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Summary. This paper discusses the behaviour of chosen discrete
dynamical systems (maps). We start by considering linear, constant-
coefficient, maps and demonstrate that such maps can be readily solved. We
also derive stability and boundary conditions for such maps. We then briefly
discuss more general, n-dimensional linear maps. We discuss in some detail
the behaviour of the logistic map as we vary its parameter. We show that
this model can exhibit dynamic behaviour ranging from convergence to a
point attractor, through convergence to limit cycles of all orders, and
ultimately to so-called deterministic chaos. We conclude by presenting an
example of a non-linear mapping from economics (a model of inflation) and
derive conditions under which the economy may exhibit chaotic behaviour.

UWAGI DO WYKELADU NA TEMAT JEDNOWYMIAROWYCH
NIELINIOWYCH MODELI DYNAMICZNYCH Z CZASEM
DYSKRETNYM | ICH ZASTOSOWAN W MAKROEKONOMII

Streszczenie. W artykule jest dyskutowane zachowanie sie wybranych
modeli dyskretnych systemow dynamicznych. Na poczatku rozpatrujemy
liniowe réwnanie réznicowe o statych wspétczynnikach i pokazujemy, ze tego
rodzaju réwnanie moze by¢ w sposob czytelny rozwigzane. Wyprowadzamy
warunki zbieznosci i stabilnosci takiego ciggu. Nastepnie, krdtko i bardziej
ogolnie, omawiamy n-wymiarowy liniowy dynamiczny model dyskretny. W
szczegOtach omawiamy zachowanie réwnania logistycznego w zaleznosci od
zmian wartosci parametru. Pokazujemy, ze model ten moze prezentowaé
zmieniajgce sie wiasciwosci dynamiczne systemu od zbieznosci do punktu,
poprzez zbieznos$¢ do przebiegdw cyklicznych az do tzw. deterministycznego
chaosu. Na zakonczenie prezentujemy przyktad nieliniowego modelu
dyskretnego z zakresu ekonomii (model inflacji) i wyprowadzamy warunki,
przy ktérych proces ekonomiczny moze charakteryzowacé sie zachowaniem
chaotycznym.
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1. Introduction

This paper discusses the behaviour of some one-dimensional discrete
dynamical systems (maps). We start by considering linear, constant-
coefficient, maps and demonstrate that such maps can be readily solved.
We also derive stability and boundedness conditions for such maps. We
then briefly discuss more general, n-dimensional linear maps, but we do
not give a fully detailed treatment because our primary purpose in this
paper is to consider the behaviour of some one-dimensional non-linear
maps.

We discuss in some detail the behaviour of the logistic map as we vary
its parameter. We show that this model can exhibit dynamic behaviour
ranging from convergence to a point attractor, through convergence to limit
cycles of all orders, and ultimately to so-called deterministic chaos.

We demonstrate that chaotic behaviour ensues when there is sensitive
dependence on initial conditions and that sensitive dependence on initial
conditions results in a positive Lyapunov exponent: a necessary and
sufficient condition for chaotic behaviour to be possible. Our exposition of
this material is in the style of a ‘tutorial’ and is illustrative rather than
mathematically rigorous. We do not claim to present any new results and
similar expositions, at various levels of rigour, are to be found in several
alternative texts. See, for example, Gulick (1992) - an excellent
introduction to the subject - or, at a more advanced level, Devaney (1989).
Our aim here is to provide a concise treatment of the subject written in a
style that is accessible to non-specialists. We do, however, introduce a
simple method of calculating approximations to Lyapunov exponents that
we have not seen elsewhere in the literature.

We conclude by presenting an example of a non-linear mapping from
economics (a model of inflation) and derive conditions under which the
economy may exhibit chaotic behaviour.

2. One-dimensional linear mappings

Consider the model:

= aX, +b
a,b,X0eR ()
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The solution of such a model is a function, X(t), satisfying (1) and with
X(0) = Xqg The solution may be found by repeated substitution, as follows.

)(]—qu-Fb
X2—uX\ +b —g*Xq +ab +b
X3—€iX2+b=aXqg+ db+ab+b

Repeating this process over and over again wededuce that:
Xt=aXt1l+b—a'X0+b{\ +a+ + ... +cl)

and it now follows that:

It is clear that the behaviour of the solution sequence depends crucially
on |aJ. If |a] < 1, the solution converges to the point £4(1 - a): It converges

monotonically if 0 < a < 1 and has damped oscillations if - 1 < a < 0.
If a = -1, the soution is a two-point cycle which alternates repeatedly
between the values Xo and b - Xg If |4 > 1, the solution diverges:

monotonically if a > 1 and with explosive oscillations if a < -1. It is clear
that the solution is stable (i.e. approaches a finite limit) if |8 < 1 and

remains bounded if -1 < a < 1. Figure 1 (which was produced using the
Microsoft Excel spreadsheet) shows a typical solution trajectory.
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Fig. 1. The solution trajectory of the model (1); a =-0.96, b = 0.6
Rys. 1. Trajektoria rozwigzania modelu (1); a =-0.96, b = 0.6
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3. Multi-dimensional linear maps

One possible generalisation of the models in the previous section are
n-dimensional linear maps of which a typical example is as follows:

x ¥l = AX, +b
where:

x. =[Xu,X2,X31 ,xnf

_anl [ = ann _

b=M 2 bnf

Such models are stable if all the eigenvalues of the matrix A lie within the
unit circle. Such maps can exhibit extremely complex, but nevertheless
non-chaotic, dynamic behaviour.

4. One-dimensional non-linear maps

Perhaps the most widely studied of the class of one-dimensional non-
linear maps is the logistic equation. This has been much discussed in the
literature and is a single-parameter quadratic map of the general form:

XM =kX,(1-X")
[1.4],X06 (0,1)

This model can exhibit a wide range of dynamic behaviour ranging
from the very simple (monotonic convergence to a point) to the very
complex (deterministic chaos). Plots of trajectories for two different values
of the single parameter, k, are given in figures 2 and 3 below. Note that,
except for the case of k = 4, it is not possible to give a solution of this
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equation. This is almost invariably the case with non-linear maps: Only in
a handful of cases is it possible to derive closed-form solutions. For
example, if k = 4 in the logistic equation, the solution is:

X, =sin2(2'sin(VA7)) %)

To gain some insight into the behaviour of this equation for values of k
other than k - 4, all we can do is carry out numerical simulations using, for
example, the Microsoft Excel spreadsheet (which was used to produce
figures 2 and 3).
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Fig.2. The solution trajectory of the model (3) - an eight point cycle; k = 3.55
Rys.2. Trajektoria rozwigzania modelu (3) -cykl osmiopunktowy; k=3.55

Fig. 3. The solution trajectory of the model (3) - deterministic chaos; k = 3.95
Rys. 3. Trajektoria rozwigzania modelu (3) - chaos deterministyczny; k=3.95

Of course at this point we are merely asserting that the behaviour
illustrated in Figure 3 is chaotic. We will show this a little more
convincingly in the following section.
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5. Chaos: sensitive dependence on initial conditions

It is well known that the trajectories (solution sequences) of some non-
linear maps can exhibit chaotic behaviour when there is sensitive
dependence on initial conditions. To illustrate this for the logistic map we
demonstrate what happens to trajectories which are initially close together
for two different values of k\ k = 2.4 (non-chaotic behaviour) and k = 4
(chaotic). Let the initial points of the two trajectories be Xo and Xo + h,
where h is ‘small’. Figures 4 and 5 below, which were again produced using
Excel, illustrate what happens when for each of these two values of k when

Xo = 0.59 and h = 0.05.

Fig. 4.The solution sequences of the equation (3) for k = 2.4, Xo=0.59, h =0.05
Rys. 4. Ciggi rozwigzan réwnania (3) dla k =2.4, Xo=0.59, h =0.05

Fig. 5. The solution sequences of the equation (3) for k =4, X0o=0.59, h =0.05
Rys. 5. Ciagi rozwigzan réwnania (3) dla k =4, Xo=0.59, h =0.05
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Two things are immediately apparent. In the non-chaotic case the two
trajectories converge after only a few iterations of the map. In the chaotic
case, trajectories which were initially close together start to diverge after
only a few iterations. It is this feature that makes prediction with a chaotic
model impossible.

Now consider the general class of (non-linear) models:
XI+l1=F (Xt)

where F is some non-linear function. The separation of two trajectories,
initially ‘close’ together, after n iterations of the map is given by:

[F[n,(X0+h)~ ZIT' I AD)| (5)
where h is ‘small’. We make the following assumption:
IFIN(X0+/i)-F( *(xBy h (6)

Taking the limitas /t —0 it follows that:

ea A (X0) dFIn X 0)
dXn
dF['\X0)

.**(*0) wn I 13 dxn

Finally, taking the limitas n  °°, the Lyapunov exponent is defined as:

] dFM{X0)

AXQ=

Q]
Suppose 1) is a finite closed interval of R and suppose that F: D —D. Then
F is said to be chaotic at Xo if A(X0)>0. In these circumstances (bounded
trajectories) a positive Lyapunov exponent is a necessary and sufficient
condition for chaotic behaviour.

6. Calculation of Lyapunov exponents

For any one-dimensional map F an approximation to the Lyapunov
exponent can be found by using the fact that:
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IndFM{Xo)
dXn
i dFIA(X0) dFIn-"\X0)  dFII](X0)
S odx o dX dXn
Ino||:[\xa)
dX,
It follows that:
Indlr»'(xc)
dX /-
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®
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Note that in order to calculate the Lyapunov exponent directly as
defined in (7) above it is necessary to be able to derive a closed-form
expression for F~(XO0) and this is, of course, not possible in the vast

majority of cases. Hence the need for an approximation, as given in (9).
However, for illustration, we can calculate the Lyapunov exponent exactly

in the following two cases.

1. For the linear map given in (1) above we know from (2) that, for a* 1,

fW(X )=x *y_ .
1-a¥ 1-¢c

from which:
_IndF[n]{XO)
dXn

_Lim.

KX0) o =In(a)

which is non-positive for a bounded map. Hence, as of course is well-

known, bounded linear maps cannot be chaotic.

2. For the logistic map with k =4 we know from (4) above that:

FW(X0)=Xn=sin2(2"sin(V"))
from which
dFIn X 0)

mn(2) >0
dXn ©)

A(*OK ~ - In

Hence, the logistic map with k =4 is, as is well-known, chaotic.

We conclude this section by using the expression in (9) to calculate the
finite approximation to the Lyapunov exponent of the logistic map as a
function of n: (i) For k = 1.5 (which is non-chaotic) and (ii) for k = 4
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(chaotic). The results are shown in figures (6) and (7) below. Note that in
each case n, which ranges from 1 to 1,000, is on the horizontal axis and
the value of the approximate Lyapunov exponent is on the vertical axis.

Fig. 6. Lyapunov exponent when k = 1.5
Rys. 6. Wyktadnik Lapunowa dla k = 1.5

Fig. 7. Lyapunov exponent when k = 4
Rys. 7. Wykfadnik Lapunowa dlak =4

We observe that in the non-chaotic case the Lyapunov exponent quickly
converges to a negative value (approximately -0.7), whereas in the chaotic
case it rapidly converges to its (known) true value of In(2). It appears that
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this is a useful way of calculating approximations to the Lyapunov
exponent of a one-dimensional map when it cannot be calculated exactly.

7. An economic application

In this section we consider a simple macroeconomic model of a closed
economy. (The model is described in considerably more detail in Chappell
(1997)).

The model consists of two equations; a demand function for real
balances (purchasing power) and a Government budget constraint. The
demand for real balances as a proportion of real disposable income depends
negatively on the nominal rate of interest, which here is equal to the
expected inflation rate since we are assuming a zero real rate of interest.
Hence:

In =a-yE,7t,+ (10)
.m i-v)j
where Mt is the stock of money, Pi is the price level, Yt is real income, all
at time i; vis the income tax rate, Eini+i is the expectation at time t of the
inflation rate, n, at time £+1 and a ,y and v are positive constants with 0 <v
< 1. Government purchases are financed partly by tax revenues and partly
by printing money. Hence:-

where Gt is real government purchases of goods and services at time t. We

assume that the growth rate of real income is exogenous and constant
(possibly zero). We also assume that real government purchases are a
constant proportion of real income and that the government adjusts its
rate of expansion of the nominal money supply in order to maintain this
proportion. Finally, we assume that economic agents form their
expectations of the future inflation rate by means of the simple rule:

E,nlH =pn, (12)

where P is a positive constant. Substituting from (10) and (12) and
rearranging, it follows that equation (11) may be written:-
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QPTM

where a=-(g'1v_)f/~a >0 (by assumption), u. MM+ and g=% and
assumed to be constant. Substituting from (13) into the first difference of
equation (10) and re-arranging gives (in implicit form) the following non-

linear first order difference equation for the rate of inflation:

e* - (I+y)(1+7T7,)(I-aePnje*1" =0 (14)

P-P Y-Y .
where n, =—_ = and v=—_ = and is assumed to be constant.

rt-1 t~\

It is clear that equation (14) is defined only for -1 <7, <(Py) 'In(fl_l).
Because of its structure, it cannot be solved directly for nt and, in the
simulations which follow, it is necessary to run the model 'backwards’
through time: In effect, we generate the 'history' of the inflation rate rather
than its forwards’ path. This is done merely for mathematical convenience,
however, and is taken into account in our conclusions about the dynamic
behaviour of the inflation rate which are based on forward paths; all
diagrams also show forward trajectories. Let Pyn, =x_\ then, from equation

(14):

=, +In 702 - In(+x)( - aex) = F(x) (15)

where b=py. The mapping defined in (15) above is capable of exhibiting a
range of different types of dynamic behaviour; convergence to a point
attractor, convergence to cycles of various lengths and deterministic chaos.
Each of these patterns will be associated with particular ranges of values
of the parameters a, b and y. Suppose the mapping defined in equation
(15):

(i) Has two fixed points, both of which are locally repelling.

(ii) Is bounded in the sense that it maps a subset, S, of the real

line into itself.

(ili) Has a positive Lyapunov exponent.
Suppose x0eS. Then the mapping will generate trajectories that appear to
be chaotic. Note that condition (i) can only be satisfied if the map has a
turning-point. It is straightforward to show that the map has a turning-
point (which is a minimum) when x, =6, where 6 satisfies aee+6=1-b. It
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is also easy to show (by considering the gradient of (15) and using the
definition of a) that the mapping has two fixed points iff

(16)

We have already made the assumption that a>0; if a = 0 the
government balances its budget but if a >0 at least some of its expenditure
is financed by printing money. For a to be negative we would have the
somewhat curious, and we believe less-interesting, case of the government
taking money out of circulation. If our assumption is to hold, then,
referring to (16), we need fiy<Il +y, the demand for real money balances
must not be too interest elastic.

Now let us consider the boundedness and stability properties of the map.
Let Fmx0) denote the m'th iterate of the map starting from some xOeS.
Then it is easy to see that the trajectory will be bounded iff F30))<F2(0)
and, if this is the case, the set S is the interval [F(0),F2(0)j. It should also

be clear that the upper fixed point, xu, is always repelling (since F'(xJ >
1) and the lower fixed point, x,, is also repelling if F'(x,) <-1. The
Lyapunov exponent (as defined in (7)) cannot be calculated exactly and so
we use the method of approximation discussed in the previous section. Of
course the exact value of the Lyapunov exponent for this map is unknown.
However, based on our experiments with the logistic equation, we feel that
our approximations (which are based on iterating the map 2,000 times)
will be fairly accurate. Figures 8 and 9 show, respectively, the last 100
iterated values of the variable x, for a chaotic map (wherey = 0.02, a =
0.13, b- 0.3 and x0= 0.25) and the behaviour of the Lyapunov exponent as
m is increased from 1000 to 2,000.
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Fig. 8. Plot of x against time
Rys. 8. Wykres zmiennej x w funkcji czasu
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Fig. 9. Plot of Lyapunov exponent against time
Rys.9. Wykitadnik Lapunowa w funkcji czasu

In conclusion, we have demonstrated that deterministic chaos is a real
possibility in this simple, discrete-time, model of inflation. Based on
numerical experiments, there is a fairly wide range of combinations of
plausible parameter values that can give rise to chaotic behaviour. This
gives rise to some interesting possibilities. For example, suppose that the
parameter values are as follows:



70 D. Chappell

a=0.025, /3= 10, >=0.3, g=0.5y=0.02 and v=10.25.

Using these values in the spreadsheet we find, that for x0eS, all
trajectories converge to the stable fixed point x, =0.18223; (note that this
corresponds to a steady state inflation rate of 60.74%). Suppose the
economy is in this steady state and the Government decides to cut the
deficit by reducing g to 0.4. This results (asymptotically) in the inflation
rate following a regular cyclical pattern (a four-point cycle). Alternatively,
suppose the Government makes an even bigger cut in g; to 0.35, say. This
results in the inflation rate exhibiting chaotic behaviour. Other

experiments are, of course, possible.
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Streszczenie

W artykule jest dyskutowane zachowanie sie wybranych modeli
systemOw dynamicznych z czasem dyskretnym, przedstawionych w postaci
rdwnan réznicowych.

Jako pierwsze jest rozpatrywane liniowe réwnanie réznicowe (1) o
statych, rzeczywistych wspotczynnikach oraz z rzeczywistym warunkiem
poczatkowym:

X tH =aX, +b
a,b,X0eR

gdzie t= 0,1,2,.
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Podstawiajagc do wzoru og6lnego Xt=Xo, otrzymujemy wyrazenie na Xi.
Rozpisujgc kolejne iteracje i stosujgc wzoér na sume czeSciowg szeregu
geometrycznego, otrzymuje sie 0golng posta¢ rozwigzania w postaci wzoru
(2. Zachowanie sie ciggu rozwigzan zalezy w spos6b decydujacy od
warto$ci |[d i moze mie¢ charakter monotoniczny lub oscylacyjny o
charakterze tlumionym lub nieograniczonym. Warunkiem stabilnosci
systemu dynamicznego (zbieznosci szeregu) jest [d <1.

Uogbdlnieniem powyzszego jednowymiarowego modelu liniowego z
czasem dyskretnym jest model n-wymiarowy

XtH=AXt+b

gdzie:

Xt, Xt+i, b - macierze kolumnowe n-wymiarowe,

A -macierz kwadratowa nxn.

Réwnanie to posiada rozwigzanie stabilne, jesli wszystkie wartosci
wiasne macierzy A lezg wewnatrz okregu jednostkowego.

Do szeroko dyskutowanych w literaturze jednowymiarowych
nieliniowych modeli dynamicznych nalezy tzw. réwnanie logistyczne

X, +I=kXI(\-x,)
k e [L4], X0e (0.1

Rownanie to, przy réznych warto$ciach parametru k, moze opisywac
szeroki zakres zachowan systemu dynamicznego, od monotonicznej
zbieznosci do punktu az do trajektorii bardzo zlozonych, zaliczanych do
tzw. chaosu deterministycznego. Z wyjatkiem przypadku, gdy parametr k
jest réowny 4, nie mozna poda¢ rozwigzania tego rownania. Pozostaje
mozliwo$¢ poszukiwania rozwigzan metodami numerycznymi. Przyktady
trajektorii przedstawiaja rysunki. Poréwnano zachowanie sie ciggow
iteracji startujgcych z niezbyt odlegtych warunkéw poczatkowych. Jesli sg
to przebiegi o charakterze chaotycznym, to po kilku iteracjach trajektorie
rozbiegaja sie. Ta cecha wyklucza stosowanie ciggébw chaotycznych do
predykcji.

Dla formuty ogdlnej réwnania nieliniowego

=F(X.)
przyjeto oszacowanie odlegtosci dwdch trajektorii po n krokach,

startujgcych z dwdch ,bliskich” warunkéw poczatkowych Xo oraz Xo+h, za
pomocg pewnej funkcji wyktadniczej (6):
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FIN(X0+h)-F I X O)\= [eK(X0)d h

gdzie Xojest tzw. wyktadnikiem Lapunowa.

Warunkiem koniecznym i wystarczajgcym chaotycznych zachowan
ciggu iteracji jest dodatnia warto$¢ wyktadnika Lapunowa. Wzory (7) i (9)
podajg sposéb obliczania wspétczynnika Lapunowa, a przyktady i kolejne
rysunki stanowig ich ilustracje.

W ostatnim rozdziale jest rozwazany nieliniowy model inflacji (15),
ktérego posta¢ uzasadniajg podstawowe prawa makroekonomii

Parametry a, b, y oraz punkt poczatkowy decydujg o zachowaniu
trajektorii. Szczegdlnie interesujgce jest uzaleznienie charakteru
zmiennosci modelu od ograniczen wprowadzanych przez rzad,
wynikajgcych np. z deficytu budzetowego.



