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Summary: The Subject of the present paper is the General Planar
Steward Platform, a parallel (non-serial) type of manipulator with three
degrees of freedom. This manipulator consists of a mobile rigid body, the
platform, which is connected by three legs with a fixed base . Each of the
legs is equipped with rotary joints on both of its ends and the distance of
the two parallel joint axes is controlled either by a linear actuator (a driven
P-joint) or a rotary actuator (a driven R-joint). An algebraic input - output
equation of degree 6 is derived which allows to find the six theoretically
possible positions of the platform corresponding to a given set of input
variables. Furthermore an analysis of direct rate kinematics, force
decomposition and direct acceleration for this three - degrees - of -
freedom linkage is presented.
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Introduction

Robot- arms in commonly used manipulators are anthropomorphic open- chain
mechanisms with actuators connected in series along the arm. These serial,
cantilever-like manipulators can be consbacted with far-reaching end-effectors
together with a sufficiently large workspace for easy maneouvering. But this type of
manipulator also has some serious disadvantages. The summing- up ofthe backlashes
at the end - effector and especially the low structural rigidity inherent to any serial
manipulator limits their load capacity and make them unfit for tasks where accurate
positioning capacity of the end-effector is Indispensable.As an alternative to the
serial type manipulator the concept of the parallel manipulator was proposed by K.H.
Hunt in 1967 [1], In his book on the "Kinematic Geometry of Mechanisms" Hunt
referred to the "Steward Platform” which was developed for a flight simulator by D.
Steward [2] in 1965 and suggested to construct parallelly activated manipulators
which would avoid the shortcomings of the serial manipulators. In doing so Hunt
opened a rather new field of scientific and practical activities. Some effort has since
been directed to the investigation of parallelly activated manipulators. As their design
is based on the use of closed kinematic chains, their forward (direct) kinematics
becomes more difficult in comparison with the direct kinematics of the seria!

manipulator with its open chain structure. The inverse kinematics of the General
Steward Platform is straightforward and was solved first by D.C.H. Yang and TW
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Lee [3] in 1984. However no solution of the direct kinematics seems to have been
presented so far. Recently. X. Shiand R.G: Fenton [4] developed a method to establish
the six non linear equations determining the position of the platform and H. Rong
and C.G. Liang [5] were able to derive the input-output equations for the 6(RPR)
Triangle Steward Platform. A different result had been obtained by P. Nanua and K.J.
Waldron in an earlier paper [61. In the following we present the solution of the
forward kinematics of the General Planar Steward Platforms 3(RPR) and 3(RRR).
These platforms can be seen as
special "triple turn mechanisms" (61
but it seems that they have never
been investigated on its own.

Two types of planar parallel
manipulators

There are two types of the planar
parallel manipulator, the 3(RPR)
manipulator shown in figure 1 and
the 3(RRR) manipulator of figure
2. Generally speaking, the first
manipulator has greater load
capacity, the second a greater
workspace. As only the distances
between the axes ofthe rotary joints
at the leg ends feature in the
equations, both types of
mechanisms can be treated
mathematically in the same way.
The planar parallel manipulator
essentially consists of two bodies,
one fixed (B) and one mobile (b).
Interconnected by three legs. There
are two basic loops in the
mechanisms and accordingly their
order is : Q =1 .The structure-
formula of Grubler-Kutzbach.
confirms that the mechanism has
three global degrees of freedom :

) ] F*Tui-3(tt+1)«9-3 2«3.
Fig. 1 Planar Parallel 3(RPR) Manipulator

The motion (translation and rotation ) ofbody b (the platform ) isdetermined by the
time - dependent lengths L*(t) ;et« Jr3 ofthe platform legs in the case of the 3(RFR)

mechanism and the time - dependent link angles ;< 1*3 in the case of the
3(RRR) mechanism.

We take as given the coordinates X<*Y<*; oc* tf3 ofthe three rotary joint axes
1,2.3 in body B. in relation to the coordinate system (OiX,Y) fixed in B. and the
coordinates Xa.,y«; <-1f3 ofthe rotary joint axes 1'2'3" in the mobile bodyb, in
relation to the coordinate system (P;x,y) fixed in b. Ifthe straight lines through
the points 1and T, 2 and 2’. and 3 and 3' (see Fig. 2 ) intersect in one point, then
the mechanism becomes shaky, because it is infinitesimally moveable without
changement of the leg - lengths L« . In this singular position any force and/or
moment applied to platform b would cause infinite forces (or moments) in the actuators.
In practice, therefore this critical positions has to be carefully avoided.
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The Input-output equation

The position of the mobile body
b relative to body B can be
given by the coordinatesXp,Yp
of the point P and the rotation
angle p as shown in Figs.|
and 2 .The values Xp, Y> and
p can therefore serve as
output variables which are to
be determined for a given set
of input variables L* .To any
set of input wvariables
correspond a maximum of six
sets of output variables. This
can easily be shown in the
following way. Ifthe connection
of one of the legs with the
mobile body b is released; e.g.
point 3" in Fig. 3, the path of
point 3’is a coupler curve, and
a circle with the radius r» Lj
and with the centerpoint in 3
intersects this coupler curve in
either two or four or six points.
Since the coupler curve is a
tricircular algebraic curve of
order six, there cannot be more
than six Intersecting points
with the circle. In general a
six order algebraic curve is
intersected by a circle in 12
points. But as the coupler

Fig.2 Planar Parallel 3(RRR) Manipulator ™ "mrAtimesfonly”

maximum  of six real
intersecting points with a given circle are possible. In principle the input - output
equation must, therefore provide six output solutions for any given set of input
variables .The input variables and the output variables are interconnected by the
following conditions:

CfX«.— xp)- (c* costp-y*.strip)]2+ [FY*-YW- Cx~sinp*y*casg»J2 *£<,=0 ftJ

With the abbreviations -(xu.Xoc+ y*Y«.) = Oct , j- b<c
+ + AV2 «C* 2>
we obtain fXotCOS<p- y* Sid - X«) Xp+ fy* COS$+ -Y*)Yp
+(X«.+Yi>/2 r accCOSp-t-b*.Sia.(ftC«L» 0 (©)

From this set of equations two equations that are linear in the output variables
Xpa Y& and independent from each other can be derived by substracting the second
(at* 2) &nd the third {«**3) equation from the fust (*»t).
With
, t-y, > y*/}, X*/», YK=Y/s»
a* -a/i= a*/i > beji> c*-cp*c¥i
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Fig.3 Circle intersecting a coupler courve

and write with

<** t S
for the solution of (6):

The functions N(y),Zi(y)and

iX

deb}
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Substitution of Xp«Zi/N and YH'ZIiIN into the first equation of (3) leads to the final
equation which allows to determine the rotation angle p . This equation has the
structure:

.3 2 i i . 2 .
( ficoscp ¢ fzax<p+ fjcosy+fsi+sfnyifscosy* f6cos<p* »])
The coefficients fi are functions of the coordinates x*,y*,X.c,Y.t. The products
(x,casg>-y,sin(f-Xi)Z,(&N<(p)and(y,cos9*xtSin4p-Y,)Z2(i>)N(v) let expect that in

the final equation terms with(iMsy)4 and (cosy)4s/riy would also occur.But they
disappear because their coefficients are:

Xt CZu- Zu)+y,(Ziz*Zz:) and x-iCZtl*Ln)*-y,(Zn*Zi2)
and these coefllcients are, according to (10). equal to zero .

The substitutions of A )G +N | ) >sin<p. 24aai/(uiahzt)

transform equation (11) into an algebraic equation of order six in tany/2 . Equation
(11). therefore allows to determine numerically a maximum of six values for the
rotation angle 9 . With the equations (8) then the corresponding translation variables
Xp and Yp can be found .

Numerical Examples
For the system parameter set (corresponding to (Fig. 1)

X,« 8-3dm, Y,- 56dm ,Xi-24.3dm ,*2« 10.8dm , X3- 35dm , Y3*31dm
Xj»-31 dm. , y,--43dm ,x1m-20.9dm, yz*-2-9 dm , xj» -23.8dm, y}* 6dm

and the input variables  Li» it.204-dm , L*» 14.235dm , L3* 26.445 dm

we obtain the output equation (11) in the form

J. 1524 cosy - 2.9832 cosy+ 2.345?cosy- 0-52421
+ Siny(-T.249f cos<p+ 1-4391 cosy-052442)= #<p)= 0-

This equation has six real solutions:

<p* {65.426°, 18,618° .627?°,- 90 298“ -S0O-031° ,-74.429°f
The corresponding translation variables then are

Xp- {24.624dm , 33.752dm . 30 346dm , 13-445dm, 42.540dm ,4?.580dm }

Yp« ( 44.043dm ,30.323dm,4.9T05dm,-14.26Sdm,-14357 dm ,-S*S20dm j.

Fig. 4 shows the six position of the "platform” body b which belong to the given set of
input variables. They correspond to different "closure modes" of the mechanism. But
because the leg lengths can be adapted, a change from one "mode" to an other Is
possible without dismantling the mechanism.
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Velocities. forces
moments

and accelerations
Ifthe position ofthe
mobile body b is
known and the leg
lengths are given as
time functions then
the velocity of point
P and the angular
velocity can be
found by solving a
set of three linear
equations.
Differentiation of
the equations (1)
with respect to time
yields with

P- <*P>Yp,cp)T =

EH dip - - 20U ¢
wx 1r3 (12)

Introducting the
diagonal matrix B:

ZLi 0 O
B « 0 2LZ O
o o0 ILh

the matrix A:

Fig. 4 Six positions of the platform body corresponding 1
to a given set ofleglenghts. A- | —

and the column matrix L» (Li,Li,L3)T we can write eqs. (12) as a matrix equalon
A pt BL and obtain:

p * (Xp,Y(*cp)T* (A-1&)L = J.(L1tLi,LjF (13)

For any position of the mechanism the Jakobian matrix J<A'IB can be calculated .
With equation (13) we lInd the velocities X?and and the angular velocity <p for any
given set of relative velocities of the linear activators Lit tot*!r3>.This result can
immediately be used for the determination of the actuator forces of the 3(RPR)
manipulator and the actuator moments of the 3(RRR) manipulator.

The actuator forces In the active P-joints of the 3(RPR) manipulator collected in the
matrix K;

K « ( K It 13 )T

arid the forces and the Moment, acting on the body b (and reduced to point P) in the
matrix F;

F* (F* F, , Me)T
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are connected by
K --0TF @
This follows Immediately from the principle ofvirtual displacements
¢V * 0 - ¢prF +jLrk
together with <Ip» 3<L.

The moments in the rotary actuators of the 3(RRR) manipulator collected in the
matrix

M = (MI »M*, M» )T

Eire related to the elements of the matrix F- ¢r..y .rip>r in the following way.

From Lit. » ait ¢ b& - 2dotbocCOS £
we get 5Lot.3 (Q-ccbnSintpgl/Lot) Scpoc
and with the matrices D = diCLQ || Aab*&in<PacllacH
we find Sp - JSL = 3D<fcp.

From the principle of virtual displacements JW=0 = cfpTF + <JpTM
we obtain

M * - DT3TF 05)

In our numerical example [Fig. 1] we find with:
Xf>- 20-620-dm , YP- 4\V-0M3dm , g>=65426°
Li * 11.20ft-dm., 2 < T4-234dm , Lj* 26.445dm

K.
e -2.4248 i1.2040 j i-3.1591
j fl- 1 0541 in e §0.34565 112+ 10.54105
19 j o. rtoffe }-0.08340_; 0. [2973 ] 06)

Differentiation of equation A p = &L with espect to time gives
| (OA/Dpi)p,-p 4 Ap « BLL+0L"

an equation wich can be solved for p . With the matrix operator
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- - B 0 -TA
P’Sp/ftSii-ftSft” P "%

weobum p ¢ A-f»i.-|»r*p)*A-"Br. Off

The first term on the right side of this equation is fully determined by the position
matrix p and Its time derivative p .
In our example we get using the result of (16), with

C » (- 1.2dwsee ,-0.9dm/see ,14 etm/sec)r

from eq. (171 for the accelerations X?, YV and the angular acceleration g? :

*p -0.019*8* -242%8 1.2040 -3.1591
AVl s S -2.1%39 . 10341 - 0.3*563 12+ 0O-s54105
-0.055*22 0.14056 -0.083*0 0.12918
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KINEMATISCHE ANALYSE DER STEWARD-PLATFORM MECHANISMUS

Es wird der ebene Steward-Plattform Mechanismus mit drei Freiheitsgraden der
Bewegung analysiert. Dieser zweischleiflge Mechanismus stellt einen Sonderfal! des
sogenannten "Triple arm mechanism™ [6] dar und besteht aus einem starren (Plattform-)
Kdorper dessen ebene Bewegung relativ zum Basiskdrper durch drei Beine veranderlicher
Langen kontrolliert wird. Um die Lage der Plattform-Kdrpers aus den drei Langen zu
bestimmen ist eine algebraische Gleichung sechster Ordnung numerisch zu ldsen.
Einem Léngensatz entsprechen demnach maximal sechs reelle Lagen des Plattform-
Kdorpers. Lineare Gleichungen erlauben die Bestimmung des Geschwindlgkelts- und
des Beschleunigungszustandes aus den Langenanderungs-Geschwind!gkeiten bzw.-
Beschleunigungen . sowie die Klarung der Kraftverhaltnisse.

ROZWIAZANIA KINEMATYKI DLA OGOLNEJ PLASKIE] PLATFORMY
STEWARDA

Streszczenie

Przedmiotem niniejszej pracy jest ogélna plaska platforma Stewarda, réwnolegty
manipulator o trzech stopniach swobody Manipulator ten sktada sie z czesci jezdnej,
platformy.skfadajagcej sie z trzech nog potaczonych z ustalong podstawg. Kazda noga jest
wyposazona w potaczenia obrotowe na obydwu koncach, a odlegto$¢ dwoch osi réwnolegtych
pofaczen jest sterowana przy pomocy serwomechanizmu liniowego lub obrotowego..
Algebraiczne réwnanie szostego stopnia pozwala na znalezienie szeSciu teoretycznie
mozliwych potozen platformy odpowiadajgcych danemu zbiorowi zmiennych wejsciowych.
Ponadto przedstawiono analize rozktadu sit i przyspieszen dla tego mechanizmu o trzech
stopniach swobody.

Whplyneto do redakcji w styczniu 1992 r. Recenzent: Jerzy Wrébel



