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Abstract
Purpose: The paper presents selected examples of application of computational tools, including artificial 
intelligence methods to solve examples of tasks in the area of materials science. (i) Selection method of steel 
grade with required hardenability;  (ii) Modelling of CCT diagrams for engineering and constructional steels; 
(iii) Application of neural networks for selection of steel with the assumed hardness after cooling from the 
austenitising temperature; (iv) Designing of high-speed steels chemical composition
Design/methodology/approach: In the paper been applied a hybrid approach that combined application of 
various mathematical tools including artificial neural networks, linear regression and genetic algorithms to solve 
selected tasks from the area of materials science.
Findings: Computer modelling and simulation make improvement of engineering materials properties 
possible, as well as prediction of their properties, even before the materials are fabricated, with the significant 
reduction of expenditures and time necessary for their investigation and application. Methods used in hybrid 
systems are complementary and disadvantages of one method are compensated by the advantages of another 
method.
Practical implications: Solutions presented in the work, based on using the adequate material models may 
feature an interesting alternative in designing of the new materials with the required properties. The practical 
aspect has to be noted, resulting form the developed models, which may successfully replace the above 
mentioned technological investigations, consisting in one time selection of the chemical composition and heat 
treatment parameters  and experimental verification of the newly developed materials to check of its properties 
meet the requirements.
Originality/value: The presented approach to new materials design assumes the maximum possible limitation 
of carrying out the indispensable experiments, to take advantage of the existing experimental knowledge 
resources in the form of databases and most effective computer science tools, including neural networks and 
evolutionary algorithms.
Keywords: Steels; Artificial intelligence methods; Modelling; Simulation
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1. Introduction 
 
In recent years significant progress has been made in methods 

and tools for modeling and simulation the technological processes of 
manufacturing and processing of materials and forming the micro-
structure, functional and service properties of materials as well. 
Computer-aided modeling is becoming increasingly present in both 
research and in industrial practice. Progress in the area of materials 
engineering is connected inseparably with employment and 
development of numerical methods and mathematical modelling in 
particular. Computer modelling and simulation make improvement of 
engineering materials properties possible, as well as prediction of 
their properties, even before the materials are fabricated, with the 
significant reduction of expenditures and time necessary for their 
investigation and application. Research in the area of mathematical 
modelling, computational intelligence, and artificial intelligence indicate 
to the big potential connected with using the hybrid models [1], [2], [3]. 

Merging methods in one model makes analysis possible of a 
broader problem space, and - which is even more important - 
benefiting from advantages of every method and achieving the 
synergetic effect. Assumption that these methods are complementary 
is the base for development of such solutions. Methods used in hybrid 
systems are complementary and disadvantages of one method are 
compensated by the advantages of another method [3]. 

An example of hybrid systems can be the combination of 
symbolic methods of knowledge representation and processing 
specific to expert systems with numerical methods of data 
representation and processing, that are specific to artificial neural 
networks. One of the difficulties related to the design of expert 
systems is the acquisition of knowledge from experts and its 
verification. Experts are not always able to justify their intuitive way 
of reasoning. Artificial neural networks can be used to automatically 
acquire knowledge by learning from examples and gathering 
knowledge in the numerical values of weights of connections between 
neurons. In the case of a complex neural network interpretation of the 
knowledge contained in its structure is difficult or simply impossible. 
This makes it difficult explanation provided by neural network 
solutions, which is often indicated as a significant disadvantage of this 
solution. 

Artificial neural networks are also often combined with other 
methods of computational intelligence and statistical methods. The 
examples of this approach are genetic algorithms and their 
modifications. Evaluation of adaptation of individual chromosomes, 
which are set of possible solutions, is based on the value calculated by 
artificial neural network. In the case of multi-criteria optimization is 
possible to create a complex objective function. The value of this 
function can be calculated by a number of neural networks and / or 
statistical regression equations. Interesting opportunities also provides 
a connection in one model, two classes of tasks that can be solved by 
artificial neural networks - classification and regression..  

The paper presents selected examples of the use of hybrid 
methods to solve selected tasks in the area of materials science. 

 
 

2. Selection method of steel grade with 
required hardenability 

 
Hardenability assessment, being one of the main criteria for 

the selection of steel for constructional elements, makes it 

possible to accomplish the expected properties’ distribution in the 
element transverse section. [4],[5]. The purpose of this study is to 
work out the computer aided method for selecting grades of steel 
with a required hardenability. Moreover in the initial stage, a 
neural network model for calculating the Jominy curve on the 
basis of the chemical composition has been worked out. 

The aim of this study [6] is to work out the system that would 
help to select the steel grade with the required course of the 
hardenability curve. It has been assumed that the steel will fulfill 
this criterion if the curve, defined by the user, is contained in the 
hardenability band characteristic for a given steel grade. The 
hardenability band for the given steel grade has been defined as 
the lowest and highest hardness calculated for the consecutive 13 
distances from the quenched end. 

Determining the hardenability bands requires working out the 
appropriate calculating model for the range of mass 
concentrations of elements presented in Table 1. 

 
Table 1. 
Ranges of mass concentrations of elements  

R
an

ge
 Mass fractions of elements, % 

C Mn Si Cr Ni Mo V 

min 0.22 0.30 0.05 0 0 0 0 
max 0.60 1.60 1.37 2.20 2.20 0.50 0.25 

 
Next, the neural network has been designed and numerically 

verified that made possible to calculate the hardness of the steel on 
the basis of the chemical composition for the assumed distance 
from the quenched end. It has initially been assumed that the 
designed system will include the information about 20 steel grades 
for carburizing and quenching and tempering. For each steel grade 
150 chemical compositions have been randomly generated, and the 
hardness for the assumed 13 distances from the quenched end has 
been calculated. This way a training set for the neural classifier has 
been created whose task was to propose the grade of steel after 
defining the required Jominy curve by the user. 

The neural network designing enabling the calculation of the 
hardening curve has been carried out in two variants. In the first 
variant the mass concentrations of the elements and the distance 
from the quenched end have been used as the input data. The 
activation level of a single output neuron determined the hardness 
of the steel. In the second variant, the response coding of the 
neural network in the form of 13 neurons has been applied, each 
of them determining the hardness of the steel in the consecutive 
distance from the quenched end. 

The following quantities determined for the data sets were 
used as the basic coefficients for evaluation of the neural network 
model performance: average network prediction error, ratio of 
standard deviations of errors and data, Pearson correlation 
coefficient. These coefficients have been calculated for the 
consecutive distances from the quenched end. In both analysed 
variants, the best quality coefficients have been obtained for the 
MLP (multilayer perceptron) network. The analysis of the quality 
coefficients in the consecutive distances from the quenched end 
calculated for the training, validating, test and verifying sets has 
proved that the smallest error occurs in the network with one 
neuron in the output layer. 

In Figure 1 the Jominy curve has been compared, that has 
been calculated with the help of the neural network and 
determined experimentally. 

For calculations of steel grade the feed-forward neural 
networks have been applied. Two options of network response 
coding have been analysed. In the first option, there has been used 
one output variable equal to the number of steel grades. In the 
other, the number of output variables equal to the number of 
classes have been applied on the assumption that each variable 
can have two (yes or no) values to state whether certain steel 
meets the user’s requirements. 
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Fig. 1. The comparison of the experimental and calculated curves 
for the steels with a mass concentration of elements: 0.19% C, 
0.94% Mn, 0.28% Si, 0.94% Cr, 0.17% Ni, 0.23% Mo 

 
For neural network response code by means of one dependent 

the number of neurons in the output layer variable has been used 
that is equal to the number of nominal-value variables, so 
eventually equal to the number of classes. The one-with-N 
conversion type has been applied. The class attribution of the 
investigated case requires stimulation of one neuron and 
simultaneous disconnection of the others. It is the level of 
activation of the winning neuron that decides on the class 
attribution. Each training vector consisted of 13 calculated values 
of steel hardness and a nominal output variable in the form of 
steel grade marking. 

Figure 2 show the examples of hardness curve in function of 
distance from quenched end against a background of the range of 
hardness change for steel grades accepted as a model and 
suggested by the network. 
The other option of neural network response coding has been the 
application of the number of output variables equal to the number 
of steel grades (classes). In that case, the number of neurons in the 
network output layer has been assumed according to the number 
of steel grades. The double conversion has been applied, which 
means that each variable could have one of the two nominal 
values indicating either class affiliation or the lack of a certain 
class affiliation. For neurons in the output layer the values of 
acceptance and rejection level have been established. The value of 
the activation of output layer neuron that is higher than the 
acceptance level has been interpreted as the selection of steel 
grade that meets the predetermined requirements. The activation 
level of the output layer neuron that is lower than the rejection 
level has excluded the steel grade from the accepted selection. 

Figure 3 show the example of predetermined Jominy curve in 
function of distance from quenched end against the background of 
hardness ranges for steel grades: the one assumed as a model and 
the one suggested by the neural network. In this case the network 
response should be considered as a set of potential solutions with 
the final decision to be taken by the user of the system. 

The presented in the paper model of interrelation between the 
chemical composition and the distance from the quenched end 
and the hardness of steel may be used when estimating the 
difference between the assumed hardness and the possible 
hardness to obtain for the cast with a specific chemical 
composition. The presented in the paper project may be 
supplemented with other steel grades. 
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Fig. 2. Comparison of the predetermined Jominy curve and range 
of hardness change accepted as a model (34CrMo4) and 
suggested by the neural network (25CrMo4) 
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Fig. 3. Comparison of the predetermined Jominy curve and 
hardness ranges for steel grades suggested by the neural network: 
variant 1-38Cr2; variant 2 - 46Cr2 
 
 

3. Modelling of CCT diagrams for 
engineering and constructional steels 

 
The CCT diagrams containing the quantitative data pertaining 

to the dependence of steel structure and hardness on temperature 
and time of the supercooled austenite transformations are used for 
determination of the structure and hardness of the quenched, 

1.	�Introduction

2.	�Selection method of 
steel grade with required 
hardenability
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Hybrid modelling methods in materials science - selected examples 
 
 

1. Introduction 
 
In recent years significant progress has been made in methods 

and tools for modeling and simulation the technological processes of 
manufacturing and processing of materials and forming the micro-
structure, functional and service properties of materials as well. 
Computer-aided modeling is becoming increasingly present in both 
research and in industrial practice. Progress in the area of materials 
engineering is connected inseparably with employment and 
development of numerical methods and mathematical modelling in 
particular. Computer modelling and simulation make improvement of 
engineering materials properties possible, as well as prediction of 
their properties, even before the materials are fabricated, with the 
significant reduction of expenditures and time necessary for their 
investigation and application. Research in the area of mathematical 
modelling, computational intelligence, and artificial intelligence indicate 
to the big potential connected with using the hybrid models [1], [2], [3]. 

Merging methods in one model makes analysis possible of a 
broader problem space, and - which is even more important - 
benefiting from advantages of every method and achieving the 
synergetic effect. Assumption that these methods are complementary 
is the base for development of such solutions. Methods used in hybrid 
systems are complementary and disadvantages of one method are 
compensated by the advantages of another method [3]. 

An example of hybrid systems can be the combination of 
symbolic methods of knowledge representation and processing 
specific to expert systems with numerical methods of data 
representation and processing, that are specific to artificial neural 
networks. One of the difficulties related to the design of expert 
systems is the acquisition of knowledge from experts and its 
verification. Experts are not always able to justify their intuitive way 
of reasoning. Artificial neural networks can be used to automatically 
acquire knowledge by learning from examples and gathering 
knowledge in the numerical values of weights of connections between 
neurons. In the case of a complex neural network interpretation of the 
knowledge contained in its structure is difficult or simply impossible. 
This makes it difficult explanation provided by neural network 
solutions, which is often indicated as a significant disadvantage of this 
solution. 

Artificial neural networks are also often combined with other 
methods of computational intelligence and statistical methods. The 
examples of this approach are genetic algorithms and their 
modifications. Evaluation of adaptation of individual chromosomes, 
which are set of possible solutions, is based on the value calculated by 
artificial neural network. In the case of multi-criteria optimization is 
possible to create a complex objective function. The value of this 
function can be calculated by a number of neural networks and / or 
statistical regression equations. Interesting opportunities also provides 
a connection in one model, two classes of tasks that can be solved by 
artificial neural networks - classification and regression..  

The paper presents selected examples of the use of hybrid 
methods to solve selected tasks in the area of materials science. 

 
 

2. Selection method of steel grade with 
required hardenability 

 
Hardenability assessment, being one of the main criteria for 

the selection of steel for constructional elements, makes it 

possible to accomplish the expected properties’ distribution in the 
element transverse section. [4],[5]. The purpose of this study is to 
work out the computer aided method for selecting grades of steel 
with a required hardenability. Moreover in the initial stage, a 
neural network model for calculating the Jominy curve on the 
basis of the chemical composition has been worked out. 

The aim of this study [6] is to work out the system that would 
help to select the steel grade with the required course of the 
hardenability curve. It has been assumed that the steel will fulfill 
this criterion if the curve, defined by the user, is contained in the 
hardenability band characteristic for a given steel grade. The 
hardenability band for the given steel grade has been defined as 
the lowest and highest hardness calculated for the consecutive 13 
distances from the quenched end. 

Determining the hardenability bands requires working out the 
appropriate calculating model for the range of mass 
concentrations of elements presented in Table 1. 

 
Table 1. 
Ranges of mass concentrations of elements  

R
an

ge
 Mass fractions of elements, % 

C Mn Si Cr Ni Mo V 

min 0.22 0.30 0.05 0 0 0 0 
max 0.60 1.60 1.37 2.20 2.20 0.50 0.25 

 
Next, the neural network has been designed and numerically 

verified that made possible to calculate the hardness of the steel on 
the basis of the chemical composition for the assumed distance 
from the quenched end. It has initially been assumed that the 
designed system will include the information about 20 steel grades 
for carburizing and quenching and tempering. For each steel grade 
150 chemical compositions have been randomly generated, and the 
hardness for the assumed 13 distances from the quenched end has 
been calculated. This way a training set for the neural classifier has 
been created whose task was to propose the grade of steel after 
defining the required Jominy curve by the user. 

The neural network designing enabling the calculation of the 
hardening curve has been carried out in two variants. In the first 
variant the mass concentrations of the elements and the distance 
from the quenched end have been used as the input data. The 
activation level of a single output neuron determined the hardness 
of the steel. In the second variant, the response coding of the 
neural network in the form of 13 neurons has been applied, each 
of them determining the hardness of the steel in the consecutive 
distance from the quenched end. 

The following quantities determined for the data sets were 
used as the basic coefficients for evaluation of the neural network 
model performance: average network prediction error, ratio of 
standard deviations of errors and data, Pearson correlation 
coefficient. These coefficients have been calculated for the 
consecutive distances from the quenched end. In both analysed 
variants, the best quality coefficients have been obtained for the 
MLP (multilayer perceptron) network. The analysis of the quality 
coefficients in the consecutive distances from the quenched end 
calculated for the training, validating, test and verifying sets has 
proved that the smallest error occurs in the network with one 
neuron in the output layer. 

In Figure 1 the Jominy curve has been compared, that has 
been calculated with the help of the neural network and 
determined experimentally. 

For calculations of steel grade the feed-forward neural 
networks have been applied. Two options of network response 
coding have been analysed. In the first option, there has been used 
one output variable equal to the number of steel grades. In the 
other, the number of output variables equal to the number of 
classes have been applied on the assumption that each variable 
can have two (yes or no) values to state whether certain steel 
meets the user’s requirements. 
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Fig. 1. The comparison of the experimental and calculated curves 
for the steels with a mass concentration of elements: 0.19% C, 
0.94% Mn, 0.28% Si, 0.94% Cr, 0.17% Ni, 0.23% Mo 

 
For neural network response code by means of one dependent 

the number of neurons in the output layer variable has been used 
that is equal to the number of nominal-value variables, so 
eventually equal to the number of classes. The one-with-N 
conversion type has been applied. The class attribution of the 
investigated case requires stimulation of one neuron and 
simultaneous disconnection of the others. It is the level of 
activation of the winning neuron that decides on the class 
attribution. Each training vector consisted of 13 calculated values 
of steel hardness and a nominal output variable in the form of 
steel grade marking. 

Figure 2 show the examples of hardness curve in function of 
distance from quenched end against a background of the range of 
hardness change for steel grades accepted as a model and 
suggested by the network. 
The other option of neural network response coding has been the 
application of the number of output variables equal to the number 
of steel grades (classes). In that case, the number of neurons in the 
network output layer has been assumed according to the number 
of steel grades. The double conversion has been applied, which 
means that each variable could have one of the two nominal 
values indicating either class affiliation or the lack of a certain 
class affiliation. For neurons in the output layer the values of 
acceptance and rejection level have been established. The value of 
the activation of output layer neuron that is higher than the 
acceptance level has been interpreted as the selection of steel 
grade that meets the predetermined requirements. The activation 
level of the output layer neuron that is lower than the rejection 
level has excluded the steel grade from the accepted selection. 

Figure 3 show the example of predetermined Jominy curve in 
function of distance from quenched end against the background of 
hardness ranges for steel grades: the one assumed as a model and 
the one suggested by the neural network. In this case the network 
response should be considered as a set of potential solutions with 
the final decision to be taken by the user of the system. 

The presented in the paper model of interrelation between the 
chemical composition and the distance from the quenched end 
and the hardness of steel may be used when estimating the 
difference between the assumed hardness and the possible 
hardness to obtain for the cast with a specific chemical 
composition. The presented in the paper project may be 
supplemented with other steel grades. 
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Fig. 2. Comparison of the predetermined Jominy curve and range 
of hardness change accepted as a model (34CrMo4) and 
suggested by the neural network (25CrMo4) 
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Fig. 3. Comparison of the predetermined Jominy curve and 
hardness ranges for steel grades suggested by the neural network: 
variant 1-38Cr2; variant 2 - 46Cr2 
 
 

3. Modelling of CCT diagrams for 
engineering and constructional steels 

 
The CCT diagrams containing the quantitative data pertaining 

to the dependence of steel structure and hardness on temperature 
and time of the supercooled austenite transformations are used for 
determination of the structure and hardness of the quenched, 

3.	�Modelling of CCT diagrams 
for engineering and 
constructional steels
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normalised, or fully annealed steels. In papers [7],[8],[9] the 
authors’ method of CCT diagrams calculation has been described. 

In this example there has been presented a hybrid method of 
calculating of the continuously cooled austenite transformations 
from the austenitizing temperature in which the regression 
analysis, artificial neural networks and a comprehensive 
collection of empirical data have been used. [10] The preparation 
of a representative set of empirical data has had a fundamental 
significance for preparing a hybrid method of calculating CCT 
diagrams. The data set, made on the basis of available 
publications, included the chemical composition, austenitizing 
temperature and CCT diagrams for constructional and engineering 
steels. The obtained diagrams have been subjected to a selection, 
taking the mass concentration of alloy elements as a criterion. A 
range of the accepted mass concentrations of the elements has 
been presented in Table 2 
 
Table 2. 
Ranges of mass fractions of elements for the analysed steels 

R
an

ge
   

Mass fractions of elements, % 

C Mn Si Cr Ni Mo V Cu 
min 0.11 0.2 0.14 0 0 0 0 0 
max. 0.77 1.53 1.37 1.54 1.72 0.72 0.31 0.26 

%Mn+%Cr+%Ni+%Mo 5 

 
According to the suggested method, the calculation of CCT 

diagrams proceeds in two stages.  
The first consists in determining the characteristic values of 

transformations’ temperature and the time for starting the 
transformations. To this end the interrelations including the 
influence of the chemical composition as well as optionally 
austenitizing temperatures and the cooling rate on the modeling 
dependencies have been worked out. The method of multiple 
regression has been used. The received calculations do not allow 
for determining the range of the cooling rate for which bainitic 
and martensite transformations proceed. To solve this problem, 
classifiers based on neural networks have been prepared. 
The independent models were developed making it possible to 
calculate the following quantities: 

temperature of the eutectoidal transformation during heating -
Ac1,  
temperature of the ferrite to austenite transformation during 
heating - Ac3,  
temperature of the bainitic transformation start - Bsmax,  
temperature of the martensitic transformation start - Ms,  
time referring to the lowest austenite life in the temperature 
range characteristic for the ferrite occurrence zone - tF,  
time referring to the lowest austenite life in the temperature 
range characteristic for the pearlite occurrence zone - tP, 
time to the start of the bainitic transformation, referring to the 
point of the shortest supercooled austenite life in the bainitic 
occurrence zone - tB. 
temperature of start of ferrite occurrence at a particular 
cooling rate - Fs, 
temperature of start of pearlite occurrence at a particular 
cooling rate - Ps, 

temperature of start of bainite occurrence at a particular 
cooling rate- Bs. 
On the basis of the analysis of different forms, general 

interrelations embracing the influence of the chemical 
composition and optionally, the austenitizing temperature as well 
as the cooling rate on the temperature value and the time of 
transformations including the interrelations accounting for 
synergy of alloy elements’ interactions, the general forms of 
equations have been accepted. The judgment of the worked out 
empirical interrelations has been made on the basis of the analysis 
of the mean error value, the deviation of the standard error and 
Pearsons’ correlation coefficient. The interrelations describing the 
influence of the chemical composition on the critical temperature 
values and the time of transformations as well as the temperature 
of the beginning of transformations in the function of the cooling 
rate, worked out using the multiple regression, are presented in 
equations 1-9. 
 
Ac1=739.3-22.8 C-6.8 Mn+18.2 Si+11.7 Cr-15 Ni-6.4 Mo-5 V-

28 Cu (1) 

Ac3=937.3-224.5 C0.5-17 Mn+34 Si-14 Ni+21.6 Mo+41.8 V-
20 Cu (2) 

Bsmax=752-223.5 C-55 Mn-21.6 Si-46.8 Cr-36.9 Ni-47.4 Mo-70 V-
11 Cu (3) 

Ms=532.6-396.7 C-33 Mn-1.4 Si-14 Cr-18 Ni 11 Mo+49.7 V+ 
31 Cu (4)

logtB=-1.52+2.93 C+0.68 Mn+0.25 Si+0.73 Cr+0.31 Ni+ 
0.69 Mo-0.23 V (4) 

logtF=-1.56+2.67 C+0.95 Mn-0.1 Si+1.27 Cr+0.22 Ni+2.27 Mo-
1.06 V-0.47 Cu (5)

logtP=0.19-0.3 C+0.64 Mn+0.06 Si+1.02 Cr+0.4 Ni+4.9 Mo+
0.38 V-0.42 Cu (6) 

Fs=968.7-254 C-71 Mn+27.6 Si-30 Cr-44 Ni-54 Mo+95,8 V-
0.02 TA-62.8 vr

0.25 (7) 

Ps=789.8-12.7 C-61 Mn+13.7 Si-5 Cr-30.4 Ni-70.7 Mo-1.4 V-
0.016 TA-47.3 vr

0.25 (8) 

Bs=678.9-239.6 C-35.2 Mn-1.6 Si-19.8 Cr-27.9 Ni-18 Mo-171 V-
0.03 TA-15.5 vr

0.25 (9) 
 

The presentation of anisothermal transformations of the 
supercooled austenite requires not only calculating the 
transformations’ temperature in the function of the cooling rate 
but also determining the range of the cooling rate in which the 
transformation occurs. The problem amounts to the calculation of 
the lowest time value for which a ferrite, pearlite and bainite 
occur and the highest time value for which bainite and martensite 
occur in the structure of the steel. In case of the ferrite and pearlite 
ranges as well as the point of the bainite range, the interrelations 
(1-9) have been applied, whereas for the end of the bainite and 

martensite ranges, the neural networks have been applied. 
A classifier had to be developed, to obtain this information, using 
as input data the mass concentrations of the particular alloying 
elements, austenitizing temperature, and cooling rate. 
 
a) 

 
b) 

 
 
Fig. 4. CCT diagram for steel with concentrations: 0.36% C, 
0.49% Mn, 0.25% Si, 1.54% Cr, 0.21% Ni, austenitised at 
temperature of 860°C: a) experimental, b) calculated 
 

In this study possibility of employing the modular neural 
networks was analysed. Multi-network structures are used more 
and more often in designing the classifiers employing the artificial 
neural networks. This solution, called most often modular neural 
network, consists in employing many neural networks 
independently developed and in determining the response of the 
entire system using the supervisor module. In many complex 
issues a network mapping its specific fragment only of the 
modelled problem fulfills its task much better. Using the modular 
networks of less complex structure prevents many a time from the 
excessive matching the network to the data from the training set, 

which leads to losing by the network its capability to generalise 
the acquired knowledge. However, employment of the collective 
decision of the modular neural network gives hope that it will be 
subjected to a smaller error than the response of a single network. 
A very important issue in case of the modular neural networks is 
the method of reaching the classifier's final decision. The 
particular classifiers were developed using the unidirectional 
neural networks of the MLP type (multilayer perceptron) with one 
or two hidden layers. The voting method based on the absolute 
majority of votes was chosen.  

In Figure 4 the calculated values of the transformations’ 
temperature were compared with the empirically determined CCT 
diagrams. 

The applied in the paper numerical verification of the worked 
out interrelations allows to state that in the range of the assumed 
mass concentrations of the alloy elements, the proposed method 
makes it also possible to make CCT diagrams for the newly 
worked out types of steel. The presented model facilitates the 
analysis of the interaction of the particular elements on the 
characteristic points and the curves of the supercooled austenite 
transformations. This model delivers crucial information for the 
reasonable choice of steel for those parts of the machines that are 
subjected to the heat treatment. 
 
 
4. Application of neural networks for 
selection of steel with the assumed 
hardness after cooling from the 
austenitising temperature 
 

The aim of the study is to establish a system that supports the 
choice of steel grade for quenching and tempering at a required 
hardness curve as function of cooling rate from the austenitising 
temperature [11]. It has been assumed that the steel will meet the 
criterion provided that the hardness curve, defined by the user, is 
included within the range of hardness change that is characteristic 
of a certain steel grade. The hardness range for the certain steel 
grade has been defined by the highest and lowest hardness 
calculated for ten predetermined successive time units until the 
end of steel cooling from the austenitising temperature. 

In order to determine the steel hardness ranges it has been 
necessary to work out a suitable calculation model. Therefore, a 
neural network has been designed and verified numerically to 
calculate the steel hardness on the basis of chemical content for 
the predetermined cooling rate. Basing on the literature 
information, the data set was worked out containing chemical 
compositions, austenitising temperatures, as well as hardness as 
functions of the cooling rate of the steels for quenching and 
tempering. The ranges of the assumed mass fractions of elements 
are included in Table 3. 

To develop the relationship between the chemical 
composition, austenitising temperature, cooling rate, and hardness 
of the steel the feedforward neural network (MLP) was used. The 
activation level of the successive 13 network input nodes 
depended on: mass concentration of elements (C, Mn, Si, Cr, Ni, 
Mo, V), austenitising temperature, cooling rate, and structure 
type. The average cooling rate has been calculated on the basis of 
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normalised, or fully annealed steels. In papers [7],[8],[9] the 
authors’ method of CCT diagrams calculation has been described. 

In this example there has been presented a hybrid method of 
calculating of the continuously cooled austenite transformations 
from the austenitizing temperature in which the regression 
analysis, artificial neural networks and a comprehensive 
collection of empirical data have been used. [10] The preparation 
of a representative set of empirical data has had a fundamental 
significance for preparing a hybrid method of calculating CCT 
diagrams. The data set, made on the basis of available 
publications, included the chemical composition, austenitizing 
temperature and CCT diagrams for constructional and engineering 
steels. The obtained diagrams have been subjected to a selection, 
taking the mass concentration of alloy elements as a criterion. A 
range of the accepted mass concentrations of the elements has 
been presented in Table 2 
 
Table 2. 
Ranges of mass fractions of elements for the analysed steels 

R
an

ge
   

Mass fractions of elements, % 

C Mn Si Cr Ni Mo V Cu 
min 0.11 0.2 0.14 0 0 0 0 0 
max. 0.77 1.53 1.37 1.54 1.72 0.72 0.31 0.26 

%Mn+%Cr+%Ni+%Mo 5 

 
According to the suggested method, the calculation of CCT 

diagrams proceeds in two stages.  
The first consists in determining the characteristic values of 

transformations’ temperature and the time for starting the 
transformations. To this end the interrelations including the 
influence of the chemical composition as well as optionally 
austenitizing temperatures and the cooling rate on the modeling 
dependencies have been worked out. The method of multiple 
regression has been used. The received calculations do not allow 
for determining the range of the cooling rate for which bainitic 
and martensite transformations proceed. To solve this problem, 
classifiers based on neural networks have been prepared. 
The independent models were developed making it possible to 
calculate the following quantities: 

temperature of the eutectoidal transformation during heating -
Ac1,  
temperature of the ferrite to austenite transformation during 
heating - Ac3,  
temperature of the bainitic transformation start - Bsmax,  
temperature of the martensitic transformation start - Ms,  
time referring to the lowest austenite life in the temperature 
range characteristic for the ferrite occurrence zone - tF,  
time referring to the lowest austenite life in the temperature 
range characteristic for the pearlite occurrence zone - tP, 
time to the start of the bainitic transformation, referring to the 
point of the shortest supercooled austenite life in the bainitic 
occurrence zone - tB. 
temperature of start of ferrite occurrence at a particular 
cooling rate - Fs, 
temperature of start of pearlite occurrence at a particular 
cooling rate - Ps, 

temperature of start of bainite occurrence at a particular 
cooling rate- Bs. 
On the basis of the analysis of different forms, general 

interrelations embracing the influence of the chemical 
composition and optionally, the austenitizing temperature as well 
as the cooling rate on the temperature value and the time of 
transformations including the interrelations accounting for 
synergy of alloy elements’ interactions, the general forms of 
equations have been accepted. The judgment of the worked out 
empirical interrelations has been made on the basis of the analysis 
of the mean error value, the deviation of the standard error and 
Pearsons’ correlation coefficient. The interrelations describing the 
influence of the chemical composition on the critical temperature 
values and the time of transformations as well as the temperature 
of the beginning of transformations in the function of the cooling 
rate, worked out using the multiple regression, are presented in 
equations 1-9. 
 
Ac1=739.3-22.8 C-6.8 Mn+18.2 Si+11.7 Cr-15 Ni-6.4 Mo-5 V-

28 Cu (1) 

Ac3=937.3-224.5 C0.5-17 Mn+34 Si-14 Ni+21.6 Mo+41.8 V-
20 Cu (2) 

Bsmax=752-223.5 C-55 Mn-21.6 Si-46.8 Cr-36.9 Ni-47.4 Mo-70 V-
11 Cu (3) 

Ms=532.6-396.7 C-33 Mn-1.4 Si-14 Cr-18 Ni 11 Mo+49.7 V+ 
31 Cu (4)

logtB=-1.52+2.93 C+0.68 Mn+0.25 Si+0.73 Cr+0.31 Ni+ 
0.69 Mo-0.23 V (4) 

logtF=-1.56+2.67 C+0.95 Mn-0.1 Si+1.27 Cr+0.22 Ni+2.27 Mo-
1.06 V-0.47 Cu (5)

logtP=0.19-0.3 C+0.64 Mn+0.06 Si+1.02 Cr+0.4 Ni+4.9 Mo+
0.38 V-0.42 Cu (6) 

Fs=968.7-254 C-71 Mn+27.6 Si-30 Cr-44 Ni-54 Mo+95,8 V-
0.02 TA-62.8 vr

0.25 (7) 

Ps=789.8-12.7 C-61 Mn+13.7 Si-5 Cr-30.4 Ni-70.7 Mo-1.4 V-
0.016 TA-47.3 vr

0.25 (8) 

Bs=678.9-239.6 C-35.2 Mn-1.6 Si-19.8 Cr-27.9 Ni-18 Mo-171 V-
0.03 TA-15.5 vr

0.25 (9) 
 

The presentation of anisothermal transformations of the 
supercooled austenite requires not only calculating the 
transformations’ temperature in the function of the cooling rate 
but also determining the range of the cooling rate in which the 
transformation occurs. The problem amounts to the calculation of 
the lowest time value for which a ferrite, pearlite and bainite 
occur and the highest time value for which bainite and martensite 
occur in the structure of the steel. In case of the ferrite and pearlite 
ranges as well as the point of the bainite range, the interrelations 
(1-9) have been applied, whereas for the end of the bainite and 

martensite ranges, the neural networks have been applied. 
A classifier had to be developed, to obtain this information, using 
as input data the mass concentrations of the particular alloying 
elements, austenitizing temperature, and cooling rate. 
 
a) 

 
b) 

 
 
Fig. 4. CCT diagram for steel with concentrations: 0.36% C, 
0.49% Mn, 0.25% Si, 1.54% Cr, 0.21% Ni, austenitised at 
temperature of 860°C: a) experimental, b) calculated 
 

In this study possibility of employing the modular neural 
networks was analysed. Multi-network structures are used more 
and more often in designing the classifiers employing the artificial 
neural networks. This solution, called most often modular neural 
network, consists in employing many neural networks 
independently developed and in determining the response of the 
entire system using the supervisor module. In many complex 
issues a network mapping its specific fragment only of the 
modelled problem fulfills its task much better. Using the modular 
networks of less complex structure prevents many a time from the 
excessive matching the network to the data from the training set, 

which leads to losing by the network its capability to generalise 
the acquired knowledge. However, employment of the collective 
decision of the modular neural network gives hope that it will be 
subjected to a smaller error than the response of a single network. 
A very important issue in case of the modular neural networks is 
the method of reaching the classifier's final decision. The 
particular classifiers were developed using the unidirectional 
neural networks of the MLP type (multilayer perceptron) with one 
or two hidden layers. The voting method based on the absolute 
majority of votes was chosen.  

In Figure 4 the calculated values of the transformations’ 
temperature were compared with the empirically determined CCT 
diagrams. 

The applied in the paper numerical verification of the worked 
out interrelations allows to state that in the range of the assumed 
mass concentrations of the alloy elements, the proposed method 
makes it also possible to make CCT diagrams for the newly 
worked out types of steel. The presented model facilitates the 
analysis of the interaction of the particular elements on the 
characteristic points and the curves of the supercooled austenite 
transformations. This model delivers crucial information for the 
reasonable choice of steel for those parts of the machines that are 
subjected to the heat treatment. 
 
 
4. Application of neural networks for 
selection of steel with the assumed 
hardness after cooling from the 
austenitising temperature 
 

The aim of the study is to establish a system that supports the 
choice of steel grade for quenching and tempering at a required 
hardness curve as function of cooling rate from the austenitising 
temperature [11]. It has been assumed that the steel will meet the 
criterion provided that the hardness curve, defined by the user, is 
included within the range of hardness change that is characteristic 
of a certain steel grade. The hardness range for the certain steel 
grade has been defined by the highest and lowest hardness 
calculated for ten predetermined successive time units until the 
end of steel cooling from the austenitising temperature. 

In order to determine the steel hardness ranges it has been 
necessary to work out a suitable calculation model. Therefore, a 
neural network has been designed and verified numerically to 
calculate the steel hardness on the basis of chemical content for 
the predetermined cooling rate. Basing on the literature 
information, the data set was worked out containing chemical 
compositions, austenitising temperatures, as well as hardness as 
functions of the cooling rate of the steels for quenching and 
tempering. The ranges of the assumed mass fractions of elements 
are included in Table 3. 

To develop the relationship between the chemical 
composition, austenitising temperature, cooling rate, and hardness 
of the steel the feedforward neural network (MLP) was used. The 
activation level of the successive 13 network input nodes 
depended on: mass concentration of elements (C, Mn, Si, Cr, Ni, 
Mo, V), austenitising temperature, cooling rate, and structure 
type. The average cooling rate has been calculated on the basis of 

4.	�Application of neural 
networks for selection of 
steel with the assumed 
hardness after cooling 
from the austenitising 
temperature
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the time until the end of steel cooling from the austenitising 
temperature. The types of the structural constituents were 
determined using four bivalued nominal variables containing the 
information if the following constituents are present in the 
structure: ferrite, pearlite, bainite, martensite. A classifier had to 
be developed, to obtain this information, using as input data the 
mass concentrations of the particular alloying elements, 
austenitising temperature, and cooling rate. The detailed problem 
description was presented in [8,13]. 

 
Table 3. 
Ranges of mass concentrations of elements  

R
an

ge
 

Mass fractions of elements, % 
C Mn Si Cr Ni Mo V 

min 0.22 0.30 0.05 0 0 0 0 
max 0.60 1.60 1.37 2.20 2.20 0.50 0.25 

 
It has been required to prepare a representative training 

database in order to design a neural network as a classifier that on 
the basis of the hardness curve defined by the user is able to select 
the optimal steel grade. Then for each steel grade (according to 
EN-10083-1) 150 chemical contents have been made at random 
and the hardness for ten predetermined cooling rates has been 
calculated. As a result, there has been made a training set for 
artificial neural network whose task is to suggest the steel grade 
after the hardness for 10 average cooling rates have been defined 
by the user. 

Two options of network response coding have been analysed. 
In the first option, there has been used one output variable equal 
to the number of steel grades. In the other, the number of output 
variables equal to the number of classes have been applied on the 
assumption that each variable can have two (yes or no) values to 
state whether certain steel meets the user’s requirements. For 
calculations the feedforward neural networks have been applied. 
Mutual entropy has been applied as error function. In that case, 
the error is calculated as a product-sum of assumed values and 
error algorithms for each output neuron. This version of error 
function, designed especially for classifying problems, is used 
with output layer activation function of the softmax type. The 
softmax function is an exponential function of additionally 
normalized value so as the activation sum for the whole layer is 1. 
The application of the softmax function in the output layer of 
multilayer perceptron designed for classifying problem solutions, 
allows to interpret the neuron’s activation level of the output layer 
as the estimated probability of a certain class affiliation. 

Figure 5 show the examples of hardness curve in function of 
time necessary for sample cooling from the austenitising 
temperature against a background of the range of hardness change 
for steel grades accepted as a model and suggested by the 
network. 

The system presented can be applied to selection of steel 
grade intended for machine parts of predetermined hardness in the 
section of a hardened or normalized element. Differences of 
chemical content acceptable within the same steel grade and also 
altering of austenitising conditions are the reason that it is difficult 
to evaluate possible hardness in the section of the element only on 
the basis of steel grade and it must produce great error. It has been 
confirmed by ranges of hardness change in function of cooling 

rate calculated for different steel grades for quenching and 
tempering. As it has been shown in the study, the model of 
relationship between chemical composition, the austenitising 
temperature, cooling rate and steel hardness can be applied to 
determine a difference between the predetermined hardness and 
the hardness feasible in the casting of certain chemical 
content.[12],[13] The project of advisory system presented in the 
study can be supplemented with other steel grades. 
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Fig. 5. Comparison of the predetermined hardness curve and 
range of hardness change accepted as a model (34Cr4) and 
suggested by the neural network (37Cr4) 

 
 

5. Designing of high-speed steels 
chemical composition  
 

The goal of the research carried out was developing the 
design methodology for the new high-speed steels with the 
required properties, including hardness and fracture toughness, as 
the main properties guaranteeing the high durability and quality of 
tools made from them [14]. For the high-speed steels design, as a 
task which is the optimization one because of the computational 
method employed, it was assumed that the criterial properties are 
hardness and fracture toughness expressed by the fracture 
toughness KIc. Moreover, the heat treatment technological 
parameters are optimised also, i.e., austenitizing-, and tempering 
temperatures.  

Achieving the main goal required carrying out the following 
partial tasks, consisting in: 
 development of the high-speed steels hardness model making 

it possible to compute hardness based on the steel chemical 
composition and its heat treatment parameters (austenitizing 
and tempering temperatures). 

 development of the model making it possible to determine the 
high-speed steels fracture toughness, based on the steel 
chemical composition and its heat treatment parameters 
(austenitizing and tempering temperatures). 
The neural network models were developed making 

computation possible of the high-speed steel hardness and the KIc 
The developed material models were used for designing the 
chemical compositions if the new high-speed steel, demonstrating 
the desired properties, i.e., hardness and fracture toughness. 

The following data feature the base for development of 
models making it possible to compute the high-speed steels 
properties based on their chemical composition and austenitizing- 
and tempering temperatures only: 
 investigation results of the newly developed high-speed steels 

[ 15,16], 
 data contained in the relevant standard [17], 
 data from the high-speed steels manufacturers' catalogues 

[ 18], 
 results of the own supplementary investigations of the 

selected high-speed steels grades. 
Ranges of alloying elements concentrations for the newly 

developed steels, collected from standards, and from catalogues of 
steel manufacturers are presented in Table 4. The austenitizing 
temperature range for which the data was processed is 1120°C-
1280°C, and the tempering temperature range is 480°C-630°C. 
 
Table 4. 
Ranges of the alloying elements occurring in analyzed steels 

R
an

ge
 

Mass fractions of elements, % 
C Cr W Mo V Co 

min 0.72 3.7 0 0 1 0 
max 1.41 4.7 18 9.5 4.5 11 

 
The adequacy of the developed models was checked by 

analysing the error between the calculated hardness and its 
corresponding hardness tested experimentally. The average error 
for the tested data file was assumed as the criterion: 

 

N

HRCHRC
=R

N

=i
mici

1

  (10) 
 
where: N - test file size, HRCci - calculated hardness (iith), 
HRCmi - measured hardness (i-th). 

 
The assumption was made that the model that would make it 

possible to obtain the calculation error ca. 1 HRC will be a valid 
one. 
 
 
5.1. High-speed steels hardness model 

 
For the secondary hardness modelling results of the 

experimental research, containing information about the chemical 
compositions and the steel hardness test results, taken from  
[14-17] feature the base for the neural networks design. Were 
available in more than 2100 data patterns, which may be 
considered as the sufficient number to develop the fully adequate 
neural networks model. 

It was assumed, referring to the developed neural networks 
structure, that the network has 8 inputs, corresponding to 
concentration values of the six main alloy elements occurring in 
this steel group and to the austenitizing- and tempering 
temperatures, and one output, corresponding to hardness. The 
StatSoft STATISTICA Neural Networks v. 4.0 program was used 
for development, training, and testing of the neural networks. 

Several hundred neural networks were generated using the 
Statistica Neural Network program with the various numbers of 
neurons in the hidden layers. The average absolute error, quotient 
of standard deviations, and correlation coefficient were assumed 
as the network quality coefficients. Finally one network was 
selected, from the entire set of the developed networks -the 
multilayer perceptron with the 8-7-1 structure (i.e., 8 inputs, 7 
neurons in the hidden layer, and 1 output), with the average 
calculation error of 1.01 HRC. In Fig. 6 comparison of the 
calculated and experimental tempering curves are shown for 
selected steels, from all included in the data set used to develop 
the models. 
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Fig. 6. Comparison of experimental results and hardness 
calculations for HS2-9-1-8 steel 
 
 
5.2. High-speed steels fracture toughness model 

 
The further works were focused on development the model 

making it possible to determine the high-speed steel fracture 
toughness solely based on the steel chemical composition and 
heat treatment parameters.  
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Fig. 7. Comparison of the calculated KIc coefficient with the 
experimental data for HS6-5-2 steel 
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the time until the end of steel cooling from the austenitising 
temperature. The types of the structural constituents were 
determined using four bivalued nominal variables containing the 
information if the following constituents are present in the 
structure: ferrite, pearlite, bainite, martensite. A classifier had to 
be developed, to obtain this information, using as input data the 
mass concentrations of the particular alloying elements, 
austenitising temperature, and cooling rate. The detailed problem 
description was presented in [8,13]. 

 
Table 3. 
Ranges of mass concentrations of elements  

R
an

ge
 

Mass fractions of elements, % 
C Mn Si Cr Ni Mo V 

min 0.22 0.30 0.05 0 0 0 0 
max 0.60 1.60 1.37 2.20 2.20 0.50 0.25 

 
It has been required to prepare a representative training 

database in order to design a neural network as a classifier that on 
the basis of the hardness curve defined by the user is able to select 
the optimal steel grade. Then for each steel grade (according to 
EN-10083-1) 150 chemical contents have been made at random 
and the hardness for ten predetermined cooling rates has been 
calculated. As a result, there has been made a training set for 
artificial neural network whose task is to suggest the steel grade 
after the hardness for 10 average cooling rates have been defined 
by the user. 

Two options of network response coding have been analysed. 
In the first option, there has been used one output variable equal 
to the number of steel grades. In the other, the number of output 
variables equal to the number of classes have been applied on the 
assumption that each variable can have two (yes or no) values to 
state whether certain steel meets the user’s requirements. For 
calculations the feedforward neural networks have been applied. 
Mutual entropy has been applied as error function. In that case, 
the error is calculated as a product-sum of assumed values and 
error algorithms for each output neuron. This version of error 
function, designed especially for classifying problems, is used 
with output layer activation function of the softmax type. The 
softmax function is an exponential function of additionally 
normalized value so as the activation sum for the whole layer is 1. 
The application of the softmax function in the output layer of 
multilayer perceptron designed for classifying problem solutions, 
allows to interpret the neuron’s activation level of the output layer 
as the estimated probability of a certain class affiliation. 

Figure 5 show the examples of hardness curve in function of 
time necessary for sample cooling from the austenitising 
temperature against a background of the range of hardness change 
for steel grades accepted as a model and suggested by the 
network. 

The system presented can be applied to selection of steel 
grade intended for machine parts of predetermined hardness in the 
section of a hardened or normalized element. Differences of 
chemical content acceptable within the same steel grade and also 
altering of austenitising conditions are the reason that it is difficult 
to evaluate possible hardness in the section of the element only on 
the basis of steel grade and it must produce great error. It has been 
confirmed by ranges of hardness change in function of cooling 

rate calculated for different steel grades for quenching and 
tempering. As it has been shown in the study, the model of 
relationship between chemical composition, the austenitising 
temperature, cooling rate and steel hardness can be applied to 
determine a difference between the predetermined hardness and 
the hardness feasible in the casting of certain chemical 
content.[12],[13] The project of advisory system presented in the 
study can be supplemented with other steel grades. 
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Fig. 5. Comparison of the predetermined hardness curve and 
range of hardness change accepted as a model (34Cr4) and 
suggested by the neural network (37Cr4) 

 
 

5. Designing of high-speed steels 
chemical composition  
 

The goal of the research carried out was developing the 
design methodology for the new high-speed steels with the 
required properties, including hardness and fracture toughness, as 
the main properties guaranteeing the high durability and quality of 
tools made from them [14]. For the high-speed steels design, as a 
task which is the optimization one because of the computational 
method employed, it was assumed that the criterial properties are 
hardness and fracture toughness expressed by the fracture 
toughness KIc. Moreover, the heat treatment technological 
parameters are optimised also, i.e., austenitizing-, and tempering 
temperatures.  

Achieving the main goal required carrying out the following 
partial tasks, consisting in: 
 development of the high-speed steels hardness model making 

it possible to compute hardness based on the steel chemical 
composition and its heat treatment parameters (austenitizing 
and tempering temperatures). 

 development of the model making it possible to determine the 
high-speed steels fracture toughness, based on the steel 
chemical composition and its heat treatment parameters 
(austenitizing and tempering temperatures). 
The neural network models were developed making 

computation possible of the high-speed steel hardness and the KIc 
The developed material models were used for designing the 
chemical compositions if the new high-speed steel, demonstrating 
the desired properties, i.e., hardness and fracture toughness. 

The following data feature the base for development of 
models making it possible to compute the high-speed steels 
properties based on their chemical composition and austenitizing- 
and tempering temperatures only: 
 investigation results of the newly developed high-speed steels 

[ 15,16], 
 data contained in the relevant standard [17], 
 data from the high-speed steels manufacturers' catalogues 

[ 18], 
 results of the own supplementary investigations of the 

selected high-speed steels grades. 
Ranges of alloying elements concentrations for the newly 

developed steels, collected from standards, and from catalogues of 
steel manufacturers are presented in Table 4. The austenitizing 
temperature range for which the data was processed is 1120°C-
1280°C, and the tempering temperature range is 480°C-630°C. 
 
Table 4. 
Ranges of the alloying elements occurring in analyzed steels 

R
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Mass fractions of elements, % 
C Cr W Mo V Co 

min 0.72 3.7 0 0 1 0 
max 1.41 4.7 18 9.5 4.5 11 

 
The adequacy of the developed models was checked by 

analysing the error between the calculated hardness and its 
corresponding hardness tested experimentally. The average error 
for the tested data file was assumed as the criterion: 
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where: N - test file size, HRCci - calculated hardness (iith), 
HRCmi - measured hardness (i-th). 

 
The assumption was made that the model that would make it 

possible to obtain the calculation error ca. 1 HRC will be a valid 
one. 
 
 
5.1. High-speed steels hardness model 

 
For the secondary hardness modelling results of the 

experimental research, containing information about the chemical 
compositions and the steel hardness test results, taken from  
[14-17] feature the base for the neural networks design. Were 
available in more than 2100 data patterns, which may be 
considered as the sufficient number to develop the fully adequate 
neural networks model. 

It was assumed, referring to the developed neural networks 
structure, that the network has 8 inputs, corresponding to 
concentration values of the six main alloy elements occurring in 
this steel group and to the austenitizing- and tempering 
temperatures, and one output, corresponding to hardness. The 
StatSoft STATISTICA Neural Networks v. 4.0 program was used 
for development, training, and testing of the neural networks. 

Several hundred neural networks were generated using the 
Statistica Neural Network program with the various numbers of 
neurons in the hidden layers. The average absolute error, quotient 
of standard deviations, and correlation coefficient were assumed 
as the network quality coefficients. Finally one network was 
selected, from the entire set of the developed networks -the 
multilayer perceptron with the 8-7-1 structure (i.e., 8 inputs, 7 
neurons in the hidden layer, and 1 output), with the average 
calculation error of 1.01 HRC. In Fig. 6 comparison of the 
calculated and experimental tempering curves are shown for 
selected steels, from all included in the data set used to develop 
the models. 
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Fig. 6. Comparison of experimental results and hardness 
calculations for HS2-9-1-8 steel 
 
 
5.2. High-speed steels fracture toughness model 

 
The further works were focused on development the model 

making it possible to determine the high-speed steel fracture 
toughness solely based on the steel chemical composition and 
heat treatment parameters.  
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Fig. 7. Comparison of the calculated KIc coefficient with the 
experimental data for HS6-5-2 steel 
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The StatSoft STATISTICA Neural Networks v. 4.0 program 
was used for development, training, and testing of the neural 
networks. After entering the training data to the program, the 
neural network design process was started. Several dozen neural 
networks were generated using the program, with the various 
numbers of neurons in the hidden layer. Finally one network was 
selected, from the entire set of the developed networks -the 
multilayer perceptron with the 8-6-1 structure (i.e., 8 inputs, 6 
neurons in the hidden layer, and 1 output), with the average 
calculation error of 0.39 MPa·m1/2. Comparison of the calculated 
KIc coefficient values with the experimental data is shown in 
Fig. 7. 

 
 

5.3. Optimisation of the chemical composition 
of high-speed steels 

 
For the high-speed steels chemical compositions design, 

which is the optimisation problem, the evolutionary algorithms 
were used. The object function is the index defining the set of the 
optimised properties, in this case hardness and fracture toughness. 
It was assumed that it will be possible to determine weights for 
each property, which will make it possible to make a decision 
which of the properties in the optimisation procedure actually 
carried out is the most important one. The optimisation result, 
with the maximum secondary hardness as the goal, are the 
chemical compositions high-speed steels with the highest 
hardness, and with the fracture toughness as a goal, the chemical 
compositions of steels demonstrating the highest fracture 
toughness KIc. Moreover, the possibility was assumed to limit the 
search area for the optimum chemical composition meeting the 
assumed criteria. Because of the form of the developed material 
models employed for design of the chemical composition, not 
only the alloy elements concentrations are optimised, but also the 
heat treatment parameters, i.e., the austenitizing- and tempering 
temperatures.  

The assumptions made were used in optimisation, pertaining 
to relationships among the particular concentrations of the alloy 
elements occurring in the high-speed steel and its hardening- and 
tempering temperatures - and its properties. The own computer 
program was developed to carry out the high-speed steel chemical 
composition optimisation task, with the maximum hardness and 
fracture toughness as the goal, in which the genetic algorithm was 
employed with the hardness- and fracture toughness functions as 
the neural network models. 

The object function was optimised expressing the high-speed 
steel hardness and its fracture toughness in the following form: 

 
)()( xKbxHRCaZ IC  (11) 

 
where: HRC(x) - hardness function (neural network model), 
KIc(x) - fracture toughness function (neural network model), xi, - 
vector of parameters (mass concentrations of alloying elements, 
austenitizing- and tempering temperatures), a, b - weight 
coefficients for both of the object function components, assuming 
values from the <0;1> range. 

The chemical composition optimisation procedure calls for 
specifying the limits the optimised function parameters, i.e., alloy 
elements concentrations ranges and the austenitizing and 

tempering temperatures. Based on analysis of concentrations of 
chemical compositions of steels, optimisation limits used in the 
genetic algorithm are presented in Table 5; whereas, the 
additional limitations are listed in Table 6. The roulette method 
was used in this algorithm for selection.  

Parameters of the algorithm defined by the user in the 
developed program are: 
 Number of generations - determines the number of 

algorithm repetitions; 
 Population size - number of indivduals  
 Crossing coefficient - value from the range from 0 to 1 (0 

denotes the probability of crossing equal to 0, 1 denotes the 
probability of 0.2), specifying probability of the selection of 
the relevant pair of specimens to transform the population 
(default value of 1); 

 Mutation coefficient - value from the range from 0 to 1 (0 
denotes the probability of mutation equal to 0, and 1 denotes 
the probability of 0.2), specifying probability of the selection 
of the particular specimen for mutation operation (default 
value of 0.5); 

 Accuracy of calculations - specifies precision of the 
environment search 

 Weights a and b - specifying weights attributed to each 
object function component 
The optimisation algorithm functioning consists in such 

selection of the alloying elements and hardening- and tempering 
temperatures so that the chemical composition of the steel is 
obtained with the possibly highest hardness and fracture 
toughness, while maintaining proportions for these properties 
specified by their weights (Eq. 11). The developed own computer 
program makes investigations possible pertaining to designing the 
chemical composition of steel with the required hardness and 
fracture toughness. Arbitrary defining is possible, within the 
optimisation limits, of the search space of the optimum chemical 
composition of the high-speed steel. Moreover, provision is made 
in the program for adjustment of the optimisation parameters, 
which can also affect the calculations results, i.e., the arbitrary 
selection of the set of parameters connected with managing the 
population. One should clearly stress that computations yield 
different results each time which results from drawing the initial 
population. As an illustration of research carried out using the 
developed program two selected examples are presented of the 
chemical composition optimisation results, obtained for various 
genetic algorithm parameters and for various limits imposed on 
the search space of the optimum chemical composition. 
 
Table 5. 
Boundary of the optimisation procedure 
Parameter C Cr W Mo V Co Ta Tt 

min 0.72 3.7 0 0 1 0 1150 500 
max 1.41 4.7 18 9.5 4.5 11 1280 630 

 
Table 6. 
Optimisation procedure constrains used in calculation 

Constrain Cr+W+Mo+
V+Co 

(Cr+W+Mo+
V+Co)/C 

Mo+V
+Co 

W+Mo
+V 

min 9.3 11.1 1.1 5.3 
max 31 30.9 18.7 19.2 

 
 

Example 1 
 
Algorithm parameters 

Number of generations 100 Coding precision 8 bits 
Number of individuals 50 HRC Weight 1 
Crossing coefficient 1 KIc Weight 1 
Mutation coefficient 0.5 Number of the best individuals 2 

 
Optimisation limitations 

Parameter C,% Cr, % W, % Mo, % V, % Co, % Ta,°C Tt, °C 
Minimum value 0.72 3.7 2 2 1 0 1150 500 
Maximum value 1.41 4.7 18 9.5 4.5 11 1280 630 

 

Calculation results 
Solution % C % Cr % W % Mo % V % Co Ta, oC Tt,oC Fbest Fpopul HRC KIC 

1 1.22 4.67 10.53 2.12 1.98 1.12 1253 512 84.3 81.5 66.4 17.9 
2 1.16 4.65 2.13 4.24 1.06 10.01 1254 589 86.9 80.3 68.5 18.5 
3 0.99 4.59 3.51 2.24 1.00 7.72 1264 533 87.5 82.7 68.8 18.6 
4 1.18 4.61 2.13 3.35 1.37 3.62 1253 585 86.0 78.2 67.0 19.0 
5 1.34 4.68 9.03 3.62 1.00 0.69 1267 501 85.3 79.5 67.1 18.1 

 
Example 2 
 
Algorithm parameters 

Number of generations 100 Coding precision 8 bits 
Number of individuals 50 HRC Weight 0.95 
Crossing coefficient 1 KIc Weight 1 
Mutation coefficient 0.5 Number of the best individuals 2 

 
Optimisation limitations 

Parameter C,% Cr, % W, % Mo, % V, % Co, % Ta,°C Tt, °C 

Minimum value 0.72 3.7 2 2 1 0 1190 520 

Maximum value 1.41 4.7 18 9.5 4.5 11 1240 590 
 
Calculation results 

Solution % C % Cr % W % Mo % V % Co Ta, oC Tt,oC Fbest Fpopul HRC KIC 

1 0.86 4.20 3.00 2.71 1.17 10.53 1215 572 82.1 74.3 67.1 18.3 
2 0.98 4.40 5.51 2.44 1.12 6.51 1212 520 80.9 74.3 67.2 17.0 
3 1.09 4.68 3.95 2.00 2.25 0.04 1205 584 84.7 83.2 64.0 23.9 
4 0.83 4.45 4.01 3.35 1.62 1.81 1226 578 81.4 80.3 64.4 20.2 
5 1.16 4.61 5.77 2.35 2.22 0.00 1235 577 80.8 75.7 65.9 18.2 

 
 

 

6. Final remarks 
 

The presented approach to selection or new materials design, 
being the new materials design philosophy, assumes the 
maximum possible limitation of carrying out the indispensable 
experiments, to take advantage of the existing experimental 
knowledge resources in the form of databases and most effective 

computer science tools, including neural networks and 
evolutionary algorithms. It should be indicated that the materials 
science knowledge, pertaining oftentimes to the multi-aspect 
classic problems and described, or - rather - saved in the existing, 
broadly speaking, databases, features the invaluable source of 
information which may be used for discovery of the unknown so 
far relationships describing the material structure - properties 

5.3.	�Optimisation of the chemical 
composition of high-speed 
steels
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The StatSoft STATISTICA Neural Networks v. 4.0 program 
was used for development, training, and testing of the neural 
networks. After entering the training data to the program, the 
neural network design process was started. Several dozen neural 
networks were generated using the program, with the various 
numbers of neurons in the hidden layer. Finally one network was 
selected, from the entire set of the developed networks -the 
multilayer perceptron with the 8-6-1 structure (i.e., 8 inputs, 6 
neurons in the hidden layer, and 1 output), with the average 
calculation error of 0.39 MPa·m1/2. Comparison of the calculated 
KIc coefficient values with the experimental data is shown in 
Fig. 7. 

 
 

5.3. Optimisation of the chemical composition 
of high-speed steels 

 
For the high-speed steels chemical compositions design, 

which is the optimisation problem, the evolutionary algorithms 
were used. The object function is the index defining the set of the 
optimised properties, in this case hardness and fracture toughness. 
It was assumed that it will be possible to determine weights for 
each property, which will make it possible to make a decision 
which of the properties in the optimisation procedure actually 
carried out is the most important one. The optimisation result, 
with the maximum secondary hardness as the goal, are the 
chemical compositions high-speed steels with the highest 
hardness, and with the fracture toughness as a goal, the chemical 
compositions of steels demonstrating the highest fracture 
toughness KIc. Moreover, the possibility was assumed to limit the 
search area for the optimum chemical composition meeting the 
assumed criteria. Because of the form of the developed material 
models employed for design of the chemical composition, not 
only the alloy elements concentrations are optimised, but also the 
heat treatment parameters, i.e., the austenitizing- and tempering 
temperatures.  

The assumptions made were used in optimisation, pertaining 
to relationships among the particular concentrations of the alloy 
elements occurring in the high-speed steel and its hardening- and 
tempering temperatures - and its properties. The own computer 
program was developed to carry out the high-speed steel chemical 
composition optimisation task, with the maximum hardness and 
fracture toughness as the goal, in which the genetic algorithm was 
employed with the hardness- and fracture toughness functions as 
the neural network models. 

The object function was optimised expressing the high-speed 
steel hardness and its fracture toughness in the following form: 

 
)()( xKbxHRCaZ IC  (11) 

 
where: HRC(x) - hardness function (neural network model), 
KIc(x) - fracture toughness function (neural network model), xi, - 
vector of parameters (mass concentrations of alloying elements, 
austenitizing- and tempering temperatures), a, b - weight 
coefficients for both of the object function components, assuming 
values from the <0;1> range. 

The chemical composition optimisation procedure calls for 
specifying the limits the optimised function parameters, i.e., alloy 
elements concentrations ranges and the austenitizing and 

tempering temperatures. Based on analysis of concentrations of 
chemical compositions of steels, optimisation limits used in the 
genetic algorithm are presented in Table 5; whereas, the 
additional limitations are listed in Table 6. The roulette method 
was used in this algorithm for selection.  

Parameters of the algorithm defined by the user in the 
developed program are: 
 Number of generations - determines the number of 

algorithm repetitions; 
 Population size - number of indivduals  
 Crossing coefficient - value from the range from 0 to 1 (0 

denotes the probability of crossing equal to 0, 1 denotes the 
probability of 0.2), specifying probability of the selection of 
the relevant pair of specimens to transform the population 
(default value of 1); 

 Mutation coefficient - value from the range from 0 to 1 (0 
denotes the probability of mutation equal to 0, and 1 denotes 
the probability of 0.2), specifying probability of the selection 
of the particular specimen for mutation operation (default 
value of 0.5); 

 Accuracy of calculations - specifies precision of the 
environment search 

 Weights a and b - specifying weights attributed to each 
object function component 
The optimisation algorithm functioning consists in such 

selection of the alloying elements and hardening- and tempering 
temperatures so that the chemical composition of the steel is 
obtained with the possibly highest hardness and fracture 
toughness, while maintaining proportions for these properties 
specified by their weights (Eq. 11). The developed own computer 
program makes investigations possible pertaining to designing the 
chemical composition of steel with the required hardness and 
fracture toughness. Arbitrary defining is possible, within the 
optimisation limits, of the search space of the optimum chemical 
composition of the high-speed steel. Moreover, provision is made 
in the program for adjustment of the optimisation parameters, 
which can also affect the calculations results, i.e., the arbitrary 
selection of the set of parameters connected with managing the 
population. One should clearly stress that computations yield 
different results each time which results from drawing the initial 
population. As an illustration of research carried out using the 
developed program two selected examples are presented of the 
chemical composition optimisation results, obtained for various 
genetic algorithm parameters and for various limits imposed on 
the search space of the optimum chemical composition. 
 
Table 5. 
Boundary of the optimisation procedure 
Parameter C Cr W Mo V Co Ta Tt 

min 0.72 3.7 0 0 1 0 1150 500 
max 1.41 4.7 18 9.5 4.5 11 1280 630 

 
Table 6. 
Optimisation procedure constrains used in calculation 

Constrain Cr+W+Mo+
V+Co 

(Cr+W+Mo+
V+Co)/C 

Mo+V
+Co 

W+Mo
+V 

min 9.3 11.1 1.1 5.3 
max 31 30.9 18.7 19.2 

 
 

Example 1 
 
Algorithm parameters 

Number of generations 100 Coding precision 8 bits 
Number of individuals 50 HRC Weight 1 
Crossing coefficient 1 KIc Weight 1 
Mutation coefficient 0.5 Number of the best individuals 2 

 
Optimisation limitations 

Parameter C,% Cr, % W, % Mo, % V, % Co, % Ta,°C Tt, °C 
Minimum value 0.72 3.7 2 2 1 0 1150 500 
Maximum value 1.41 4.7 18 9.5 4.5 11 1280 630 

 

Calculation results 
Solution % C % Cr % W % Mo % V % Co Ta, oC Tt,oC Fbest Fpopul HRC KIC 

1 1.22 4.67 10.53 2.12 1.98 1.12 1253 512 84.3 81.5 66.4 17.9 
2 1.16 4.65 2.13 4.24 1.06 10.01 1254 589 86.9 80.3 68.5 18.5 
3 0.99 4.59 3.51 2.24 1.00 7.72 1264 533 87.5 82.7 68.8 18.6 
4 1.18 4.61 2.13 3.35 1.37 3.62 1253 585 86.0 78.2 67.0 19.0 
5 1.34 4.68 9.03 3.62 1.00 0.69 1267 501 85.3 79.5 67.1 18.1 

 
Example 2 
 
Algorithm parameters 

Number of generations 100 Coding precision 8 bits 
Number of individuals 50 HRC Weight 0.95 
Crossing coefficient 1 KIc Weight 1 
Mutation coefficient 0.5 Number of the best individuals 2 

 
Optimisation limitations 

Parameter C,% Cr, % W, % Mo, % V, % Co, % Ta,°C Tt, °C 

Minimum value 0.72 3.7 2 2 1 0 1190 520 

Maximum value 1.41 4.7 18 9.5 4.5 11 1240 590 
 
Calculation results 

Solution % C % Cr % W % Mo % V % Co Ta, oC Tt,oC Fbest Fpopul HRC KIC 

1 0.86 4.20 3.00 2.71 1.17 10.53 1215 572 82.1 74.3 67.1 18.3 
2 0.98 4.40 5.51 2.44 1.12 6.51 1212 520 80.9 74.3 67.2 17.0 
3 1.09 4.68 3.95 2.00 2.25 0.04 1205 584 84.7 83.2 64.0 23.9 
4 0.83 4.45 4.01 3.35 1.62 1.81 1226 578 81.4 80.3 64.4 20.2 
5 1.16 4.61 5.77 2.35 2.22 0.00 1235 577 80.8 75.7 65.9 18.2 

 
 

 

6. Final remarks 
 

The presented approach to selection or new materials design, 
being the new materials design philosophy, assumes the 
maximum possible limitation of carrying out the indispensable 
experiments, to take advantage of the existing experimental 
knowledge resources in the form of databases and most effective 

computer science tools, including neural networks and 
evolutionary algorithms. It should be indicated that the materials 
science knowledge, pertaining oftentimes to the multi-aspect 
classic problems and described, or - rather - saved in the existing, 
broadly speaking, databases, features the invaluable source of 
information which may be used for discovery of the unknown so 
far relationships describing the material structure - properties 
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relations. The main task is integration of the materials science 
knowledge and computer science tools to find the new, 
undiscovered yet relationships and development of materials 
models based on the knowledge, which was acquired in 
experimental research over many years. Using the adequate 
material models makes carrying computer simulations out, which 
let forecasting possible of materials properties in various 
configurations of, say, chemical composition, processing stage 
(e.g., heat treatment) or product type. 
 
 

References 
 

[1] W. Sitek, J. Trzaska, L.A. Dobrza ski, An artificial 
intelligence approach in designing new materials, Journal of 
Achievements in Materials and Manufacturing Engineering 
17 (2006) 277-280. 

[2] W. Sitek, L.A. Dobrza ski, Application of genetic methods 
in materials’ design, Journal of Materials Processing 
Technology 164 (2005) 1607-1611. 

[3] W. Sitek, Methodology of high-speed steels design using the 
artificial intelligence tools, Journal of Achievements in 
Materials and Manufacturing Engineering 39/2 (2010) 
115-160. 

[4] L.A. Dobrza ski, W. Sitek, Application of a neural network 
in modelling of hardenability of constructional steels, 
Journal of Materials Processing Technology 78/1 (1998) 59-66. 

[5] L.A. Dobrza ski, W. Sitek, The modelling of hardenability 
using neural networks, Journal of Materials Processing 
Technology 92 (1999) 8-14. 

[6] W. Sitek, J. Trzaska, L.A. Dobrza ski, Selection method of 
steel grade with required hardenability, Journal of 
Achievements in Materials and Manufacturing Engineering 
17 (2006) 289-292. 

[7] L.A. Dobrza ski, J. Trzaska, Application of neural network 
for the prediction of continuous cooling transformation 
diagrams, Computational Materials Science 30/3-4 (2004) 
251-259. 

[8] J. Trzaska, Methodology of the computer modelling of the 
supercooled austenite transformations of the constructional 

steels, PhD thesis-unpublished, Main Library of the Silesian 
University of Technology, Gliwice, 2002 (in Polish). 

[9] J. Trzaska, L.A. Dobrza ski, A. Jagie o, Computer program 
for prediction steel parameters after heat treatment, Journal 
of Achievements in Materials and Manufacturing 
Engineering 24/2 (2007) 171-174. 

[10] J. Trzaska, L.A. Dobrza ski, Modelling of CCT diagrams 
for engineering and constructional steels, Journal of 
Materials Processing Technology 192 (2007) 504-510. 

[11] J. Trzaska, L.A. Dobrza ski, Application of neural networks 
for selection of steel with the assumed hardness after cooling 
from the austenitising temperature, Journal of Achievements 
in Materials and Manufacturing Engineering 16 (2006)  
145-150. 

[12] J. Trzaska, L.A. Dobrza ski, Application of neural networks 
for designing the chemical composition of steel with the 
assumed hardness after cooling from the austenitising 
temperature, Journal of Materials Processing Technology 
164-165 (2005) 1637-1643. 

[13] L.A. Dobrza ski, J. Trzaska, Application of neural networks 
for prediction of hardness and volume fractions of structural 
components constructional steels cooled from the 
austenitising temperature, Materials Science Forum  
437-438 (2003) 359-362. 

[14] W. Sitek, Methodology of high-speed steels design using the 
artificial intelligence tools, Journal of Achievements in 
Materials and Manufacturing Engineering 39/2 (2010)  
115-160. 

[15] L.A. Dobrza ski, A. Zarychta, M. Ligarski, E. Hajduczek, 
The role of Nb or Ti as alloying elements in W-Mo-V high 
speed steels, Division of Tool Materials and Computer 
Techniques in Metal Science, Silesian University of 
Technology, Gliwice, 1994. 

[16] L.A. Dobrza ski, A. Zarychta, E. Hajduczek, M. Ligarski, 
Heat treatment of W-Mo-V i W-V high speed steels with Ti 
addition, Division of Tool Materials and Computer 
Techniques in Metal Science, Silesian University of 
Technology, Gliwice, 1997. 

[17] EN ISO 4957:2004, Tool steels, 2004. 
[18] http://www.erasteel.com/us/produits/hss.php.

 

References

http://www.readingdirect.org
http://www.readingdirect.org

