledges from their representatives in Congress (and candidates for Congress) to support the measures to accomplish these results.

Losses by the coal industry to the above competitors, it is pointed out in the bulletin, totaled $52,000,000$ tons more last Year than in 1930. At the same time, it is emphasized. manufacturing and other plants using these competitive sources of
power are "hurting their own business because they hare taken away from the coal miners the money to buy their proclucts." In the same connection, attention is called to the fact that about 200,000 railroad employees are directly dependent upon the movement of coal:
The contribution of John D. Battle, executive secretary of the association, to the first skirmish in the campaign was a letter to the operators outlining suggestions for ealling meetings of company employees to enlist their cooperation in the novement. Inclosed also are copies of resolutions adopted by the association's board of directors on June 29 in respect to amending the natural gas act, increasing the excise tax on imported fuel oil, opposing promotion of hydro-electric power projects through govermment subsidy, urging regulation of oil pipeline rates, and protesting against the lending of Federal funds to promote the construction of a proposed natural-gas pipe line from Montana-Wroming gas fields to Duluth, Minn.
First of a series of poster's issued in connection with the campaign is a bar chart entitled "Coal Facts," showing graphically the shrinkage in coal production between 1925-29 and 1938. Others following in a steady stream, each 11×17 in., enlarge on the foregoing themes, with facts, figures and diagrams. A small but interesting mailing piece states that "when labor works, it earns. When labor earns, it spends. When labor spends, it can buy your product. When labor buys your product, jour business increases. The bituminous coal industry is by far the largest employer of labor among the

fuel industries. If you use fuel producel with little labor, you therely curtail the buying power of prospective customers."

The American Wholesale Coal Association is coopurating in the movement by mailing eopies of the posters and charts to its members, urging that they do their purt "in spreading this iuformation and have employees talk it in their contacts. Make known to those with whom you do business that it is only through the use of coal that you are able to purchase from them and, whenever possible, do business with industries using coal in the production or manufacture of their products."

Action by the United Mine Workers of Ohio that is expected to prove helpful is an amouncement through the State president. John Owens, that it is taking an active part in the effort to boost the s:lle oi coal. In a conference in Columbus with coal producers of the State, according to the United Mine Workers' Journal of July 1. "President Owens and other ofticials offered their good offices in the sates activity in order to promote more working time at the mines."

Personal Notes

James I. Ascough has been appointed forman at the No. 2 mine of the Amherst Coal Co., Amherstdale, IV. Va.

James m. Bagley has been elected presillent of the Bucoda Coal Mining Co., Seattle, Wash., vice James Bagley: deceased.

Whiter Binta, general sales manager of the Lehigh Narigation Coal Co., Philadelphia, Pa., was elected vice-president of the organization on July \bar{i}. He will retain his old post in addition to his new responsibilities.
Cuardes t: Bockus, president. Clinehfield Coal Corporation; Howard N. Earexsos, president, Clover Splint Coal

Co.; and Grant Stauffer, president, Hume-Sinclair Coal Mining Co., were renumed to membership on the Natural Resources Production Committee of the Chamber of Commerce of the United States, according to an annonncement during the last week in June.

Jons Busby, formerly section foreman at the Dolomite mine of the Woodward Iron Co., Woodward, Ala., has been promoted to night foreman at that operation.
G. W. Crandler, section foreman at the Dolomite mine of the Woodward Iron Co., Woodward, Ala., has been transferred to the Mulga mine, Mulga, Ala., as mine foreman.
M. B. Cocleter has been made foreman at the McKecirey mine of the Mound City Coal Co., Sarshall County, West Virginia.

Harry S . Coningtox resigned the presideney of the North American Coal Corporation. Cleveland, Ohio, effective June o5, withdrawing from all comnection with the organization.
M. M. Drake, widely known in research activities. hars been elected executive vicepresident of the Illinois Reciprocal Trade Association, succeeding James W. Bristow, who resigned to become managing director of the Illinois Coal Strippers' Association, which has been revived aiter having been dormant more than six years. Directurs of the Reciprocal Trate Association have approved a broad program of promotion and publicity intendec' to expand the industrial and economic resources of the State.

Frank W. Eabiest, Jr., was reelected president of Anthracite Industries, Ine., at its annual meeting, held July 1 in New York. These new members were named to the board of directors: Jons C. Hadock, president, Hadlock. Mining Co., and H. M. Smytif, president. St. Clair Coal Co.

- .

Coal "Clinic" Advises on Basement Modernization

This $18 x=3$-ft. recreation room is an outgrowth of the Chicago Coal Merchants Association S.eno basement modernization contest. In space provtled by the bell di Zoller Coal Co. in the Bell Building, this display room has been fitted up with modern fixtures and decorations, thanks to the cooperation of concerns interested in the home-modernization campaigu. The Celotex Co. supplied the walling; Howell Co.. the furniture: Brunswiek-Lalke-Collender Co., combinatho billiard-pingmong table add buftet bar: and the heating plant conslsts of a new type Link-Belt coal stoker and shovel-box bin flled with Zelaler Super- X stoker coal. In connection with the display the association maintalus a permanent "cliule" to provide adrice and assistance in basenent modernization.

R. E. Salvati
P. O. Hamer has been mamed superintendent the Point Lick No. 4 mine of the Hatfield-Campliell Creek Coal Co., Rensford, W. Va.

Cecil Jexkins has been appointed superintendent at the No. 9 mine of the Jamisun Coal \& Coke Cu., Farmington, W. Va.

Joh F. Kthner, Jr., formerly vice-presillent. has succeeded the late J. F. Klaner as president of the Alston Coal Co., Kelly-Carter Coal Co. and Windsor Coal Co., with headquarters in Pittsburg, Kan., find operations in Kansas and Missouri.
R. C. Klingensmith has been made superintendent at the Eagle mine of the Getty Coal Co.. Hepzibut. WV. Va.
Thomas Moore has been named president of the Crescent Coal Co., Evansville, Ind., vice James H. Moore, who died March 11.
17. IV. Rice, formerly president and now Chitimain foi the board of the United States Fuel Co., Salt Lake City, Utah, has reassumed the gresidency, vice D. D. Muir, Jr., decensed?
Hfari C. Rose has been promoted to assistant production manager of the Pittsburgh Coal Co., with headquarters at Westland, Pa. He entered the employ of the company's production engineering department in March, 1928; was advanced to assistant superintendent of Montour No. 10 mine in July. 1934, and two years later beame superintendent of the Westland mine.

Ravmoxd E. Salvata, general manager of the Island Creek Coal Co., hus been appointed rice-president of the company and will combine the duties of both ofliees. He started with the company as a trackman, rising steadily to posts of increasing importance. He also is vice-president in charge of operations and general manager of the Pond Creck Pocahontas Co.
IV. F. Stinetre has been named foreman at the Hugheston mine of Kanawha Coals, Inc., Hugheston, IV. Va.

Frederick A. Sweet, Jr., has been

opening nEW ROADS to economy

Try "Blue Center"... and see what it means in the way of safe, saving service! Into this rope Roebling has put its utmost steel making and rope fabricating ability! JOHN A. ROEBLING'S SONS COMPANY, TRENTON, N.J.

BRANCHES IN PRINCIPAL CITIES

STRONGER-Wire of highest strength consistent with ductility and toughness

TOUGHER-Provides maximum resistance against wear, sudden shocks, vibration

SAFER-Unequalled for uniformity of quality

SAVING-Insures lowest general average operating cost

THE KIGIBSN DEVEEOPMENTIN ROEBTING NIREROPY

elected president of the Standard Coal Co., Salt Lake City, Utah, vice C. N. Swret. The new president is a son of the founder of the company, the late Frederick A. Sweet, Sr., who headed it for two decades.
C. J. Turxeat formerly mine foreman at the Dolonite mine of the Woodward Iron Co., Woodward, Ala., has been transferred to the Mulga mine, Mulga, Ala., as mine foreman.
D. A. Zuph, a member of the field staff of Anthracite Imlustries, Inc., has been appointed a member of the arrangements committee of the Prolucers' Council Club, of New York. The club is affiliated with the National Prolucers' Council in the promotion of better housing throughout the United States.

P. \& R. Loan Plea Approved; Union Offers Assistance

A petition by the lhimalel hia \& Reading Coal \& Iron Co. for permission to borrow additional working capital was approved on July 16 by Howarll B. Lewis, opecial master in reorganization procedings of the company under Sec. 713 of the Federal hankruptey laws. In a report on the petition Mr: Iewis declared that $\$ 2,500,000$ might safely be borrowed on condition that the company file quarterly reports detailing the expenditure of the borrowed funds.

Cooperation in efforts to reorganize the company was offered by United Mine Workers ollicials on July 7 if the company will agree to continue operation of five anthracite collieries which it sought to close by court permission (Coal Age, July, p. 9亡). The offer was contained in a communication sent by a union committee to Mr. Jewis. The union said it woul.? assist in seeking tax reductions and would cooperate under the terms of a contract with the company. The operations for which the company asked permission to close are the Bear Valley, Brookside. Frammond, Gilberton and West Shenamdonh.

Rate on Bunker Coal Cut

A reduction in the freight rate on bunker coal from the Birmingliam (Ala.) coal fields to Mobile from the old rate of $\$ 1.56$ to $\$ 1.25$ per ton, to meet barge competition, has been approved by the Alabama Public Service Commission, on petition of the Louisville \& Nashville and Southern railway companies.

\rightarrow -

Six Killed by Roof Fall

Six miners were killed and three others injured on Julr 1 when a large section of roof fell in the Praco mine of the AlaLama By-Products Corporation, Praco, Ala. Among the dead was J. I. Wingard, assistant superintendent of the operation. The cave-in is said to have occurred without the customary warning of creaking timbers and the victims were trapped without opportunity to seek safety. This was the first majol accident at the mine since it began operations many years ago.

Coal Commission Presses Hearings To Determine Output Costs

WASHINGTON, D. C., July $15-$ Pressing on toward price regulation of bituminous coal under the coal control act, the National Bituminous Coal Commission has been holding hearings here for nearly two weeks to determine the cost of producing coal in Minimum Price Areas 1, 2, 3, 4 and 5. Sessions. Thegan July 6 covering Area 1, comprising Pemsylvania, West Virginia, Maryland, Ohio, Miehigan and parts of Kentueky, Tennessec and Virginia. A week later came the start of the hearing on the remaining fout minimum price areas, comprising distriets 9 to 15 , or all the rest of the regions not covered in the Denver hearing of June 13-10.
Pennsylvania district board representatives, though accepting the Commission's weighted cost figures for coal producel in 1936, contended that production costs ior the first three months of 1938 hat lieen materially boosted by increased compensation experises, State mining legislation and greater unemployment payments. Higher solling cost, board expenses and taxes were cited as reasons
for slightly higher proposed adjusted weighted average cost figures in northern and southeastern West Virginia and adjoining parts of Virginia. The Ohio and West Virginia Panhandle board representatives conceded the fairness of the Commission's cost figures in indicating their acceptance of them. Even where there were disagreements between Commission and district board figures, however, the diflerences were notably slight.

With the opening of the third hearing. on Wednesday, noteworthy progress was made from the start, with representatives from the various districts appearing in quick succession and presenting their testimony succinctly. The representative for District 11 (Indiana) called attention to the fact that a second wage increase went into effect there on Nor. 1, 1937, amounting to 2.90 per cent. Taking cognizance of this increase, the Commission found a weighted average cost of $\$ 1.6518$ insteal of $\$ 1.0300$. Cost proposed by District Board 12 (Iowa) was \$2.8406; District Board 15. (Missouri. Kansas, part of Oklahoma, 'Texas) pro-

Cables for coal cutting machines take a tremendous amount of abuse. While the machines are in use the cable is constantly in motion being dragged over the rough bottom and subject to abrasion and cuts from the sharp edges of coal and rock. In addition the cable must withstand vibration, impact from the sharp edges of shovels and falling tools and the deteriorating effects of oil and mine water.

It is interesting to note that TIREX cables with their tough "selenium rubber armor" are in almost universal demand not only for cutters in coal mines but also for electric drills, loaders, locomotives, shovels and many other uses in mines and quarries.

The "selenium rubber armor" used to protect all TIREX cables is a 60% rubber sheath properly compounded and vulcanized
with selenium to obtain maximum toughness. The selenium rubber armor is a distinguishing feature of all TIREX cables and it makes them unexcelled for toughness and resistance to abrasion. After being vulcanized the outer and inner jackets become one homogeneous mass of rubber with the seine twine braid imbedded between them.

A second and more easily identified feature of TIREX cables is the name "SIMPLEXTIREX" molded directly into the selenium rubber jacket every few feet.

To obtain the lowest possible "cost of cables per unit of production," specify TIREX cables for all new equipment and buy TIREX cables for all cable replacements. Then you can be sure that your cable dollar is invested to give maximum returns.

A new and attractive catalog on Simplex-TIREX Cords and Cables is now available and will be sent immediately upon request. Have you asked for yours yet?

Simplex Wire E Cable Co., 79 Sidney Street, Cambridge, Mass.

Simplex-TIREX The only cable armored with Selenium Rubber

posed 82.0481 ; costs found and recommended for consideration in other districts are shown in the accompanying tables.
The Commission issued an order on July 1 declaring that substantially all bituminous coal moring in intristate commerce in Wroming directly affects interstate commerce in coal and is, therefore. subject to the provisions of Sec. 4 of the coal control act. Similar action had alreads been taken in regard to coal in Alabama. Oklahoma, Montana and Washington State. The orders are effective as oi Ang. 1 .
A test audit system was adopted 1 y the Commission on June 28 to determine the accuracy of production cost data submitted bry producers, the test to operate
on the principle of bank examinations. The Commission disclaimed any intention of questioning the good faith or accuracy of cost reports, simply pointing out that the system of regulation of minimum prices by Federal authority requires that all possible steps be taken to assure that base determinations upon which prices are predicated be as accurate as possible.

Commission auditors select random returns as typical, begiming with January last, calling at operators' offices umannomeed to check reports against original records. The audit check, it is ielt, will inerease confidence in the Commission procedure and will lead to better adaptation of the Commission cost-gathering methods to producers' accounting prol)-

Table II-Mechanized and Hand-Mining

As recommen mission	District 10		
	Strip	Mechanical Loading	Hand
1933.	\$1.3421	\$1.6031	\$1.9535
1937 final. . .	${ }_{1.4319}$	1.7129	2. 0800
District 11 As recommended by Coal Commission			
1936.	1.2727	1. 5392	1.7911
1937 preliminary	1.4550	1.7340	1.8830
1937 fingl. . . .	1.4631	1.7636	1.9572
$\begin{aligned} & \text { As } \\ & \text { recommended } \\ & \text { byoard District } \\ & \text { Boar } \end{aligned}$			
Current adjusted	1.4830	1.80101	2.1148°
	District 15		
			Deep, Con-
As recommended by	Strip	Deep	Only
1936.	1.63s+	2 24309	
1937 prelimina	S 1. $6384{ }^{\text {a }}$	\% 57810	2.57 S 2
1937, innl.....		${ }_{2}$	
1933. 7 mos..	1.76.51	- 3 273	
1937	76.51		
As recommended by			
19361.63S4 2.4309			
Current adusted. 1. T632 こ.5TS6			
${ }^{\text {a }}$ i Only mines producing more than 50 tons			

lems. eventually resulting in establish ment of standard accounting practices.

Action in the case of the Sunshine Anthracite Coal Co.. Johnson Country, Arkansas, beiore the Federal district court at Little Rock, was deferred on June 30 , probably until autum, F. L. MeFarren, of counsel for the Coal Commission. stated in a hearing before the Commission on June 29 that it is clear that Congress considered the bituminous conl industry to include all producing areas within the United States except the eastern Pembsylsamia anthracite region. He added that coal produced in every county in Arkansas has always been treated as bituminous for the purpose of regulation, and that therefore the Sunshine company was subject to the provisions of the co:il control act.
The Commission announced on June 2s that a hearing on proposed prices to he submitted by producers' boards of the Rocky Mountain region would be hehd in Denver. Colo., some time in August. This hearing is to supplement that for the determination of costs held June 1316 and is to be followed by another in the East for Eastern producers.

Oppose Funds for Gas Line

Coal interests have risen in arms against a proposal said to be fathered by the Kansas Pipeline \& Gas Co. that the Reconstruction Finauce Corporation lend $\$ \geqslant 0,000.000$ to finance construction of a matural-gas pipe line from somthwestern Kansas to the Mesilua Iron Range in Minnesota. . It is proposed that private capital raise $\$ 5,000,000$, the government being asked to supply the remaining $20.000,000$ needed.

Vigorons protests against the proposed loan were filed with the R.F.C. during the first week in July, however. by the Natiomal Coal Association, the Sational Bituminous Coal Commission. Appalachian Coals, Ine.; miners unions, numerous individual coal operators. local

HARARD INSULATED WIRE WORKS

DIVISION OF THE OKONITE CO. WORKS: WILKES-BARRE, PENNSYIVANIA
associations, railroads and other interested parties. The Logan County (W. Va.) Coal Operators' Association said that "to allow such a loan would be to reduce even more the working time and wages of miners in Logan County."
James D. Francis, president, Island Creek Coal Co., Huntington, W. Va., telegraphed Jesse Jones, R.F.C. chairman: "If this loan is made it will deprive thonsands of men of steady annual employment. More than 10,000 men are annually employed in producing coal now going into this territory. It is serviced by an additional 10,000 men, and if this business is lost it will mean the loss of wages at the mines and in mining communities of between $\$ 15,000,000$ and $\$ 20,000,000$ annually."

The R.F.C. issued a denial on July 11 that an application had been received from the Kansas Pipeline \& Gas Co. for a loan of $\$ 20,000,000$ for construction of a natural-gas pipe line. It was said, however, that promoters of the scheme had been in Washington lately in its behalf.

Coal-Combustion Service Set Up by Railroad

Designed to bolster lagging coal haulage by assisting the coal industry in marketing its output, the Chicago \& Eastern Illinois Ry, has created a combustion engineering department headed br Charles S. Lammers. fuel-service engineer. Display and researel headquarters have leeen established in the company's offices in the MeCormick Building. Chicago, where coal producers, salesmen, hrokers, dealers. analrsts, nanufacturers of heat and power equipment and their comlustion men, as well as consumers, may find auswers to their problems.

Mr. Lammers will have at his dispocal the entire railway as his lahoratory. employing each power or heat plant and locomotive as a research unit. with the whole company staff as advisory aides. The plan also contemplates study of other coal-usage problems such as review of steam and power plants as to grates. flues. draft, and kind and size of coal best suited for particular purnoses. The new department likewise will cooperate with civic authoritics in the prevention of air pollution.

\rightarrow

Coal Map of Indiana Issued

A coal map of Indiana, compiled jointly by the department of geologr of Indiana State Teachers' College and the Coal Trade Association of Indiana, has been issued by the latter organization. It shows the location of rail shipping mines, ereh identified by a number. Also shown, in alphabetical order, are the names of producers, name of mine, railroad location. rein of coal. country in which each mine is located, and an alphabetical list of the mines.
The map will be reissued periodically at times when it has been necessary to make changes. Copies- $\$ 1.75$ with wooden rod at top and bottom, $\$ 1.50$ mithout the rod-mar be obtained from Jonas Waffle, managing director, Coal Trade Association of Indiama, 400 Opera House Block, Terre Hante. Ind.

"Hands-Off-Union" Order Given Harlan Fuel

The Harlan Fuel Co., Yancey, Ky., has been ordered by the National Labor Relations Board to cease interfering with efforts of the United Mine Workers to unionize mine workers in Harlan County, Kentucky, according to an announcement issued by the board on July 6. The order directed the company to reemploy 24 men who, it decided, were discharged for unionizing activities, and to disband as a company-dominated union, the Fancey Workmen Association, Inc.

Charging that representatives of the company had threatened the lives of union organizers, the board extended its order to prohibit the company from barring U.M.W. organizers from the streets of Fancey. The exclusion of mion organizers, said the order, was an unfair labor practice in that it denied to tenantemployees the right to organize for collective bargaining under the Wagner act. Holding a 99 -year lease on all land and buildings of the town, the company had contended that by virtue of its lease it was entitled to bar union organizers from entering the community.
The board also has issued a complaint charging the Stranght Creek Coal Co.. Inc., Straight Creek, Ky., with threatening U.M.W. organizers with death and discharging five emplorees for union activities.

Idle Plants Resume

Operations were resumed on Julr 5 at the Dolomite mine of the Woodward Iron Co., Woodward. Ala.. after an idleness of two months. Normally the plant employs about 600 men.

Work also has been resumed at No. 2 nine of the United States Coal \& Coke Co., Gary. W. Ya.. after a shutdown of several months. About 150 men are at work, compared with the regular complement of $4 \bar{i} 0$.
Work was started early in July giving re-employment to 165 men at the plant of the Star Coal \& Coke Co., Red Star, W. Va., after being idle since April 1 . The mine is under the supervision of

Coming Meetings

- Pocaliontas Electrical and Mechanical Institute: annual meeting, Aug. 18-20, Bluefield, W. Va.
- Sixth annual Illinois Mineral Industries Conference: Sept. 30-Oct. 1, University of Illinois, Urbana, Ill.
- West Virginia Coal Mining Institute: annual meeting, Oct. 7, Charleston, W. Va.
- National Safety Council: Silver Jubilee Congress, Oct. 10-14, Stevens Hotel. Chicago.
- Coal Producers' Association of Illinois: annual meeting, Oct. Il, Springfield, Ill.
- Coal Division, A.I.M.E.; Fuel Division, A.S.M.E., and Western Society of Engineers: joint meeting, Oct. 13-15, Palmer House, Chicago.
W. W. Beddow, who assumed charge shortly before the mine was closed.
The Mice No. 3 mine of the West Virginia Coal \& Coke Corporation, Switzer, W. Va., which has not been in operation for the last year, will be reopened about Aug. 15 with about 150 men employed, according to an announcement by A. F. Whitt, general superintendent. The mine has been fully mechanized.

Safety Needs Salesmanship Contends P. A. Grady

Promoting safety is best accomplished by practicing the art of salesmanship rather than by a series of peremptory or ders, declared P. A. Grady, general superintendent, Carrs Fork Coal Co., Allock, Ky., in an address on injury reduction at the July 29 meeting of the Big SandyElkhorn Coal Mining Institute, Pikeville, Ky. After canvassing the various alternatives, this method was adopted in securing the use of electric cap lamps starting three years ago.
"It was the first effective campaign made by the company to sell the men an idea that was to our mutual interest. To most of our key men it was their first training in salesmanship, and the commodity sold was safety. There was something visible to the eye by which they could measure progress, even though proved benefits were yet to come. It was an exercise in management." After that, other drives were started one at a time and with certain goals- 100 per cent first-aid training, hard hats, safety shoes, other safety clothing, etc. "We have not completed them all. We will. However, we have gone far enough to know that they do produce results. We have proved to our workmen the interest that we are taking and they are going along."

Placing safety rules in the hands of the workmen and instructing foremen from time to time over long periods to see to their enforcement will not make men careful. "Their carefulness is only in proportion to the efforts we are putting forth." Safety signs, bulletins and bulletin boards should be changed frequently so that they will not become commonplace. Small group meetings are at present proving very effective. Copies of the fatal-injury report sent out by the State are posted each month, not oniy at the mines but also where they can be read by women and children.
Rather than long annual or semi-annual exhortations to promote safetr, foremen are supplied with weekly reminders and the injury record of each man. Foremen are taught to stuay the habits of these men, and also are instructed to determine, by casual interviews, the attitude of each man to safety work. The latter step disclosed a number of men who were "bulletin-board slir." A check of the records of these men disclosed that most of them had suffered an injury at one time or another and some of them several. This led to the conclusion that the safety work was not entirely effective among the men for whom it was most intended. Adopting the principle that introducing the thought of fear in the minds of these employees and members of their families would stimulate their interest, first-class letters, describing fatalities and offering sajety suggestions,

Tipples . . . Piling ... Guard Rails . . . Fences. Poles . . . Buildings, Bins, Sheds . . . Piers, Docks, Wharves . . . Platforms . . . Flooring . . . Tanks, Sumps, Vats . . . Crossing Plank ... Barge Sides and Bottoms . . . Cable Ways . . . Conduit . . . Culverts . . . Flumes ... Trench lining and covers . . . Conveyor Decking and Supports Koppers Rheolaveur Process . . . Menzie's Automatic Cone Separators . . . KoppersLlewellyn Automatic Washers ... K-R-M DryCleaning Separators . . . Coal Tipples Koppers-Birtley Dedusters . . . Carpenter Centrifugal Dryers . . . Boiler and Power Plants . . . Mine Shops . . . Fast's Couplings ... American Hammered Piston Rings . . . Cylinder Packing . . . Bronze and Iron Castings .. . Flotation Dils . . . Bituminous-base Paints ... Coal Tar Roofing ... Waterproofing . . . Tarmac for paving.

Pressure-treated Timber

 Pays for Itself in Labor CosiA recent report of the Coal Division of the American Minin Congress stated: "Under the existing wage contracts and with tim and a balf for overtime, the actual cost of 'spot' tie renewals is a item worth real study. Under varying conditions in many mines th average 'spot' tie renewals in main baulage tracks studied vari from 12 to 25 ties for two men in one seven-bour shift."

THE WOOD PRESERVING CORPORATIC

were mailed to each employec. Setters were varied in accordance with the classes of employees to which they were sent.

Reactions to these letters were mixed. Accident-free employes generally approved, white employees who had suffered injuries in the past were silent. In tracing down the reason for this. it was decided that "the man who has never been injured fears injury and death more. The one who has been injured finds ont that the pain was not as great as expected. Fe recovered, but has not been cured of taking chances." and in many cases seems to delight in posing as a "rounded hero." Comsequently: "we try in every way possible to let the careless worker know that lie is being tagged." as that is the bast way of bringing home to him his responsihility for working safels.

Safety Teams in Keen Contest

First honors in the eighth annual safetr day meet of the Monongahela Valles Coal Mining Institute, held at Morgantown. IV. Va.. on July 16. Were won be the first-aid team from No. 93 mine of the Consolidation Coal Co.. Jordan. It was necessary to work an extra problem. however. hefore a decision was reached, as the team from No, 97 mine. Rivestille, was tied for first at the end oi the regular test. both teams having periect scores. The Maiden mone team of the Kelley's Creek Colliery Co. was third, with a scote ni 99.6 per cent.
In the contest for colored teams. represmtatives from Consolidation No. 93 also came out on top. A bors team irom No. 4 mine of the Comtinental Coal Co. was monposed, but scored 98.s.

Stream-Pollution Bill Dies

The stream-pollution hill finally approved lor the House oi Representatives on June 13-Coal Age, Julr. n. 93- -as killed br "pocket" veto br the President. Disapproval by Mr. Ronsevelt was exmessed in a memorandum which said in part:
"This hill provides for the legislative assumption of responsibilities of the executive branch, and, thereiore runs comnter to the inndamental concept of our budget system that the planning ois work programs of the executive agences and their presentation to Congress in the form oi estimates of appropriation is a duty impnsed upon the Chicf Executive and not alle for exercise hy the legislative branch."

To Reopen Gebo Mines

Thre of the mines fortherly operated le the Owl Creek Coal Co, at Gelki. Wyo. are to be reopened and operated by independents, with more than 125 men emploved. P. F. Burnell. former superiniendent for the (ox-l Creek company, announced on June 30 that he had taken over mines fors. 2 and 4 and had acquired government leases held br the eompane. Operation and gorernment lease on mine So. 1 have heen amuired hy A. B. Haff and David King. All three mines, whick were closed lasi Jonuarr, will be nperazed on a comtract basia, catering primarily to railroads.

Management and Operating Problems Probed at Rocky Mountain Meeting

- Rock-dusting, mine-safety fundamentals and the advantages of systematie timbering.
- Training for mine employees, supervisors and engineers.
- Shaker conveyors in a southerr. Colorado mine; mobile loaders in a western Colorado operation.
- Storage conveyors, box-car-loading methods and portable crushing units at a Wyoming mine.
- Controlled slack preparation and recent trends in coal preparation in general.
- How many cars per trip? and automatic mine-car couplers.
- Modern methods of coal cutting.
- Deep-well pumps for mine drainnage.
- Standardization possibilities in the coal-mining industry.

MORE than 150 members and guests gathered to discuss the above topics at the 36 th regular meeting of the Rock Mountain Coal Mining Institute. held June $23-2.5$ at the Shirler-Savor Hotel. Denver. Colo. H. C. Marchant was elecated to the presidency in the annual election and F. W. Whiteside was chosen secretary-treasurer.
In unanimonsly adopted resolutions, the institute expressed gratification over the establishment oi a U. S. Bureau of Mines research station for coal utilization at Golden, Colo. The institute also resolved that, in view of the reversal in the injury trend in late rears, its membership should couple modernization of mining practices and methods with the equally important matter of protecting the lives of the miners, and also pledged cooperation with all agencies. State. Federal, etc. in plans for educating miners and mine officials in safetr and efficiencr.
The enngratulations of the institute were extended the general stafi of the Union Pacific Coal Co.. George A. Brown, superintendent, and the staff oi the Superior group oi mines. which group ("B." "C" and "D." in order) has received three Sentinels of Safety trophies in the past five cears. the last in June. 193s. Cooperation of the men as a whole was given the major credit by Mr. Brown in his acknowledgment of the institute's ielicitations. The record of the group, he pointed out. has bern made under "tough" conditions. which, among other things, required the adopition of srstematic methods of timlering from which no varlations are permitterd. The results of this step are a major iactor in the Superior record. As long as the interest of the men is held. Mr. Brown concluded. no trouble will be encountered in holding past gains.
"It must be barne in mind." declared Gilbert C. Davis, manager. Stag Canon Branch, Phelps Dodge Corporation, Dawson. N. M.. in opening the technical sessions with a discussion of rock-dusting at his uneration, "that the practice is hut one of a suries of steps taken to guard against explosions and generally make a safe coal-
mining operation. Experience has very definitely and tragically proved that all safety work must be kept in unison to make possible the results that have been accomplished.'
Rock-dusting in a determined way at Dawson followed the last explosion in 1923. Hand in hand go the following, which are painstakingly observed

1. Adequate ventilation.
2. Installation of a sprinkling system with a line into every working place to provide water for the cutter bars of all mining machines, for wetting the coal as it is loaded by hand or machine, and for washing down all working places to minimize the quantitr of coal dust carried in the ventilating current.
3. Daily inspections of all working places by the firebosses for accumulations of dust.
4. Reduction in trip speed to reduce derailments.
-. Abolishment of car topping.
5. Use of solid-bodied cars to eliminate spillage along haulage roads.
6. Regular cleaning of main haulage roads, with accumulations not permitted.
S. Standardization of shotfiring on the following hasis: electrical firing from the surface with all men out of the mines; permissible power with not over $1 \frac{1}{2} \mathrm{lb}$. per hole; return of any unused powder to the surface magazine: prohibition of delay detonators; charging oi holes to eliminate any possibility of "cross firing"; and adobe tamping to the collar of the hole.
7. Electric cap lamps.
8. Monthly inspections for unsafe conditions hy a committee of workmen.
9. Standardization of wiring and installation oi electrical appliances.
10. Ggggles, saiety hats and safety shoes 100 per cent underground.
11. Standardization of timbering.
12. Standardization of clearance between tracks and timbers.

Spreading Adobe First Step

One of the first steps in rock-dusting was spreading alobe in hanlage entries and aircourses to a depth of 3 to 4 in., which was followed by "muditing." or the application of adobe and water with a cement gun. Also, some entries were coated with cement. Another step was the application of adobe dust and later limestone dust ly blowers. In the course of time it was fielt that a heavier coating of dust was desirable, and dry dust was applied hy a cement gun to the haulage entries and-through the stoppings-aircourses. "Fo better or more thorough means has ret been found and this method is in use tonday
are handled through the cement gun in a shift with a crew of three men."
Availahle information indicates that one of the first rock-dust barriers was used in 1914. After irying several trpes, the Standard Bureau of Mines dust harrier was adopted. "Standard practice is to erect a hatiery of rock-dust barriers across each entry between each panel.

This very definitely divides the mine into small sections." The first dust used in barriers was adobe gathered from the highways,

The Shell engineer gave this mine's personnel a schooling in proper lubrication

THE Cahaba Red Ash Coal Co., Inc., of Birmingham, Alabama, operates its mine in single units . . . where the failure of any part of a unit would result in great expense and loss of production.

Experiencing difficulty in lubricating their equipment due to large amounts of water and rock dust, Mr. Z. G. Elmore called a Shell engineer in to survey the company's entire lubrication problem.

After a complete check-up, the Shell engineer recommended the proper Shell Coal-Mine Lubri-
cants for each particular job. But he went further -his study of their problem had convinced him that much of the difficulty was due to improper handling and application of the lubricants. So he took the mine personnel to school!

Right on the spot, this Shell engineer conducted a short course in correct lubrication methods . . . showed the miners how each lubricant should be handled and stored . . . how it should be applied to each machine to keep operation safe and efficient.

As a result of this Shell man's enterprise, the Cahaba Red Ash Coal Company is now operating with greater assurance against lubrication failure and at a reduced cost per ton of coalproduced.

This case history from the Shell files again demonstrates what Shell experience plus Shell products can do to the bogey of "lubrication failure." Whatever your particular problemcall on Shell. Simply write or phone your nearest Shell office.
followed by other types of inert material. Finally, raw limestone dust ground to 200-mesh was adopted. This dust cakes when wetted and dried, and consequently is not desirable for wet mines. Working places are kept dusted to within 50 ft . of the face by hand casting by men who devote their entire time to it and wear respirators.
"Through experiments by the Bureau of Mines, it was determined that mine dust at Dawson must aualyze 70 per cent ash to prevent the spread of an explosion. Mine dust is sampled at intervals of four munths mad, should any sample disclose less than 70 per cent inert matter, the district from which the smmple was taken is promptly" and thoroughly redusted." better illumination is an important byproluct.
"During the eight-year period through 1037. in the production of slightly more than $2,200,000$ tons of coal at Dawson, there was used $3,891_{4}^{3}$ tons of rock dust an average of 3.5 .4 lb . per ton oi conl proluced. During this eight-year period there was spent for rock-dusting $\$ 60,389.13$, an average of 2.74 c . per ton. It may be said that this is a very heary fixed charge. Howewer, it does not look so bal when 1 tell you that the 1923 explosion cost more than $\$ 125,000$ merely to recondition the mine for reopening."
lractically the same practice is followed at the Bonarbo mine of the American Smelting \& Refining Co., Cokedale, Colo., said C. R. Garrett, general superintendent. The aim for a number of years las been to rock-dust each section at least once a week, covering the four sections of the mine at least once a month. With a 1d-ton M-S.A duster, two men will apply about this quantity in a day's time in openings with tracks. Hand casting. however, is employed in rooms, aircourses and mamays, in which process two men ean apply about 150 sacks a day. Tight cars are used, so that there is very little spillage along the haulage roads. Consequentiv, about the only place dust tends to collect is at points where gathering locomotives make up trips for the main-
line units. This is loaded out before rockdusting is done.

Credit for awakening Western operators to the importance of dusting was given to John E. Jones, now safety engineer for the Old Ben Coal Corporation, Illinois, by Mr. Garrett, who remarked that his company, as a result of Mr. Jones' missionary work, bought dusting and testing equipment and started out in earnest in Jamnary, 1925. Since that time and up to June 1, 1938, 1,300 tons of dolomite dust has been applied at a material cost of about $\$ 9,000$ and a labor cost of about $\$ 4,000$, or $\$ 10$ per ton. With a production of $1,945,000$ tons, cost per ton is zc .
While operators nppreciate the value of rock-lusting, they are likely to balk at the initial cost of sutisfactory protection, said G. O. Arnohl, Boncarbo mine superintendent. Actual cost will vary widely in accordance with the hazard mesented; the average operation probably would have to spend $\$ 150$ to $\$ 200$ per mile of roadway and airway for recognized protection, plus 1c. to 2c. per ton ammally to retain this protection. If the operator is unwilling or unable to undertake the initial expenditure, Mr. Arnold suggested that at least 90 per cent oi the standard could be attained by thoroughly treating the major danger zones at an expenditure of about 50 per cent of what recognized full protection would involve.

Close supervision is necessary to assure dusting in accordance with the standards set up, said T. H. Butler, supervisor of mines, L'inion Pacific Coal Co.. Rock Springs, Wyo. All mines should be rockdusted. he contended, and this should be supplemented by the use of electric cap lamps and permissible powder. The Bureau of Mines, said F. HI. Demy, district engineer, Denver, recommends rock-dusting of all mines exeept anthracite, with barriers as a secondary defense against explosions. F. C. Miller, chemist. Colorado Fuel \& Irom Co., Trimidad, Colo., declared that he had exploded a sample of mine dust containing so per cent inert matter and recommended that humidification accompany rock-lusting. intasmuch as dry dust must

Retreat system of conveyor mining used by the Gordon Coal Co.

have a higher percentage of inert material to be equally as safe as damp dust.
Coal mining with shaker conveyors in a seam less than 4 ft . thick at one of his company's operations was described by George 13. Dick, vice-president, Gordon Coal Co., Walsenburg, Colo. The roof consists of a tender slate, and the bottom is very soft for 1 to 0 ft . under the coal. The bottom is brushed in entries to provide a clearance of $5 \pm \mathrm{ft}$. over the rail and under the timbers. No brushing is done in rooms.
The first two conveyors were installed in a solid block of coal on one side of the mine on July 8, 1937, and were put to driving the openings for the triple-heading entry system decided on. One heading serves as the aircourse, the second as the main-haulage opening, and the third as a storage for empties and loads. As transportation, on the basis of available information, seemed the key in shaker-conveyor mining, it was decided, in addition to other measures, to use $40-\mathrm{lb}$. rail throughout. The original phan was to drive to the houndary with the headings and mine on the retreat. "This, of course, called for entries to be driven on a $3 \sqrt{2}$-per cent grade" to facilitate locomotive haulage and drainage.

Duckbills Used in Headings

The first experimental rooms, however, were turned when the headings had been driven 500 ft . to get around the main sump and also provide empty and load storage room, with the idea of getting the necessary experience on which to lay out the final plan of operation. Duckbills were used in driving the $10-\mathrm{ft}$.wide headings and proved quite satisfactory both in loading the coal and also the bottom material taken up in brushing. On Sept. 1, 1937, the third conrevor unit was installed and experiments in rooms were begun.
Originally it was plamed to turn the rooms on $40-\mathrm{ft}$. centers and drive them 20 ft . Wide to a depth of 250 ft . However, $10-\mathrm{ft}$. rooms on $20-\mathrm{ft}$. centers and $18-\mathrm{ft}$. rooms on $30-\mathrm{ft}$. centers also were laid out. In the case of the $20-\mathrm{ft}$. rooms, experience showed that ehanging many timbers to be able to use the duckbill cut down the number of eyeles per seven-hour shift. The $15-\mathrm{ft}$. rooms resulted in an increase in the number of cycles and a decrease in timber changing, also accompanied by a decrease in tomnage per eycle. With the 18 it. rooms, the same number of eycles as in the $15-\mathrm{ft}$. rooms was obtained, with practically the same tomage in seven hours as with the $20-\mathrm{ft}$. rooms. So $18-\mathrm{ft}$. rooms on $30-\mathrm{ft}$. centers were adopted.
Units are operated two seven-hour shifts five days a week with four-man crews. Linear advance in unbrushed entries has averaged 40 to 42 ft . throughout the mine, including all timbering and moving of swivels and 90 deg.-angle troughs. Chain supports have been found more satisfactory than rollers in eliminating buckling of the pans up to $\Xi 50 \mathrm{ft}$. Some difficulty in holding two 20 -deg. swivels on the same pan line is being eliminated.
With a hard-natured coal, considerable attention has been devoted to shooting. Csually: a buster shot and two rib shots are emploved. The buster is tamped solid, while the first three dummies in rib shots are tamped lightly and the remainder sulid. Cutting is done in the soft bottom,

Your experience has proved that flexibility is a vital characteristic of wire rope. But your experience has also proved that a rope which sacrifices other essential characteristics to gain flexibility will not stand up on the job.

Consequently, flexibility is one of the characteristics always to be found in "HERCULES" (RedStrand) Wire Rope-plus
these other equally essential featuresstrength . . . elasticity . . . toughness . . . and durability. All perfectly balanced to assure better . . . longer
 . . . and more economical performance.

Your first trial will convince you that "H E R C U L E S" (Red-Strand) solves your wire rope problem the economical way. Try it on your next job.
whicll is mucked and londed before shooting. Crossbars are set to the face before shooting, using timber jacks, which facilitate moving the supports after partly loading the face to make room for permanent posts. All clectrical commections for cach unit are placed on a panel board at the discharge end of the converor. Aljustable pedestals on the top and bottom facilitate moving the bonrd.

In brushing entries with a four-man crew, 42 in. of bottom can be removed for a distance of $S 0 \mathrm{ft}$. in two shifts. Doing the same work by hand, two men would take up only 10 ft per shift. To facilitate transportation, slants are driven from the emply storage entry to the main entry every 300 ft ., thus placing each unit in a separate block and giving it ample space for empty and lond stornge. This allows each unit to work without interference with any of the others. In conclusion, Mrr. Dick stated: "We feel that the working of coureyors is safer than the old system, due to the fact that we have a better class of miners, close supervision, and concentration of all the work in one area."

At the National Fuel Co. mines, in Weld and lloulder counties, Colorado, said Roy M. Williams, general superintendent, 240ft, rooms are driven on $60-\mathrm{ft}$. centers and the pillars nre removed on a $4 \overline{5}$-deg. angle with shaker conveyors, which have been suceessful in a 3 d- to $4 \frac{1}{2}-\mathrm{ft}$. senm that could not be worked otherwise. Main hanlageways are brushed 2 to $2 \frac{1}{2} \mathrm{ft}$. with the slarkers, which adrance 10 to 15 ft . per seven-hour shift. As the seam is very uneven, the pan lines are hard to hold and cousequently duckbills are not employed. Three shifts are worked in winter, and the average is around 35 tons per shift with a four-man crew. In some places, an l8-in. band over the coal must be taken down and gobbed. Operations are now being extended into a territory where the coal rums about 4 ft . thick and is overlaid by an 8 -in. band. Presenting many difliculties even with machines, this territory would be impossible to work by hand.

Coal Breakage Reduced

Accompnnying his remarks with n movie, Glen Sorenson, superintendent, Kemmerer Coal Co., Kemmerer, Wro., discussed preparation practices at the No. S mine of the company, openel during the late summer of 1937 . Seam thickness ranges from 10 to 16 ft .. all clean coal, and the dip is about 23 deg. west. The coal is mined on the room-and-pillar system, using chain-and-flight and $36-\mathrm{in}$. belt conveyors to 5 -ton steel cars.

Although some of this coal is consumed by railroads and industrial plants, the grater portion goes into the domestic trade. Consequently minimum breakage and thorough removal of degradation is important. The first step in reducing breakage was the use of a shield in the rotary dump. This eases the coal down onto a set of grizzlies which allow the fines to fall through first into the hopper and thus cushion the lumps. From pit car to picking tables the coal moves without encountering a right-angle turn in the flow. The tipple proper is muipped with shaking serens, picking tables and loading booms.

All prepared sizes ahove 1 -in. are loaded into closed cars by box-ear loaders with $10-1 \mathrm{t}$. booms. Cross converors are used from the loading booms to the boxear londers are of the chain-mat trpe for re-

H. C. Marchant

New Institute I'resident

moving degradation, which is carried back to an elevator on the inclosed bottom straml. The elevator discharges the fines into the mixing converor, from which they are recirculated ts the screens.
"Storage conveyors for use while changing box cars are an important part of this plant," and eliminate most of the tipple stoppages that otherwise would be necessary, with consequent increase in tipple man power and power consumption and higher peaks and higher maintenance growing out of intermittent operation. The storage units consist of apron conveyors on the opposite side of the cross convevor from the discharge end of the loading booms. While storing, the conveyor travels at $\bar{a} \mathrm{ft}$. per minute, allowing 5 tons of coal to be accumulated and providing about six minutes for a car change. When a car is changed, the storage unit is reversed and at the rate of 2 ft . per minute the conl is fed onto the chan-mat cross convevor. If ear chnnging requires more than 6 minutes and the storage conveyor becomes loaded, it automatically shuts down the tipple.

One problem in plant design was whether to sereen, erush and remix the lump or size the mine-run with a separate crusher in making stoker coal. This problem was overcome, Mr. Sorenson reported. by placing the crusher on a self-propelling truck and using it either under the minerun chute or moving it over to the mixingconveyor gallery for crushing any desired size. "This installation made it possible to size mine-run direct from the belt and thus avoid rumning the entire tipple while preparing this coal."

A cooperative effort by both management and employees is the best method of making a mine-safety program work, deelared Matt Stramigan, safety engincer, Southern Wyoming Coal Operators' Association. Firstaid training is a good method of keeping injuries down. as experience at mines under the jurisdiction of his association shows. Each employee should have in his possession a set of rules and regulations outlining his duties. "Safety meetings have been organized in southern Wyoming and have proved a success."

Specitic recommendations for the promotion of mine safety presented by Mr. Stran-
nigan included: adequate ventilation; rockdusting, especially in dusty and gaseous mines, supplemented by washing down dusty ribs and timbers; heary rail on all main haulage roads with ample clearances on both sides; proper installation and maintenance of electrical equipment, ac companied by frequent inspections and necessary repairs on the surface; use of safety clothing; and placement of responsibility of mine accidents on those who are responsible.

Most mine accidents, analysis shows, could lave been prevented. They fall into four classes: (1) those for which the injured was responsible; (2) those in which other workmen were involved; (3) those for which the management is responsible; and (4) unavoidable accidents. "We may summarize," said Mr. Strannigan, "by saying that mine safety can be achieved only by the wholehearted cooperation of all concerned in carrying out a definite program."
Strongly indorsing the previous speaker's remarks on the need for cooperation. R. R. Knill, safety engineer. Union Pacific Coal Co., made the point that management first must be sold; otherwise, there is no hope for success. Management. he continued, has the duty of furnishing adequate super vision and carefully thought-out working plans, and must educate employees in safe habits and working methods. Sufety meetings help break down employee antagonism to programs for the prevention of injuries Mr. Knill would class as first in impor tance those accidents for which the management is responsible and holds that safety is no more than efficient operation which in turn demands good supervision. Mechanization, he concluded, has materially reduced the injury hazard.

Analyzing the changes in the industry in the past two decades, Thomas Allen, chief coal-mine inspector for Colorado, Denver, presented, in a forthright fashion, the need for better training of new mine employees and supervisors. An abstract of his paper starts on p. 38 of this issue.

Training New Men

The Union Pacific Coal Co., said Mr. Brown, finds its mine forces in the past three or four years composed of about 25 per cent of high-school graduates, making it necessary to find some means of educating these boys in safe and elficient working methods. This is done by placing one bor in each unit crew, with special instructions to crew members and unit foremen to look after his training. As it has worked out, the percentage of injuries to these new men has been very low, and the boys in many eapacities soon become just as capable as the olker employees. Roof control, however, is a ticklish problem which camnot be learned in a short time, and for that reason only one boy is assigned to a crew, as it is felt that two or more wonld increase the hazard.
Vocational training of prospective mine employees, Mr. Brown felt, should be taken up primarily through the high schools, and his company now is trying to evolve such arrangements. Already; however, the conpany has established classes for training men. particularly for supervisory positions, and more than 100 unit foremen have passed examinations on their qualifications.

Production and preparation at the Oliver Coal Co., Somerset. Colo.. was the (Turn to page it)

(a boom-hoist line may have 150)

Bethlehem's Wire Rope Works

THERE are few manufactured products in which such precision is exacted in the production of every part as is demanded in making boom-hoist line or other wire rope in Bethlehem's Wire Rope Works.

Wire drawing has been refined to an exceptional degree in making Bethlehem rope wire. Throughout the process, special precautions are taken to provide against injury in order that even the surface of the wire is perfectly smooth. The diameter of each wire entering into the construction of rope is held to extremely close tolerances and to exacting quality standards.

Every Bethlehem Boom-Hoist Line is made of such precision-drawn wire. Each strand is "strand stuffed" with a special lubricant specifically designed and compounded to provide effective lubrication of the internal rope structure. The strands are perfectly supported by an impregnated core accurately designed and sized for that purpose. Above all, every line reflects the accumulated experience of half a century of making wire rope, more than threequarters of a century of making fine steel.

BETHLEHEM STEEL COMPANY, General Offices: Bethlehem, Pa. District Offices: Albany, Atlanta, Baltimore, Boston, Buffalo, Chicaso, Cincinnati, Cleveland, Columbus, Dallas, Detroit, Honolulu, Houston, Indianapolis, Johnstown, Pa., Kansas City, Mo., Los Angeles, Milwaukec, Nashville, New Haven, New York, Philadelphia, Pittsburgh, Portland, Ore., St. Louis, St. Paul, Salt Lake City, San Antonio, San Francisco, Savannah, Seattle, Syracuse, Toledo, Tulsa, Washington, Wilkes-Barre, York. Export Distributor: Eethlehem Steel Export Corporation, New York.

BETHLEHEM STEEL COMPANY

Built for the Midland Electric Coal Corporation, this Marion shovel originally swung a 20 cu . yd.
 dipper. In October 1937, the cupacity was increased nearly 40% by installing a 27 cu . yd. dipper. This sborel is self-leceling, moves under its oun power on a series of craulers with overall width of nearly 42 ft . A complete plant in itself. Six different Texaco Lubricants are in regular use.

TEXACO

WITH

TE

XACO

Taking 27 cu. yds. at a "bite," this giant shovel in the Midland Electric Coal Corporation's plant at Middle Grove, Ill., handles an overburden averaging 35 ft . in thickness.

This huge Marion is one of the world's largest strippers . . . $95-\mathrm{ft}$. boom . . . $60-\mathrm{ft}$., $3-\mathrm{in}$. dipper handle . . . powered by 5 motors aggregating $900 \mathrm{~h} . \mathrm{p}$.

Since the day it was installed it has been Texacolubricated 100%.

On all open gears, Texaco Crater Compound
cushions the gear teeth, and protects against abrasive wear. It clings to tooth surfaces at high speeds. Resists highest temperatures and pressures . . . and lasts several times longer.

Telephone your local Texaco warehouse for a Texaco representative to call. There are 2108 of these warehouses in the United States, assuring prompt delivery.

The Texas Company, 135 East 42nd Street, New York City.

theme of a motion pieture introdued by Romald C. Oliver, viec-president. Meelunization of the mine was started in May, 1936, using umbile loaders, and the usual difticulties in changing over from hand to mathine methuds were enconutered, including a diseovery that ears were too suall nad haulage was too slow. These conditions have since been rectifed, and huthage motorizell for greater eflicieney: 'l'raining of mine employees to some degree was fumbl a meressity, aud in this connewtion, Mr. Oliver printed ant, the great fist difliculty was to prevent mon from memoriaing answers rather than really understanding the problems.
"A few sears back a letter from the geneml manager could be expeeted almost any time tellyg the gomeral superintendent or the superintendent how easily one could save their wages if they could lower the slack percentage ly 1 per cent," said Frita Nrmun, chiof engineer. Utah Fuel Co., Castle Gate. Vtah, in a paper on controlled slack preparation. read in his abseme by William Moorhend, of the same organization. "Today the picture has changed to the extent that if a lump of coal thes come to the tipple the chances are 2 to 1 that it will go to the erusher. Thus one-thind of the mine proluetion that must of necessity be in the form of slack moe was embidered a drug on the market but now has inereased in popularity matil in the sear 1937 it constithed ower thre-fourths of our proluetion. For this reason we are foreed to as careful preparation of slack as is customarily athorded the domestic sizes.

Users Specialize in Coal

"Tonday we have such widely specialized consumers of eoals as those whe use it in the many types of stokers, both industrial and donestic, those who burn powdered coal, those who use it in the production oi coke and the byproducts oi coke; the railroads, which are requiring a more sllitable and miiorm proluct; the smelters, the dairies, the sugar plants, the brick manuiactories and untold others. math requiring a coal for their specific purpose free of forsiga material amb-perhaps most importamt of all-one on whose uniformity they can depemd. In order to satisiy the demands placed upon us by the present users and keep abreast and ahead of the inroats of other iuels, the Utah Fuel Co. is exerting every effort to turn out a product oi definitely known whlue as to the several factors that make at mad desirable. This is prasible only by having a thorough understanding oi the coal produced by the varions mines. the mature and ellect of the impurities in it. the heat value, size distribution in the varions stoker fuels, grimability: woking characteristics. quantity of dust present. soiteming sud fusion point of the ash. and many other eharacteristics that limit or widen the coat market."

The first adrance toward solving these many problems was the installation of a complete coal-testiny libhatory umber the supervision of the preparation exgineer working in choperation with the cembustion engheer and the sale department. This latoratury is st completely equipped that when nectssay "we tan sample ank analyze for size each car af slack that leaves the tipple", Installathon de an aufomatie swmeter is under consideration to elimimate the posibility of human error,
after which the sample from each car will be amalyzed for size.
"It will be from this size analysis that we hope to determine many of the characteristics of that certain car of coal." A complete amalysis of erch car is impracticable, but "we will rum a sufficient mumleer of them so that a relationship can be astublished between the size distribution and other qualities of the conl." This stems from the tendeney of certain impu--ities to go into certain size fractions so that a change in the percentage of a fraction mary be expectel to change the charater of the cont. While this comelusion still is open to question, "we are confiWent that the correlation we will make between sizes and properties of the fued is far better than a guess."

In conjumetion with laboratory tests a thorough study of the individual plants using slack coal is being made ly the combustion engineer as a preface to defi-

Rocky Mountain Leaders

H. C. Marchant, assistant to the president, Colorado \& Utah Coal Co., Denver, Colo., was elected president of the Rocky Mountain Coal Mining Institute at the 36th regular meeting, held in Denver, Colo., June 23-25. Mr Marchant succeeds Fritz Nyman, chief engineer, Utah Fuel Co., Castle Gate, Utah, acting president.
F. W. Whiteside, consulting engineer, Denver, was chosen secretarytreasurer with Mr. Marchant's elevation to the presidency.

Vice-presidents elecred were:
Colorado-George B. Dick, vicepresident, Gordon Coal Co., Walsenburg.
New Mexico-P. H. Holland, foreman, Stag Canon Branch, Phelps Dodge Corporation, Dawson.

Utah-F. W. Koelling, foreman, Liberty Fuel Co., Latuda.
Wyoming-H. C. Livingstone, assistant chief engineer, Union Pacific Coal Co., Rock Springs.

Directors for the ensuing year are:
Colorado-C. E. McWhorter, manager, Denver office, Goodman Mfg. Co.. and C. R. GarreH, general superintendent, American Smelting \& Refining Co., Cokedale.
New Mexico-Horace G. Moses, general manager, Gallup American Coal Co., Gallup, and L. C. White, vice-president. St. Louis, Rocky Mountain \& Pacific Co., Raton.

Utah-Wilford Ruff, Sullivan Machinery Co., Salt Lake City, and Walter F. Clarke, superintendent, Independent Coal \& Coke Co., Kenilworth.
Wyoming-C. M. Shott, general supsrinfendenf. Sheridan-Wyoming Coal Co., Monarch, and Glen E. Sorenson, general superintendent, Kemmerer Coal Co., Frontier.
nite recommendations. Customer complaints are another source of information, and these comphaints are given precedence over all other work. Face samples are taken at regular intervals to reveal clanges in conditions which could not be determined by the eye and whicle might, if the coal were concentrated in eertain lots, result in phor performance in the customen's equipment. "Still another check on slack quality is to know its source," or whether it is sercened from mine-rum or is derived from erushing. "We find this makes a great difference both as to screen sizes and analysis."

Alout is per cent of the Wyoming commercinl output also is sold as slate, repo:ted G. A. Knox, superintendent. GunuQuealy Conl Co., Quealy, IWyo.. and the proportion is expected to increase. Consequently, operators must realize that that is the grale they will have to market in the future and must take the necessary steps to prepare this size to meet the customer's desires. In this comnection. said I. N. Bayless, assistant general manager, Lnion Pacific Coal Co.. increased attention should be given to face methods. The position of the keri and the fineness of the cuttings, for examp'e, offer a field of study in the controlled preparation. of screenings.

Cutting machines o:iginally were designed for making a kerf at the bottom only to effect relief when dislodging the coal by explosives. "But the advancement in the art of cutting coal withr a machine quite naturally prompted the desire to cut this kerf at some place in the coal seam other than the bottom." said John H. Emrick, manager. Sullivan Machinery Co.. Denver. "So there have come into existence cutting machines to meet every demand-bottom cutters, top cutters, center cutters and shearers-all mounted on trucks to operate on a mine track or not so mounted but arranged to be drawn across the floor while in operation, as desired."

Factors in Choosing Cutters

When considering the method of cutting or type of machine, "the question of what one wants to accomplish very properly arises." The factors in the choice, therefore, are: (1) the mine conditions, (2) the market to be served and (3) "the wage scales and the percentages of them to be paid for various social securities and insurances." The old rule was a cut as deep as the seam is high, but now cutter bars are longer unless the cut becomes so deep that the coal will not be easily dislolged in the sizes demanded by the market or the deeper cut leaves the roof in an unsafe condition.
Shearing also was prompted br the desire to increase the percentage of the higher-priced sizes, and while this desire still obtains the combination of two cuts has other adrantages. Less pressure is neeled to dislodge the coal. increasing suery and lessening timber expense, especially where the roof is not firm. Also. the two cuts facilitate moring the coal out in a pile which can be handled more e:lsily by meehanieal loaders. In some mines the shearing cut also facilitates breaking the coal at a parting where it is desirable to leave top conal for roof support. This is particularly true with lignitic coals, which tend to break level with the top of the shear. Generally.
however, horizontal cutting is thought of in such cases.
Dirt bands in the conl must be reckoned with and success has been realized by cutting them out entirely or by cutting above or below or both and then removing them. Machines to do this are available in both track- and floor-mounted types. Narrow kerfs might not have been so well received ten or fifteen years ago, but today this practice is "giving gratifying results under certain conditions, even in summs of conl 7 to 10 ft . thick."

Fxtending greetings to the institute, D. Harrington, chief, health and safety branch, U. S. Bureau of Mines, Washington, D. C., in a message presentel by D. J. Parker, of the Bureau's Salt Lake City (Utah) station, asked that the organization give serious consideration to the rise in major disasters in late years. It is significant, he thought, that the worst disasters in receut months hure occurred on night shifts in mechanized mines where explosives were being used while the working shift was in the mine. Interruption of ventilation is another factor figuring in some recent disasters. In the past nine months at least four major disasters resulting in 94 deaths have been due to blasting with the shift in the mine.

How many cars shouhd be hauled per trip, from the standpoint of the heating effect on the locomotive motors, was amalyzed by D. E. Renshaw, mining section, industry engineering department, Westinghouse Electric © Mig. Co.. East Pittsburgh, Pa., in a paper read by J. B. Howe, of the Westinghouse Denver office. An abstract of Mr. Renshaw's paper begins on p. 43 oi this issuc.

Summarizing brielly the history of mine pumping. P. F. Robbins, Worthington lump i Machinery Corporation, Denver. deseribed the design and operation of decp-well turbine pumps, pointing out - hat they were developed to meet a need for monnting the motor equipment at a higher level or on the surface.

Systematic Timbering Pays

Mechanized louding has revolutionized mining practices in the past ten years, said Hugh MeLeod, chief coal-mine inspector for Wyoming, and Walter H. Walsh. deputy chief inspector, in opening a discussion of systematic timbering presented bs Mr. Walsh. Under the old system of contract loading, according to the authors, too much was left to the judgment of the miner and consequently the condition of his place reflected his personal habits. Supervision, also, largely was confined to casual visits to working places made primarily to comply with the law. The new type of work calls for a new system of supervision and in many cases a new type of supervisors.

Ability to handle and control roof requires some experience, which brings in an element of time when considering training of men and supervisors. "The simple and logical solution to the problem, of course, was the adoption of some method of systematic timbering adapted to suit a particular need or condition." The readiness with which an inexperiencel person becomes acquainted with systematic timbering is one of its outstanding advantages. A second adrantage is the provision for manways which materially eases the task of moving supplies and increases the saiety of this operation.

Systematic timbering also promotes the complete extraction of pillars and improves pillaring conditions. Orderly retreat naturally is supplemented by a method of systematic timber recovery, which is made much safer if timbers are installed systematically in the first place. The Union Pacific Coal Co., for cxample, has had few injuries from recovery, even though 75 per cent of the timber used at the working faces is recovered and used a second time.

But perhaps the outstanding result of systematic timbering, contended Messrs. Micteod and Walsh, is the reduction in fatal and serious injuries which has resulted wherever this plan has been adopted. In addition, the neat working places have a material effect on the workmen's attitude toward his job and any safety measures which may be instituted.

While the history of standardization work in the coal industry shows some progress, said G. B. Southward, mechanization engineer, American Mining Congress, Washington, D. C., in a paper read by F. V. Hicks, superintendent, Union Pacific Coal Co., Winton, Wyo., not a great deal has been accomplished because of the wide variations in mining conditions. Standards are worth consideration, Mr. Southward continued, only if they improve operating conditions, increase productivity or promote safety. Furthermore, development of standards is not a one-man job, as they should be formulated by groups which can bring a wide experience to the task. And where standards can be applied, the experience of mining companies has shown that tiey increase efficiency.
Breaking down the field for standardization into four classifications. Mr. Southward expressed the opinion there is only a limited field for the standardization of mining srstems, due to wide variations in conditions. The same applies to mining operations, but in the field of mining equipment the possibilities are more numerous, although complete standardization of mining equipment is hardly practicable. Performance records and cost accounting offer a number of opportunities for stan-

Mechanical Stoker Sales Advance Sharply

Sales of mechanical stokers in May last totaled 4,969 units, a gain of 37 per cent over the preceding month. according to statistics furnished the U. S. Bureau of the Census by 112 manuiacturers (Class 1. 59; Class 2. 30; Class 3, 27; Class 4. 2^{7}; Class 5. 12). This compares with sales of 3.62 S units in the preceding month and 6,882 in Mar, 1937. Sales by classes in May last were: residential (under 61 lb . oi coal per hour). 4.437 (bituminous. 3.697; anthracite, 740); smali apartment-house and small commercial heating jobs (61 to 100 lb . per hour), 195; apartment-house and general small commercial heating jobs (101 to 300 lb . per hour), 199; large commercial and small highpressure steam plants (301 to 1,200 1b. per hour). 92 ; high-pressure industrial steam plants (more than $1,200 \mathrm{lb}$. per hour), 46 .
dardization of records and methouls ni gathering and compiling the data.
Establishment of Standards is much more diflicult in the Western States, declared R. L. Hair, general superintendent, Colorado Fuel \& Iron Co., Pueblo, Colo., in a written discussion presented by H. H. Machin, Boulder, Colo. His company, however, said Mr. Hair, has made some progress in the standardization of equipment, including crushers, box-car loaders, frogs and switches, stecl ties, rail sizes and other classes of equipment, thus reducing inventories. Least progress has been made in electric motor standardization due to the large numbers salvaged in closing down operations.
"The operator generally camot justify scrapping serviceable equipment in order to standardize unless it is figured out in dollars and cents that he is warranted in doing so," was another conclusion by Mr. Hair, who felt that even after standards have been adopted they might be upset by improvements in equipment. In fact, general standards might hamper to some extent research by mechanical and electrical manufacturers.

Interchangeability of motors with NEMA frames was one trpe of standardization in which manufacturers had an opportunity to take a forward step, said Benedict Shubart, Shubart \& Schloss, Denver. In the case of mining machines, locomotives, etc., it is almost impossible to standardize because of the improvement constantly being made. However, certain details, such as wheel size, clearances, etc., offer a field for progress.

Overcharged Shot Blamed For Volpe Mine Blast

An overcharged shot of pellet powdera non-permissible explosive-was the probable cause of the explosion on June ${ }_{2}$ in the Butler colliery. operated by the Volpe Coal Co.. Pittston. Pa., in which ten men were killed (Coal Age, Jnls, p. 106), according to an announcement on July S by the U. S. Bureau of Mines following an investigation of the disaster. The gas accumulation, sars the Bureau's report, was caused by a disruption of ventilation due to a squeeze in an adjacent portion of the mine.
The overcharged shot of pellet powder apparently was fired from the power line by a miner who was found dead on the gangway at the foot of the chamber in which the blasting was done. The Burean states, however, that "there were other possible sources of igition of the gas in the areal at the time of the explosion."

Exhibition Mine on View

Aiter preparations lasting several months, a permanent exhibition mine, sponsored by the Pocahontas Operators' Association in cooperation with the Pocahontas Fuel Co., Inc., was formally opened to the public at Pocahontas, Va., during the fourth week in June as one of the features in connection with the annual convention of the National Editorial Association. An accompanying exhibition was staged by the Norfolk is Western Ry.
The "show" mine has been reconstructed from the origimal entre, said to date from

George A. Kaseman

1883, in a $12-\mathrm{ft}$. scam of Pocahontas coal. The entrance is through an old fan-blower chamber, traverses the seam in a "U" direction for about 900 ft ., with an exit through the mouth of the original entry. Rooms, spaced at intervals, show an old undercut by hand pick before the introduction of cutting machines; a modern cutting machine, tamping explosive preparatory to shooting, loaded mine car, illustrations of rock-dusting in progress, timbering, and an exhibit of various sizes of coal, as well as many other features of interest to persons desirous of viewing the various operations incident to the mining of conl.

The "workings" are well ventilated and lighted to permit a good view oi everything without destroying the illusion oi actual mining conditions, and the tunnel is sufliciently high and wide to permit automobiles to traverse the entire mine. Inspiration for the scheme came from IW. E. E. Koepler, sceretary, Pocahontas Operators' Association, and the preparations were under the direction of W . J. German, general superintendent, Pocahontas Fuel Co., Inc.

New Preparation Facilities

Alnen Coat, Co., Alden Station, Pa.: Contract elosed with MeCarter Iron Works for installation of 15 -ft.-diameter Chance cone in existing breaker to clean all sizes of buckwheat and larger at a rate of up to 200 tons per hour; also new sizing shakers and belt loading facilities, including facilities for loading box cars; to be ready for operation in latter part of August.
buchanan County Coal Corporation, No. 1 mine, B:g Rock, Va.: Contract closed with American Coal Cleaning Corporation for American pueumatic coal-cleaning plant and auxiliary equipment including a new trpe "Twin-Dex" separator with mechanical deduster for treating minus 40 -mesh x 0 material; capacity, 00 tons per hour of $1 \frac{1}{1}-\mathrm{in} . \times 0$ coal.
Cramberry Improvement Co.. Hazleton, Pa.: Contract closed with Deister Concentrator Co. for three Deister-Overstrom
"Diagonal-Deck" coal-washing tnbles for the treatment of rice. barley and No. 4 buckwheat sizes.

Peabody Coal Co., Westville No. 24 mine, Danville, Ill.: Contract closed with Allen \& Garcia Co. for a new cleaning plant to wash all sizes from 6 -in. down; capacity, 4,500 tons daily; to be ready in late autumn.

Obituary

A. P. Bradr, 58, formerly active as an operator in the bituminous coal field of northern West Virginia, died June 28 at Morgantown, W. Va. He was a brother of A. Spates Brady and W. R. Brady and the late Samuel D. Brady.
S. H. Ronims, 73, chairman of the board, Youghiogheny \& Ohio Coal Co., Cleveland, Ohio, died June 24 in that city. His first connection with the coal industry began nearly a half century ago with Osborn, Sager \& Co., of which he eventually became a partner. He left that organization in 1890 to assist in forming the Pittsburgh Coal Co., leaving the latter in 1902 to help organize the Youghiogheny \& Ohio company.
george A. Kasemax, 60. president, albuquerque \& Cerillos Coal Co and Defiance Coal Co., Albuquerque, N.. M., was killed June 23 by the premature explosion of an oil-well time bomb near Hobbs, N. M. Prominent in business circles in New Mexico for 47 years, Mr. Kaseman also was president of the Albuquerque National Trust and Savings Bank.

Eldiott Davis, 48 , employed for many years as mine foreman at the Chauncey colliery of the Chauncey Coal Co., Plymouth Township, Pa.. died suddenly on July S of a heart attack.

Keiti Doane Quarrier, 64, long known in the coal industry of West Virginia, died July 1 at Fort Lauderdale, Fla., of a heart ailment after an illness lasting two rears. A graduate in electrical enginecring from Purdue University, he had been comected with the Carbon Fuel Co., Carbon, W. Va., since 1901.

Percy Hamiltox Brown, 75, formerly rice-president of the Greenwood Coal Co., Lawton, W. Va., and a pioncer operator in Fayette County, died July 17 in a Hinton (W. Va.) hospital after an ilness of more than six weeks.

Industrial Notes

Centriftgal \& Mechanical Industries, Inc., St. Louis, Mo., has appointed M. A. Matthews, formerly of the coalpreparation division of the Jefirey Mfg. Co., at Terre Haute, Ind., as sales representative to the coal industry. His new comection becomes effective Aug. 1.
Posona Pump Co. has made Jule F. Coffey vice-president in charge of sales, vice W. H. Day. The latter resigned and has become general sales manager of Peerless Pump Division, Food Machinery Corporation.

Connecticet Blower Co. has appointed these two additional sales engineers: Julius Lamparzyk, Cleveland, for exclusive

ARMATURE SHAFTS

Guaranteed Against

 BreakageFOR 5 YEARS
Made from special alloy heat - treated material that makes these shafts unusually durable. Can be ground or polished to a mirror-like finish.

For Further Details and Prices
Write to

CENTRAL MINE SUPPLY COMPANY

MT. VERNON, ILLINOIS
sales in Ohin，and Arihur Pohatom，hamis． vilhe，fir hemturky salus．
 an II．S．MoAleer as munager．A grand． Hath of Carnugin lastituto uf Trehnology in 1012 with the degree of Merhantat Fingiener，he wats associated for several gears with fley die fatersoll，he．，jom－ Gug the hinppers fonstruetion for in leen．
 Coberostax hats transfomed Withlana J． Daly，formerly Detroit distriot sales mat－ ager，II the thiladelphis othoe to stic－ seat C．II．Claw．dereaseal．

Trade Literature

 exuipmint fur preparatios，haudtiog aud deving of bituminens cosal th mest exact－ ing mathats．The tink－bolt Simber frates wablery is stewsed and desecherd in de－ tail and outatandog installations are Hhlustrited amd diseussed．

Dusp forbegomi－Aosthere Blower Co．Cheveland Ohio \｛tpe bulletins． （Gives specitications and deacribes comstrue． tives and eperation of Norbla collectors

Bhwatuh Rups－bionderick \＆Batsemm
 （ives detaits of repe comintuctions and contims detinite recommendations as at ruper best suiked for diflerent typer of ele－ sators，as wed ats an artiche on factors athectis．s the service ui whesator rupe．

Fiow Meteks－Brown bitmamen（＇u．， Philadelphiar．Pro（spor，iolumet．Ender the ritle＂Jins is Right．＂exphams how these units，by metering steam，water，vil ambt other thids，cats bring is matminc－ turing monesses maty of the ecomomies ethectad in phemer production．
 T．Kyersul \＆Sun，lac．，Chitago（t－pp）． halhetin！Gives description and duta on the physital properties of leyerome and Xikroma＂M，＂Mind iot an graz natiety of heaty－duty applieations．
 Ding Mannetic 太゙paratur Con，Milwatukee， Wis．（Catalug No．22： 16 pho，ilhstrated）． Deseribes cothametion and tesign oi units fins equomical mesai handing，inelusing иренан Hg dha．

 You（an Masure，inio koviter sells in brict the contributions uf GR emginers

 fathes the Reaver Model－13 courerthiz

 machian with simphitical oithy eystem， Foxm 488 is is tobl concleased cutalog．

 thim mastabing charateristice of gasu－

Permissible Plates Issued

Four approvals oi pectuissible equipment wore issued hy the U．S． Bhrean of Mines in June：

Jottry Mantaturing Con：Tspe L． 410 lowding machine：inthp． motor，2ate． 000 volts，dic：Ap

 TYpu Stiole leating machine：ther
 rults，ace；dpprowals ate and 347 A；June 29．
lime，kerosene sud natural－gas units，with thumenions and speritioations．
 Chaiu if Cable for，lork．Ph，（t－pp fodeng．Ithatrates aud deecribes the A－co－Morew presurure lubricators，show． ing ham pressure lubrication is posible even with commore oit holes and withour the ute wis any special fiteturs

Ksvags Thansulsstos－－Browu Lustru－ ment（＇or．Hhiladetpida，Frs，Fohler No．
 fon remote tramsmisicat of measuremeut and conteol in hayardous atmosphetes where the use af electicul framsuissione is 20t wermissible．

Shery equapext－Wilhom Products． Ine．，liending，Pa． $134-\mathrm{pp}$ ．chatacg．illus tuted！．Lists the complete Wilkore lure of industrial salety devies，including gogntes．respiraturs werding hetmets and hiardshiehls，welding glass Dhasting hei－ mets，ate．
 Deming Co．，Salem，Ohio Bulletio Nu． 3000，of pro，illustratedl．Gives dearery－
tion．periormance tables and sectional views of electric－motor and belt－driven units，gasoline－engime units，and light－ weight portable units．

Two－Sthae Centrifeghe Pumps－ Ingersoll－hand Co．，Phillipsburg．N．J． （llulletin $7067,10 \mathrm{pp}$ ．．illustrated）．Gives complete specifieations and operating characteristics of the Cameron Class GT unit designed to operate at modern motor， turbine and engine speeds；avalable in apmaties from 100 to 2.200 gal．per minute for diseharge heads up to sod ft．
 Hydramic Compling Division of Amertean Blawer Corpuration，Detroit．Mich \＄ 16 ph．．illustrated！．Includes description of operation and types of control of Vulcan sinctair hydratic empling for use in industrial drives．

Coal－Mine Fatality Rate Shows Shrinkage

Aceidents at coal miues of the United States cuased the deaths of to bituminous and 9）antaracite miners is May last，ac－ arting to reports iurnished the U．S． Burvait of Mites by State uine inspectors． With a proluction totathy 91.995 ，000 tuns， the ileath rabe mony bitumiunus miners was 1.82 per willion tous．compared with 2． 3 is in the coerespoudiag month of last year．
The anthracite fatality rate in 3lay tast

For the two industries cuphbined the death rate in May lust was L．s\％．compared with ？．0e in May．19：35．
Fatalities duriug May lest，by causes and staters as well as enmparable rates fur the first five montho of 193% and $[335$ ． by cuuses are show：betow．

Siste	Falls Roof		Hanl aは	Gns ar Dusu F゙xulu－ sivis	adergroun Explem sives	Blece trinity	N：iro in安 V3n chines	Suffu cation	Total Tnular Ciruaral	Sinit	Oper－ Cut 3 mL sur fixt	Grand Total．
lllinamat	2	\cdots	52	6a	5	＊－	S－2	1	3	－	1	4
Imlisun．	\cdots	－	？	．	．．	．．	．	．	1	$4{ }^{2}$	＜2	$\underline{1}$
Ions．		\cdots	\pm	－	\cdots	\cdots	\cdots	．	t	人	－	\％
¢0，	1	SK		－$\%$	S\％		＜	4	t	\cdots	－	$\underline{1}$
Koniucky	3	\cdots	\pm	．．	．	！	＊－	\cdots	i	\％	\cdots	，
Moutmbi ．．．．．．．．	1.	～	6－2	N－	\％	\％	\cdots	－	4	\cdots	．．	I
Vew Mexice．．．．．．．．	1		－	42	20	M	ha	65	1	mo	－	5
Otio．	2	t.	．	\cdots	，		\ldots	．	3	－	H2	3
［Patiziventis bit．．．．	6	4	\ldots	－．	．．	t		－	5	＊	．	3
Transtsee．．．．．．．．．．．	t	．	Sa	©		．	1	．．	$\underline{3}$	\cdots	．	\％
Vinginia．．．．．．．．．．	2		．		1		．	\cdots	3	\cdots	\cdots	3
Wrat Virpitris．	4	1	－	1	3	1	－	－	8	－	ht．	5
Ynis bitunimeszis．	25	3	1	\％	2	3	1	！	39		1	41）
Pennaylvanis amaterwies	－	－	1	．．	2	－	N	t	3	1		9
Intai．	－${ }_{\text {d }}$	2	1	1	3	t	\square	4	42	L	1	49

 Jismary－Mry， 19 gz nand tichs

Guise												
	$\begin{gathered} \mathrm{No} \\ \mathrm{Ki} \\ \text { K } \end{gathered}$	（4）	$\begin{aligned} & \text { Killen } \\ & \text { Mition } \end{aligned}$	ike 1438		atrer led 1：138	$\begin{aligned} & \text { Kileai } \\ & \text { Milition } \end{aligned}$	i per 11 Tons 11138		nber led 1138		
	24：	17 L	－． 264	1．3a	35	62	12． 1 ¢	3；135．	300	23ti	1．3\％	1．580
Heclage．．．．．．．．	98	3	． 513	103	i＊	10	2．585	． 305	12	$1 \mathrm{i}^{2}$	2．	． 416
 	is		Ufti	0%								$0{ }^{4}$
Msjor	27	（1）	．$\because 1$	itis		8		404	27	65	120	450
Simmatives．	\％	7	， 4	136	3	5	310	254	24	11	112	074
Fiectricty	10	11	，083	115	1	1.	013	1351	20	1.5	1103	100
Sigentary	15	10	194	． 5	1		043		14	10	175．	467
Shate	（1）	2	1162	）15	2	2	115	1131	12	i	056	023
Miscritadevisi．	：4if	3	175	，05\％）	S	t．	340	2022	12		1172	084
xripuing ur oko	1		准䢒	usis	4		1，0	iUk	1.	1	unu	06
Surisue	4	15	152	． 116	8		34	：111	36	5	12	1．14
Totai	454	Ay	2．83：	2007	104	15	1．42！	5．20s	Ss	40^{2}	2374	3.1334

WHAT'S NEW

In Coal-Mining Equipment

TROLLEY GUARD CONYEYOR BELT

B. F. Goodrich Rubber Mfg. Co., Akron, Olio, offers a new trolley-guard material consisting of a cloth-inserted rubber shect $3^{\frac{3}{2}}$ in. thick and 9 in. wide, made in $25-\mathrm{ft}$. lengths. The sheet is folded double and given a secondary cure so that it will retain a U shape. It is installed by slipping it over the trolley wire like a saddle and cutting notches or holes at intervals for the hangers.

Pointing out that no rubber is completely proof against the effects of sumlieht. Goodrich also offers new rubber compoumls for convevor belts that are said to liave greatly increased resistance to light checking. As an example of the adrantages of the new compounds. (Goodrich submit= the accompanying illustration showing belting made of old-style compounds a* compared with the new materials.

BLUEPRINT PAPER

A new series of blueprint papers of "an unusually deep blue color and an extremely wide printing range" is offered by the Keuffel \& Esser Co. Hoboken, ㄷ. J. Known as "Series fi0." these papers are handled the kame as conven. tional prapers. although they are a light blue instead of yellow before expt:ure. White lines of the reproductions, according tos the company, stand out in sharp. lewible contrant equal to original drawinus, while traciny- of varyindr trans-
parency can be printed successfully with a single setting of the machine or strong blueprints may be made from any tracing within a hroad range of machine speeds. Danger of over- or under-exposure is said to be reduced, eliminating the necessity for trial prints and speeding production.

CENTRIFUGAL DRYER

Centrifugal \& Mechanical Industries. Inc.. St. Louis, Mo.. offers a new centrifugal dryer and sludge reclaimer for use either in drying 1 -in. to 0 washed coal or in reclaming washery sludge and rendering it salable. Esentially: the unit consints of two rotating elements, one an outside conical screen frame and the other an inside solid cone with down-ward-spiraling flights. Both elements rotate in the same direction, with the screen slightly faster than the solid cone. Material is fed into the top, ialls onto the solid cone and is thrown aqainst the screen by centrifugal iorce, whereupon the liguids begin to pass throught the screen. The slight differential in the speed of the two elements result: in
the sereen moving slowly around the inner solid cone, in the course of which the material is carried down to the bottom, or discharge point, by the fl:ghts, all the time entering zones of increasing centrifugal iorce which tend to rentore all liquids not held on the solids b, surface tension. Liquids through the sereen fall into a launder with two openings fitted with pipe flanger.
Continuous in operation, the new dryer and sludge reclaimer. the company points out, has been brought to a high state of efficience and mechanical reliability. While the continuous princeple permit = the handling oi large zonnages. The unit, it is stated. requires no more labor to uperate than an ordinary electric motor; aperates with a much lower maintenance cost per ton of material processed than any other dryer of similar capacity; requires no heat; reduces initial investment for equipment and flew -prace; and will "deliquify solid mate-jale at a lowet crot than anv other known method."
Ore unit. the company states, is in use at the St. Darid (IIl.) mine of the Central States Collierite reclaiming saisle cual from sludge, re-

Aucing ash of 32 per cent and mosisture of 31 per cent to 10.6 and 11 per cent, respectively. An Indiana installation is handling up to 100 tons of coal per hour, reducing free moisture from 25 to 30 per cent to less than 7 per cent. An Illinois installation is processing minus iss-in. coal at 7 is tons per hour, which enters the dryer with a moisture of 20 per cent. An average of 30 tests, It is stated by the manufacturer, shows that all but 2 to 3 fer cent of the free moisture is removed.

CONVERTIBLE ENGINE

To fill the need for sturdy, medium-speed engines in the 200 - to 300 -hp. ranue, Fair banks, Morse \& Co., Chicago, offers the Hexlel 3f-A-8 vertical convertible diesel and gas engines. Built in foth six- and eight-cylinder combinations, these engines develop, 3.5 lip. per cylinder at $i 20$ r.p.m. Both

diesel and qā̃ engines in this series are offered for stationary service, with diesels in complete unit-huilt F-3 electric generating set:- as well, in addition to sther services. Features cites by the company include: implicity; neat appearance, completely self-contained design, stremeth, dependability and excellent fuel and lubrícatincroil eronomr.

\rightarrow

ELECTRICAL CONTROLS

Ners "De-jon" linestarters for a.e. motors up to $\overline{3} \mathrm{hp}$ - 220
 volts, pro ate avialaibie in an wherfized cabillet mroviding an
 sits the Weatirighruas Electric \&. Ifg. Co. Ea-? Pittriurgh, Pa. Thine stareve rway ike lison? Thers cucerall dimen-
 Gud are stailate with a sufarata faztratton. a imilt-in Etar-ftoy pensutugn ar witit幺 built-in Exnd an artomatie -x7ten.

 \#ertibe wbere protecticm ypran
 ojeirct art atother Wrentirzजogse druejomont. Tbase
 jays. are suitoble for aspira-

currents of magnetic controllers for large motors must be withstood for long periods and where reliability is important. Stations of one to four units are avaitable. A maintainedcontact unit also is available by using a stambard momentary unit with an interlock unit.

Westinghouse also offers what it terms a "simple. molerately prieed 'Silverstat' regulator in a range of sizes for the automatic voltage coutrol of small a.c. and d.c. generators." The device is said to be of the direct, quick-acting rheostatic type which regulates the voltage ly varying directly the resistance in the field cirenit. It has no vibrating contacts and no parts requiring readjustment or replacement at irequent intervals, the company states.

\rightarrow

RESPIRATOR

loor use in Type A lusts, Chicago Five Shield Co., Chicago, offers the Style 92 Bureat-of-3tines-approsed respirator with filter units having an effective lreathing area of 4.5 sq.in.. said to climinate fatiguing resistance and greatly increase the comfort of breathing. lilter mits, it is pointed out, adjust automatically to movement and compensate for all facial variations. Weiglt is kept to a minimum and vision is mot olstructed. The mask is fittel with a diaphragm to permit conversation.

DIESEL ARC WELDER AIR CLEANER

A new diesel engine said to compare favorably with the gasoline engine in simplicity, weight, cost and operating speed has been adopted for driving arc-welding generators, the Lincoln Electric Co., Cleveland, Ohio, amounces. Fuel costs, accorting to the company, are cut 33 to 86 per cent, depending upon fuel-oil price. In many cases, total sarings run as high as 40 c. per hour.

The generator employed with the new unit is the 300 -amp. "Shiold-Are SAE" machine equipped with dual-continuous control-a methou of providing the right size and type of are for every electric-welding application.

Tincoln also offers the "Linconditioner," a new machine stated to condition air by filtering out approximately 95 per cent of the dirt particles from air in the vicinity of grimding, welding and other shop operations. The machine niso draws smoke and heat away from the work. It also can be adapted to blowing smoke, if desired. The conditioner consists of a fan powered hy a $\frac{1}{2}$ hp. motor which produces suction in a llexible metal tube. The air is exhansted into a filter in the periphery of the power unit.

\rightarrow -

LARGEST TIRE

Construction of what it terms the industry's largest hearyduty truck tire has been completed by the Goodyear Tire \& Rubber Co., Akron, Ohio, for use on large eartl-moving vehicles. Size of the tire is

$24 \cdot 32$; weight is $1,200 \mathrm{lb}$. This $30-p l y$ tire, when inflated to 75 lb ., has an outside diameter of 82 in. and a load capacity of $25,000 \mathrm{lb}$. The rim, with a flange $3 \frac{1}{2} \mathrm{in}$. high, is 17 in . wide. Tread is the standard Goodyear "Sure Grip" design used on tractor tires. The tire uses a protective flap weighing 17 lb .

$\rightarrow-$

ELECTRODES

A complete line of shieldedare welding electrodes, stated to be quieter in operation, faster in welding time, better producers of beads with a fine appearance and wider in adaptability per rod, is offered by the Mchay Co, Pittsburgh, Pa. No change in customary operating practice is necessary, it is pointel out.

DIESEL TRACTORS; ENGINES

Announcing the D2 "Caterpillar" diesel tractor, the smallest of its line (four cylinders, $25 \frac{1}{2}$ lip. at the drawhar, $31 \frac{1}{2} \mathrm{hp}$. at the belt, only three engine-operating adjustments), Caterpillar Tractor Co., Peoria, Ill., points out that it is well suited to hauling supplies, working the smaller rotary scrapers or maintaining or building mine roads, etc. Fuel savings of 00 to 80 per cent are expected. Twin radiators are provided, one for cooling water and the other lubricating oil. A hot-water

manifold on the side of the fuel-filter housing keeps the diesel fuel at the moper temperature regardless of climatic or operating conditions.

The D4600 six-eylinder 66-hp. diesel-engine unit has been added to the Caterpillar line of industrial diesel engines. Normal governed speed is 1,400 r.p.m., and the engine is said to be well suited for use in shovels, draglines or hoists or for driving an electric gener ator. A 14-hp. two-cylinder gasoline starting engine is mounted at the rear of the main engine.

Another engine unit is the D3400 four-cylinder 33-hp.-at 1.525-r.p.m. diesel unit, stated to be the proper size for powering small portable equipment. s-yd. draglines and shovels, small industrial locomotives and 15-kw. electric generators. This unit includes a twin radiator and a lo-hp. gasoline engine for starting.

PLANER GAGE

Iuikin Rule Co., Saginaw, Mich.. has added to its line the No. 900 "Master" planer and shaper gage. Used as a planer gage, tool settings from $\frac{1}{2}$ to 9 in. can be made with an extension, or $\frac{1}{4}$ to $6 \frac{1}{2}$ without the extension. The gage also

serves as an adjustable (sliding) parallel. It can be used on base, on end or flat on either. side. Base width is $\frac{5}{8}$ in.; length is 5 ? in. The base also is fitted with a level.

SHUT-OFF VALVE

An automatic shut-off valve for use in the supply line above flexible hose for conveying compressed air, steam, gas or fluids under pressure, and which immediately shuts off the supply when there is a break in the hose or it becomes discomnected, is offered by the D. J. Murray Mfg Co., Wasau, Wis., under the trade name "Mnrray. Lorge."

DRIVE CONTROL

Reeves Pulley Co.., Columbus. Ind., announces a new lype of automatic remote control for use with the Reeves vari-speed " Motodrive.' The complete control consists of a bellows shifting mechanism mounted on the "Motodrive," an adjustable pressure-reducing valve located as desired, any auxiliary valves required and connecting pipes.

Fluid pressure is transmitted by means of oil, water, steam, gas or air to the bellows shifting mechanism which operates to increase or decrease the speed of the "Xotodrive" and consequently the driven-machine speed.

OIL RECLAIMER

A new oil reclaimer selling for approximately $\$ 300$ is announced by the Bucyrus-Erie Co., South Milwakee, Wis., which states that it departs from the complicated distilling processes. previously employed in this type of equipment. Resulting simplicity and low operating cost, together with low first cost, are said to make oil reclamation really economical for owners of trucks, tractors or other gasoline or diesel engines. Transformer, heat-treating and other fluid industrial oils also may be reclaimed, according to the company, which points to recovery of up to 90 per cent of average crankcase oil at an over-all cost of about 9c. per gallon. Such reclaimed oil is stated to be even better than new oil.

[^0]:

[^1]: ${ }^{2}$ For detalls of earlier derelopments at operations described in this article see Coal Age, September, 1930, p. $\overline{5} 24$, and May, 1931, p. 227.

[^2]: evmpletee the Na 13 ＝lise of the Piets

[^3]: * Abstract of a paper presented at the 36th regular meeting of the Rocky Mountain Coal Mining Institute, Denrer, Colo., June 24, 1938 .

